A machine learning approach in coastal ecology and theoretical advancements in kernel based random forests

Iakovidis, Isidoros (2025) A machine learning approach in coastal ecology and theoretical advancements in kernel based random forests, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Matematica, 37 Ciclo.
Documenti full-text disponibili:
[thumbnail of Final_thesis_upload.pdf] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Creative Commons: Attribuzione 4.0 (CC BY 4.0) .
Download (2MB)

Abstract

This PhD thesis is part of a PON scholarship DOT1303154-3 Dottorati PON - Bando 2021 - Cycle 37 (XXXVII) - Action IV.5 - Doctorates on Green topics. In the first part of the thesis, an application is provided of machine learning algorithms in the ecological coastal coasts. In the second part we examine thoroughly and in depth the mathematical properties of some of the machinery used in the first part, providing theoretical improvements of the models.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Iakovidis, Isidoros
Supervisore
Dottorato di ricerca
Ciclo
37
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
non-parametric analysis, random forest, kernel forest
Data di discussione
12 Giugno 2025
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^