Zanelli, Edoardo
(2025)
Essays on bootstrap methods in econometrics, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Economics, 36 Ciclo. DOI 10.48676/unibo/amsdottorato/12434.
Documenti full-text disponibili:
![PhD_thesis_Zanelli_v17.pdf [thumbnail of PhD_thesis_Zanelli_v17.pdf]](https://amsdottorato.unibo.it/style/images/fileicons/application_pdf.png) |
Documento PDF (English)
- Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (2MB)
|
Abstract
This thesis proposes novel implementations of the bootstrap in econometrics. Chapter 1 explores bootstrap methods for test statistics showing an asymptotic bias which is difficult, or impossible, to estimate, proposing modifications of standard bootstrap methods delivering valid inference, totally bypassing bias estimation. Chapter 2 develops enhanced inference techniques for nonparametric regression and regression-discontinuity designs, introducing novel bootstrap approaches for debiasing with greater efficiency than the current state-of-the-art. Chapter 3 tackles the problem of invalidity of “standard” bootstrap methods in a predictive regression setup, when the predictability parameter may lie on the boundary of the parameter space, proposing a modified approach restoring bootstrap validity. Chapter 4 investigates the flattening of the Phillips Curve, presenting a time-varying structural estimation framework to disentangle underlying drivers of macroeconomic shifts. Finally, Chapter 5 contributes to robust inference on stochastic time-varying coefficients, proposing new confidence intervals which are robust to “large” – and more efficient – bandwidths. Collectively, these contributions advance theoretical and practical econometric tools for addressing complex real-world economic problems.
Abstract
This thesis proposes novel implementations of the bootstrap in econometrics. Chapter 1 explores bootstrap methods for test statistics showing an asymptotic bias which is difficult, or impossible, to estimate, proposing modifications of standard bootstrap methods delivering valid inference, totally bypassing bias estimation. Chapter 2 develops enhanced inference techniques for nonparametric regression and regression-discontinuity designs, introducing novel bootstrap approaches for debiasing with greater efficiency than the current state-of-the-art. Chapter 3 tackles the problem of invalidity of “standard” bootstrap methods in a predictive regression setup, when the predictability parameter may lie on the boundary of the parameter space, proposing a modified approach restoring bootstrap validity. Chapter 4 investigates the flattening of the Phillips Curve, presenting a time-varying structural estimation framework to disentangle underlying drivers of macroeconomic shifts. Finally, Chapter 5 contributes to robust inference on stochastic time-varying coefficients, proposing new confidence intervals which are robust to “large” – and more efficient – bandwidths. Collectively, these contributions advance theoretical and practical econometric tools for addressing complex real-world economic problems.
Tipologia del documento
Tesi di dottorato
Autore
Zanelli, Edoardo
Supervisore
Dottorato di ricerca
Ciclo
36
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Bootstrap; Asymptotic Bias; Local Polynomials; Nonparametric methods; Phillips curve.
DOI
10.48676/unibo/amsdottorato/12434
Data di discussione
9 Luglio 2025
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Zanelli, Edoardo
Supervisore
Dottorato di ricerca
Ciclo
36
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Bootstrap; Asymptotic Bias; Local Polynomials; Nonparametric methods; Phillips curve.
DOI
10.48676/unibo/amsdottorato/12434
Data di discussione
9 Luglio 2025
URI
Statistica sui download
Gestione del documento: