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GENERAL OVERVIEW 

 

Staphylococcus aureus is a facultatively anaerobic, Gram-positive coccus.  

S. aureus has been recognized as serious pathogen for over a century (1, 2) 

particularly in hospitals, they remain the most common cause of community- 

and health care-associated bacteremia. Of the approximately 2 million of 

patients who acquire a health care-associated infection annually in the United 

States, approximately 230.000 will have an infection associated with S. aureus 

(3,4).  

The disease spectrum of the S. aureus includes abscesses, bacteremia, central 

nervous system infections, endocarditis, osteo-myelitis, pneumonia and a host 

of syndrome caused by endotoxins, including food poisoing and toxic shock 

syndrome.   

The incidence of nosocomial infections is steadily increasing due to medical 

interventions and antibiotic resistance. Today, approximately half of all S. 

aureus strains isolated in hospitals worldwide are resistant to multiple 

antibiotics, such as methicillin, rendering disease management difficult. To date 

there are no approved prophylactic vaccines so, effective treatment and 

prevention strategies are urgently needed. 

http://en.wikipedia.org/wiki/Facultative_anaerobic_organism
http://en.wikipedia.org/wiki/Gram-positive
http://en.wikipedia.org/wiki/Coccus
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Although S. aureus is considered to be an extracellular, pyogenic pathogen 

recent in vitro studies have revealed that S. aureus can invade a variety of not 

professional phagocytes cells (5,6). Internalized bacteria reside in endosomal 

vacuoles or are diverted from the endosomal pathway to autophagosomes 

depending on the cell type invaded and/or the S. aureus strain (7). 

Professional phagocytes such as neutrophils, macrophages and dendritic cells 

are designed to engulf microbes and kill them. Only a few types of microbial 

pathogen can survive phagocytosis by neutrophils and macrophages and they 

do so by using several distinct mechanisms to avoid destruction in 

phagolysosomes (8). Surprisingly, S. aureus also appears to be resistant to 

bactericidial attack inside the phagocytic vacuoles of neutrophils which can 

contain viable intracellular bacteria when isolated from sites of infections. 

Recent in vivo studies confirmed the high level of resistance to killing by 

neutrophils (9). 

 

The objective of my PhD thesis is to study two aspects of the host-pathogen 

interaction of S. aureus with the host cells: firstly the recognition step and 

secondly the internal localization of the pathogen during the phagocytosis 

process. In particular the first part of this study is focused on the analysis of the 

binding between the HL-60 neutrophils receptors and S. aureus receptors 

expressed on the surface; while the second part is focused on the intracellular 
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localization of bacteria. For the first purpose CD1 mice were immunized with 

final vaccine protein formulations. The collected animal sera were tested in 

order to evaluate the functional activity of vaccine specific antibodies by 

opsonophagocytosis assay (OPKA). The data show a low level of killing of S. 

aureus cells suggesting that the pathogen is not undergoing to the phagocytic 

pathway normally activated by the infected cell. We also performed 

intracellular survival studies and obtained results showing that S. aureus 

persists inside phagocytes up to six hours followed by a burst of growth in the 

supernatant immediately after. These data suggest that the strong survival 

ability of S. aureus in the phagocytes can be the cause of the low killing level 

measured by OPKA. To gain a broader view of the internalization steps in which 

S. aureus occurs during his uptake in the host cell we decided to investigate its 

localization in HL-60 cells compartments by three different type of microscopy 

able to generate different kind of morphological information: confocal 

microcopy, scanning electron microscopy (SEM) and transmission electron 

microscopy (TEM). Interestingly we observed that staphylococcus cells have an 

intracellular localization, more specifically inside the vacuoles, during their 

entire pathogenic life, and moreover that are able to maintain the integrity of 

their membrane indicating a preservation of their wellness.  Evidence of this 

status is that many of the bacteria present in the vacuoles are not only alive 

but also even in the process of dividing inside vacuolar compartments. Finally 
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in order to generate 3D volume of whole bacteria when present inside 

neutrophilic vacuoles, we collected a series of tomographic two-dimensional 

(2D) images by using a transmission electron microscope.  We generate 5 

different tomograms and for each tomogram more than 120 images were kept, 

one for each tilt angle. After image analysis we produce a three-dimensional 

model of a specific volume of a cell containing the S. aureus in a vacuole 

compartment. The three-dimensional reconstruction reveals the presence of 

intact bacteria within neutrophil vacuoles. The S. aureus membrane appears 

completely undamaged and integral in contrast with the physiological process 

of phagosytosis through vacuoles progression. S. aureus bacteria show a 

homogenous distribution of the density in all the three dimensions (X, Y, Z). No 

preferential density distribution has been noticed and the cell turgor is 

maintained. All these evidences definitely explain the ability of the pathogen to 

survive inside the endosomal vacuoles and should be the cause of the low 

killing level.  
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1. INTRODUCTION 

1.1 Staphylococcus aureus  

Staphylococcus aureus is a spherical (coccus) Gram-positive bacterium, about 1 

micrometer in size, with thick cell wall and thin capsule. It does not form spores, 

but it can still survive outside the body, for example, on bed lining or computer 

keyboards from few days to several weeks. It is a facultative anaerobe – it 

grows in the air, but can also thrive in anaerobic conditions. It is an 

opportunistic pathogen – it may be present in the body without causing any 

harm, but in lowered immunity or injury, it may cause a disease. Staph bacteria 

have no flagella, so they are immobile. They grow in pairs, short chains or 

clusters. S. aureus bacteria are resistant to temperatures as high as 122 °F 

(50°C), to high salt concentrations (<10%), and to drying (11). Colonies are 

usually 6-8 mm in diameter, rounded and smooth, golden yellow or pale yellow 

to orange. 
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1.2  The epidemiology of Staphylococcus aureus  

 Staphylococcus aureus causes a variety of diseases, ranging from innocuous 

skin infection to more serious and life-threatening diseases. Of the 

approximately 2 million patients who acquire a health care-associated infection 

annually in the United States, approximately 230.000 will have an infection 

associated with Staphylococcus aureus 1, 2 . The disease spectrum of S. aureus 

includes abscesses, bacteremia, central nervous system infections, endocarditis, 

osteomyelitis, pneumonia, urinary tract infections, and a host of syndromes 

caused by exotoxins, including bullous impetigo and toxin shock syndrome. 

Remarkably, in addition to being the leading cause of bacteremia in the United 

States, S. aureus is the most common cause of food-borne illness and skin 

diseases 3, 4 (Figure 1).  

Figure 1: Anti-surface protein Immune Gold 
Electron microscopy of fixed S. aureus 
Newman strain: bacterium shows a size 
around 1 micrometer and typically grows in 
pairs.  
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1.3  Community acquired infections 

            

            Colonization and infection of skin and soft tissue  

S. aureus is able to colonize a sizable portion of the human population: the 

colonization gives to the pathogen the possibility to access to skin sites, which, 

when infected, can serve as a source for more serious diseases such as 

bacteremia, endocarditis or toxemias. Approximately 30% of the population is 

stably colonized with S. aureus and as many as 30% to 50% of the population 

may show transient colonization of the nares, axilla, perineum, or vagina 5-7. 

Diabetics, intravenous (i.v.) drug users, patients on dialysis, and patients with 

 

Figure 1: Schematic 
overview of the main 
associated S. aureus 
diseases: the graph has 
been made on the basis 
of disease severity and 
size of affected 
population.  S. aureus is 
the most common cause 
of health care-associated 
infections, including 
pneumonia, bacteremia 
and skin infections. 
(Broughan J. et al., 2011) 
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AIDS have higher rates of S. aureus colonization 8-12. Hospitalized patients and 

health care workers are also at higher risk of becoming colonized for extended 

period of time5. 

 

Skin Infections 

Approximately one-half of all skin infections are caused by S. aureus 13. 

Infections include carbuncles, cellulitis, folliculitis, hydradenitis suppurtiva, 

impetigo, mastitis, pyodermas, and pyomyositis. Impetigo, which involves 

release of epidermolytic toxins, can range from mild, recurrent infectioons to 

the more serious bullous impetigo, characterized by blisters that continually 

break and become infected, to the potentially life-threatening scaled skin 

syndrome 14. 

 

Bacteremia and Endocarditis  

Virtually any S. aureus infection can lead to bacteremia. S. aureus causes about 

11 to 38% of community- acquired bacteremia 15, 16. Mortality from S. aureus 

bacteremia ranges from 11 to 48%, a figure that has increased steadily from a 

number of years 17.  

Approximately 10 to 40% of community-acquired cases of S. aureus bacteremia 

progress to endocarditis 17, 18. This figure is higher in i.v. drug users often 

because they are heavily colonized with S. aureus and have frequent breaches 
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of skin barriers, and is lower in patients with nosocomial bacteremia. S. aureus 

differs from many other pathogens in that it can cause infectious endocarditis 

on a normal, native heart valve.  

 

Toxin-mediated Diseases   

Several staphylococcal diseases are mediated by toxins, including impetigo, 

food poisoning, necrotizing pneumonia, and toxic shock syndrome. 

Staphylococcal food poisoning is a result of ingesting one of several 

staphylococcal enterotoxins, the most ubiquitous of which is enterotoxin A 19-21. 

The disease mediated by toxic shock syndrome 1 (TSST-1) was first described in 

1978 and consists of fever above 39°C, hypotension, rush, usually followed by 

desquamation of the skin, and involvement of multiple organ system.  

Panton-Valentine leukocidin (PVL) is a biocomponent synergomenotropic 

staphylococcal cytotoxin that causes leukocyte destruction and tissue 

necrosis22. Although its precise role in disease is unclear, it has been associated 

with necrotic lesions involving the skin and severe necrotizing pneumonia 22.  
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1.4 Health care- associated infections   

Staphylococci are among the most common causes of health care-associated 

infections, including bacteremia, surgical site infections (SSIs), and pneumonia 

23.  Data from the National Nosocomial Infection Surveillance (NNIS) system 

from intensive care units (ICUs) for 2000 to 2004 show S. aureus to be the most 

common cause of nosocomial pneumonia and surgical site infections, and the 

third most common cause of nosocomial bloodstream infection. 

 

1.5 Antimicrobial resistance  

 

Antimicrobial resistance in the hospital setting  

Several reports suggest that the prevalence of S. aureus strains resistant to 

methicillin, oxacillin, or nafcillin is increasing in the United States and abroad 24-

28. The ability of this pathogen could be due to its intrinsic virulence, and its 

capacity to adapt to environmental conditions 14. S. aureus isolates from 

intensive care units across the country and from blood culture isolates 

worldwide are increasingly resistant to a greater number of antimicrobials 

agents 29. As rapidly as new antibiotics are introduced, S. aureus has developed 

efficient mechanism to neutralize them    (Table 1, Lowy F.D., 2003). 
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Penicillin resistance  

The mortality of patients with S. aureus bacteremia in the pre-antibiotic era 

exceeded 80% and over 70% developed metastatic infections. The introduction 

of penicillin in the early 1940s dramatically improved the prognosis of patients 

with staphylococcal infections. However, as early as 1942, penicillin-resistant 

staphylococci were recognized, first in hospitals and subsequently in the 

community. By the late 1960s, more than 80% of both community and hospital-

acquired staphylococcal isolates were resistant to penicillin.  The mechanism of 

resistance of S. aureus is mediated by blaZ, the gene that encodes β-lactamase. 

This predominantly extracellular enzyme, synthetized when staphylococci are 
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exposed to β-lactam antibiotics, hydrolyzes the β-lactam ring, rendering the β-

lactam inactive 30.  

                Methicillin resistance  

Methicillin, introduced in 1961, was the first of the semisynthetic penicillinase-

resistant penicillins. Its introduction was rapidly followed by reports of 

methicillin-resistant isolates. The first reports of a S. aureus strain that was 

resistant to methicillin were published in 1961 31. Although the specific gene 

responsible for methicillin resistance (mecA, which encodes the low-affinity 

penicillin-binding protein PBP2a (also known as PBP2') was not identified until 

over 20 years later, it was appreciated early on that the resistance mechanism 

involved was different from penicillinase-mediated resistance because drug 

inactivation did not occur. Unlike penicillinase-mediated resistance, which is 

narrow in its spectrum of activity, methicillin resistance is broad, conferring 

resistance to the entire β-lactam class of antibiotics, which include penicillins, 

cephalosporins and carbapenems. Outbreaks of infections caused by MRSA 

strains were reported in hospitals in the United States in the late 1970s, and by 

the mid-1980s these strains were endemic 32, 33 , leading to the worldwide 

pandemic of MRSA in hospitals that continues to the present time. Although 

global in its distribution and impact, MRSA was still confined mainly to 

hospitals and other institutional health care settings, such as long-term care 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&amp;cmd=Retrieve&amp;dopt=full_report&amp;list_uids=3236763
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facilities. The ever-increasing burden of MRSA infections in hospitals led to the 

increased use of vancomycin, the last remaining antibiotic to which MRSA 

strains were reliably susceptible. This intensive selective pressure resulted in 

the emergence of vancomycin-intermediate S. aureus (VISA) strains, which are 

not inhibited in vitro at vancomycin concentrations below 4–8 g ml-1 34, 35, and 

vancomcyin-resistant S. aureus (VRSA) strains, which are inhibited only at 

concentrations of 16 g ml-1 or more 36, 37 (Figure 2). 

 

 

 

 

 

Figure 2: The four waves of antibiotic resistance in 
Staphylococcus aureus. Wave 1 (indicated above the 
graph) started after the introduction of penicillin into 
clinical practice. After few years, the first penicillin 
resistant strain (Phage type 80/81) appeared. Wave 2 
began almost immediately following the introduction 
of methicillin into clinical practice with the isolation of 
the first MRSA strain (an archaic clone),which 
contained staphylococcal chromosome cassette mec I 
(SCCmecI) (indicated on the graph as MRSA-I); this 
wave extended into the 1970s in the form of the 
Iberian clone. Wave 3 began in the mid to late 1970s 
with the emergence of new MRSA strains that 
contained the new SCCmec allotypes, SCCmecII and 
SCCmecIII (MRSA-II and MRSA-III), marking the 
ongoing worldwide pandemic of MRSA in hospitals 
and health care facilities. The increase in vancomycin 
use for the treatment of MRSA infections eventually 
led to the emergence of vancomycin-intermediate S. 
aureus (VISA) strains. Wave 4, which began in the mid 
to late 1990s, marks the emergence of MRSA strains 
in the community. Community-associated MRSA (CA-
MRSA) strains were susceptible to most antibiotics 
other than β-lactams, were unrelated to hospital 
strains and contained a new, smaller, more mobile 
SCCmec allotype, SCCmecIV (MRSA-IV) and various 
virulence factors, including PVL. Vancomycin-resistant 
S. aureus (VRSA) strains, ten or so of which have been 
isolated exclusively in health care settings, were first 
identified in 2002.(Chambers et al., 2009) 
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1.6 Neutrophils in innate host defense against Staphylococcus 

aureus infections  

Neutrophils development  

Neutrophils are short-lived granulocytes derived from pluripotent 

hematopoietic stem cells in the bone marrow [72]. During the early step of 

differentiation, cells develop phagocytic capacity followed by development of 

oxygen-dependent microbial activity, increase adhesiveness, cell motility, 

chemotactic response and other cell type-specific traits, proceeding through a 

well-characterized progression into mature neutrophils [73, 74]. For many 

pathogens, like Francisella, the ability to survive and proliferate within 

mammalian cells is essential for their virulence [75]. In order to replicate within 

macrophages Salmonella Enterica must withstand or surmount bacteriostatic 

and bactericidal responses by the host cell, including the delivery of hydrolytic 

enzymes from lysosomes to the phagosome [76]. During maturation the 

number of mitochondria and ribosomes decrease, while glycogen granules, the 

main source of energy, fill the cytoplasm of mature neutrophils. There are two 

major populations of granules present in mature neutrophils. Primary or 

azurophilic granules, which are first to develop during granulopoiesis, contain 

myeloperoxidase (MPO) and a variety of proteolytic enzymes (cathepsins, 

proteinase-3, and elastase), antimicrobial defensins, and 
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bactericidal/permeability-increasing protein [73,[77-79]]. These microbicidal 

granules are considered unique from lysosomes, in that they lack traditional 

lysosomal membrane markers and traffic as regulated secretory granules [122–

125]. The other major type of granules present are secondary or specific 

granules, which mature late during differentiation, and contain a number of 

functionally important membrane proteins including flavocytochrome b558, 

lactoferrin, collagenase, as well as receptors for chemotactic peptides, 

cytokines, opsonins, adhesion proteins, and extracellular matrix proteins [73]. 

Upon maturation, neutrophils are released into the bloodstream where they 

circulate for ∼10–24 h before migrating into tissue where they may function 

for an additional 1–2 days before undergoing apoptosis and being cleared by 

macrophages [80]. Normal neutrophil turnover in an average adult is on the 

order of 10-11 cells per day [75]. In addition to maintaining steady-state levels 

of circulating neutrophils, the hematopoietic system has the remarkable ability 

to drive “emergency” granulopoiesis in response to the increased demand of 

infection, expanding the pool of neutrophils in circulation when necessary [81, 

82]. 

Neutrophils recruitment  

A dynamic portion of circulating neutrophils rolls along the walls of post 

capillary venules for signs of tissue damage, inflammation or invading 
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microorganism. In response to damage or the presence of invading pathogens, 

a variety of host cells produce and secrete potent inflammatory mediators and 

neutrophil chemo-attractants like interleukin-8 (IL-8,CXCL8), GROα (CXCL1), 

granulocyte chemotactic protein 2 (GCP2, CXCL6), and leukotriene B4 (LTB4) 

which bind and engage specific surface receptors on surveying neutrophils. 

Contemporary S. aureus  surface components such as lipoteichoic acid (LTA) or 

capsular polysaccharide as well as secreted molecule such as toxic shock 

syndrome toxin (TSST)-1, staphylococcal enterotoxin A, and staphylococcal 

enterotoxin B have been shown to elicit IL-8 production by monocytes, 

epithelial cells, and endothelial cells [83-85]. Bacterial-derived products such as 

N-formyl peptides or the phenol-soluble modulins (PSMs) produced by S. 

aureus have the demonstrated ability to recruit neutrophils directly [86]. 

Corroborating evidence to date demonstrates that the more responsive state 

of the neutrophil is attributable to (a) partial assembly of the NADPH oxidase, 

(b) reorganization of the plasma membrane and redistribution of signaling 

molecules into lipid rafts, (c) modulation of intracellular signaling intermediates, 

(d) mobilization of secretory vesicles and enrichment of specific surface 

receptors (CD11b/CD18), (e) cytokine secretion, and (f) transcriptional 

regulation of several gene families. Although priming leads to observable 

phenotypic differences, it remains distinct from neutrophil activation in that it 

triggers neither release of azurophilic granules nor production of superoxide. 
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Pathogen recognition and phagocytosis  

Once at the site of infection, the real work for neutrophils begins, as they bind 

and ingest invading microorganisms by a process known as phagocytosis, a 

critical first step in removal of bacteria during infection. Neutrophils recognize 

numerous surface-bound and freely secreted bacterial products such as PGN, 

lipoproteins, LTA, lipopolysaccharide, CpG-containing DNA, and flagellin. Such 

conserved bacterial products are generally known as pathogen associated 

molecular patterns (PAMPs) and are recognized directly by pattern recognition 

receptors (PRRs) expressed on the surface of the neutrophil. Engagement of 

such receptors activates signal transduction pathways that prolong cell survival, 

facilitate adhesion and phagocytosis, induce release of cytokines and 

chemokines, elicit degranulation, and promote reactive oxygen species (ROS) 

production and release, ultimately contributing to microbicidal activity [87]. 

These molecules enhance recognition by surface receptors on neutrophils 

(opsonization via the lectin pathway of complement activation), activate other 

PRRs, facilitate efficient phagocytosis, and elicit release of cytokines and 

production of ROS [88-90]. Peptidoglycan recognition protein (PGRP) is a 

secreted host protein that binds PGN and Gram-positive bacteria [91, 92]. An 

isoform known as PGRP-short is produced by neutrophils and contributes 

directly to bactericidal activity rather than directing downstream signaling 

responses [93]. Unlike the unique phagocytic uptake induced by dectin-1, 
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phagocytosis of most microorganisms is promoted or at least markedly 

enhanced by opsonization with serum host factors, such as specific antibody, 

complement, and/or MBL (generally fungi) [94]. For this purpose, neutrophils 

express multiple antibody-Fc and serum complement receptors, including CD16 

(FcγIIIb, low affinity IgG receptor)[95], CD23 (FcεRI, IgE receptor) [96], CD32 

(FcγRIIa, low affinity IgG receptor) [97], CD64 (FcγRI, IgG receptor), CD89 (FcαR, 

IgA receptor) [98], CIqR [99], CD35 (CR1) [100, 101], CD11b/CD18 (CR3) [102, 

103], and CD11c/CD18 (CR4) [104]. Activation of complement facilitates the 

deposition of complement components C3b, iC3b, and Clq on the surface of 

invading microorganisms, and serum complement is fixed readily on the 

surface of antibody-coated microbes. Taken together, the combined action of 

PRRs, and complement and antibody receptors maximizes recognition and 

phagocytosis of invading microorganisms. 

1.7 Staphylococcus aureus and the complement system     

 

1.7.1 The complement system 

The plasma proteins of the complement system are essential in the innate 

immune response against bacteria. Complement labels bacteria with opsonins 

to support phagocytosis and generates chemo-attractants to attract 

phagocytes to the site of infection. In turn, bacterial human pathogens have 
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evolved different strategies to specifically impair the complement response. 

The innate immune system plays a critical role in our host defense against 

invading pathogens. The complement system consists of three different parts: 

(a) the complement system, (b) phagocytes, and (c) antimicrobial peptides. The 

three major functions of the complement cascade in innate immunity are 38 to 

label pathogens or immunogenic particles with C3b and iC3b to facilitate 

phagocytic uptake via complement receptors, 39 to attract phagocytes by 

producing chemoattractant C5a, and 40 to directly lyse gram-negative bacteria 

through membrane attack complex (MAC; C5b-9) formation 38. Complement is 

initiated by two specific recognition pathways, the classical and lectin pathway, 

which are amplified by the alternative pathway. All three pathways converge at 

the formation of the C3 convertases. These bimolecular surface-bound enzyme 

complexes catalyze the key reaction in complement activation: cleavage of 

complement protein C3 into C3a, a chemoattractant with bactericidal activity, 

and C3b 41. Convertase formation is pivotal in complement activation since C3b 

and its inactive derivative iC3b facilitate phagocytosis. Furthermore, the 

deposited C3b can form new convertases, thereby amplifying the opsonization 

process. Subsequently, the high concentrations of locally deposited C3b induce 

a shift in substrate specificity of the convertase to complement protein C5. The 

cleavage products of C5 are C5a, a potent chemoattractant, and C5b that 
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initiates the lytic pathway. Due to the resulting C5a gradient, neutrophils 

migrate toward the site of infection and phagocytose the invaders. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Schematic overview of the complement system. The complement cascade is 
activated by recognition of microbe-bound antibodies or microbial sugars by the C1 
complex (CP) or the MBL- and ficolin-MASP-2 complex (LP),respectively. The Alternative 
Pathway (AP) C3 convertase C3bBb is generated after binding of fB to surface-bound C3b 
and subsequent cleavage by fD. (Laarman et al., 2010) 
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1.7.2 Immune evasion by Staphyloccus aureus  

                Virulence factors of S.aureus: 

S. aureus secretes immunomodulatory protein that compromise both induced 

humoral and cell-mediated immunity. This pathogen expresses a wide array of 

secreted and cell-surface-associated virulence factors, including surface 

proteins that promote adhesion to damage tissue and to the surface of host 

cells. Moreover S. aureus expresses an array of extracellular enzymes such as 

proteases, a hyaluronidase, a lipase and a nuclease that facilitate tissue 

destruction and spreading, membrane-damaging toxins that cause cytolytic 

effects on host cells and tissue damage, and superantigens that contribute to 

the symptoms of septic shock42.   

One major class of surface-located proteins comprises those that are covalently 

anchored to cell-wall peptidoglycan by sortase, a membrane-associated 

enzymes that recognizes and cleaves the C-terminal LPXTG motif in the sorting 

signal 43, 44.  
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                Inhibition of neutrophil chemo taxis  

 

Immediately as the bacterium gains a foothold in the host and starts to grow, 

several chemoattractants are liberated which are specifically recognized by 

neutrophils at low concentration, resulting in a strong chemotactic response. 

The peptide fragments C3a and C5a, released by complement activation, as 

well as formylated peptides secreted from growing  bacterila cells, are 

recognized at high affinity by specific transmembrane G-protein-coupled 

receptors on the neutrophil surface 45.  These are stimulated and activate 

intracellular signaling cascades, resulting in migration of neutrophils from the 

blood to the site of inflammation.  

About 60% of S. aureus strains secrete the chemotaxis inhibitory protein of 

staphylococci CHIPS that can bind avidly to both the formyl peptide receptor 

(FPR) and C5a receptor (C5aR) to block the cognate agonist from binding 46. 

Recent studies identified a FPR- binding domain in the N terminus of CHIPS, 

and showed the Phe residues at position 1 and 3 are critical for activity.  

Once of many ligands recognized by the extracellular adherence protein Eap is 

intracellular adhesion molecule-1 (ICAM-1) on the surface of endothelial cells 47. 

Binding of Eap to ICAM-1 blocks binding of the lymphocyte-function-associated 

antigen LFA-1 on the surface of neutrophils and prevents leucocyte adhesion, 
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diapadesis and extravasation. The Eap protein will likely act in concert to CHIPS 

to inhibit neutrophil recruitment to the site of infection 48.  

 

                 Resistance to phagocytes:  

The primary defense against S. aureus infection is the innate immunity 

mediated by neutrophils. During the phagocytic process, S. aureus bacteria are 

coated with antibodies and complement (serum opsonins) that engage, on 

phagocytic cells, receptor binding the Fc region (tail) of antibodies (Fc receptor) 

and complement receptors (RC1) triggering bacterial uptake. The presence of 

functional antibodies leads to an effective opsonization and recovery from 

infection (Figure 5).  

Figure 4: Inhibition of the neutrophils response to 
infection. a: the chemotaxis inhibitory protein of 
staphylococci (CHIPS) and the extracellular 
adherence protein (Eap) interfere with neutrophil 
chemotaxis and extravasation. b: model for 
interaction between CHIPS and formyl peptide 
receptor (FPR) and C5a receptor. Two distinct but 
closely linked binding domains in CHIPS are 
indicated, one for extreme N terminus of FPR and 
involving residues F1 and F3, the second for a 
domain located between residues 10-20 of the c5a 
form. (Foster T.J.,2005) 
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The ability of S. aureus to avoid opsonins present in the normal serum is an 

important factor in the success of infection. S. aureus expressed surface-

associated anti-opsonic proteins and a polysaccharide capsule that can both 

interfere with the deposition of antibodies and complement formation by 

classical and alternative pathway, or with their access to neutrophils 

complement receptor and Fc receptor. Therefore, efficient phagocytosis by 

neutrophils that requires recognition of bound complement and antibodies is 

compromised. Figure 6 illustrates the highly diverse strategies of 

staphylococcal complement inhibitors. 

Figure 5: Schematic overview of 
opsonophagocytic process: the 
first step is the recognition 
between bacterial antigens and 
antibodies. Subsequently the 
addition of complement leads to 
the binding receptors on 
phagocytic cell, triggering 
bacterial uptake. 
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Protein A is well known for its capacity to bind the Fc part of IgG. Protein A 

amino acid sequence revealed a molecule comprised of five nearly identical Ig-

G binding domains as well as the molecular elements involved in binding Ig 49-51. 

The consequence of interaction between protein A and IgG is to coat the 

surface of the cell with IgG molecules that are in the incorrect orientation to be 

recognized by the neutrophils Fc receptor52.  Mutations in the protein A gene 

(spa) cause significant defects in the pathogenesis of S. aureus infections.  

 

Figure 6: Schematic overview of 
staphylococcal complement 
inhibitor.  S. aureus produces 
several proteins involved that act as 
inhibitors at different steps of 
complement pathway. 
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Staphylokinase  (Sak)  is a potent activator of plasminogen (PLG), the precursor 

of the fibrinolytic protein plasmin. Surface-bound plasmin (PL) has the ability to 

cleave both IgG and C3b. the conversion of PLG by SAK at physiological 

concentrations, leads to the removal of important opsonic molecules necessary 

for recognition by immune cells 53 . PL cleaves human IgG, as well as human 

C3b and C3bi, from the bacterial cell wall leading to impaired phagocytosis by 

human neutrophils. PL cleaves IgG at position Lys 222 and thus removes the 

entire Fc fragment, including the glycosylation site (Asn 297) that is necessary 

for recognition by C1q, thereby inhibiting the activation of the classical 

pathway of complement. In addition, PL-activity created by PLG and SAK led to 

a decrease of the C3b and C3bi molecules at the staphylococcal surface. 

PLG+rSAK cleaved C3b in both the α-chain as well as the β-chain. The decrease 

of C3b molecules will indirectly diminish C3 convertases as well as C5 

convertases. 

 

Staphylococcal complement inhibitor (SCIN) is the most efficient complement 

inhibitor 54. SCIN is a 10 kDa, excreted protein that blocks all complement 

pathways: the lectin, classical and alternative pathway. SCIN efficiently 

prevents phagocytosis and killing of staphylococci and C5a production. SCIN 

acts specifically on surface-bound C3 convertases, stabilizing both C3bBb as 
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well as C4b2a at the surface of the bacterium and at, the same time, 

preventing generation of additional convertases.  

 

The staphylococcal superantigen-like proteins (SSLs) are close relatives of the 

superantigens but are located on a separate gene cluster within a 19-kb region 

of the pathogenicity island SaPIn2. Staphylococcal superantigen-like 7 (SSL-7, 

23.2 kDa) binds human IgA1 and IgA2 resulting in an impaired IgA binding to 

cell surface FcαRI (CD89).  

Extracellular fibrinogen binding molecule (Efb) is a 15.6 kDa excreted molecule 

that was described earlier to bind fibrinogen. Efb blocks classical pathway 

dependent opsonization and subsequent phagocytosis. However, for inhibition 

of the classical and alternative pathway and phagocytosis, high (microgram) 

concentrations of Efb were required. Although the present data on Efb do not 

demonstrate Efb binding to bacterium-bound C3d, a role for Efb in the 

modulation of C3d-mediated recognition by CR2 on B-cells cannot be excluded. 

The C3b-binding site of Efb is distinct from its fibrinogen binding site, in fact, 

Efb can bind both molecules simultaneously 55, 56 . 
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1.8 Staphylococcus aureus- Eukaryotic Interactions 

 

Professional phagocytes like neutrophils and macrophages are designed to 

actively engulf microbes and kill them. Only a few type of microbial pathogen 

can survive phagocytosis by neutrophils and macrophages and they do so by a 

several distinct mechanism to avoid destruction in phagolysosomes 57, 58. 

Surprisingly, S. aureus also appears to be resistant to bactericidal attack inside 

the phagocytic vacuoles of neutrophils which can contain viable intracellular 

bacteria. 59.  During the first step on invasion process S. aureus bacterial cells 

adhere to the cell membrane by means of several surface proteins, including a 

group of surface adhesins called microbial surface components recognizing 

adhesive matrix molecules (MSCRAMMs). Among these MSCRAMMs, the 

fibronecting binding proteins (FnBPs) are necessary and sufficient for 

internalization of bacteria 60, 61. Internalization is an active process with respect 

to the host cell and a passive process with respect to the bacteria 62. 

Internalized S. aureus bacteria reside in the endosomal vacuoles or are divided 

from the endosomal pathway to autophagosomes depending on the cell type 

invaded and/or the S. aureus strains 63. Subsequently, S. aureus escapes into 

the cytoplasm where it eventually kills the host cell through the induction of 

apoptosis 64, 65.  
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Figure 7: schematic overview of internalization process. The internalization can be mediated 
both  by phagocytosis and receptor mediated endocytosis. Basically the entire process can be 
divided in three steps: early endosome, late endosome and lysosome formation respectively.  
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1.9 Intracellular survival of Staphylococcus aureus  

S. aureus was considered for many years to be an extracellular pathogen: the 

fact that S. aureus infections frequently recur, coupled with the observation 

that this pathogen can survive within eukaryotic cells and led to speculation 

that S. aureus may be an intracellular pathogen [66]. Several studies show that 

S. aureus is internalized and survives in a variety on mammalian cells [64, 67-

69].   In order to survive within the host cell, S. aureus must first escape from 

the encapsulating endosomal membrane and then multiply or at least survive 

in the host cell cytoplasm [70, 71]. Several observations suggest the hypothesis 

that the agr locus controls the expression of some of the genes necessary for 

escape from the endosome and further growth in the cytoplasm. After 

escaping the endosome some strains are able to survive within eukaryotic 

cytoplasm for long periods of time and therefore are potentially capable of 

causing persistence or recurrent infections. 
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2. MATERIALS AND METHODS 

2.1 Bacterial strain and culture condition 

S. aureus Newman strain was cultured in tryptic soy broth (TSB composition: 

casein peptone, 17 g/L, dipotassium hydrogen phosphate, 2.5 g/L, glucose, 2.5 

g/L, sodium chloride, 5 g/L, soya peptone , 3 g/L) and 2% NaCl at 37°C. Bacteria 

were grown over night in 20 ml cultures volumes contained in 250 ml 

Erlenmeyer flasks, in a rotary shaker. Bacteria were collected by 10 minutes 

centrifugation at 4000 rpm. 

 

2.2 Animal model  

CD1 out bred female mice (5 weeks old) from Charles River Italia were used to 

test the active immunization. The mice were immunized by intraperitoneal 

injection at days 0, 14 with 10 µg of recombinant proteins formulation in 0.20 

ml in physiological solution in Alum adjuvant. A control group of mice were 

immunized with physiological solution and adjuvant alone. Nine days after the 

last immunization all groups were bled and the blood samples were collected 

to be used in serological analysis. 
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2.3 Cell cultures  

The HL-60 cell line was derived from peripheral blood leukocytes of a 36-yesr-

old Caucasian female with acute promyelocytic leukemia. The wild type cell line 

(ATCC CCL-240) is available from ATCC, whose stock was obtained at passage 7. 

The main characteristic of this cell line is its multi-potentially to differentiate 

into various cell lineages. Environmental condition such as pH and multiple 

chemical inducers can greatly facilitate the differentiation of HL-60 cell lines 

into various myeloid lineages. Treatment with N, N-dimethylformamide (DMF) 

or other polar compounds induce granulocytic differentiation yielding 

polymorphonuclear-like cells (44% myelocytes and 53% PMNs). 

 

2.4 Opsonophagocytosis Killing Assay  

The opsonophagocytosis killing assay (OPKA) is set up in a total reaction 

volume of 125 µl and consists of 4 basic components in the reaction mixture. 

The contents of this reaction typically consist of: 

1. Differentiated HL60 cells 

2. Bacteria 

3. Complement 
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4. Antibody source 

Harvesting Differentiated HL60 cells 

Differentiated HL-60 cells were centrifuged at 1100 rpm for 10 minutes at room 

temperature. The supernatant was removed completely and the cell pellet was 

washed by adding 20 ml of DPBS (Ca++ and Mg++). 

Before the last centrifugation, 50 µl of cell suspension were diluted 1/20 (950 

µl) with DPBS Ca++ and Mg++ to be counted by hemocytometer, count cells 

using the following formula: 

• #cells/ml= #cells counted x dilution factor x 104 

• Total# of cells= # cells counted x dilution factor x 104 X20 

After the counting, the cells were centrifuged at 1100 rpm for 10 minutes at RT 

and the cele pellet was re-suspended in HBSS (without Ca++ and Mg++).  

Bacteria     

S. aureus Newman wt strain was grown in TSB medium for 16-18 hours, and 

then was diluted in HBSS (with Ca++ and Mg++) in order to obtain a final 

concentration of 75 000 CFU/well.    
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Serum        

All sera used in the assay (test or control sera) must be inactivated at 56°C for 

30 minutes to remove the complement function, then mouse antisera was 

prediluted 1:50 in HBSS buffer (with Ca2+/Mg2+) and preincubated with 

bacteria for 20 minutes at 4°C. 

Complement 

 Rabbit complement provided by Calbiochem is kept at -20°C and drag up just 

few seconds before the use.  

A set of negative controls is included in each experiment. They consisted of a 

sample without serum, one containing pre-immune serum, one without 

phagocytic cells and one with heat inactivated complement at 56°C for 30 min. 

The plate, with the reaction mixture, was incubated at 37°C for 1h shaking at 

600 rpm. After the addition of last components of reaction and after the 

incubation of 1h at 37°C, each sample was plated (at the appropriate dilution) 

on TSA agar plates. 

The plates were incubated overnight at 37°C into CO2 incubator and the day 

after the colonies were counted. The killing percentage was calculated respect 

to the sample without serum.  
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2.5 Invasion assay 

A suspension of Newman S. aureus strain in PBS was added to HL-60 cells, 

cultured in RPMI and 10% heat inactivated human serum in 24-wells at 

multiplicity of infection 15:1 (the ratio bacteria: MOI=15:1). HL-60 cells and 

Staphylococcus aureus were co-cultured for 2h in a humidified atmosphere 

containing 5% CO2. Invasion was stopped by putting the plates on ice and 

washing the HL-60 twice with ice-cold PBS to remove non phagocyted bacteria. 

Any remaining extracellular bacteria were killed by gentamycin treatment (50 

µg -1). Then the medium was changed again to fresh media without antibiotic. 

At consecutive hours post-phagocytosis medium was aspired and HL-60 cells 

were lysed. Both conditioned medium and cell lysates were plated onto TSA for 

CFU enumeration.  

 

2.6 Bacterial labeling with PHrodo™ 

Bacteria were grown over night in TSB, washed twice with Phosphate Buffered 

Saline (PBS, pH 7.2–7.4,Gibco) and suspended in half volume of PBS-0.1% 

paraformaldehyde (PFA, Sigma). Cells were incubated at 37 °C for 30 min and 

kept at 2–8 °C in PBS-0.08%PFA. Immediately before labeling, cells were 

washed with PBS, suspended at 20 mg (wet weight)/ml using a freshly 

prepared 100 mM Sodium Hydrogen Carbonate solution pH 8.5 (Merck) and 
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split into aliquots of 750 μl. A 10 mM stock solution of PHrodo™ Succinimidyl 

Ester (Invitrogen) in dimethyl sulfoxide (Sigma) was diluted in the bacterial 

suspension at a final concentration of 0.1 mM. Each sample was incubated for 

45 min at room temperature in the dark and then added with 750 μl of Hank's 

Balanced Salt Solution with Ca2 + and Mg2 + (HBSS, Gibco), then spin down 

with a bench top centrifuge for 60 s at 14,000 ×g. The supernatant was 

aspirated and the pellet suspended in HBSS and stored in the dark at 4 °C for 

two months. Bacterial labeling was evaluated by FACS. The maximal 

fluorescence emission of pHrodo™ labeled GBS was 585 nm. The absolute 

concentration of labeled bacteria was determined by using TruCOUNT tubes 

(BD pharmingen). The beads contained in each tube were suspended in 100 μl 

of PBS and added to 100 μl of bacteria diluted 1/100 in PBS. The absolute cell 

count (N) was calculated using the following equation: N = (number of events 

in region containing bacteria) (number of beads per test ) / (no. of events in 

absolute count beads region), where the number of beads per test was 

provided by BD Pharmingen together with TruCOUNT Absolute Count Tubes. 
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                          2.7 Fluorescence staining and confocal microscopy  

Bacteria were grown in TSB at overnight condition, washed twice with 

Phosphate Buffered Saline (PBS, pH 7.2–7.4,Gibco) and suspended in half 

volume of PBS-0.08% paraformaldehyde (PFA, Sigma).  Bacterial cells were 

incubated at 37 °C for 30min and kept at 2–8 °C in PBS-0.08%PFA. Immediately 

before labeling, cells were washed with PBS, suspended at 20mg (wet 

weight)/ml using a freshly prepared 100mMSodium Hydrogen Carbonate 

solution pH 8.5 (Merck) and split into aliquots of 750 μl. A 10 mM stock 

solution of PHrodo™ Succinimidyl Ester (Invitrogen) in dimethyl sulfoxide 

(Sigma) was diluted in the bacterial suspension at a final concentration of 0.1 

mM. Each sample was incubated for 45 min at room temperature in the dark 

and then added with 750 μl of Hank's Balanced Salt Solution with Ca2+ and 

Mg2+ (HBSS, Gibco), then spin down with a bench top centrifuge for 60 s at 

14,000×g. The supernatant was aspirated and the pellet suspended in HBSS and 

stored in the dark at 4 °C for two months. After differentiation HL-60 cells were 

incubated for 10 minutes at 37°C with wheat germ agglutinin (WGA, 50 µg/ml 

Invitrogen), washed two times in PBS and resuspended in PBS. Differentiated 

HL-60 cells were dispensed in 6 microtiter plates and incubated with labeled 

bacteria for 2 hours in the presence of serum, under the same conditions and 

using the same concentration described for the invasion assay. After incubation, 

cells were washed twice with PBS (centrifuging the plate at 900 rpm for 5 min 
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at 2–8 °C) and fixed with 4% PFA in PBS for 5 min at 2–8 °C. After washing, 

bacteria and cells complex was mounted on a glass slide. Images were acquired 

on a Zeiss LSM 710 laser scanning confocal microscope. 

 

2.8 Scanning electron microscopy 

Infected or non-infected cells were cultured on 6-wells plates in the presence 

of bacteria (MOI:15:1) at different time points. After the treatment, a drop of 

liquid cell suspension was placed on poly-l-lysine treated glass coverslip for five 

minutes. Then, the coverslip was fixed for immersion in a 2,5% glutaraldehyde 

solution in phospate buffer 0,1 M pH 7,2 (PB) for 2 hours at 4°C, washed in PB, 

postfixed in 1% OsO4 in PB for 30 min. at 4°C, dehydrated in ascending alcohol 

series, incubated for three time in tert-butanol and finally freeze dried. 

Afterwards the coverslip was mounted on aluminum stub, coated with 20nm 

gold in Balzers MED010 spattering device and observed in Philps XL20 scanning 

electron microscope at 20kV. 

 

2.9 Transmission electron microscopy  

Infected or non-infected cells were cultured on 6-wells plates in the presence 

of bacteria (MOI:15:1) at different time points. After the incubation, 
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cells/bacteria complex was fixed with Karnovsky solution (2% 

paraformaldehyde, 2.5% glutaraldehyde in 0.2 M sodium cacodylate buffer, pH 

7.4, 30 min at room temperature) washed in the same buffer lacking the 

fixative and post-fixed in 2% osmium tetraoxide for 1h. The pellets were 

dehydrated through serial incubation in graded series of ethanol solutions (30%, 

60%, 90%, and 100%) and finally embedded in Epon. 60 nm sections, obtained 

at Reichert Ultracut E ultramicrotome, were counter-stained with uranyl 

acetate, lead citrate and examined with a Phlips Tecnai g2 spirit electron 

microscope.  

 

2.10 Tomography electron microscopy 

Tomography was performed with a transmission electron microscope CM200 

field emission gun (Philips) operating at 200 kv, equipped with a 2,000 x 2,000 

charge-coupled device camera TVIPS TemCam-F224HD and with  the EMmenu4 

and EM-Tools software packages (both from Tietz Video and Image Processing 

Systems Gmbh). Stained 120-nm-thick sections were decorated on both faces 

with 10 nm colloidal gold particles before observation in the Philips 

transmission electron microscope. Gold particles were used as fiducial position 

markers for image alignment in the tomogram reconstruction procedure. For 

tomographic reconstruction, low-dose tilt series of images were recorded in 



55 
 

double tilt axis geometry, at 27,500x magnification (nominal pixel size 0.66 nm), 

with a maximum tilt range of about +60° -60° and tilt steps of 1°. Images were 

recorded with 1 μm of defocus. 

 

2.11 Image analysis  

3D reconstruction was performed using R-weighted back-projection with IMOD 

software (Kremer et al., 1996; Mastronarde, 1997). We exported the 2D 

coordinates of the fiducial markers acquired with IMOD and pasted the two 

series of reference points together with simultaneous alignment. The 

reconstruction was then performed using a weighted back-projection algorithm 

for general geometry (Radermacher, 1992) and local refinement for distortions. 
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             3. RESULTS  

3.1 OPKA on Newman wt strain shows a killing percentage around 

50 %  

Opsonophagocytosis is the primary mechanism for clearance of pathogen from 

the host, and the measurement of opsonophagocytic antibodies appears to 

correlate with vaccine-induced protection. Opsonophagocytic assays are more 

attractive than other measures of in vitro protective immunity because they 

more closely resemble the mechanism of natural immunity, do not require the 

use of animal models, and appear to provide a closer correlation with serotype-

specific vaccine efficacy than ELISAs. In order to assess if mouse sera 

immunized with the final vaccine formulation can elicit antibodies, we 

performed an opsonophagocytosis assay using HL-60 as effector cells.  We 

randomly check the differentiation of cell line from primary cells into 

phagocytes by using flow cytometry analysis (FACS) that allow to test specific 

markers of HL-60. Live HL-60 cells were first gated based on LIVE/DEAD (figure 

1) and then based on forward scatter versus side scatter cytogram. The 

percentage of live cells shown in figure 1 was 80% of total cells and this 

number varied from 72 to 85% in different experiments performed at different 

days [1]. Doublets were eliminated using SSC-W versus SSC-A plot in order to 

keep only singlets. Moreover HL-60 positive to CD-35 and CD11b receptors 
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were gated to identify the neutrophil effector cell population, which 

correspond in figure 1 to 80% of total live cells.  
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Figure 1: Gating strategy to check HL-60 differentiation into neutrophils by 

FACS analysis: discrimination between lived (gated region) and dead HL-60 cells. 

(B) Selection of HL-60 cells using forward scatter (FSC) and side scatter (SSC). (C) 

Discrimination of aggregates from singlets using side scatter–C versus side 

scatter (SSC-W). (D) Neutrophil identification with specific markers of HL-60 

cells differentiation (anti CD-35 and anti CD-11b).  
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To further test if mouse sera immunized with the final vaccine formulation 

could elicit antibodies, we measured functional antibody activity against 

Newman strain in pre- and post-vaccination serum samples. Measurement of 

functional antibody activity was demonstrated by decreased number of 

colonies after 1 hours of incubation. Furthermore the opsonophagocytosis 

process was dependent upon the amount of functional antibody present in 

each sample. We tested four negative controls with all opsonophagocytosis 

components except neutrophils and complement. In addition mouse sera 

immunized only with alum formulation and pre-immune sera were tested. 

Moreover a mouse serum immunized with the final vaccine formulation was 

examined at three different dilutions starting from 1:20 to 1: 500. The 

differences in the percent uptake between pre- and a post-vaccination serum 

sample were shown in the figure 2. We observed that the obtained percentage 

of killing is around 50 % but did not decrease depending on the amount of 

functional antibody. 
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FIGURE 2: Opsonphagocytosis killing assay might be used as a correlate of protection for 

the assessment of functional activity in vitro of protein-induced antibodies in the presence 

of phagocytes and complement. The method was set up with Newman wt strain, HL-60 as 

effector cell, a rabbit complement source and mice antibodies sera immunized against 

combo formulation.  The anti-combo mouse sera were tested at three different dilutions 

starting from 1:20 to 1:500, 5 fold dilution. The mix was incubated for 1 hour and was 

plated on TSA to measure bacterial survival as number of colonies (CFU). The red bars 

show the negative controls with all OPKA components except cells and rabbit complement 

respectively. Additionally a preimmune and a placebo sera were tested. The percent of 

killing was calculated respect to the sample without antibodies after 1h of incubation.  
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In the previous opsonophagocytosis experiment we observed that the 

phagocytic activity of neutrophils was activated already after 1 hour of 

incubation: by this time in fact a percentage of killing around 50% was detected. 

Than in order to verify if the cells maintained their phagocytic ability we 

performed opsonophagocytosis killing assay at different time points from 1 

hour up to 6 hours. In this experiment we used the same condition applied for 

the previous one: infected HL-60 neutrophils were lysed at the indicated 

specific time intervals post phagocytosis and plated onto TSA plates. As 

expected the opsono assay showed that the majority of bacteria were 

internalized already at 1 hour and that the same trend was present at 2 hours 

of incubation. Unexpectedly an increase of bacterial growth occurred starting 

at 3 hours, with similar high number of S. aureus bacteria in both the sample 

without complement (negative control, grey bar) and in the post-vaccination 

serum sample (green bar) (figure 3).  
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Figure 3: OPKA was performed on Newman wt strain at six different time 

points. The assay was performed as described in the Material and Methods 

section. A positive (mouse sera immunized against final Novartis combination) 

and a negative control (sample without rabbit complement) were tested.  We 

reported the number of colonies (CFU)/ml for each time intervals and as mean 

of two analytical section. The orange bar shows the starting number of bacteria 

before the incubation with the neutrophils cells, rabbit complement and 

antibodies.  Starting form 3 hours of incubation S. aureus cells seem to 

duplicate in both negative and positive sample: the same trend was observed 

after 4, 5 and 6 hours of incubation. 
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3.2 Confocal microscopy analysis shows that S. aureus cell are 

engulfed by neutrophils after 1 hour of incubation  

In order to investigate the type of interaction and internalization of S. aureus 

bacteria into the neutrophils we decided to perform a confocal microscopy 

analysis that could allow us to compare the opsono results with a 

morphological observation. Preparatory FACS analysis were set up to select the 

best condition of  dye conjugation: differentiated HL-60 cells were incubated 

with pHrodo™ labeled bacteria in the presence of mouse sera immunized with 

the final vaccine formulation and complement for 1 hour at 37 °C. The 

pHrodo™ label is a pH-sensitive dye and attends as specific sensor of 

phagocytosis and endocytosis. In order to optimize the best conjugation 

between pHrodo™ and S. aureus cells, we tested different concentrations of 

pHrodo™ label and we analyzed them by FACS analysis. At the end of our 

analysis (figure 4), we choose the final concentration of 0.1 mM since the pick 

corresponding to this concentration (blue pick) resulted to be the most shifted 

one from the control pick(red pick).   
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Figure 4: FACS analysis was performed in order to check the best conjugation 

between pHrodo™ label and S. aureus cells. A 10 mM stock solution of 

pHrodo™ was diluted in the bacterial suspension at different concentration, 

from 0.9 mM to 0.1 mM. At the end of the analysis we identified pHrodo™0.1 

mM as the best condition.   

 

Once the dye condition was found we proceed with the confocal microscopy 

analysis: differentiated HL-60 cells were incubated for 1 hour at 37°C in the 

presence of rabbit complement with S. aureus  Newman strain pHrodo™ 
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labeled bacteria. The plasma membrane of neutrophils was stained with wheat 

germ agglutinin (WGA): our observation indicated clearly that neutrophils 

(labeled in blue) maintain their shape, showing a round shape with a diameter 

around 5 µ and that S. aureus  bacteria labeled with pHrodo™ are visible as a 

single yellow dot. Z stacks images of the sample were taken by confocal 

microscopy. Neutrophil plasma membrane (blue) and pHrodo™ labeled 

bacteria (yellow) are shown respectively in panel 1 and 2 of figure 5. The blue 

and the yellow images merged together (panel 3) clearly show that the 

internalized bacteria were brightly fluorescent after engulfment within 

neutrophils.  The panel 5 shows the bright field of HL-60 cells whereas the 

panel 4 and 6 respectively show HL-60 dyed with WGA and phalloidin mixed 

with WGA before bacteria incubation. 
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Figure 5: confocal microscopy analysis shows that S. aureus  cell are engulfed 

by neutrophils after 1 hour of incubation:  differentiated HL-60 cells were 

incubated for 1 hour at 37°C in the presence of rabbit complement with S. 

aureus  Newman strain pHrodo™ labeled bacteria. After washing, cells were 

fixed with 4% paraformaldehyde and plasma membrane of neutrophils was 

stained with wheat germ agglutinin (WGA). Panel 1 and panel 2 show 

respectively the plasma membrane of neutrophils in blue and internalized 

bacteria in yellow.  The merged image (panel 3) clearly shows that the 

internalized bacteria were brightly fluorescent after engulfment within 

neutrophils. The panel 5 shows the bright field of HL-60 cells whereas the panel 

4 and 6 respectively show HL-60 dyed with WGA and phalloidin mixed with 

WGA before bacteria incubation. 
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3.3 S. aureus persists inside neutrophils until the cells lyse  

To determine the intracellular survival/killing rate of S. aureus cells we 

performed an invasion assay at different time points. Cultured HL-60 cells 

engulfed S. aureus strain Newman with the vast of bacteria being internalized 

by 1 hour. The infected HL-60 neutrophils were lysed at specific time intervals 

post-phagocytosis and plates on TSA plates. Based on literature data (ref) we 

selected a multiplicity of infection (MOI) of 15:1; the applied experimental 

condition, in term of ratio between bacteria and cells, was opposite to the 

condition optimized for the opsonophagocytosis killing assay (HL60:CFU=50:1): 

in fact while the aim of opsonophagocytosis killing assay is to assess the 

functional activity of antibodies, the aim of invasion assay is to quantify the 

ability of pathogenic bacteria to invade eukaryotic cells. At MOI 15:1 

neutrophils could not completely eradicate the bacteria, since a burst of 

bacteria growth occurred after 5 hours of incubations. An explosion of live S. 

aureus in the conditioned media may indicate that the bacteria either 

proliferated intracellularly, with large number of bacterial cells being released 

into the media after nuetrophils lysis, or that a small number of surviving 

intracellular bacteria escaped and multiplied vigorously in the media, killing the 

HL-60 cells in the process.  
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3.4 Ultrastructural microscopy analysis shows that survival of 

bacteria in neutrophils affect the viability of host cells  

To determine whether bacteria engulfment affects the viability of host cells, we 

performed a negative staining analysis on HL-60 cells at different time points, 

starting from 1 hour to 6 hours. Negative staining is a sample preparation 

method in which biological samples are embedded in a thin layer of dried 

 

Figure 6: Invasion assay show that S. aureus persist intracellularly presenting a burst 

of growth after 5 hours. CFU of S. aureus were counted both in cell lysates and 

culture medium over six consecutive hours. Neutrophils were allowed to engulf S. 

aureus at MOI of 15:1 for 2 h and extracellular bacteria killed by gentamycin. 

Neutrophils were cultured in media without antibiotics. At consecutive hours post-

phagocytosis medium was aspired and HL-60 were lysed. Both conditioned medium 

and cell lysates were plated onto TSA for CFU enumeration. 
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heavy metal salt to increase specimen contrast. For this reason negative 

staining electron microscopy allows a rapid examination of macromolecular 

complexes and offers us the possibility to obtain morphological and structural 

information of the whole bacterial cells and even of their superficial 

components as the cells membrane. Negative stained samples were than 

analyzed with a Transmission Electron Microscope (TEM) operating at 120kV. 

We firstly co-incubated bacteria and neutrophils in the presence of 

complement and mouse serum after 1, 3 and 5 hours of incubation respectively 

(figure 7) and after intense washing, we spotted 5 microliters of the samples on 

carbon coated grids. Negative stained samples were than observed at the TEM 

and images collected. After 1 hour (panel A) the cell membrane appears 

completely intact and undamaged even when observed at higher resolution 

(panel B).  Starting from 3 hours of incubation (panel C), we observed many 

bacteria that invaded neutrophils causing a strong change in the cell 

membrane morphology that now appear totally disintegrated.  By 5 hours the 

number of bacteria invading cells is considerably increased and the cell is 

completely dissolved.  
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Figure 7: Negative staining electron microscopy of HL-60 cells incubated with S. 

aureus bacteria.  Bacteria and neutrophils were co-incubated in the presence 

of complement and mouse serum after 1, 3 and 5 hours respectively. After 1 

hour (panel A) the cell membrane appears completely intact and undamaged 

even if it is observed at higher resolution (panel B).  At 3 hours of incubation 

(panel C), bacteria invade neutrophils causing a strong change in the cell 

membrane morphology that is totally disintegrated.  By 5 hours (panel D) the 

number of bacteria invading cells is increased and the cell is dissolved. 

 

As a further step of our morphological analysis of the infected cells we decided 

to perform a scanning electron microscopy analysis (SEM) that gives high-

resolution images and provides morphological and compositional information. 
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We used the same experimental condition described before for the negative 

staining analysis: we collected scanning electron microscopy images at 

different time points until 8 hours of incubation. In two independent 

experiments we found that engulfment of S. aureus clearly damage cell 

membrane by 4 hours of incubation (figure 8). Before the incubation (panel A) 

HL-60 cells are perfectly sticking on scanning microscopy slide, showing 

numerous protrusion/extension over the surface. Starting from 2 hours, there 

is a decrease of protrusion that suggests a decrease of adhesiveness (panel B). 

By 4 hours, we can appreciate a structural surface changes as well as loss of 

structural components. By 6 hours, as confirmed also by 8 hours, many blebs 

are present on HL-60 cell surface, demonstrating definitely the evolution of 

changes in cell membrane morphology. Collectively these data, together with 

invasion assay, argue that S. aureus persists inside HL-60 neutrophils in 

continuously decreasing number until the exhausted cells allow bacteria to 

escape into the conditioned medium, where they proliferate. 
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Figure 8: Scanning electron microscopy analysis (SEM) shows that survival of 

bacteria in neutrophils affect the viability of host cells. We collected scanning 

electron microscopy images at different time points until 8 hours of incubation. 

We found that engulfment of S. aureus clearly damage cell membrane by 4 

hours of incubation. Before the incubation (panel A) HL-60 cells are perfectly 

sticking on scanning microscopy slide, showing numerous protrusion/extension 

over the surface. Starting from 2 hours, there is a decrease of protrusion that 

suggests a decrease of adhesiveness (panel B). By 4 hours, we can appreciate a 

structural surface changes as well as loss of structural components. By 6 hours, 

as confirmed also by 8 hours, many blebs are present on HL-60 cell surface, 
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demonstrating definitely the evolution of changes in cell membrane 

morphology. 

 

3.5 S. aureus perseveres in intracellular vacuoles of Hl-60 cells 

The strategies employed by obligate intracellular pathogen to avoid 

intracellular killing by professional phagocytes can be broadly categorized 

either as immediate escape from the phagosome into the cytoplasm either as 

modification of the phagosome preventing the fusion with lysosoms. Applying 

either scanning electron microscopy either negative staining techniques we 

appreciate the overall changes on HL-60 cells surface but we cannot obtain 

information on structural transformations within neutrophils. Furthermore in 

order to investigate specific localization of S. aureus we analyzed sections of 

HL-60 cells incubated with S. aureus for 2 hours, by transmission electron 

microscopy (TEM). We used epoxin resin to embed the specimens and we cut 

thin slices of material by an ultramicrotome. An overall image of the sectioned 

cell is shown in the Figure 9:  the neutrophil HL-60 cells (panel A) have a 

nucleus that is segmented into two lobes and presents several mature granules; 

after the incubation with S. aureus bacteria HL-60 cells (panel B) assume an 

apoptotic morphology, including nuclear condensation and fragmentation as 

well as cytoplasmic vacuolization. 
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Figure 9: Transmission electron microscopy (TEM) micrographs show an overall 

picture of the whole HL-60 cells incubated with S. aureus for 2 hours. 

Neutrophil HL-60 cells (panel A) have a nucleus that is segmented into two 

lobes and presents several mature granules; after the incubation with S. aureus 

bacteria HL-60 cells (panel B) assume an apoptotic morphology, including 

nuclear condensation and fragmentation as well as cytoplasmic vacuolization. 

 

In order to investigate the specific pathway adopted by S. aureus bacteria we 

performed a second transmission electron microscope analysis, using the same 

condition described in the previous experiment. Through transmission electron 

analysis (figure 9) we shown that phagocytosis following a sequence of events: 
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(a) recognition between epitopes on bacterial surface and receptors expressed 

on cell wall, (b) adherence of S. aureus to the HL-60 cell, (c) engulfment of the 

bacteria within a phagosome, and (d) transfer of the complex that appears 

distant to the cell membrane and. As expected, HL-60 cell is unable to kill the 

ingested pathogen: considerable numbers of bacteria were found in vacuoles 

whose membranes were partially or totally degraded. Finally, it is important to 

underline that dividing intact bacteria were frequently observed in vacuoles. 

Collectively these results strongly support our contention that S. aureus can 

survive intracellularly killing inside vescular compartments.  
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Figure 9: Transmission electron micrographs on HL-60 and S. aureus cells were 

performed. Through this technique we demonstrated that phagocytosis event 

follows a sequence of specific events: (a) recognition between epitopes on 

bacterial surface and receptors expressed on cell wall, (b) adherence of S. 

aureus to the HL-60 cell, (c) formation of cup-like processes on the cell surface, 

and (d) elongation of the cup and engulfment of the bacteria within a 
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phagosome. As expected, HL-60 cell is unable to kill the ingested pathogen: 

considerable numbers of bacteria were found in vacuoles whose membranes 

were partially or totally degraded. Finally, it is important to underline that 

dividing intact bacteria were frequently observed in vacuoles. Collectively these 

results strongly support our contention that S. aureus can survive intracellularly 

killing inside vesicular compartments. 

 

3.6 Electron tomography analysis of S. aureus bacteria in 

intracellular vacuoles of Hl-60 cells 

Visualizing the dynamic molecular architecture of cells is instrumental for 

answering fundamental questions in cellular and structural biology. Although 

modern microscopy techniques, including fluorescence and conventional 

electron microscopy, have allowed us to gain insights into the molecular 

organization of cells, they are limited in their ability to visualize 

multicomponent complexes in their native environment. Electron tomography 

(ET) allows cells, and the macromolecular assemblies contained within, to be 

reconstructed in situ, at a resolution of 2–6 nm. Electron tomography is a 

unique technique in structural biology research because it is the only tool that 

enables direct visualization of the cellular space at molecular resolution. In 

other words ET may bridge the resolution gap between cellular and structural 

biology. 
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We collected 5 different tomograms and for each tomogram around 120 

images were kept, one for each tilt angle.  We reported a single whole picture 

(figure 10) corresponding respectively to the bottom (panel 1), center (panel 2) 

and top (panel 3) part of the tomogram. The detailed analysis of thin 

computational sections covering the whole volume for each of the tomograms 

included in this study was used to make important conclusions (Figure 10).  

In electron tomography all useful 3D information is actually extracted from this 

analysis of planes. In addition the volumetric representation of reconstructed 

factories using programs such as Chimera helps us to summarize our findings 

and to highlight some important features of S. aureus cells. The extraordinary 

complexity of volumes generated by ET of highly-preserved cells is apparent in 

these representations. In order to facilitate their interpretation, noise 

reduction and segmentation have been applied to display the most important 

features. In our model the structure reveals the presence of intact bacterial 

membrane within neutrophil vacuoles. The S. aureus membrane appears 

completely undamaged and integral in contrast with the physiological process 

of phagocytosis through vacuoles progression.  Moreover many vacuoles are 

present both inside and outside the vacuoles containing bacterium as usually 

happen during the phagocytosis process (Figure 11). 
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Figure 10: electron tomography on 

S. aureus bacteria trapped within 

HL-60 vacuoles: We reported a 

single whole picture (figure 10) 

corresponding respectively to the 

bottom (panel 1), center (panel 2) 

and top (panel 3) part of the 

tomogram. The S. aureus 

membrane appears completely 

undamaged and integral in 

contrast with the physiological 

process of phagocytosis through 

vacuoles progression.  Moreover 

many vacuoles are present both 

inside and outside the vacuoles 

containing bacterium as usually 

happen during the phagocytosis 

process 
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Figure 11: A model of S. aureus survival within HL-60 neutrophils vacuoles. The S. aureus 

membrane appears completely undamaged and integral in contrast with the 

physiological process of phagosytosis through vacuoles progression.  Moreover many 

vacuoles are present both inside and outside the vacuoles containing bacterium as 

usually happen during the phagocytosis process. 
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5. DISCUSSION 

The principal immune effector mechanism by which humans are protected from 

Gram positive bacteria such as S. aureus is antigen specific antibody and 

complement dependent opsonophagocytosis [1]. This process can be measured in 

vitro using the opsonophagocytic killing assay (OPKA), which is a complex assay 

composed of live S. aureus bacteria, a complement source, phagocytic effector 

cells such as differentiated HL-60 cells, and test serum[2, 3].  

During my PhD, we investigated the impact on the OPKA of S. aureus antigens 

vaccine formulation, measuring functional antibody activity against S. aureus 

Newman strain. We observed that the obtained percentage of killing is around 

50 %, demonstrating that mouse antibodies immunized with S. aureus antigens 

vaccine formulation play a role during the clearance of pathogen (figure 2). 

Furthermore we have proven that the phagocytic activity of neutrophils was 

activated after 1 hour of incubation and that cells maintained this specific 

capability up to 2 hours. Unexpectedly we observed an increase of bacterial 

growth occurred starting from 3 hours, suggesting that HL-60 cells lost their 

phagocytic activity (figure 3)[4, 5]. These data suggest that S. aureus can survive 

inside neutrophils and supports current in vitro studies of S. aureus invasion and 

survival in epithelial cells, endothelial cells, and osteoblasts [6, 7]. This evidence of 

course is a significant problem because neutrophils are the most prominent 
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cellular defense against S. aureus infections and moreover suggest that the 

surviving of S. aureus inside neutrophils contributes to infections [8]. 

Subsequently, to determine the intracellular survival/killing rate of S. aureus cells 

we performed an invasion assay at different time points, demonstrating definitely 

that this bacterium can not only persist for several hours inside neutrophils, but 

ultimately is able to escape the intracellular confinement and proliferate rapidly in 

the conditioned media (figure 6)[9]. Furthermore by examining transmission 

electron microscopy micrographs of infected neutrophils at different time points, 

several important observations were made: after 1 hour of incubation the cell 

membrane appears completely intact and undamaged but starting form 3 hours 

many bacteria invaded neutrophils causing a strong change in cell membrane 

morphology that appear completely disintegrated.  

As a further step of our morphological analysis we demonstrated by scanning 

electron microscopy technique that S. aureus compromises the viability of HL-60 

neutrophils, confirming definitely the evolution of changes in cell membrane 

morphology.  Taken together, these results strengthen the idea that S. aureus has 

evolved numerous mechanisms to evade host defense strategies employed by 

neutrophils, including the ability to modulate normal neutrophil turnover and that 

this critical process should contribute to dissemination of  the pathogen to 

infections site.[10].   
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Finally in order to investigate the specific localization of S. aureus we performed an 

ultrastructural analysis by   transmission electron microscopy: we observed that 

after the incubation with pathogen HL-60 assumed an apoptotic morphology, 

including nuclear condensation and fragmentation as well as cytoplasmic 

vacuolization (figure 9, panel B).  

The development of electron microscopy and its application to biological studies 

allowed the morphology of many organelles to be revealed. Electron-microscopy 

can provide a high resolution view of the overall architecture of cells at high 

resolution of a few nanometers. More recently, the use of electron tomography 

has allowed this information to be extrapolated to three dimensions and to be 

used to build a molecular map of cells in physiologically relevant conditions at 

resolution of a few nanometers [11, 12]. To this purpose we recorded a series of 

two-dimensional (2D) electron micrograph projections at varying angles (tilt series) 

and then merging these projections to produce a 3D reconstruction.  In our final 

model the S. aureus membrane appears completely undamaged and integral in 

contrast with the physiological process of phagosytosis through vacuoles 

progression. S. aureus bacteria show a homogenous distribution of the density in 

all the three dimensions (X, Y, Z). No preferential density distribution has been 

noticed and the cell turgor is maintained. All these evidences definitely explain the 

ability of the pathogen to survive inside the endosomal vacuoles and should be the 

cause of the low killing level.  
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