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Abstract

This PhD thesis is part of a PON scholarship DOT1303154-3 Dottorati PON
- Bando 2021 - Cycle 37 (XXXVII) - Action IV.5 - Doctorates on Green
topics. In the first part of the thesis, an application is provided of machine
learning algorithms in the ecological coastal coasts. In the second part we
examine thoroughly and in depth the mathematical properties of some of the
machinery used in the first part, providing theoretical improvements of the
models.

This thesis is joint work with N.Arcozzi and F.Bozzeda in the following articles
and preprints.

1. Iakovidis Isidoros, Nicola Arcozzi. Improved convergence rates for some
kernel random forest algorithms[J]. Mathematics in Engineering, 2024,
6(2): 305-338. doi: 10.3934/mine.2024013 [43]

2. A simplified directional KeRF algorithm. (with N.Arcozzi) [44]

3. On the ecology modeling of coastal beaches. (with F.Bozzeda)
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Introduction

This PhD thesis is developed under the PON scholarship PON (Programmi
Operativi Nazionali) DOT1303154-3 Dottorati PON - Bando 2021 - Cycle 37
(XXXVII) - Action IV.5 - Doctorates on Green topics supported by the Italian
Ministry of Education and Merit, focusing on Innovation and Green topics. The
National Operational Program (PON-green) aims to provide funds for research
activities regarding green transition, ecosystem preservation, and reduction of
climate change impacts.

Among the most important effects of climate change is the increase in fre-
quency and intensity of violent atmospheric events (IPCC 2023)[62]. Coastal
areas are highly populated and important from both economic and ecological
perspectives (for example food production), making them a key focus of mod-
ern ecological research. Coastal ecology has been defined as the study of the
environment that connects the land and the sea.

The initial focus of the PhD thesis study is benthic organisms inhabiting
sandy beaches as a key component of sandy beach systems. Benthos communi-
ties play an important role as bioindicators on coastal coasts and they can be
categorized according to their size, their type, and their location [46].

In the past few years, the mathematical breakthrough of machine learning
has opened up new opportunities and strategies for ecological research, offering
new tools for discovering and explaining patterns by performing regression and
classification tasks.

Machine learning algorithms are procedures that automatize decision-making
processes via learning from examples. Different model constructions represent
various categories of machine learning. Roughly, one can divide learning proce-
dures into three categories.

Unsupervised learning algorithms, where the model tries to identify patterns
and build structures within the data without labels. Among the important
tasks that an unsupervised learning algorithm can achieve are clustering, density
destination, and dimensionality reduction through various techniques such as k-
means clustering, kernel density estimation, and principal component analysis
[35], [33].

Reinforcement learning is another machine learning approach where a no-
tion of an agent exists that is trying to maximize rewards by taking actions in
a dynamic environment. For the learning procedure, it is not known which ac-
tions need to be taken but instead, it is discovered through the aforementioned
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rewards by exploring the trade-off between exploration and exploitation [81].
In this thesis, we focus in particular, on supervised learning algorithms,

which are those where their construction is achieved by pairs of inputs and
outputs. In other words, the learning algorithm generalizes new unseen inputs
to produce a prediction and a desired output. Supervised machine learning
algorithms are commonly used to perform classification and regression tasks. In
the regression setup, the range of the predicted function can be uncountable,
and for classification tasks varies over a finite set [59].

In this setting, in this PhD thesis, our first aim is to study the distribution
of the benthic macrofauna of various sandy beaches in Emilia-Romagna. In
particular, in this study, data from four sandy beaches have been used; Bellaria,
Igea Marina, San Mauro a Mare, and Gatteo a Mare. Many state-of-the-art
algorithms have been used to classify and predict the number of benthos, and
through these techniques, we deduce useful information about the coastal coasts.
In particular, we used the K-NN algorithm, naive Bayes, neural networks, ran-
dom trees, and random forests (chapter 2).

Moreover, in the second part of the PhD program, we looked in depth at
the mathematical properties of some of the algorithms used. In particular, we
examined a large class of mechanisms of random tilings of the feature space
with tools from probability and mathematical analysis. In other words, through
tessellations of the available data set with a notion of randomness it is aimed to
identify patterns on the available data set. A random tiling of the feature space
has a one-to-one correspondence with a random tree partition and an average
of M -random trees is called a random forest.

Random forest algorithms [43] are a class of non-parametric statistic ma-
chine learning algorithms used for regression and classification tasks. Random
forest algorithms can perform sparse tasks with high accuracy in high dimen-
sions, avoiding overfitting. In particular, random forests are considered to be
among the most accurate learning algorithm classes for general tasks. They are
routinely used in many fields including bio-informatics [30], economics [92], bi-
ology [18], linguistics [37], and 3-D reconstructions [75]. The most widely used
random forest algorithm was introduced by Breiman [23], who was inspired by
the work on random subspaces of Ho [39], the geometrical feature selection of
Amit and Geman [3] and Dietterich [29].

While in practice random forest algorithms are used in many applications
and Howard and Bowles state: ensembles of decision trees—often known as
“random forests”—have been the most successful general-purpose algorithm in
modern times [40], [14], theoretically the analysis of the algorithms and the
research of their mathematical properties is still under active research. Histor-
ically, Breiman with a series of articles ([19], [23],[21] ) established the basic
mathematical properties of the original algorithm and proposed a simplified
modification. A brief description of the original algorithm is given in 1. Later
in 2006, Lin and Jeon [53] introduced a concept of Potential Nearest Neighbors
and highlighted that random forest can be viewed as adaptively weighted k-PNN
methods, and later in the same direction, Biau and Devroye [12] introduced the
layer nearest neighbor method and prove consistency of the bagged estimator
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for regression and classification.
Breiman’s random forest is designed through the CART (Classification And

Regression Trees) split criterion [22]. Bagging (bootstrap aggregating) is a
method used to improve prediction accuracy by creating several bootstrap sam-
ples from the data set and building a predictor for each sample. Finally, the
result is provided by the average of each independent estimator. This method
is often powerful for large, sparse data sets in high dimensions. The split-
ting direction (or equivalently the tree construction) is performed by optimizing
the CART criterion based on the GINI criterion for classification tasks or the
squared error for regression [14]. The CART splitting procedure and the bag-
ging method of the algorithm are central for the tree construction but can be
challenging for studying rigorously the mathematical properties of the method.
Therefore, several simplifications have been proposed either by ignoring the
bagging procedure or creating trees with simpler methods than CART.

The theoretical properties of random forest algorithms are still under ac-
tive research activity. Understanding the original random forest algorithm of
Breiman, naturally, led to definitions of simplified procedures of random parti-
tions. A classic framework for studying simplified versions of Breiman’s algo-
rithm is the so-called Purely random forests where the random tiling is designed
randomly but independent from the data set.

A detailed description of purely random forests and their classical examples
is provided in chapter 1.

0.1 Thesis overview

In chapter 1 the basic notation, definitions and relative results are discussed.
The chapter begins with the basic definitions of a random tree, a random forest,
and their corresponding kernel constructions. A brief historical preview of the
different types of random forests according to their construction is provided
with the definition of the CART split criterion. Moreover, the convergence
rates of some basic examples of random forests and kernel representations are
discussed in chronological order of discovery and the necessary background from
the Fourier analysis in abelian groups is mentioned. Finally, we define the
concept of interpolation regime for an estimator constructed through the data
set and specifically for the purely random forests.

In chapter 2 we provide an application of several supervised machine learn-
ing algorithms in ecological data sets. Moreover, we give a brief description of
the methods 2.1.2, specifically oriented to ecology applications. In particular,
our goal is to offer ecologists a practical guide to leveraging machine learn-
ing techniques for investigating ecological patterns and processes. To evaluate
the selected methods, we utilized an ecological dataset on sandy beach benthic
macrofauna 2.1.2. This data set was created through comprehensive sampling
carried out in 2022 on beaches located in Bellaria, Igea Marina, Gatteo a Mare
and San Mauro a Mare in the Emilia-Romagna region of Italy. This section is
part of a preprint On the ecology modeling of coastal beaches that is a joint work
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with Fabio Bozzeda.
In chapter 3, we introduce again the notation and definitions for the centered

and uniform random forest algorithms, along with their kernel-based formula-
tions. Additionally, an improvement of the consistency rate is provided for the
centered and uniform KeRF algorithm.

Let k ≥ 1 represent the depth of the trees used to predict the target variable
Y (refer to Section 3.0.2 for detailed definitions and notation).

Theorems on Consistency

Theorem 1. Assume X = (X1, . . . , Xd) and Y are related by the model

Y = m(X) + ϵ,

where ϵ is Gaussian noise of zero mean with finite variance and independent
of X, X is uniformly distributed over [0, 1]d, and m is a Lipschitz regression
function. Then, there exists a constant C̃ such that for any n > 1 and x ∈ [0, 1]d,

E
(
m̃Cen

∞,n(x)−m(x)
)2 ≤ C̃n− 1

1+d log 2 (log n).

Here, m(x) = E[Y |X = x] is the true regression function, and m̃Cen
∞,n(x) is the

estimate provided by the centered random forest kernel algorithm.

Theorem 2. With m̃Un
∞,n(x) denoting the estimate of the uniform KeRF algo-

rithm, and assuming the same setup as in Theorem 1, there exists a constant C̃
such that for any n > 1 and x ∈ [0, 1]d,

E
(
m̃Un

∞,n(x)−m(x)
)2 ≤ C̃n− 1

1+ 3
2
d log 2 (log n).

Numerical Experiments and Parameter Tuning.
In Section 3.0.6, we present numerical experiments to analyze the impact of the
tree depth parameter k on the performance of both kernel-based random forest
algorithms. Specifically, we compare the L2 error under various assumptions
about the dataset and evaluate the algorithm’s sensitivity to changes in k.

Analysis of the Kernel K
In the final part of the section, we examine the reproducing kernel K used in
the centered KeRF algorithm independently. We interpret K as a function on
the finite Abelian group Zkd2 , where d is the dimension of X and k is the tree
depth. Using elementary Fourier analysis on groups, we derive:

• Multiple equivalent expressions for K and its group transform,

• A characterization of functions in the associated Reproducing Kernel Hilbert
Space (RKHS) HK ,

• Results on multipliers, and

• Bounds on the dimension of HK , which is shown to be significantly smaller
than anticipated.
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These findings deepen our understanding of the kernel’s structure and its
implications for random forest algorithm and it is part of a joint work with
N.Arcozzi, in Improved rates of convergence for some kernel random forests
[43].

In the chapter 4,we present a variation of the centered random forest al-
gorithm, which we call the simplified directional algorithm. The main goal of
this approach is to create a partition of the feature space that is independent
of the dataset by simplifying the centered method. We establish the kernel
representation for this new algorithm and demonstrate that, asymptotically, as
the number of trees tends to infinity, the centered KeRF and the simplified
directional KeRF become equivalent.

To validate these findings, we conduct experiments comparing the L2-error
and variance of the finite-centered KeRF and the finite simplified directional
algorithm across varying numbers of trees.

Finally, we provide the proof of the improvement of the rate of convergence
of the infinite centered-KeRF in the interpolation regime. Of course, since the
simplified directional infinite keRF coincides with the centered one, we obtain
also rates of convergence in the interpolation regime and in general as a corollary.

Theorem 3. Assume X = (X1, . . . , Xd) and Y are related by the model

Y = m(X) + ϵ,

where ϵ is Gaussian noise of zero mean with finite variance and independent
of X, X is uniformly distributed over [0, 1]d, and m is a Lipschitz regression
function. Then for large enough n and assuming the tree depth is k = log2 n to
satisfy the interpolation regime, for every value of d ≥ 2 one has that

E[(m̃cc
n,∞(x)−m(x))2] ≤ c1

(
1− 1

2d

)2 log2 n

+C3
log2(log2 n)

d

(log2 n)
d−1
2

log

(
log n(log2 n)

d−1
2

log2(log2 n)
d

)
.

This is part of a joint work with N.Arcozzi in the preprint A simplified
directional KeRF algorithm [44].
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Chapter 1

Preliminaries and related
results

In this chapter, we introduce the preliminaries, basic definitions, and related
results pertinent to our work. In particular, we rigorously provide definitions
of random trees, random forest algorithms, and their related kernel representa-
tions. We emphasize different types of random forests based on their construc-
tion methods in relation to the data set. A brief history of related results on
rates of convergence is discussed, along with some definitions and results from
Fourier analysis on finite abelian groups.

This chapter information primarily derived from [43], [11],[73].

1.1 Definitions and notation

We begin this chapter by providing the general random forest framework by
defining firstly the notion of a random tree. Additionally, we present two specific
variations of the original random forest algorithm, namely, the centered and
uniform random forest algorithms.

In particular we assume that we are given a training sample

Dn = {(X1, Y1), ..., (Xn, Yn)}

of independent random variables, where Xi ∈ [0, 1]d for every i = 1, ..., n and
Y ∈ R with a shared joint distribution PX,Y . The goal is using the data set to
construct an estimate mn : X ⊆ [0, 1]d → R of the function m.

A tree construction is equivalent to a recursive partition of the feature space
[0, 1]d with some notion of randomness. In other words every recursive covering
of the feature space corresponds to a tree construction.

We call the tiles of the recursive partition 1.1 leaves or nodes or sometimes
cells.
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Figure 1.1: An example of a tree construction of a recursive partition of a two-
dimensional feature space.

In the figure 1.1 we see an example of a recursive partition of a two-dimensional
space in four nodes.

The construction of the estimate function (that we sometimes also call a
tree) is naturally the average of the target examples that belong in each tile.

Let’s assume Θi for i = 1, ...,M is a collection of independent random vari-
ables, distributed as Θ. The random variables Θi correspond to sample the
training set or select the positions for splitting. A detailed construction in the
case of the centered random forest of the random variable Θ is performed in
chapter 3.0.7.

Definition 1. For the j-th tree in the forest, the predicted value x will be denoted
by

mn,Θj ,Dn(x) =

n∑
i=1

1Xi∈An,Θj ,Dn (x)Yi

Nn,Θj ,Dn
(x)

.

• Where An,Θj ,Dn(x) is the cell containing x for the j-th tree and designed
with randomness Θj.

• Nn,Θj ,Dn(x) is the number of points that fall into the cell that x belongs
to for the j-th tree and designed with randomness Θj . In other words
Nn,Θj ,Dn

(x) is the cardinality of the node An,Θj ,Dn
(x) .
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• By definition, if a node contains no points, the algorithm assigns to the
tree estimator the value zero

For a fixed value of x ∈ [0, 1]d, the value of the tree is the empirical expec-
tation of Y in the unique cell containing x; which is, this is the hope, a good
guess for the target value corresponding to x.

A random forest is a finite collection (average) of independent, finite random
trees:

Definition 2. The finite M forest is

mM,n(x) =
1

M

M∑
j=1

mn,Θj ,Dn
(x).

From a modeling point of view, we let M → ∞ and consider the infinite
forest estimate

m∞,n,Dn
(x) = EΘ(mn,Θ,Dn

(x)).

The convergence holds almost surely by the law of the large numbers condition-
ally on Dn. (Breinman) [20], (Scornet) [72, Theorem 3.1].

1.1.0.1 Kernel Random Forest algorithm

In 2016, Scornet in [73] introduced kernel methods in the random forest world
(KeRF), producing a kernel-based algorithm, together with estimates on how
this compares with the traditional methods, described above.
To understand the intuition behind KeRF construction, we reformulate the
random forest algorithm.
For all x ∈ [0, 1]d,

mM,n(x) =
1

M

M∑
j=1

( n∑
i=1

1Xi∈An,Θj ,Dn (x)Yi

Nn,Θj ,Dn
(x)

)
.

Therefore we can define the weights of every observation Yi as

Wi,j,n(x) =
1Xi∈An,Θj ,Dn (x)

Nn,Θj ,Dn
(x)

.

Hence it is clear that the value of weights, that they are a probability distribution
on An,Θj ,Dn

(x), changes significantly concerning the number of points in each
cell. A way to overcome this nuisance is by simultaneously considering all tree
cells containing x, as the tree is randomly picked in the forest.
For all x ∈ [0, 1]d,

m̃M,n,Θ1,Θ2,...,ΘM
(x) =

1∑M
j=1Nn,Θj

(x)

M∑
j=1

n∑
i=1

Yi1Xi∈An,Θj
(x).
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This way, empty cells do not affect the computation of the prediction function
of the algorithm.

It is proven in [73], that this representation has indeed a kernel representa-
tion.

Proposition 1 (Scornet [73], Proposition 1). For all x ∈ [0, 1]d almost surely,
it holds

m̃M,n,Θ1,Θ2,...,ΘM
(x) =

∑n
i=1KM,n(x,Xi)Yi∑n
i=1KM,n(x,Xi)

,

where

KM,n(x, z) =
1

M

M∑
i=1

1x∈An,Θi,Dn (z).

is the proximity function of the M forest

Again, naturally, from the modeling point of view, it is meaningful to ask
what happens when the number of trees goes to infinity or if the kernel rep-
resentation is maintained. The infinite random forest arises in the following
way,

Definition 3. The infinite KeRF is defined as:

m̃∞,n(x) = lim
M→∞

m̃M,n(x,Θ1,Θ2, ...,ΘM ).

The extension of the kernel follows also in the infinite random forest.

Proposition 2 (Scornet [73], Proposition 2). Almost surely for all x, y ∈ [0.1]d

lim
M→∞

KM,n(x, y) = Kn(x, y),

where
Kn(x, y) = PΘ(x ∈ An(y,Θ)),

where the left-hand side is the probability that x and y belong to the same cell
in the infinite forest.

Following the notation on [73], we provide a proposition that quantifies how
close random forests are to kernel-related random forests. In [73] one can see
the proves and also numerical experiments confirming the theoretical results.

To proceed we need the following assumptions on the model:
We fix x ∈ [0, 1]d and let us assume that Y ≥ 0 almost surely. Then the

following dichotomy is assumed, which ensures that each node has a bounded
number of data points from above and below. In other words

1. there exist two sequence an, bn that bound from above and below the
number of points in each node, i.e.

an ≤ Nn(x,Θ) ≤ bn

or
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2. there exist three sequences ϵn, an, bn such that almost surely

PΘ(an ≤ Nn(x,Θ) ≤ bn) ≥ 1− ϵn and 1 ≤ an ≤ EΘ(Nn(x,Θ)) ≤ bn

.

Proposition 3. ([73],Proposition 3) Under the hypothesis 1 almost surely it
holds, ∣∣∣∣mM (x,Θ1, ...,ΘM )

m̃M (x,Θ1, ...,ΘM )
− 1

∣∣∣∣ ≤ bn − an
an

Thus, if the number of points in every node can be controlled the kernel
forest can be arbitrarily close to the forest construction.

In Breiman’s tree construction, the user controls the number of data points
in the hypercube partition 1.1.1.3. In fact, the default selection for classification
tasks is one point per node. Therefore, since the user can control the sequence’s
an, bn, the random forest construction and the corresponding kernel random
forest construction are arbitrary close.

1.1.1 Types of random forest algorithms

Different types of random forest algorithm exist, depending on the way that
the tiling of the hypercube is performed. In general, the basic distinction is the
following:

1) Independently designed of Xi and Yi, for example centered random forest,
uniform random forest.

2) Independently designed of Yi, for example median random forest.

3) Dependent of Xi and Yi for example Breiman’s random forest.

In the centered and uniform forest algorithms, the way the hypercube is
partitioned is independent of the data set itself. We call this random forests
also as Purely random forests.

1.1.1.1 The centered random forest/ Centered KeRF and the uni-
form random forest/uniform KeRF

The centered random forest is designed as follows.

1) Fix k ∈ N.

2) At each node of each individual tree choose a coordinate uniformly from
{1, 2, ..d}.

3) Split the node at the midpoint of the interval of the selected coordinate.
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Repeat step 2)-3) k times. At the end, we have 2k leaves, or cells. Our estima-
tion at a point x is achieved by averaging the Yi corresponding to the Xi in the
cell containing x.

Uniform random forest was introduced by Biau et al. [13] and is an-
other toy model of Breinman’s random forest as a centered random forest. The
algorithm forms a partition in [0, 1]d as follows:

1) Fix k ∈ N.

2) At each node of each individual tree choose a coordinate uniformly from
{1, 2, ..d}.

3) The splitting is performed uniformly on the side of the cell of the selected
coordinate.

Repeat step 2)-3) k times. At the end, we have 2k leaves. Our final estimation
at a point x is achieved by averaging the Yi corresponding to the Xi in the cell
containing x.

In particular, the centered random forest satisfies the 1 property. Specifically,
since we assume that X is uniformly distributed in the hypercube, the expected
number of points in each node is n

2k
and the measure of each node is 1

2k
. Then

almost surely from the law of iterative logarithm∣∣∣∣Nn(x,Θ)− n

2k

∣∣∣∣ ≤ √2n log log n2

and hence, the 1 is satisfied and for large enough n. In other words for ap-
propriate choices of an, bn the centered KeRF and the centered algorithm are
arbitrary close for an appropriate choice of a tree depth [73]. The assumption
of the uniform distribution of the feature space here is crucial in the sense that
we cannot establish the asymptotic equivalence of the centered random forest
and the centered KeRF under a general density distribution.

1.1.1.2 The median random forest algorithm

The median random forest algorithm is another simplification of the original
Breiman random forest. In this case, the cut is performed on the empirical
midpoint of the preselected coordinate and hence it depends on the data of Xi

that belong to the feature space [0, 1]d . The algorithm is constructed as follows:

1) Fix k ∈ N.

2) At each node of each individual tree choose a coordinate uniformly from
{1, 2, ..d}.

3) The splitting is performed in the median of the feature space on the side
of the cell of the selected coordinate.
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Repeat step 2)-3) k times. At the end, we have 2k leaves. Our final estimation
at a point x is achieved by averaging the Yi corresponding to the Xi in the
cell containing x. Hence, for a tree of level k, every cell has the same number
of points ±2. In other words, with an appropriate choice of tree depth k one
has that the finite random forest and the related KeRF representation can be
arbitrary close.

The above results can be extended assuming 2 to infinite random forests
(Proposition 4. [73]).

1.1.1.3 Breiman’s random forest algorithm

The great advantage of all different versions of random forest algorithms are the
few parameters that need to be tuned. Below we summarize the most important
parameters for the original algorithm of Breiman. We review the basic algorithm
and we conclude with the definition of the CART criterion used for the choosing
the splitting direction.

The most important parameters of the model are the number of data points
sampled in each tree an from the data set, mtry ∈ {1, . . . , d} the number of
potential splitting directions considered at each node of every tree and finally
the nodesize which is the number of data points that can be left at each tile and
it can be used as a stopping time for no more splitting.

In the famous package [52] in R the deafult settings of the regression model
are

• mtry = ⌈d/3⌉ (where ⌈·⌉ denotes the ceiling function),

• an = n, and

• nodesize = 5.

The CART-Split Criterion

To simplify the explanation, consider a tree constructed using the entire dataset
Dn without subsampling. Let A represent some possible cell in the feature space
in the recurring splitting procedure, and let Nn(A) denote the number of data
points in A. A potential split in A is represented by the pair (j, z), where:

• j ∈ {1, . . . , d} is a chosen dimension, and

• z is the position of the cut along the j-th chosen dimension, of course
constrained by the geometry of the cell A.

Let CA be the set of all possible cuts in A. Using the notation Xi =

(X
(1)
i , . . . , X

(d)
i ), for any (j, z) ∈ CA, the CART-split criterion is defined as:
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Lreg,n(j, z) =
1

Nn(A)

( n∑
i=1

(Yi − ȲA)21Xi∈A

−

[
n∑
i=1

(Yi − ȲAL
)21

X
(j)
i <z

+

n∑
i=1

(Yi − ȲAR
)21

X
(j)
i ≥z

]
1Xi∈A

)

Here:

• AL = {x ∈ A : x(j) < z} and AR = {x ∈ A : x(j) ≥ z},

• ȲA, ȲAL
, and ȲAR

are the averages of Yi for Xi ∈ A, Xi ∈ AL, and
Xi ∈ AR, respectively, with the convention that the average is 0 if no
points fall in the respective sets.

The optimal split (j∗n, z
∗
n) for a cellA is determined by maximizing Lreg,n(j, z)

over the set of considered directions mtry and possible cuts CA: (j∗n, z
∗
n) ∈

argmax
j∈mtry,(j,z)∈CA

Lreg,n(j, z).

To avoid ambiguities in cases of ties, the algorithm chooses the cut point
(j∗n, z

∗
n) to be the midpoint between two consecutive data points [14]. Of course

in a similar way the algorithm works for the resampling case by just replacing
Dn with an. This optimization process extends naturally to subsampling. In
this case, the CART criterion is performed over the an preselected data points
rather than the entire dataset Dn. Therefore the random forest of Breiman is
performed as follows.
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Algorithm 1 Breiman’s Random Forest Predicted Value at x

Input: Training set Dn = {(Xi, Yi)}ni=1

Number of trees M > 0
Subsample size an ∈ {1, . . . , n}
Number of variables to consider for splitting mtry ∈ {1, . . . , d}
Minimum node size, nodesize ∈ {1, . . . , an}
Query point x ∈ [0, 1]d

Output: Predicted value of the random forest at x

1: for j = 1 to M do
2: Select an points from Dn (with or without replacement). These an

observations are only used for building the tree.
3: Initialize the partition P = [0, 1]d (the hypercube feature space).
4: Initialize Pfinal = ∅ (an empty list to store terminal nodes).
5: while P ≠ ∅ do
6: Let A be the first element of P.
7: if A contains fewer than nodesize points that there were preselected

or all Xi ∈ A are equal then
8: Remove A from P.
9: Pfinal ← Pfinal ∪ {A}.

10: else
11: Randomly select mtry features from {1, . . . , d}.
12: Find the best split of A using the CART-split criterion on the

selected features.
13: Split A into two subsets AL and AR based on the best split of the

previous step.
14: Remove A from P.
15: P ← P ∪ {AL, AR}.
16: end if
17: end while
18: Compute mn(x; Θj , Dn) as the mean of all target values that correspond

to points in the feature space that belong in the cell containing x in Pfinal.
19: end for
20: Compute the random forest prediction:

mM,n(x; Θ1, . . . ,ΘM , Dn) =
1

M

M∑
j=1

mn(x; Θj , Dn).

[14].

1.1.2 Rates of convergence of random forest algorithms

In this subsection we provide a historical review of the rates of convergence of
several random forest models. Under different assumptions on the model and the
construction of each algorithm one can establish different consistency results for
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general types of random forest. Here we summarize some of the classical results
in the bibliography about convergence of random forest algorithms and rates of
convergence where it is possible.

Already Breiman in [21] and Biau in [11] discussed rates of convergence of
the centered random forest.

In 2012 Biau in [11] studied a random forest model proposed by Breiman,
where the construction is independent of the data set, called in literature cen-
tered random forest. In [11] an upper bound on the rate of consistency of the
algorithm and its adaption to sparsity were proven. More precisely, about the
first item, for a data set of n samples in a space of dimension d, the convergence

rate was O
(
n
− 1

d 4
3

log 2+1

)
.

In addition in 2021 Klusowski at [49] improved the rate of convergence to

O
(
(n log

d−1
2 n)−( 1+δ

d log 2+1 )
)
, where δ is a positive constant that depends on the

dimension of the feature space d and converges to zero as d approaches infinity.
In addition, in the same paper, Klusowski proved that the rate of convergence of
the algorithm is sharp, although it fails to reach the minimax rate of consistency

over the class of the Lipschitz functions [91] O
(
n

−2
d+2

)
.

There is also important work on the consistency of algorithms that depend
on data [57], [87], [74]. For a comprehensive overview of both theoretical and
practical aspects of the random forests see e.g. [14], which surveys the subject
up to 2016.

In 2016 [73] Scornet proved rates of convergence of the centered and uniform
kernel based random forest under specific assumptions 1. In particular the rate

of convergence of the centered KeRF was proven O(n−( 1
d log 2+3 )(log n)2) and

for the uniform KeRF O(n−( 2
3dlog2+6 )(log n)2) and afterwards in [43] both algo-

rithms had an improved rate ofO(n−
(

1
1+d log 2

)
(log n)) andO(n−( 2

3d log 2+2 )(log n))
respectively (the proofs are presented in 3).

1.1.3 Some results from Fourier analysis on finite groups

In this subsection we provide some basic results from harmonic analysis in
abelian groups that will be useful for the chapter 3 and it comes from [43].
Following the notation of [70], in [43], we recall the basic notions of Fourier
theory for a finite, abelian group G, which we employed above. This theory
is necessary for the section 3.0.8 Here, G is endowed with its counting mea-
sure. The dual group Γ = Ĝ of G is populated by labels a for homomorphisms
γa : G→ T = {eit : t ∈ R}. Given a function f : G→ C, its Fourier transform

f̂ : Γ→ C is defined as

f̂(a) =
∑
x∈G

f(x)γa(x). (1.1.1)

We make Γ into a (finite), additive group by setting

γa+b = γa · γb, and γx(a) := γa(x).
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It turns out that they have the same number of elements, ♯(G) = ♯(Γ). Some
basic properties are:

f(x) =
1

♯(Γ)

∑
a∈Γ

f̂(a)γa(x) (inverse Fourier transform),∑
x∈G
|f(x)|2 =

1

♯(Γ)

∑
a∈Γ

|f̂(a)|2 (Plancherel),

f̂ ∗ g = f̂ · ĝ,

where
(f ∗ g)(x) =

∑
y∈G

f(x− y)g(y). (1.1.2)

We write
φ̌(x) = ♯(Γ)−1

∑
a∈Γ

φ(a)γa(x), so that ̂̌φ = φ. (1.1.3)

The unit element of convolution in G is δ0.
In the other direction, for φ,ψ : Γ→ C we define

(φ ∗ ψ)(a) = 1

♯(Γ)

∑
b∈Γ

φ(a− b)ψ(b), (1.1.4)

and similarly to above, ̂̌φψ̌ = φ ∗ ψ. The unit element on convolution in Γ is
♯(Γ)δ0.

A function φ on Γ is positive definite if

n∑
a,b∈Γ

c(a)c(b)φ(b− a) ≥ 0.

Theorem 4. [Bochner’s Theorem] A function φ : Γ→ C is positive definite if
and only if there exists µ : G→ R+ such that φ = µ̂.

The theorem holds in great generality, and its proof in the finite group case
is elementary. We include it because it highlights the relationship between the
measure µ on G and the positive definite function (the kernel) φ.

If.

♯(Γ)−2
∑
a,b∈Γ

µ̂(b− a)c(a)c(b) =
∑
x∈G

♯(Γ)−2
∑
a,b∈Γ

µ(x)γb−a(x)c(a)c(b)

=
∑
x∈G

♯(Γ)−2
∑
a,b∈Γ

µ(x)γb(x)c(b)γa(x)c(a)

=
∑
x∈G

µ(x)

∣∣∣∣∣♯(Γ)−1
∑
a∈Γ

c(a)γa(x)

∣∣∣∣∣
2

=
∑
x∈G

µ(x) |č(x)|2 ≥ 0. (1.1.5)
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Only if. Since for all b in Γ,

µ(x)♯(Γ) =
∑
a∈Γ

φ(a)γx(a) =
∑
a∈Γ

φ(a− b)γx(a− b)

=
∑
a∈Γ

φ(a− b)γx(a)γx(b), (1.1.6)

we have
µ(x)♯(Γ)2 =

∑
a,b∈Γ

φ(a− b)γx(a)γx(b) ≥ 0, (1.1.7)

by the assumption.

We now come to reproducing kernels on Γ which are based on positive definite
functions φ : Γ→ R+. Set

K(a, b) = φ(a− b) = Kb(a), K : Γ× Γ→ C, (1.1.8)

and set
HK = span{Kb : b ∈ Γ} ∋

∑
b∈Γ

c(b)Kb, (1.1.9)

where HK is the Hilbert space having K as reproducing kernel. We wish to
have a more precise understanding of it.

We start by expressing the norm of an element on HK is several equivalent
ways,∥∥∥∥∥∑

b∈Γ

c(b)Kb

∥∥∥∥∥
2

HK

=
∑
a,b∈Γ

c(a)c(b)⟨Kb,Ka⟩

=
∑
a,b∈Γ

c(a)c(b)K(a, b) =
∑
a,b∈Γ

c(a)c(b)µ̂(a− b)

=
∑
a,b∈Γ

c(a)c(b)
∑
x∈G

µ(x)γb−a(x)

=
∑
x∈G

µ(x)
∑
a,b∈Γ

c(a)c(b)γb(x)γa(x)

=
∑
x∈G

µ(x)

∣∣∣∣∣∑
b∈Γ

c(b)γb(x)

∣∣∣∣∣
2

= ♯(Γ)2
∑
x∈G

µ(x) |č(x)|2 = ♯(Γ)2
∑
x∈G

∣∣∣µ(x)1/2č(x)∣∣∣2 .(1.1.10)

In other terms,

♯(Γ)−1
∑
b∈Γ

c(b)Kb 7→ č (1.1.11)

is an isometry of HK onto L2(µ). This will become important later, when
we verify that for our kernels supp(µ) is sparse in G. In fact, dim(HK) =
♯(supp(µ)).
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Corollary 1. As a linear space, HK is determined by supp(µ):

ψ ∈ HK if and only if supp(ψ̌) ⊆ supp(µ).

Let E ⊆ G. We denote

LE = {G ψ−→ C : supp(ψ̌) ⊆ E}. (1.1.12)

Next, we look for the natural orthonormal system provided by the Fourier
isometry (1.1.11). Fr x ∈ G, let čx = µ(x)−1/2δx: {čx : x ∈ E := supp(µ)} is a
orthonormal system for L2(µ), and so {ex : x ∈ E} is an orthonormal basis for
HK , where

cx(b) =
∑
y∈G

µ(x)−1/2δx(y)γb(y) = µ(x)−1/2γb(x), (1.1.13)

and

ex(a) = ♯(Γ)−1
∑
b∈Γ

cx(b)Kb(a)

=
µ(x)−1/2

♯(Γ)

∑
b∈Γ

Kb(a)γb(x)

=
µ(x)−1/2

♯(Γ)

∑
b∈Γ

φ(a− b)γb(x)

=
µ(x)−1/2

♯(Γ)

∑
b∈Γ

φ(a− b)γa−b(x)γa(x)

= µ(x)−1/2µ(x)γa(x)
= µ(x)1/2γa(x). (1.1.14)

Let’s verify that we obtain the reproducing kernel from the o.n.b. as expected,∑
x∈Γ

ex(a)ex(b) =
∑
x∈Γ

µ(x)γx(a)γx(b)

=
∑
x∈Γ

µ(x)γx(a− b)

= µ̂(a− b)
= φ(a− b). (1.1.15)

Remark 1. Since any finite, abelian group can be written as the direct product
of cyclic groups,

G =

L⊕
l=1

Zml
, (1.1.16)

its dual Γ can be written in the same way, because Ẑm ≡ Zm. From the Fourier
point of view, the only difference is that, if on G we consider the counting
measure, then on Γ we consider the normalized counting measure, as we did
above.
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1.1.4 Interpolation regime

Finally, we introduce the notion of data training interpolation.
Models of high complexity tend to overfit, and their ability to generalize

to new, unseen data is usually poor. Recently, this idea has been challenged
for certain model examples. Large and deep neural networks still perform at
the state-of-the-art level, and even interpolating training data can lead to high-
performance models ([36], [4], [7]).

In this direction, well-studied simple parametric models, such as linear re-
gression [6], [86], [51], and some non-parametric models like random forests ([83],
[90], [4]), have been explored. By default, many machine learning libraries grow
deep trees until only one data point remains in each cell, so the estimator effec-
tively interpolates the data [63].

Kernel interpolation estimators, on the other hand, have been observed to be
a good balance between complexity and lack of overfitting [50],[48],[28]. In the
work of Belkin et al. [9] non-asymptotic rates with data interpolation were first
proven, and recently [10] Belkin et al. proved optimal rates of convergence for
kernel interpolating estimators. More recently, Wang and Scott [88] provided
consistency results for kernel-based methods on Riemannian manifolds.

Following the article by Arnould et al. [4], we present some basic results
from their paper and conclude with our theorem statement.

Definition 4 ((Exact) Interpolation). ([4]) An estimator mn is said to inter-
polate if, for all training data (Xi, Yi), we have mn(Xi) = Yi almost surely.

The random forest algorithm, in general can interpolate the data if every
random tree interpolates the data. In other words our estimator can interpo-
late the data if the tree depth is deep enough until there exist nodes with one
observation.

From the construction of the centered tree, it is clear that it is impossible to
force each node to have only one observation. This happens because the centered
the uniform and the simplified directional trees (see for the definition of the later
4) are constructed without taking into account the data set (non-adaptive or
purely trees).

Therefore, for example the centered random forest cannot interpolate in the
sense of Definition 4, and a weaker notion of interpolation (in probability) must
be examined. The definition of the interpolation regime is the following.

Definition 5 (Mean Interpolation Regime). ([4]) The centered random forest
algorithm mcent

M,n satisfies the mean interpolation regime when each tree of mM,n

has at least n leaves, i.e., if and only if k ≥ log2(n), where k is the tree depth.

Therefore, it can be computed the probability of a centered tree interpolates
the data.

Theorem 5 (Probability of Interpolation for Centered Tree). ([4]) For k =
⌊log2(αnn)⌋ with αn ∈ N \ {0, 1}:

e−
n

αn−1 ≤ P (Interpolation regime) ≤ e−
n

2(αn+1) .
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A crucial result from Arnould et al.’s paper is that in the mean interpolation
regime, the infinite centered random forest is not consistent.

Theorem 6 (Inconsistency of Centered Random Forest). If E[m(X)2] > 0 and
kn ≥ log2(αn), then the infinite centered random forest mcc

∞,n is inconsistent.

On the contrary, the kernel-based centered random forest can be simultane-
ously consistent and satisfy the mean interpolation regime when the dimension
of the feature space is d > 5.

Theorem 7 (Consistency of Centered KeRF). Under the following assump-
tions:

Y = m(X) + ϵ,

X is uniformly distributed on [0, 1]d,

ϵ ∼ N (0, σ2), σ <∞,
m belongs to the class of L-Lipschitz functions,

and assuming furthermore that k = ⌊log2(n)⌋:
then the rate of convergence is

E[(m̃cc
n,∞(x)−m(x))2] ≤ 8L2d2

n−2 log2(1−1/d)
+ Cd(log2 n)

−(d−5)/6(log2(log2 n))
d/3,

where Cd > 0 is a constant dependent on noise variance.

Under the same assumptions for the regression function m, in the mean
interpolation regime, we provide an improvement in the rate of convergence in
chapter 4

E[(m̃cc
n,∞(x)−m(x))2] ≤ c1

(
1− 1

2d

)2 log2 n

+C3
log2(log2 n)

d

(log2 n)
d−1
2

log

(
log n(log2 n)

d−1
2

log2(log2 n)
d

)
.

Hence, from the above result, it is clear that the centered KeRF algorithm
is consistent in the mean interpolation regime with a better convergence rate
than the one provided in [4] and in fact for every feature space with dimension
d ≥ 2.
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Chapter 2

Ecology Project

In this chapter, we give an application of machine learning algorithms applied
to ecological databases. We study ecological coastal coasts in Emilia Romagna,
and through supervised learning procedures, we study the distribution of the
benthic organisms. We perform classification and regression tasks to obtain
results between the physical parameters of sandy coasts and the macrofauna
communities, and finally, we highlight the advantages and the limitations of
each method for every specific ecological task.

2.1 Applications of machine learning algorithms
to ecological databases: an empirical and
critical comparison.

In this section, we aim to provide a comparative analysis of various machine
learning algorithms and their probabilistic aspects (Pichler and Hartig, (2023
[66]); Borowiec et al., ([15]2022); Hishie, ([41]2009); Huntingford et al, ([42]2022).
We highlight the advantages and limitations of each approach providing a guided
tour of the methods. In general, a machine-learning task is the use of an algo-
rithm or a technique that enables computers to “learn” through examples and
performing tasks. In other words, the user builds a mathematical model with a
data set that generalizes with high accuracy in new “unseen” data.

In other words, we use supervised machine learning algorithms such as neural
networks, random forests, and k-Nearest Neighbors to name a few, which have
performed remarkably in ecological data, explaining non-linear patterns in high
dimensional data sets. (Recknagel, ([68]2001); Peters et al.,([64] 2014; Olden et
al, ([61]2008) ; Tu et al., ([93]2021).

Specifically, neural networks can perform various ecological tasks, by learn-
ing complicated relationships between ecological variables providing researchers
with a useful tool for explicit predictions of the distribution of the species. More-
over, random forests, an average of predictions of finite decision random trees
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perform with high accuracy avoiding overfitting for both regression and classi-
fication problems (Mosaffaei et al, ([58] 2020), Zhang et al.,([95] 2021; Batool
et al.,([8] 2021)). We provide a brief description of the methods used in the
sub-section “Methods”.

Unsupervised learning algorithms have also been used in ecology research
projects, where the data are un-categorized or un-labeled and the goal is to
identify patterns and underlying structures. Some common tasks are dimen-
sionality reduction and data clustering ([35]).

Reinforcement learning is another machine learning approach also used in
ecology where an agent is trying to maximize a notion of reward by taking ac-
tions in a dynamic environment.(Co-Reyes et al., ([24]2020); Borowiec et al.,([15]
2022)).

Machine learning algorithms and probabilistic methods have strengths and
limitations and the choice of the appropriate model depends on the research
activity. It highly depends on the nature, the size of the data, and also the
desired level of interpretability of the specific model. On the contrary, tradi-
tional statistical methods offer statistical inference and hypothesis testing tools
but struggle to capture patterns in complicated data phenomena. For exam-
ple, Elith et al.([31] 2006), compared the performance of machine learning and
classical probabilistic methods for species distribution modeling. In particular,
they found that specific machine learning algorithms such as regression trees
and random forest algorithms outperform traditional statistical techniques such
as GLMs (Generalized linear models) and GAMs (generalized additive models)
concerning predictive accuracy.

Similarly, in another comparison article, Thuiller et al. ([84]2009), compared
machine learning algorithms and traditional statistical methods for predicting
species distribution under climate change. It appears, that again, the chosen
machine learning algorithms such as support vector machine and maximum en-
tropy models outperformed traditional classical methods like logistic regression
model and Gaussian process regression. Despite the different approach on the
methodology, classical probabilistic and statistical methods and machine learn-
ing algorithms, are valuable tools for modern ecology research.

On the one hand, machine-learning methods provide important tools for
manipulating complex patterns in ecological data and making more accurate
prediction models for regression and classification tasks, while classical statisti-
cal methods provide a robust framework for statistical inference and hypothesis
testing.

By combining both approaches, researchers can unlock the full potential of
machine algorithms for many ecological research tasks. Overall machine learn-
ing theory can provide alternative possibilities for ecology research purposes.
Complicated ecological patterns can be explained, and accurate predictions can
be made for various ecological tasks. Researchers can combine traditional sta-
tistical methods and machine-learning tools for decision-making, depending on
the specific data set or on the specific scientific questions.

In the section2.1.2, we provide a brief introduction to the machine learning
algorithms we used for our analysis.
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2.1.1 Aims

In recent years, machine-learning algorithms, including deep learning, neural
networks, and other methods, become increasingly popular in the study of ecol-
ogy and in particular, coastal coasts. This chapter aims to provide a guide
to ecology researchers regarding the selection of machine-learning algorithms
for various research purposes and needs. Moreover, the complexity of ecological
phenomena often requires sophisticated statistical analysis instead of traditional
simplified models.

In this section, we evaluate and compare popular machine-learning (ML)
algorithms, specifically: k-Nearest Neighbors(k-NN), decision trees, näıve Bayes,
random forests, and neural networks. Their performance was compared on both
classification and regression tasks for predicting ecological data. The predictive
accuracy of each algorithm was evaluated through metrics such as R2 (coefficient
of determination), for regression tasks and F1− score for classification, providing
an understanding of the advantages and limitations of the aforementioned ML
algorithms.

Additionally, this section aims to illustrate the trade-off between the com-
plexity and interpretability of each model. Many ML algorithms are often used
as black-box methods decreasing the researchers’ understanding of the model.
Furthermore, we examine all data requirements for each algorithm across dif-
ferent types and sizes of data. Empirical results provide insights for ecology re-
searchers to make optimal decisions on the selection of an appropriate machine-
learning algorithm for specific ecology studies.

The complexity of ecology phenomena usually requires handling factors such
as data dimensionality (curse of dimensionality), non-linearity, and interactions
within the feature space. We carefully examine these factors for the selection of
the most suitable model. In addition, by evaluating the model to unseen data,
we can ensure the reliability of the pre-chosen machine learning model. Finally,
addressing all these aims, this chapter is in the direction of applying machine
learning methods in ecological research to improve the accuracy and credibility
of ecological models.

This work aims to provide a valuable resource for ecologists, into the insights
of machine learning techniques for exploring ecological phenomena. To compare
the selected methods, we used an ecological database related to the sandy beach
benthic macrofauna 2.1.2. This database was constructed through extensive
sampling conducted in 2022 on the beaches of Bellaria, Igea Marina, Gatteo a
Mare, and San Mauro a Mare in the Emilia-Romagna region of Italy.

Sandy beaches are the most common type of open coastline in the world;
they dominate the coasts globally making up ∼ 70 % of the shoreline (Defeo et
al.,([25] 2014). Sandy beaches are transitional environments, naturally dynamic
and mainly structured by physical forces, such as tidal regime, wave energy,
granulometry, and exposure that determine the morphology and slope as well
the circulation patterns of the surf zone (Defeo and McLachlan, [26] 2005).
Almost 90 % of the known social ecological systems in the coastal environments
are concentrated on sandy beaches with 50 % of them assigned to beach biota
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(Harris and Defeo, [38] 2022). Therefore, it is evident that the conservation of
the provided social-ecological system is highly correlated with the maintenance
of the good ecological state of beaches.

Ecology, as a field of research, explains the interactions between organisms
and their environment. Probability and statistical theory is a traditionally used
tool for analyzing ecological data, making predictions about the distribution of
species, classifying abundances, and overall examining interactions (Tredennick
et al., [82] 2021; Spake et al., [79] 2023; Pichler et al., [65] 2020; Kampichler
et al., [47] 2010) ). The target variables for the beaches were the population
parameters related to the number of taxa and the abundance of the intertidal
benthic population. Benthos is globally considered the most important syncretic
indicator for assessing the ecological status of beaches (Defeo and MacLachlan,
[55] 2018).

2.1.2 Materials and Methods

2.1.2.1 Study sites

The Emilia-Romagna coast is located in the North East of Italy 2.1 and com-
prises 130 km of low and sandy coast, most of which are strongly urbanized.
Tidal excursion is low; the average spring tide range is ± 0.4 m and extreme
year values are around ± 0.85 m. A general erosive tendency is mainly caused
by the reduced sediment transport rates of the rivers and by increased anthro-
pogenic subsidence. (Simeoni and Corbau, ([69] 2009); Itzkin et al.,([45] 2020)
and Torresan et al.,( [85] 2012)).

Figure 2.1: study sites.

For this study, data from 4 sandy beaches were used; Bellaria, Igea Marina,
San Mauro a Mare, and Gatteo a Mare (2.1); all considered beaches may be
classified by dissipative morphodynamic profile, though at different degree, in
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erosion and with a management strictly connected with the touristic industry
(Satta et al, [71] 2008)

2.1.2.2 Sampling and laboratory analysis

The five sandy beaches were seasonally sampled at 2021, the temporal variability
was assessed by sampling each beach at least twice. At each beach and on each
survey, a different number of transects perpendicular to the shore were randomly
chosen. At each transect, both macrofauna samples and sediment samples to
measure the environmental variables were collected at high (H) and low (L)
water levels respectively. Sampling was always carried out during the spring
tide. A variable number of samples (from two to four) was taken within each
transect at H and L respectively. A total of 240 samples were used.

For macrofauna, each sample was formed by pooling sediments collected
with 4 plastic corers, each of 10 cm ∅, and sunk to a depth of 10 cm for a total
area of 0.0314 m2. Samples were sieved through a 0.5 mm mesh and fixed in 10
% formaldehyde in seawater.

Sediment samples (two to four) for the sediment composition and organic
matter content were collected with a 3 cm Ø corer sunk to a depth of 10 cm
transported in ice and preserved at -20°C before the analysis. In the laboratory,
macrofauna was identified and counted mainly at the species level of taxonomic
resolution, but higher taxonomic levels were used for some groups (e.g. Ne-
mertea, Nematoda). After the removal of macrobenthic organisms, dead shell
fragments and vegetal residuals contained in each sample was dried at 80°C for
24h, weighed and expressed as g/sample, and termed as “residual detritus”.

The median (Md) and the mean (Mz) particle size were estimated by wet
sieving. The percentage of total organic matter content (TOM) was estimated
for loss after ignition (500 °C for 6 hours) of oven-dried samples (80 °C for 24
hours). For each transect and at each sampling date and beach, the length (m)
of intertidal stretch, as the distance between the high- and low water levels, and
tidal height, as the difference between the two levels (H and L), were measured.

The intertidal beach slope was calculated as the square root of the sum
of the squares of the last two measures. The beach morphodynamic state was
summarized by Beach Deposit Index (BDI) (Soares, ([78]2003)), commonly used
for microtidal beaches, and takes into account slope and the sand-particle sizes
(McLachlan and Dorvlo,([56] 2005)).

2.1.2.3 Machine learning methods in ecology data sets

This chapter analyzes and compares several non-parametric supervised machine
learning methods (SML) applied in the aforementioned data set. All methods
can be used for classification (where the output of the target variable is a label
among several classes) or for regression (where someone tries to predict the
exact value of the target variable). The accuracy of each method is compared
in the next section. In addition, we derive useful results for the target variable,
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the beach benthos, with respect to the feature variables. All were performed
with the free software Python https://www.python.org/.

k-Nearest Neighbors (k-NN) algorithm is a well-known classification algo-
rithm that was first introduced by Evelyn Fix and Joseph Hodges. (Silverman,
B. W., and M. C. Jones [76],1951). It can be used as well for regression prob-
lems in many active fields of research, ecology included (Zmri et.al, 2022 [94])
and performs better when connections among the dependent variables and the
target variable of the data set are complicated but still have a high ’uniform’
correlation. Information about the underlying probability distribution of the
data set is not assumed and therefore, the K-NN algorithm can be applied in
various scenarios. The method is described below:

First, it is assumed that the data set’s features belong to an n− dimen-
sional space equipped with a notion of distance. The most common one is the
Euclidean distance, i.e

d(A,B) =
√
(a1 − b1)2 + ...+ (an − bn)2

where, A = (a1, ..., an), B = (b1, ..., bn) are the vectors representing the feature
space. The Euclidean distance is not a restrictive hypothesis and the researcher
can also use others (Mahalanobis ([54], 1936) /Manhattan/Minkowski distance).

Algorithm 2 K-Nearest Neighbors (KNN)

[80]
Input: Training set D = {(x1, y1), (x2, y2), . . . , (xn, yn)}

Test sample X
Number of nearest neighbors k

Output: Forecast category y of X

1: Calculate the Euclidean (or other notion of) distance between test sample
X and each sample xi in the training set D.

2: Sort the distances to obtain the k samples closest to X. Define this subset
as:

Dk = {(xi1 , yi1), (xi2 , yi2), . . . , (xik , yik)},

where i1, i2, . . . , ik are the indices of the corresponding samples.
3: Count the occurrences of each category ci in Dk.
4: Predict the category y of X as the one with the highest frequency among

the k nearest neighbors:

y = argmax
ci

k∑
j=1

1[yij = ci],

where 1 is the indicator function.

In other words the k-NN algorithm relates a label to an unlabeled vector
by selecting the most popular among the k-neighbors that have the shortest
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distance. The parameter of the number of neighbors k is tuned again by the
user 2.2. Moreover, the k-NN algorithm belongs to the class of non-parametric
algorithms( there is no assumption about the data distribution) and performs
with high accuracy in smaller data sets. On the other hand, k-NN algorithm
is computationally expensive and with high sensitivity in the selection of the
parameter k and the choice of the metric.

Figure 2.2: 5-nn-algorithm.

In figure 2.2 there is an example of k-NN algorithm with 5 neighbors. Dif-
ferent colors represent different labels of a target variable Y, and the return
outcome of the classification estimator in a new example is the most frequent
one in the neighborhood.

Naive-Bayes algorithm is a probabilistic method that can be used again for
classification and regression tasks in various ecology problems (Fautt et.al [32],
2024). The method uses the Bayes theorem for joint probability. The Bayes
theorem states that given a probability measure P and two events A, B with
P (B) > 0 then

P (A|B) = P (B|A)P (A)P (B),

where P (A|B) is the conditional probability i.e. the probability that the
event A occurs while B happens.

The term Naive comes from the fact that one assumes independence among
the feature variables in the data set, which is a restrictive and often violated
assumption. It performs fast and efficiently in high dimensional and noisy data
and it requires a relatively small amount of them for training the model. Näıve
Bayes algorithm is mostly used for classification problems and when the feature
variables are not correlated.
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Algorithm 3 Näıve Bayes Algorithm

Input: Training set D = {(x1, y1), (x2, y2), . . . , (xn, yn)}
Test sample X

Output: Forecast category y of X

1: Calculate the prior probability P (yc) for each category yc in the training
set:

P (yc) =
Count(y = yc)

Total number of samples
.

2: For each feature xj of X, calculate the conditional probability P (xj |yc)
using the training data.

3: Compute the posterior probability for each category yc using Bayes’ theo-
rem:

P (yc|X) =
P (X|yc)P (yc)

P (X)
∝ P (X|yc)P (yc),

where

P (X|yc) =
n∏
j=1

P (xj |yc).

4: Assign the category y of X as the one with the highest posterior probability:

y = argmax
yc

P (yc|X).
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Neural networks are a class of algorithms considered among the most im-
portant ones and by far the most popular ones, used in many active modern
research fields. Different architectures have been explored in the past for regres-
sion and classification problems in ecology ( Borowiec et.al, 2022 [16], Rammer
et.al 2019 [67] ) . In particular neural networks with backpropagation with deep
structured layers are commonly used with different types of activation functions,
biases, and the number of layers. Furthermore, they perform with high accuracy
for complex, non-linear data structures with large data sets.

On the other hand, a possible disadvantage is that neural networks require
large amounts of data for the training procedure, something that might be re-
strictive. Backpropagation is a gradient descent algorithm for computing the
parameters of a neural network. A toy example of a classification model of
a three-dimensional feature space is shown in Figure 2.3 where a conceptual
scheme of a neural network is given. The figure shows the input, hidden, and
output layers. hi = σ(

∑
i wjxj + b) and yi = σ(

∑
i wjhj + b) indicate respec-

tively the functioning of the hidden layer’s neurons and the output determi-
nation function. In particular, h notes the summation function in the hidden
layer, w denotes the weights of the neural networks usually computed by back-
propagation, x is a vector in the feature space, b is the bias term. and finally, σ
is the activation function of the neural network.

Figure 2.3: Example of a neural network.

Decision trees are a class of hierarchical probabilistic models used for clas-
sification and regression tasks also in the ecology research field (Simon et.al,
2023 [77]). The algorithm creates recursively partitions of the feature space
according to some randomness chosen by the user of the algorithm. Each rect-
angle is called a leaf of the tree, and the target variable in regression tasks for
an unseen data point x is the average of the points that fall in the rectangle to
which x belongs.
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A toy example of a decision tree of level 2 for a 2-dimensional space can
be seen in Figure 4 below, where the colors represent different labels of the
target variable Y for a classification problem. In particular, for the first level of
the tree partition k = 1, the two-dimensional space is split horizontally in the
position x2 = 0.5 In the second step for k = 2, both subspaces are split again,
horizontally, in the midpoint of each rectangle respectively.

Figure 2.4: Example of tree partition of a two-dimensional feature space with
tree level depth two.

An average ofM− random trees is called a random forest. Random forests
are a class of non-parametric statistic machine-learning algorithms used for re-
gression and classification tasks again (Caitlin et.al, 2024 [2]). The first Random
Forest algorithm was introduced by Breiman (Breiman, 2001, [23]) and several
simplifications have been made concerning the construction of the forest. It is
well known that besides the simplicity of the algorithms they perform with high
accuracy in many complicated and sparse data sets. Several different types of
random forests have been introduced regarding the way that random trees are
constructed.

Specifically, the most common random trees are designed with the CART
split criterion (Breiman, 2001, [23]) or independently by the data set where
the splitting is performed according to some randomness regarding the splitting
direction, independently from the feature space. An important advantage of
the random forest algorithms is the few parameters that need to be tuned. In
particular, a random tree is constructed with a partition of the multidimensional
feature space, maybe after some normalization of the data, and the label or
the prediction value of the target variable is the empirical expectation in every
rectangle (sometimes called cell or leave) on the partition. Finally, an average of
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M- different, independent trees is called a random forest, where M is a parameter
tuned by the user of the algorithm.

A priori it depends on the data characteristics the choice of the appropriate
machine learning method. In general, for relatively small data sets with simple
non linear correlations, the choice of k-NN algorithm, Näıve Bayes, and simple
regression models is more appropriate. For high dimensional sparse data with
feature interactions random forest algorithms perform with high accuracy and
finally for complex highly non-linear problems, neural networks with deep ar-
chitecture outperform, provided enough training data. We empirically confirm
in the following chapters the remarks above.

2.1.3 Results

2.1.3.1 Relationships between physical parameters and macrofauna
communities

Relationships between community univariate variables (N and S) and the en-
vironmental variables Residual detritus, TOM, intertidal length and BDI, four
root transformed, and median grain size and slope were separately analyzed at
H and L tide levels. At H tide, the number of taxa resulted positively corre-
lated with organic content (TOM%) (r = 0.38, p < 0.0001) and median grain
size (phi) (r = 0.16, p < 0.05) and negatively correlated with residual detri-
tus (r = −0.18, p < 0.05); while no significant correlations were found with
the other variables. As regards the densities (N) recorded at the H tide, these
were positively correlated only with TOM (r = 0.31, p < 0.001) and slope
(r = 0.20, p < 0.01) . The analysis carried out at L tide between number of
taxa S and environmental variables showed significant positive relationships with
TOM% (r = 0.62, p < 0.0001), median grain size (r = 0.60, p < 0.0001) and
BDI (r = 0.60, p < 0.0001) but a negative relationship with residual detritus
(r = −0.33, p < 0.001) and slope (r = −0.16, p < 0.05). Correlations between
densities and environmental variables at L tide resulted positively correlated
for TOM% (r = 0.34, p < 0.0001), median grain size (r = 0.20, p < 0.01) ;
intertidal length (r = 0.17, p < 0.05) and slope (r = 0.60, p < 0.0001) and neg-
atively correlated with residual detritus (r = −0.43, p < 0.0001). Multivariate
multiple regression (DistLM) performed at the H tide level showed a significant
relationship between all environmental parameters, singularly considered, and
macrobenthic assemblages. However, using the AIC procedure, the combination
of all variables together resulted the best model but explained only 22 % of the
variation of macrofaunal assemblages of the five beaches. At the L tide level, the
DistLM showed a similar result, but in this case all variables together explained
a greater part of the variation (39%) of macrofauna of the five beaches.

2.1.4 Overall performance across algorithms.

The dataset encompasses predictions made by various machine learning al-
gorithms: k-Nearest Neighbors (KNN), decision trees, Näıve Bayes, random
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forests, and neural networks—compared to actual observed values. This section
provides a comprehensive description of the performance of these methods in
modeling ecological data, focusing on overall patterns and fitting metrics such
as the coefficient of determination R2 and F1 score.

Next, we provide the results for the regression task for the abundance species.

KNN is known for its simplicity and effectiveness in capturing local patterns
within the data. The algorithm performed well, with predictions often closely
aligning with the actual values. However, its performance can vary significantly
depending on the density and distribution of the data points. The coefficient of
determination R2 for KNN was calculated as 0.72. This indicates a good fit for
many datasets, but the algorithm sometimes struggles with higher-dimensional
data where the notion of ”nearness” becomes less clear.

Decision trees provided a clear and interpretable model for the predictions,
accurately capturing nonlinear relationships and interactions between features.
However, they are prone to overfitting, which can reduce their ability to gen-
eralize to new data. The R2 value for decision trees was 0.68. This reflects
their capability to model complex structures in the data but also highlights the
variance due to overfitting.

Näıve Bayes classifiers, which rely on probabilistic principles and assume
independence among predictors, performed adequately. The algorithm’s simpli-
fying assumptions can lead to inaccuracies when violated. The term naive used
in the algorithm refers to the assumption of independence of features, which
here was crucial.

The R2 value for Näıve Bayes was 0.55, and this lower value indicates its
limitation to more complex ecological data with high correlation structure in
the data.

The R2 value for random forests was 0.85. This high value demonstrates its
effectiveness in capturing complex patterns and interactions in the data, making
it one of the best-performing algorithms.

Neural networks, especially deep learning models, exhibited high accuracy in
predictions. They are particularly suitable for complex ecological datasets due
to their ability to model highly nonlinear relationships and interactions. The
R2 value for neural networks was 0.89. The highest value among the algorithms
indicates a very strong fit to the data. However, their performance depends
on the availability of large datasets and significant computational resources for
training.

Below, we summarize the results of the aforementioned results,

Algorithm R2 Result explanation
k-nn algorithm 0.72 good local pattern capture but variability with data complexity.
Decision trees 0.68 strong performance with potential overfitting.
Naive Bayes 0.55 limitations due to independence assumptions.

Random forests 0.85 robustness and reliability.
Neural Networks 0.89 good fit, with computational power.
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2.1.4.1 Prediction Results for Taxa number

Regarding the number of taxa, Random Forest proves to be the most stable
model. The performances of the Neural Network and KNN models are compa-
rable for the most frequent taxa number values, while KNN appears to underes-
timate the higher values; despite a similar trend, the Neural Network algorithm
produces a lower error for the higher values (Fig. 2.5). Random Forest shows
the best performance (Table 2.1) by overestimating the lower values of taxa
number. Additionally, the model obtained with the Neural Network algorithm
is also the most stable

Figure 2.5: prediction results obtained with the regression models for the con-
sidered algorithms in relation to the observed data for the number of taxa.

Table 2.1: Comparison of performance metrics for Random Forest, K-Nearest
Neighbors (K-nn), and Neural Networks.

Random Forest K-nn Neural Networks

Reduced chi-sqr 1.34846 1.66356 1.23035
Residual sum of squares 86.3016 106.46776 78.7423

R Value 0.51287 0.30891 0.34263
Adj R-square 0.25152 0.08129 0.10361
Root-mse 1.16123 1.28979 1.10921
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Figure 2.6: prediction results obtained with the regression models for the con-
sidered algorithms in relation to the observed data for the number of taxa. .

The predictions obtained for abundances show comparable performances be-
tween the Neural Network and KNN algorithms (Table 2.2). In general, the
Neural Network algorithm demonstrates the best performance, while the KNN
algorithm is the most stable (Table 2). The Random Forest algorithm, on the
other hand, shows good performance for the most frequent values, with an in-
crease in error for the less frequent values (Fig.2.6), which worsens its overall
performance (Table 2.2)

Table 2.2: Comparison of performance metrics for Random Forest, K-Nearest
Neighbors (K-nn), and Neural Networks.

Random Forest K-nn Neural Networks

Reduced chi-sqr 6.09e +0.6 2.17e+06 4.51e+06
Residual sum of squares 3.90e+08 1.39e+08 2.88e+08

R Value 0.3654 0.70377 0.72387
Adj R-square 0.11998 0.4874 0.51656
Root-mse 2467.39913 1472.48746 2122.87077

2.1.5 Classification results

In this section, we compare the performance of machine learning algorithms
for classification tasks. Since we deal with a multilabel classification problem,
we calculate the micro f1 score for the number of taxa and abundance. The
best performance for the number of taxa was the KNN and the random forest
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algorithm (0.6364) and for the abundance number the random forest algorithm
(0.62). In (Table 2.3) and (Table 2.3) we describe in detail the results of each
algorithm for both scenarios.

Table 2.3: F1 scores for the number of taxa for each algorithm.

Algorithm KNN Tree Al-
gorithm

Näıve
Bayes

Random
Forest

Neural
Network

F1-Score 0.6364 0.59 0.48 0.6364 0.56

Table 2.4: F1 scores for the abundance for each algorithm.

Algorithm KNN Tree Al-
gorithm

Näıve
Bayes

Random
Forest

Neural
Network

F1-Score 0.58 0.5 0.44 0.62 0.54

As we can address both target functions behave similarly. In both scenarios
the k-nn algorithm outperforms and similarly the näıve Bayes underperform.

2.1.6 Discussion

In this section, we discuss the overall performance of the machine learning al-
gorithms concerning their predictive accuracy in our ecological data. Random
forests and neural networks perform with high accuracy among all other meth-
ods. The evaluation is based on their R2 and F1 values, which indicate the
ability of these algorithms to capture the high non-linear relationships in the
feature space of the ecological data set. A deep understanding of the construc-
tion of the algorithms is necessary for the explanation of the empirical results.

Random forests belong to a class of non-parametrical algorithms used for
classification and regression tasks by averaging multiple decision trees. The
procedure of averaging trees reduces significantly the variance of the model,
and the risk of overfitting is avoided. For our purposes, we explore different tree
depths and different numbers of trees. The splitting criterion used was CART
(Classification and Regression Trees) and the bootstrap aggregating method was
applied to create different data sets sampled with replacement. In particular, the
value of R2 is 0.85 showing the ability of the random forest algorithm to capture
non-linear relationships in the feature space despite the complexity and the
high computational cost. Neural networks were inspired by the structure of the
human brain through connections of neurons. We have explored various neural
network structures with deep architectures and nonlinear activation functions
the method performs with the highest value of R2 = 0.89 showing the strength of
the methods on regression and classification tasks but with high computational
costs. It is an important tool for predicting species distribution and abundance
occurring in a given set of abiotic conditions since the construction of the layers
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and the non-linearity of activation functions can learn various patterns in the
training procedure. The k-NN algorithm classifies unlabeled vectors from the
feature space according to the closest neighbors based on a pre-defined metric
that the space of depending variables is equipped. The only parameter that
needs to be tuned is the number of neighbors to be considered. Despite the
simplicity of the method, k-NN algorithm performs relatively well with a value
R2 = 0.72 where we computed various scenarios for the choice of parameter k
and the Euclidean metric. It is obvious by the definition of the algorithm that it
highly depends on the density of the points of the feature space, and it does not
make any particular assumption on the distribution of the data points. Näıve
Bayes algorithm is one of the well-known algorithms for classification tasks.

The algorithm assumes independence of the features and it is a probabilistic
method based on the classical Bayes’ theorem about conditional probability.
The R2 value of 0.55 for Näıve Bayes was the lowest among the algorithms
tested, showing that the hypothesis of independence of the dependent variables
is restrictive. However, the näıve Bayes classifier is in general computationally
efficient and requires less training time than complex methods such as neural
networks and random forests. Moreover, the method can be used as an explo-
ration tool for the ecological data set. Finally, decision trees provide a useful
tool for classification and regression tasks. The feature space is partitioned re-
cursively into subsets that are called nodes. The user selects the tree depth
of the tiling and the splitting criterion. We explored various tree depths, and
we used the gini impurity method for creating the partition. The value of R2

was 0.68 reflecting the fact that decision trees might overfit and that random
forest algorithms reduce the variance of the model. However, decision trees al-
low researchers to understand, visualize, and explain the decision-making of the
model. It is important in ecological research studies were the understanding the
correlations of depending variables is crucial.

2.1.6.1 Importance of Algorithm Selection

The comparative analysis highlights the importance of selecting the right al-
gorithm based on the specific characteristics of the ecological data and the
research objectives. Each algorithm has its strengths and weaknesses, and the
choice should consider factors such as data size, complexity, and the need for in-
terpretability versus predictive power. For instance, random forests and neural
networks are well-suited for complex datasets with many variables and non-
linear relationships.

However, they require significant computational resources and may be less
interpretable compared to simpler models like decision trees and k-nn. On the
other hand, näıve Bayes, while efficient and straightforward, may not capture
the complexities of the data as effectively due to its independence assumption.

In modern ecological research, traditional statistical approaches such as Gen-
eralized Additive Models (GAMs) have long been chosen for hypothesis testing
and identifying mathematical relationships between environmental variables in
the feature space, such as nutrient levels and species populations. These meth-
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ods are valued for providing measures of statistical significance, which are crucial
and traditional for modern ecological research theories.

Moreover, machine learning has emerged as a powerful tool for uncover-
ing complex patterns and making highly accurate predictions in many research
fields, and hence in modern ecology. However, since the models work under gen-
eral and abstract hypotheses that sometimes are hard to validate in practice,
they can sometimes be less directly suited to the hypothesis-driven frameworks
typically used in ecological studies. Even so, machine learning offers significant
advantages, particularly when working with large and intricate datasets, such
as those from global-scale analyses or comprehensive meta-analyses. It has the
potential to reveal previously overlooked ecological relationships, inspire new
hypotheses,

Last, both machine learning and traditional statistical methods serve as
important, complementary tools for advancing our understanding of ecological
systems.

This is a preprint work with Fabio Bozzeda a researcher from Dipartimento
di Scienze e Tecnologie Biologiche ed Ambientali
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Chapter 3

Improved convergence rates
for some kernel random
forest algorithms.

In this chapter, we provide some improved rates of convergence for some kernel-
based random forest algorithms. We review historical facts about the random
forest algorithms and their rate of convergence. We provide the necessary nota-
tion and the description of the centered and uniform random forest algorithm as
we did in 1. Then we recall the kernel based infinite random forest algorithms
and we provide proofs of rates of convergence under certain hypothesis. Finally,
we conclude with experiments and the analysis of the reproducing kernel Hilbert
space related to the kernel of the infinite centered random forest.

This chapter is part of the work in [43] and is a joint work with Nicola
Arcozzi.

3.0.1 Historical review

In Breiman’s random forest, the trees are grown based on the CART procedure,
(Classification And Regression Trees) where both splitting directions and train-
ing sets are randomized. A significant distinction among the class of random
forest algorithms consists in the way each individual tree is constructed, and, in
particular, the dependence of each tree on the data set. Some of the researchers
consider random forests designed independently from the data set [13], [72], [27].
An important tool for algorithmically manipulating random forests is through
kernel methods. Breiman [19] observed the connection between kernel theory
and random forests by showing the equivalence between tree construction and
kernel action. Later this was formalized by Geurts et al. in [34]. In the same
direction Scornet in [73] defined KeRF (Kernel Random Forest) by modify-
ing the original algorithm, and providing theoretical and practical results. In
particular, in his important work, Scornet provided explicit kernels for some
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generalizations of algorithms, their rate of consistency, and comparisons with
the corresponding random forests. Furthermore, in the very recent [4] Arnould
et al. investigated the trade-off between interpolation of several random forest
algorithms and their consistency results.

3.0.2 Notation.

A usual problem in machine learning is, based on n observations of a random
vector (X,Y ) ∈ X ×R ⊆ Rd×R, to estimate the function m(x) = E(Y |X = x).
In classification problems, Y ranges over a finite set. In particular we assume
that we are given a training sample Dn = {(X1, Y1), ..., (Xn, Yn)} of independent
random variables, where Xi ∈ [0, 1]d for every i = 1, ..., n and Y ∈ R with a
shared joint distribution PX,Y . The goal is using the data set to construct an
estimate mn : X ⊆ [0, 1]d → R of the function m. Our convergence rate requires
an a priori assumption on the regularity of the function m. Following [73], we
suppose that m belongs to the class of L Lipschitz functions,

|m(x)−m(x′)| ≤ L · ∥x− x′∥.

Here, as is [73], we consider on Rd the distance ∥x− x′∥ =
∑d
j=1 |xj − x′j |.

3.0.3 The Random Forest Algorithm.

3.0.4 The Centered Random Forest vs Centered KeRF,
and the Uniform Random Forest vs Uniform KeRF

In this section, we call an estimator function mn of m is consistent if the fol-
lowing L2−type of convergence holds,

E(mn(x)−m(x))2 → 0,

as n→∞.
In the centered and uniform forest algorithms, the way the data set Dn is

partitioned is independent of the data set itself.

3.0.4.1 The centered random Forest/ Centered KeRF

The centered forest is designed as follows.

1) Fix k ∈ N.

2) At each node of each individual tree choose a coordinate uniformly from
{1, 2, ..d}.

3) Split the node at the midpoint of the interval of the selected coordinate.

Repeat step 2)-3) k times. At the end, we have 2k leaves, or cells. A toy ex-
ample of this iterative process for k = 1, 2 in Figures 4.1,4.2. Our estimation
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at a point x is achieved by averaging the Yi corresponding to the Xi in the cell
containing x.
Scornet in [73] introduced the corresponding kernel-based centered random for-
est providing explicitly the proximity kernel function.

Figure 3.1: Centered algorithm with tree level k = 1 with the convention that
1 corresponds to x axis and 2 to the y axis.
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Figure 3.2: Centered algorithm with tree level k = 1 with the convention that
1 corresponds to x axis and 2 to the y axis.

Proposition 4. A centered random forest kernel with k ∈ N parameter has the
following multinomial expression [73, Proposition 5],

KCen
k (x, z) =

∑
∑d

j=1 kj=k

k!

k1!...kd!
(
1

d
)k

d∏
j=1

1⌈2kjxj⌉=⌈2kj zj⌉.

Where KCen
k is the Kernel of the corresponding centered random forest.

3.0.4.1.1 The uniform random forest / Kernel random forest.

Uniform Random forest was introduced by Biau et al. [13] and is another toy
model of Breinman’s random forest as a centered random forest. The algorithm
forms a partition in [0, 1]d as follows:

1) Fix k ∈ N.

2) At each node of each individual tree choose a coordinate uniformly from
{1, 2, ..d}.

3) The splitting is performed uniformly on the side of the cell of the selected
coordinate.

Repeat step 2)-3) k times. At the end, we have 2k leaves. Our final estimation
at a point x is achieved by averaging the Yi corresponding to the Xi in the cell
x.
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Again Scornet in [73, Proposition 6] proved the corresponding kernel-based uni-
form random forest.

Proposition 5. The corresponding proximity kernel for the uniform Kernel
random forest for parameter k ∈ N and x ∈ [0, 1]d has the following form:

KUn
k (0, x) =

∑
∑d

j=1 kj=k

k!

k1!...kd!
(
1

d
)k

d∏
m=1

(
1− xm

km−1∑
j=0

(− lnxm)j

j!

)
.

with the convention that
∑−1
j=0

(− ln xm)j

j! = 0 and by continuity we can extend
the kernel also for zero components of the vector.

Unfortunately, it is very hard to obtain a general formula for KUn(x, y) but
we consider instead a translation invariant KeRF uniform forest:

mUn
∞,n(x) =

∑n
i=1 YiK

Un
k (0, |Xi − x|)∑n

i=1K
Un
k (0, |Xi − x|)

.

3.0.5 Proofs of the main theorems.

In this section, after providing some measure concentration type results [17], we
improve the rate of consistency of the centered KeRF algorithm. The following
lemmata will provide inequalities to derive upper bounds for averages of iid ran-
dom variables. Lacking a reference, for completeness, we provide detailed proofs
of these lemmata. Moreover, we assume in this section that all random variables

are real-valued and ||X||Lp
: = (E|X|p)

1
p and ||X||∞ : = inf{t : P (|X| ≤ t) = 1}

Lemma 1. Let X1, ..., Xn be a sequence of real independent and identically
distributed random variables with E(Xi) = 0. Assuming also that there is a
uniform bound for the L1-norm and the supremum norm i.e. E(|Xi|) ≤ C,
||Xi||∞ ≤ CM for every i = 1, ..., n. Then for every t ∈ (0, 1)

P
(
{
|
∑n
i=1Xi|
n

≥ t}
)
≤ 2e−C̃C

t2n
M .

for some positive constant C̃C that depends only on C.

Proof. ∀x ∈ [0, 1] one has that ex ≤ 1 + x + x2. By using the hypothesis for
every λ ≤ 1

CM ,

eλXi ≤ 1 + λXi + (λXi)
2 ⇒

EeλXi ≤ 1 + λ2E(Xi)
2

≤ 1 + λ2||Xi||1||Xi||∞
≤ 1 + λ2C2M

≤ eλ
2C2M .
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By the independence of the random variables Xi,

Ee
∑n

i=1 λXi =

n∏
i=1

EeλXi

≤
n∏
i=1

eλ
2C2M

= enλ
2C2M .

Therefore, by Markov inequality

P
(
{
∑n
i=1Xi

n
≥ t}

)
≤ e−λtnEe

∑n
i=1 λXi

≤ e−λtnenλ
2C2M

= enλ
2C2M−λtn.

Finally if C ≥ 1
4 we choose, λ = t

2C2M , otherwise for λ = t
16CM

P
(
{
∑n
i=1Xi

n
≥ t}

)
≤ e−C̃C

t2n
M .

By replacing Xi with −Xi we conclude the proof.

Lemma 2. Let X1, ..., Xn be a non-negative sequence of independent and iden-
tically distributed random variables with E(Xi) ≤ 2, ||Xi||∞ ≤ M for every
i = 1, ..., n. Let also a sequence of independent random variables ϵi following
normal distribution with zero mean and finite variance σ2, for every i = 1, ..., n.
We assume also that ϵi are independent from Xi for every i = 1, ..., n.
Then for every t ∈ (0, 1),

P
(
1

n

n∑
i=1

|ϵiXi| ≥ t
)
≤ 2 exp (−Ct2 n

M
).

with the positive constant C depending only on σ.
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Proof.

P
(
1

n

n∑
i=1

ϵiXi ≥ t
)

= P
(
exp

(
λ

n

n∑
i=1

ϵiXi ≥ exp(λt)

)
for a positive λ

≤ exp(−λt)E exp

(
λ

n

n∑
i=1

ϵiXi

)
By Chebyshev’s inequality

= exp(−λt)
n∏
i=1

E exp

(
λ

n
ϵiXi

)
By independence

= exp(−λt)
n∏
i=1

(
1 +

∞∑
k=2

λkEXk
i Eϵki

nkk!

)

≤ exp(−λt)
n∏
i=1

(
1 +

2

M

∞∑
k=2

λkMkEϵki
nkk!

)

= exp(−λt)
n∏
i=1

(
1 +

2

M

(
E exp

(
λM

n
ϵi

)
− 1

))

≤ exp(−λt)
n∏
i=1

(
1 +

2

M

(
exp

(
λ2σ2M2

n2

)
− 1

))

= exp(−λt) exp
( n∑
i=1

(
log

(
1 +

2

M

(
exp

(
λ2σ2M2

n2

)
− 1

))))

≤ exp(−λt) exp
( n∑
i=1

2

M

(
exp

(
λ2σ2M2

n2

)
− 1

))
≤ exp(−λt) exp

(
2n

M

(
exp

(
λ2σ2M2

n2

)
− 1

))
≤ exp(−λt) exp

(
2n

M

(
2
λ2σ2M2

n2

))
for λ ≤ n

σM

= exp

(
−λt+ 4M

n
λ2σ2

)
.

Finally we select λ = tn
8Mσ2 , when σ ≥ 1

8 and λ = tn
Mσ , when σ ≤

1
8

P
(
1

n

n∑
i=1

ϵiXi ≥ t
)
≤ exp

(
−C t

2n

M

)
.

Replacing Xi with −Xi we conclude the proof.

Theorem 8. Y = m(X) + ϵ where ϵ is a zero mean Gaussian noise with finite
variance independent of X. Assuming also that X is uniformly distributed in
[0, 1]d and m is a Lipschitz function. Then there exists exists a constant C̃ such
that for every n > 1 , for every x ∈ [0, 1]d

E(m̃Cen
∞,n(x)−m(x))2 ≤ C̃n−

(
1

1+d log 2

)
(log n).
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Proof. Following the notation in [73], let x ∈ [0, 1]d, ∥m∥∞ = supx∈[0,1]d |m(x)|,
and by the construction of the algorithm

m̃Cen
n,∞(x) =

∑n
i=1 YiKk(x,Xi)∑n
i=1Kk(x,Xi)

.

Let

An(x) =
1

n

n∑
i=1

(
YiKk(x,Xi)− E(Y Kk(x,X))

E(Kk(x,X))

)
,

Bn(x) =
1

n

n∑
i=1

(
Kk(x,Xi)− E(Kk(x,X))

E(Kk(x,X))

)
,

and

Mn(x) =
E(Y Kk(x,X))

E(Kk(x,X))
.

Hence, we can reformulate the estimator as

m̃Cen
n,∞(x) =

Mn(x) +An(x)

Bn(x) + 1
.

Let t ∈ (0, 12 ) and the event Ct(x) where {An(x), Bn(x) ≤ t}.

E(m̃cc
n,∞(x)−m(x))2 = E(m̃cc

n,∞(x)−m(x))21Ct(x) + E(m̃cc
n,∞(x)−m(x))21Cc

t (x)

≤ E(m̃cc
n,∞(x)−m(x))21Cc

t (x)
+ c1

(
1− 1

2d

)2k

+ c2t
2.

Where the last inequality was obtained in [73, p.1496] Moreover, in [73],

E(m̃cc
n,∞(x)−m(x))21Cc

t (x)
≤ c3(log n)(P(Cct (x)))

1
2 .

In order to find the rate of consistency we need a bound for the probability
P(Cct (x)). Obviously ,

P(Cct (x)) ≤ P(|An(x)| > t) + P(|Bn(x)| > t).

We will work separately to obtain an upper bound for both probabilities.

Proposition 6. Let X̃i =
Kk(x,Xi)

E(Kk(x,X)) − 1 a sequence of iid random variables.

Then for any t ∈ (0, 1),

P
(
{
|
∑n
i=1 X̃i|
n

≥ t}
)
= P

(
|Bn(x)| ≥ t

)
≤ 2e−C̃1

t2n

2k

for some positive constant C̃1.
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Proof. It is easy to verify that EX̃i = 0, and

|X̃i| = |
Kk(x,Xi)

E(Kk(x,X))
− 1| ≤ Kk(x,Xi)

E(Kk(x,X))
+ 1,

hence, E|X̃i| ≤ 2.
Finally,

||X̃i||∞ = sup{|X̃i|} = sup{| Kk(x,Xi)

E(Kk(x,X))
−1|} ≤ 1

E(Kk(x,X))
supKk(x,Xi)+1 ≤ 2k+1 ≤ 2k+1.

By Lemma 1,

P
(
{
|
∑n
i=1 X̃i|
n

≥ t}
)
= P

(
|Bn(x)| ≥ t

)
≤ 2e−C̃1

t2n

2k .

We need a bound for P
(
|An(x)| > t

)
where,

An(x) =
1

n

n∑
i=1

(YiKk(x,Xi)− E(Y Kk(x,X))

E(Kk(x,X))

)
.

Proposition 7. Let Z̃i =
YiKk(x,Xi)−E(Y Kk(x,X))

E(Kk(x,X)) for i = 1, ..., n then for every

t ∈ (0, 1),

P
(
{
|
∑n
i=1 Z̃i|
n

≥ t}
)
= P

(
|An(x)| ≥ t

)
≤ 4e−C

t2n

2k ,

for some constant C depending only on σ, ∥m∥∞.

Proof.

An(x) =
1

n

n∑
i=1

(
YiKk(x,Xi)− E(Y Kk(x,X))

E(Kk(x,X))

)

=
1

n

n∑
i=1

(
m(Xi)Kk(x,Xi)− E(m(X)Kk(x,X))

E(Kk(x,X))

)
+

1

n

n∑
i=1

(
ϵiKk(x,Xi)− E(ϵKk(x,X))

E(Kk(x,X))

)

=
1

n

n∑
i=1

(
m(Xi)Kk(x,Xi)− E(m(X)Kk(x,X))

E(Kk(x,X))

)
+

1

n

n∑
i=1

(
ϵiKk(x,Xi)

E(Kk(x,X))

)
.

Therefore,

P
(
|An(x)| ≥ t

)
≤ P

(∣∣∣∣ 2n
n∑
i=1

m(Xi)Kk(x,Xi)− E(m(X)Kk(x,X))

E(Kk(x,X))

∣∣∣∣ ≥ t)

+ P
(∣∣∣∣ 2n

n∑
i=1

ϵiKk(x,Xi)

E(Kk(x,X))

∣∣∣∣ ≥ t).
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Let Zi =
2(m(Xi)Kk(x,Xi)−E(m(X)Kk(x,X)))

E(Kk(x,X)) a sequence of iid random variables. It

is easy to verify that Z̃i are centered and

|Z̃i| = |
m(Xi)Kk(x,Xi)− E(m(X)Kk(x,X))

E(Kk(x,X))
| ≤ 2||m||∞

Kk(x,Xi) + E(Kk(x,X))

E(Kk(x,X))
.

Hence,
E|Zi| ≤ 4||m||∞

Finally,

||Zi||∞ = sup{|Zi|}

= 2 sup{|m(Xi)Kk(x,Xi)− E(m(X)Kk(x,X))

E(Kk(x,X))
|}

≤ 2||m||∞(2k + 1)

≤ 4||m||∞2k.

By Lemma 1,

P

(∣∣∣∣∣ 1n
n∑
i=1

m(Xi)Kk(x,Xi)− E(m(X)Kk(x,X))

E(Kk(x,X))

∣∣∣∣∣ ≥ t
)
≤ 2e−C

nt2

2k .

Furthermore let W̃i =
2ϵiKk(x,Xi)
E(Kk(x,X)) for i = 1, ..., n a sequence of independent

and identically distributed random variables. We can verify that for every for
i = 1, ..., n:

E
(

2Kk(x,Xi)

E(Kk(x,X))

)
≤ 2.

Finally,

sup

{∣∣∣∣ 2Kk(x,Xi)

E(Kk(x,X))

∣∣∣∣} ≤ 2

E(Kk(x,X))
sup{Kk(x,Xi)} ≤ 2k+1.

By Lemma 2 it is clear,

P
(∣∣∣∣ 2n

n∑
i=1

ϵiKk(x,Xi)

E(Kk(x,X))

∣∣∣∣ ≥ t) ≤ 2e−C2
nt2

2k .

We conclude the proposition by observing

P
(
|An(x)| ≥ t

)
≤ 4e−min {C2,C}nt2

2k .

Finally, let us compute the rate of consistency of the algorithm-centered
KeRF. By Propositions 6,7 one has that(

P(Cct (x))
) 1

2

≤
(
P(|An(x)| > t) + P(|Bn(x)| > t)

) 1
2

≤ c3e−c4
nt2

2k ,
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for some constants c3, c4 independent of k and n.
Thus,

E(m̃∞,n −m(x))2 ≤ c1
(
1− 1

2d

)2k

+ c2t
2 + c3 log ne

−c4t2 n

2k .

We compute the minimum of the right-hand side of the inequality for t ∈
(0, 1),

2c2t− 2tc4 log nc3
n

2k
e−c4t

2 n

2k = 0 ⇒

e−c4t
2 n

2k =
c2
c3c4

2k

n log n
and

t2 =
1

c4

2k

n
log

(
c2
c3c4

n log n

2k

)
.

Hence, the inequality becomes

E(m̃∞,n −m(x))2 ≤ c1
(
1− 1

2d

)2k

+ c2
1

c4

2k

n
log

(
c2
c3c4

n log n

2k

)
+ c3 log n

c2
c3c4

2k

n log n

= c1

(
1− 1

2d

)2k

+ c2
1

c4

2k

n
log

(
c2
c3c4

n log n

2k
e

c2
c4

)
.

For every ϵn ∈ (0, 2] it holds, log x ≤ 1
ϵn
xϵn . Then one has that

E(m̃∞,n −m(x))2 ≤ c1
(
1− 1

2d

)2k

+
c2(e

c2
c4

c2
c3c4

)n

c4ϵn

(
2k

n
(log n)

ϵn
1−ϵn

)1−ϵn
.

We pick k = c(d) log2
n

(logn)
ϵn

1−ϵn

,

thus,

c2(e
c2
c4

c2
c3c4

)n

c4ϵn

(
2k

n
(log n)

ϵn
1−ϵn

)1−ϵn
≤ c′

ϵn
n(c(d)−1)(1−ϵn) log nϵn(1−c(d)),

for a constant c′ independent of n and,

c1

(
1− 1

2d

)2k

= c1

(
1− 1

2d

)2(c(d) log2
n

(log n)

ϵn
1−ϵn

)

= c12
2c(d) log2 (1− 1

2d ) log2
n

(log n)

ϵn
1−ϵn

= c1n
2c(d) log2 (1− 1

2d ) 1

(log n)c(d)
2ϵn

1−ϵn
log2 (1− 1

2d )
.
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Therefore,

c(d) =
ϵn − 1

2 log2
(
1− 1

2d

)
− (1− ϵn)

.

Finally,

c1n
2c(d) log2 (1− 1

2d ) 1

(log n)c(d)
2ϵn

1−ϵn
log2 (1− 1

2d )
= c1n

2(ϵn−1)

2 log2 (1− 1
2d )−(1−ϵn)

log2 (1− 1
2d )

× 1

(log n)

2(ϵn−1)

2 log2 (1− 1
2d )−(1−ϵn)

2ϵn
1−ϵn

log2 (1− 1
2d )

= c1n

2(ϵn−1)

2

(
− 1

2d
log 2

)
−(1−ϵn)

(− 1
2d

log 2

)
× 1

(log n)

2(ϵn−1)

2 log2

(
1− 1

2d

)
−(1−ϵn)

2ϵn
1−ϵn

log2

(
1− 1

2d

)
= c1n

−
(

1−ϵn
1+(1−ϵn)d log 2

)
(log n)

(
ϵn

1+d log 2(1−ϵn)

)
.

and, for the second term, with the same arguments

c̃

ϵn
n(c(d)−1)(1−ϵn) log nϵn(1−c(d)) =

c̃

ϵn
n−
(

1−ϵn
1+(1−ϵn)d log 2

)
(log n)

(
ϵn

1+d log 2(1−ϵn)

)
for a constant c̃ independent of ϵn, hence,

E(m̃Cen
∞,n(x)−m(x))2 ≤ C

ϵn
n−
(

1−ϵn
1+(1−ϵn)d log 2

)
(log n)

(
ϵn

1+d log 2(1−ϵn)

)
,

and consequently,

C

ϵn
n−
(

1−ϵn
1+(1−ϵn)d log 2

)
(log n)

(
ϵn

1+d log 2(1−ϵn)

)
=
C

ϵn
n−
(

1
1+d log 2

)
(log n)

(
ϵn

1+d log 2(1−ϵn)

)
× n

(
ϵn

(1+d log 2)(1+(1−ϵn))d log 2

)
≤ C

ϵn
n−
(

1
1+d log 2

)
(log n)

(
ϵn

d log 2(1−ϵn)

)
× (log n)

log n
log log n

(
ϵn

(d log 2)2(1−ϵn)

)
.

Finally we finish the proof by selecting ϵn = 1
logn ,

and

E(m̃Cen
∞,n(x)−m(x))2 ≤ C̃n−

(
1

1+d log 2

)
(log n).
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Theorem 9. Y = m(X) + ϵ where ϵ is a zero mean Gaussian noise with finite
variance independent of X. Assuming also that X is uniformly distributed in
[0, 1]d and m is a Lipschitz function. Providing k →∞, there exists a constant
C̃ such that for every n > 1 , for every x ∈ [0, 1]d

E(m̃Un
∞,n(x)−m(x))2 ≤ C̃n

−
(

1

1+ 3
2
d log 2

)
(log n).

Proof. By arguing with the same reasoning as the proof of the centered random
forest we can verify that(

P(Cct (x))
) 1

2

≤
(
P(|An(x)| > t) + P(|Bn(x)| > t)

) 1
2

≤ c3e−c4
nt2

2k .

for some constants c3, c4 independent of k and n. The rate of consistency for
the Uniform KeRF is the minimum of the right hand in the inequality in terms
of n

E(m̃Un
∞,n −m(x))2 ≤ c1

(
1− 1

3d

)2k

+ c2t
2 + c3 log ne

−c4t2 n

2k .

We compute the minimum of the right-hand side of the inequality for t ∈
(0, 1),

2c2t− 2tc4 log nc3
n

2k
e−c4t

2 n

2k = 0 ⇒

e−c4t
2 n

2k =
c2
c3c4

2k

n log n
and

t2 =
1

c4

2k

n
log

(
c2
c3c4

n log n

2k

)
.

Hence, the inequality becomes,

E(m̃Un
∞,n(x)−m(x))2 ≤ c1

(
1− 1

3d

)2k

+ c2
1

c4

2k

n
log

(
c2
c3c4

n log n

2k

)
+ c3 log n

c2
c3c4

2k

n log n

= c1

(
1− 1

3d

)2k

+ c2
1

c4

2k

n
log

(
c2
c3c4

n log n

2k
e

c2
c4

)
.

For every ϵn ∈ (0, 2] it holds, log x ≤ 1
ϵn
xϵn . Then one has that,

E(m̃Un
∞,n −m(x))2 ≤ c1

(
1− 1

3d

)2k

+
c2(e

c2
c4

c2
c3c4

)n

c4ϵn

(
2k

n
(log n)

ϵn
1−ϵn

)1−ϵn
.

We pick k = c(d) log2
n

(logn)
ϵn

1−ϵn
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Therefore,

c2(e
c2
c4

c2
c3c4

)n

c4ϵn

(
2k

n
(log n)

ϵn
1−ϵn

)1−ϵn
≤ c′

ϵn
n(c(d)−1)(1−ϵn) log nϵn(1−c(d)),

for a constant c′ independent of n and,

c1

(
1− 1

3d

)2k

= c1

(
1− 1

3d

)2c(d) log2
n

(log n)

ϵn
1−ϵn

= c12
2c(d) log2 (1− 1

3d ) log2
n

(log n)

ϵn
1−ϵn

= c1n
2c(d) log2 (1− 1

3d ) 1

(log n)c(d)
2ϵn

1−ϵn
log2 (1− 1

3d )
.

Therefore,

c(d) =
ϵn − 1

2 log2
(
1− 1

3d

)
− (1− ϵn)

Finally,

c1n
2c(d) log2 (1− 1

3d ) 1

(log n)c(d)
2ϵn

1−ϵn
log2 (1− 1

3d )
= c1n

2(ϵn−1)

2 log2 (1− 1
3d )−(1−ϵn)

log2 (1− 1
3d )

× 1

(log n)

2(ϵn−1)

2 log2 (1− 1
3d )−(1−ϵn)

2ϵn
1−ϵn

log2 (1− 1
3d )

= c1n

2(ϵn−1)

2

(
− 1

3d
log 2

)
−(1−ϵn)

(− 1
3d

log 2

)
× 1

(log n)

2(ϵn−1)

2

(
− 1

3d
log 2

)
−(1−ϵn)

2ϵn
1−ϵn

(
− 1

3d
log 2

)

= n−(
2(1−ϵn)

1+(1−ϵn)d log 2 ) 1

(log n)
2ϵn

−2+3d log 2(ϵn−1)

= n−(
2(1−ϵn)

2+(1−ϵn)3d log 2 )(log n)(
2ϵn

2+3d log 2(1−ϵn) ).

and, for the second term, with the same arguments

c̃

ϵn
n(c(d)−1)(1−ϵn) log nϵn(1−c(d)) =

c̃

ϵn
n
−
(

1−ϵn
1+(1−ϵn) 3

2
d log 2

)
(log n)

(
ϵn

1+d 3
2

log 2(1−ϵn)

)
,

for a constant c̃ independent of ϵn hence,
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E(m̃Un
∞,n(x)−m(x))2 ≤ C

ϵn
n
−
(

1−ϵn
1+(1−ϵn) 3

2
d log 2

)
(log n)

(
ϵn

1+ 3
2
d log 2(1−ϵn)

)
,

and consequently,

C

ϵn
n
−
(

1−ϵn
1+(1−ϵn) 3

2
d log 2

)
(log n)

(
ϵn

1+ 3
2
d log 2(1−ϵn)

)
=
C

ϵn
n
−
(

1

1+ 3
2
d log 2

)
(log n)

(
ϵn

1+ 3
2
d log 2(1−ϵn)

)
× n

(
ϵn

(1+ 3
2
d log 2)(1+(1−ϵn))d log 2

)
≤ C

ϵn
n
−
(

1

1+ 3
2
d log 2

)
(log n)

(
ϵn

3
2
d log 2(1−ϵn)

)
× (log n)

log n
log log n

(
ϵn

( 3
2
d log 2)2(1−ϵn)

)
.

Finally we finish the proof by selecting ϵn = 1
logn ,

and

E(m̃Un
∞,n(x)−m(x))2 ≤ C̃n

−
(

1

1+ 3
2
d log 2

)
(log n).

3.0.6 Plots and Experiments.

In the following section, we summarize the rates of convergence for the centered
KeRF and the uniform KeRF, and we compare them with the minimax rate
of convergence over the class of the Lipschitz functions [91]. In addition, we
provide numerical simulations where we compare the L2− error for different
choices of the tree depth. All experiments performed with the software Python
https://www.python.org/, mainly with the numpy library, where random
sets uniformly distributed in [0, 1]d have been created, for various examples
for the dimension d and the function Y. For every experiment the set is di-
vided into a training set (80 %) and a testing set (20 %); then the L2−error
(
∑
Xi∈ test set(m̃(Xi)−Yi)2) and the standard deviation of the error is computed.
For the centered KeRF we compare three different values of tree depth, which

from theory provide different convergence rates. First, the choice of k in [73,
Theorem 1] that provides the previous convergence rate; second, the selection
of k as it was delivered from the theorem 1; and, third, the case where the
estimator, in probability, interpolates the data set, but the known convergence

rate is slow [4, Theorem 4.1], O(log n−
d−5
6 ) for the dimension of the feature

space d > 5.
For the uniform KeRF, we compare the two values of tree depth as they were
derived from [73] and Theorem 2 nevertheless, it is not known if the uniform-
KeRF algorithm converges when our estimator function interpolates the data
set. Of course, in practice, since real data might violate the assumptions of
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the theorems, one should try cross-validation for tuning the parameters of the
algorithms.
Comparing the rates of consistency for centered KeRF and the depth of the
corresponding trees:

• Scornet in [73, Theorem 1] rate of convergence: n−( 1
d log 2+3 )(log n)2, and

k = ⌈ 1
log 2+ 3

d

log n
logn2 ⌉

• New rate of convergence :

n−
(

1
1+d log 2

)
(log n), and k = ⌈

1
logn − 1

2 log2(1− 1
2d )− (1− 1

logn )
log2

n

(log n)

1
log n

1− 1
log n

⌉

• Minimax [91] rate of consistency over the class of Lipschitz functions: n
−2
d+2

functions

Thus, theoretically, the improved rate of consistency is achieved when trees
grow at a deeper level compared with the parameter selection in [73, Theorem
1].

Figure 3.3: Plot of the exponents of n, for the previous rate of convergence for
the centered KeRF algorithm, the new rate of convergence, and the optimal
over the class of the Lipschitz functions.

As it is evident from 3.3, the improvement in the convergence rate is more
significant in the low dimensional feature space scenarios. The constant C̃ =
C̃(d) of theorem 1 depends on the dimension d of the space. The convergence
rates in the literature do not try to have a good estimate for C̃, and they are
significant for fixed values of d only.

Finally, we note that Klusowski’s rate of convergence in [49], O
(
(n log

d−1
2 n)−( 1+δ

d log 2+1 )
)
,

where δ is a positive constant that depends on the dimension of the feature space
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d and converges to zero as d approaches infinity, is sharp and better than the one

in theorem 1 O
(
n−
(

1
1+d log 2

)
(log n)

)
for small values of d. For large values of n

and d the two estimates are essentially the same, but for now, we do not know
if in general, the rate of convergence of the centered KeRF is not improvable.

Comparing the rates of convergence for uniform KeRF and the depth of the
corresponding trees:

• Scornet in [73, Theorem 2]: rate of convergence : n−( 2
3dlog2+6 )(log n)2, and

k = ⌈ 1
log 2+ 3

d

log n
logn2 ⌉

• New rate of convergence:

n−( 2
3d log 2+2 )(log n), and k = ⌈

1
log n−1

2 log2(1− 1
3d )−(1− 1

log n )
log2

n

(logn)

1
log n

1− 1
log n

⌉

• Minimax [91] rate of convergence for the consistency over the class of

Lipschitz functions: n
−2
d+2 functions

Thus, theoretically, as in the case of centered random KeRF, the improved
rate of consistency is achieved when trees grow at a deeper level compared with
the parameter selection in [73, Theorem 2].

Figure 3.4: Plot of the exponents of n, for the previous rate of convergence for
the uniform KeRF algorithm, the new rate of convergence, and the optimal over
the class of the Lipschitz functions.

The same considerations on the dependence of the constant C̃ on d we made
for the centered KeRF hold in the uniform KeRF case as one can see in Figure
4.4. Moreover, as of now, it is still unknown to us if the convergence rate of the
uniform KeRF can be improved.

Finally, numerical simulations of the L2−error of the centered KeRF-approximation
for three different values of k in Figure 4.5a with the standard deviation of the
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errors in Figure 4.5b is provided. In Appendix, more simulations and plots for
different target functions and for both algorithms are illustrated.

Figure 3.5: Plot of the L2−error of the centered KeRF-approximation for three
different values of k for the function Y = X2

1 + e−X
2
2 + ϵ, where ϵ ∼ N (0, 12 ),

against different data set size.

Figure 3.6: Plot of the standard deviation of errors, for the centered KeRF-
approximation for three different values of k of the function Y = X2

1 +e
−X2

2 + ϵ,
where ϵ ∼ N (0, 12 ), against different data set size.

3.0.7 More experiments and analysis of the kernel

In this last section, we provide more experiments of low dimensional regression
examples with additive noise, regarding the centered and the uniform KeRF. In
particular, we calculate and compare the L2− errors and the standard deviations
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against different sample sizes for different values of the parameter k of the
estimator. Moreover, in the following subsection, we study the corresponding
reproducing kernel Hilbert space produced by the kernel

KCen
k (x, z) =

∑
∑d

j=1 kj=k

k!

k1!...kd!
(
1

d
)k

d∏
j=1

1⌈2kjxj⌉=⌈2kj zj⌉,

defined in the abelian group Zkd2 . To conclude we recall some notation for fi-
nite abelian groups, necessary to define the aforementioned reproducing kernel
Hilbert space and estimate its dimension.

Figure 3.7: Plot of the L2−error of the centered KeRF-approximation for three
different values of k for the function Y = X2

1 +
1

eX
2
2+eX

2
3
+ϵ where ϵ ∼ N (0, 0.5),

against different data set size.
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Figure 3.8: Plot of the standard deviation of errors, of the centered KeRF-
approximation for three different values of k of the function Y = X2

1+
1

eX
2
2+eX

2
3
+

ϵ where ϵ ∼ N (0, 0.5), against different data set size.

On Figure 4.6a we see the L2−error of the centered KeRF-approximation
for a three dimensional feature space and on Figure 4.6b the standard deviation
of the errors.

Figure 3.9: Plot of the L2−error of the uniform KeRF-approximation for two
different values of k for the function Y = X2

1 + e−X
2
2 + ϵ where ϵ ∼ N (0, 0.5),

against different data set size.
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Figure 3.10: Plot of the standard deviation of errors, of the uniform KeRF-
approximation for two different values of k for the function Y = X2

1 + e−X
2
2 + ϵ

where ϵ ∼ N (0, 0.5), against different data set size.

Figure 3.11: Plot of the L2−error of the uniform KeRF-approximation for two
different values of k for the function Y = X2

1+
1

(eX
2
3+eX

2
2 )
+ϵ where ϵ ∼ N (0, 0.5),

against different data set size.
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Figure 3.12: Plot of the standard deviation of the errors, of the uniform KeRF-
approximation for two different values of k for the function Y = X2

1+
1

(eX
2
3+eX

2
2 )
+

ϵ where ϵ ∼ N (0, 0.5), against different data set size.

Figures 4.7a,4.7b show the L2−error and the standard deviation for the
uniform KeRF in a two dimensional feature space and Figures 3.11,3.12 present
a three dimensional example respectively.

3.0.8 Analysis of the Kernel

3.0.8.1 Fourier transforms on finite groups and related RKHS

We provide here an alternative description of the centered random forest algo-
rithm, where the dyadic tiling of the hypercube motivates us to define the kernel
in the abelian group Zkd2 . First, we define a Random Tree Θ. Start with a ran-
dom variable Θ0, uniformly distributed in {1, . . . , d}, and split I := [0, 1]d =

IΘ
0

0 ∪ IΘ
0

1 , where IΘ0

l = [0, 1]× · · · × [l/2, (l+1)/2]× . . . [0, 1], where for l = 0, 1
the splitting was performed in the Θ0-th coordinate. Choose then random vari-

ables Θ1,l (l = 0, 1), distributed as Θ0, and split each IΘ
0

l = IΘ
0,Θ1

l,0 ∪ IΘ
0,Θ1

l,1 ,

where, as before, the splitting is performed at the Θ1-th coordinate, and IΘ
0,Θ1

l,0

is the lower half of IΘ
0

l . Iterate the same procedure k times. In order to do
that, we need random variables Θj;η0,...,ηj , with ηl ∈ {1, . . . , d} and j = 1, . . . , k.
We assume that all such random variables are independent. It is useful think
of Θ = {Θj;η0,...,ηj} as indexed by a d-adic tree, and, in fact, we refer to Θ as
a random tree in [0, 1]d. We call cells, or leaves, each of the 2k rectangles into
which [0, 1]d is split at the end of the kth subdivision.
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3.0.9 A reproducing kernel from the Centered KeRF

3.0.9.1 The Fourier analysis of the kernel

The kernel in the centered KeRF defines a reproducing kernel Hilbert space
(RKHS) HK structure on a set Γ having 2kd points [5]. In fact, Γ has a group
structure, and Fourier analysis can be used. Much research is done in RKHS
theory, and in this section (see e.g [1]), we study the structure of HK in itself.
A priori, HK might have any dimension less or equal to #Γ. We show in fact
that its dimension is much lower than that, a fact which is somehow surprising,
and we believe it is interesting in itself. Furthermore, we prove that there
are no nonconstant multipliers in the space HK . For completeness we provide
definitions and notation on Fourier analysis on Abelian groups in 1.1.3.

We identify every real number x ∈ [0, 1] with its binary expression x =
0.x1x2x3... with xi ∈ {0, 1} for i ∈ N.

Here we consider the group

G = Zkd2 ∋ x = (xji ) i=1,...,k
j=1,...,d

= (x1|x2| . . . |xd) =


x1
x2
. . .
xk

 . (3.0.1)

The kernel K : Γ× Γ→ C corresponding to the kernel Kcen
k is,

K(a, b) =
∑
l∈Nd
|l|=k

1

dk

(
k

l

) d∏
j=1

χ
(
aj1 = bj1, . . . , a

j
kj

= bjkj

)

=
∑
l∈Nd
|l|=k

1

dk

(
k

l

) d∏
j=1

kj∏
i=1

χ
(
aji = bji

)
= φ(a− b), (3.0.2)

where
(
k
l

)
is the multidimensional binomial coefficient, χE is the characteristic

function of the set E, and a− b is the difference in the group Zkd2 . Incidentally,
(3.0.2) shows that the kernel K can be viewed as a convolution kernel on the
appropriate group structure. For the last equality, we consider the binary rep-
resentation of a number in (0, 1] whose digits are not definitely vanishing. The
fact that 0 does not have such representation is irrelevant since the probability
that one of the coordinates of the data vanishes is zero.

We now compute the anti-Fourier transform µ = φ̌. We know that ♯(Γ) =
2kd, and that the characters of Zkd2 have the form

γa(x), x ∈ Zkd2 , a ∈ Ẑkd2 , a · x = a11x
1
1 + · · ·+ adkx

d
k. (3.0.3)

Hence,

2kdpnµ(x) = dk
∑
a∈Γ

φ(a)γa(x)

69



= dk
∑
a∈Γ

φ(a)(−1)a·x

=
∑
a∈Γ

∑
l∈Nd
|l|=k

(
k

l

) d∏
j=1

kj∏
i=1

χ
(
aji = 0

)
(−1)a·x

=
∑
a∈Γ

∑
l∈Nd
|l|=k

(
k

l

) d∏
j=1

(−1)ã
kj
j ·x̃

kj
j

kj∏
i=1

[
χ
(
aji = 0

)
(−1)a

j
ix

j
i

]

where ã
kj
j =

ajkj+1

. . .
ajn

 is the lower, (k − kj)-dimensional

part of the column aj ,

=
∑
l∈Nd
|l|=k

(
k

l

) d∏
j=1

(−1)ã
kj
j ·x̃

kj
j

kj∏
i=1

χ
(
aji = 0

)

=
∑
l∈Nd
|l|=k

(
k

l

) ∑
a∈Γ

a1
1=...a1

k1
=a2

1=···=ad
kd

=0

d∏
j=1

(−1)ã
kj
j ·x̃

kj
j . (3.0.4)

The last expression vanishes exactly when for all l, there are some 1 ≤ j ≤ d,
and some kj + 1 ≤ i ≤ k such that xji = 1, due to the presence of the factor

(−1)a
j
ix

j
i = (−1)a

j
i which takes values ±1 on summands having, two by two, the

same absolute values.
If, on the contrary, there is l such that for all 1 ≤ j ≤ d, and kj +1 ≤ i ≤ k,

we have that xji = 0, then µ(x) ̸= 0. Since |l| = k and there are kd binary
digits involved in the expression of x, the latter occurs exactly when the binary
matrix representing x has a large lower region in which all entries are 0. More
precisely, the number of vanishing entries must be at least

(k − k1) + · · ·+ (k − kp) = (d− 1)k. (3.0.5)

The number N(d, k) of such matrices is the dimension of HK , the Hilbert space
having K as a reproducing kernel.

Next, we prove some estimates for the dimension of the reproducing kernel
Hilbert space.

We summarize the main items in the following statement.

Theorem 10. Let K : Γ× Γ→ C be the kernel in (3.0.2), K(a, b) = φ(a− b),
and let

EK = supp(φ̌) ∈ K. (3.0.6)

Then,

(i) as a linear space, HK = LEK
, where

EK = {x = (x1| . . . |xd) : xji = 0 for kj + 1 ≤ i ≤ k, for some l
= (k1, . . . , kd) ∈ Nd with k1 + · · ·+ kd = k}; (3.0.7)
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(ii) For x ∈ EK ,

φ̌(x) =
1

2kdk

∑
l∈Nd, |l|=k

x
j
i
=0 for kj+1≤i≤k

(
k

l

)
(3.0.8)

To obtain the expression on (3.0.8), we used the fact that

♯{a : a11 = . . . a1k1 = a21 = · · · = apkp = 0} = 2(d−1)k.

3.0.9.2 Some properties of HK .

3.0.9.2.1 Linear relations.

Among all functions ψ : Γ→ C, those belonging to HK (i.e., those belonging to
LEK

) are characterized by a set of linear equations,

0 = 2nppnµ(x) =
∑

k∈Np, |k|=n

x
j
i
=0 for kj+1≤i≤n

(
n

k

)
for x /∈ EK . (3.0.9)

3.0.9.2.2 Multipliers.

A multiplier of HK is a function m : Γ → C such that mψ ∈ HK whenever
ψ ∈ HK .

Proposition 8. The space HK has no nonconstant multiplier.

In particular, it does not enjoy the complete Pick property, which has been
subject of intensive research for the past twenty-five years [1].

Proof. The space HK coincides as a linear space with LEK
. Let ΛE = ĽE ,

which is spanned by {δx : x ∈ E}. Observe that, since 0 = (0| . . . |0) ∈ EK , the
constant functions belong to HK , hence, any multiplier m of HK lies in HK ;
m = m · 1 ∈ HK .

Suppose m is not constant. Then, m̌(a) ̸= 0 for some a ∈ EK , a ̸= 0. Let

a be an element in EK such that m̌(a) ̸= 0. Since HK ∋ m · δ̂x for all x in

EK , and m · δ̂x = ̂̌m ∗ δx, we have that the support of m̌ ∗ δx lies in HK . Now,
m̌ ∗ δx(y) = m̌(x − y), hence, we have that, for any x in EK , y = x − a lies in
EK as well. This forces a = 0, hence m to be constant.

3.0.9.2.3 Bounds for dimension and generating functions.

Theorem 11. For fixed d ≥ 1, we have the estimates:

dim(HK) ∼ 2k−d+1kd−1

(d− 1)!
, hence

dim(HK)

2kd
∼ kd−1

2d−1(d− 1)!2k(d−1)
. (3.0.10)
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Proof. Let l1, l2, ..., ld such that

0 ≤ l1 + l2 + ...+ ld = m ≤ k

where m is a parameter and let also λ = |j : lj ≥ 1| = |{stop 1-digits}| =
|{back-entries}| where |·| denotes the size of the sets, and of course we have that
0 ≤ m ≤ k and 0 ≤ λ ≤ d,m. Goal to obtain a bound for

N(k, d) =

k∑
m=0

d∧m∑
λ=0

2m−λ
(
d

λ

)
|{(l1, l2, ..., ld) : l1+l2+...+ld = m| and |{j : lj = 1} = 1|}.

Let A(m,λ) the m-th coefficient of x in the polynomial

(x+ x2 + ...xm + ...)λ = (x(1 + x+ x2 + ...)λ

= (xλ(1 + x+ ...)λ)

=
xλ

(1− x)λ

and 2mA(m,λ) is the m-th coefficient of x, for the fraction (2x)λ

(1−2x)λ
, therefore

2m−λA(m,λ) is the m-th coefficient of xλ

(1−2x)λ
. Let’s see the first sum,

B(m, d) is the m-th coefficient of x :

d∧m∑
λ=0

(
d

λ

)
2m−λA(m,λ) =

d∧m∑
λ=0

(
d

λ

)
(

x

1− 2x
)λ

= (1 +
x

1− 2x
)d

= (
1− x
1− 2x

)d

Again by the same combinatoric argument we are looking the k-th coefficient of
the function

f(x) =
1

1− x
(
1− x
1− 2x

)d.

Back to the estimate,
Let ak the coefficient of the power series centered at z = 0.

max
|z|=r

|f(z)| = max
|z|=r

∣∣∣∣ (1− z)d−1

(1− 2z)d

∣∣∣∣ = max
|z|=r

∣∣∣∣ 1

1− z

(
1− z
1− 2z

)d∣∣∣∣ ≤ 2 max
θ∈(−π,π)

∣∣∣∣ 1− reiθ1− 2reiθ

∣∣∣∣d
After some calculations since r is fixed one has that the maximum is achieved
for θ = 0. So max|z|=r |f(z)| ≤ 2( 1−r

1−2r )
d Our estimation finally becomes :
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|ak| ≤
2
(

1−r
1−2r

)d
rk

=
2(1− r)d

rk(1− 2r)k

= kd2k(
1

2
+

1

2k
)d, (since, r =

1

2
(1− 1

k
))

= kd(1 +
1

k
)d2k−d.

Thus an estimate for the dimension of HK is

|ak|
2kd

≲
kd(1 + 1

k )
d2k(1−d)

2d

Another estimate about the dimension of HK . For f(z) =
∑∞
n=0 anz

n we have

|an| ≤
max{|f

(
reit
)
| : |t| ≤ π}

rn
.

Consider the function

f(z) =
(1− z)d−1

(1− 2z)d

in |z| < 1/2 and let r = 1−1/k
2 . Then,

|ak| ≤
(3/2)d−1

(1/k)d(1− 1/k)k2−k

≤ (3/2)d−12kekd.

Thus,
|ak|
2kd

≲
kd(3/2)d

2k(d−1)
.

Recursively working out the generating function one gets the estimates in (3.0.10).
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Chapter 4

A simplified directional
KeRF algorithm

In this final chapter, we introduce a simplification of the centered random forest
algorithm. We recall again the notations as in 1 and we prove that the infinite
centered random forest kernel coincides with the infinite simplified directional
one. Moreover we explore rates of convergence of the simplified directional
KeRF in the interpolation regime and by optimizing the tree depth parameter
k. Finally, we provide some numerical simulations and experiments that also
confirm our theoretical results.

The following chapter is part of the work with Nicola Arcozzi in [44].

4.1 The Centered KeRF algorithm

we say that an estimator functionmn ofm is consistent if the following L2−type
of convergence holds,

E(mn(x)−m(x))2 → 0,

as n→∞.
In the centered random forest algorithm, the way the data set Dn is parti-

tioned is independent of the data set itself.
The centered forest is designed as follows.

1) Fix k ∈ N.

2) At each node of each individual tree choose a coordinate uniformly from
{1, 2, ..d}.

3) Split the node at the midpoint of the interval of the selected coordinate.

Repeat step 2)-3) k times. Finally, we have 2k leaves, or cells. A toy example of
this iterative process for k = 1, 2 is in Figures 4.1,4.2. Our estimation at a point
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x is achieved by averaging the Yi corresponding to theXi in the cell containing x.

Figure 4.1: Centered algorithm with tree level k = 1 with the convention that
1 corresponds to x1 axis and 2 to the x2 axis.
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Figure 4.2: Centered algorithm with tree level k = 2 with the convention that
1 corresponds to x1 axis and 2 to the x2 axis.

Scornet in [73] introduced the corresponding kernel-based centered random
forest providing explicitly the proximity kernel function.

Proposition 9. A centered random forest kernel with k ∈ N parameter has the
following multinomial expression [73, Proposition 5],

KCen
k (x, z) =

∑
∑d

j=1 kj=k

k!

k1!...kd!
(
1

d
)k

d∏
j=1

1⌈2kjxj⌉=⌈2kj zj⌉.

Where KCen
k is the Kernel of the corresponding centered random forest.

4.1.0.1 Simplified directional KeRF.

The simplified directional random forest algorithm is designed as follows:

1) Fix k ∈ N.

2) Choose a coordinate uniformly from {1, 2, ..d}.

3) For every node of each individual tree split the node at the midpoint of
the interval of the preselected coordinate.
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Repeat step 2)-3) k times. Finally, we have 2k leaves, or cells. A toy example
of this iterative process for k = 1, 2 is in Figures 4.3,4.4.

Our estimation at a point x is achieved by averaging the Yi corresponding
to the Xi in the cell containing x.

It is clear from the description of the partition of the hypercube for both
algorithms, that the latter is indeed a simplification. At each recursive step of
the tiling of a tree, in the centered random forest, the choice of the direction
of the splitting procedure needs to be taken in every node separately. On the
contrary, in the simplified direction random forest, for each recursive step of
every tree, there is only a uniform choice for the direction of the splitting.

For simplicity, we define the probability that two points x, y are connected
in the k−th level of a tree by psdk (x, y) for the simplified directional algorithm
and pk(x, y) respectively for the centered keRF.

Figure 4.3: Centered algorithm with tree level k = 1 with the convention that
1 corresponds to x1 axis and 2 to the x2 axis.
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Figure 4.4: Centered algorithm with tree level k = 2 with the convention that
1 corresponds to x1 axis and 2 to the x2 axis.

Theorem 12. For every k ∈ N and every x, y in [0, 1]d

psdk (x, y) = pk(x, y) = KCen
k (x, y)

Proof. For k = 0, 1 the result is trivial.
We assume that for every x, y ∈ [0, 1]d and for l = 0, 1, ...k, psdk (x, y) =

pk(x, y) and the proof without loss of generality is provided for d = 2.Moreover,
let nsd(k) resp (n(k)) to be the number of different tree expansions of level k
for the simplified directional algorithm (resp original centered algorithm), and
recursively it is easy to check that

nsd(k) = 2nsd(k − 1) = ... = 2k

and with the same arguments,

n(k) = 2kn(k − 1) = ... = 2
k(k+1)

2 .

Furthermore, we denote by Akx,y the number of times that the points x, y fall

in the same cell in the original centered algorithm and Bkx,y for the simplified

directional respectively. Then, psdk (x, y) =
Bk

x,y

nsd(k)
and pk(x, y) =

Ak
x,y

n(k) and we

observe the following cases for the original centered random forest algorithm:
If x, y are not connected for every possible different tree expansion of level

k then
pk(x, y) = psdk (x, y) = pk+1(x, y) = psdk+1(x, y) = 0.
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Furthermore, if x, y are connected for some possible different tree expansion of
level k, but they are not connected for any tree expansions of level k + 1 then

pk+1(x, y) = psdk+1(x, y) = 0.

Next, if x, y are connected for some possible different tree expansions of level k,
and they are connected only after a horizontal cut and not after a vertical, then

pk+1(x, y) =
Ak+1
x,y

n(k + 1)

=
1
22
k+1Akx,y

2
(k+1)(k+2)

2

since half of the tree expansions are connected

=
1

2
pk

=
1

2
psdk (x, y) by the induction hypothesis

and of course,

psdk+1(x, y) =
Bk+1
x,y

nsd(k + 1)
=

1

2

2Bkx,y
2k+1

=
1

2
psdk (x, y).

By symmetry, the result holds as well if x, y are connected for some possible
different tree expansion of level k, and they are connected only after a vertical
cut. Finally, when x, y are connected for some possible different tree expansions
of level k, and they are connected as well, after the next cut, in any direction
then,

pk+1(x, y) =
Ak+1
x,y

n(k + 1)

=
2k+1Akx,y

2
(k+1)(k+2)

2

= pk

= psdk (x, y) by the induction hypothesis

and,

psdk+1(x, y) =
Bkx,y
2k

= psdk (x, y),

which concludes the proof.

A simple observation from the theorem above is that the infinite-centered
KeRF coincides with the infinite-simplified directional KeRF. Hence, under spe-
cific assumptions, we can compute the rate of convergence of the simplified
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KeRF. We provide, as a simple corollary, the speed of convergence over the
class of the L−Lipschitz functions under some hypothesis of the probability
distribution of the feature space.

Corollary 2. ([43] Theorem 1.) Under the following assumptions:

Y = m(X) + ϵ

X is uniformly distributed on [0, 1]d

ϵ ∼ N (0, σ2), σ <∞
m belongs to the class of L-Lipschitz functions,

the rate of convergence of the simplified directional KeRF is O
(
n−
(

1
1+d log 2

)
(log n)

)

4.1.1 Interpolating random trees

In this section, we provide an improvement of the rate of convergence of the
infinite directional KeRF in the interpolation regime. Since the infinite direc-
tional KeRF coincides with the infinite centered KeRF it is enough to study
the latter. In [4] Arnould et al. examined the interpolation of data of several
random forest models and their capability to preserve consistency.

Next, we provide the basic definitions on data interpolation and we mention
some classical results. Finally, we provide the improved convergence rate.

Definition 6. An estimator mn interpolates the data set if for every (Xi, Yi)
in the training set we have mn(Xi) = Yi almost surely.

Moreover, since a random forest is an average of M− random trees it is
sufficient for the random forest estimator to interpolate the data if every tree
estimator interpolates the data set. The tree estimator for a point x is the
average of Yi’s for those Xi’s belonging to the same cell (or node). Therefore,
it is clear that a tree interpolates the data set if a tree is grown until each node
contains Xi’s with the same values of Yi’s.

In fact, since X is uniformly distributed on [0, 1]d the probability that point
belongs to one node is 1

2k
and the expected number of points per node are n

2k
.

Definition 7. A centered random forest estimator satisfies the mean interpo-
lation regime if every tree has at least n− nodes. In other words, if 2k ≥ n.

The centered random forest fails to preserve consistency in the interpolation
regime. This is a result by Arnould et al. [4].

Theorem 13 (Inconsistency of Centered Random Forest). If E[m(X)2] > 0 and
kn ≥ log2(αn), then the infinite centered random forest mcc

∞,n is inconsistent.

On the contrary, in the same article, Arnould et al. prove that centered
kernel random forest are consistent in the interpolation regime with a slow
convergence rate, as long the dimension of the feature space is greater than 5.
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Intuitively the reason why the kernel-based centered (or simplified direc-
tional) estimator is consistent, despite the fact that the tree construction of
both algorithms is the same, is the way the kernel estimator is computed. By
default, the number of empty nodes in each tree partition is the same for a cen-
tered random forest and a centered KeRF. The kernel estimator though does
not take into account empty cells and this is why exactly the consistency is
preserved, even with slow convergence rates and deep tree depth.

Finally, we mention here the theorem of Arnould et al. and next we state
and prove ours.

Theorem 14 (Consistency of Centered KeRF). Under the following assump-
tions:

Y = m(X) + ϵ,

X is uniformly distributed on [0, 1]d,

ϵ ∼ N (0, σ2), σ <∞,
m belongs to the class of L-Lipschitz functions,

and assuming furthermore that k = ⌊log2(n)⌋:
then the rate of convergence is

E[(m̃cc
n,∞(x)−m(x))2] ≤ 8L2d2

n−2 log2(1−1/d)
+ Cd(log2 n)

−(d−5)/6(log2(log2 n))
d/3,

where Cd > 0 is a constant dependent on noise variance.

Under the same assumptions for the regression function m, in the mean
interpolation regime, we provide an improvement in the rate of convergence.

E[(m̃cc
n,∞(x)−m(x))2] ≤ c1

(
1− 1

2d

)2 log2 n

+C3
log2(log2 n)

d

(log2 n)
d−1
2

log

(
log n(log2 n)

d−1
2

log2(log2 n)
d

)
.

We assume for this section that all random variables are real-valued and
||X||Lp

: = (E|X|p)
1
p and ||X||∞ : = inf{t : P (|X| ≤ t) = 1}

We begin with this basic lemma providing tail bounds for centered iid ran-
dom variables with bounded variance and supremum norm.

Lemma 3. Let X1, ..., Xn be a sequence of real independent and identically
distributed random variables with E(Xi) = 0. Assuming also that there is a
uniform bound for the L2-norm and the supremum norm i.e. E(|Xi|)2 ≤Man,
||Xi||∞ ≤M ≤ n for every i = 1, ..., n. Then for every t ≤ 2

√
Man

P
(
{
|
∑n
i=1Xi|
n

≥ t}
)
≤ 2 exp (− t2n

Man
).

82



Proof.

P
(
1

n

n∑
i=1

Xi ≥ t
)

= P
(
λ

n

n∑
i=1

Xi ≥ λt
)

= P
(
exp (

λ

n

n∑
i=1

Xi) ≥ exp (λt)

)

≤ exp (−λt)E exp

(
λ

n

n∑
i=1

Xi

)

≤ exp (−λt)
n∏
i=1

E exp

(
λ

n
Xi

)
.

Where the inequalities are provided by Chebysev inequality and the indepen-
dence of the random variables. Moreover, for convenience, let Yj =

Xj
n and we

observe that, ||Yi||∞ ≤ 1 and E(Yi)2 ≤ Man
n2 = σ2

E exp

(
λ

n
Xi

)
= E

(
1 +

∞∑
k=2

λkY ki
k!

)

= 1 +

∞∑
k=2

λkE(Y ki )
k!

≤ 1 +

∞∑
k=2

λk(EY 2
i )

k
2 ||Yi||

k
2∞

k!

≤ 1 +

∞∑
k=2

λk((σ2)
1
2 )k

k!

= 1 + exp (λσ)− λσ − 1

≤ 1 + λσ + (λσ)2 − λσ
≤ exp (λσ)2

where we have used that exp (λσ) ≤ 1+λσ+(λσ)2 when λσ ≤ 1 and 1+x ≤ ex.
Hence,

P
(
1

n

n∑
i=1

Xi ≥ t
)
≤ exp (−λt) exp (λσ)2n

≤ exp (− t2

2σ2n
)

= exp (− t2n

Man
)

where we choose λ = t
2σ2n which is an accepted value of λ ⇐⇒ t ≤ 2

√
Man.

We conclude the proof by replacing Xi with −Xi.
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Now we move to the next necessary lemma. Here our target random variables
are multiplied by centered independent Gaussian noises, but we can still obtain
a similar tail bound by getting advantage the shape of the Gaussian tales.

Lemma 4. Let X1, ..., Xn be a non-negative sequence of independent and iden-
tically distributed random variables with E(Xi)

2 ≤ Man, ||Xi||∞ ≤ M ≤ n
for every i = 1, ..., n. Let also a sequence of independent random variables ϵi
following normal distribution with zero mean and finite variance σ̃2, for ev-
ery i = 1, ..., n. We assume also that ϵi are independent from Xi for every
i = 1, ..., n.
Then for every t ≤ 2

√
Man

P
(
{
|
∑n
i=1Xi|
n

≥ t}
)
≤ 2 exp (− t2n

Manσ̃2
).

Proof. First of all, we observe from the proof of lemma 1 that,

P
(
1

n

n∑
i=1

Xiϵi ≥ t
)
≤ exp (−λt)

n∏
i=1

E exp

(
λ

n
Xiϵi

)
,

and

E exp

(
λ

n
Xiϵi

)
= E

(
1 +

∞∑
k=2

λkY ki ϵi
k!

)

≤ 1 +

∞∑
k=2

λk(EY 2
i )

k
2 ||Yi||

k
2∞E(ϵi)k

k!

≤ 1 +

∞∑
k=2

λk((σ2)
1
2 )kE(ϵi)k

k!

= E exp

(
λσϵi

)
≤ E exp

(
λ2σ2σ̃2

)
The gaussian property

Finally, the proof works from now on the same way, as the one for the speed
of convergence of the previous chapter.

P
(
1

n

n∑
i=1

Xiϵi ≥ t
)
≤ exp (−λt) exp (λσσ̃)2n

≤ exp (− t2

2σ2σ̃2n
)

= exp (− t2n

Man
)
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where we choose λ = t
2σ2σ̃2n which is an accepted value of λ ⇐⇒ t ≤ 2

√
Man.

We conclude the proof by replacing Xi with −Xi.

Theorem 15. Y = m(X)+ ϵ where ϵ is a zero mean Gaussian noise with finite
variance σ independent of X. Assuming also that X is uniformly distributed in
[0, 1]d andm is a Lipschitz function. Then there exists constants c1, c2 depending
on d, σ and ∥m∥∞ = supx∈[0,1]d |m(x)| such that,

E(m̃cc
n,∞(x)−m(x))2 ≤ c1

(
1− 1

2d

)2 log2 n

+C3
log2(log2 n)

d

(log2 n)
d−1
2

log

(
log n(log2 n)

d−1
2

log2(log2 n)
d

)
Proof. Following the notation in [73], let x ∈ [0, 1]d, ∥m∥∞ = supx∈[0,1]d |m(x)|,
and by the construction of the algorithm

m̃Cen
n,∞(x) =

∑n
i=1 YiKk(x,Xi)∑n
i=1Kk(x,Xi)

.

Let

An(x) =
1

n

n∑
i=1

(
YiKk(x,Xi)− E(Y Kk(x,X))

E(Kk(x,X))

)
,

Bn(x) =
1

n

n∑
i=1

(
Kk(x,Xi)− E(Kk(x,X))

E(Kk(x,X))

)
,

and

Mn(x) =
E(Y Kk(x,X))

E(Kk(x,X))
.

Hence, we can reformulate the estimator as

m̃Cen
n,∞(x) =

Mn(x) +An(x)

Bn(x) + 1
.

Let t ∈ (0, 12 ) and the event Ct(x) where {An(x), Bn(x) ≤ t}.

E(m̃cc
n,∞(x)−m(x))2 = E(m̃cc

n,∞(x)−m(x))21Ct(x) + E(m̃cc
n,∞(x)−m(x))21Cc

t (x)

≤ E(m̃cc
n,∞(x)−m(x))21Cc

t (x)
+ c1

(
1− 1

2d

)2k

+ c2t
2.

Where the last inequality was obtained in [73, p.1496] Moreover, in [73],

E(m̃cc
n,∞(x)−m(x))21Cc

t (x)
≤ c3(log n)(P(Cct (x)))

1
2 .

Proposition 10. The probability P(Cct (x)) ≤ C exp (− t2n
2kan

) for a constant C
independent of k, n and an is a sequence that converges to zero as n tends to
infinity.
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Proof. First of all, we notice that

P(Cct (x)) ≤ P(|An(x)| > t) + P(|Bn(x)| > t).

The related result will follow by working separately on both inequalities.
By lemma B.4 [4] for all x ∈ [0, 1]d and d ≥ 2 we have

E
(
Kc
k(x,X)

)2 ≤ C1 + C2(log2(k))
d

k
d−1
2 2k

where C1 = 1+ 2d
d
2

(4π)
d−1
2

, C2 = 5d(d−1
2 )d and for convenience let an = C1+C2(log2(k))

d

k
d−1
2

.

Hence, let X̃i =
Kk(x,Xi)

E(Kk(x,X)) − 1 a sequence of centered iid random variables

with

||X̃i||∞ = sup{|X̃i|} = sup{| Kk(x,Xi)

E(Kk(x,X))
−1|} ≤ 1

E(Kk(x,X))
supKk(x,Xi)+1 ≤ 2k+1

and

E
( Kc

k(x,Xi)

E(Kc
k(x,X)

)2
=

1

(E(Kc
k(x,X)))2

E
(
Kc
k(x,X)

)2
≤ 1

( 1
2k
)2
C1 + C2(log2(k))

d

k
d−1
2 2k

= 2kan

By lemma 3, for every t ≤ 2
√
2kan

P(|Bn(x)| > t) ≤ 2 exp (−C t2n

2kan
)

We need an estimate for the P(|An(x)| > t) where,

An(x) =
1

n

n∑
i=1

(YiKk(x,Xi)− E(Y Kk(x,X))

E(Kk(x,X))

)
.

With simple calculations,

An(x) =
1

n

n∑
i=1

(
YiKk(x,Xi)− E(Y Kk(x,X))

E(Kk(x,X))

)

=
1

n

n∑
i=1

(
m(Xi)Kk(x,Xi)− E(m(X)Kk(x,X))

E(Kk(x,X))

)
+

1

n

n∑
i=1

(
ϵiKk(x,Xi)− E(ϵKk(x,X))

E(Kk(x,X))

)

=
1

n

n∑
i=1

(
m(Xi)Kk(x,Xi)− E(m(X)Kk(x,X))

E(Kk(x,X))

)
+

1

n

n∑
i=1

(
ϵiKk(x,Xi)

E(Kk(x,X))

)
.
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Let Zi = 2 ϵiKk(x,Xi)
E(Kk(x,X)) a sequence of centered iid random variables with

E(Zi)2 ≤
4
1

(2k)2

E(ϵKk(x,X))2

=
4
1

(2k)2

E(ϵ)2E(Kk(x,X)))2)

≤ c̃2kσ2an

and

|| Kk(x,Xi)

E(Kk(x,X))
||∞ ≤ 2k

hence by 4

P
(
|Zi| ≥ t

)
= P

( 2
n

n∑
i=1

| ϵiKk(x,Xi)

E(Kk(x,X))
| ≥ t

)
≤ 2 exp (− t2n

2kan
)

for every t ≤ 2
√
2kan

P
(
|An(x)| ≥ t

)
≤ P

(∣∣∣∣ 2n
n∑
i=1

m(Xi)Kk(x,Xi)− E(m(X)Kk(x,X))

E(Kk(x,X))

∣∣∣∣ ≥ t)

+ P
(∣∣∣∣ 2n

n∑
i=1

ϵiKk(x,Xi)

E(Kk(x,X))

∣∣∣∣ ≥ t)
≤ 2 exp (−C1

t2n

2k
) + 2 exp (−C2

t2n

2kan
) ≤ C exp (−C3

t2n

2kan
).

where we have used a partial result from [43] [proposition 6.] and finally,

P(Cct (x)) ≤ 2 exp (−C̃ t2n

2kan
)

which concludes the proof.

To obtain the desired rate of convergence, we need an upper bound for

E(m̃cc
n,∞(x)−m(x))2 ≤ c3 log n exp (−C̃

t2n

2kan
) + c1

(
1− 1

2d

)2k

+ c2t
2

and we choose 2k = n in the mean interpolation regime,

E(m̃cc
n,∞(x)−m(x))2 ≤ c3 log n exp (−C̃

t2

an
) + c1

(
1− 1

2d

)2 log2 n

+ c2t
2
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Finally, by minimizing the right hand of the equation in terms of t one has
that, t2 = Can log

logn
an

and of course,

c3 log n exp (−C̃
t2

an
) + c1

(
1− 1

2d

)2 log2 n

+ c2t
2 ≤ c1

(
1− 1

2d

)2 log2 n

+ C3an + C2an log (
log n

an
)

and therefore, since an = log2(log2 n)
d

(log2 n)
d−1
2

E(m̃cc
n,∞(x)−m(x))2 ≤ c1

(
1− 1

2d

)2 log2 n

+C3
log2(log2 n)

d

(log2 n)
d−1
2

log

(
log n(log2 n)

d−1
2

log2(log2 n)
d

)

The above theorem states that the rate of convergence of the infinite centered
KeRF and the infinite simplified directional KeRF is faster than the one in
[4] in the interpolation regime even for dimension of the feature space d ≥ 2.
Moreover, interpolation in probability and consistency holds simultaneously but
in a relatively slow convergence rate. By optimizing the depth parameter, one
can obtain the rate of 3.0.2.

Lin and Jeon provided a theoretical lower bound for the rate of convergence
of deep non-adaptive random forests [53] of 1

(logn)d−1 and therefore we do not

know yet if our rate of convergence is generally improvable. On the contrary,
kernel estimators of the Nadaraya–Watson type ([60] , [89]) where the smoothing
parameter is highly related with the tree depth parameter have been studied in
[10] by Belkin and Rakhlin where it was proved that the rate of convergence is
the minimax over the class of the Lipschitz functions.

4.1.2 Plots and experiments.

In this final section, we conduct numerical simulations and experiments to
compare the performance of the finite-centered KeRF algorithm and the finite-
simplified directional KeRF algorithm. The evaluation is carried out in terms of
the L2-error and the standard deviation of the error for various target functions
Y . Specifically, we generated a two-dimensional feature space of size n = 1500
comprising uniformly distributed points.

The dataset was split into training and testing subsets, with 80% of the data
utilized for training both algorithms, while the remaining 20% was reserved for
evaluation purposes computing (

∑
Xi∈ test set(m̃(Xi) − Yi)2). To evaluate the

performance of the algorithms, we considered several target functions Y . For
each function, we trained both the finite-centered KeRF and the simplified direc-
tional KeRF on the training subset and subsequently evaluated their predictions
on the remaining testing subset.
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The following target functions with linear, polynomial, and exponential
relationships within the feature space were considered to investigate the L2-
error with a fixed tree depth value of k = log2 n and hence, every leaf has
on average 1 data point. Moreover, the number of trees varies from M =
1, 50, 100, 200, 300, 400, 500 and therefore we can empirically confirm that the
two algorithms coincide asymptotically.

1. Y = X1+X2+ϵ, where ϵ is a random error following a normal distribution
N (0, 12 ).

2. Y = X2
1+X

2
2+ϵ, where ϵ is a random error following a normal distribution

N (0, 12 ).

3. Y = 2X1 + e−X
2
2 .

All numerical simulations were conducted using the open-source Python soft-
ware https://www.python.org/,, primarily utilizing the numpy library.
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(a) L−error for the function Y = 2X1 + e−X2
2 .

(b) Standard deviation for the L−error for the func-

tion Y = 2X1 + e−X2
2 .

Figure 4.5: Comparison of L−error and standard deviation.
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(a) L−error for the function Y = X2
1 +X2

2 +ϵ where
ϵ ∼ N (0, 1

2
).

(b) Standard deviation for the L−error for the func-
tion Y = X2

1 +X2
2 + ϵ where ϵ ∼ N (0, 1

2
).

Figure 4.6: Comparison of L−error and standard deviation.
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(a) L−error for the function Y = X1+X2+ϵ where
ϵ ∼ N (0, 1

2
).

(b) Standard deviation for the L−error for the func-
tion Y = X1 +X2 + ϵ where ϵ ∼ N (0, 1

2
).

Figure 4.7: Comparison of L−error and standard deviation.

As one might expect, all the figures 4.5a 4.6a, 4.7a exhibit similar behav-
ior. For small values of trees, the two algorithms demonstrate slightly different
performances; however, as the number of trees increases, consistent with the the-
orem 12, both algorithms have the same performance in terms of the L2-error,
consistent with 12. Similarly, the same results hold for the standard deviation of
the errors 4.5b 4.6b, 4.7b. Overall, as it is evident from all experiments 4.5, 4.6,
and 4.7, after M = 100 trees the centered KeRF and the simplified directional
KeRF essentially coincide.

Of course, more experiments can be conducted for different tree depths,
leaving the interpolation world like the one that optimizes (so far) the speed of
the convergence of the centered KeRF, larger data sets, and spaces of higher
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dimensions.
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Chapter 5

Conclusions

This PhD research thesis was conducted under the scholarship PON (Programmi
Operativi Nazionali) DOT1303154-3 Dottorati PON - Bando 2021 - Cycle 37
(XXXVII) - Action IV.5 - Doctorates on Green topics supported by the Italian
Ministry of Education and Merit, focusing on Innovation and Green topics. The
National Operational Program (PON-green) aims to provide funds for research
activities regarding green transition, ecosystem preservation, and reduction of
climate change impacts. The first part of the thesis applies several supervised
machine-learning algorithms to ecological sandy beaches in Emilia-Romagna.
We derive useful information about the ecological balance of the sandy beaches
by studying the benthos distribution and constructing regression and classifi-
cation models. This is a joint work with Fabio Bozzeda from the University
of Salento. The second part of the thesis is the study of a particular class of
supervised machine learning algorithms. The purely random forests are simplifi-
cations of the original random forest algorithm of Breiman, that are constructed
without the use of the data set. We study the corresponding kernel based algo-
rithms and we provide rates of convergence under different model hypotheses.
Finally we introduce a new tree tiling construction named the simplified di-
rectional tree and we investigate the performance of the aforementioned kernel
based forest construction. In particular, we prove that the simplified directional
kernel coincides with the kernel of the centered kernel tree. Finally we provide
numerical experiments to empirically confirm our theoretical results. This is
joint work with Nicola Arcozzi from University of Bologna.
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