Documenti full-text disponibili:
      
    
  
  
    
      Abstract
      Staphylococcus aureus is a Gram positive pathogen that causes various human infections and represents one of the most common causes of bacteremia. S. aureus is able to invade a variety of non-professional phagocytes and that can survive engulfment by neutrophils, producing both secreted and surface components that compromise innate immune responses. In the contest of our study we evaluated the functional activity of vaccine specific antibodies by opsonophagocytosis killing assay (OPKA). Interestingly a low level of killing of the staphylococcal cells has been observed. In the meanwhile intracellular survival studies showed that S. aureus persisted inside phagocytes for several hours until a burst of growth after 5 hours in the supernatant. These data suggest that the strong ability of S. aureus to survive in the phagocytes could be the cause of the low killing measured by OPKA. Moreover parallel studies on HL-60 cells infected with S. aureus done by using transmission electron microscopy (TEM) interestingly showed that staphylococcal cells have an intracellular localization (endosomal vacuoles) and that they are able not only to maintain the  integrity of their membrane but also to replicate inside vacuolar compartments. Finally in order to generate 3D volume of whole bacteria when present inside neutrophilic vacuoles, we collected a series of tomographic two-dimensional (2D) images by using a transmission electron microscope, generating 5 different tomograms. The three-dimensional reconstruction reveals the presence of intact bacteria within neutrophil vacuoles. The S. aureus membrane appears completely undamaged and integral in contrast with the physiological process of phagosytosis through vacuoles progression. S. aureus bacteria show a homogenous distribution of the density in all the three dimensions (X, Y, Z). All these evidences definitely explain the ability of the pathogen to survive inside the endosomal vacuoles and should be the cause of the low killing level. 
     
    
      Abstract
      Staphylococcus aureus is a Gram positive pathogen that causes various human infections and represents one of the most common causes of bacteremia. S. aureus is able to invade a variety of non-professional phagocytes and that can survive engulfment by neutrophils, producing both secreted and surface components that compromise innate immune responses. In the contest of our study we evaluated the functional activity of vaccine specific antibodies by opsonophagocytosis killing assay (OPKA). Interestingly a low level of killing of the staphylococcal cells has been observed. In the meanwhile intracellular survival studies showed that S. aureus persisted inside phagocytes for several hours until a burst of growth after 5 hours in the supernatant. These data suggest that the strong ability of S. aureus to survive in the phagocytes could be the cause of the low killing measured by OPKA. Moreover parallel studies on HL-60 cells infected with S. aureus done by using transmission electron microscopy (TEM) interestingly showed that staphylococcal cells have an intracellular localization (endosomal vacuoles) and that they are able not only to maintain the  integrity of their membrane but also to replicate inside vacuolar compartments. Finally in order to generate 3D volume of whole bacteria when present inside neutrophilic vacuoles, we collected a series of tomographic two-dimensional (2D) images by using a transmission electron microscope, generating 5 different tomograms. The three-dimensional reconstruction reveals the presence of intact bacteria within neutrophil vacuoles. The S. aureus membrane appears completely undamaged and integral in contrast with the physiological process of phagosytosis through vacuoles progression. S. aureus bacteria show a homogenous distribution of the density in all the three dimensions (X, Y, Z). All these evidences definitely explain the ability of the pathogen to survive inside the endosomal vacuoles and should be the cause of the low killing level. 
     
  
  
    
    
      Tipologia del documento
      Tesi di dottorato
      
      
      
      
        
      
        
          Autore
          Nosari, Sarah
          
        
      
        
          Supervisore
          
          
        
      
        
      
        
          Dottorato di ricerca
          
          
        
      
        
          Scuola di dottorato
          Scienze biologiche, biomediche e biotecnologiche
          
        
      
        
          Ciclo
          25
          
        
      
        
          Coordinatore
          
          
        
      
        
          Settore disciplinare
          
          
        
      
        
          Settore concorsuale
          
          
        
      
        
          Parole chiave
          Staphylococcus aureus; Opsonophagocytosis killing assay; Scanning Electron Microscopy; Transmission Electron Microscopy; Transmission Electron Tomography; 
          
        
      
        
          URN:NBN
          
          
        
      
        
          DOI
          10.6092/unibo/amsdottorato/5762
          
        
      
        
          Data di discussione
          22 Aprile 2013
          
        
      
      URI
      
      
     
   
  
    Altri metadati
    
      Tipologia del documento
      Tesi di dottorato
      
      
      
      
        
      
        
          Autore
          Nosari, Sarah
          
        
      
        
          Supervisore
          
          
        
      
        
      
        
          Dottorato di ricerca
          
          
        
      
        
          Scuola di dottorato
          Scienze biologiche, biomediche e biotecnologiche
          
        
      
        
          Ciclo
          25
          
        
      
        
          Coordinatore
          
          
        
      
        
          Settore disciplinare
          
          
        
      
        
          Settore concorsuale
          
          
        
      
        
          Parole chiave
          Staphylococcus aureus; Opsonophagocytosis killing assay; Scanning Electron Microscopy; Transmission Electron Microscopy; Transmission Electron Tomography; 
          
        
      
        
          URN:NBN
          
          
        
      
        
          DOI
          10.6092/unibo/amsdottorato/5762
          
        
      
        
          Data di discussione
          22 Aprile 2013
          
        
      
      URI
      
      
     
   
  
  
  
  
  
    
    Statistica sui download
    
    
  
  
    
      Gestione del documento: 
      
        