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Abstract

This thesis proposes novel implementations of the bootstrap in econometrics. Chapter 1

explores bootstrap methods for test statistics showing an asymptotic bias which is dif-

ficult, or impossible, to estimate, proposing modifications of standard bootstrap meth-

ods delivering valid inference, totally bypassing bias estimation. Chapter 2 develops en-

hanced inference techniques for nonparametric regression and regression-discontinuity de-

signs, introducing novel bootstrap approaches for debiasing with greater efficiency than

the current state-of-the-art. Chapter 3 tackles the problem of invalidity of “standard”

bootstrap methods in a predictive regression setup, when the predictability parameter

may lie on the boundary of the parameter space, proposing a modified approach restor-

ing bootstrap validity. Chapter 4 investigates the flattening of the Phillips Curve, pre-

senting a time-varying structural estimation framework to disentangle underlying drivers

of macroeconomic shifts. Finally, Chapter 5 contributes to robust inference on stochastic

time-varying coefficients, proposing new confidence intervals which are robust to “large”

– and more efficient – bandwidths. Collectively, these contributions advance theoretical

and practical econometric tools for addressing complex real-world economic problems.
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General Introduction

The development in analytical and computational methods at the economists’ disposal

over the last decades have allowed for the revision of old challenges with new tools.

Among these, the bootstrap is a powerful method for several purposes related to inference,

with bias correction, variance estimation and hypothesis testing being its main – but not

exclusive – implementations.

This thesis explores novel and heterogeneous applications of the bootstrap in the field

of econometrics and it is divided in 5 chapters, with each chapter targeting a distinct yet

interconnected set of challenges, contributing to the advancement of robust and efficient

econometric inference.

Chapter 1 is based on the paper “Bootstrap Inference in the Presence of Bias”, a

joint work with Giuseppe Cavaliere, Śılvia Gonçalves and Morten Ørregaard Nielsen,

recently published in the Journal of the American Statistical Association, focusing on the

application of the bootstrap when test statistics show asymptotic bias. In particular, we

focus on situations in which such asymptotic bias is difficult, or impossible, to estimate

and “standard” bootstrap methods are invalid. This chapter proposes a solution that

leverages the idea of prepivoting – originally proposed by Beran (1987, 1988) to deliver

asymptotic refinements over first order asymptotics – to obtain valid (i.e., unbiased)

confidence intervals and test statistics without the need to consistently estimate such bias

term, thus ensuring asymptotically valid inference.

In Chapter 2, based on the paper “Improved Inference for Nonparametric Regres-

sion and Regression-Discontinuity Designs”, a joint work with Giuseppe Cavaliere, Śılvia

Gonçalves and Morten Ørregaard Nielsen, we give an in-depth analysis on the applica-

bility of the bootstrap and prepivoting to the nonparametric problem of inference on un-

known function at a fixed point in their support. While being related to the results in the

previous one, this chapter defines novel and insightful conclusions in this setup. Specif-

ically, on the one hand, we show that prepivoting can be applied via two bootstrap al-

gorithms, which we label the local-polynomial (LP) bootstrap and fixed-local (FL) boot-

strap; on the other hand, we note that “standard” prepivoting might fail at the bound-

ary of the support of the regressors, and we provide an ad hoc modification which is ro-

bust to the entire support (i.e., for boundary and interior points). Moreover, we show

that the current state-of-the-art method in this class of problems (i.e., robust bias cor-

rection, see Calonico et al., 2014, 2018) is asymptotically equivalent to the proposed FL

bootstrap. Finally, we compare the two proposed methods on the grounds of efficiency,

showing that the LP bootstrap achieves up to ∼ 20% shorter CIs asymptotically.

Chapter 3, based on the paper “Parameters on the Boundary in Predictive Regres-

sion”, a joint work with Giuseppe Cavaliere and Iliyan Georgiev, recently accepted for

publication on Econometric Theory, investigates predictive regressions with parameters
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on the boundary of the parameter space, a scenario that invalidates standard bootstrap

inference. We propose a modifications to standard bootstrap methods by shifting the

bootstrap parameter space using data-dependent functions, therefore restoring bootstrap

validity. These contributions are particularly relevant for testing hypotheses about pre-

dictability in financial markets, where parameter constraints often arise from economic

theory.

The empirical relevance of econometric techniques is underscored in Chapter 4, based

on the paper “When did the Phillips Curve Become Flat? A Time-varying Estimate of

Structural Parameters”, written jointly with Claudio Lissona and Antonio Marsi. This

chapter examines the flattening of the Phillips Curve by considering a time-varying struc-

tural estimation framework that combines instrumental variable methods with nonpara-

metric estimation of impulse response functions. Inference, in this setup, is based on ad

hoc bootstrap methods which guarantee robustness to time-variation of the time-varying

parameters. By analyzing US data, the chapter identifies a declining structural slope in

the Phillips Curve, attributing this to shifts in macroeconomic dynamics rather than in-

creased monetary policy responsiveness. The findings provide nuanced insights into the

interplay between inflation and unemployment over time, with significant implications

for monetary policy.

Finally, Chapter 5 is a short note about models with time-varying coefficient that

evolve stochastically as a random walk process with bounded variation. The chapter

underlines the importance of adopting “large” bandwidths (e.g., chosen in a MSE-optimal

sense) and shows that, under such choices, standard methods for constructing confidence

intervals fail. We propose a alternative CIs that restore validity of inference by considering

appropriately higher standard errors. Numerical simulations provide evidence in support

of the proposed CIs, as well as the practical relevance of the bootstrap in this setup.

The contributions of this thesis lie at the intersection of theory and practice, ad-

dressing longstanding challenges while opening avenues for future research. By integrat-

ing novel bootstrap techniques, addressing boundary issues, and developing time-varying

structural models, this work provides a robust toolkit for econometricians seeking to an-

alyze complex economic phenomena.
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Chapter 1

Bootstrap Inference in the

Presence of Bias

(written with Giuseppe Cavaliere, Śılvia Gonçalves and Morten
Ørregaard Nielsen)

1.1 Introduction

Suppose that θ is a scalar parameter of interest and let θ̂n denote an estimator for which

Tn := g(n)(θ̂n − θ)
d→ B + ξ1, (1.1.1)

where g(n) → ∞ is the rate of convergence of θ̂n, ξ1 is a continuous random variable

centered at zero, and B is an asymptotic bias (our theory in fact allows for a more

general formulation of the bias). A typical example is g(n) = n1/2 and ξ1 ∼ N(0, σ2).

Unless B can be consistently estimated, which is often difficult or impossible, classic

(first-order) asymptotic inference on θ based on quantiles of ξ1 in (1.1.1) is not feasible.

Furthermore, the bootstrap, which is well known to deliver asymptotic refinements over

first-order asymptotic approximations as well as bias corrections (Hall, 1992; Horowitz,

2001; Cattaneo and Jansson, 2018, 2022; Cattaneo, Jansson, and Ma, 2019), cannot in

general be applied to solve the asymptotic bias problem when a consistent estimator of

B does not exist. Examples are given below.

Our goal is to justify bootstrap inference based on Tn in the context of asymptotically

biased estimators and where a consistent estimator of B does not exist. Consider the

bootstrap statistic T ∗n := g(n)(θ̂∗n − θ̂n), where θ̂
∗
n is a bootstrap version of θ̂n, such that

T ∗n − B̂n
d∗→p ξ1, (1.1.2)

where B̂n is the implicit bootstrap bias, and ‘
d∗→p’ denotes weak convergence in probability

(defined below). When B̂n−B = op(1), the bootstrap is asymptotically valid in the usual

sense that the bootstrap distribution of T ∗n is consistent for the asymptotic distribution

of Tn, i.e., supx∈R |P ∗(T ∗n ≤ x)− P (Tn ≤ x)| = op(1).
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We consider situations where B̂n−B is not asymptotically negligible so the bootstrap

fails to replicate the asymptotic bias. For example, this happens when the asymptotic

bias term in the bootstrap world includes a random (additive) component, i.e.

B̂n −B
d→ ξ2 (jointly with (1.1.1)), (1.1.3)

where ξ2 is a random variable centered at zero. In this case, the bootstrap distribution

is random in the limit and hence cannot mimic the asymptotic distribution given in

(1.1.1). Moreover, the distribution of the bootstrap p-value, p̂n := P ∗(T ∗n ≤ Tn), is not

asymptotically uniform, and the bootstrap cannot in general deliver hypothesis tests (or

confidence intervals) with the desired null rejection probability (or coverage probability).

In this paper, we show that in this non-standard case valid inference can successfully

be restored by proper implementation of the bootstrap. This is done by focusing on

properties of the bootstrap p-value rather than on the bootstrap as a means of estimating

limiting distributions, which is infeasible due to the asymptotic bias. In particular, we

show that such implementations lead to bootstrap inferences that are valid in the sense

that they provide asymptotically uniformly distributed p-values.

Our inference strategy is based on the fact that, for some bootstrap schemes, the large-

sample distribution of the bootstrap p-value, say H(u), u ∈ [0, 1], although not uniform,

does not depend on B. That is, we can search for bootstrap algorithms which generate

bootstrap p-values that, in large samples, are not affected by unknown bias terms. When

this is possible, we can make use of the prepivoting approach of Beran (1987, 1988), which

— as we will show in this paper — allows to restore bootstrap validity. Specifically, our

proposed modified p-value is defined as

p̃n := Ĥn(p̂n),

where Ĥn(u) is any consistent estimator of H(u), uniformly over u ∈ [0, 1]. The (asymp-

totic) probability integral transform p̂n 7→ H(p̂n), continuity of H(u), and consistency of

Ĥn(u) then guarantee that p̃n is asymptotically uniformly distributed. Interestingly, Be-

ran (1987, 1988) proposed this approach to obtain asymptotic refinements for the boot-

strap, but did not consider asymptotically biased estimators as we do here.

We propose two approaches to estimating H. First, if H = Hγ, where γ is a finite-

dimensional parameter vector, and a consistent estimator γ̂n of γ is available, then a

‘plug-in’ approach setting Ĥn = Hγ̂n can deliver asymptotically uniform p-values. Second,

if estimation of γ is difficult (e.g., when γ does not have a closed form expression), we

can use a ‘double bootstrap’ scheme (Efron, 1983; Hall, 1986), where estimation of H is

achieved by resampling from the bootstrap data originated in the first level.

For both methods, we provide general high-level conditions that imply validity of the

proposed approach. Our conditions are not specific to a given bootstrap method; rather,

they can in principle be applied to any bootstrap scheme satisfying the proposed sufficient

12



conditions for asymptotic validity.

Our approach is related to recent work by Shao and Politis (2013) and Cavaliere and

Georgiev (2020). In particular, a common feature is that the distribution function of the

bootstrap statistic, conditional on the original data, is random in the limit. Cavaliere

and Georgiev (2020) emphasize that randomness of the limiting bootstrap measure does

not prevent the bootstrap from delivering an asymptotically uniform p-value (bootstrap

‘unconditional’ validity), and provide results to assess such asymptotic uniformity. Our

context is different, since the presence of an asymptotic bias term renders the distribution

of the bootstrap p-value non-uniform, even asymptotically. In this respect, our work is

related to Shao and Politis (2013), who show that t-statistics based on subsampling or

block bootstrap methods with bandwidth proportional to sample size may deliver non-

uniformly distributed p-values that, however, can be estimated.

To illustrate the practical relevance of our results and to show how to implement them

in applied problems, we consider three examples involving estimators that feature an

asymptotic bias term. In the first two examples (model averaging and ridge regression),

B is not consistently estimable due to the presence of local-to-zero parameters and the

standard bootstrap fails. In the third example (nonparametric regression), the bootstrap

fails because B depends on the second-order derivative of the conditional mean function,

whose estimation requires the use of a different (suboptimal) bandwidth. In these ex-

amples, ξ1 is normal, but g(n) and B are example-specific. Two additional examples are

presented in the supplement. The fourth is a simple location model without the assump-

tion of finite variance, where ξ1 is not normal and estimators converge at an unknown

rate. The fifth example considers inference for dynamic panel data models, where B is

the incidental parameter bias.

The remainder of the paper is organized as follows. In Section 1.2 we introduce our

three leading examples. Section 1.3 contains our general results, which we apply to the

three examples in Section 1.4. Section 1.5 concludes. The supplemental material contains

two appendices. Appendix A.1 specializes the general theory to the case of asymptotically

Gaussian statistics, and Appendix A.2 contains details and proofs for the three leading

examples, as well as two additional examples.

Notation

Throughout this paper, the notation ∼ indicates equality in distribution. For instance,

Z ∼ N(0, 1) means that Z is distributed as a standard normal random variable. We write

‘x := y’ and ‘y =: x’ to mean that x is defined by y. The standard Gaussian cumulative

distribution function (cdf) is denoted by Φ; U[0,1] is the uniform distribution on [0, 1],

and I{·} is the indicator function. If F is a cdf, F−1 denotes the generalized inverse,

i.e. the quantile function, F−1(u) := inf{v ∈ R : F (v) ≥ u}, u ∈ R. Unless specified

otherwise, all limits are for n → ∞. For matrices a, b, c with n rows, we let Sab := a′b/n
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and Sab.c := Sab − SacS
−1
cc Scb, assuming that Scc has full rank.

For a (single level or first-level) bootstrap sequence, say Y ∗n , we use Y ∗n
p∗→p 0, or

equivalently Y ∗n
p∗→ 0, in probability, to mean that, for any ϵ > 0, P ∗(|Y ∗n | > ϵ) →p 0,

where P ∗ denotes the probability measure conditional on the original data Dn. An

equivalent notation is Y ∗n = op∗(1) (where we omit the qualification “in probability” for

brevity). Similarly, for a double (or second-level) bootstrap sequence, say Y ∗∗n , we write

Y ∗∗n = op∗∗(1) to mean that for all ϵ > 0, P ∗∗(|Y ∗∗n | > ϵ)
p∗→p 0, where P

∗∗ is the probability

measure conditional on the first-level bootstrap data D∗n and on Dn.

We use Y ∗n
d∗→p ξ, or equivalently Y ∗n

d∗→ ξ, in probability, to mean that, for all

continuity points u ∈ R of the cdf of ξ, say G(u) := P (ξ ≤ u), it holds that P ∗(Y ∗n ≤
u) − G(u) →p 0. Similarly, for a double bootstrap sequence Y ∗∗n , we use Y ∗∗n

d∗∗→p∗ ξ, in

probability, to mean that P ∗∗(Y ∗∗n ≤ u)−G(u)
p∗→p 0 for all continuity points u of G.

1.2 Examples

In this section we introduce our three leading examples. Example-specific regularity

conditions, formally stated results, and additional definitions are given in Appendix A.2.

For each of these examples, we argue that (1.1.1), (1.1.2), and (1.1.3) hold, such that

the bootstrap p-values p̂n are not uniformly distributed rendering standard bootstrap

inference invalid. We then return to each example in Section 1.4, where we discuss how

to implement our proposed method and prove its validity.

1.2.1 Inference after model averaging

Setup. We consider inference based on a model averaging estimator obtained as a

weighted average of least squares estimates (Hansen, 2007). Assume that data are gen-

erated according to the linear model

y = xβ + Zδ + ε, (1.2.1)

where β is the (scalar) parameter of interest and ε is an n-vector of identically and

independently distributed random variables with mean zero and variance σ2 (henceforth

i.i.d.(0, σ2)), conditional on W := (x, Z).

The researcher fits a set of M models, each of them based on different exclusion

restrictions on the q-dimensional vector δ. This setup allows for model averaging both

explicitly and implicity. The former follows, e.g., Hansen (2007). The latter includes

the common practice of robustness checks in applied research, where the significance of

a target coefficient is evaluated through an (often informal) assessment of its significance

across a set of regressions based on different sets of controls; see Oster (2019) and the

references therein. Specifically, letting Rm denote a q × qm selection matrix, the mth

model includes x and Zm := ZRm as regressors, and the corresponding OLS estimator

of β is β̃m,n = S−1xx.Zm
Sxy.Zm . Given a set of fixed weights ω := (ω1, . . . , ωM)′ such that
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ωm ∈ [0, 1] and
∑M

m=1 ωm = 1, the model averaging estimator is β̃n :=
∑M

m=1 ωmβ̃m,n.

Then Tn := n1/2(β̃n − β) satisfies Tn −Bn →d ξ1 ∼ N(0, v2), where v2 > 0 and

Bn := Qnn
1/2δ, Qn :=

M∑
m=1

ωmS
−1
xx.Zm

SxZ.Zm .

Thus, the magnitude of the asymptotic bias Bn depends on n1/2δ. If δ is local to zero

in the sense that δ = cn−1/2 for some vector c ∈ Rq (as in, e.g., Hjort and Claeskens,

2003; Liu, 2015; Hounyo and Lahiri, 2023), then Bn →p B := Qc with Q := plimQn,

so that (1.1.1) is satisfied with nonzero B in general. Because B depends on c, which is

not consistently estimable, we cannot obtain valid inference from a Gaussian distribution

based on sample analogues of B and v2.

Fixed regressor bootstrap. We generate the bootstrap sample as y∗ = xβ̂n+Zδ̂n+

ε∗, where ε∗|Dn ∼ N(0, σ̂2
nIn), (β̂n, δ̂

′
n, σ̂

2
n) is the OLS estimator from the full model, and

Dn = {y,W}. Similar results can be established for the nonparametric bootstrap where

ε∗ is resampled from the full model residuals. The bootstrap model averaging estimator is

given by β̃∗n :=
∑M

m=1 ωmβ̃
∗
m,n, where β̃

∗
m,n := S−1xx.Zm

Sxy∗.Zm . Letting T
∗
n := n1/2(β̃∗n− β̂n),

we can show that (1.1.2) holds with B̂n := Qnn
1/2δ̂n such that, as in (1.1.3),

B̂n −Bn = Qnn
1/2(δ̂n − δ)

d→ ξ2 ∼ N(0, v22), v22 > 0,

given in particular the asymptotic normality of n1/2(δ̂n−δ). Because the bias term in the

bootstrap world is random in the limit, the conditional distribution of T ∗n is also random

in the limit, and in particular does not mimic the asymptotic distribution of the original

statistic Tn.

Pairs bootstrap. Consider now a pairs (random design) bootstrap sample {y∗t , x∗t , z∗t ; t =
1, . . . , n}, based on resampling with replacement from the tuples {yt, xt, zt; t = 1, . . . , n}.
As is standard, it is useful to recall that the bootstrap data have the representation

y∗ = x∗β̂n + Z∗δ̂n + ε∗,

where ε∗ = (ε∗1, . . . , ε
∗
n)
′ and ε∗t is an i.i.d. draw from ε̂t = yt − xtβ̂n − z′tδ̂n. The pairs

bootstrap model averaging estimator is

β̃∗n :=
M∑
m=1

ωmβ̃
∗
m,n with β̃∗m,n := S−1x∗x∗.Z∗

m
Sx∗y∗.Z∗

m

and Z∗m = Z∗Rm. The pairs bootstrap statistic is then

T ∗n := n1/2(β̃∗n − β̂n) = B∗n + n1/2S−1x∗x∗Sx∗ε∗ ,

where

B∗n :=
M∑
m=1

ωmS
−1
x∗x∗.Z∗

m
Sx∗Z∗.Z∗

m
n1/2δ̂n.
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Therefore, and in contrast with the fixed regressor bootstrap (FRB), the term B∗n is

stochastic under the bootstrap probability measure and replaces the bias term B̂n. This

difference is not innocuous because it implies that T ∗n − B̂n no longer replicates the

asymptotic distribution of Tn − Bn and (1.1.2) does not hold. However, this does not

prevent our method from working, but it will require a different set of conditions which

we will give in Section 1.3.5.

1.2.2 Ridge regression

Setup. We consider estimation of a vector of regression parameters through regulariza-

tion; in particular, by using a ridge estimator. The model is yt = θ′xt + εt, t = 1, . . . , n,

where xt is a p × 1 non-stochastic vector and εt ∼ i.i.d.(0, σ2). Interest is on testing

H0 : g′θ = r, based on ridge estimation of θ. Specifically, the ridge estimator has closed

form expression θ̃n = S̃−1xx Sxy, where S̃xx := Sxx + n−1cnIp and cn is a tuning parameter

that controls the degree of shrinkage towards zero. Clearly, cn = 0 corresponds to the

OLS estimator, θ̂n. We are interested in the case where the regressors have limited ex-

planatory power, i.e., where θ = δn−1/2 is local to zero, which can in fact be taken as a

motivation for shrinkage towards zero and hence for ridge estimation. To test H0, we con-

sider the test statistic Tn = n1/2(g′θ̃n− r). If n−1cn → c0 ≥ 0 (as in, e.g., Fu and Knight,

2000) then, under the null, it holds that Tn −Bn →d ξ1 ∼ N(0, v2), where

Bn := −cnn−1/2g′S̃−1xx θ = −cnn−1g′S̃−1xx δ → B := −c0g′Σ̃−1xx δ

with Σ̃xx := Σxx+ c0Ip and Σxx := limSxx. Hence, for c0 > 0, θ̃n is asymptotically biased

and the bias term cannot be consistently estimated. Consequently, (1.1.1) is satisfied,

and inference based on the quantiles of the N(0, v2) distribution is invalid unless c0 = 0.

Bootstrap. Consider a pairs (random design) bootstrap sample {y∗t , x∗t ; t = 1, . . . , n}
built by i.i.d. resampling from the tuples {yt, xt; t = 1, . . . , n}. The bootstrap analogue

of the ridge estimator is θ̃∗n := S̃−1x∗x∗Sx∗y∗ , where S̃x∗x∗ := Sx∗x∗ +n−1cnIp. The bootstrap

statistic is T ∗n := n1/2g′(θ̃∗n − θ̂n), which is centered using θ̂n to guarantee that ε∗t and

x∗t are uncorrelated in the bootstrap world. Because we have used a pairs bootstrap, we

now have T ∗n −B∗n
d→p∗ ξ1 for B

∗
n := −cnn−1/2g′S̃−1x∗x∗ θ̂n. However, B∗n − B̂n = op∗(1) with

B̂n := −cnn−1/2g′S̃−1xx θ̂n, such that T ∗n − B̂n still satisfies (1.1.2). Then (1.1.3) holds with

B̂n −Bn = −cnn−1g′S̃−1xx n1/2(θ̂n − θ)
d→ ξ2 ∼ N(0, v22), v22 > 0,

so the bootstrap fails to approximate the asymptotic distribution of Tn (see also Chat-

terjee and Lahiri, 2010, 2011).
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1.2.3 Nonparametric regression

Setup. Consider the model

yt = β(xt) + εt, t = 1, . . . , n, (1.2.2)

where β(·) is a smooth function and εt ∼ i.i.d.(0, σ2). For simplicity, we consider a fixed-

design model; i.e., xt = t/n. The goal is inference on β(x) for a fixed x ∈ (0, 1). We apply

the standard Nadaraya-Watson (fixed-design) estimator β̂h(x) = (nh)−1
∑n

t=1K((xt −
x)/h)yt, where h = cn−1/5 for some c > 0 is the MSE-optimal bandwidth and K is the

kernel function. We do not consider the more general local polynomial regression case,

although we conjecture that very similar results will hold. We leave that case for future

research. The statistic Tn = (nh)1/2(β̂h(x) − β(x)) satisfies Tn − Bn →d ξ1 ∼ N(0, v2),

where v2 := σ2
∫
K(u)2du > 0 and

Bn := (nh)1/2

(
1

nh

n∑
t=1

ktβ(xt)− β(x)

)
(1.2.3)

with kt := K((xt − x)/h). The bias Bn satisfies

Bn = (nh)1/2(h2β′′(x)κ2/2 + o(h2)) → B := c5/2β′′(x)κ2/2, (1.2.4)

where κ2 :=
∫
u2K(u)du and β′′(x) denotes the second-order derivative of β(x). Thus,

(1.1.1) is satisfied. Estimating B or Bn is challenging because it involves estimating β′′(x),

and although theoretically valid estimators exist, they perform poorly in finite samples.

This issue is pointed out by Calonico, Cattaneo, and Titunik (2014) and Calonico, Cat-

taneo, and Farrell (2018), who propose more accurate bias correction techniques specifi-

cally for regression discontinuity designs and nonparametric curve estimation.

Bootstrap. The (parametric) bootstrap sample is generated as y∗t = β̂h(xt) + ε∗t ,

t = 1, . . . , n, where ε∗t |Dn ∼ i.i.d.N(0, σ̂2
n) with Dn = {yt, t = 1, . . . , n} and σ̂2

n denotes a

consistent estimator of σ2; e.g. the residual variance. Let β̂∗h(x) = (nh)−1
∑n

t=1 kty
∗
t and

T ∗n = (nh)1/2(β̂∗h(x)− β̂h(x)). Then (1.1.2) is satisfied with

B̂n := (nh)1/2

(
1

nh

n∑
t=1

ktβ̂h(xt)− β̂h(x)

)
.

Because h = cn−1/5, (1.1.3) holds with

B̂n −Bn = (nh)1/2

(
1

nh

n∑
t=1

kt(β̂h(xt)− β(xt))− (β̂h(x)− β(x))

)
d→ ξ2 ∼ N(0, v22),

where v22 > 0, so the bootstrap is invalid. Two possible solutions to this problem are

to generate the bootstrap sample as y∗t = β̂g(xt) + ε∗t , where g is an oversmoothing

bandwidth satisfying ng5 → ∞ (e.g., Härdle and Marron, 1991) or to center the bootstrap
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statistic at its expected value and add a consistent estimator of B (e.g., Härdle and

Bowman, 1988; Eubank and Speckman, 1993). Both approaches require selecting two

bandwidths, which is not straightforward. An alternative approach suggested by Hall and

Horowitz (2013) focuses on an asymptotic theory-based confidence interval and applies

the bootstrap to calibrate its coverage probability. However, this requires an additional

averaging step across a grid of x (their step 6) to asymptotically eliminate ξ2, and it

results in an asymptotically conservative interval. Finally, a non-bootstrap-based solution

is undersmoothing using a bandwidth h satisfying nh5 → 0, although of course that is

not MSE-optimal and may result in trivial power against certain local alternatives; see

Section 1.4.3.

1.3 General results

1.3.1 Framework and invalidity of the standard bootstrap

The general framework is as follows. We have a statistic Tn defined as a general function

of a sample Dn, for which we would like to compute a valid bootstrap p-value. Usually

Tn is a test statistic or a (possibly normalized) parameter estimator; for example, Tn =

g(n)(θ̂n − θ0). Let D
∗
n denote the bootstrap sample, which depends on the original data

and on some auxiliary bootstrap variates (which we assume defined jointly with Dn on a

possibly extended probability space). Let T ∗n denote the bootstrap version of Tn computed

on D∗n; for example, T ∗n = g(n)(θ̂∗n − θ̂n). Let L̂n(u) := P ∗(T ∗n ≤ u), u ∈ R, denote its

distribution function, conditional on the original data. The bootstrap p-value is defined as

p̂n := P ∗(T ∗n ≤ Tn) = L̂n(Tn).

First-order asymptotic validity of p̂n requires that p̂n converges in distribution to a

standard uniform distribution; i.e., that p̂n →d U[0,1]. In this section we focus on a class

of statistics Tn and T ∗n for which this condition is not necessarily satisfied. The main

reason is the presence of an additive ‘bias’ term Bn that contaminates the distribution of

Tn and cannot be replicated by the bootstrap distribution of T ∗n .

Tn − Bn →d ξ1, where ξ1 is centered at zero and the cdf Gγ(u) = P (ξ1 ≤ u) is

continuous and strictly increasing over its support.

When Bn converges to a nonzero constant B, Assumption 1.3.1 can be written Tn →d

B + ξ1 as in (1.1.1). If Tn is a normalized version of a (scalar) parameter estimator, i.e.,

Tn = g(n)(θ̂n − θ0), then we can think of B as the asymptotic bias of θ̂n because ξ1 is

centered at zero. Although we allow for the possibility that Bn does not have a limit

(and it may even diverge), we will still refer to Bn as a ‘bias term’. More generally, in

Assumption 1.3.1 we cover any statistic Tn that is not necessarily Gaussian (even asymp-

totically) and whose limiting distribution is Gγ only after we subtract the sequence Bn.

We index the limiting distribution Gγ by a parameter γ to allow for the possibility that
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Tn −Bn is not an asymptotic pivot.

Inference based on the asymptotic distribution of Tn requires estimating Bn and γ.

Alternatively, we can use the bootstrap to bypass estimation of Bn and γ and directly

compute a bootstrap p-value that relies on T ∗n and Tn alone; that is, we consider p̂n :=

P ∗(T ∗n ≤ Tn). A set of high-level conditions on T ∗n and Tn that allow us to derive the

asymptotic properties of this p-value are described next.

For some Dn-measurable random variable B̂n, it holds that: (i) T
∗
n − B̂n

d∗→p ξ1, where

ξ1 is described in Assumption 1.3.1; (ii)(
Tn −Bn

B̂n −Bn

)
d→

(
ξ1

ξ2

)
,

where ξ2 is centered at zero and F (u) = P (ξ1 − ξ2 ≤ u) is a continuous cdf.

Assumption 1.3.1(i) states that T ∗n−B̂n converges in distribution to a random variable

ξ1 having the same distribution function Gγ as Tn−Bn.
1 Thus, B̂n can be thought of as

an implicit bootstrap bias that affects the statistic T ∗n , in the same way that Bn affects the

original statistic Tn. Assumption 1.3.1(ii) complements Assumption 1.3.1 by requiring

the joint convergence of Tn − Bn and B̂n − Bn towards ξ1 and ξ2, respectively; see also

(1.1.1)–(1.1.3).

Given Assumption 1.3.1(i), we could use the bootstrap distribution of T ∗n − B̂n to

approximate the distribution of Tn−Bn. Since Bn is typically unknown, this result is not

very useful for inference unless B̂n is consistent for Bn. In this case, Assumption 1.3.1

together with Assumption 1.3.1 imply that p̂n is asymptotically distributed as U[0,1]. This

follows by noting that if B̂n−Bn = op(1), then ξ2 = 0 a.s., implying that Fϕ(u) = Gγ(u).

Consequently,

p̂n := P ∗(T ∗n ≤ Tn) = P ∗(T ∗n − B̂n ≤ Tn − B̂n)

= Gγ(Tn − B̂n) + op(1) (by Assumption 1.3.1(i))

d→ Gγ(ξ1 − ξ2) (by Assumption 1.3.1(ii) and continuity of Gγ)

∼ U[0,1],

where the last distributional equality holds by Fϕ = Gγ and the probability integral

transform. However, this result does not hold if B̂n − Bn does not converge to zero in

probability. Specifically, if B̂n −Bn →d ξ2 (jointly with Tn −Bn →d ξ1), then

Tn − B̂n = (Tn −Bn)− (B̂n −Bn)
d→ ξ1 − ξ2 ∼ F−1ϕ (U[0,1])

1Note that we write T ∗
n − B̂n

d∗

→p ξ1 to mean that T ∗
n − B̂n has (conditionally on Dn) the same

asymptotic distribution function as the random variable ξ1. We could alternatively write that T ∗
n−B̂n

d∗

→p

ξ∗1 and Tn−Bn
d→ ξ1 where ξ

∗
1 and ξ1 are two independent copies of the same distribution, i.e. P (ξ1 ≤ u) =

P (ξ∗1 ≤ u). We do not make this distinction because we care only about distributional results, but it
should be kept in mind.
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under Assumptions 1.3.1 and 1.3.1(ii). When ξ2 is nondegenerate, Fϕ ̸= Gγ, implying

that p̂n = Gγ(Tn − B̂n) + op(1) is not asymptotically distributed as a standard uniform

random variable. This result is summarized in the following theorem.

Theorem 1.3.1 Suppose Assumptions 1.3.1 and 1.3.1 hold. Then p̂n →d Gγ(F
−1
ϕ (U[0,1])).

Proof. First notice that p̂n and Gγ(Tn − B̂n) have the same asymptotic distribution

because Assumption 1.3.1(i) and continuity of Gγ imply that, by Polya’s Theorem,

|p̂n −Gγ(Tn − B̂n)| ≤ sup
u∈R

|P ∗(T ∗n − B̂n ≤ u)−Gγ(u)|
p→ 0.

Next, by Assumption 1.3.1(ii), Tn − B̂n →d ξ1 − ξ2, such that

Gγ(Tn − B̂n)
d→ Gγ(ξ1 − ξ2)

by continuity of Gγ and the continuous mapping theorem. Since ξ1 − ξ2 has continuous

cdf Fϕ, it holds that ξ1 − ξ2 ∼ F−1ϕ (U[0,1]), which completes the proof. □

Remark 1.3.1 The value of B̂n in Assumption 1.3.1(i) depends on the chosen bootstrap

algorithm. It is possible that B̂n →p 0 for some bootstrap algorithms; examples are given

in Remark A.2.2 and Appendix A.2.5. If this is the case, then ξ2 = −B a.s., which

implies that

Fϕ(u) := P (ξ1 − ξ2 ≤ u) = P (ξ1 ≤ u−B) = Gγ(u−B),

and hence Assumption 1.3.1(ii) is not satisfied. In this case the bootstrap p-value satisfies

p̂n
d→ Gγ(G

−1
γ (U[0,1]) +B).

Note that this distribution is uniform only if B = 0. Hence, the p-value depends on B,

even in the limit.

Remark 1.3.2 Under Assumptions 1.3.1 and 1.3.1, standard bootstrap (percentile) con-

fidence sets are also in general invalid. Consider, e.g., the case where Tn = g(n)(θ̂n− θ0)

and T ∗n is its bootstrap analogue with (conditional) distribution function L̂n(u). A right-

sided confidence set for θ0 at nominal confidence level 1 − α ∈ (0, 1) can be obtained as

(e.g., Horowitz, 2001, p. 3171) CI1−αn := [θ̂n− g(n)−1q̂n(1−α),+∞), where q̂n(1−α) :=

L̂−1n (1− α). Then

P (θ0 ∈ CI1−αn ) = P (θ̂n − g(n)−1q̂n(1− α) ≤ θ0) = P (Tn ≤ q̂n(1− α))

= P (L̂n(Tn) ≤ 1− α) = P (p̂n ≤ 1− α) ↛ 1− α

because by Theorem 1.3.1 p̂n is not asymptotically uniformly distributed.
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Remark 1.3.3 It is worth noting that, under Assumptions 1.3.1 and 1.3.1, the bootstrap

(conditional) distribution is random in the limit whenever ξ2 is non-degenerate. Specifi-

cally, assume for simplicity that Bn →p B. Recall that L̂n(u) := P ∗(T ∗n ≤ u), u ∈ R, and
let Ĝγ,n(u) := P ∗(T ∗n − B̂n ≤ u). It then holds that

L̂n(u) = Ĝγ,n(u− B̂n) = Gγ(u−B − (B̂n −B)) + ân(u),

where ân(u) ≤ supu∈R |Ĝγ,n(u)−Gγ(u)| = op(1) by Assumption 1.3.1(i), continuity of Gγ,

and Polya’s Theorem. Because B̂n −B →d ξ2, it follows that when ξ2 is non-degenerate,

L̂n(u) →w Gγ(u − B − ξ2), where →w denotes weak convergence of cdf ’s as (random)

elements of a function space (see Cavaliere and Georgiev, 2020). The presence of ξ2 in

Gγ(u − B − ξ2) makes this a random cdf.2 Therefore, the bootstrap is unable to mimic

the asymptotic distribution of Tn, which is Gγ(u−B) by Assumption 1.3.1.

Next, we describe two possible solutions to the invalidity of the standard bootstrap p-

value p̂n. One relies on the prepivoting approach of Beran (1987, 1988); see Section 1.3.2.

The basic idea is that we modify p̂n by applying the mapping p̂n 7→ H(p̂n), where H(u)

is the asymptotic cdf of p̂n, which makes the modified p-value H(p̂n) asymptotically

standard uniform. Contrary to Beran (1987, 1988), who proposed prepivoting as a way of

providing asymptotic refinements for the bootstrap, here we show how to use prepivoting

to solve the invalidity of the standard bootstrap p-value p̂n. This result is new in the

bootstrap literature. The second approach relies on computing a standard bootstrap p-

value based on the modified statistic given by Tn−B̂n; see Section 1.3.4. Thus, we modify

the test statistic rather than modifying the way we compute the bootstrap p-value.

1.3.2 Prepivoting

Theorem 1.3.1 implies that

P (p̂n ≤ u) → P (Gγ(F
−1
ϕ (U[0,1])) ≤ u) = P (U[0,1] ≤ Fϕ(G

−1
γ (u))) = Fϕ(G

−1
γ (u)) =: Hϕ,γ (u) =: H(u)

uniformly over u ∈ [0, 1] by Polya’s Theorem, given the continuity of Gγ and Fϕ. Al-

though H is not the uniform distribution, unless Gγ = Fϕ, it is continuous because Gγ

is strictly increasing. Thus, the following corollary to Theorem 1.3.1 holds by the proba-

bility integral transform.

Corollary 1.3.1 Under the conditions of Theorem 1.3.1, H(p̂n) →d U[0,1].

Therefore, the mapping of p̂n into H(p̂n) transforms p̂n into a new p-value, H(p̂n),

whose asymptotic distribution is the standard uniform distribution on [0, 1]. Inference

2The same result follows in terms of weak convergence in distribution of T ∗
n |Dn. Specifically, because

T ∗
n = (T ∗

n − B̂n) + (B̂n − Bn) + Bn, where T ∗
n − B̂n

d∗

→p ξ∗1 and (jointly) B̂n − Bn
d→ ξ2 with ξ∗1 ∼ ξ1

independent of ξ2, we have that T ∗
n |Dn

w→ (B + ξ∗1 + ξ2)|ξ2.
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based on H(p̂n) is generally infeasible, because we do not observe H(u). However, if we

can replace H(u) with a uniformly consistent estimator Ĥn(u) then this approach will

deliver a feasible modified p-value p̃n := Ĥn(p̂n). Since the limit distribution of p̃n is the

standard uniform distribution, p̃n is an asymptotically valid p-value. The mapping of p̂n

into p̃n = Ĥn(p̂n) by the estimated distribution of the former corresponds to what Beran

(1987) calls ‘prepivoting’. In the following sections, we describe two methods of obtaining

a consistent estimator of H(u).

Remark 1.3.4 The prepivoting approach can also be used to solve the invalidity of con-

fidence sets based on the standard bootstrap; see Remark 1.3.2. In particular, replace the

nominal level 1−α by Ĥ−1n (1−α) and consider C̃I
1−α
n := [θ̂n−g(n)−1q̂n(Ĥ−1n (1−α)),+∞).

Then

P (θ0 ∈ C̃I
1−α
n ) = P (p̂n ≤ Ĥ−1n (1− α)) = P (Ĥn(p̂n) ≤ 1− α) → 1− α,

where the last convergence is implied by Corollary 1.3.1 and consistency of Ĥn.

Remark 1.3.5 Corollary 1.3.1 can also be applied to right-tailed or two-tailed tests.

The right-tailed p-value, say p̂n,r := P ∗(T ∗n > Tn) = 1 − L̂n(Tn) = 1 − p̂n, has cdf

P (p̂n,r ≤ u) = P (p̂n ≥ 1− u) = 1− P (p̂n < 1− u) = 1−H(1− u) + o(1) uniformly in u.

Note that, because the conditional cdf of T ∗n is continuous in the limit, the p-value p̂n,r is

asymptotically equivalent to P ∗(T ∗n ≥ Tn). Thus, by Corollary 1.3.1, the modified right-

tailed p-value, p̃n,r := 1− Ĥn(p̂n,r), satisfies

p̃n,r = 1−H(1− p̂n,r) + op(1) = 1−H(p̂n) + op(1)
d→ U[0,1].

Similarly, for two-tailed tests the equal-tailed bootstrap p-value, p̃n,et := 2min{p̃n, p̃n,r} =

2min{p̃n, 1− p̃n}, satisfies p̃n,et →d U[0,1] by Corollary 1.3.1 and the continuous mapping

theorem.

Plug-in approach

In view of Theorem 1.3.1, a simple approach to estimating H(u) is to use

Ĥn(u) = Hϕ̂n,γ̂n
(u),

where γ̂n and ϕ̂n denote consistent estimators of γ and ϕ, respectively. This leads to a

plug-in modified p-value defined as

p̃n = Hϕ̂n,γ̂n
(p̂n).

By consistency of γ̂n and ϕ̂n and under the assumption that Hϕ,γ is continuous in (ϕ, γ),

it follows immediately that

p̃n = H(p̂n) + op(1)
d→ Fϕ(G

−1
γ (Gγ(F

−1
ϕ (U[0,1])))) = U[0,1].
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This result is summarized next.

Corollary 1.3.2 Let Assumptions 1.3.1 and 1.3.1 hold, and suppose Hϕ,γ(u) is con-

tinuous in (ϕ, γ) for every u. If (γ̂n, ϕ̂n) →p (γ, ϕ) then p̃n = Hϕ̂n,γ̂n
(p̂n) →d U[0,1].

The plug-in approach relies on a consistent estimator of the asymptotic distribution

H, but does not require estimating the ‘bias term’ Bn. When estimating γ and ϕ is simple,

this approach is attractive since it does not require any double resampling. Examples

are given in Section 1.4. However, computation of γ and ϕ is case-specific and may be

cumbersome in practice. An automatic approach is to use the bootstrap to estimate

H(u), as we describe next.

Double bootstrap

Following Beran (1987, 1988), we can estimate H(u) with the bootstrap. That is, we let

Ĥn(u) = P ∗(p̂∗n ≤ u),

where p̂∗n is the bootstrap analogue of p̂n. Since p̂n is itself a bootstrap p-value, computing

p̂∗n requires a double bootstrap. In particular, let D∗∗n denote a further bootstrap sample

of size n based on D∗n and some additional bootstrap variates (defined jointly with Dn and

D∗n on a possibly extended probability space), and let T ∗∗n denote the bootstrap version of

T ∗n computed on D∗∗n . With this notation, the second-level bootstrap p-value is defined as

p̂∗n := P ∗∗(T ∗∗n ≤ T ∗n),

where P ∗∗ denotes the bootstrap probability measure conditional on D∗n and Dn (making

p̂∗n a function of D∗n and Dn). This leads to a double bootstrap modified p-value, as given

by

p̃n := Ĥn(p̂n) = P ∗(p̂∗n ≤ p̂n).

In order to show that p̃n = Ĥn(p̂n) →d U[0,1], we add the following assumption.

Let ξ1 and ξ2 be as defined in Assumptions 1.3.1 and 1.3.1. For some (D∗n, Dn)-

measurable random variable B̂∗n, it holds that: (i) T ∗∗n − B̂∗n
d∗∗→p∗ ξ1, in probability, and

(ii) T ∗n − B̂∗n
d∗→p ξ1 − ξ2.

Assumption 1.3.2 complements Assumptions 1.3.1 and 1.3.1 by imposing high-level

conditions on the second-level bootstrap statistics. Specifically, Assumption 1.3.2(i) as-

sumes that T ∗∗n has asymptotic distribution Gγ only after we subtract B̂∗n. This term is

the second-level bootstrap analogue of B̂n. It depends only on the first-level bootstrap

data D∗n and is not random under P ∗∗. The second part of Assumption 1.3.2 follows from

Assumption 1.3.1 in the special case that B̂∗n − B̂n = op∗(1), in probability; i.e., when

ξ2 = 0 a.s., implying Fϕ = Gγ. When Fϕ ̸= Gγ, B̂
∗
n is not a consistent estimator of B̂n.

However, under Assumption 1.3.2,

T ∗n − B̂∗n = (T ∗n − B̂n)− (B̂∗n − B̂n)
d∗→p ξ1 − ξ2 = F−1ϕ (U[0,1])
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implying that T ∗n − B̂∗n mimics the distribution of Tn − B̂n. This suffices for proving the

asymptotic validity of the double bootstrap modified p-value, p̃n = Ĥn(p̂n), as proved

next.

Theorem 1.3.2 Under Assumptions 1.3.1, 1.3.1, and 1.3.2, it holds that p̃n = Ĥn(p̂n) →d

U[0,1].

Proof. To prove this result, recall that Ĥn(u) = P ∗(p̂∗n ≤ u) and P (p̂n ≤ u) → H(u) =

Fϕ(G
−1
γ (u)) uniformly in u ∈ R, since H is a continuous distribution function by Assump-

tions 1.3.1 and 1.3.1. We have that

p̂∗n = P ∗∗(T ∗∗n ≤ T ∗n) = P ∗∗(T ∗∗n − B̂∗n ≤ T ∗n − B̂∗n)

= Gγ(T
∗
n − B̂∗n) + op∗(1), by Assumption 1.3.2(i),

= Gγ(F
−1
ϕ (U[0,1])) + op∗(1), by Assumption 1.3.2(ii),

where Gγ(F
−1
ϕ (U[0,1])) is a random variable whose distribution function is H. Hence,

sup
u∈R

|Ĥn(u)−H(u)| = op(1).

Since H(p̂n) →d U[0,1], we can conclude that p̃n = Ĥn(p̂n) →d U[0,1]. □

Theorem 1.3.2 shows that prepivoting the standard bootstrap p-value p̂n by apply-

ing the mapping Ĥn transforms it into an asymptotically uniformly distributed random

variable. This result holds under Assumptions 1.3.1, 1.3.1, and 1.3.2, independently of

whether Gγ = Fϕ or not. When Gγ = Fϕ then p̂n →d U[0,1] (as implied by Theorem 1.3.1).

In this case, the prepivoting approach is not necessary to obtain a first-order asymptot-

ically valid test, although it might help further reducing the size distortion of the test.

This corresponds to the setting of Beran (1987, 1988), where prepivoting was proposed

as a way of reducing the level distortions of confidence intervals. When Gγ ̸= Fϕ then p̂n

is not asymptotically uniform and a standard bootstrap test based on p̂n is asymptoti-

cally invalid, as shown in Theorem 1.3.1. In this case, prepivoting transforms an asymp-

totically invalid bootstrap p-value into one that is asymptotically valid. This setting was

not considered by Beran (1987, 1988) and is new to our paper.

1.3.3 Power of tests

In this section we explicitly consider a testing situation. Suppose we are interested in

testing H0 : θ = θ̄ against H1 : θ < θ̄. Specifically, defining Tn(θ) := g(n)(θ̂n − θ),

we consider the test statistic Tn(θ̄). The corresponding bootstrap p-value is p̂n(θ̄) with

p̂n(θ) := P ∗(T ∗n ≤ Tn(θ)). When the null hypothesis is true, i.e., when θ̄ = θ0 with θ0

denoting the true value, we find Tn(θ̄) = Tn(θ0) = Tn and p̂n(θ̄) = p̂n(θ0) = p̂n, where

Tn and p̂n are as defined previously. If Assumptions 1.3.1 and 1.3.1 hold under the
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null, Theorem 1.3.1 and Corollary 1.3.1 imply that tests based on H(p̂n(θ̄)) have correct

asymptotic size, where H continues to denote the asymptotic cdf of p̂n.

To analyze power, we consider θ0 = θ̄ + an for some deterministic sequence an. Then

an = 0 under the null hypothesis, whereas an = a < 0 corresponds to a fixed alternative

and an = a/g(n) for a < 0 corresponds to a local alternative. Thus, we define πn :=

g(n)(θ0 − θ̄) = g(n)an so that Tn(θ̄) = Tn + πn.

Theorem 1.3.3 Suppose Assumptions 1.3.1 and 1.3.1 hold. (i) If πn → π then H(p̂n(θ̄)) →d

Fϕ(F
−1
ϕ (U[0,1]) + π). (ii) If πn → −∞ then P (H(p̂n(θ̄)) ≤ α) → 1 for any nominal level

α > 0.

Proof. As in the proof of Theorem 1.3.1 we have, by Assumption 1.3.1(i),

p̂n(θ̄) = P ∗(T ∗n ≤ Tn(θ̄)) = P ∗(T ∗n − B̂n ≤ Tn − B̂n + πn) = Gγ(Tn − B̂n + πn) + op(1).

If πn → π then p̂n(θ̄) →d Gγ(F
−1
ϕ (U[0,1]) + π) by Assumption 1.3.1(ii), so that

H(p̂n(θ̄))
d→ H(Gγ(F

−1
ϕ (U[0,1]) + π)) = Fϕ(F

−1
ϕ (U[0,1]) + π)

by definition of H(u). If πn → −∞ then p̂n(θ̄) →p 0 because Tn − B̂n = Op(1) by

Assumption 1.3.1(ii), so that H(p̂n(θ̄)) →p H(0) = 0 and P (H(p̂n(θ̄)) ≤ α) → 1 for any

α > 0. □

It follows from Theorem 1.3.3(ii) that a left-tailed test that rejects for small values

of H(p̂n(θ̄)) is consistent. Furthermore, it follows from Theorem 1.3.3(i) that such a test

has non-trivial asymptotic local power against π < 0. Specifically, the asymptotic local

power against π is given by P (H(p̂n(θ̄)) ≤ α) → Fϕ(F
−1
ϕ (α)− π). Interestingly, this only

depends on Fϕ and not on Gγ. As above, to implement the modified p-value, H(p̂n(θ̄)),

in practice, we would need a (uniformly) consistent estimator of H, i.e., the asymptotic

distribution of the bootstrap p-value when the null hypothesis is true. This could be either

the plug-in or double bootstrap estimators, as discussed in Sections 1.3.2 and 1.3.2.

Note that Assumption 1.3.1 is still assumed to hold in Theorem 1.3.3. That is, the

bootstrap statistic T ∗n is assumed to have the same asymptotic behavior under the null

and under the alternative. This is commonly the case when the bootstrap algorithm does

not impose the null hypothesis when generating the bootstrap data.

1.3.4 Bootstrap p-value based on Tn − B̂n

The double bootstrap modified p-value p̃n depends only on the statistic Tn and their

bootstrap analogues T ∗n and T ∗∗n . It does not involve computing explicitly B̂n or B̂
∗
n, but in

some applications it can be computationally costly as it requires two levels of resampling.

As it turns out, p̃n is asymptotically equivalent to a single-level bootstrap p-value that is

based on bootstrapping the statistic Tn − B̂n, as we show next.
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By definition, the double bootstrap modified p-value is given by p̃n := P ∗(p̂∗n ≤ p̂n),

where

p̂∗n := P ∗∗(T ∗∗n ≤ T ∗n) = P ∗∗(T ∗∗n − B̂∗n ≤ T ∗n − B̂∗n) = Gγ(T
∗
n − B̂∗n) + op∗(1),

in probability, given Assumption 1.3.2. Similarly, under Assumptions 1.3.1 and 1.3.1,

p̂n := P ∗(T ∗n ≤ Tn) = P ∗(T ∗n − B̂n ≤ Tn − B̂n) = Gγ(Tn − B̂n) + op(1).

It follows that

p̃n := P ∗(p̂∗n ≤ p̂n) = P ∗(Gγ(T
∗
n − B̂∗n) ≤ Gγ(Tn − B̂n)) + op(1)

= P ∗(T ∗n − B̂∗n ≤ Tn − B̂n) + op(1)

because Gγ is continuous. We summarize this result in the following corollary.

Corollary 1.3.3 Under Assumptions 1.3.1, 1.3.1, and 1.3.2, p̃n = P ∗(T ∗n − B̂∗n ≤
Tn − B̂n) + op(1).

Theorem 1.3.2 shows that p̃n →d U[0,1] and hence is asymptotically valid. In view of

this, Corollary 1.3.3 shows that removing B̂n from Tn and computing a bootstrap p-value

based on the new statistic, Tn − B̂n, also solves the invalidity problem of the standard

bootstrap p-value, p̂n = P ∗(T ∗n ≤ Tn). Note that we do not require ξ2 = 0, i.e. B̂n − Bn

and B̂∗n − B̂n do not need to converge to zero.

When B̂n and B̂∗n are easy to compute, e.g., when they are available analytically as

functions of Dn and D∗n, respectively, Corollary 1.3.3 is useful as it avoids implementing

a double bootstrap. When this is not the case, i.e., when deriving B̂n and B̂∗n explicitly

is cumbersome or impossible, we may be able to estimate B̂n from the bootstrap and B̂∗n

from a double bootstrap. Corollary 1.3.3 then shows that the double bootstrap modified

p-value p̃n is a convenient alternative since it depends only on Tn, T
∗
n , and T ∗∗n . It is

important to note that none of these approaches requires the consistency of B̂n and B̂∗n.

1.3.5 A more general set of high-level conditions

We conclude this section by providing an alternative set of high-level conditions that

cover bootstrap methods for which T ∗n − B̂n has a different limiting distribution than

Tn − Bn. This may happen, for example, for the pairs bootstrap; see Section 1.2.1 and

Remark 1.3.6.

Assumption 1.3.1 holds with part (i) replaced by (i) T ∗n − B̂n
d∗→p ζ1, where ζ1 is

centered at zero and the cdf Jγ(u) = P (ζ1 ≤ u) is continuous and strictly increasing over

its support.

Under Assumption 1.3.5, T ∗n − B̂n does not replicate the distribution of Tn−Bn. This

is to be understood in the sense that there does not exist a P ∗-measurable term B̂n such

that T ∗n − B̂n has the same asymptotic distribution as Tn −Bn.
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An important generalization provided by Assumption 1.3.5 compared with Assump-

tion 1.3.1 is to allow for bootstrap methods where the ‘centering term’, say B∗n, depends

on the bootstrap data. That is, to allow cases where there is a random (with respect

to P ∗, i.e., depending on the bootstrap data) term B∗n such that T ∗n−B∗n
d∗→p ξ1 and hence

has the same asymptotic distribution as Tn−Bn. Clearly, this violates Assumption 1.3.1

unless B∗n − B̂n
p∗→p 0 (as in the ridge regression in Section 1.2.2). However, letting ζ1 be

such that B∗n − B̂n
d∗→p ζ1 − ξ1, then Assumption 1.3.5 covers the former case.

Remark 1.3.6 A leading example where T ∗n −B∗n
d∗→p ξ1 and hence has the same asymp-

totic distribution as Tn − Bn is the pairs bootstrap as in Section 1.2.1 for the model av-

eraging example. We study this case in more detail in Section 1.4.1.

The asymptotic distribution of the bootstrap p-value under Assumption 1.3.5 is given

in the following theorem. The proof is identical to that of Theorem 1.3.1, withGγ replaced

by Jγ, and hence omitted.

Theorem 1.3.4 If Assumptions 1.3.1 and 1.3.5 hold then p̂n →d Jγ(F
−1
ϕ (U[0,1])).

Theorem 1.3.4 implies that now P (p̂n ≤ u) → P (Jγ(F
−1
ϕ (U[0,1])) ≤ u) = Fϕ(J

−1
γ (u)) =:

H(u). Clearly, a plug-in approach to estimating this H(u) based on Gγ as described in

Section 1.3.2 would be invalid because Gγ ̸= Jγ in general. However, it follows straight-

forwardly by the same arguments as applied in Section 1.3.2 that a plug-in approach

based on Jγ will deliver an asymptotically valid plug-in modified p-value.

To implement an asymptotically valid double bootstrap modified p-value we consider

the following high-level condition.

Assumption 1.3.2 holds with part (i) replaced by (i) T ∗∗n − B̂∗n
d∗∗→p∗ ζ1, in probability,

where ζ1 is defined in Assumption 1.3.5.

Under Assumption 1.3.5, the second-level bootstrap statistic, T ∗∗n − B̂∗n, replicates the

distribution of the first-level statistic, T ∗n−B̂n. Thus, the second-level bootstrap p-value is

p̂∗n := P ∗∗(T ∗∗n ≤ T ∗n) = P ∗∗(T ∗∗n − B̂∗n ≤ T ∗n − B̂∗n) = Jγ(T
∗
n − B̂∗n) + op∗(1)

d∗→p Jγ(ξ1 − ξ2) = Jγ(F
−1
ϕ (U[0,1]))

under Assumption 1.3.5. Hence, the second-level bootstrap p-value has the same asymp-

totic distribution as the original bootstrap p-value. It follows that the double bootstrap

modified p-value, p̃n := Ĥn(p̂n) = P ∗(p̂∗n ≤ p̂n), is asymptotically valid, which is stated

next. The proof is essentially identical to that of Theorem 1.3.2 and hence omitted.

Theorem 1.3.5 Under Assumptions 1.3.1, 1.3.5, and 1.3.5, it holds that p̃n = Ĥn(p̂n) →d

U[0,1].
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Remark 1.3.7 Consider again the case with a random bootstrap centering term in Re-

mark 1.3.6, where B∗n − B̂n
d∗→p ζ1 − ξ1 such that T ∗n − B∗n

d∗→p ξ1. Within this setup, we

can consider double bootstrap methods such that, for a random (with respect to P ∗∗) term

B∗∗n we have T ∗∗n − B∗∗n
d∗∗→p∗ ξ1, in probability. Thus, the asymptotic distribution of the

second-level bootstrap statistic mimics that of the first-level statistic. When B∗∗n and ζ1

are such that B∗∗n − B̂∗n
d∗∗→p∗ ζ1− ξ1, in probability, then Assumption 1.3.5 is satisfied. As

in Remark 1.3.6 this setup allows us to cover the pairs bootstrap.

1.4 Examples continued

In this section we revisit our three leading examples from Section 1.2, where we argued

that standard boostrap inference is invalid due to the presence of bias. In this section we

show how to apply our general theory in each example. Again, we refer to Appendix A.2

for detailed derivations.

1.4.1 Inference after model averaging

Fixed regressor bootstrap. Extending the arguments in Section 1.2.1, we obtain

the following result.

Lemma 1.4.1 Under regularity conditions stated in Appendix A.2.1, Assumptions 1.3.1

and 1.3.1 are satisfied with (ξ1, ξ2)
′ ∼ N(0, V ), where V := (vij), i, j = 1, 2, is positive

definite and continuous in ω, σ2, and ΣWW := plimSWW .

By Lemma 1.4.1, the conditions of Theorem 1.3.1 hold with Gγ(u) = Φ(u/v11) and

Fϕ(u) = Φ(u/vd), where v
2
d = v11 + v22 − 2v12 > 0. Then Theorem 1.3.1 implies that the

standard bootstrap p-value satisfies p̂n →d Φ(mΦ−1(U[0,1])) with m2 := v2d/v
2. Because

ω is known and σ2,ΣWW are easily estimated, a consistent estimator m̂n →p m is avail-

able, and the plug-in approach in Corollary 1.3.2 can be implemented by considering the

modified p-value, p̃n = Φ(m̂−1n Φ−1(p̂n)). Inspection of the proofs shows that our modified

bootstrap approach is asymptotically valid whether δ is fixed or local-to-zero. In the for-

mer case, Bn is Op(n
1/2) rather than Op(1), implying that Bn diverges in probability and

β̃n is not even consistent for β. Despite this, the modified bootstrap p-value is asymp-

totically valid.

Alternatively, we can implement the double bootstrap as in Section 1.3.2. Specifically,

let

y∗∗ = xβ̂∗n + Zδ̂∗n + ε∗∗,

where ε∗∗|{Dn, D
∗
n} ∼ N(0, σ̂∗2n In), (β̂

∗
n, δ̂
∗′
n , σ̂

∗2
n ) is the OLS estimator obtained from the

full model estimated on the first-level bootstrap data, and D∗n = {y∗,W}. The double

bootstrap statistic is T ∗∗n := n1/2(β̃∗∗n − β̂∗n), where β̃
∗∗
n :=

∑M
m=1 ωmβ̃

∗∗
m,n with β̃∗∗m,n :=

S−1xx.Zm
Sxy∗∗.Zm defined as the double bootstrap OLS estimator from the mth model. The

double bootstrap modified p-value is then p̃n = P ∗(p̂∗n ≤ p̂n) with p̂
∗
n = P ∗∗(T ∗∗n ≤ T ∗n).
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Lemma 1.4.2 Under the conditions of Lemma 1.4.1, Assumption 1.3.2 holds with B̂∗n :=

Qnn
1/2δ̂∗n.

Lemma 1.4.2 shows that Assumption 1.3.2 is verified in this example. The asymptotic

validity of the double bootstrap modified p-value now follows from Lemmas 1.4.1 and 1.4.2

and Theorem 1.3.2.

Pairs bootstrap. For the pairs bootstrap we verify the high-level conditions in Sec-

tion 1.3.5. To simplify the discussion we consider the case with scalar zt in (1.2.1) and

where we “average” over only one model (M = 1), which is the simplest model in which

zt is omitted from the regression. That is, we estimate β by regression of y on x, i.e., β̃n =

S−1xx Sxy. In this special case, Tn−Bn →d N(0, v2) with v2 = σ2Σ−1xx and Bn = S−1xx Sxzn
1/2δ.

Lemma 1.4.3 Under regularity conditions stated in Appendix A.2.1, it holds that T ∗n −
B̂n

d∗→p N(0, v2 + κ2), where B̂n := S−1xx Sxzn
1/2δ̂n and κ2 := dr(δ)

′Σrdr(δ) with dr(δ) :=

δ(Σ−1xx ,−Σ−2xxΣxz)
′.

Notice that, in contrast to the FRB, the asymptotic variance of T ∗n fails to replicate

that of Tn because of the term κ2 > 0. This implies that the methodology developed

in Theorem 1.3.1 and its corollaries no longer applies. Instead we can apply the the-

ory of Section 1.3.5. In particular, Lemma 1.4.3 shows that Assumption 1.3.5(i) holds

in this case with ζ1 ∼ N(0, v2 + κ2). Lemma 1.4.3 also shows that B̂n is the same for

the pairs bootstrap and the FRB, such that Lemma 1.4.1 shows that Assumptions 1.3.1

and 1.3.1(ii) are verified. This implies that Theorem 1.3.4 holds for this example. Using

similar arguments, it can be shown that Assumption 1.3.5 also holds for this example,

which would imply that the double bootstrap p-values are asymptotically uniformly dis-

tributed.

Under local alternatives of the form β0 = β̄+an−1/2, where β̄ is the value under the null

(Section 1.3.3), the asymptotic local power function for the modified p-value is given by

Φ(Φ−1(α)−a/vd); see Theorem 1.3.3. It is not difficult to verify that this is the same power

function as that obtained from a test based directly on β̂n from the full model (1.2.1).

1.4.2 Ridge regression

To complete the example in Section 1.2.2, we can proceed as in the previous example.

Lemma 1.4.4 Under the null hypotheses and the regularity conditions stated in Ap-

pendix A.2.2, Assumptions 1.3.1 and 1.3.1 are satisfied with (ξ1, ξ2)
′ ∼ N(0, V ), where

V := (vij), i, j = 1, 2, is positive definite and continuous in c0, σ
2, and Σxx.

As in Section 1.4.1, Lemma 1.4.4 and Theorem 1.3.1 imply that the standard bootstrap

p-value satisfies p̂n →d Φ(mΦ−1(U[0,1])), where we now havem2 = (g′Σ̃−1xxΣxxΣ̃
−1
xx g)

−1g′Σ−1xx g.

Note that this result holds irrespectively of θ being fixed or local to zero. Thus, the
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bootstrap is invalid unless c0 = 0 which implies m = 1. For the plug-in method, a sim-

ple consistent estimator of m is given by m̂2
n := (g′S̃−1xx SxxS̃

−1
xx g)

−1g′S−1xx g, and inference

based on the plug-in modified p-value p̃n = Φ(m̂−1n Φ−1(p̂n)) is then asymptotically valid

by Corollary 1.3.2.

To implement the double bootstrap method, we can draw the double bootstrap sample

{y∗∗t , x∗∗t ; t = 1, . . . , n} as i.i.d. from {y∗t , x∗t ; t = 1, . . . , n}. Accordingly, the second-level

bootstrap ridge estimator is θ̃∗∗n := S̃−1x∗∗x∗∗Sx∗∗y∗∗ with associated test statistic T ∗∗n :=

n1/2g′(θ̃∗∗n − θ̂∗n), which is centered at the first-level bootstrap OLS estimator, θ̂∗n. It is

straightforward to show that, without additional conditions, Assumption 1.3.2 holds.

Lemma 1.4.5 Under the conditions of Lemma 1.4.4, Assumption 1.3.2 holds with B̂∗n :=

−cnn−1/2g′S̃−1x∗x∗ θ̂∗n.

Validity of the double bootstrap modified p-value p̃n = P ∗(p̂∗n ≤ p̂n) now follows by

application of Theorem 1.3.2.

1.4.3 Nonparametric regression

Again, we complete the example in Section 1.2.3 by proceeding as in the previous exam-

ples.

Lemma 1.4.6 Under regularity conditions stated in Appendix A.2.3, Assumptions 1.3.1

and 1.3.1 are satisfied with (ξ1, ξ2)
′ ∼ N(0, V ), where V := (vij), i, j = 1, 2, is positive

definite and continuous in σ2 and the kernel function.

As before, Lemma 1.4.6 and Theorem 1.3.1 imply that the standard bootstrap p-value

satisfies p̂n →d Φ(mΦ−1(U[0,1])), where we now have m2 := 4+(
∫
K2(u)du)−1(

∫
(
∫
K(s−

u)K(s)ds)2du − 4
∫
K(u)

∫
K(u − s)K(s)dsdu). Thus, in this example, m need not be

estimated because it is observed once K is chosen. Therefore, valid inference is feasible

with the modified p-value p̃n = H(p̂n) = Φ(m−1Φ−1(p̂n)); see Corollary 1.3.1.

We can also apply a double bootstrap modification. Let y∗∗t = β̂∗h(xt) + ε∗∗t , t =

1, . . . , n, where ε∗∗t |{Dn, D
∗
n} ∼ i.i.d.N(0, σ̂∗2n ) with D∗n := {y∗t , t = 1, . . . , n} and σ̂∗2n

denoting the residual variance from the first-level bootstrap data. The double bootstrap

analogue of Tn is T ∗∗n := (nh)1/2(β̂∗∗h (x) − β̂∗h(x)), where β̂
∗∗
h (x) := (nh)−1

∑n
t=1 kty

∗∗
t .

This can be decomposed as T ∗∗n = ξ∗∗1,n+ B̂
∗
n, where B̂

∗
n := (nh)1/2((nh)−1

∑n
t=1 ktβ̂

∗
h(xt)−

β̂∗h(x)). Unfortunately, although ξ∗∗1,n satisfies Assumption 1.3.2(i), B̂∗n does not satisfy

Assumption 1.3.2(ii). The reason is that B̂∗n − B̂n = ξ∗2,n + B̂2,n − B̂n, where ξ
∗
2,n satisfies

Assumption 1.3.2(ii), but B̂2,n := (nh)−1
∑n

t=1 ktB̂n(xt) is a smoothed version of B̂n

(evaluated at xt) and although B̂2,n− B̂n is mean zero it is not op(1). However, B̂2,n− B̂n

is observed, so this is easily corrected by defining T̄ ∗∗n := T ∗∗n − (B̂2,n − B̂n). Then we

have the following result.
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Lemma 1.4.7 Under the conditions of Lemma 1.4.6, Assumption 1.3.2 holds with T ∗∗n

and B̂∗n replaced by T̄ ∗∗n and B̄∗n := B̂∗n − (B̂2,n − B̂n), respectively.

The validity of the double bootstrap modified p-value p̃n = P ∗(p̂∗n ≤ p̂n), where

p̂∗n := P ∗∗(T̄ ∗∗n ≤ T ∗n), follows from Lemma 1.4.7 and Theorem 1.3.2. This in turn implies

that confidence intervals based on the double bootstrap are asymptotically valid; see also

Remark 1.3.4. We note that Hall and Horowitz (2013) also proposed, without theory, a

version of their calibration method based on the double bootstrap. Our double bootstrap-

based method for confidence intervals corresponds to their steps 1–5, and where we need

a correction they have instead a step 6 in which they average over a grid of x.

Finally, under local alternatives of the form β0(x) = β̄ + an−2/5, where β̄ is the value

under the null (Section 1.3.3), the asymptotic local power function for the modified p-

value is given by Φ(Φ−1(α)−a/vd); see Theorem 1.3.3. Alternatively, we could consider a

“bias-free” test based on undersmoothing; that is using a bandwidth h satisfying nh5 → 0

such that Bn → 0 and inference can be based on quantiles of ξ1 ∼ N(0, v211). In contrast

to our procedure, however, such a test has only trivial power against β̄ + an−2/5 because

(nh)1/2an−2/5 → 0.

1.5 Concluding remarks

In this paper, we have shown that in statistical problems involving bias terms that can-

not be estimated, the bootstrap can be modified to provide asymptotically valid infer-

ence. Intuitively, the main idea is the following: in some important cases, the bootstrap

can be used to ‘debias’ a statistic whose bias is non-negligible, but when doing so ad-

ditional ‘noise’ is injected. This additional noise does not vanish because the bias can-

not be consistently estimated, but it can be handled either by a ‘plug-in’ method or by

an additional (i.e., double) bootstrap layer. Specifically, our solution is simple and in-

volves (i) focusing on the bootstrap p-value; (ii) estimating its asymptotic distribution;

(iii) mapping the original (invalid) p-value into a new (valid) p-value using the prepiv-

oting approach. These steps are easy to implement in practice and we provide sufficient

conditions for asymptotic validity of the associated tests and confidence intervals.

Our results can be generalized in several directions. For instance, there is a growing

literature where inference on a parameter of interest is combined with some auxiliary in-

formation in the form of a bound on the bias of the estimator in question. These bounds

appear, e.g., in Oster (2019) and Li and Müller (2021). It is of interest to investigate

how our analysis can be extended in order to incorporate such bounds. Other possible

extensions include non-ergodic problems, large-dimensional models, and multivariate es-

timators or statistics. All these extensions are left for future research.
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Chapter 2

Improved Inference for

Nonparametric Regression and

Regression-Discontinuity Designs

(written with Giuseppe Cavaliere, Śılvia Gonçalves and Morten
Ørregaard Nielsen)

2.1 Introduction

Nonparametric regression for the analysis of (possibly) non-linear economic data have a

long tradition. This class of models has the appealing property of relaxing the assumption

of linearity of the conditional expectation function of the dependent variable without the

need of imposing any parametric structure on its functional form. One of the most im-

portant applications of nonparametric regression is the Regression-Discontinuity Design

(RDD); a popular tool for the analysis of quasi-experimental phenomena. On the one

hand, RDDs have proven to be a reliable method for applied researchers (see, e.g., Black,

1990; Angrist and Lavy, 1999; and Chay et al., 2005), but on the other hand, method-

ological challenges have raised the attention of theoretical research (see, e.g., Hahn et al.,

2001; Imbens and Kalyanaraman, 2012; Calonico et al., 2014; and Imbens and Lemieux,

2008, for a detailed review).

One of the main methodological issues in estimating (possibly) non-linear conditional

expectations is that the popular choice of the local polynomial estimator – despite be-

ing consistent – is asymptotically biased when implemented with a mean-squared-error-

minimizing bandwidth, and this poses a crucial challenge for inference. One possibility to

deal with such asymptotic bias is the use of undersmoothing bandwidths, for which the

bias term is asymptotically negligible. However, this implies inefficiency of the local poly-

nomial estimator and is in contrast with most bandwidth selectors, which typically tend to

pick “large” bandwidths; see Calonico et al. (2014) for a detailed discussion. Another way

to deal with the asymptotic bias is direct bias estimation, which generally involves local
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polynomial estimation of higher-order derivatives of the conditional expectation function.

Direct bias estimation has generally proven to be outperformed by undersmoothing tech-

niques when constructing confidence bands for kernel-based estimators (see Hall, 1992,

1993). However, recent important contributions by Calonico et al. (2014, 2018) has proven

that proper studentizations of the test statistic to appropriately account for the variabil-

ity of the bias estimator drastically improves the performance of “direct” bias correction.

The bootstrap is generally considered a useful tool for bias correction. However,

invalidity of “standard” bootstrap methods for the estimation of smooth regression curves

is a well-known issue when dealing with kernel-based estimators. Such invalidity is due

to the fact that the bootstrap test statistic, say T ∗n , is not able to mimic the asymptotic

bias of the local polynomial estimator when a “large” bandwidth is considered, resulting

in an asymptotic distribution which is random in the limit. Other than undersmoothing,

which makes the asymptotic bias negligible both for the asymptotic and the bootstrap

statistic, the literature on nonparametric regression has explored various possibilities to

remove randomness in the limit distribution of T ∗n in order to restore “standard” bootstrap

validity. Härdle and Bowman (1988) show the validity of bootstrap confidence bands

based on a version of T ∗n which is centered at a consistent estimator of the asymptotic

bias B. Härdle and Marron (1991) propose a fixed-regressor bootstrap in which the

conditional expectation of the bootstrap dependent variable is an oversmoothed version

of the local polynomial estimator, guaranteeing consistency of the bootstrap bias to B

and standard bootstrap validity. However, both these approaches require calibration of

two different bandwidths and suffer from undercoverage in finite samples. An approach

more related to ours is that considered by Hall and Horowitz (2013), which focuses on

an asymptotic theory-based confidence interval and applies the bootstrap to correct its

coverage probability. However, their approach is asymptotically conservative and only

over a subset of the support of x that does not include boundary points.

We propose a novel bootstrap-based approach to obtain asymptotically valid (unbi-

ased) inference in nonparametric regression and RDD, which does not involve neither un-

dersmoothing nor direct bias estimation. Our method is based on the concept of prepiv-

oting, originally proposed by Beran (1987, 1988) to deliver asymptotic refinements and

recently considered by Cavaliere et al. (2024) in the context of asymptotically biased es-

timators. The idea of prepivoting is the following. Even if the bias of the bootstrap test

statistic does not converge in probability to the asymptotic bias, thus implying invalidity

of the bootstrap using “standard” arguments, the distribution of the bootstrap p-value

often does not depend on the original bias, but only on some nuisance parameters for

which consistent estimation is possible. In such cases, the distribution of the bootstrap

p-value is not uniform, not even for large samples (thus motivating the need for “non-

standard” bootstrap algorithms), but its cdf can be uniformly estimated; see Cavaliere et

al. (2024). We show that valid two-sided confidence intervals (CIs) can therefore be ob-

34



tained by replacing the nominal levels 1− α/2 and α/2, α ∈ (0, 1), in “standard” boot-

strap CIs, with the inverse of such a uniformly consistent estimator evaluated at 1−α/2

and α/2. Specifically, we present two bootstrap algorithms, which we label the local poly-

nomial (LP) and fixed-local (FL) bootstraps, that both deliver CIs with asymptotically

correct coverage through prepivoting. Of course, even though we restrict our attention

to these two algorithms, the application of prepivoting is not exclusive to them.

In the context of estimation of the conditional expectation at a fixed point x of the de-

pendent variable in a bivariate, cross-sectional dataset, the LP bootstrap is based on the

commonly considered fixed-regressor wild bootstrap algorithm in which the conditional

expectation (conditionally on the original data) of the bootstrap dependent variable is a

different local polynomial estimator at each observation point. This or analogous boot-

strap algorithms are widely considered in the statistics literature; see, for instance, in

Härdle and Bowman (1988), Härdle and Marron (1991) and Hall and Horowitz (2013).

We show that standard bootstrap validity does not hold in this setup when a “large”

bandwidth is selected and propose prepivoting as a possible solution. Interestingly, we

show that “standard” prepivoting (i.e., as presented in Cavaliere et al., 2024) is not suffi-

cient to delivier valid confidence intervals when x is a boundary point. Indeed, we prove

that in such cases the large-sample distribution of the bootstrap p-value still depends on

the asymptotic bias. Therefore, we propose a “modified” prepivoting approach based on

a simple modification of the bootstrap test statistic involving known sample quantities.

This modification ensures that the large-sample distribution of the bootstrap p-value is

not a function of the asymptotic bias. Crucially, the “modified” prepivoting approach is

valid both for interior and boundary points.

The overall idea of the FL bootstrap is similar, but the bootstrap conditional expecta-

tion function is based on a single Taylor series approximation of the original conditional

expectation at x, where the coefficients of the Taylor series are estimated via local poly-

nomial estimation. If this local polynomial order is larger than that considered to derive

the original test statistic, we show that the bootstrap bias is not consistent for the orig-

inal bias, but it does allow the application of “standard” prepivoting without the need

for any modification, both for interior and boundary points.

Our contribution to the literature is threefold. First, we show that bootstrap validity

can be restored in the context of local polynomial estimation of regression curves without

the need of undersmoothing or direct bias correction, via the use of prepivoting for the

LP and FL bootstrap algorithms. Second, we compare the efficiency properties of the two

bootstrap methods. Finally, we show that the FL bootstrap-based prepivoted CIs are

asymptotically equivalent to those obtained via robust bias correction (RBC), the leading

approach in the literature proposed by Calonico et al. (2014, 2018). By combining the

second and the third contribution, we show that the LP bootstrap-based prepivoted CIs

are asymptotically more efficient than those obtained through RBC and are about 20%
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shorter.

The remainder of this paper is organized as follows. In Section 2, we describe the idea

of prepivoting in nonparametric regression. In Section 3, we first present the estimators

and review the asymptotic theory. We then present the LP and FL bootstrap algorithms

and formalize the validity of their prepivoted CIs. We conclude the section by compar-

ing their efficiency and relating them with the RBC approach. In Section 4 we show the

applicability of our method to (sharp) RDD. Finally, in Section 5 we assess the perfor-

mance of our methods in finite samples via the results of Monte Carlo simulations, and

Section 6 concludes. All technical derivations are included in the Appendix.

Notation

Throughout this chapter, the notation ∼ indicates equality in distribution. For instance,

Z ∼ N(0, 1) means that Z is distributed as a standard normal random variable. We write

‘x := y’ and ‘y =: x’ to mean that x is defined by y. The standard Gaussian cumulative

distribution function (cdf) is denoted by Φ; U[0,1] is the uniform distribution on [0, 1], and

I{·} is the indicator function. If F is a cdf, F−1 denotes the right-continuous generalized

inverse, i.e., F−1(u) := sup{v ∈ R : F (v) ≤ u}, u ∈ R. Unless specified otherwise, all

limits are for n → ∞. To define a matrix A we write A := (aij) meaning that aij is the

(i, j)-th element of A, and if A is a variance matrix we use the convention that aii = a2i .

If f0 and f1 are a left-continuous and a right-continuous function, respectively, we write

f0(0−) for limx↑0 f0(x) and f1(0+) for limx↓0 f1(x).

For a bootstrap sequence, say Y ∗n , we use Y ∗n
p∗→p 0, or equivalently Y ∗n

p∗→ 0, in

probability, to mean that, for any ϵ > 0, P ∗(|Y ∗n | > ϵ) →p 0, where P ∗ denotes the

probability measure conditional on the original data Dn. An equivalent notation is Y ∗n =

op∗(1) (where we omit the qualification “in probability” for brevity). Similarly, we use

Y ∗n
d∗→p ξ, or equivalently Y

∗
n

d∗→ ξ, in probability, to mean that, for all continuity points

u ∈ R of the cdf of ξ, say G(u) := P (ξ ≤ u), it holds that P ∗(Y ∗n ≤ u)−G(u) →p 0.

2.2 Prepivoting in Nonparametric Regression

We consider the problem of inference on an unknown smooth function g at a fixed point

x. In a standard nonparametric regression, g(x) is defined as the conditional expectation

E [yi|xi = x] for an observed bivariate random sample Dn := {(yi, xi) : i = 1, ..., n}.
Suppose a consistent estimator ĝn(x) = ĝn(x;h,Dn, K) – indexed by a bandwidth h =

h(n) > 0 and a kernel function K – of g(x) exists, a popular choice for ĝn(x) being

a local approximation of g(x) to a polynomial of order p. Inference based on ĝn(x) is

typically challenging due to the presence of an asymptotic bias. For instance, letting

Tn :=
√
nh(ĝn(x)− g(x)), the standard confidence interval

CIus :=
[
ĝn(x)− (nh)−1/2v1nΦ

−1(1− α/2), ĝn(x)− (nh)−1/2v1nΦ
−1(α/2)

]
(2.2.1)
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is such that P (g(x) ∈ CIus) −→ 1− α, for some α ∈ (0, 1), if and only if the condition

v−11n Tn
d−→ N(0, 1) (2.2.2)

holds. However, it is typically the case that (2.2.2) is only satisfied under “undersmooth-

ing” choices of the sequence of bandwidths h – which the label “us” in (2.2.1) refers to.

Unfortunately, most bandwidth selectors tend to opt for choices of h which are larger

than the undersmoothing bandwidths (see Calonico et al., 2014, for a detailed discussion

on the issue), leading to

v−11n Tn
d−→ N(v−11 B, 1) (2.2.3)

where v1 is such that v1n = v1 + op(1) and B = B(x, g(p+1)(x), K) is an asymptotic bias

with g(p+1) denoting the (p+ 1)-th order derivative of g.

We propose valid confidence intervals based on the bootstrap. Bootstrap inference

in the context of nonparametric regression is challenging, as the bias of the bootstrap

estimator is typically not able to mimic the behavior of the “true” bias B, not even

asymptotically; see, e.g., Härdle and Marron (1991). To see why, let D∗n := {(y∗i , x∗i ) : i =
1, ..., n} be a bootstrap sample and ĝ∗n(x) = ĝn(x;h,D

∗
n, K) be the associated bootstrap

estimator. A natural candidate for a bootstrap confidence interval would then be:

CIb,us :=
[
ĝn(x)− (nh)−1/2L̂−1n (1− α/2), ĝn(x)− (nh)−1/2L̂−1n (α/2)

]
(2.2.4)

where L̂n(u) := P∗ (T ∗n ≤ u) with T ∗n :=
√
nh (ĝ∗n(x)− ĝn(x)). Similarly to CIus, also

CIb,us delivers asymptotically correct coverage when h converges to zero sufficiently fast,

ensuring that

v−11n T
∗
n

d∗−→p N(0, 1) (2.2.5)

so that the bootstrap is said to be valid through standard arguments. On the contrary,

when a “large” bandwidth is selected, letting ξ∗1n =
√
nh (ĝ∗n(x)− E∗ [ĝ∗n(x)]) and B̂n :=√

nh(E∗[ĝ∗n(x)]− ĝn(x)), we have that v
−1
1n ξ

∗
1n

d∗−→p N(0, 1) but B̂n ̸= B+ op(1). As shown

in Section 3, B̂n actually converges in distribution to a Gaussian random variable with

variance v22 > 0 and might not even be centered at B. Therefore, the distribution of T ∗n is

random in the limit and the bootstrap cannot be justified through standard arguments,

see Cavaliere and Georgiev (2020).

We here show that the bootstrap can be used to deliver asymptotically valid confi-

dence intervals even when a “large” bandwidth is selected, without an explicit bias cor-

rection. Our approach is based on Beran’s (1987, 1988) prepivoting idea, recently dis-

cussed in Cavaliere et al. (2024). We show conditions under which a simple change of

the significance levels in (2.2.4) is sufficient to deliver confidence intervals with asymp-
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totically correct coverage. Specifically we propose the prepivoted confidence intervals:

C̃I :=
[
ĝn(x)− (nh)−1/2L̂−1n

(
Ĥ−1n (1− α/2)

)
, ĝn(x)− (nh)−1/2L̂−1n

(
Ĥ−1n (α/2)

)]
(2.2.6)

such that the values 1 − α/2 and α/2 in (2.2.4) are replaced by Ĥ−1n (1− α/2) and

Ĥ−1n (α/2), respectively, where Ĥn(u) is a uniformly consistent estimator of H(u), i.e. the

large-sample distribution function of the bootstrap p-value p̂n, where p̂n := P∗ (T ∗n ≤ Tn).

The intuition is the following. Even if the distributions of Tn and T ∗n depend on the

value of the unknown bias term B, we find conditions under which H does not. Therefore,

even if H is not uniform (condition which holds if the bootstrap is valid using “standard”

arguments), it only depends on nuisance parameters which are relatively easy to estimate,

with their estimation not requiring the calibration of additional tuning tools. Therefore,

P
(
g(x) ∈ C̃I

)
= P

(
L̂−1n

(
Ĥ−1n (α/2)

)
≤ Tn ≤ L̂−1n

(
Ĥ−1n (1− α/2)

))
= P

(
Ĥ−1n (α/2) ≤ p̂n ≤ Ĥ−1n (1− α/2)

)
= P

(
α/2 ≤ Ĥn (p̂n) ≤ 1− α/2

)
−→ 1− α

where the convergence is given by the fact that uniform consistency of H̄(u) to H(u)

implies Ĥn (p̂n)
d−→ U[0,1]; see Cavaliere et al. (2024).

In the setup of nonparametric curve estimation, we find that a crucial condition for

H not to depend on B is that the large sample distribution of B̂n is centered at B.

We find that for some bootstrap DGPs and test statistics, this is not always the case

and show proper modifications of L̂n which allow such condition to be satisfied. In this

regards, notice that prepivoting does not restrict to a single specifications of D∗n and L̂n.

In Section 3 we implement prepivoting through two different procedures, namely the LP

and FL bootstraps, which indeed imply different specifications of D∗n and L̂n, and the

applicability of prepivoting to alternative bootstrap procedures is left for future research.

2.3 Main Results

In this section we show the main results of this paper. Specifically, in Section 3.1 we

introduce the considered DGP, the main assumptions and the estimator. In Section 3.2

and 3.3 we implement our prepivoted confidence intervals via two different bootstrap

methodology, the LP and FL bootstrap, respectively. In Section 3.4 we analyze the

efficiency properties of the prepivoted confidence intervals.

2.3.1 Review of asymptotic theory

Let Dn := {(yi, xi) : i = 1, ..., n} be a random sample from the model

yi = g (xi) + εi, i = 1, . . . , n,
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where E (εi|xi) = 0, V (εi|xi) =: σ2 (xi), xi is a random variable with bounded support

Sx := [a, b], (a, b) ∈ R2, and pdf f(x) such that f : Sx → (0,+∞), while g is a smooth

function such that g : Sx −→ R. We consider local polynomial estimation of g at a

fixed point x. For the seek of simplicity of exposition, we here make the normalization

[a, b] = [0, 1] and restrict to the most popular case of the local linear estimator, given by

ĝn (x) = e′1 (Z
′
xWxZx)

−1
Z ′xWxy,

where e′1 := (1, 0), y := (y1, ..., yn)
′, Z1x := (Z1x1, ..., Z1xn)

′, Z1xi := (1, (xi − x)/h))′ and

W (x) := diag(h−1K((x1 − x)/h), ..., h−1K((xn − x)/h)). Letting

wi(x) := e′1

(
Z ′1xWxZ1x

n

)−1
Z1xiK

(
xi − x

h

)
, (2.3.1)

we can rewrite ĝn(x) as

ĝn(x) =
1

nh

n∑
i=1

wi(x)yi,

We now focus on the asymptotic behavior of ĝn(x) when properly centered and scaled.

We provide results for both interior points and points on the boundary of the support of

x. Although these results are well-known in the literature, they are useful for deriving

our bootstrap results and hence we summarize them here.

We make the following assumptions.

Assumption 2.3.1 (i) (yi, xi) are i.i.d. such that E(ε4i |xi = x) < +∞; (ii) g : Sx −→ R
is three times continuously differentiable, and (iii) σ2(x) := V (yi|xi = x) is continuous

and bounded away from zero.

Assumption 2.3.2 The function K : R −→ [0,+∞) is a symmetric, continuous and

bounded function on (−1, 1) which equals zero outside the interval [−1, 1]. In addition,

we assume that K is a second-order kernel function such that
∫ 1

−1K (u) du = 1.

Assumption 2.3.3 The bandwidth h = h(n) is such that h −→ 0 as n −→ ∞ and nh5 −→ κ

for some κ ∈ [0,+∞).

Let Tn :=
√
nh (ĝn(x)− g(x)), note that we can decompose Tn into a “bias” and a

“variance” component,

Tn = Bn + ξ1n,

where

Bn =
1√
nh

n∑
i=1

wi(x)[g(xi)− g(x)] and ξ1n =
1√
nh

n∑
i=1

wi(x)εi.

The variance component ξ1n drives the asymptotic Gaussianity of Tn, whereas Bn is a

bias term that shifts this asymptotic distribution away from zero. Let Xn := (x1, ..., xn)
′

and v21n := V (ξ1n|Xn), then the following proposition holds.
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Proposition 2.3.1 Let Assumptions 1-3 hold, then:

v−11n ξ1n
d−→ N(0, 1).

2.3.2 LP bootstrap

Consider a fixed-regressor wild bootstrap DGP of the form:

y∗i = ĝn(xi) + ε∗i (2.3.2)

where ε∗i := ε̂ie
∗
i , such that ε̂i are the leave-one-out residuals ε̂i := yi− ĝn,−i(xi), and e

∗
i is

a iid random variable, conditionally on the original data, satisfying E∗[e∗i ] = 0, E∗[e∗2i ] = 1

and E∗[e∗4i ] < ∞. As for the asymptotic test statistic, we focus to the case in which the

bootstrap conditional expectation function is based on a local linear estimator. Note that

fixed-regressor bootstrap DGPs of this or similar forms have been widely adapted to the

problem of bootstrapping a kernel-based estimator in nonparametric regression; see, e.g.,

Härdle and Marron (1988), Härdle and Bowman (1991) and Hall and Horowitz (2013).

The local linear bootstrap estimator is then:

ĝ∗n(x) := e′1(Z
′
1xWxZ1x)

−1(Z ′1xWxy
∗)

where y∗ := (y∗1, ..., y
∗
n)
′; moreover, we let T ∗n :=

√
nh (ĝ∗n(x)− ĝn(x)). It is well known

that standard bootstrap validity does not generally apply to this setup as T ∗n does not

mimic the asymptotic bias of Tn, making the confidence intervals (2.2.4) invalid unless

κ = 0. Indeed, by letting ĝn := (ĝn(x1), ..., ĝn(xn))
′, we have that the bootstrap bias

B̂n :=
√
nh (E∗ [ĝ∗n(x)]− ĝn(x)) =

√
nh
[
e′1(Z

′
xWxZx)

−1(Z ′xWxĝn)− ĝn(x)
]

is such that T ∗n − B̂n is asymptotically Gaussian and centered at zero, with asymptotic

variance equal to the asymptotic variance of ξ1n, but B̂n−Bn ̸= op(1). We formalize the

first result in the following proposition.

Proposition 2.3.2 Let Assumptions 1-3 hold, then,

v−11,nξ
∗
1n := v−11,n(T

∗
n − B̂n)

d∗−→p N(0, 1).

In order to analyze the asymptotic behavior of B̂n−Bn, we note that also B̂n can be

split into a “bias” and “variance” component. Specifically, we write:

B̂n =
1√
nh

n∑
i=1

wi(x)

(
1

nh

n∑
j=1

wj(xi)g(xj)−
1

nh

n∑
i=1

wi(x)g(xi)

)

+
1√
nh

n∑
i=1

wi(x)

(
1

nh

n∑
j=1

wj(xi)εj −
1

nh

n∑
i=1

wi(x)εi

)
=: B2n + ξ2n
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B2n is a stochastic term driving the expectation of B̂n, whereas ξ2n is an asymptotically

Gaussian random variable centered at zero. Intuitively, if B2n converged in probability to

B := plimn−→∞Bn and ξ2n was asymptotically negligible, then standard bootstrap valid-

ity would apply and the confidence intervals in (2.2.4) would deliver asymptotically cor-

rect coverage. In this specific setup, we note that both such conditions can be violated,

justifying the need for alternative implementations of the bootstrap. We start by consid-

ering the behavior of ξ2n. Let ξn := (ξ1n, ξ2n)
′ and VLP,n := V(ξn|Xn) = (vij,n), then the

following proposition holds.

Proposition 2.3.3 Let Assumptions 1-3 hold, then: (i)

V
−1/2
LP,n ξn

d−→ N(0, I2);

(ii) moreover, if x is an interior point,

VLP,n
p−→ VLP ;

whereas if x is a boundary point,

VLP,n
p−→ V̈LP

where VLP := (vij,LP ) and V̈LP := (v̈ij,LP ), with v2,LP , v̈2,LP > 0, are defined in Appendix

B.

Remark 2.3.1 Proposition 2.3.3 shows a joint convergence in distribution argument for

ξn, making a distinction between interior and boundary points (we here focus on left-

boundary points for simplicity of exposition, though the analysis for right-boundary points

is analogous). In Proposition 2.3.3, as well as in the results below, we refer to boundary

points as left-boundary points, i.e. with x = 0, for simplicity of exposition, though the

conclusions are equivalent for the case x = 1.

Note that, even if the limit of VLP,n changes depending on the location of x, there exist

estimators such that they adaptively converge in probability to VLP when x is an interior

point and to V̈LP when x is a boundary point. Such estimators are typically based on a

feasible version of VLP,n, which replaces the unknown quantity σ2(x) by some functions

of the estimated residuals; see, e.g., Calonico et al. (2018) and Bartalotti (2019). For

instance, let V̂LP,n := (v̂ij,LP,n), where

V̂LP,n :=
1

nh

n∑
i=1

(
wi(x) wi(x)w̃i(x)

wi(x)w̃i(x) w̃2
i (x)

)
ε̂2i , (2.3.3)

and w̃(xi) := (nh)−1
∑n

j=1(wj(x)wi(xj)− wi(x)). Then, V̂LP,n − VLP,n = op(1).

We now consider B2n and show that it may not converge in probability to the same

limit as Bn. To motivate this statement, note that a standard result in nonparametric
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regression states that

Bn = BAT,n + op(1), BAT,n :=
√
nh5

g′′(x)

2
Cn (2.3.4)

where Cn = Cn(x) := (nh)−1
∑n

i=1wi(x)((xi − x)/h)2. A similar expansion can be made

for B2n, for which we note that:

B2n = BLP,n + op(1), BLP,n :=
√
nh5

g′′(x)

2
C2n (2.3.5)

where C2n = C2n(x) := (nh)−1
∑n

i=1wi(x)Cn(xi). Hence, the limit of B2n − Bn is driven

by the limit of C2n −Cn. Crucially, we find that such limit depends on the distance of x

to the boundaries of Sx, as formalized by the following proposition.

Proposition 2.3.4 Let Assumptions 1-3 hold, then: (i) if x is an interior point,

C2n − Cn = op(1) ⇒ B2n −Bn = op(1)

(ii) if x is a boundary point,

C2n − Cn ̸= op(1) ⇒ B2n −Bn = A+ op(1)

where A :=
√
κg

′′(0+)
2

(C2 − C) such that C2 := plimn−→∞C2n and C := plimn−→∞Cn are

defined in Appendix B.

Table 2.1: Limits of Cn, C2n and Cn/C2n for different choices of K.

Interior Boundary

K C C2 C/C2 C C2 C/C2

Triangular 0.1667 0.1667 1.0000 -0.1000 -0.0710 1.4082
Uniform 0.3333 0.3333 1.0000 -0.1667 -0.1389 1.2000
Epanechnikov 0.2000 0.2000 1.0000 -0.1158 -0.0853 1.3571
Biweight 0.1429 0.1429 1.0000 -0.0886 -0.0624 1.4211
Triweight 0.1111 0.1111 1.0000 -0.0718 -0.0493 1.4551

Propositions 2.3.3 and 2.3.4 show the two limiting sources of the invalidity of the

“standard” confidence intervals CIb,us. Standard invalidity of CIb,us can be view through

the lenses of the distribution of the bootstrap p-value p̂n := P (T ∗n ≤ Tn). Indeed, to allow

CIb,us to be valid, the bootstrap p-value should be uniformly distributed:

P (g(x) ∈ CIb,us) = P (α/2 ≤ p̂n ≤ 1− α/2) −→ 1− α, ∀α ∈ (0, 1) ⇔ p̂n
d−→ U[0,1]

However, this is not true due to the results in Propositions 2.3.3 and 2.3.4. The limit

distribution of p̂n is derived as follows.
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Proposition 2.3.5 Let Assumptions 1-3 hold, then: (i) if x is an interior point,

p̂n
d−→ Φ

(
mLPΦ

−1 (U[0,1]

))
(2.3.6)

where mLP =
√
v21,LP + v22,LP − 2v12,LP/v1,LP ; and (ii) if x is a boundary point,

p̂n
d−→ Φ

(
äLP + m̈LPΦ

−1 (U[0,1]

))
(2.3.7)

where äLP = A/v̈1,LP and m̈LP := v̈d,LP/v̈1,LP :=
√
v̈21,LP + v̈22,LP − 2v̈12,LP/v̈1,LP .

Proposition 2.3.5 shows that the bootstrap p-value would be uniformly distributed -

both for interior and boundary points - if and only if: (1) mLP = m̈LP = 1; and (2)

äLP = 0. We can see from Proposition 2.3.3 that (1) is violated because v2,LP , v̈2,LP > 0,

i.e., the bootstrap bias does not have a probability limit; moreover, (2) is violated because

the convolution term C2n entering the definition of BLP,n implies that äLP ̸= 0.

We here propose prepivoting as a way to restore bootstrap validity. Specifically, we

show that our prepivoted confidence intervals (2.2.6) are able to provide asymptotically

correct coverage without the need to directly estimate B and despite the invalidity sources

arising from Proposition 2.3.3 and 2.3.4. Additionally, the procedure does not require

additional tuning parameters. As depicted in Section 2, our approach is based on the

inversion of a uniformly consistent estimator the cdf of p̂n. We see that “standard”

prepivoting – i.e., as considered in Cavaliere et al. (2024) – can restore validity of the

bootstrap when (1) is not satisfied, but is not sufficient if invalidity arises from the

violation of condition (2). Therefore, it can only be applied for interior points in the sense

of Remark 2.3.1. However, as we will show below, a “modified” prepivoting approach can

be applied to restore validity without ex-ante knowledge about the location of x relatively

to the boundaries of its support.

We first consider the case in which x is an interior point. Proposition 2.3.5 implies that

P (p̂n ≤ u) −→ P
(
Φ
(
mLPΦ

−1 (U[0,1]

))
≤ u

)
= P

(
U[0,1] ≤ Φ

(
m−1LPΦ

−1 (u)
))

= Φ
(
m−1LPΦ

−1 (u)
)
=: H(u)

Therefore, even if the distribution of p̂n is not uniform because mLP ̸= 1, uniformity can

be retrieved by applying its cdf transform, i.e.:

H(p̂n)
d−→ U[0,1]

As depicted in Proposition 2.3.3, H does not depend on the value of B, but only on nui-

sance parameter for which consistent estimation is possible and does not involve calibra-

tion of additional tuning parameters; see (2.3.3). Hence, letting m̂n := (v̂21,LP,n+ v̂
2
2,LP,n−

2v̂12,LP,n)
1/2/v̂1,LP,n, a uniformly consistent estimator of H is

ĤLP,n(u) := Φ
(
m̂−1LP,nΦ

−1 (u)
)

(2.3.8)

Valid confidence intervals can thus be based on Ĥn, as stated in the following theorem.
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Theorem 2.3.1 Let Assumptions 1-3 hold and x be an interior point, then

P
(
g(x) ∈ C̃ILP

)
−→ 1− α, α ∈ (0, 1)

where C̃ILP is the prepivoted confidence interval in (2.2.6) with Ĥn = ĤLP,n and L̂n the

probability distribution (conditional on the data) of the LP bootstrap statistic T ∗n .

We now move to the case in which x is a boundary point. In this scenario, “standard”

prepivoting is not able to restore bootstrap validity as it cannot correct the source of in-

validity arising from the presence of äLP . In the following, we show how a “modified”

prepivoting approach, based on a simple modification of T ∗n , is able to provide asymptot-

ically correct confidence intervals. Crucially, the resulting confidence intervals are valid

both for interior and boundary points without ex-ante knowledge about the relative dis-

tance of x to the boundaries of its support.

To see how, we note that

äLP :=
A

v̈1,LP
=

plimn−→∞(BLP,n −BAT,n)

v̈1,LP
=

√
κg′′(0+)(C2 − C)

2v̈1,LP

Clearly, the fact that äLP depends on g′′ implies that also the cdf of p̂n will depend on

g′′, thus preventing “standard” prepivoting to avoid direct estimation of B to obtain

asymptotically valid confidence intervals. However, we note that, ∀x ∈ Sx:

BAT,n

BLP,n

=
Cn
C2n

=: Qn (2.3.9)

where Qn = Qn(x) is an observed quantity only depending on the observed K, h and Xn.

Moreover,

Qn = Q+ op(1) (2.3.10)

where Q = C/C2 = 1 if x is an interior point Q ̸= 1 if x is a boundary point. Since Qn is

observed, we can think of a modified bootstrap statistic being T ∗mod,n := QnT
∗
n . Clearly,

the decomposition of the bootstrap test statistic between a “bias” and a “variance”

component can also be applied to such modified bootstrap statistic, so that:

T ∗mod,n = B̂mod,n + ξ1,mod,n

where B̂mod,n := QnB̂n and ξ1,mod,n = Qnξ1n. We note that ξ1,mod,n preserves the property

of being an asymptotically Gaussian random variable centered at zero, whereas B̂mod,n

drives the bias of the modified bootstrap statistic. Crucially, by (2.3.4) and (2.3.5) we

have that:

B̂mod,n −Bn = QnBLP,n −BAT,n +Qnξ2n + op(1) =: ξ2,mod,n + op(1)

where this result is valid both for interior and boundary points. The asymptotic properties

of T ∗mod,n are summarized in the following proposition.
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Proposition 2.3.6 Let the conditions in Proposition 2.3.1, then ∀x ∈ Sx: (i)

(v1nQn)
−1(T ∗mod,n − B̂mod,n)

d∗−→p N(0, 1); (2.3.11)

and (ii)

B̂mod,n −Bn = ξ2,mod,n + op(1); (2.3.12)

(iii) moreover, by letting ξmod,n := (ξ1n, ξ2,mod,n)

V
−1/2
LP,mod,nξmod,n

d−→ N(0, I2) (2.3.13)

where VLP,mod,n := V[ξmod,n|Xn].

The first part of Proposition 2.3.6 shows that the modified bootstrap statistic is asymp-

totically a standard normal when properly studentized and centered; the result follows

directly from Proposition 2.3.2. The second part of the proposition formalizes the fact

that the bootstrap bias is asymptotically centered at the limit of Bn when the proposed

modification is applied, no matter the location of x relatively to the boundaries of its

support. Finally, the third part shows that the joint convergence argument of ξ1n and

the “variance” component of the bootstrap bias is preserved after the modification.

Intuitively, the asymptotic covariance matrix of ξmod,n is affected by the presence of

Qn. However, if x is an interior point, Qn = 1+op(1) implies that VLP,mod,n = VLP+op(1).

If, instead, x is a boundary point:

VLP,mod,n = V̈LP,mod + op(1); V̈LP,mod = (v̈ij,LP,mod) = diag(1, Q) · V̈LP · diag(1, Q)
(2.3.14)

Therefore, an adaptive estimator of the limit of Vn,mod takes the form:

V̂LP,mod,n := diag(1, Qn) · V̂LP,n · diag(1, Qn) (2.3.15)

where V̂LP,n is defined in (2.3.3). Then, the consistency result V̂LP,mod,n−VLP,mod,n = op(1)

follows directly from the fact that V̂LP,n − VLP,n = op(1).

By Proposition 2.3.6, one can intuitively obtain valid confidence intervals by applying

“standard” prepivoting to the modified statistic T ∗mod,n. To this purpose, let p̂mod,n :=

P∗(T ∗mod,n ≤ Tn), then the following proposition holds.

Proposition 2.3.7 Let Assumptions 1-3 hold, then: (i) if x is an interior point,

p̂mod,n
d−→ Φ

(
mLPΦ

−1 (U[0,1]

))
(2.3.16)

where mLP is defined in Proposition 2.3.5; and (ii) if x is a boundary point,

p̂mod,n
d−→ Φ

(
m̈LP,modΦ

−1 (U[0,1]

))
(2.3.17)

where m̈LP,mod := v̈d,LP,mod/v̈1,LP,mod :=
√
v̈21,LP,mod + v̈22,LP,mod − 2v̈12,LP,mod/Qv̈1,LP .
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Proposition 2.3.7 shows that, if one considers the modified p-value p̂mod,n, then the only

source of invalidity of the bootstrap arises from the presence of mLP and m̈LP,mod, which

are only functions of nuisance parameter not depending on higher order derivatives of g.

The existence of a consistent estimator of VLL,n, see (2.3.15), implies that a consistent

estimator of mLP and m̈LP,mod exists, such that it does not require ex-ante knowledge

on the location of x. Therefore, if we let Hmod(u) denote the limit of P (p̂mod,n ≤ u), a

uniformly consistent estimator of Hmod is

Ĥmod,n(u) := Φ
(
m̂−1LP,mod,nΦ

−1 (u)
)

(2.3.18)

where m̂2
LP,mod,n := (v̂21,mod,n + v̂22,mod,n − 2v̂12,mod,n)/Q

2
nv̂

2
1,n. And the LP bootstrap can

provide asymptotically correct coverage both for interior and boundary points thanks to

the following theorem.

Theorem 2.3.2 Let the conditions of Proposition 2.3.1 and x ∈ Sx, then

P
(
g(x) ∈ C̃ILP,mod

)
−→ 1− α, α ∈ (0, 1) (2.3.19)

where C̃ILP,mod is the prepivoted confidence interval in (2.2.6) with Ĥn = Ĥmod,n and

L̂n the probability distribution (conditionally on the data) of the modified LP bootstrap

statistic T ∗mod,n.

Remark 2.3.2 Note that our results can also be extended by allowing the LP bootstrap

DGP to be of the form y∗i = ǧn(xi) + ε∗i where ǧn(xi) is a local linear estimator adopting

a different bandwidth with respect to h, say λ = λ(n) with λ −→ 0 as n −→ ∞. By taking

λ to be sufficiently larger than h, then ξ2n would be asymptotically negligible. Standard

bootstrap validity would then follow when x is an interior point, whereas a correction

would still be needed when x is a boundary point. Hardle and Marron (1991) implemented

a similar procedure, without the use of prepivoting, remarking significant distortions in

finite samples. Prepivoting could then be relevantly applied to get better performances in

finite samples through the presence of m̂mod,n, which would asymptotically, but not for

small n, be equal to 1.

2.4 Comparison with RBC methods

In this section, we compare the LP bootstrap-based prepivoted CIs presented in Section

3 to the RBC CIs proposed by Calonico et al. (2014, 2018). Specifically, in Section 4.1

we show that prepivoting can be applied to an alternative bootstrap DGP – which we

label the fixed-local (FL) bootstrap – delivering CIs with asymptotically correct cover-

age under the same assumptions as those exploited in Section 3.1 and without the need

for a correction specifically for boundary points. Note that Section 4.1 only includes the
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main technical result about the validity of the FL prepivoted CIs, whereas all the remain-

ing details can be found in Appendix B. In Section 4.2, we show that the CIs presented

in Section 4.1 are asymptotically equivalent to the RBC CIs. Finally, in Section 4.3, we

compare the properties of the FL and LP bootstrap-based CIs in terms of asymptotic effi-

ciency, showing that the LP bootstrap provides asymptotically shorter confidence lengths

for all the most commonly used kernel functions.

2.4.1 FL bootstrap

Let us consider the alternative fixed-regressor wild bootstrap DGP

g̃n(τ) = β̂0,n(x) + β̂1,n(x)(τ − x) +
1

2
β̂2,n(x)(τ − x)2

where β̂(x) := (β̂0,n(x), β̂1,n(x), β̂2,n(x))
′ are coefficients estimated via local quadratic

regression at the fixed point x, i.e.

β̂n(x) = argmin
(b0,b1,b2)∈R3

n∑
i=1

(
yi − b0 − (xi − x)b1 − (xi − x)2b2

)
K

(
xi − x

h

)
Then, bootstrap data are generated as

y∗i = g̃n(xi) + ε∗i (2.4.1)

where ε∗i := ε̃ie
∗
i where ε̃i are the leave-one-out residuals ε̃i := yi− g̃n,−i(xi) and e∗i is a iid

random variable, conditionally on the original data, satisfying E∗[e∗i ] = 0 and E∗[e∗2i ] = 1.

Similar bootstrap DGPs have been considered in the recent literature, specifically in the

context of sharp and fuzzy RDDs in Bartalotti et al. (2017) and He and Bartalotti (2020).

Notice that (2.4.1) can be viewed as a “fixed” bootstrap DGP, in the sense that the

bootstrap conditional expectation E∗[y∗i |xi] = E∗[y∗i ] is based on a second-order Taylor

approximation of the original conditional expectation g(τ) = E[yi|xi = τ ] around the

fixed point x. This differs from the LP bootstrap, whose conditional expectation is based

on different Taylor approximations of the original conditional expectations around each

point xi. Other than being computationally faster, this property of the FL bootstrap has

the appealing advantage of not involving convolutions of the observed quantities, therefore

bypassing the boundary issues shown in Section 3.2. Note, moreover, that we restrict

here to the case in which g̃ is driven by coefficient estimators of local quadratic order for

simplicity, but any order greater than that considered for deriving the test statistic can

be applied if the latter is odd.

Let Tn be defined as in Section 3.1 and ĝ∗n(x) be a local linear estimator applied to

the bootstrap sample generated as (2.4.1). The FL bootstrap analogue of Tn becomes

T ∗n =
√
nh(ĝ∗n(x)− g̃n(x)), where

T ∗n = B̃n + ξ∗1n
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such that B̃n := (nh)−1/2
∑n

i=1w(xi) (g̃n(xi)− g̃n(x)), and ξ
∗
1n is the same as in Section

3.2 (with the only difference given by the residuals ε̃i). It can be shown – see Proposition

B.2.1 in Appendix B – that ξ∗1n is asymptotically Gaussian with limit variance equivalent

to that of ξ1n.

We now consider the asymptotic behavior of B̃n − Bn. By the definition of B̃n, we

have that:

B̃n :=
1√
nh

n∑
i=1

w(xi) (g̃n(xi)− g̃n(x))

=
1√
nh

n∑
i=1

w(xi)

(
β̂1(x)(xi − x) +

1

2
β̂2(x)(xi − x)2

)
where the second equality follows from

∑n
i=1w(xi) = nh. Moreover, since

∑n
i=1w(xi)(xi−

x) = 0,

B̃n =
√
nh5

β̂2,n(x)

2

1

nh

n∑
i=1

w(xi)

(
xi − x

h

)2

=:
√
nh5

β̂2,n(x)

2
Cn (2.4.2)

We now aim at expanding this bootstrap bias. Specifically, we note that, since β̂2(x)

is not a consistent estimator of g′′(x), “standard” bootstrap validity will fail because

B̃n−Bn ̸= op(1). However, the FL bootstrap statistic will be such that B̃n−Bn is always

asymptotically Gaussian and centered at zero, therefore allowing “standard” prepivoted

CIs to deliver asymptotically correct coverage. Let e′3 := (0, 0, 1), y := (y1, ...yn)
′, Z2x :=

(Z2x1, ..., Z2xn)
′ where Z2xi := (1, (xi−x)/h), (xi−x)/h)2)′. The equivalent kernel for the

FL estimator becomes

li(x) := 2h−2e′3

(
Z ′2xWxZ2x

n

)−1
Z2xiK

(
xi − x

h

)
,

so that β̂2(x) := (nh)−1
∑n

i=1 li(x)yi = (nh)−1
∑n

i=1 li(x)(g(xi) + εi). By a Taylor expan-

sion of g(xi) around x, one can show that (nh)−1
∑n

i=1 li(x)g(xi) = g′′(x)+Op(h), so that

β̂2(x) = g′′(x) +
1

nh

n∑
i=1

li(x)εi + op(1) (2.4.3)

By letting ξ̃2n := (nh)−1/2
∑n

i=1 l̃(xi)εi, with l̃i(x) = h2li(x)/2, the above implies that

B̃n = BAT,n + ξ̃2n + op(1) (2.4.4)

so that B̃n − Bn is asymptotically centered at zero ∀x ∈ Sx. Let ξ̃n := (ξ1n, ξ̃2n)
′ and

VFL,n := V[ξ̃n|Xn], then we show in Proposition B.2.2, in Appendix B, that ξ̃n is asymp-

totically Gaussian with variance defined as the limit of VFL,n. The fact that the limit of

v2,FL,n := V[ξ̃2n|Xn] is greater than 0 – both for interior and boundary points – is the

only source of invalidity of the FL bootstrap “naive” (i.e., not prepivoted) CIs. Similarly

than for the LP bootstrap, the limit of VFL,n can be estimated without ex-ante knowl-
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edge about the location of x via the consistent estimator

V̂FL,n :=
1

nh

n∑
i=1

(
wi(x) wi(x)Cnl̃i(x)

wi(x)Cnl̃i(x) C2
nl̃

2
i (x)

)
ε̃2i , (2.4.5)

such that V̂FL,n − VFL,n = op(1). Note that (2.4.5) is equivalent to the σ̂2
us-HC3 formula

for standard errors proposed in Calonico et al. (2018).

Since V̂FL,n−VFL,n = op(1), an estimator m̂FL,n such that m̂FL,n = mFL+op(1) exists

if x is an interior point; moreover, the same m̂n is such that m̂FL,n = m̈FL + op(1) if x is

a boundary point. As in Section 3.2; m̂n is a plug-in estimator of the form

m̂FL,n :=

√
v̂21,FL,n + v̂22,FL,n − 2v̂12,FL,n

v̂1,FL,n
(2.4.6)

which guarantees the presence of a uniformly consistent estimator of the cdf of p̂n, i.e.,

ĤFL,n(u) =
(
m̂−1FL,nΦ

−1 (U[0,1]

))
(2.4.7)

The following theorem formalizes the validity of the FL bootstrap-based prepivoted con-

fidence intervals.

Theorem 2.4.1 Let Assumptions 1-3 hold, then, ∀x ∈ Sx,

P
(
g(x) ∈ C̃IFL

)
−→ 1− α, α ∈ (0, 1) (2.4.8)

where C̃IFL is the prepivoted confidence interval in (2.2.6) with Ĥn = ĤFL,n and L̂n the

probability distribution (conditional on the data) of the FL bootstrap statistic T ∗n .

2.4.2 Asymptotic equivalence with RBC

We now show that the FL bootstrap-based prepivoted confidence intervals C̃IFL are

asymptotically equivalent to those proposed in Calonico et al. (2018).

The FL bootstrap-based prepivoted CIs are defined as:

C̃IFL :=
[
ĝn(x)− (nh)−1/2L̂−1n

(
Φ
(
m̂FL,nΦ

−1 (1− α/2)
))
, ĝn(x)− (nh)−1/2L̂−1n

(
Φ
(
m̂FL,nΦ

−1 (α/2)
))]

Since B̃n is a measurable function of Dn and L̂n is a probability distribution conditional

on Dn, we have

L̂−1n (u) = B̃n + L̂−1ξ,n(u) (2.4.9)

where L̂ξ,n(u) := P∗ (ξ∗1n ≤ u). Moreover, by Proposition 2.3.2,

L̂−1ξ,n(u) = v1Φ
−1(u) + op(1) uniformly in u ∈ (0, 1) (2.4.10)

therefore,

C̃IFL =
[(
ĝn(x)− (nh)−1/2B̃n

)
± (nh)−1/2v̂d,FL,nΦ

−1 (1− α/2)
]
+op((nh)

−1/2) (2.4.11)
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Equation (2.4.11) shows that the dominant part of C̃IFL is equal to the CI proposed by

Calonico et al. (2018), based on the “robust bias correction” (RBC) method, which we

label CIAT . To see this, note that (nh)
−1/2B̃n is exactly equal to their local quadratic bias

estimator; moreover, (nh)−1/2v̂d,FL is equivalent to their studentization term, defined as a

consistent estimator of the variance of ĝn(x)−(nh)−1/2B̃n. Since we focused on the leave-

one-out residuals ε̃i, our standard errors are equivalent to those Calonico et al. (2018)

label “σ̂2
us-HC3”, though implementation of their σ̂2

us-HCk method with k = 0, 1, 2, 3 is

possible by appropriately changing the functional form of ε̃i. .

2.4.3 Efficiency considerations

We now compare the efficiency properties of the two proposed confidence intervals. We

start with the prepivoted CIs based on the LP bootstrap, which are defined as:

C̃ILP :=
[
ĝn(x)− (nh)−1/2L̂−1n

(
Φ
(
m̂nΦ

−1 (1− α/2)
))
, ĝn(x)− (nh)−1/2L̂−1n

(
Φ
(
m̂nΦ

−1 (α/2)
))]

By the same arguments as those used in Section 4.2 and by exploiting Proposition 2.3.2,

we have that

C̃ILP =
[(
ĝn(x)− (nh)−1/2B̃n

)
± (nh)−1/2v̂d,LP,nΦ

−1 (1− α/2)
]
+op((nh)

−1/2) (2.4.12)

Our efficiency considerations will be based on comparisons on the dominant terms of the

absolute length of the CIs. We let ∆(C̃ILP ) denote the absolute length of C̃ILP ; then,

by (2.4.9) and (2.4.10),

∆(C̃ILP ) =

(nh)−1/2vd,LP |Φ−1(1− α/2)− Φ−1(α/2)|+ op((nh)
−1/2) if x is an interior point;

(nh)−1/2v̈d,LP |Φ−1(1− α/2)− Φ−1(α/2)|+ op((nh)
−1/2) if x is a boundary point;

By the same reasoning, by letting ∆(C̃IFL) denote the length of the FL bootstrap-based

prepivoted CI, we have

∆(C̃IFL) =

(nh)−1/2vd,FL|Φ−1(1− α/2)− Φ−1(α/2)|+ op((nh)
−1/2) if x is an interior point;

(nh)−1/2v̈d,FL|Φ−1(1− α/2)− Φ−1(α/2)|+ op((nh)
−1/2) if x is a boundary point;

Therefore, efficiency comparisons between C̃ILP and C̃IFL can be based on the difference

between vd,LP and vd,FL if x is an interior point and between v̈d,LP and v̈d,FL if x is a

boundary point. The following Proposition summarizes the properties of these quantities.

Proposition 2.4.1 Let Assumptions 1-3 hold, then,(
v2d,LP
v2d,FL

)
=
σ2(x)

f(x)

(
Kvd,LP

Kvd,FL

)
;

(
v̈2d,LP
v̈2d,FL

)
=
σ2(0)

f(0)

(
K̈vd,LP

K̈vd,FL

)
;

where Kvd,LP , Kvd,FL, K̈vd,LP and K̈vd,FL are measurable functions of the kernel K, defined

in Appendix B.
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Proposition 2.4.1 shows that efficiency considerations can be reduced to a comparison of

the known quantities Kvd,LP , Kvd,FL, K̈vd,LP and K̈vd,FL. Table 1 shows the value of these

quantities – computed via numerical integration – when the most commonly used kernel

functions are adopted, showing that the LP bootstrap yields shorter confidence intervals

under each considered scenario. This result will be confirmed by the Monte Carlo analysis

shown in Section 5. Let us consider, for instance, the two most popular choices of K, i.e.,

the Epanechnikov’s kernel when x is an interior point and the Triangular kernel when x

is a boundary point. In the first scenario, the FL bootstrap provides about 21% larger

confidence intervals, whereas in the second, the FL bootstrap displays a theoretical length

which higher by about 20%.

Table 2.2: Comparison of the measurable components of v2d

Interior Boundary

K Kvd,LP Kvd,FL K̈vd,FL K̈vd,FL

Triangular 0.95 1.33 7.18 10.29
Epanechnikov 0.85 1.25 6.80 9.82
Biweight 1.01 1.41 7.67 10.87
Triweight 1.15 1.55 8.54 11.87

Finally, since the dominant components in CIAT and C̃IFL are asymptotically equiv-

alent, we can conclude that the dominant part of C̃ILP is also smaller than that of CIAT ,

providing theoretical justification for the numerical results shown in Section 5

2.5 Prepivoting in (Sharp)

Regression-Discontinuity Design

As an application of our theory for local polynomial estimators, we now consider the

relevant example of (sharp) regression-discontinuity. Specifically, let

yi = g0(xi)I{xi<c} + g1(xi)I{xi≥c} + εi, i = 1, . . . , n; (2.5.1)

where E (εi|xi) = 0, V (εi|xi) =: σ2 (xi), xi is a random variable with bounded support

Sx := [a, b], (a, b) ∈ R2, and pdf f(x) such that f : Sx → (0,+∞), while g0 : [a, c] −→ R and

g1 : [c, b] −→ R. For simplicity of exposition and without loss of generality, we set (a, b, c) =

(−1, 1, 0). We are interested in estimating the difference on the conditional expectations

at the right and at the left of the cutoff c = 0; therefore, our parameter of interest is

τsrd := g1(0+)− g0(0−). (2.5.2)

In sharp RD, τsrd identifies the average treatment effect at the threshold; see Hahn, Todd,

and van der Klaauw (2001). Let ĝ0,n(0) and ĝ1,n(0) denote the local linear estimators
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(at the induced boundary c = 0) of g0(0+) and g0(0−), respectively; then, a natural

estimator of τsrd is

τ̂srd := ĝ1,n(0)− ĝ0,n(0). (2.5.3)

Being the difference of two local polynomial estimators, the bias of τ̂srd will be equivalent

to the difference of biases of the two estimator. Indeed, if we let Tn :=
√
nh(τ̂n − τsrd),

we have that Tn = Bn + ξsrd,1n. The asymptotic properties of ξsrd,1n and Bn immediately

follow from the results in Section 3. Intuitively, Bn will converge in probability to a term

which is proportional to the difference between the right and left derivative of g at 0,

whereas ξsrd,1n is asymptotically Gaussian and centered at zero.

Let us now consider our prepivoted CIs in this context. The LP bootstrap DGP

becomes:

y∗i = ĝ0,n(xi)I{xi<0} + ĝ1,n(xi)I{xi≥0} + ε∗i (2.5.4)

where ε∗i := ε̂ie
∗
i and ε̂i the leave-one-out residuals ε̂i := yi−(ĝ0,−i,n(xi)I{xi<0}+ĝ1,−i,n(xi)I{xi≥0}).

On the other hand, if we let g̃0,n(xi) := β̂00+ β̂01xi+ β̂02x
2
i /2 and g̃1,n(xi) := β̂10+ β̂11xi+

β̂12x
2
i /2, where β̂0 := (β̂00, β̂01, β̂02)

′ and β̂1 := (β̂10, β̂11, β̂12)
′ are the coefficient obtained

through the usual local quadratic estimator at the left and at the right of the cutoff, re-

spectively, we can define the FL bootstrap DGP as

y∗i = g̃0,n(xi)I{xi<0} + g̃1,n(xi)I{xi≥0} + ε∗i (2.5.5)

By performing local linear estimation to both of these bootstrap DGP, one can obtain an

estimator τ̂ ∗n analogously to (2.5.3) and the bootstrap test statistic T ∗n . Such test statistic

will be equal to Qn

√
nh(τ̂ ∗n− τ̂n) for the “modified” LP bootstrap and

√
nh(τ̂ ∗n−(g̃1n(0)−

g̃0n(0))) for the FL bootstrap.

Remark 2.5.1 Note that the modification for the LP bootstrap statistic is identical if the

same kernel function is used to the right and to the left of the cutoff. Indeed, one could

decompose the unmodified LP bootstrap bias into two terms: one considering the contri-

bution of the bias arising from the observations to the left of the cutoff, one considering

those arising from the observations to the right of the cutoff. By (2.3.5), the two con-

tributions will be a product of a weighted convolution of ((xi − x)/h)2 and the right- (or

left-) second order derivative of g at the cutoff. Crucially, the limit of the weighted con-

volution of ((xi − x)/h)2 is the same, no matter if only the contributions to the right or

to the left of the cutoff are considered, if the same kernel K is considered. The modifi-

cation can still be generalized to allow for different kernels to the right or to the left of

the cutoff by decomposing the unmodified LP bootstrap statistic in two components (one

considering the contributions at each side of the cutoff) and re-weighting each component

according to the different kernel used.

If we denote by B̂n the generic bias of the bootstrap test statistic (either “modified”

LP or FL), then it follows from the results in Section 3.2 and 3.3 that B̂n − Bn =:
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ξsrd,2n+ op(1), where ξsrd,2n is asymptotically Gaussian and centered at zero, allowing for

the constructions of the prepivoted CIs

C̃Isrd :=
[
τ̂n − (nh)−1/2L̂−1n

(
Φ
(
m̂srd,nΦ

−1 (1− α/2)
))
, τ̂n − (nh)−1/2L̂−1n

(
Φ
(
m̂srd,nΦ

−1 (α/2)
))]

where L̂n := P∗ (T ∗n ≤ Tn) and m̂2
srd,n a consistent estimator of m2

srd := plimn−→∞{V[Tn−
B̂n|Xn]}/plimn−→∞{V∗[T ∗n −B̂n]}. As we have seen in Section 3.2 and 3.3, such estimator

exists and can be based on leave-one-out residuals from the original model.

2.6 Monte Carlo

We now discuss the finite sample performance of the proposed CIs and compare them both

with invalid bootstrap CI (i.e., not prepivoted), as well as with the RBC CIs proposed

by Calonico et al. (2018), through the results of Monte Carlo simulations. Specifically,

we focus on two simulation designs, which we label DGP1 and DGP2. Both DGP’s take

the form

yi = g(xi) + εi

where εi ∼ iidN(0, σ2). In DGP1, σ = 1, g(x) = g1(x) = sin(3πx/2)[1 + 18x2(sgn(x) +

1)]−1 and xi ∼ iidU[−1,1]; whereas in DGP2, σ = 0.1295, g(x) = g2(x) = 0.52 + 0.84x −
0.30x2+2.397x3−0.901x4+3.56x5 and xi ∼ iidU[0,1]. On the one hand, DGP1 is equivalent

to a simulation setup previously considered in Berry, Carroll, and Ruppert (2001), Hall

and Horowitz (2013) and Calonico et al. (2018). On the other hand, the conditional

expectation g2(x) and the value of σ in DGP2 are taken from Model 3 in Calonico et al.

(2014); specifically, g2(x) is equal to the conditional at the right of the cutoff in a sharp

RD setup and arises from a modification of the estimated coefficients in Lee (2008). For

both DGP’s, we consider estimation for an interior and a boundary point. In DGP1, the

evaluation points are x = −1/3 and x = −1, whereas for DGP2 those are x = 0.5 and

x = 0. Under all the considered scenarios, we make use of the Epanechnikov’s kernel and

the MSE-optimal bandwidth. 5000 independent Monte Carlo draws are generated, with

999 bootstrap replications for each Monte Carlo draw. For all the wild bootstrap DGP’s,

{e∗i } is a sequence of iid random variables distributed as Rademacher on [−1, 1].

The results of the Monte Carlo simulations are summarized in Table 2, where average

empirical coverage and length of the CIs are shown. Other than the prepivoted LP,

C̃ILP , modified LP, C̃ILP,mood, and FL, C̃IFL, bootstrap CIs, we also report results for

the “naive”, i.e. not prepivoted, CIs based on the LP bootstrap DGP, CILP , and FL

bootstrap DGP, CIFL, as well as those based on RBC, CIAT . First of all, we detect

significant undercoverage of both the “naive” (i.e., not prepivoted) bootstrap CIs, thus

underlining the practical need of proper debiasing tecniques. Second, we observe that the

prepivoted CIs show empirical coverage probabilities which are very close to the nominal

levels – and comparable to RBC – under all considered scenarios. Moreover, asymptotic
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Table 2.3: Coverage and length of 95% confidence intervals

DGP1: Interior Point

coverage

n h CILP CIFL C̃ILP C̃ILP,mod C̃IFL CIAT

250 0.189 89.1 82.4 93.9 94.1 93.2 94.8
500 0.165 89.1 82.4 93.5 93.7 93.7 95.0
750 0.152 89.7 82.1 94.5 94.4 94.2 95.1
1000 0.143 90.0 82.8 94.6 94.7 94.3 95.0

length
250 0.189 0.637 0.641 0.747 0.754 0.884 0.943
500 0.165 0.479 0.481 0.565 0.567 0.677 0.701
750 0.152 0.405 0.406 0.479 0.481 0.575 0.590
1000 0.143 0.361 0.361 0.427 0.428 0.514 0.525

DGP1: Boundary Point

coverage

n h CILP CIFL C̃ILP C̃ILP,mod C̃IFL CIAT

250 0.353 87.7 82.4 93.4 94.9 93.4 95.4
500 0.307 88.0 81.7 94.4 95.9 93.0 94.6
750 0.283 89.7 82.9 95.7 96.8 94.2 95.4
1000 0.267 90.0 82.3 95.6 96.7 94.2 95.3

length
250 0.353 1.272 1.365 1.558 1.775 1.853 2.152
500 0.307 0.963 0.998 1.194 1.335 1.394 1.522
750 0.283 0.815 0.835 1.017 1.130 1.187 1.264
1000 0.267 0.725 0.740 0.907 1.003 1.057 1.110

DGP2: Interior Point

coverage

n h CILP CIFL C̃ILP C̃ILP,mod C̃IFL CIAT

250 0.209 88.2 81.6 93.5 93.5 93.4 94.1
500 0.182 89.5 82.6 94.5 94.7 94.8 95.2
750 0.168 89.0 81.6 94.1 94.2 94.3 94.6
1000 0.158 88.8 81.8 94.5 94.5 94.4 94.5

length
250 0.209 0.055 0.055 0.065 0.066 0.078 0.080
500 0.182 0.042 0.042 0.049 0.050 0.059 0.060
750 0.168 0.035 0.035 0.042 0.042 0.050 0.051
1000 0.158 0.031 0.031 0.037 0.037 0.045 0.045

DGP2: Boundary Point

coverage

n h CILP CIFL C̃ILP C̃ILP,mod C̃IFL CIAT

250 0.574 69.4 87.8 82.5 92.2 96.3 97.1
500 0.500 85.2 84.8 93.5 97.4 96.0 96.0
750 0.461 88.2 82.7 94.7 96.8 94.7 95.0
1000 0.435 90.5 83.2 96.2 96.6 95.0 95.7

length
250 0.574 0.092 0.106 0.117 0.130 0.148 0.152
500 0.500 0.069 0.075 0.087 0.096 0.106 0.109
750 0.461 0.059 0.062 0.074 0.081 0.089 0.090
1000 0.435 0.052 0.054 0.066 0.072 0.078 0.079
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equivalence of C̃IFL and CIAT , as stated in Section 3.4, is confirmed by the numerical

results, as the two methods behave very closely to each other both in terms of empirical

coverage and average interval length. Finally, the efficiency results theoretically analyzed

in Section 3.4 are confirmed by the numerical analysis, where CIAT shows, for n = 1000,

between 9%-22% larger confidence intervals with respect to C̃ILP,mod.

2.7 Conclusion

This paper advances the literature on nonparametric regression and RD designs by ad-

dressing a fundamental challenge: obtaining valid inference in the presence of asymptotic

bias without resorting to undersmoothing or direct bias correction. We introduce two

bootstrap methods – the LP and FL bootstraps – that restore validity and deliver asymp-

totically correct confidence intervals in a computationally practical manner via the use

of prepivoting. While the FL bootstrap is asymptotically equivalent to RBC methods,

the LP bootstrap offers higher efficiency, making it particularly advantageous in empir-

ical applications. Importantly, our “modified” prepivoting approach ensures robustness

of the widely-used LP bootstrap DGP even at boundary points, addressing a critical gap

in existing methods. Monte Carlo simulations corroborate the theoretical advantages of

our methods, showing empirical coverage close to the nominal levels and efficiency of the

LP bootstrap across a variety of scenarios. Furthermore, we show that our methodol-

ogy extends to RD designs, a cornerstone of applied econometrics. These results provide

researchers with powerful tools for unbiased and efficient inference in nonparametric re-

gression, promising to enhance the reliability of quasi-experimental analysis in economics

and beyond.
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Chapter 3

Parameters on the Boundary in

Predictive Regression

(written with Giuseppe Cavaliere and Iliyan Georgiev)

3.1 Introduction

In this paper we revisit the well-known problem of bootstrap inference in regressions

with parameter space defined by means of smooth inequality constraints. For instance,

consider the setup of a regression yt = α+βxt−1+εt where the parameter space for (α, β) is

defined by the constraint β ≥ 0. This framework arises when only the possibilities β = 0

of no predictability (or no first-order Granger causality, generalizable to higher orders),

and β > 0 of sign-restricted predictability, are entertained, and the model is estimated

under the constraint β ∈ [0,∞). In applications, economic theory is often informative

about the direction of predictability, and such information could be used to improve the

efficiency of estimators and increase the power of hypotheses tests. A prominent example

is provided by predictive regressions for financial returns; see, e.g., Phillips (2014) and the

references therein. Interest can then be in testing the very hypothesis of no predictability

(i.e., β = 0) by means of a one-sided test, or a special case of this hypothesis (e.g.,

α = β = 0), or a hypothesis where the parameter vector may but need not lie on the

boundary of the parameter space (e.g., α + β = 0).

While in this context the bootstrap is potentially useful, its application is not straight-

forward if the parameter vector may lie on the boundary of the parameter space; see

Andrews (2000). In particular, as we discuss in the following, even in a simple location

model where the parameter space is a closed half-line, the cumulative distribution func-

tion [cdf] of the parametric bootstrap t-statistic, conditional on the original data, con-

verges weakly to a random cdf, rather than to the target asymptotic distribution of the

t-statistic computed from the original data.

Our first contribution is to show that in predictive regressions with parameter val-
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ues on the boundary, the distribution of fixed regressor1 bootstrap statistics, like the t-

statistic for β = 0 in the regression above, may be random in the limit. Limiting ran-

domness may arise in two ways. A first possible source of randomness in the limit boot-

strap measure is in the non-stationarity of the regressor, which operates through the ran-

dom limits of sample product moments. This is hardly surprising, see e.g. Georgiev et al.

(2019). A second potential source of randomness is the location of the parameter vector

on the boundary of the parameter space. Invalidity of standard bootstrap schemes when

a parameter is on the boundary was initially discussed in Andrews (2000), where a simple

location-model example was given; see also Chatterjee and Lahiri (2011). In the context

of hypotheses tests in predictive regressions, we revisit Andrews’ result and show that,

for a general bootstrap scheme, the occurrence or non-occurrence of limiting bootstrap

randomness due to the possible location of a parameter on the boundary of the parame-

ter space depends on how well the bootstrap scheme approximates the mutual position of

three objects: (i) the boundary, (ii) the parameter set identified by the null hypothesis,

and (iii) the true parameter value. Standard bootstrap approximations of this mutual

position may not be sufficiently precise, giving rise to complex conditioning in the limit

bootstrap distribution, with ensuing bootstrap validity only for special types of statistics.

Our second contribution is to show that certain non-standard bootstrap schemes, de-

signed to provide a better match with the geometric configuration in the original param-

eter space, give rise to limit bootstrap distributions where randomness, if present, is not

attributable to the boundary value of the parameter vector. This fact allows us to es-

tablish bootstrap validity in an ‘unconditional’ sense; see Cavaliere and Georgiev (2020).

That is, although randomness of the limiting bootstrap cdf prevents the possibility that

the bootstrap could mimic the asymptotic distribution of the original statistic, we can

show that in large samples bootstrap tests and asymptotic tests are correctly sized for

essentially the same set of nominal sizes.

Formally, we make use of the following definition, which generalizes the definition of

unconditional bootstrap validity given in Cavaliere and Georgiev (2020, p.2555). Let pn

and p∗n be respectively the p-value of an asymptotic test and of its bootstrap analogue.

Let also

C := {q ∈ (0, 1) : lim
n→∞

P (pn ≤ q) = q|H0},

such that a test rejecting for pn ≤ q (or for pn > q) is correctly sized for nominal

significance levels q (resp. 1−q) with q ∈ C, as n→ ∞.2 If, under the null hypothesis H0,

P (p∗n ≤ q) → q for all q ∈ intC, (3.1.1)

1We focus on ‘fixed regressor’ bootstrap schemes as they do not require knowledge on the regressor
generating process. For instance, and in contrast to recursive-based schemes, they can be applied to
both I(0) and I(1) settings.

2For q ∈ intC it holds that P (pn = q) → 0 and rejections for pn ≤ q (or pn > q) are
asymptotically equivalent to rejections for pn < q (or pn ≥ q).
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where intC denotes the interior of the set C, we say that the bootstrap test based on p∗n

is valid for H0.
3 The meaning is that the bootstrap test and the asymptotic test are first-

order asymptotically equivalent in terms of correct size control. In particular, bootstrap

validity for simple hypotheses H0 characterizes pointwise size control.

Notice that bootstrap validity as in (1.1) is implied by the classic definition of boot-

strap consistency, namely that supx∈R |F ∗n(x)− F (x)| →p 0 for a bootstrap statistic with

cdf F ∗n conditionally on the data and an original test statistic with continuous asymp-

totic cdf F . The converse does not hold; that is, (3.1.1) does not imply classic bootstrap

consistency, see the discussion in Cavaliere and Georgiev (2020).

For test statistics whose asymptotic distribution is continuous, it holds that intC =

(0, 1) and hence condition (3.1.1) should hold for all q ∈ (0, 1) for the bootstrap to be

valid. Unfortunately, parameter values on the boundary of the parameter space may

induce discontinuities in the limiting cdf’s, such that not even the exact p-values of the

associated tests are asymptotically standard uniform on [0, 1]. This makes the above

weaker version of the validity definition unavoidable.

Finally, we turn to the special case of one-sided tests for the null hypothesis that the

parameter vector lies on the boundary of the parameter space, such that the boundary

coincides with the parameter set identified by the null hypothesis. This case provides

a transparent example of a limit bootstrap cdf which is random only on a subset of its

domain. Then, if bootstrap validity is defined as in (3.1.1), in this case also some standard

bootstrap schemes can be proved to be valid.

This paper is related to recent work by Fang and Santos (2019) and Hong and Li

(2020). The latter two papers propose nonstandard bootstrap schemes – involving a

tuning tool – which correct the inconsistency of ‘classic’ bootstrap methods in settings

that cover parameters on the boundary as a special case. The main difference from

the present contribution is that our theory applies to random limit bootstrap measures.

Thus, Fang and Santos (2019) consider bootstrap inference in settings where the target

asymptotic distribution, say that of a random element τ , can be thought of as a trans-

formation φ of another random element τ ′, and both the distribution of τ ′ and the trans-

formation φ need to be estimated; see also the related works by Dümbgen (1993), Hi-

rano and Porter (2012), Fang (2014) and Chen and Fang (2019). Although Fang and

Santos (2019) consider deterministic φ and the unconditional distribution of τ ′, such

that their results are not directly applicable here, their way of conceptualizing the prob-

lem remains fruitful also in the case of random φ and random conditional distributions

τ ′|τ ′′ (for some random element τ ′′). We discuss this in Section 3.5.2.

Our contribution is also related to Hong and Li (2020), who propose a ‘numerical

bootstrap’ which is valid in settings where a parameter space can be approximated locally

3Bootstrap unconditional validity as in Cavaliere and Georgiev (2020) is obtained as the special case
intC = (0, 1).
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by a cone with vertex at the true value of the parameters; see Geyer (1994) for a detailed

discussion of the approximation. Both the approaches in this paper and that by Hong

and Li (2020) are connected to the large body of literature considering estimation and

inference for constrained M-estimators; see, among others, Geyer (1994), Andrews (1999,

2000), and the references therein. In Section 3.5.2 we argue that, when applied to a

restricted predictive regression, the ‘numerical bootstrap’ of Hong and Li (2020) performs

a geometric approximation of the kind we propose, though at the cost of a slower-than-

standard convergence rate for the resulting bootstrap estimator.

We present our main idea using first a simple location model for i.i.d. scalar data

whose location parameter is constrained to be positive. This is done in Section 3.2.

The predictive regression framework is presented in Section 3.3; in this section we also

show that the bootstrap limit measure associated with standard fixed regressor wild

bootstrap schemes is random. A new family of bootstrap algorithms and their validity

are discussed in Section 3.4. Results on the validity of one-sided tests, connections to

the previous literature, and uniform size control for the bootstrap tests are discussed

in Section 3.5. Section 3.6 provides simulation evidence, whereas Section 3.7 concludes.

Proofs are collected in the Appendix.

Notation and definitions

We use the following notation throughout. The spaces of càdlàg functions [0, 1] → Rn,

[0, 1] → Rm×n and R → R, all equipped with the respective Skorokhod J1-topologies, are

denoted by Dn, Dm×n and D(R), respectively; see Kallenberg (1997, Appendix A2). For

n = 1, the subscript inDn is suppressed. Cn(Rn) is the space of continuous functions from

Rn to Rn equipped with the topology of uniform convergence on compacts. Integrals are

over [0, 1] unless otherwise stated, Φ is the standard Gaussian cdf, U[0,1] is the uniform

distribution on [0, 1] and I{·} is the indicator function. If F is a cdf, possibly random, F−1

stands for the right-continuous generalized inverse, i.e., F−1(u) := sup{v ∈ R : F (v) ≤
u}, u ∈ R. Unless differently specified, limits are for n→ ∞.

With (Zn, Yn) and (Z, Y ) being random elements of the metric spaces SZ × SYn and

SZ × SY (n ∈ N), and defined on a common probability space, we denote by ‘Zn|Yn
w→p

Z|Y ’ (resp. ‘Zn|Yn
w→a.s. Z|Y ’) the fact that E {g (Zn) |Yn}→E {g (Z) |Y } in probabil-

ity (resp. a.s.) for all bounded continuous functions g : SZ → R. When Zn is a boot-

strap statistic and Yn denotes the original data, we write ‘Zn
w∗
→p Z|Y ’ (resp. ‘Zn

w∗
→a.s.

Z|Y ’). Finally, with (Zn, Yn) and (Z, Y ) possibly defined on different probability spaces,

‘Zn|Yn
w→w Z|Y ’ means that E(g(Zn)|Yn)

w→ E(g(Z)|Y ) for all bounded continuous func-

tions g : SZ → R, see Kallenberg (1997, 2017); we label this fact ‘weak convergence in

distribution’. For the special case of scalar random variables Zn and Z, if the conditional

distribution Z|Y is diffuse (non-atomic), weak convergence in distribution is equivalent
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to the following weak convergence in D(R):

Fn(·|Yn) := P (Zn ≤ ·|Yn)
w→ P (Z ≤ ·|Y ) =: F (·|Y ). (3.1.2)

When Zn is a bootstrap statistic and conditioning is on the original data, we use the

notation ‘
w∗
→w’. For multivariate generalizations we refer to Cavaliere and Georgiev (2020,

Appendix A).

3.2 Preview of the results in a location model

To illustrate the main arguments that will be proposed in the predictive regression frame-

work later, consider as in Andrews (2000) and Cavaliere et al. (2017) the location model

yt = θ + εt (t = 1, ..., n)

where the εt’s are i.i.d.(0, 1) and the parameter space is Θ := {θ ∈ R : θ ≥ 0}. Interest

is in inference on the true value θ0 of θ by using the Gaussian QMLE, θ̂. With ln (θ) :=

−1
2

∑n
t=1(yt − θ)2, we find θ̂ := argmaxθ∈Θ ln (θ) = max{0, ȳn}, ȳn := n−1

∑n
t=1 yt. If θ0

is an interior point of Θ, i.e. θ0 > 0, then n1/2(θ̂ − θ0)
w→ ξ, ξ ∼ N (0, 1). In contrast, if

θ0 is on the boundary of Θ, i.e. θ0 = 0, the asymptotic distribution of θ̂ is

n1/2(θ̂ − θ0) = n1/2θ̂
w→ ℓ := max{0, ξ} (3.2.1)

again with ξ ∼ N (0, 1).

The first takeaway of this section is the fact that the location of a parameter on the

boundary of the parameter space may induce limiting bootstrap randomness of a kind

that invalidates bootstrap inference. To see this, consider in the context of the location

model a standard Gaussian parametric bootstrap based on the bootstrap sample

y∗t = θ̂ + ε∗t ,

where the ε∗t ’s are i.i.d.N (0, 1) independent of the original data. The bootstrap coun-

terpart of ln (θ) is l∗n (θ) := −1
2

∑n
t=1(y

∗
t − θ)2, and the usual bootstrap QMLE is θ̂∗ :=

argmaxθ∈Θ l
∗
n (θ) = max{0, ȳ∗n}, ȳ∗n := θ̂ + ε̄∗n, ε̄

∗
n := n−1

∑n
t=1 ε

∗
t . Conditionally on the

original sample, θ̂∗’s exact distribution is

n1/2(θ̂∗ − θ̂) = n1/2max{−θ̂, ε̄∗n} ∼ max{−n1/2θ̂, ξ∗}|θ̂, ξ∗|θ̂ ∼ ξ ∼ N (0, 1) , (3.2.2)

with associated conditional cdf given by

P ∗(n1/2(θ̂∗ − θ̂) ≤ x) = Φ (x) I{x≥−n1/2θ̂}, x ∈ R. (3.2.3)

Now, when θ0 is an interior point of Θ, −n1/2θ̂ diverges to −∞ in probability and the

distribution of n1/2(θ̂∗ − θ̂) given the data converges weakly in probability to the non-

random distribution of ξ∗; the bootstrap therefore mimics the N (0, 1) asymptotic distri-
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bution of the original statistic, the bootstrap distributional approximation is consistent

and bootstrap inference is valid in the sense of (3.1.1), with intC = (0, 1). Conversely,

when θ0 is on the boundary of the parameter space, the cdf in (3.2.3) converges weakly

in D(R) to the random cdf Φ (x) I{x≥−ℓ}. In terms of weak convergence in distribution,

n1/2(θ̂∗ − θ̂)
w∗
→w ℓ

∗|ℓ, ℓ∗ := max{−ℓ, ξ∗}, (3.2.4)

where ℓ is distributed as in (3.2.1) and is independent of ξ∗. The limit distribution in

(3.2.4) is random, since its cdf is a stochastic process depending on the conditioning

random variable ℓ. Thus, it is distinct from the limit distribution in (3.2.1), which is

unconditional and hence characterized by a non-random cdf. Because the bootstrap limit

distribution is random, the bootstrap approximation is not consistent for the limit in

(3.2.1).

As we shall see in Section 3.4, limiting bootstrap randomness could be of two kinds:

‘benign’, thus not compromising the validity of bootstrap inference in the sense of (3.1.1),

or ‘malignant’, thus invalidating bootstrap inference. In this example, a bootstrap

test employing a bootstrap statistic τ ∗n :=ϕ(n1/2(θ̂∗ − θ̂)) as the analogue of a statistic

τn :=ϕ(n1/2θ̂), where ϕ is a real function, may not be valid in the sense of (3.1.1) under

the null hypothesis H0 : θ0 = 0 even if the function ϕ is continuous, thus implying ‘ma-

lignant’ randomness.

To get some further insight into the source of limiting bootstrap randomness, which

will be exploited in the next sections, it is useful to notice that the asymptotic distribu-

tions in (3.2.1) and (3.2.2) can be written as

ℓ = max{0, ξ} = argminλ∈Λ |λ− ξ|, Λ := {λ ∈ R : λ ≥ 0}

ℓ∗|ℓ = max{−ℓ, ξ∗}|ℓ =
(
argminλ∈Λ(ℓ) |λ− ξ∗|

) ∣∣ℓ, Λ(ℓ) := {λ ∈ R : λ ≥ −ℓ} = Λ− ℓ,

respectively. Hence, bootstrap randomness, and the implied bootstrap invalidity, can be

attributed to the fact that in the bootstrap world the limit constraint set for the objective

function |λ − ξ∗| is the random half line Λ(ℓ) rather than the original fixed half line

Λ = Λ(0). That is, the chosen bootstrap scheme shifts the constraint set by the random

variable −ℓ, which is non-zero with probability 1/2.

The second takeaway of this section is the fact that bootstrap validity could be restored

by offsetting properly the previous shift of the limit constraint set. Specifically, this

requires an ad hoc construction of a bootstrap parameter space intended to approximate

well the mutual position of the true parameter value and the boundary of the original

parameter space.

Consider a bootstrap scheme where the boundary of the bootstrap parameter space

Θ∗ is chosen in a data-driven way such that the mutual position of θ0 and the boundary

of Θ is well approximated irrespective of whether θ0 belongs to ∂Θ or not. To this aim,
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introduce the half line Θ∗ := {θ : θ ≥ g∗(θ̂)}, where g∗(θ) := θ − |θ|1+κ, κ > 0, and

the associated θ̂∗ := argmaxθ∈Θ∗ l∗n (θ) = max{g∗(θ̂), ȳ∗n}. The bootstrap QMLE statistic

is then given by n1/2(θ̂∗ − θ̂) = n1/2max{g∗(θ̂) − θ̂, ε̄∗n}. Conditionally on the data, it

is distributed as max{n1/2(g∗(θ̂) − θ̂), ξ∗}|θ̂, with ξ∗|θ̂ ∼ N(0, 1). If θ0 = 0, it then

follows that n1/2(g∗(θ̂) − θ̂) = −n1/2θ̂1+κ
p→ 0, and the bootstrap statistic conditionally

on the data converges weakly in probability to ℓ of (3.2.1). Conversely, if θ0 > 0 then

n1/2(g∗(θ̂)− θ̂) = −n1/2θ̂1+κ
p→ −∞ and the bootstrap statistic conditionally on the data

converges weakly in probability to the N (0, 1) distribution. In both cases, the bootstrap

mimics the asymptotic distribution of n1/2(θ̂ − θ0) and bootstrap validity in the sense of

(3.1.1) can be seen to be successfully restored.

Remark. In the location model, an appropriate choice of Θ∗ simultaneously restores

bootstrap validity and removes all the randomness from the limit bootstrap distribution.

In the predictive regression framework we shall conclude that, in order to achieve boot-

strap validity, it is essential to remove only the portion of limiting bootstrap randomness

that is due to the location of the parameter vector on the boundary of the parameter

space. As no other sources of limiting bootstrap randomness exist in the context of the

location model, in this section the previous conclusion simplifies to eliminating all the

limiting bootstrap randomness. □

Before moving on to predictive regressions, we notice that when a test of H0 : θ0 = 0

against H1 : θ0 > 0 is performed, employing τ ∗n := n1/2(θ̂∗ − θ̂) as the bootstrap analogue

of τn := n1/2θ̂, the standard parametric bootstrap with Θ∗ = Θ is valid in the sense

of (3.1.1); see also Andrews (2000). Specifically, the bootstrap test rejects H0 when the

bootstrap p-value p̃∗n = 1−p∗n is small, with the following convergence satisfied under the

null hypothesis:

p∗n = P ∗(τ ∗n ≤ τn) = P ∗(ξ∗ ≤ τn)
w→ Φ(ℓ).

A similar convergence is satisfied by the p-value p̃n = 1− pn of the asymptotic test, with

pn = P (ℓ ≤ u)|u=τn = 1
2
I{τn=0} + Φ(τn)I{τn>0} = Φ(τn)

w→ Φ(ℓ).

As ℓ is distributed like Φ−1(U)I{U>1/2}, U ∼ U[0,1], it follows that Φ(ℓ) is distributed like

Φ(Φ−1(U)I{U>1/2}). As a result, both the bootstrap and the asymptotic test are correctly

sized for nominal levels below 1/2. This phenomenon, whose extensions to predictive

regression are discussed in Section 3.5.1, does not generalize to hypotheses where one-

sided tests are not appropriate or straightforward. Therefore, a remedy is necessary for

the inference-invalidating limiting bootstrap randomness induced by the location of a

parameter on the boundary.
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3.3 The predictive regression setup

Consider the following predictive regression in a triangular array setup:

yt = θ1 + θ2xn,t−1 + εt, (t = 1, ..., n; n = 1, 2, ...), (3.3.1)

where εt is a martingale difference sequence [mds] and xn,t is a non-stationary posited

predicting variable satisfying the following assumption; see, e.g. Müller and Watson

(2008) for references to primitive conditions.

Let zn,t := n−1/2
∑t

s=1 εs. Then:

(a) {εt} is an mds w.r.t. some filtration to which (xn,t, zn,t) is adapted, with Eε2t =

ωzz ∈ (0,∞).

(b) a law of large numbers holds as n→ ∞:

n∑
t=1

(
∆xn,t

∆zn,t

)(
∆xn,t ∆zn,t

)
p→ Ω :=

(
ωxx ωxz

ωxz ωzz

)
> 0.

(c) an invariance principle holds in D2 as n→ ∞:

(xn,⌊n·⌋, zn,⌊n·⌋)
′ w→ (X,Z)′ ∼ BM(0,Ω),

a bivariate Brownian motion on [0, 1].

Assumption 1 covers the specification xn,t = n−1/2xt for an I(1) process xt driven by

an mds that could be contemporaneously correlated with εt.
4,5

Assumption 1 implies that
∑n

t=1 xn,t−1∆zn,t
w→
∫
XdZ, which need not have a mixed

Gaussian distribution because X and Z need not be independent. Nevertheless, it holds

that
∑n

t=1 xn,t−1(∆zn,t−ωxzω−1xx∆xn,t)
w→
∫
Xd(Z−ωxzω−1xxX), which is zero-mean mixed

Gaussian with conditional variance σ2
e

∫
X2, where σ2

e := ωzz−ω2
xzω

−1
xx is the variance of εt

corrected for ∆xn,t. The bootstrap schemes discussed below all rely on the independence

of the processes X and Z − ωxzω
−1
xxX.

Further, Assumption 1 imposes unconditional homoskedasticity for simplicity. As

all the bootstrap schemes below are based on ‘wild’ bootstrap schemes, unconditional

heteroskedasticity can be accommodated at only a notational cost.

The next assumption specifies the parameter space, say Θ, by means of a smooth

inequality constraint.

The parameter space is Θ := {θ = (θ1, θ2)
′ ∈ R2 : g(θ) ≥ 0}, with non-empty

boundary ∂Θ := {θ ∈ R2 : g(θ) = 0}, where g : R2 → R is continuously differentiable in

4As the bootstrap p-values discussed in the paper are invariant to rescaling of the regressor, the
normalization of xt by n−1/2 has no practical implication. It is equivalent to specifying a local-to-zero
regression coefficient, as is frequent in applications where yt is a financial return and xt is non-stationary.

5Results under two alternative stochastic specifications of xn,t, as a near-unit root and as a stationary
process, are given in the accompanying supplement, Section C.2.
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some neighborhood of the true parameter value θ0 := (θ1,0, θ2,0)
′ with gradient ∂

∂θ′
g(θ) ̸= 0

in that neighborhood.

In the following, ġ will denote the gradient of the function g evaluated at θ0.

Assumption 2 generalizes the leading example of the parameter space Θ = R× [0,∞)

obtained by setting g(θ) = (0, 1)θ = θ2. The boundary of Θ then corresponds to the case

θ2 = 0 of no predictability of yt by xn,t−1 whereas the interior of Θ corresponds to the

case of sign-restricted predictability.

Interest is in bootstrap inference on a null hypothesis H0 identifying a set of parameter

values that has a non-empty intersection with the boundary of the parameter space. In

particular, we consider the following mutual positions of the boundary, the parameter set

identified by H0 and the true value θ0:

G1. H0 is the hypothesis that θ0 belongs to the boundary: H0 : g(θ0) = 0;

G2. H0 is a simple null hypothesis on the boundary: H0 : θ0 = θ̄, g(θ̄) = 0;

G3. H0 : h(θ0) = 0, where {θ ∈ R2 : h (θ) = 0} is not a subset of the boundary ∂Θ, but

meets ∂Θ at a singleton set.

For example, let again g(θ) = θ2, such that the parameter space is R × [0,∞) with

boundary ∂Θ = R×{0}. Then the hypothesis of no predictability H0 : θ2,0 = 0 falls under

G1. The hypothesis H0 : θ0 = θ̄ = (0, 0)′ that yt is unpredictable with zero mean falls

under G2. Finally, the hypothesis H0 : (1, 1)θ0 = θ1,0 + θ2,0 = 0 falls under G3 by setting

h (θ) := (1, 1)θ; in this case, the intersection point of the boundary and the parameter

set identified by H0 is (0, 0)′ which might, but need not, be the true value under H0.

3.3.1 Asymptotic distributions

Let θ̂ be the OLS estimator of (θ1, θ2)
′ in the equation

yt = θ1 + θ2xn,t−1 + δ∆xn,t + et (3.3.2)

subject to the constraint θ̂ ∈ Θ, i.e. g(θ̂) ≥ 0, and where the role of the regressor ∆xn,t is

to ensure that the residuals are asymptotically uncorrelated with the innovations driving

xn,t, a convenient prerequisite for the bootstrap implementations. The existence, with

probability approaching one, of a measurable minimizer of the residual sum of squares

(3.3.2) over the set Θ can be established in a similar but simpler way than that of

its bootstrap counterpart in our detailed proof of Theorem 3.4.1. Moreover, any two

such minimizers are first-order asymptotically equivalent, explaining our usage of ‘the’

associated with the constrained OLS estimator. Specifically, any such minimizer θ̂ satisfies

n1/2(θ̂− θ0)
w→ ℓ(θ0), with ℓ(θ0) depending on the position of θ0 relative to the boundary

∂Θ. Thus, ℓ(θ0) = ℓ̃ :=M−1/2ξ if θ0 ∈intΘ := Θ \∂Θ, where M :=
∫
X̃X̃ ′, X̃ := (1, X)′,

ξ ∼ N (0, σ2
eI2) is independent of X, and σ2

e > 0 is the variance of εt corrected for ∆xn,t,
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whereas

n1/2(θ̂ − θ0)
w→ ℓ(θ0) = ℓ := argmin

λ∈Λ
||λ−M−1/2ξ||M , Λ := {λ ∈ R2 : ġ′λ ≥ 0} (3.3.3)

if g(θ0) = 0, with ||x||M := (x′Mx)1/2 for x ∈ R2; see Section 12 in the working paper

version of Andrews (1999) or the proof of Theorem 3.4.1 for the bootstrap counterpart.

The previous asymptotic result is sufficient in order to see that the possibility of having

θ0 at the boundary of the parameter space Θ induces a dichotomy in the limit distribution

of n1/2(θ̂ − θ0) similar to the dichotomy established in the introductory location-model

example. Replicating the constraint set in the limit distribution by means of a bootstrap

scheme will be our main concern in what follows.

3.3.2 Standard bootstrap invalidity

Consider first a fixed-regressor wild bootstrap sample generated as

y∗t = θ̂1 + θ̂2xn,t−1 + ε∗t , (3.3.4)

where ε∗t = êtw
∗
t , t = 1, ..., n, with êt the residuals of (3.3.2) and w∗t i.i.d. N(0, 1), inde-

pendent of the original data.6 Then the distribution of n1/2(θ̂ − θ0) could be tentatively

approximated by the distribution of n1/2(θ̂∗ − θ̂) conditional on the original data, where

θ̂∗ is obtained by regressing y∗t on (1, xn,t−1)
′ under the constraint θ̂∗ ∈ Θ∗ = Θ, i.e.,

g(θ̂∗) ≥ 0 as for the original estimator; see Andrews (2000)7.

To motivate the analysis in the next section, it is useful to anticipate some asymptotic

properties of θ̂∗ which obtain by specializing Theorem 3.4.1 below to the fixed-regressor

wild bootstrap scheme. For θ0 ∈intΘ, it turns out that the bootstrap distribution con-

verges to a conditional version of the limit distribution of n1/2(θ̂ − θ0) found earlier:

n1/2(θ̂∗ − θ̂) = n1/2(θ̃∗ − θ̂) + op(1)
w∗
→w ℓ̃|M , (3.3.5)

where θ̃∗ denotes the unconstrained OLS estimator from the bootstrap sample. The

limit bootstrap distribution is, therefore, random. The vehicle of limiting bootstrap ran-

domness is the random matrix M , such that limiting bootstrap randomness is fully at-

tributable to the stochastic properties of the regressor. Due to the fact that the boot-

strap replicates a conditional version of the limit distribution of the original estimator θ̂,

bootstrap inference is not invalidated. Rigorous statements in this sense will be provided

in Corollary 3.4.1.

6The conclusions do not change if another zero-mean unit-variance distribution with a finite fourth
moment is used instead of the standard Gaussian distribution.

7Note that the term ∆xn,t is no longer necessary because xn,t−1 and ε∗t are independent conditionally
on the data.
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On the other hand, if θ0 ∈ ∂Θ the bootstrap statistic converges as follows:

n1/2(θ̂∗ − θ̂)
w∗
→w ℓ

∗|(M, ℓ) (3.3.6)

ℓ∗ := argmin
λ∈Λ∗

ℓ

||λ−M−1/2ξ∗||M , Λ∗ℓ := {λ ∈ R2 : ġ′λ ≥ −ġ′ℓ}

where ξ∗ ∼ N(0, σ2
eI2) is independent of (M, ℓ). In contrast with the case θ0 ∈intΘ

and additionally to the random matrix M , in (3.3.6) also the random vector ℓ appears

as a vehicle of limiting bootstrap randomness. Moreover, the limit in (3.3.6) is not a

conditional version of the limit of n1/2(θ̂ − θ0), inasmuch as Λ∗ℓ in (3.3.6) is a random

half-plane, rather than the original admissible set Λ of (3.3.3). The kind of limiting

bootstrap randomness introduced by ℓ is similar to the one established in the introductory

location model and, in general, it invalidates bootstrap inference. The reason for the

discrepancy between Λ and Λ∗ℓ is that the parameter space of the standard fixed-regressor

wild bootstrap does not approximate well the original mutual position of the true value

θ0 and the boundary, unless g(θ̂) = 0. Other, non-standard bootstrap schemes may be

designed in order to provide better approximations, at least under the null hypothesis.

Under these schemes the possible boundary position of θ0 is no longer a vehicle of limiting

bootstrap randomness, while the role of the random matrix M in the limit bootstrap

distribution is maintained. This topic is analyzed in the next section.

3.4 Asymptotically valid bootstrap schemes

In order to unify the discussion of several bootstrap schemes for inference on H0 under

the three cases G1, G2 and G3, consider a bootstrap sample generated as in (3.3.4) and,

more generally than before, a bootstrap OLS estimator θ̂∗ constrained to belong to a

bootstrap parameter space Θ∗ satisfying the following assumption.

The bootstrap parameter space is Θ∗ := {θ ∈ R2 : g(θ) ≥ g∗(θ̂)} for some function

g∗ : R2 → R which is continuously differentiable in a neighborhood of θ0 and satisfies

g∗(θ) ≤ g(θ) for θ ∈ Θ.

The standard bootstrap considered in Section 3.3 obtains by setting g∗ = 0, such

that Θ∗ = Θ, the original parameter space. Alternatively, setting g∗ = g restricts the

bootstrap true value θ̂ to lie on the boundary of the bootstrap parameter space Θ∗.8

Finally, setting g∗ = g− |g|1+κ for some κ > 0 introduces a correction, in the spirit of an

alternative to the standard bootstrap mentioned in Andrews (2000, p.403, Method two),

Fang and Santos (2019, Example 2.1) and Cavaliere et al. (2022), where the bootstrap

true value either shrinks to the boundary of the bootstrap parameter space at a proper

rate or remains bounded away from this boundary, according to whether θ0 belongs to the

8As θ̂
p→ θ0 and ġ(θ0) ̸= 0, it follows by continuity that P (ġ(θ̂) ̸= 0) → 1, such that, with probability

approaching one, θ̂ is not a stationary point of g. In particular, with probability approaching one, θ̂ is
not a local minimizer of g, implying that θ̂ ∈ ∂Θ∗ under Θ∗ = {θ ∈ R2 : g(θ) ≥ g(θ̂)}.
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original boundary ∂Θ or not. Other choices of g∗ with the same implication are discussed

in Sections 3.5.2 and 3.6.3.

To formulate the next theorem, recall M and ℓ(θ0) introduced in Section 3.3.1, and

let ξ∗|(M, ℓ(θ0)) ∼ N(0, σ2
eI2) as in Section 3.3.2. Let also Dn = {yt, xn,t−1}nt=1 denote the

original data. Finally, call a convergence in distribution Zn
w→ Z and a weak convergence

of random distributions Z∗n|Dn
w→w Z

∗|Y joint, denoted as (Zn, (Z
∗
n|Dn))

w→w (Z, (Z∗|Y )),

if (Zn, E{g(Z∗n)|Dn})
w→ (Z,E{g(Z)|Y }) for all continuous and bounded real functions g

with matching domain.

Theorem 3.4.1 Under a null hypothesis H0 as in G1–G3 and under Assumptions 1-3,

the bootstrap estimator θ̂∗ obtained by regressing y∗t of (3.3.4) on (1, xn,t−1)
′ under the

constraint θ̂∗ ∈ Θ∗, satisfies

(n1/2(θ̂ − θ0), (n
1/2(θ̂∗ − θ̂)|Dn))

w→w (ℓ(θ0), (ℓ
∗(θ0)|(M, ℓ(θ0)))) ,

where in the case g∗(θ0) < g(θ0),

ℓ∗(θ0) = ℓ̃∗ :=M−1/2ξ∗ with ℓ̃∗|(M, ℓ(θ0)) = ℓ̃|M (3.4.1)

in the sense of a.s. equality of conditional distributions, whereas in the case g∗(θ0) =

g(θ0),

ℓ∗(θ0) = ℓ∗ := argmin
λ∈Λ∗

ℓ

||λ−M−1/2ξ∗||M , Λ∗ℓ := {λ ∈ R2 : ġ′λ ≥ (ġ∗ − ġ)′ℓ(θ0)}. (3.4.2)

The following conclusions could be drawn.

(i) Consider first configurations G1 and G2 under H0, such that g(θ0) = 0. Consider the

magnitude order, in probability, of the distance between the bootstrap ‘true’ value

θ̂ and the bootstrap boundary ∂Θ∗ as a measure of how precisely the bootstrap ap-

proximates the geometry of G1 and G2. As seen previously, the standard bootstrap

corresponds to g∗ = 0 and approximates the geometry up to an exact magnitude

order of n−1/2, resulting in a situation where the belonging of θ0 to the boundary

contributes to the randomness of the limit bootstrap distribution given by (3.3.6)

and (3.4.2) via conditioning on the r.v. ℓ(θ0) = ℓ. Conversely, bootstrap schemes

employing g∗(θ0) = g(θ0) and ġ
∗ = ġ, such that the bootstrap boundary is tangent

to the original boundary at θ0, give rise to approximations of order op(n
−1/2) and

all the randomness in the bootstrap limit is due to the properties of the stochas-

tic regressor via the random variable M , as now ℓ∗|(M, ℓ) = ℓ|M in the sense of

a.s. equality of random distributions; see (3.3.3) and (3.4.2). Moreover, for such

schemes the bootstrap mimics a conditional version of the asymptotic distribution

of the original estimator: n1/2(θ̂∗− θ̂)
w∗
→w ℓ|M . Examples are the ‘restricted’ boot-

strap based on g∗ = g, which replicates the geometry of the original data under H0
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by putting θ̂ on the bootstrap boundary, and the choices g∗ = g − |g|1+κ for some

κ > 0. In general, the limit distribution of the resulting bootstrap estimator is ran-

dom, with randomness depending on both the stochastic regressor and the position

of θ0 relative to the boundary.

(ii) Consider now the case in G3, such that g(θ0) = 0 need not, but may hold under

H0. Among the bootstraps considered in (i), the standard one would fail to mimic

a conditional version of the original limit distribution if g(θ0) = 0, while the ‘re-

stricted’ one would fail if g(θ0) > 0. As an alternative, consider the bootstrap based

on g∗ = g − |g|1+κ for some κ > 0. If θ0 ∈ ∂Θ, then this choice puts the bootstrap

true value θ̂ at the asymptotically negligible distance of op(n
−1/2) from the boot-

strap boundary, whereas if θ0 ∈intΘ, then θ̂ is bounded away from the bootstrap

boundary, in probability. This guarantees bootstrap validity under some regularity

conditions, see (ii) in Corollary 3.4.1 below.

In general, bootstrap validity in the sense of (3.1.1) can be evaluated through the

following corollary of Theorem 3.4.1 above.

Corollary 3.4.1 Under the assumptions of Theorem 3.4.1, a necessary and sufficient

condition for the convergence

(n1/2(θ̂ − θ0), (n
1/2(θ̂∗ − θ̂)|Dn))

w→w (ℓ(θ0), (ℓ(θ0)|M)) (3.4.3)

is that: (i) under G1 and G2, g(θ0) = g∗(θ0) and ġ = ġ∗; (ii) under G3, either g(θ0) =

g∗(θ0) and ġ = ġ∗, or g(θ0) > max{0, g∗(θ0)}.
Moreover, under (3.4.3) the bootstrap is valid in the sense of (3.1.1) for any pair of

statistics τn, τ
∗
n such that, under H0, τn = ϕ(n1/2(θ̂ − θ0)) + op(1) and τ ∗n = ϕ(n1/2(θ̂∗ −

θ̂)) + op(1) for some continuous real function ϕ such that ϕ(ℓ(θ0)) is well-defined a.s.

The class of functions g∗ = g − |g|1+κ for κ > 0 satisfies both conditions (i) and (ii) of

Corollary 3.4.1; hence, the ensuing bootstrap inference is valid under all of G1-G3. In

contrast, the standard bootstrap violates condition (i) and, in general, is asymptotically

invalid if g(θ0) = 0. An exception is when the discrepancy between the original and the

bootstrap geometry is offset by the use of a test statistic that takes into account the

geometric position of the null hypothesis in the original parameter space. Section 3.5.1

focuses on this setup.

Remark. The practical implications of Corollary 3.4.1 depend on the choice of the

statistic τn and the respective function ϕ, which will typically be a linear ϕ(l) = l′ ∂r
∂θ′

(θ0)

arising from the delta method, with l ∈ R2, ∂r
∂θ′

(θ0) ̸= 0. For instance, if g(θ0) = 0 and

ϕ(ℓ) depends on ℓ only through ġ′ℓ = max{0, ġ′M−1/2ξ}, then the cdf of ϕ(ℓ) will not

be continuous. Still, the bootstrap will be valid in the sense of (3.1.1), meaning that
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the largest open subset of [0, 1] on which the bootstrap test is correctly sized as n → ∞
coincides with the analogous set for the asymptotic test. This set will be smaller than

(0, 1), however. An example is τn = n1/2g(θ̂), τ ∗n = n1/2(g(θ̂∗) − g(θ̂)) with ϕ(ℓ) = ġ′ℓ,

corresponding to a right-sided test of H0 : g(θ0) = 0.

Remark. Bootstrap validity extends readily to statistics where n1/2(θ̂−θ0) is normalized

by some Σ̂ = Σ(Mn) + op(1) for a function Σ : R2×2 → R2×2 which is continuous on

the set of positive definite matrices. Specifically, bootstrap validity holds if, under H0,

τn = ϕ(n1/2Σ̂(θ̂− θ0)) + op(1) and τ
∗
n = ϕ(n1/2Σ̂(θ̂∗− θ̂)) + op(1), where ϕ is a continuous

real function such that ϕ(Σ(M)ℓ(θ0)) is a.s. well-defined. □

3.5 Discussion and extensions

In this section we address the following three issues: (i) the validity of one-sided bootstrap

tests; (ii) a discussion of the bootstrap schemes from Corollary 3.4.1 within the paradigm

of some previous works – specifically, Fang and Santos (2019) and Hong and Li (2020);

and (iii) uniform bootstrap validity.

3.5.1 Validity of one-sided standard bootstrap tests

Under case G1, consider testing H0 : g(θ0) = 0 against the alternative H1 : g(θ0) > 0

using a one-sided test and the standard bootstrap, i.e., with g∗ = 0. For a test statistic

of the form τn := n1/2g(θ̂), a bootstrap counterpart is given by τ ∗n := n1/2(g(θ̂∗) − g(θ̂))

and the associated one-sided bootstrap test rejects for large values of the bootstrap p-

value p∗n := P ∗(τ ∗n ≤ τn); equivalently, for small values of p̃∗n := 1 − p∗n. As for θ̂∗, also

τ ∗n is affected in the limit by extra randomness due to θ0 being on the boundary. From

(3.4.1), which reduces to (3.3.3) and (3.3.6), it follows by the delta method that

(τn, (τ
∗
n|Dn))

w→w (ġ′ℓ, (ġ′ℓ∗|(M, ℓ))) = (ġ′ℓ, (max{−ġ′ℓ, ġ′ℓ̃∗}|(M, ℓ))), (3.5.1)

with ℓ, ℓ∗ and ℓ̃∗ as previously defined. For τ ∗n, however, the randomness induced by

conditioning on ℓ affects the sample paths of the associated random cdf on the negative

half-line alone, because ġ′ℓ ≥ 0, and is thus irrelevant for bootstrap tests with nominal

size in (0, 1
2
). Put differently, the bootstrap p-values p̃∗n are asymptotically uniformly

distributed below 1
2
. This follows rigorously from the next generalization of Theorem

3.1 in Cavaliere and Georgiev (2020), the proof being analogous, where conditions for

bootstrap validity restricted to a subset of nominal testing levels are formulated.

Theorem 3.5.1 Let there exist a random variable τ and a random element X, both

defined on the same probability space, such that the support of τn is contained in a finite or

infinite closed interval T , and (τn, F
∗
n)

w→ (τ, F ) in R×D(T ) for F ∗n(u) := P (τ ∗n ≤ u|Dn)

and F (u) := P (τ ≤ u|X), u ∈ T . If the possibly random cdf F is sample-path continuous
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on T , then the bootstrap p-value p∗n := F ∗n(τn) satisfies

P (p∗n ≤ q) → q

for q such that q ∈ F (T ) a.s.

By Theorem 3.5.1 with T = [0,∞), which corresponds to the support of τn and τ := ġ′ℓ, it

follows that the standard bootstrap applied to the one-sided statistic τn is asymptotically

correctly sized for nominal test sizes in (0, 1
2
).

3.5.2 Fang and Santos (2019) and Hong and Li (2020)

In this section we put the geometric considerations of Section 3.4 in the perspective of

Fang and Santos (2019), and of the numerical bootstrap of Hong and Li (2020). The

discussion is often specialized to the case of an affine constraint.

Consider the constrained OLS estimator θ̂ of Section 3.3.1. Its limit distribution, see

(3.3.3), is the distribution of ℓ(θ0) = φθ0(M
−1/2ξ) with

φθ0(u) =

 u

ġ⊥(ġ
′
⊥Mġ⊥)

−1ġ′⊥Mu+M−1ġ(ġ′M−1ġ)−1max{0, ġ′u}

if g(θ0) > 0

if g(θ0) = 0
,

with u ∈ R2. By a projection identity, the expression in the second line of the previous

display collapses to u whenever ġ′u ≥ 0. Note that the distribution ofM−1/2ξ conditional

on M can be estimated consistently by the distribution of the unconstrained bootstrap

OLS estimator conditional on the data; that is,

n1/2 ˜(θ∗ − θ̂)
w∗
→w M

−1/2ξ|M .

One can then ask what properties of an estimator φ̂n of φθ0 are sufficient for φ̂n(n
1/2 ˜(θ∗−

θ̂))
w∗
→w φθ0(M

−1/2ξ)|M to hold. Fang and Santos (2019) address this question in the

setup of deterministic transformations of non-random limit distributions, instead of the

random transformation φθ0 of the random distributionM−1/2ξ|M . Although not directly

applicable here, Theorem 3.2 of Fang and Santos (2019) provides the key insight: there

should be sufficient uniformity in the convergence of φ̂n to φθ0 . Consider for instance

φ̂n(u) = ˆ̇g⊥(ˆ̇g
′
⊥Mn

ˆ̇g⊥)
−1 ˆ̇g′⊥Mnu (3.5.2)

+M−1
n

ˆ̇g(ˆ̇g′M−1
n

ˆ̇g)−1max{−n1/2|g(θ̂)|1+κ, ˆ̇g′u}, u ∈ R2,

where ˆ̇g = ∂
∂θ′
g(θ̂), Mn = n−1

∑n
t=1 x̃tx̃

′
t with x̃t = (1, xn,t−1)

′, and κ > 0. Given that

Mn
w→ M , ˆ̇g

p→ ġ and n1/2|g(θ̂)|1+κ p→ ∞I{g(θ0)>0}, it is easily checked that φ̃n
w→ φθ0 on

C2(R2), and the convergence of φ̂n is joint with that of n1/2(θ̂− θ0) and n
1/2 ˜(θ∗− θ̂), the

latter one given the data. These facts are sufficient to ensure that

(n1/2(θ̂ − θ0), (φ̂n(n
1/2 ˜(θ∗ − θ̂))|Dn))

w→w (ℓ(θ0), (ℓ(θ0)|M))
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on R4, essentially as a consequence of the continuous mapping theorem (CMT) and the

continuity of the evaluation map from C2(R2) × R2 to R2. As the previous limit is the

same as in Corollary 3.4.1, it follows that bootstrap inference based on the distribution

of φ̂n(n
1/2 ˜(θ∗ − θ̂)) conditional on the data is valid. Moreover, for the valid bootstrap

schemes obtained from Corollary 3.4.1 with g∗ = g−|g|1+κ, κ > 0, the bootstrap estimator

θ̂∗ satisfies n1/2(θ̂∗− θ̂) = φ̂n(n
1/2 ˜(θ∗− θ̂)) for affine functions g. It can be concluded that

φ̂n of (3.5.2) implicitly performs the geometric approximation proposed in Section 3.4,

and so does any other estimator of φθ0 that converges like φ̂n.

We now argue that such an estimator of φθ0 is embedded in the numerical bootstrap

of Hong and Li (2020). This ensures the validity of the numerical bootstrap for the

predictive regression of interest here, though at the cost of a slower consistency rate of

the bootstrap estimator than in Corollary 3.4.1. Let sn → ∞ be a sequence such that

n−1/2sn → 0. Hong and Li (2020) propose in their eq. (4.9) a bootstrap estimator θ̂∗nb
where the constraint set of our ℓ(θ0) (i.e., R2 if θ0 ∈ intΘ and the half-plane Λ if θ0 ∈ ∂Θ),

would be estimated by Λ∗nb = {λ ∈ R2 : g(θ̂+s−1n λ) ≥ 0}, the implied bootstrap parameter

space being Θ∗nb = θ̂+ s−1n Λ∗nb = Θ. The bootstrap estimator itself, adapted to our setup,

could be written as

θ̂∗nb = argmin
g(θ)≥0

||sn(θ − θ̂)−M−1/2
n ξ∗n||Mn ,

where ξ∗n is a bootstrap variable such that ξ∗n
w∗
→p N(0, I2); e.g., ξ

∗
n = n1/2M

1/2
n (θ̃∗ − θ̂).

In the simple case of an affine g we find the explicit expression

sn(θ̂
∗
nb − θ̂) = φ̄n(M

−1/2
n ξ∗n)

for φ̄n defined similarly to φ̂n, with the only difference that in (3.5.2) the term n1/2|g(θ̂)|1+κ

is replaced by sng(θ̂). As sng(θ̂)
p→ ∞I{g(θ0)>0} similarly to n1/2|g(θ̂)|1+κ, κ > 0, it fol-

lows that φ̄n converges similarly to φ̂n. As a result,

(n1/2(θ̂ − θ0), (sn(θ̂
∗
nb − θ̂)|Dn))

w→w (ℓ(θ0), (ℓ(θ0)|M)) ,

ensuring the validity of the numerical bootstrap, though the consistency rate of θ̂∗nb is sn =

o(n1/2) instead of n1/2. In contrast, the rate of n1/2 would be achieved by our proposed

bootstrap estimator, with n1/2(θ̂∗ − θ̂) = φ̄n(M
−1/2
n ξ∗n), if Θ

∗ = {θ ∈ R2 : g(θ) ≥ g∗n(θ̂)}
with g∗n = g − n−1/2sn|g| is specified in Assumption 3.

3.5.3 Uniformity considerations

In agreement with Chatterjee and Lahiri (2011), Remark 3, the focus in this paper is

on pointwise bootstrap validity. For situations where uniform bootstrap validity is of

interest, our key takeaways are similar to the literature on non-random limiting boot-

strap measures. First, for the null hypothesis G1 that the true parameter value lies on

the boundary of the parameter space, the pointwise-valid bootstrap schemes outlined
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in Corollary 3.4.1 display asymptotic rejection probabilities matching the local power of

the bootstrap test whenever the true parameter value varies along a sequence that is lo-

cal to the boundary at the n−1/2 rate. This fact is associated with rejection frequencies

above the nominal test size along local-to-the-boundary parameter sequences (cf. Fang

and Santos, 2019, Remark 3.6). Second, if conservative bootstrap inference along such

parameter sequences is desired, it can be achieved for hypotheses G1–G3 by adapting the

approach of Doko Tchatoka and Wang (2021), and Cavaliere et al. (2024), at the cost of

a potential decrease in power.

To illustrate these points, consider a sequence of true parameter values θn = θ0+n
−1/2ϑ

such that g(θ0) = 0 and ġ′ϑ = c > 0 with g(θn) = n−1/2c+ o(n−1/2). Moreover, let

ℓ(ϑ, c) := ϑ+ argmin
λ∈Λc

||λ−M−1/2ξ||M , Λc = {λ ∈ R2 : ġ′λ+ c ≥ 0}, (3.5.3)

and ℓ(0, 0) = ℓ of eq. (3.3.3). Then, the joint convergence result

(n1/2(θ̂ − θ0), (n
1/2(θ̂∗ − θ̂)|Dn))

w→w (ℓ(ϑ, c), (ℓ(0, 0)|M)) (3.5.4)

holds for the bootstrap schemes satisfying conditions (i) and (ii) of Corollary 3.4.1. For

a function r : R2 → R which is continuously differentiable close to θ0, consider the

statistics τn = n1/2r(θ̂) and τ ∗n = n1/2(r(θ̂∗) − r(θ̂)), and distinguish among the extreme

possibilities ṙ = αġ with α > 0, and ṙ = αġ⊥ with α ̸= 0, where ṙ = ∂r
∂θ′

(θ0). The former

possibility arises in testing the null hypothesis that θ0 lies on the boundary (e.g., with

r = g), whereas the latter one arises when the null is orthogonal to the boundary (e.g.,

with r(θ) = θ1, H0 : θ1 = 0 and Ω = R× [0,∞)). If ṙ = ġ and, without loss of generality,

α = 1, the delta method yields

(τn, (τ
∗
n|Dn))

w→w (max{0, ġ′M−1/2ξ + c}, (max{0, ġ′M−1/2ξ}|M)).

With γM := (ġ′M−1ġ)−1/2, it follows that

P ∗(τ ∗n ≤ τn)
w→ π(c;M, ξ) := 1

2
I{ġ′M−1/2ξ+c<0} + Φ(γM(ġ′M−1/2ξ + c))I{ġ′M−1/2ξ+c≥0}

> π(0;M, ξ),

where π(0;M, ξ)
d
= 1

2
I{U<0.5} + UI{U≥0.5}, U ∼ U[0,1], represents the limit distribution of

the bootstrap p-value under the null. The inequality above implies that bootstrap tests

rejecting for large bootstrap p-values will exhibit rejection frequencies above the nominal

test size.

On the other hand, if ṙ = αġ⊥, it holds that

(τn, (τ
∗
n|Dn))

w→w (ṙ′γ⊥MM
1/2ξ + ṙ′γ⊥MMϑ, (ṙ′γ⊥MM

1/2ξ|M)),

with γ⊥M := ġ⊥ġ
′
⊥(ġ

′
⊥Mġ⊥)

−1, such that the boundary is asymptotically irrelevant. Boot-

strap tests of the null that r(θ0) = 0 could be conservative or liberal according to the
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sign of ṙ′ġ⊥ġ
′
⊥Mϑ. Similar considerations apply whenever ṙ′ġ⊥ ̸= 0.

For situations where liberal tests are not desirable, a possible remedy is suggested

next. It involves a continuum of boundaries for the bootstrap parameter space and its

implementation requires a discretization of that continuum.

Let θ̃ be the unrestricted OLS estimator of θ in regression (3.3.2). For every s ∈
In := [−|g(θ̃)|1−µ, g(θ̂)], let θ̂∗s be the bootstrap estimator over the parameter space Θ∗s :=

{θ ∈ R2 : g(θ) ≥ s − g(θ̂)1+κ}, where µ ∈ (0, 1) and κ > 0 are fixed. For a continuously

differentiable function r, let p∗n(s) be the p-value of a test based on τn = n1/2r(θ̂) and

τ ∗n = n1/2(r(θ̂∗)− r(θ̂)). Then

lim sup
n→∞

P (sup
s∈In

p∗n(s) ≤ q) ≤ q

for all q ∈ intC, where C is the set from display (3.1.1) for the benchmark asymptotic

test based on the unfeasible statistic n1/2(r(θ̂) − r(θn)) and the simple null hypothesis

that θn is the true parameter value. This conservative generalization of the validity

property (3.1.1) holds irrespective of the values of the drift parameter c. Specifically, the

role of −|g(θ̃)|1−µ in the definition of In is to guarantee that g(θ̂) − cn−1/2 ∈ In with

probability approaching one. Conservative size control then follows from the fact that θ̂∗s

with s = g(θ̂)− cn−1/2 satisfies

(n1/2(θ̂ − θn), (n
1/2(θ̂∗s − θ̂)|Dn))

w→ (ℓ(0, c), (ℓ(0, c)|M)) ;

see eqs. (3.5.3)–(3.5.4).

3.6 Numerical results and choice of the tuning

parameters

In this section we analyze the finite sample performance of the proposed bootstrap

methodology by means of numerical simulations. The purpose is twofold: first, to in-

vestigate the practical advantage of our methodology over standard bootstrap methods;

second, to provide some practical guidance on how to choose the functions g∗ and the

tuning parameter κ in the definition of the bootstrap parameter space. Simulations are

based on setup G3 of Section 3.3, as it covers the general case of a true parameter value

that could, but need not, lie on the boundary of the parameter space under the null hy-

pothesis. This section is organized as follows. In Section 3.6.1 we describe the data gen-

erating processes, the null hypotheses and the adopted bootstrap schemes. In Section

3.6.2 we discuss the performance of the tests both under the null and under local alter-

natives. Section 3.6.3 deals with the choice of g∗ and κ. Additional numerical results are

provided in the accompanying supplement, Section C.3.
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3.6.1 Monte Carlo design

We consider the same data generating process (DGP) as in (3.3.1), where xn,t = n−1/2xt,

xt :=
∑t

i=1 εx,i, εx,t ∼ iid N(0, 1), with the following specifications of εt:

1. εt ∼ iid N(0, 1);

2. εt = σtνt, where σ
2
t = 0.7 + 0.3ε2t−1 and νt ∼ iid N(0, 1);

3. εt =
√
0.5εx,t +

√
0.5ηt, where ηt ∼ iid N(0, 1).

In each case, {εx,t} is independent of, respectively, {εt}, {νt} and {ηt}. In Case 1,

the regression errors are independent and Gaussian, while in Case 2 they exhibit ARCH-

type conditional heteroskedasticity. Case 3 allows for correlation between εt and the

regressor’s innovation εx,t.

The parameter space is specified as Θ := {θ ∈ R2 : g(θ) ≥ 0} where g(θ) = θ2. That

is, Θ := R× [0,∞) – such that its boundary is given by ∂Θ = R×{0}. For all parameter

values, we test the null hypothesis H0 : h(θ0) = 0, with h(θ) = θ1 + θ2, against the two-

sided alternative h(θ0) ̸= 0. To do so, we employ the test statistics τn = ϕ(
√
nh(θ̂))

and τ ∗n = ϕ(
√
n(h(θ̂∗)− h(θ̂))), where ϕ(x) = x2, while θ̂ and θ̂∗ denote the original and

bootstrap constrained LS estimators, respectively. In order to analyze size control and

power of the proposed tests, we consider both empirical rejection probabilities [ERPs]

under the null and under local alternatives. For tests performed under the null, we

consider three different choices of the true value θ0, one located on ∂Θ and two located

on Θ\∂Θ; specifically, θ0 ∈ {(0, 0)′, (−0.75, 0.75)′, (−1.5, 1.5)′}. Under H1, we employ a

local alternative of the form θ0 = a0n
−1/2, a0 ∈ R2, such that h(θ0) ̸= 0 unless a = (0, 0)′.

Tests are based on p-values obtained using a ‘standard’ – i.e., with Θ∗ = Θ – fixed-

regressor Gaussian wild bootstrap and the proposed ‘corrected’ bootstrap scheme. For

the latter, the bootstrap parameter space is set to Θ∗ = R × [g∗(θ̂2),∞), where the

function g∗ satisfies the assumptions of Corollary 3.4.1, see also Section 3.6.3. In order to

assess the impact of the tuning parameter κ, we consider a grid of possible values for κ.

Numerical results are based on 50, 000 Monte Carlo simulations, each involving B = 999

bootstrap repetitions. Sample sizes are set to n ∈ {100, 200, 400, 800, 1600}.

3.6.2 Empirical rejection probabilities

We now discuss the ERPs of the bootstrap tests. Specifically, the Monte Carlo results in

Table 1 and 2 refer to the case in which data are generated under the null and under local

alternatives, respectively. The proposed modified bootstrap parameter space is based on

the function g∗ = g − |g|1+κ for several values of κ > 0.

Table 1 shows that the ‘standard’ bootstrap scheme typically under-rejects the true

null hypothesis when the parameter lies on the boundary of the parameter space Θ

whereas, as expected, its ERPs are closer to the nominal level when θ0 is in the interior of

Θ. Our proposed bootstrap performs similarly to the ‘standard’ bootstrap for very small
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values of κ, with the impact of the correction becoming more relevant as κ increases. If the

parameter is on the boundary of the parameter space (θ0 ∈ ∂Θ), our proposed bootstrap

scheme gives rise to smaller absolute size distortions than the ‘standard’ bootstrap, for

all the considered DGPs and all values of κ. When θ0 ∈ intΘ, we observe very little

variability in the ERPs across the different bootstrap methods, at least for reasonably

small values of κ.

Table 2 reports the ERPs of the tests when data are generated under local alternatives

θ0 = a0n
−1/2, a0 ∈ {(−3, 0)′, (3, 0)′, (5, 0)′}, such that the true parameter values lie on

the boundary of the parameter space. Results show that both bootstrap schemes have

power under local alternatives, with the ‘corrected’ bootstrap generally showing higher

ERPs than the ‘standard’ bootstrap, in line with the results obtained under the null.

Finally, we notice that the sign of the deviations from the null hypothesis matters, with

positive deviations showing higher ERPs. This finding can be explained by the fact that

the limit distribution of n1/2(h(θ̂) − h(θ0)) is asymmetric when θ0 lie on the boundary

of Θ. Results about local alternatives such that θ0 are n−1/2-local to the boundary are

substantially similar and are reported in Section S.2 of the supplement.

3.6.3 Choice of g∗ and κ

We now consider the practical issue of choosing the function g∗ and the tuning parameter

κ used to construct the modified bootstrap parameter space Θ∗.

Regarding g∗, in Section 4 we discussed the functions g∗(1) := g − |g|1+κ, κ > 0, which

satisfy the assumptions of Corollary 3.4.1 and were employed in the simulations so far,

whereas in Section 3.5.2 we considered also g∗(2) := g−n−κ|g|, κ ∈ (0, 1/2), corresponding

to sn = n1/2−κ in the concluding paragraph of Section 3.5.2. Numerical results in Table

1 and 2 and in the accompanying Supplement, Section S.2, show that both choices of

g∗ deliver good test performance, both under the null and under local alternatives. The

most salient difference between g∗(1) and g
∗
(2) is that tests based on g∗(1) tend to be more

robust to the choice of κ when g(θ0) ≥ 1.

Concerning the choice of the tuning parameter κ, we focus on g∗ = g∗(1). Preliminary

considerations point at a possible trade-off between the cases of a boundary and an interior

location of the true parameter θ0. Thus, for θ0 ∈ ∂Θ, larger values of κ accelerate the

convergence of g(θ̂)1+κ to zero, which can be expected to favor bootstrap performance as

the bootstrap true value θ̂ is put at a smaller distance from the bootstrap boundary. On

the other hand, if θ0 ∈ int(Θ) and g(θ0) ∈ (0, 1), in small samples large values of κ may

put θ̂ too close to the bootstrap boundary, yielding inferior bootstrap performance.

Our Monte Carlo study indeed confirms that small values of κ are preferable when

θ0 ∈ int(Θ) and g(θ0) ∈ (0, 1); however, it also shows that the proposed correction quickly

provides satisfactory size control for small values of κ even when θ0 ∈ ∂Θ. Finally, we

notice that when θ0 ∈ int(Θ) and g(θ0) ≥ 1 the choice of κ has negligible impact on the
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ERPs. Overall, our numerical analysis suggests that choices of κ close to 0.5 provide

quite satisfactory size control across all the considered scenarios.

Remark. The above guideline about the choice of κ is based on numerical evidence; it

delivers a reasonable simple choice which can be easily implemented. It is not optimal

in any sense, and indeed alternative methods could be employed to obtain data-driven

choices of κ. For instance, the unrestricted parameter estimates could be used to assess

how far the true parameter value θ0 is from the boundary of the parameter space, and then

calibrate the choice of κ accordingly. This approach would be in the spirit of Romano,

Shaikh and Wolf (2014), who suggest to improve the power of tests of moment inequalities

by introducing a first step, where a confidence region for the moments is constructed

using their unrestricted estimates. Although this approach may improve the finite sample

properties of our tests, it would require a preliminary choice of further tuning parameters,

such as β in Romano et al. (2014), hence introducing an extra layer of complexity. □

3.7 Conclusions

In this paper we analyzed the problem of bootstrap hypotheses tests on the parameters

(α, β) of a predictive regression yt = α + βxt−1 + εt, generalizable to higher dimensions,

when the parameter space is defined by means of a smooth constraint g(α, β) ≥ 0 and

the true parameter vector under the null hypothesis may lie on the boundary of the

parameter space. In the framework of constrained parameter estimation, implementation

of the bootstrap is not straightforward, as the presence of a parameter on the boundary

of the parameter space makes the bootstrap measure random in the limit.

We discussed possible solutions to this inference problem. Specifically, we presented

some modifications of standard bootstrap schemes where the bootstrap parameter space is

shifted by a data-dependent function, thus allowing us to regain control over the boundary

as a source of limiting bootstrap randomness. We also proved validity of the associated

bootstrap inference in the cases where the posited predicting variable is I(1).

Our contribution is novel in the framework of predictive regression, in that the exist-

ing literature has not analyzed the bootstrap in contexts combining non-stationarity of

the posited predictor with a priori knowledge about the possible form of predictability,

represented by a restricted parameter space. The value of our work is to provide valid

bootstrap implementations in this setting.

77



78



Chapter 4

When did the Phillips Curve

Become Flat? A Time-varying

Estimate of Structural

Parameters

(written with Claudio Lissona and Antonio Marsi)

4.1 Introduction

The disconnect between the observed fluctuations in unemployment and inflation in the

last decades is a well-known empirical fact in the macroeconomic literature (Stock and

Watson, 2020; Ball and Mazumder, 2020; Bobeica et al., 2021). As shown by Stock and

Watson (2020), a set of simple OLS regressions of core inflation on a measure on the un-

employment gap, for the US, reveals a declining pattern. The estimated OLS coefficient

is -0.48 for the 1960-83 sample, -0.26 for the 1984-99 sample and -0.03 (and not statisti-

cally different from zero) for the 2000-2019 sample. However, these are changes in reduced

form correlations, which can be the result of different underlying structural changes. As

shown extensively in Del Negro et al. (2020); McLeay and Tenreyro (2020); Bergholt et al.

(2023), among others, a decreasing correlation between inflation and unemployment can

be caused by at least three different phenomena: (1) a decreasing value of the structural

coefficient relating changes in economic slack and inflation; (2) an increase in the strength

of the reaction of the central bank to business cycle shocks; (3) an increase in the propor-

tion of aggregate fluctuations driven by supply-type shocks as compared to demand-type

shocks. Other structural explanations are based on some departure from rational expec-

tations models (see e.g. Coibion et al., 2018) or stems from the involved network struc-

ture of the economy (see e.g. Rubbo, 2022). Disentangling among these different expla-

nations essentially boils down to being able to identify the structural Phillips Curve (PC),

rather than a reduced form version (Mavroeidis et al., 2014). Furthermore, different ex-
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planations would lead to opposite monetary policy considerations. In fact, a decrease in

the structural slope of the PC (i.e. explanation (1) above), would imply that the central

bank’s ability to control inflation is impaired, since it is based on the idea that by set-

ting the interest rate the central bank can affect economic slack and thus inflation via the

PC. On the other hand, it is clear that explanation (2) above is much more comforting

for central bankers. As we explain in the related literature section, evidence is still mixed

and conclusions crucially depend on the empirical strategy used to identify the structural

equation. The PC can be formulated in many different ways. Here we refer to its hybrid

New- Keynesian formulation, following Barnichon and Mesters (2020a) and many others:

πt = γbπt−1 + γfEtπt+1 + λxt + ηt (4.1.1)

where πt is some measure of inflation and γb, γf are the parameters governing the stickiness

of inflation and the role played by expectations about future inflation, respectively. xt

is some measure of economic slack and the unemployment gap can be conveniently used

for this purpose (Gal̀ı et al., 2011; Gal̀ı, 2011). Notice that πt should be intended as a

deviation from the long run trend, as we will discuss later. ηt is a cost-push (supply-type)

shock.

Over recent decades, an extensive portion of the literature has focused on PC estima-

tion, given its major implications, in primis for monetary policy (Mavroeidis et al., 2014).

However, apart from few exceptions such as Inoue et al. (2022) and Gaĺı and Gambetti

(2019), the literature is still missing a precise estimate of the evolution over time of λ,

where the coefficient is allowed to be fully time-varying. In this paper we contribute to

filling this gap, using an innovative approach. We believe that tracking the value of λ over

time is extremely useful, as it enables not only to show whether λ has in fact decreased or

not, but also when exactly did the structural change take place. Understanding when the

change happened can help to shed light on the ultimate forces behind the phenomenon.

To do this, we first model the dynamics of aggregate macro variables, in a time-varying

fashion. We do this by using a non-parametric specification of a stochastic time-varying

VAR model, following Giraitis et al. (2018). Details of this model are presented in Section

2. This choice has several useful advantages compared to competing alternatives. Simple

splitting of the sample, as in Del Negro et al. (2020), fails to provide evidence on the

exact timing of the occurrence of any structural change and is subject to the arbitrary

choice of the splitting date. Rolling window analysis would reduce sample size in an

inefficient way. Competing time-varying VAR models, such as the bayesian TVC-VAR

(Primiceri, 2005; Del Negro and Primiceri, 2015) - besides being much more demanding

from a computational viewpoint - impose ex-ante parametric restrictions on the process

driving the evolution of time-varying coefficients.
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Notice also that the approach we use enables us to circumvent the usual problem of

cleaning for the long run trend in both πt and xt. The stochastic time-varying VAR model

embeds the estimation of a random attractor which can be interpreted as an estimate of

the long-run inflation trend and the natural unemployment rate (see the details in the

next section). This permits to avoid using methods such as the Hodrick-Prescott filter

to estimate long run components of the time series.

We identify an aggregate demand shock in the time-varying VAR model, by using

the Excess Bond Premium (EBP) by Gilchrist and Zakraǰsek (2012) and ordering it last

in a recursive-ordering (Cholesky) identification strategy. This is the same identification

strategy used in Del Negro et al. (2020) and it is a convenient choice in our setup for

several reasons that we will detail later. At this stage we are therefore able to estimate a

set of time-varying impulse response functions to the identified aggregate demand shock.

Furthermore, an alternative identification strategy, based on sign-restrictions, is explored

in Appendix D.2.

Lewis and Mertens (2022) show that a structural macro equation like (4.1.1) can

be conveniently and consistently estimated by computing the impulse responses of the

variables in the equation (namely πt and xt) to a properly identified structural shock

(for the PC, a demand shock orthogonal to the supply shock ηt), and by then regressing

impulse responses one on each other. Armed with our time-varying impulse responses,

we can in fact get a time-varying estimate of the NKPC by applying this idea. This

methodology, called the SP-IV estimator in Lewis and Mertens (2022), is an extremely

smart way to solve many issues practically faced by researchers when trying to estimate

structural equations like the PC. In a nutshell, the endogeneity of Etπt+1 and xt is the

main challenge here. Let us consider equation (4.1.1) and forget for simplicity about past

and future inflation components and focus only of xt. Equation (4.1.1) is only one of a

large set of structural equations driving macroeconomic fluctuations, hence E (ηtxt) ̸= 0,

and (4.1.1) cannot be estimated by OLS. The traditional solution is to use past values

of macro variables as external instruments, under the assumption that E (xt−1ηt) = 0.

However, it is enough for ηt to exhibit some persistence for the assumption not to be

valid anymore. Using further lags could solve the problem, but at the strong cost of

reducing instrument’s relevance. Barnichon and Mesters (2020a) proposes then to use a

sequence of past and present (properly identified) shocks, e.g. a sequence of past monetary

surprises, to instrument xt. This approach however requires the strongest assumption of

contemporaneous and lag exogeneity of the instrument. The SP-IV method by Lewis and

Mertens (2022) conveniently addresses all these issues and we refer to their paper for all

the details. In our case, the most convenient feature of SP-IV is that the IRFs to the

demand shock can be identified using any valid identification scheme, hence it enables us

to employ the Cholesky ordering strategy of Del Negro et al. (2020).

Using this approach we are able to trace out the evolution over time of the parameters
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of a time-varying NKPC, which can be framed within a DSGE model with exogenous

variation in the structural parameters (Canova and Sala, 2009; Castelnuovo, 2012; Galvão

et al., 2016). We apply our methodology to a sample of monthly US macroeconomic

variables and estimate a strong reduction of the slope of the NKPC. Specifically, the

estimated slope goes sharply to zero already in the 80’s and remain zero from 1990 onward.

At the same time, we show that the γf coefficient, measuring the importance of inflation

expectations, grows over time. Notice that a combination of high γf and low λ is, from a

theoretical point of view, a dangerous situation where the central bank’s ability to control

inflation is impaired while expectations are at the same time quite important, hence any

news shock to expectations can significantly influence the inflation rate, possibly leading

to explosive behaviors.

By comparing the estimated IRFs of the interest rate to the demand shock over time,

we rule out the hypothesis of a stronger reaction of the central bank as a driver of the

flattening of the PC (i.e. explanation (2) above). If anything, the estimated response of

the interest rate seems to become more muted over time.

To show that our approach provides valid estimates of the structural parameters

of interest, we conduct a simulation study where we analyze the performance of our

methodology by generating data from a time-varying-parameters version of a simple NK

model à la Gali and Gertler (1999).

The remainder of the paper proceeds as follows. First, we briefly review the related

literature. In Section 4.2 we explain in details the methodology used. In Section 4.3 we

present the data used and how we specify the time-varying VAR model. In Section 4.4 re-

sults from the baseline specification are presented. In Section ?? the procedure we use to

conduct inference on the parameters of interest is discussed. In Section 4.5 the evidence

from the simulation analysis is presented, while Section 4.6 provides some concluding re-

marks. Appendix D.1 shows results when using variables at quarterly frequency. Ap-

pendix D.2 presents results using the sign-restrictions identification strategy. Appendix

D.3 shows the results for the Euro Area.

4.1.1 Related literature

The empirical literature on the PC is huge and a exhaustive survey is not the aim of this

paper (see Mavroeidis et al., 2014, for a survey of older contributions. We limit ourselves

to list some relevant papers that study the evolution over time of PC coefficients.

Barnichon and Mesters (2020a), for instance, estimates λ for the US, from two over-

lapping samples: for the 1969-2007 sample, they estimate a value of -0.42, while focusing

on the 1990-2007 sample yields an estimate of -0.24, pointing to a reduction of the struc-

tural slope of the NKPC, λ. However, the external instruments used for identification in

the two samples are different: the Romer and Romer (2004) narrative measure of mon-

etary policy shocks in the first sample, high-frequency monetary surprises à la Kuttner
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(2001) in the second sample

Del Negro et al. (2020) estimates a bayesian-VAR on US data, splitting the sample

in two parts: 1973-1989 and 1990-2019 and identify a structural shock associated to

the EBP, as we did in this paper. The document a significantly smaller reaction of the

inflation rate to the shock in the second sample, even when conditioning for the path

of unemployment. There are few studies in the literature trying to estimate a fully

time-varying version of the PC. A notable example is Giraitis et al. (2021), who use a

nonparametric time-varying stochastic IV estimator to directly estimate a time-varying

version of (1). Differently from us, they estimate the PC coefficients by using a set of

lags of unemployment and inflation as external instruments. This identification strategy

presents all the issues briefly mentioned above and discussed extensively in Barnichon

and Mesters (2020a) and Lewis and Mertens (2022). Their analysis on US data points

a decline in the slope of the PC, which is estimated to be significantly different from

zero only in the early 80’s. Another study very much related to this paper is Gaĺı and

Gambetti (2019). They analyze the evolution of the wage-NKPC over time for the US,

documenting a decreasing slope. However, we differ from Gaĺı and Gambetti (2019),

along several dimensions. First, to model time-varying dynamics of the macroeconomic

variables, they use the methodology in Del Negro and Primiceri (2015): a bayesian TVC-

VAR. This model assumes time-varying coefficients to follow a random-walk, while the

methodology we use is consistent with a much wider class of dynamic models, as explained

in section 2. Second, they focus on the wage Phillips Curve while we focus on the price

one. Third, their structural identification strategy is based on a combination of long-

run and short-run sign-restrictions applied to the set of structural shock,1 while we rely

on the Excess Bond Premium to identify the demand shock, as in Del Negro et al.

(2020). Fourth, they use their estimates of the time-varying impulse response functions

to construct time-varying “Phillips Multipliers” (Barnichon and Mesters, 2020b). In

short, it consists in computing the trade-off between inflation and unemployment, at

different horizons, by taking the ratio of the cumulative impulse reponses of the two

variables. However, compared to the Lewis and Mertens’s (2022) SP-IV method, this

methodology has important shortcomings: (i) the estimated trade-off between inflation

and unemployment is horizon specific; (ii) it does not allow to control for (and include in

the estimated time-varying coefficients) the lagged and forward inflation components of

the Phillips Curve.

Berger et al. (2016) and Fu (2020) estimate a series of reduced form models for

the PC, allowing for time variation in the coefficients. While Berger et al. (2016) find

evidence of stability of reduced form PC parameters over time, Fu (2020) concludes that

it is important to account for time variation. We differ from these studies as we focus on

1In their framework, they have the following set of structural shocks: technology, demand (non-
monetary), monetary policy, price markup, wage markup.

83



the estimation of structural parameters, rather than reduced form ones.

4.2 Methodology

In this paper, the estimation of time-varying NKPC parameters is achieved by combin-

ing two advanced econometric techniques that have been recently proposed. We use a

nonparametric stochastic time-varying VAR model (Giraitis et al., 2014, 2018) to obtain

time-varying impulse response functions to a structural aggregate demand shock. We

then exploit the novel methodology proposed by Lewis and Mertens (2022) to estimate

the structural parameters of the NKPC over the sample considered.

4.2.1 Estimation of the structural NKPC

Given the structural NKPC:

πt = γbπt−1 + γfEtπt+1 + λxt + ηt (4.2.1)

Barnichon and Mesters (2020a) and Lewis and Mertens (2022) show that its param-

eters can be estimated using a “regression in impulse responses” approach. Denote by

Irfh (π) , Irfh (x) the impulse responses of variables πt and xt, after h periods, to a struc-

tural shock vt orthogonal to ηt:

Irfh (π) = E (πt+h/It−1, vt = 1)− E (πt+h/It−1)

Irfh (π) = E (xt+h/It−1, vt = 1)− E (xt+h/It−1)
(4.2.2)

NKPC parameters can then be estimated by:

[
λ̂ γ̂b γ̂f

]′
= (Θ′XΘX)

−1
Θ′XΘY (4.2.3)

where ΘX ,ΘY collect the estimated response of variables across horizons:

ΘY =


Îrf 0(π)

Îrf 1(π)
...

ÎrfH(π)

 ΘX =


Îrf 0(x) 0 Îrf 1(π)

Îrf 1(x) Îrf 0(π) Îrf 2(π)
...

...
...

ÎrfH(x) ÎrfH−1(π) ÎrfH+1(π)

 (4.2.4)

Lewis and Mertens (2022) show that the necessary impulse responses can be obtained

with any valid forecasting model and identification scheme, hence a VAR can be used to

estimate ΘX ,ΘY , as long as πt and xt are part of the vector of endogenous variables.

4.2.2 Time-varying NKPC

The NKPC should be seen as one of the equations of small- and large-scale structural

macroeconomic models, namely DSGE models. Introducing time-variation of the param-

eters in a DSGE model is not straightforward (see, for a discussion, Kapetanios et al.,

2019). One way to model time-variation of the parameters is to define a stochastic pro-
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cess for the parameters (or a subset of them) and assume that agents know how param-

eters evolve over time and take this into account when forming expectations; this as-

sumption is made for instance in Justiniano and Primiceri (2008). This approach makes

the time-varying DSGE model much more complicated and requires to augment the set

of shocks with the innovations to parameters’ value, which implies that only a subset of

the parameters can be let vary over time. We use a different approach, following Canova

and Sala (2009); Castelnuovo (2012); Galvão et al. (2016), and assume that agents take

parameter variation as exogenous when forming expectations about the future. This as-

sumption keeps the model tractable and simple. At each point in time agents take pa-

rameters’ value as given and think they will stay at the same value forever. In the next

period agents learn about the changes in parameters and adjust their equations, but do

not use this change to forecast future changes in the parameters. A similar result would

be obtained by assuming that parameters follow a random walk process, hence the best

guess about their future value would still be the current value.

Under these assumptions about time-variation of the “deep” parameters, we can

rewrite the NKPC, in a time-varying fashion:

πt = γb,tπt−1 + γf,tEtπt+1 + λtxt + ηt (4.2.5)

We can use the methodology outlined above to estimate λt, γb,t and γf,t over time, as

long as we are equipped with time-varying impulse response functions:

Irft,h (π) = E (πt+h/It−1, vt = 1)− E (πt+h/It−1)

Irft,h (x) = E (xt+h/It−1, vt = 1)− E (xt+h/It−1)
(4.2.6)

[
λ̂t γ̂b,t γ̂f,t

]′
=
(
Θ′X,tΘX,t

)−1
Θ′X,tΘY,t (4.2.7)

ΘY,t =


Îrf 0,t(π)

Îrf 1,t(π)
...

ÎrfH,t(π)

 ΘX,t =


Îrf 0,t(x) 0 Îrf 1,t(π)

Îrf 1,t(x) Îrf 0,t(π) Îrf 2,t(π)
...

...
...

ÎrfH,t(x) ÎrfH−1,t(π) ÎrfH+1,t(π)

 (4.2.8)

where H is the maximum horizon included in the regression, chose a priori.

4.2.3 Time-varying VAR

To estimate time-varying impulse responses we follow Giraitis et al. (2018) and specify

a time-varying-parameters VAR, given by:

yt − µt = Ψt (yt−1 − µt−1) + ut, t = 1, ..., T (4.2.9)
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where yt and ut a n−dimensional vectors and µt is a persistent stochastic attractor. The

VAR innovations ut have zero-mean and conditional variance-covariance Σt = E (utu
′
t|It−1)

and E (utu
′
s) = 0 for t ̸= s. Innovations ut are related to n structural shocks by ut = Ptεt,

where Pt is the Cholesky decomposition of Σt, so that PtP
′
t = Σt, and E (εtε

′
t) = In.

Notice that we do not assume any parametric structure for the time variation of both

the autoregressive parameters Ψt and the volatility process Σt as we only require either

them to be bounded in probability or their expectation to be bounded. In particular, by

letting || · ||sp be the spectral norm, we assume sups:|s−t|≤k ||Ψt − Ψs||2sp = Op (k/t) and

sups:|s−t|≤k E||Pt − Ps||2sp = O (k/t). Finally, unit and explosive roots are bounded away

by assuming that ||Ψt||sp < 1,∀t ∈ [0, T ].

The dynamic structural impulse response functions at time t, for horizon h are given

by:

Φt,h = Ψh
t Pt (4.2.10)

We estimate the above model, following ?, by a nonparametric kernel estimator. Let2

K(x) be a bounded, nonnegative kernel function with piecewise-bounded derivative such

that
∫
K(x)dx = 1. We estimate µt as follows:

µ̂t = K−1t

T∑
j=1

ktjyj (4.2.11)

where ktj = K ((t− j) /HΨ), Kt =
∑T

j=1 ktj and HΨ is a bandwith parameter such that

HΨ → ∞. The formula above basically corresponds to a weighted average of yt, with

weights defined by the kernel function and the bandwidth parameter.

Define ŷt = yt − µ̂t, we estimate Ψt as follows:

Ψ̂t =

(
T∑
j=1

ktj ŷt,j ŷ
′
t,j−1

)(
T∑
j=1

ktj ŷt,j−1ŷ
′
t,j−1

)−1
(4.2.12)

We then estimate Σt, based on the variance-covariance of the residuals ûj = ŷt,j −
Ψ̂tŷt,j−1, as follows:

Σ̂t = L−1t

T∑
j=1

lijûjû
′
j (4.2.13)

where ltj := K
(
t−j
Hh

)
, Lt :=

∑T
j=1 ltj and Hh is another bandwidth parameter satis-

fying Hh → ∞.

Finally we estimate time-varying impulse response functions by:

Φ̂t,h = Ψ̂h
t P̂t (4.2.14)

2Notice that these conditions are satisfied by many of the most widely used kernel functions, including
kernels with both finite and infinite support. Examples of valid kernels in this setting are the flat kernel,
the Epanechnikov’s kernel and the Gaussian kernel, see ?.
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where P̂t is the Cholesky factorization of Σ̂t.

Following the methodology in Giraitis et al. (2018), in our empirical study we set

HΨ = T 0.6, Hh = T 0.4 for the Gaussian kernel function:

K(x) =

(
1√
2π

)
e−x

2/2 (4.2.15)

4.3 Data and VAR specification

We apply our methodology on a sample of US macroeconomic variables observed at

monthly frequency. In Appendix D.1 we repeat the analysis on variables at quarterly fre-

quency. The time-varying-parameters VAR (TVP-VAR) includes a set of seven endoge-

nous variables: (1) the unemployment rate; (2) core inflation, measured by the annualized

monthly growth rate of the core CPI; (3) the 12-month growth rate of the PPI for all com-

modities; (4) the log change of industrial production; (5) the 10-year treasury rate; (6) the

3-month T-bill rate and (7) the Excess Bond Premium, by Gilchrist and Zakraǰsek (2012).

The set of variables mimics the one used by Lewis and Mertens (2022). The monthly

data sample covers the period from 1973M1 to 2019M12, for a total of 564 observations.

We order the Excess Bond Premium last and identify the structural shocks by a

Cholesky decomposition. The EBP shock is our structural shock of interest, i.e. the

demand-type shock. Let us recall that the Phillips Curve is the aggregate-supply curve in

the New-Keynesian models, hence a demand shock should be used to properly identify it.

The EBP is ordered last, which means that it is assumed have zero-instantaneous effect

on all the other variables in the VAR, while it is allowed to adjust instantaneously to

all the other structural shocks. This is the same identification strategy employed by Del

Negro et al. (2020). The idea is that the EBP is a measure of credit/financial frictions,

hence an exogenous increase in its value should be interpreted as an exogenous worsening

of financial conditions which should ultimately affect the economy via a demand channel

(e.g. by a reduction of the access to bank loans for firms).

Our choice for an identification strategy based on a simple Cholesky ordering is justi-

fied by the need of keeping it as simple as possible, as other more involved strategies may

not be the best choice in the complex fully time-varying model we propose. For instance,

it is typical in the literature to use external proxy variables such as monetary surprises

Barnichon and Mesters (2020a) or other proxies such as the unemployment shock of An-

geletos et al. (2020), used e.g. by Lewis and Mertens (2022). However, using an external

instrument approach in our time-varying context is not trivial as the relevance condition,

which is hardly met in simpler context with fixed-over-time parameters, would need to

be met at each point in time. Nonetheless, in Appendix D.2 we explore a different iden-

tification strategy based on sign restrictions which provide additional interest insights.

The number of lags to include in the VARs is a tricky subject in our time-varying
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context and a rule to follow in this regard is still missing in the literature. We decide

to include 2 lags in the monthly VAR, for several reasons. First, since we employ a

time-varying dynamic model, with a time-varying attractor, we certainly need a smaller

number of lags to achieve a good fit of the data, compared to a VAR with fixed coefficients.

Furthermore, the BIC criterion applied to a fixed-coefficients VAR indicates one single

lag as the best choice for the quarterly data sample and two lags for the monthly one.

The BIC criterion is known to be a very parsimonious indication, but it can be used as

a rough rule of thumb in our context.

4.4 Results, monthly VAR

Figure 4.1 shows the estimated time-varying IRFs to the EBP shock, over the sample

analyzed. The responses have been normalized, for each t, such that the instantaneous

response of the EBP to the EBP shock is equal to 1. We observe a stronger but shorter-

lasting response of the unemployment rate at the beginning of the sample. In fact around

1980 the unemployment response reverts in the log run, turning into the negative territory.

The estimated peak unemployment response drops significantly in the 90’s and then

increase again after 2000, then steadily decreasing again toward the end of the sample.

The estimated response of core inflation looks strong and negative only until mid 80’s,

while it is very muted further on. This provides a first evidence of a flattening of the PC,

consistent with the results found by Del Negro et al. (2020).

It is interesting to look at the estimated responses of the interest rate to the EBP shock

as they provide a partial answer to the question of what caused the documented flattening.

As explained above, a flatter PC would be observed if the central bank becomes more

committed to stabilize inflation and thus reacts more strongly to demand shocks hitting

the economy. In that case, we would observe a muted response of inflation combined with

an increase response of the interest rate. Figure 4.1 shows that the estimated response

of the interest rate has, if anything, become softer along the years considered. More in

details, the decrease in the interest rate observed after an EBP shock is very strong in

the 1973-1983 period and in the 1995-2005 period. Outside of these two windows the

reaction of interest rate looks more modest.

To give a more meaningful answer to the main question of this paper, namely the

value of the NKPC parameters over time, we apply the methodology described in the

previous section. We specify a NKPC as in Lewis and Mertens (2022), but in a time-

varying-parameters fashion:

π1q
t = (1− γf,t) π

1y
t−3 + γf,tπ

1y
t+12 + λtxt + ηt (4.4.1)

where π1q
t is the annualized percent change in the Core CPI from a quarter ago in month

t, π1y
t is the percent change in the Core CPI over the preceding year in month t, and xt

is the unemployment rate in month t. The variable definitions in terms of quarterly and
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annual inflation rates follows Barnichon and Mesters (2020a). Since our IRFs are esti-

mated by using the annualized monthly inflation rate, IRFs have been adjusted accord-

ingly to implement the regression shown in equation (4.2.7). Furthermore, as in Lewis

and Mertens (2022), we include only horizons h = 0, 3, 6, . . . , 33 to construct the impulse

response vectors. Results are shown in Figure 4.2, withe the estimated values of λt, γb,t

and γf,t over time.

To construct confidence intervals for the estimated parameters over time, we use the

fixed-regressor wild bootstrap Zanelli (2023).

Regarding λt we observe a very clear pattern: the NKPC becomes almost totally flat

already at the end of the 80’s and remain flat from that moment onward. This result is

new in the literature and shows that practically all the structural change from a steep to

a flat PC took place in the 80’s.

As for the γb,t and γf,t coefficients, a clear pattern emerges: past inflation matters less

and less as we move forward along the sample, while the coefficient associated to expected

inflation increases, accordingly (recall that we impose γb,t + γf,t = 1). This suggests a

growing importance over time of expectations, together with a decreasing role of past

inflation. Notice that this result is in line with the findings of arnichon and Mesters

(2020a), despite their identification strategy is based on monetary policy shocks rather

than on the EBP. While the observed trend is that of a shift from past to future inflation,

a big and temporary jump in the γb,t coefficient is estimated after 2000, which brings its

value back to the 1973 one.

4.5 Monte Carlo simulations

To verify the performance of our methodology in the estimation of a time-varying NKPC,

we perform some simulation exercises. We simulate data from a simple textbook New

Keynesian (NK) model (Woodford, 2003; Gali, 2008) which features indexation to past

inflation as in Gali and Gertler (1999). We follow Bergholt et al. (2023) for the exposition

and specification of the most part of the model.

We let some of the parameters to be time-varying. Introducing time-variation of the

parameters in a DSGE model is not straightforward see Kapetanios et al., 2019, for a

discussion). One way to model time-variation of the parameters is to define a stochastic

process for the parameters (or a subset of them) and assume that agents know how

parameters evolve over time and take this into account when forming expectations; this

assumption is made for instance in Justiniano and Primiceri (2008). This approach makes

the time-varying DSGE model much more complicated and requires to augment the set of

shocks with the innovations to parameters’ value, which implies that only a subset of the

parameters can be let vary over time. We follow a different approach, following Canova

and Sala (2009); Castelnuovo (2012); Galvão et al. (2016), and assume that agents take

parameter variation as exogenous when forming expectations about the future. This
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Figure 4.1: Time-varying impulse response functions to an EBP shock, for a selected set
of variables. VAR at monthly frequency.

assumption keeps the model tractable and simple. At each point in time agents take

parameters’ value as given and think they will stay at the same value forever. In the next

period agents learn about the changes in parameters and adjust their equations, but do

not use this change to forecast future changes in the parameters. A similar result would

be obtained by assuming that parameters follow a random walk process, hence the best

guess about their future value would still be the current value. Three deep structural

parameters are allowed to be time-varying: θt, the Calvo parameter setting the degree of

price stickyness; ϕπ,t, the strength of reaction of the central bank to changes in inflation;

σu,t, the variance of the demand shock.

Letting these three specific deep parameters to be time varying is a grounded choice.

The time-variation of θt implies a time-variation of the PC coefficients; specifically, it
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Figure 4.2: Time-varying estimates of the NKPC parameters, from the regression in im-
pulse responses estimated on monthly data. Blue areas show 68% and 90% wild boot-
strap confidence intervals.

implies an increasing over time slope λt, a decreasing γb,t and an increasing γf,t. Time-

variation of the variance of demand shocks σu,t and the responsiveness of monetary policy

ϕπ,t have on the contrary no effect on structural NKPC parameters, although they affect

the reduced form correlation between inflation and the output gap. Indeed, these two

forces are often invoked as possible explanations of the observed trends in reduced form

correlations, alternative to the structural change hypothesis. In this way we simulate a

world in which we estimate the structural NKPC over time with possible confounding

factors in action.

The model in log-linearized form is summarized by the following equations:

yt = Etyt+1 −
1

σ
(it − Etπt+1 − ut) (4.5.1)

yt = at + nt (4.5.2)

wt = ψt + σyt + φnt (4.5.3)

mct = wt − at (4.5.4)

πt = γb,tπt−1 + γf,tEtπt+1 + λtmct + zt (4.5.5)

which feature five endogenous variables, which are denoted as log-deviations from the

steady state: the output gap yt; hours worked nt; the real wage wt; real marginal costs

mct; price inflation πt. There are four exogenous shocks: demand shocks ut; productivity

shocks at; labor supply shocks ψt; cost-push shocks zt. Equation (4.5.5) is the Phillips
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Curve formulation of Gali and Gertler (1999), where

λt ≡ (1− ω)(1− θt)(1− βθt)ϕ
−1
t

γf,t ≡ βθtϕ
−1
t

γb,t ≡ ωϕ−1t

(4.5.6)

with ϕt ≡ θt+ω[1− θt(1−β)]. θt denotes the Calvo parameter, i.e. the fractions of firms

which are not able to adjust the price at any given period. Following Gali and Gertler

(1999), we assume that a fraction 1− ω of firms behave as in the standard Calvo pricing

setting: they set their price optimally, according to their expectations of future marginal

costs. The remaining fraction ω use a simple rule of thumb and index their price to prices

in t− 1. The model is closed by a simple Taylor monetary policy rule:

it = ϕpi,tπt + ϕyyt +mt (4.5.7)

where mt is a monetary policy shock.

Equations (1)-(6) can be combined to arrive at a two-equations specification:

yt =
1

σ + ϕy
(σEtyt+1 − ϕπ,tπt + Etπt+1 + dt) (4.5.8)

πt = γb,tπt−1 + γf,tEtπt+1 + κtyt + st (4.5.9)

Equation (4.5.8) denotes the IS curve, where dt = ut −mt collects the two demand

shocks. Equation (4.5.9) is the NKPC, with κt = λt (σ + φ) and st = zt+λtψt−λ(1+φ)at
collects the three supply-side shocks.

We further assume that all the five shocks follow an AR(1) process and that all demand

(supply) shocks feature the same autoregressive parameter ρd (ρs). Hence we can write:

dt = ρddt−1 + εd,t st = ρsst−1 + εs,t (4.5.10)

where εd,t = εu,t − εm,t and εs,t = εz,t + λtεψ,t − λ(1 + φ)εa,t.

We assume that innovations are normally distributed, with time-varying variance:

εd,t ∼ N (0, σ2
d,t) εs,t ∼ N (0, σ2

s,t) (4.5.11)

with σ2
d,t = σ2

u,t + σ2
m and σ2

s,t = σ2
z + λ2tσ

2
ψ + λ2(1 + φ)2σ2

a.

We conduct four different simulation experiments, which differ in the assumption

about the process followed by time-varying parameters. In the first scenario, we assume

that all parameters are fixed over time. Table 4.1 show the value chosen for all the

parameters of the model, which are standard values used in the literature.

In the second scenario, we let the three time-varying parameters to vary over time

in a linear fashion. Namely we assume that θt follows a linearly increasing pattern,

starting from 0.6 at the beginning of the sample and reaching value 0.9 at the end of
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Parameter Value Parameter Value
θ 0.75 σ 1
ϕπ 1.5 ϕy 0.125
φ 2 β 1
ρd 0.75 ρs 0.75
σu 1 σm 0
σa 0.2 σψ 0.2
σz 0.05 ω 0.25

Table 4.1: Chosen values for the parameters of the NK model, when they are set to be
fixed over time.

the sample, i.e. θt = 0.6 + (0.9 − 0.6) t−1
T−1 . Similarly, we set ϕπ,t = 1 + (2 − 1) t−1

T−1 and

σu,t = 1.5 + (0.5− 1.5) t−1
T−1 .

In the third scenario we assume that the three parameters follow a deterministic

sinusoidal pattern over time, differing from sample to sample. We set:

θt = 0.75 + 0.15 sin

[
2π

(
µtheta,s +

t

fT

)]
(4.5.12)

ϕπ,t = 1.5 + 0.5 sin

[
2π

(
µϕ,s +

t

fT

)]
(4.5.13)

σu,t = 1 + 0.5 sin

[
2π

(
µσ,s +

t

fT

)]
(4.5.14)

Notice that the processes above are such that the three parameters are bounded above

and below by the same values used in the linear processes used in the second scenario.

Furthermore, the three parameters µθ,s, µϕ,s, µσ,s are drawn randomly in each sample from

a Uniform(0, 2π) distribution, shifting randomly the staring point of the process in each

sample. Finally, the parameter f governs the frequency of the sinusoidal pattern, hence

the degree of time variation in the parameter. We conduct three simulations exercises

with, respectively, f = 1 (Sin1), f = 2 (Sin2) and f = 3 (Sin3).

Finally in the fourth scenario the three parameters are allowed to follow bounded

stochastic processes. We set:

θt = 0.75 + 0.15
aθ,t

max0≤j≤t |aθ,j|
(4.5.15)

ϕπ,t = 1.5 + 0.5
aϕ,t

max0≤j≤t |aϕ,j|
(4.5.16)

σu,t = 1 + 0.5
aσ,t

max0≤j≤t |aσ,j|
(4.5.17)

where:

aθ,t = aθ,t−1 + vθ,t vθ,t = αvθ,t−1 + εθ,t (4.5.18)

aϕ,t = aϕ,t−1 + vϕ,t vϕ,t = αvϕ,t−1 + εϕ,t (4.5.19)
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aσ,t = aσ,t−1 + vσ,t vσ,t = αvσ,t−1 + εσ,t (4.5.20)

aθ,t, aϕ,t, aσ,t are random walks with persistent error terms vθ,t, vϕ,t, vσ,t. The parameter

α governs the degree of persistence in the error terms, hence the overall smoothness in

the variation of the parameters, with higher α implying greater smoothness. Again, we

conduct three simulations exercises setting, respectively, α = 0.5 (Rw1), α = 0.8 (Rw2)

and α = 0.99 (Rw3).

For each experiment, we simulate 500 samples from the NK model solution, under

the eight different specification explained above. In each sample we first estimate the

coefficients of the NKPC using a fixed-parameters version of the methodology used in

the paper. In this case, we estimate a single VAR model for the full sample and use

Lewis and Mertens (2022) methodology to recover the NKPC parameters. Structural

impulse responses to the demand shock are recovered by using the demand shock series

as an external instrument. We do this by simply adding the demand shock the vector

of estimated residuals and then compute the Cholesky decomposition of the resulting

variance-covariance matrix, as suggested by Plagborg-møller andWolf (2021). Notice that

we are assuming the shock is fully observed, while typically we observe only a proxy for

it, with some measurement error left. We make this assumption to see the performance of

our methodology in the simplest and best possible scenario. After the fixed-parameters

estimation, we apply our time-varying methodology. By comparing the two estimation,

we can appreciate the extent to which our methodology capture the time variation of

the NKPC parameters. The Appendix provides other interest insights by exploring other

identification strategies and extending the analysis to the Euro Area.

Table 4.2 shows the resulting bias and mean squared error for the three NKPC pa-

rameters . For the NKPC slope λ, we can see that the time-varying estimation always

results in a sharp drop in the bias and in the MSE, for all specifications but for the fixed

parameter one. For the γb and γf coefficients this is not always the case and the fixed pa-

rameter estimation performs better than the time-varying one in some cases. This is due

to the fact that the three deep parameters we allow to vary over time (and the bounds

we impose for them) imply only a rather small variation in these two parameters, making

them almost constant over time. Notice also that since we impose the usual constraint

that the two coefficients some to one, the bias and MSE of the two coefficients are deter-

ministically related.

Figure 4.3 provides a visualization of the performance of our methodology in the

specification where deep parameters are allowed to vary linearly. We can see how our

methodology is able to track quite precisely the evolution of NKPC coefficients over time.
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Bias ×1000

Fixed Coef. VAR T.V. Coef. VAR
λ γb γf λ γb γf

Fixed 1.4016 1.1238 -1.1238 5.5171 2.9949 -2.9949
Linear -35.6856 -13.9714 13.9714 6.7828 3.5507 -3.5507
Sin1 -61.8254 -20.7109 20.7109 6.6713 3.6371 -3.6371
Sin2 -31.8063 -12.7159 12.7159 7.081 2.4202 -2.4202
Sin3 -15.9856 -3.02508 3.02508 8.7397 7.1829 -7.1829
Rw1 -14.7815 -3.3333 3.3333 7.2565 4.4142 -4.4142
Rw2 -16.9236 -5.30863 5.30863 6.6709 2.8273 -2.8273
Rw3 -20.8632 -6.29557 6.29557 7.7829 1.1187 -1.1187

MSE ×1000

Fixed Coef- VAR T.V. Coef. VAR
λ γb γf λ γb γf

Fixed 0.13071 0.54061 0.54061 0.72497 2.4577 2.4577
Linear 10.7359 1.10001 1.10001 1.176 2.5209 2.5209
Sin1 25.4701 2.03697 2.03697 2.3328 3.335 3.335
Sin2 13.0518 1.42993 1.42993 2.0583 3.1808 3.1808
Sin3 6.6213 0.91404 0.91404 2.1404 3.0606 3.0606
Rw1 6.5545 0.87429 0.87429 2.6711 3.3484 3.3484
Rw2 6.8627 0.96797 0.96797 2.327 3.4049 3.4049
Rw3 8.9312 1.2783 1.2783 2.8211 4.3974 4.3974

Table 4.2: Bias and mean squared error for the three NKPC coefficients in the different
simulation experiments.

4.6 Conclusion and further developments

In this paper we estimated a time-varying structural NKPC for the US, by combining

the SP-IV method by Lewis and Mertens (2022) with a nonparametric estimate of time-

varying impulse response functions. Results show a drastic decline in the slope of the

PC in the years 1973-1990 and a flat PC from 1990 onward. Furthermore, the coefficient

related to inflation expectations is estimated to increase over time. These results, in

line with other studies, support the hypothesis of a decrease in the structural slope of

the PC as the main force behind the observed decline in the reduced form correlation

between unemployment and inflation. Other possible explanations, such as as increased

responsiveness of monetary policy to demand shocks, are not supported by our analysis.

Furthermore, our study allows to place the time at which the NKPC becomes practically

flat somewhere between years 1985 and 1990. A simulation analysis from a simple DSGE

model confirms the validity of our methodology.
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Figure 4.3: Simulation results in the specification with linearly changing parameters.
Black lines show the true value of NKPC parameters over time. Red lines show the average
estimate. Blue areas show 5-10-32-68-90-95 percentiles of the empirical distribution of
the estimates.
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Chapter 5

A Note on Robust Inference on

Stochastic Time-Varying

Coefficients

5.1 Introduction

Models with time-varying coefficients have recently gained considerable interest in par-

allel with the growing need to model structural changes of macroeconomic and finan-

cial variables. The business cycle, rare disasters (e.g., pandemic outbreaks) and regime

changes in monetary policy represent some of the possible reasons why models with time-

constant parameters might not be representative of the observed economic phenomena;

see, among others, Cogley and Sargent (2001); Stock and Watson (2002); Kapetanios and

Tzavalis (2010); Demetrescu et al. (2020). Nonparametric techniques have the appealing

advantage – with respect to competing methods, e.g., Bayesian methods – of being com-

putationally efficient, and have shown to provide the desired properties of consistency

and asymptotic normality when estimating persistence and volatility of such processes -

see Giraitis et al. (2014, 2018).

In this note, we focus on a simple time-varying coefficient model in which the time-

varying slope coefficient evolves as a random walk with bounded variation. The random

walk specification has been widely adopted in the literature (see, e.g., Stock and Wat-

son, 2002, Primiceri, 2005, Fu et al., 2022), but there is no contribution in the literature

focusing on the behavior of nonparametric methods in this setup when a “large” band-

width is adopted. We show that the standard local-constant kernel estimator of the time-

varying coefficient preserves its properties of consistency and convergence to a mean-zero

Gaussian distribution when the bandwidth is “large”, but the variance of such limit dis-

tribution is larger. Hence – differently than in the case of a deterministic time-varying

coefficient – the use of a “large” bandwidth does not affect the center of the limit distri-

bution of the estimator, but only its variance.
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In this note, we provide novel results in the literature of stochastic time-varying coef-

ficient by: i) deriving the value of the MSE-optimal bandwidth when the coefficient is a

random walk with local-to-zero variance; ii) showing that the confidence intervals (CIs)

proposed by Giraitis et al. (2014, 2018) are invalid in this setup, whereas a different stu-

dentization based on the variability of the stochastic time-varying coefficient is necessary

to deliver CIs asymptotically correct coverage. The practical importance of the method is

shown via numerical simulations. Moreover, we discuss the important issue of delivering

correct intervals without the need to estimate the local-to-zero variance of the stochastic

time-varying coefficient via the bootstrap.

The rest of the note is structured as follows. In Section 5.2, we present the model and

the estimator. In Section 5.3 we show the main theoretical and numerical results, as well

as a discussion on possible implementations of the bootstrap. Section 5.4 concludes.

5.2 The model and the estimator

We consider a DGP of the form:

yt = βtxt + εt

βt = βt−1 + λnνt

where εt is a mds and νt is (for simplicity) assumed to be a iid process with E[νt] = 0

and E[ν2t ] = 1. Moreover, we let

λn := n−1/2σν (5.2.1)

so that the variance of the time-varying parameter is local-to-zero. In order to derive

a central limit theorem for β̂t, a crucial condition to bound the “bias” term of the test

statistic associated to the estimator is

sup
l:|t−l|<k

|βt − βl| = Op

(√
k

n

)
(5.2.2)

Remark 5.2.1 Condition (5.2.2) is satisfied under the considered scenario because:

sup
l:|t−l|<k

|βt − βl| = λn sup
l:|t−l|<k

∣∣∣∣∣
l∑

j=1

νj

∣∣∣∣∣ = O(n−1/2)Op(k
1/2)

where the last equality follows from the fact that

(lτ)−1/2
[lτ ]∑
j=1

νj −→D[0,1] W (τ), l −→ ∞ (5.2.3)

where τ ∈ [0, 1] and W is a standard Brownian motion.

Even though the analysis can be extended to any class of local-polynomial estimators

of βt for a fixed t, we here focus, for simplicity, on the asymptotic properties of the local
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constant kernel estimator:

β̂t :=

∑n
j=1 ktjyjxj∑n
j=1 ktjx

2
j

(5.2.4)

where ktj := K((t − j)/H) such that K : R −→ [0,+∞) is a standard (truncated) kernel

function and H is a bandwidth satisfying H −→ ∞ and H/T −→ 0. Let us define σ̂2
x,n :=∑n

j=1 ktjx
2
j and σ̂

2
xε,n :=

∑n
j=1 k

2
tjx

2
jε

2
j ; then we can write:

σ̂2
x,n

σ̂xε,n

(
β̂t − βt

)
=

∑n
j=1 ktj(βj − βt)x

2
j√∑n

j=1 k
2
tjx

2
jε

2
j︸ ︷︷ ︸

=:Bn

+

∑n
j=1 ktjxjεj√∑n
j=1 k

2
tjx

2
jε

2
j︸ ︷︷ ︸

=:ξ1n

Then the following proposition follows directly from Theorem 2.3 in Giraitis et al. (2014).

Proposition 1. (i) Let the assumptions above hold, then, as H −→ ∞, we have:

σ̂xε,n
σ̂2
x,n

Bn = Op

(√
H

n

)
(5.2.5)

σ̂xε,n
σ̂2
x,n

ξ1n = Op

(
1√
H

)
(5.2.6)

and

ξ1n
d−→ N(0, 1) (5.2.7)

(ii) If additionally H = o(
√
n),

σ̂2
x,n

σ̂xε,n

(
β̂t − βt

)
d−→ ξ1 (5.2.8)

From Proposition 1 we can see that confidence intervals based on the standard errors

σ̂2
x,n/σ̂xε,n are only valid if the condition H = o(

√
n) is satisfied. The intuition behind this

result is that setting H = o(
√
n) is equivalent to setting an “undersmoothing” bandwidth

in nonparametric regression, which makes the term Bn asymptotically negligible. This

can be seen from the fact that σ̂2
x,n/σ̂xε,n = Op(

√
H), implying – from (5.2.5) – that:

Bn = Op

(
H√
n

)
where Op

(
H√
n

)
= op(1) only if H = o(

√
n).

Remark 5.2.2 A choice of H of the form H = o(
√
n) poses two main issues.

(i) It can be shown that a choice of the bandwidth of the form H = o(
√
n) is MSE-

suboptimal. To see this, one can note that, on the grounds of MSE-optimality, one should

equate the rates of convergence of the squared bias and the variance of the centered esti-
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mator. Intiuitively, if we have:

E

[(
σ̂2
x,n

σ̂xε,n
Bn

)2
]
= c1

H

n
+ o(1) E

[(
σ̂2
x,n

σ̂xε,n
ξ1n

)2
]
= c2

1

H
+ o(1) (5.2.9)

where c1 and c2 are constants defined in Section 5.3. Then, by equating the two dominant

terms terms one obtains:

HMSE =
√
c2n/c1 = O

(√
n
)

(5.2.10)

where which clearly is not consistent with the condition H = o(
√
n).

(ii) One could reasonably pick a bandwidth of the form H = o(
√
n) on the grounds of

easier tractability of the bias term. However, this poses the question of which bandwidth

satisfying H = o(
√
n) is better to choose, as infinitely many such choices (and infinitely

many rates of convergence) exist.

Issue (i) above shows that an MSE-optimal bandwidth should be of the form H = O(
√
n).

If this is the case, then confidence intervals based on the standard errors σ̂2
x,n/σ̂xε,n (those

suggested by Giraitis et al., 2014) are not valid, as they do not account for the additional

variability given by Bn. Therefore, CIs based on σ̂2
x,n/σ̂xε,n will show undercoverage for

the true value of βt. Since the variance of Bn directly proportional to the value of σν , what

we expect to see is that, for a fixed n and a fixed bandwidth of the form H = O(
√
n),

the undercoverage would be more accentuated as σν increases. This is confirmed by the

results in Section 5.3.

5.3 Main Results

This section is divided in the parts. In Section 5.3.1, we show derive the MSE-optimal

bandwidth for the local-constant kernel estimator in this setup, and a proper studentiza-

tion for the demeaned estimator that is valid when a “large” bandwidth is selected. In

Section 5.3.2, we show numerical evidence in support of the use of the proposed stan-

dard errors. Finally, in Section 5.3.3, we give preliminary intuition on how the bootstrap

could be used to deliver asymptotically valid confidence intervals in this setup.

5.3.1 Theoretical Results

We now move to formalizing the theoretical results. To do so, we impose the following

set of assumptions.

Assumption 1. (i) xt is a covariance stationary stochastic process with E|xt|r < C1

for some C1 ∈ R+ and some r ≥ 4 and satisfying
∑Ln

k=1 |γ(k)| = o(Ln) for γ(k) :=

Cov(xt, xt+k) and some Ln −→ ∞; (ii) εt is a mds with E[εt|xt] = 0 and E|εt|r
′
< C2 for

some C2 ∈ R+ and some r′ ≥ 4.

Assumption 2. βt is a random walk process βt = βt−1+λnνt, independent with (xt, εt)
′,
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with λn := n−1/2σν, with σν > 0, E|νt|2 = 1 and E|νt|δ < C3 for some δ ≥ 4.

Assumption 3. K : R −→ [0,+∞) is a second order kernel function such that K(x) = 0

if |x| ≥ 1 and K(x) > 0 otherwise.

Assumption 1 is a standard regularity condition on the regressor and the error term,

widely adopted in the literature (see, for instance, Fu et al., 2022); Assumption 2 de-

fines the main properties of the stochastic time-varying coefficient; whereas Assumption

3 characterizes the kernel function; note that Assumption 3 allows for all the most widely

adopted truncated kernel functions, e.g., the Uniform or the Epanechnikov’s kernel.

Theorem 5.3.1 Let Assumptions 1-3 hold, then:

MSE[β̂t] =
H

n
σ2
νσ

2
x

∫
K2(u)u2du+

1

H
σ2

∫
K2(u)du (5.3.1)

and the MSE-optimal bandwidth is:

HMSE :=

√
nσ2

∫
K2(u)du

σ2
νσ

2
x

∫
K2(u)u2du

(5.3.2)

Theorem 5.3.1 provides the value of the MSE-optimal bandwidth in the considered sce-

nario. As expected, such value is inversely proportional to the value of σν : the larger the

variability of the stochastic time-varying coefficient, the shorter should be the window of

observations considered for estimating βt at a fixed time point.

Theorem 5.3.2 Let Assumptions 1-3 hold, then, if H = O(
√
n):

σ̂2
x,n√

σ̂2
x,n + κσ2

ν σ̂
2
x

∫
K2(u)u2du

(
β̂t − βt

)
d−→ ξ1 (5.3.3)

where κ = limn−→∞H/
√
n.

Theorem 5.3.2 shows that the standard errors for the local constant estimator of β̂t at

a time fixed point changes when “large” bandwidth is adopted in place of an “under-

smooothing” bandwidth. The practical relevance of Theorem 5.3.2 is analyzed in the fol-

lowing section.

5.3.2 Numerical Results

We now show that the results in Section 5.3.1 have practical relevance via Monte Carlo

simulations. The aim is twofold: first, we show that CIs based on the standard errors

proposed by Giraitis et al. (2014) suffer from undercoverage, even in large samples, when

a “large” bandwidth is selected; second, we show that the modified standard errors based

on Theorem 2 are able to correct this undercoverage. Specifically, we consider simulations
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for the model

yt = βtxt + εt

βt = βt−1 + λnνt

where xt = ρxt−1 + ut and (εt, νt, ut)
′ ∼ N(03×1,Ω) where Ω = diag(σ2

ε , σ
2
ν , σ

2
u). We set

(ρ, σε, σu) = (0.3, 1, 1) and show results for a grid of values of σν . Simulations are based

on 5,000 Monte Carlo replications of the above DGP.

n
σν 100 250 500 750 1000
1 83.3 86.0 89.3 90.0 88.8
1.5 81.6 85.1 85.1 87.4 88.4
2 77.7 80.4 82.0 82.3 80.7
2.5 75.2 80.7 78.1 78.2 78.5
3 73.2 76.1 73.0 74.9 75.6

Table 5.1: Coverage probabilities of 95% confidence intervals based on Giraitis et al.
(2014) method with H =

√
n.

Table 1 and 2 report average empirical coverage probabilities (ECPs) of CIs for the

stochastic time-varying parameter at a fixed time point τ = ⌊0.5n⌋ for the values n ∈
{100, 250, 500, 750, 1000} and σν ∈ {1, 1.5, 2, 2.5, 3}. Specifically, Table 1 shows ECPs

of CIs based on Giraitis et al.’s (2014) standard errors for the choice H =
√
n, i.e.,

that suggested in Giraitis et al. (2014, 2018). It is clear from Table 1 that the CIs are

undercovering, with such effect being more accentuated as σν increases. On the other

hand, Table 2 compares the same method to the CIs relying on the standard errors based

on Theorem 2, for the choice H = HMSE. Two main conclusions can be drawn from Table

2. First, CIs based on Theorem 2 are inevitably wider to a level that suffices to capture

the additional variability of the estimator given by the fact that Bn ̸= op(1), therefore

delivering ECPs very close to the nominal lever under all considered scenarios. Second,

the choice H = HMSE seems to have some also for Giraitis et al.’s (2014) CIs;

5.3.3 Bootstrap Inference

The main limitation of the proposed procedure is that standard errors based on Theorem

2 are unfeasible, as they depend on σε, σν and σx. While σε and σx are relatively easily

to estimate, the fact that σν is a local-to-zero variance of a latent random walk process

makes its estimation not straightforward. We here show how the bootstrap could be a

potential solution of the problem.

Consider a fixed regressor wild bootstrap DGP of the form

y∗t = β̂txt + ε∗t , (5.3.4)

where ε∗t := η∗t ε̂t, such that η∗t is an independent and identically distributed (conditionally
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Coverage Av. Length
n n

σν Method 100 250 500 750 1000 100 250 500 750 1000
1 GKY14 76.8 77.9 77.7 78.1 78.4 0.584 0.460 0.384 0.347 0.322

Z24 94.2 95.1 94.9 95.3 94.9 0.935 0.734 0.613 0.554 0.514
1.5 GKY14 76.3 77.2 77.0 78.2 78.2 0.724 0.570 0.475 0.427 0.396

Z24 94.7 94.8 94.6 95.1 95.2 1.169 0.909 0.758 0.681 0.632
2 GKY14 75.2 76.8 78.1 77.0 77.9 0.840 0.663 0.553 0.496 0.460

Z24 94.0 94.3 95.3 94.7 94.5 1.368 1.064 0.883 0.792 0.734
2.5 GKY14 74.0 76.0 76.3 77.6 77.5 0.950 0.746 0.622 0.557 0.515

Z24 93.5 94.3 94.5 95.3 94.8 1.554 1.203 0.992 0.890 0.823
3 GKY14 73.4 75.9 76.6 77.4 76.8 1.043 0.825 0.684 0.614 0.571

Z24 93.3 93.9 94.2 94.7 94.0 1.744 1.331 1.096 0.982 0.910

Table 5.2: Coverage probabilities of 95% confidence intervals based on Giraitis et al.
(2014) method (GKY14) - therefore based on the standard errors in (1.8) - and the method
of this paper (Z24) - therefore based on the (unfeasible) standard errors in (2.3) - both
using H = HMSE.

on the original data) random sequence with mean zero and unit variance and ε̂t are

the residuals from the original model. As typical in the bootstrap literature, the above

bootstrap method would be valid in the standard sense if the condition

σ̂2
x,n√

σ̂2
x,n + κσ2

ν σ̂
2
x

∫
K2(u)u2du

(
β̂∗t − β̂t

)
d∗−→p ξ1 (5.3.5)

Preliminary numerical evidence shows that condition (5.3.5) is not satisfied in our setup.

Preliminary numerical results suggest that the source of invalidity of the bootstrap seems

to be twofold: first, the center of the bootstrap distribution seems to be random, sug-

gesting that the distribution of the bootstrap test statistic distribution is random in the

limit (see Cavaliere and Georgiev, 2020); second, the variance of such random in the limit

distribution seems to be different from that of the asymptotic test statistic.

As there is evidence in support of the fact that the bootstrap is not valid in a stan-

dard sense, we here propose an alternative bootstrap method, based on the same fixed-

regressor wild bootstrap DGP, which has the potential to be able to remove both sources

of invalidity of the bootstrap in a standard sense.

Let us define Tn :=
√
H(β̂t − βt) and T ∗n :=

√
H(β̂∗t − β̂t); moreover, let us denote

with v21 the limit variance of Tn and with v22 the limit variance of T ∗n . The main idea

behind our procedure is that, even if T ∗n is random in the limit, if v1 = v2, then there are

conditions under which the bootstrap p-value p̂n := P∗(T ∗n ≤ Tn) is valid, see Cavaliere

and Georgiev (2020). Since v1 ̸= v2, then one could think about restoring validity by

considering the modified p-value

p̂modn := P∗(QT ∗n ≤ Tn) (5.3.6)
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where Q = (v1/v2), which would be able to correct both sources of invalidity of the

“standard” bootstrap method. Even if v1 and v2 are both infeasible, as they both depend

on the value of σν , we show evidence to the fact that Q does not. Specifically, we

performed the following simulation exercise: (i) we simulate the same DGP used in Section

5.3.2 with σν = 1; (ii) we compute the sample variance (over Monte Carlo replications)

of Tn and T ∗n ; (iii) we run a new Monte Carlo simulation in which, at each replication,

we compute the value of p̂modn , using the sample values of v1 and v2 obtained in point

(ii); (iv) we compute the empirical distribution function; (v) we replicate points (iii)-(v)

for different values of σν , keeping the same value of Q obtained in point (ii). Figure 5.1

shows the empirical distribution functions of p̂modn , where we have evidence in favor of the

uniformity of the proposed modified p-value.

The derivation of the distribution of T ∗n and Q and, in general, the proof of the validity

of the proposed bootstrap method, is current work in progress of the author.

(a) σν = 1, σx = 1 (b) σν = 1, σx = 2 (c) σν = 2.5, σx = 1

Figure 5.1: Empirical distribution function of p̂modn .

5.4 Conclusion

In this note, we have analyzed the properties of nonparametric estimation methods for

time-varying coefficient models under the assumption that the coefficient follows a random

walk with local-to-zero variance.

We derived the MSE-optimal bandwidth for the random walk specification and demon-

strated that it is proportional to the square root of the sample size. This finding chal-

lenges the common practice of using “undersmoothing” bandwidths to simplify bias anal-

ysis, as such choices are MSE-suboptimal and result in inefficient confidence intervals

(CIs). Furthermore, we showed that the CIs proposed by Giraitis et al. (2014) are in-

valid for large bandwidths because they fail to account for the additional variability intro-

duced by the stochastic nature of the time-varying coefficient. We proposed a modified

standardization procedure, which corrects this issue and ensures valid CIs with asymp-

totically correct coverage.Our theoretical contributions are complemented by numerical

simulations, which confirm the practical relevance of our results.

In conclusion, this note highlights the importance of adapting nonparametric inference
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methods to account for the stochastic nature of time-varying coefficients. By addressing

the limitations of existing approaches, our results provide a more accurate framework for

modeling and inference in time-varying systems, paving the way for future advancements

in this growing field of research.
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Appendix A

Appendix to Chapter 1

A.1 Special case: Tn is asymptotically Gaussian

In this section, we specialize Assumptions 1.3.1, 1.3.1, and 1.3.2 to the case where Tn =
√
n(θ̂n − θ0) is a normalized parameter estimator whose limiting distribution is normal.

We consider the following special case of Assumption 1.3.1.

It holds that Tn −Bn →d N(0, v2), where v2 > 0.

Assumption A.1 covers statistics Tn based on asymptotically biased estimators: when

Bn →p B, we have Tn →d N (B, v2), in which case B is the asymptotic bias of θ̂n.

More generally, we can interpret Bn as a bias term that approximates E(
√
n(θ̂n − θ0))

although Bn does not need to have a limit. Note that Assumption A.1 obtains from

Assumption 1.3.1 when we let ξ1 ∼ N(0, v2) and Gγ(u) = Φ(u/v), in which case γ = v.

Let D∗n denote a bootstrap sample from Dn and let θ̂∗n be a bootstrap version of θ̂n.

The bootstrap analogue of Tn is T ∗n =
√
n(θ̂∗n − θ̂n).

It holds that (i) T ∗n − B̂n
d∗→p N(0, v2), and (ii)(

Tn −Bn

B̂n −Bn

)
d→ N(0, V ), V := (vij), i, j = 1, 2,

where v2d := v11 + v22 − 2v12 > 0 with v11 := v2 > 0.

Assumption A.1(i) requires the bootstrap statistic T ∗n − B̂n to mimic the asymptotic

distribution of Tn − Bn, as in Assumption 1.3.1(i). However, and contrary to Assump-

tion 1.3.1(i), here this limiting distribution is the zero mean Gaussian distribution (i.e.

Gγ(u) = Φ(u/v)), which means that we can interpret B̂n as a bootstrap bias correc-

tion term; i.e., B̂n = E∗(
√
n(θ̂∗n − θ̂n)). Assumption A.1(ii) assumes that B̂n − Bn is

also asymptotically distributed as a zero mean Gaussian random variable (jointly with

Tn −Bn).
1 An implication of this assumption is that

Tn − B̂n = (Tn −Bn)− (B̂n −Bn)
d→ N(0, v2d), (A.1.1)

1In terms of Assumption 1.3.1, Assumption A.1 corresponds to the case where the vector ξ = (ξ1, ξ2)
′

is a multivariate normal distribution with covariance matrix V .
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where v2d := v11 + v22 − 2v12. We do not require V to be positive definite; for instance,

v22 = 0 whenever B̂n − Bn = op(1), and in fact V can be rank deficient even when

v22 > 0. However, we do impose the restriction that v2d > 0. This ensures that the

limiting distribution function of Tn − B̂n, given by Fϕ(u) = Φ(u/vd), is well-defined and

continuous, as assumed in Assumption 1.3.1(ii). Note that we can let ϕ = V in this case,

or simply set ϕ = vd.

Let p̂n denote the standard bootstrap p-value as defined in Section 1.3. We then

obtain the following.

Corollary A.1.1 Under Assumptions A.1 and A.1, p̂n →d Φ(mΦ−1(U[0,1])), where

m2 := v2d/v
2.

Corollary A.1.1 follows immediately from Theorem 1.3.1 when we let Gγ(u) = Φ(u/v)

and Fϕ(u) = Φ(u/vd). It shows that the asymptotic distribution of p̂n is uniform only

when m = 1, or equivalently when v2d = v2. In this case, the difference B̂n −Bn is op(1).

When v2d ̸= v2, B̂n−Bn is random even in the limit, implying that the limiting bootstrap

distribution function of T ∗n is conditionally random. Although random limit bootstrap

measures do not necessarily invalidate bootstrap inference, as discussed by Cavaliere and

Georgiev (2020), this is not the case here. However, we can solve the problem of bootstrap

invalidity by applying the prepivoting approach or by modifying the test statistic from

Tn to Tn − B̂n.

To describe the prepivoting approach, note that the limiting distribution of p̂n is given

by

H(u) := limP (p̂n ≤ u) = Φ(m−1Φ−1(u)).

Hence, a plug-in approach amounts to estimatingm2 := v2d/v
2, where v2 and v2d are defined

in Assumption A.1. Suppose that v̂2n and v̂2d,n are consistent estimators of v2 and v2d (i.e.,

assume that (v̂2n, v̂
2
d,n) →p (v2, v2d)) and let m̂2

n := v̂2d,n/v̂
2
n. Then, by Corollary 1.3.2, it

immediately follows that

p̃n = Φ(m̂−1n Φ−1(p̂n))
d→ U[0,1]

under Assumptions A.1 and A.1. For brevity, we do not formalize this result here.

To describe the double bootstrap modified p-value, p̃n := Ĥn(p̂n) = P ∗(p̂∗n ≤ p̂n),

when applied to the special case where Tn satisfies Assumption A.1, we now introduce

Assumption A.1.

Let T ∗∗n =
√
n(θ̂∗∗n − θ̂∗n) and suppose that (i) T ∗∗n − B̂∗n

d∗∗→p∗ N(0, v2), in probability,

and (ii) T ∗n − B̂∗n
d∗→p N(0, v2d), where v

2
d is as defined in Assumption A.1(ii).

Under Assumption A.1(i), the double bootstrap distribution of T ∗∗n − B̂∗n mimics the

distribution of T ∗n − B̂n, where the double bootstrap bias term B̂∗n = E∗∗(
√
n(θ̂∗∗n −

θ̂∗n)) is asymptotically centered at B̂n under Assumption A.1(ii). When v2d ̸= v2, the

double bootstrap bias is not a consistent estimator of B̂n, but that is not needed for
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the asymptotic validity of the modified double bootstrap p-value p̃n = Ĥn(p̂n) defined in

Section 1.3.

By application of Theorem 1.3.2, p̃n = Ĥn(p̂n) →d U[0,1] under Assumptions A.1,

A.1, and A.1. We can also provide a result analogous to Corollary 1.3.3 under these

assumptions. In this case, if closed-form expressions for B̂n and B̂∗n are not available,

we can approximate these bootstrap expectations by Monte Carlo simulations and then

compute P ∗(T ∗n − B̂∗n ≤ Tn − B̂n) as a valid bootstrap p-value. Note, however, that this

approach is computationally as intensive as the prepivoting approach based on p̃n since

it too requires two layers of resampling.

Remark A.1.1 In the case of asymptotically Gaussian statistics discussed in this sec-

tion, the more general Assumptions 1.3.5 and 1.3.5 simplify straightforwardly. In As-

sumption A.1(i) we assume that T ∗n − B̂n
d∗→p N(0, v2s) and in Assumption A.1(i) that

T ∗∗n −B̂∗n
d∗∗→p∗ N(0, v2s), in probability, for some v2s > 0, while the rest of Assumptions A.1–

A.1 are unchanged. The results of this section continue to apply under these more gen-

eral conditions, replacing Gγ(u) = Φ(u/v) with Jγ(u) = Φ(u/vs) and consequently defin-

ing m := v2d/v
2
s .

Remark A.1.2 Contrary to Beran (1987, 1988), in our context the first level of prepiv-

oting, e.g., by the double bootstrap, is used to obtain an asymptotically valid bootstrap p-

value. Therefore, inference based on p̃n does not necessarily provide an asymptotic refine-

ment over inference based on an asymptotic approach that does not require the bootstrap.

Nevertheless, the Monte Carlo results in Table ?? below seem to suggest an asymptotic

refinement for the double bootstrap, at least for the non-parametric bootstrap scheme. In

the special case where the bias term Bn is of sufficiently small order, the arguments in

Beran (1987, 1988) apply, and an asymptotic refinement can be obtained. We also con-

jecture that, in the general case, an asymptotic refinement could be obtained by further

iterating the bootstrap.

A.2 Examples with details

A.2.1 Inference after model averaging

In this section we first provide the regularity conditions required in Lemmas 1.4.1 and 1.4.2,

and then we give the proofs of the lemmas. We subsequently provide some brief Monte

Carlo evidence. Finally, at the end of the section, we provide regularity conditions for

the extension to the pairs bootstrap and a proof of the associated Lemma 1.4.3.

Assumptions and notation

We impose the following conditions.

(i) εt|W ∼ i.i.d.(0, σ2), where W := (x, Z); (ii) SWW →p ΣWW with rank(ΣWW ) =

q + 1; (iii) n1/2SWε →d N(0,Ω) with Ω := σ2ΣWW .
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Remark A.2.1 We assume that the weights ω are fixed and independent of n. A popular

example in forecasting is to use equal weighting. We could allow for stochastic weights

as long as these are constant in the limit. This would be the case, for example, when the

weights are based on moments that can be consistently estimated.

To proceed, we introduce the following notation. First, partition ΣWW according

to W ,

ΣWW :=

(
Σxx ΣxZ

ΣZx ΣZZ

)
.

Let ΣxZm := ΣxZRm, ΣZmZm := R′mΣZZRm, Σxx.Zm := Σxx−ΣxZRm(R
′
mΣZZRm)

−1R′mΣZx,

and ΣxZ.Zm := ΣxZ−ΣxZRm(R
′
mΣZZRm)

−1R′mΣZZ . Also letAn :=
∑M

m=1 ωmS
−1
xx.Zm

n−1x′MZm ,

where MZm := In − Zm(Z
′
mZm)

−1Z ′m, such that AnZ = Qn. With this notation,

β̃n = Any = Anxβ +Qnδ + Anε = β +Qnδ + Anε, (A.2.1)

β̃∗n = Any
∗ = β̂n +Qnδ̂n + Anε

∗. (A.2.2)

Finally, define

d̄′M,n :=
M∑
m=1

ωmS
−1
xx.Zm

(1,−SxZmS
−1
ZmZm

R′m),

b̄′M,n :=
∑M

m=1
ωmS

−1
xx.Zm

SxZ.ZmS
−1
ZZ.x(−SZxS

−1
xx , Iq),

and let d̄′M and b̄′M denote their probability limits, which exist and are well-defined under

Assumption A.2.1.

Proofs of lemmas

Proof of Lemma 1.4.1. We first verify Assumption 1.3.1 (or equivalently, Assump-

tion A.1). Using (A.2.1) we can write Tn = Bn + ξ1,n with

ξ1,n := n1/2Anε = n1/2

M∑
m=1

ωmS
−1
xx.Zm

n−1x′MZmε = n1/2

M∑
m=1

ωmS
−1
xx.Zm

Sxε.Zm .

Then

Sxε.Zm = n−1x′MZmε = n−1(x′ε− x′Zm(Z
′
mZm)

−1R′mZ
′ε)

= (1,−SxZm(SZmZm)
−1R′m)SWε =: d̂′mSWε,

so that

ξ1,n =
M∑
m=1

ωmS
−1
xx.Zm

d̂′mn
1/2SWε = d̄′M,nn

1/2SWε.

Hence, ξ1,n →d N(0, v2) with v2 := d̄′MΩd̄M .

Next, we verify Assumption 1.3.1 (or Assumption A.1). From (A.2.2) we write T ∗n =

B̂n+ ξ∗1,n with ξ∗1,n := n1/2Anε
∗ ∼ N(0, σ̂2

nAnA
′
n), conditional on Dn. Part (i) now follows
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straightforwardly because σ̂2
n →p σ

2 and AnA
′
n = d̄′M,nSWW d̄M,n →p d̄

′
MΣWW d̄M . To

prove Part (ii), note that

n1/2(δ̂n − δ) = S−1ZZ.xSZε.x = S−1ZZ.x(−SZxS
−1
xx , Iq)n

1/2SWε,

from which it follows that

B̂n −Bn = Qnn
1/2(δ̂n − δ) = QnS

−1
ZZ.x(−SZxS

−1
xx , Iq)n

1/2SWε = b̄′M,nn
1/2SWε.

Hence,(
Tn −Bn

B̂n −Bn

)
=

(
d̄′M,n

b̄′M,n

)
n−1/2W ′ε

d→ N(0, V ), V =

(
d̄′MΩd̄M d̄′MΩb̄M

b̄′MΩd̄M b̄′MΩb̄M

)
,

which completes the proof. □

Proof of Lemma 1.4.2. First note that β̃∗∗n = Any
∗∗ = Anxβ̂

∗
n + AnZδ̂

∗
n + Anε

∗∗. It

follows that

T ∗∗n := n1/2(β̃∗∗n − β̂∗n) = B̂∗n + n1/2Anε
∗∗,

where B̂∗n := n1/2Qnδ̂
∗
n and ξ∗∗1,n := n1/2Anε

∗∗ ∼ N(0, σ̂∗2n AnA
′
n), conditional on (Dn, D

∗
n).

The conditions in Assumption 1.3.2(i) or A.1(i) now follows as in Part (i) of the previous

proof because σ̂∗2n
p∗→p σ2. For Assumption 1.3.2(ii) or A.1(ii) we consider the joint

convergence of (T ∗n − B̂n, B̂
∗
n − B̂n)

′. By noticing that

n1/2(δ̂∗n − δ̂n) = S−1ZZ.xSZε∗.x = S−1ZZ.x(−SZxS
−1
xx , Iq)n

1/2SWε∗ ,

it follows that (
T ∗n − B̂n

B̂∗n − B̂n

)
=

(
d̄′M,n

b̄′M,n

)
n1/2SWε∗ ∼ N(0, V̂n),

conditional on Dn, where

V̂n = σ̂2
n

(
d̄′M,nSWW d̄M,n d̄′M,nSWW b̄M,n

b̄′M,nSWW d̄M,n b̄′M,nSWW b̄M,n

)
p→ V.

The desired result follows. □

A small Monte Carlo experiment

In Table ?? we present the results of a small Monte Carlo simulation experiment to

illustrate the above results numerically. We generate the data from the regression model

(1.2.1) with sample sizes n = 10, 20, 40. The regressors xt and zt are both scalar and

multivariate normally distributed with unit variances and correlation 0.7, and the errors

are either standard normal, t3, or χ
2
1 distributed. The true values are β = β̄+an−1/2 with

β̄ = 1 and δ = 1 (the results are invariant to β̄ and δ because we use the unrestricted

estimates to construct the bootstrap samples). We test the null hypothesis H0 : β = β̄

against a left-sided alternative. Results for right-tailed and two-tailed tests are analogous
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to those presented here for left-tailed tests. The case a = 0 corresponds to rejection

frequencies under the null, and a = −1,−2,−4 corresponds to rejection frequencies under

local alternatives. The estimator puts weight ω1 = 1/2 on the short model that includes

only x (and a constant term) and weight ω2 = 1/2 on the long model that includes both

regressors (and a constant term). We consider two bootstrap schemes. The first is the

parametric bootstrap scheme, where ε∗t ∼ i.i.d.N(0, 1), which is denoted as “par.” in

the table. The second is the non-parametric bootstrap scheme, where ε∗t is resampled

independently from the (centered) residuals from the long regression, which is denoted as

“non-par.” Results are based on 10,000 Monte Carlo simulations and B = 999 bootstrap

replications.

First consider the case a = 0. The simulation outcomes in Table ?? clearly illustrate

our theoretical results. The standard bootstrap p-value, p̂n, is much larger than the

nominal level of the test. The plug-in modified p-value, p̃n,p, is close to the nominal level

for the parametric bootstrap scheme, but is still over-sized for the non-parametric scheme

with the smaller sample sizes. Finally, the double bootstrap modified p-value, p̃n,d, is

nearly perfectly sized throughout the table.

Table ?? for a = −1,−2,−4 clearly shows nontrivial power, which increases as a

increases. The discrepancies in finite-sample power are due to differences in size. For

example, consider the standard parametric bootstrap with 5% nominal level and normal

errors (top left of the table). It has finite-sample size very close to 10%. Comparing this

with our modified bootstrap test with nominal size 10% (towards the right in the same

panel of the table), we see that the finite-sample powers are nearly identical.

Extension to the pairs bootstrap

In addition to Assumption A.2.1 we also impose the following conditions.

With wt := (xt, zt)
′ it holds that (i) suptE ∥wt∥4 <∞, Eε4t <∞; (ii) n−1

∑n
t=1 x

2
t ε

2
t →p

σ2Σxx, n
−1∑n

t=1 x
2
twtw

′
t →p Σr > 0, and n−1

∑n
t=1 x

2
twtεt →p 0.

Proof of Lemma 1.4.3. We first prove that

SW ∗W ∗ − SWW
p∗→p 0, (A.2.3)

S∗n :=

 n1/2Sx∗ε∗

n1/2(Sx∗z∗ − Sxz)

n1/2(Sx∗x∗ − Sxx)

 d∗→p N(0,Σs), Σs =

(
σ2Σxx 0

0 Σr

)
. (A.2.4)

Here, (A.2.3) follows by straightforward application of Chebyshev’s LLN.

To prove (A.2.4), we first compute the mean and variance of S∗n. Note that the

mean of S∗n is zero by construction; for example, E∗(n1/2Sx∗ε∗) = n−1/2
∑n

t=1E
∗(x∗t ε

∗
t ) =

n1/2Sxε̂ = 0 by the OLS first-order condition. In addition,

Var∗(n1/2Sx∗ε∗) = n−1
n∑
t=1

E∗(x∗2t ε
∗2
t ) = n−1

n∑
t=1

x2t ε̂
2
t

p→ σ2Σxx
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Table A.1: Simulated rejection frequencies (%) of bootstrap tests

5% nominal level 10% nominal level
par. non-par. par. non-par.

dist. a n p̂n p̃n,p p̃n,d p̂n p̃n,p p̃n,d p̂n p̃n,p p̃n,d p̂n p̃n,p p̃n,d
N 0 10 10.1 5.0 5.0 16.2 11.2 6.3 15.9 10.0 10.0 21.5 16.2 10.5

20 9.7 5.0 5.1 12.6 7.8 5.4 15.1 9.8 9.8 18.2 12.9 10.4
40 9.8 5.1 5.2 10.5 5.8 4.9 15.4 10.1 10.2 16.5 11.0 9.8

−1 10 25.5 15.9 16.0 34.0 26.1 16.2 35.7 25.9 25.8 42.3 34.3 24.8
20 26.0 16.5 16.7 30.1 21.0 15.9 36.5 26.9 26.6 40.0 30.9 26.1
40 27.4 17.7 17.9 29.3 19.4 16.9 37.8 28.4 28.4 38.9 30.0 27.6

−2 10 47.7 35.6 35.7 57.0 47.5 33.2 58.4 48.5 48.1 64.9 57.4 45.7
20 51.6 38.3 38.3 56.3 44.0 36.2 62.5 52.1 52.3 65.9 56.9 51.4
40 52.5 39.9 39.8 54.8 43.0 39.1 63.9 53.6 53.8 64.9 55.5 52.8

−4 10 84.9 75.6 75.6 88.2 82.5 71.6 90.1 84.5 84.3 91.9 87.9 81.2
20 90.5 82.9 82.7 91.5 85.5 80.2 94.2 90.3 90.0 94.4 91.3 88.8
40 91.7 85.4 85.3 92.5 87.0 84.7 95.3 92.2 92.0 95.8 92.7 91.7

t3 0 10 7.3 3.7 3.8 15.6 10.8 5.8 12.0 7.3 7.2 21.5 15.8 10.2
20 7.5 4.1 4.2 13.2 8.1 5.6 12.7 7.6 7.9 19.0 13.4 10.9
40 7.5 3.8 3.9 10.5 5.7 4.9 12.8 7.8 7.8 16.6 10.8 9.6

−1 10 20.9 12.0 11.9 39.4 30.6 19.8 31.7 21.4 21.3 47.7 39.8 29.5
20 23.3 13.1 13.3 35.2 25.3 19.3 34.2 23.9 24.0 45.0 36.3 31.1
40 24.6 14.7 14.7 31.8 21.4 19.2 35.6 25.3 25.3 42.3 32.9 30.5

−2 10 47.5 32.2 32.2 65.2 56.6 42.8 60.3 47.7 47.6 72.7 65.4 55.1
20 51.4 36.7 37.0 63.7 52.3 45.1 64.4 52.4 52.4 72.5 63.9 59.1
40 52.8 38.1 38.3 60.8 47.8 44.6 65.6 53.9 53.7 70.9 61.7 58.9

−4 10 87.7 78.1 77.9 91.3 86.9 78.6 92.1 87.3 87.2 94.1 91.2 85.9
20 91.8 85.0 84.9 92.6 88.1 84.2 95.1 91.6 91.6 95.3 92.8 91.0
40 93.2 87.7 87.6 93.2 88.2 86.8 96.1 93.3 93.3 96.0 93.3 92.5

χ2
1 0 10 8.3 4.7 4.7 16.0 10.7 5.8 12.6 8.0 8.0 21.5 16.2 9.9

20 8.5 4.9 4.9 12.2 7.0 5.0 13.5 8.6 8.6 18.1 12.4 9.8
40 9.2 4.9 4.8 10.9 6.1 5.3 14.8 9.7 9.5 17.1 11.2 10.1

−1 10 21.1 12.6 12.6 41.9 33.2 22.5 30.9 21.7 21.2 50.1 42.0 31.9
20 23.4 14.3 14.3 35.1 25.1 19.7 33.6 24.0 24.1 45.2 35.9 31.2
40 25.5 15.8 15.9 31.7 21.2 19.1 36.2 26.6 26.7 42.2 32.7 30.4

−2 10 46.9 31.3 31.5 65.2 57.2 45.3 60.6 47.6 47.6 72.0 65.4 55.8
20 51.2 36.3 36.4 62.2 51.4 44.3 64.3 52.4 52.5 71.3 62.9 57.9
40 53.9 39.2 39.1 59.4 46.9 43.9 65.2 55.1 54.9 69.9 60.4 57.8

−4 10 87.2 78.5 78.3 88.8 84.3 76.6 91.5 86.6 86.4 91.8 88.6 83.2
20 91.1 84.7 84.7 90.6 84.6 80.4 94.2 91.0 90.8 93.9 90.5 88.4
40 92.6 86.8 86.8 91.8 86.7 85.2 95.6 92.7 92.5 94.8 92.0 91.0

Notes: p̂n denotes the standard bootstrap; p̃n,p and p̃n,d denote the modified bootstrap using the

plug-in and the double bootstrap methods, respectively. The parametric bootstrap scheme, where

ε∗t ∼ i.i.d.N(0, 1), is denoted as “par.” and the non-parametric bootstrap scheme, where ε∗t is re-sampled

independently from the long regression (centered) residuals, is denoted as “non-par.” The εt’s are i.i.d.

draws from (standardized) N , t3, and χ2
1 distributions. The parameter a denotes the drift under the lo-

cal alternative β0 = β̄ + an−1/2. Results are based on 10,000 Monte Carlo simulations and B = 999

bootstrap replications for each level.
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under Assumptions A.2.1 and A.2.1. Similarly, letting(
n1/2(Sx∗z∗ − Sxz)

n1/2(Sx∗x∗ − Sxx)

)
= n1/2(Sx∗W ∗ − SxW ),

we find that

Var∗(n1/2 (Sx∗W ∗ − SxW )) = n−1
n∑
t=1

(xtwt − E∗(x∗tw
∗
t ))(xtwt − E∗(x∗tw

∗
t ))
′

= n−1
n∑
t=1

x2twtw
′
t − SxWSWx

p→ Σr − ΣxWΣWx.

Note also that the covariance between n1/2Sx∗ε∗ and n1/2(Sx∗W ∗ − SxW ) is zero because

E∗(nSx∗ε∗Sx∗W ∗) = n−1E∗

(
n∑
t=1

x∗t ε
∗
t

n∑
s=1

x∗sw
∗
s

)
= n−1E∗

(
n∑
t=1

x∗2t w
∗
t ε
∗
t

)

= E∗(x∗2t w
∗
t ε
∗
t ) = n−1

n∑
t=1

x2twtε̂t
p→ 0

by Assumption A.2.1(ii). Thus, we have shown that E∗(S∗n) = 0 and E∗(S∗nS
∗′
n ) →p Σs.

The result (A.2.4) now follows because the stated moment conditions imply the Lindeberg

condition by standard arguments.

Next we can write

T ∗n − B̂n = n1/2S−1x∗x∗Sx∗ε∗ +B∗n − B̂n,

where

B∗n − B̂n = (S−1x∗x∗Sx∗z∗ − S−1xx Sxz)n
1/2δ̂n.

Adding and subtracting appropriately, we can write this difference as

B∗n − B̂n = n1/2(S−1x∗x∗Sx∗z∗ − S−1xx Sxz)δ + (S−1x∗x∗Sx∗z∗ − S−1xx Sxz)n
1/2(δ̂n − δ),

where n1/2(δ̂n − δ) is Op(1) by a central limit theorem and S−1x∗x∗Sx∗z∗ − S−1xx Sxz = op∗(1),

in probability, by (A.2.3). The first term in B∗n − B̂n can be written as

S−1x∗x∗n
1/2(Sx∗z∗ − Sxz)δ − S−1x∗x∗S

−1
xx (Sx∗x∗ − Sxx)n

1/2Sxzδ

= δ(Σ−1xx ,−Σ−2xxΣxz)

(
n1/2(Sx∗z∗ − Sxz)

n1/2(Sx∗x∗ − Sxx)

)
+ op∗(1),

in probability, by application of (A.2.3) and Assumption A.2.1(ii). It follows that

T ∗n − B̂n = S−1x∗x∗n
1/2S∗xε + δ(Σ−1xx ,−Σ−2xxΣxz)

(
n1/2(Sx∗z∗ − Sxz)

n1/2(Sx∗x∗ − Sxx)

)
+ op∗(1)

= (Σ−1xx ,Σ
−1
xx δ,−Σ−2xxΣxzδ)S

∗
n + op∗(1),
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in probability. The required result now follows from (A.2.4) because

(Σ−1xx ,Σ
−1
xx δ,−Σ−2xxΣxzδ)

(
Σs 0

0 Σr

)
(Σ−1xx ,Σ

−1
xx δ,−Σ−2xxΣxzδ)

′

= Σ−1xxΣsΣ
−1
xx + dr(δ)

′Σrdr(δ) = v2 + κ2,

which completes the proof upon noting that Σs = σ2Σxx implies v2 = σ2Σ−1xx . □

A.2.2 Ridge regression

Assumptions and notation

As in Fu and Knight (2000) we assume the following.

(i) εt ∼ i.i.d.(0, σ2); (ii) maxt=1,...,n x
′
txt = o(n); (iii) Sxx is nonsingular for any n and

converges to a positive definite matrix, Σxx; (iv) θ = δn−1/2; and (v) n−1cn → c0 ≥ 0.

For the bootstrap we will also need the following.

Assumption A.2.2 holds with (ii) replaced by (ii’) maxt=1,...,n x
′
txt = o(n1/2) and with

the additional condition (vi) Eε4t <∞.

Finally, we define

V = σ2

(
g′Σ̃−1xxΣxxΣ̃

−1
xx g −c0g′Σ̃−1xx Σ̃−1xx g

−c0g′Σ̃−1xx Σ̃−1xx g c20g
′Σ̃−1xxΣ

−1
xx Σ̃

−1
xx g

)

where v2 := v11, and it holds that

m2 :=
v11 + v22 − 2v12

v11
=

g′Σ−1xx g

g′Σ̃−1xxΣxxΣ̃−1xx g
, (A.2.5)

where the last equality is derived in the proof of Lemma 1.4.4.

Proofs of lemmas

Proof of Lemma 1.4.4 and derivation of (A.2.5). The result follows by showing

that(
Tn −Bn

B̂n −Bn

)
=

(
g′S̃−1xx

−cnn−1g′S̃−1xx S−1xx

)
n1/2Sxε

d→

(
ξ1

ξ2

)
∼ N(0, V ), V = (vij),

(A.2.6)

and that

T ∗n −B∗n = T ∗n − B̂n + op∗(1)
d∗→p N(0, v2). (A.2.7)

To prove (A.2.6) we first notice that, since cnn
−1 → c0, under Assumption A.2.2 we
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have that n1/2Sxε →d N(0, σ2Σxx) and hence(
Tn −Bn

B̂n −Bn

)
= (I2 ⊗ g′S̃−1xx )

(
Ip

−n−1cnS−1xx

)
n1/2Sxε

d→ (I2 ⊗ g′Σ̃−1xx )N

(
0, σ2

(
Σxx −c0Ip
−c0Ip c20Σ

−1
xx

))
∼ N(0, V ), (A.2.8)

V = σ2

(
g′Σ̃−1xxΣxxΣ̃

−1
xx g −c0g′Σ̃−1xx Σ̃−1xx g

−c0g′Σ̃−1xx Σ̃−1xx g c20g
′Σ̃−1xxΣ

−1
xx Σ̃

−1
xx g

)
.

This immediately implies that m2 in (A.2.5) is given by

m2 =
g′Σ̃−1xxΣxxΣ̃

−1
xx g + 2c0g

′Σ̃−1xx Σ̃
−1
xx g + c20g

′Σ̃−1xxΣ
−1
xx Σ̃

−1
xx g

g′Σ̃−1xxΣxxΣ̃−1xx g
. (A.2.9)

The numerator of m2 in (A.2.9) can be written as

g′Σ̃−1xx (Σxx + 2c0Ip + c20Σ
−1
xx )Σ̃

−1
xx g = g′Σ̃−1xx (Σ̃xxΣ

−1
xx Σ̃xx)Σ̃

−1
xx g = g′Σ−1xx g,

and hence (A.2.5) follows.

To prove (A.2.7) we note that T ∗n−B̂n = ξ∗1,n+B
∗
n−B̂n, where ξ

∗
1,n := n1/2g′S̃−1x∗x∗Sx∗ε∗

and

B∗n − B̂n = −cnn−1/2g′S̃−1x∗x∗ θ̂n + cnn
−1/2g′S̃−1xx θ̂n

= −cnn−1g′(S̃−1x∗x∗ − S̃−1xx )n
1/2(θ̂n − θ)− cnn

−1g′(S̃−1x∗x∗ − S̃−1xx )δ,

such that B∗n − B̂n
p∗→p 0 if S̃−1x∗x∗ − S̃−1xx

p∗→p 0. Because ||S̃−1xx || = O(1) under the stated

assumptions, it follows that ||S̃−1x∗x∗ − S̃−1xx || has the same rate as ||S̃x∗x∗ − S̃xx||. Thus,

S̃x∗x∗ − S̃xx = Sx∗x∗ − Sxx = n−1
∑n

t=1 x
∗
tx
∗′
t − E∗(x∗tx

∗′
t )

p∗→p 0 by a straightforward

application of Chebyshev’s LLN using that maxt x
′
txt = o(n1/2) by Assumption A.2.2(ii’).

The proof is completed by showing that ξ∗1,n satisfies the bootstrap central limit theo-

rem. By the above results it holds that ξ∗1,n = n1/2g′Σ̃−1xxSx∗ε∗+op∗(1), so it is only required

to analyze the term n1/2g′Σ̃−1xxSx∗ε∗ = n1/2Sx̃∗ε∗ , where x̃
∗
t := g′Σ̃−1xxx

∗
t . First, we have

E∗(n1/2Sx̃∗ε∗) = g′Σ̃−1xxE
∗(n1/2Sx∗ε∗) = n1/2g′Σ̃−1xxSxε̂ = 0. Second, with x̃t := g′Σ̃−1xxxt,

Var∗(n1/2Sx̃∗ε∗) = n−1
n∑
t=1

x̃2t ε̂
2
t = n−1

n∑
t=1

x̃2t (ε̂
2
t − σ2 + σ2)

= σ2g′Σ̃−1xxΣxxΣ̃
−1
xx g + n−1

n∑
t=1

x̃2t (ε
2
t − σ2) + op(1).

Because εt is i.i.d. and x̃2t is non-stochastic, a sufficient condition for n−1
∑n

t=1 x̃
2
t (ε

2
t −

σ2) →p 0 is that λmin(
∑n

t=1 x̃
2
t ) → ∞, where λmin(·) denotes the minimum eigenvalue of

the argument, and this is implied by n−1
∑n

t=1 x̃
2
t → g′Σ̃−1xxΣxxΣ̃

−1
xx g > 0.

Third, we check Lindeberg’s condition, where we set s2n := nSx̃x̃. For ϵ > 0 it holds
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that

1

s2n

n∑
t=1

E∗(x̃∗2t ε
∗2
t I{|x̃∗t ε∗t |>ϵsn}) =

1

Sx̃x̃
E∗(x̃∗2t ε

∗2
t I{(x̃∗t ε∗t )2>ϵ2nSx̃x̃})

≤ 1

ϵ2nS2
x̃x̃

E∗(x̃∗4t ε
∗4
t )

=
1

ϵ2n2S2
x̃x̃

n∑
t=1

x̃4t ε̂
4
t ≤

n−1maxt x̃
4
t

ϵ2S2
x̃x̃

1

n

n∑
t=1

ε̂4t
p→ 0

because n−1maxt x̃
4
t = o(1) and εt has bounded fourth-order moment. □

Proof of Lemma 1.4.5. The proof follows closely the proofs of Lemma 1.4.4 and is

omitted for brevity. □

A.2.3 Nonparametric regression

Assumptions and notation

We impose the following conditions.

(i) εt ∼ i.i.d.(0, σ2); (ii) E|εt|2+δ < ∞; (iii) β : [0, 1] → R is three times continuously

differentiable with bounded derivatives; (iv) K : R → [0,∞) is symmetric and satisfies

K(u) = 0 for all u ̸∈ (−1, 1),
∫
K(u)du = 1, κ2 :=

∫
u2K(u)du ̸= 0, and RK :=∫

K(u)2du ∈ (0,∞).

Note that Assumption A.2.3 allows for the most popular choices of symmetric and

truncated kernels.

To simplify notation, we define kt := K((xt − x)/h) and ktj := K((xt − xj)/h). We

also define the variance matrix

V :=

(
v2 ω12 − v2

ω12 − v2 v2 + ω22 − 2ω12

)
,

where v2 := σ2RK , ω12 := σ2
∫
K(u)

∫
K(s − u)K(s)dsdu, and ω22 := σ2

∫
(
∫
K(s −

u)K(s)ds)2du.

Proofs of (1.2.4) and lemmas

Although it is well known (e.g., Li and Racine, 2007) that (1.2.4) and Assumption 1.3.1

hold in this example, we give short proofs for completeness.

Proof of (1.2.4). Under Assumption A.2.3 we obtain by Taylor expansion the following

well-known result,

Eβ̂h(x) =
1

nh

n∑
t=1

ktβ(xt) =

∫
K(u)β(x+ uh)du+ o((nh)−1)

=

∫
K(u)

(
β(x) + β′(x)uh+ β′′(x)u2h2/2 + o(h2)

)
du+ o((nh)−1)

= β(x) + h2β′′(x)κ2/2 + o(h2) + o((nh)−1), (A.2.10)
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where the last equality follows by
∫
K(u)du = 1 and

∫
uK(u)du = 0. Setting the

bandwidth as h = cn−1/5 thus implies (1.2.4). Note that the limits of integration are u ∈
((n−1−x)/h, (1−x)/h), but for n sufficiently large this is the same as u ∈ (−1, 1) because

K(u) = 0 for all u ̸∈ (−1, 1). We use this property throughout the remaining proofs.

Proof of Lemma 1.4.6. First, we verify Assumption 1.3.1 by showing that ξ1,n := Tn−
Bn = (nh)−1/2

∑n
t=1 ktεt satisfies the central limit theorem. Because ktεt, t = 1, . . . , n, is a

sequence of independent random variables with mean zero and Var(ktεt) = k2t σ
2, we have

Var(ξ1,n) =
1

nh

n∑
t=1

k2t σ
2 =

σ2

h

∫
K

(
s− x

h

)2

ds+ o((nh)−1)

=
σ2

h

∫
K(u)2d(x+ uh) + o((nh)−1) → σ2RK = v2.

Moreover, Lyapunov’s condition holds because

(nh)−(1+δ)
n∑
t=1

E(k2+δt |εt|2+δ) ≤ c(nh)−(1+δ)
n∑
t=1

k2+δt

≤ c(nh)−(1+δ)
∑

t:|xt−x|≤h

k2+δt ≤ c(nh)−(1+δ)hn→ 0. (A.2.11)

Next, we verify Assumption 1.3.1(i). Note that T ∗n − B̂n = (nh)−1/2
∑n

t=1 ktε
∗
t =: ξ∗1,n,

where, conditional on Dn, ξ
∗
1,n ∼ N(0, σ̂2

n(nh)
−1∑n

t=1 k
2
t ). Hence, the result follows from

σ̂2
n →p σ

2 and (nh)−1
∑n

t=1 k
2
t → RK .

Finally, we verify Assumption 1.3.1(ii). We first show that we can write

B̂n −Bn = ξ2,n + o(1), ξ2,n :=
1√
nh

n∑
t=1

(
1

nh

n∑
j=1

kjktj − kt)εt, (A.2.12)

and then we show that

ξn := (ξ1,n, ξ2,n)
′ d→ N(0, V ). (A.2.13)

To prove (A.2.12) we write

B̂n −Bn = (nh)1/2

(
1

nh

n∑
t=1

kt(β̂h(xt)− β(xt))− (β̂h(x)− β(x))

)
,

where

β̂h(x) = (nh)−1
n∑
t=1

ktβ(xt) + (nh)−1
n∑
t=1

ktεt,

ktβ̂h(xt) = (nh)−1
n∑
j=1

ktktjβ(xj) + (nh)−1
n∑
j=1

ktktjεj.

By reversing the summations and exploiting symmetry of ktj, it immediately follows that
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B̂n −Bn = ξ2,n +B2,n −B1,n with

B1,n(x) := Bn = (nh)1/2

(
(nh)−1

n∑
t=1

ktβ(xt)− β(x)

)
,

B2,n(x) := (nh)−1
n∑
t=1

ktB1,n(xt) = (nh)−1/2
n∑
t=1

kt

(
(nh)−1

n∑
j=1

ktjβ(xj)− β(xt)

)
.

By (A.2.10) we find

B2,n(x)−B1,n(x) = (nh)−1/2
n∑
t=1

kt
(
h2β′′(xt)κ2/2 + o(h2) + o((nh)−1)

)
− (nh)1/2h2β′′(x)κ2/2 + o(h2) + o((nh)−1)

= (nh)1/2
κ2
2
h2

(
1

nh

n∑
t=1

ktβ
′′(xt)− β′′(x)

)
+ o((nh)1/2h2) + o((nh)−1/2),

where

1

nh

n∑
t=1

ktβ
′′(xt) =

∫
β′′(x+ uh)K(u)du+ o((nh)−1) = β′′(x) +O(h) + o((nh)−1)

by first-order Taylor expansion, similar to (A.2.10), together with the assumption of

continuous and bounded β′′′. The result now follows because h = cn−1/5.

Finally, to prove (A.2.13) we show that

Jn =
1√
nh

n∑
t=1

(
kt

(nh)−1
∑n

j=1 kjktj

)
εt

d→ N(0,Ω), Ω := (ωij)i,j=1,2, (A.2.14)

from which the result follows by noting that v2 = ω11 and

ξn =

[
1 0

−1 1

]
Jn.

It is clear that Jn has mean zero and independent increments. Approximating summations

by integrals, it can be straightforwardly shown that

Var(Jn) = σ2

[
(nh)−1

∑n
t=1 k

2
t (nh)−2

∑n
t,j=1 ktkjktj

(nh)−2
∑n

t,j=1 ktkjktj (nh)−1
∑n

t=1((nh)
−1∑n

j=1 kjktj)
2

]
→ Ω.

By the same proof as in (A.2.11), we can show that the Lyapunov condition is satisfied,

and result (A.2.14) follows. □

Proof of Lemma 1.4.7. We first verify Assumption 1.3.2(i). We notice that T̄ ∗∗n −
B̄∗n = T ∗∗n − B̂∗n = (nh)−1/2

∑n
t=1 ktε

∗∗
i =: ξ∗∗1,n, where, conditional on (Dn, D

∗
n), ξ

∗∗
1,n ∼

N(0, σ̂∗2n (nh)−1
∑n

t=1 k
2
t ). Hence, the result follows from σ̂∗2n

p∗→p σ
2 and (nh)−1

∑n
t=1 k

2
t →

RK .

Next, we verify Assumption 1.3.2(ii). We first write T ∗n−B̄∗n = T ∗n−B̂n−(B̄∗n−B̂n) =
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ξ∗1,n − (B̄∗n − B̂n), where B̄
∗
n − B̂n = B̂∗n − B̂2,n. Recall B̂2,n := (nh)−1

∑n
t=1 ktB̂n(xt) =

(nh)−1/2
∑n

t=1 kt((nh)
−1∑n

j=1 ktjβ̂h(xj)−β̂h(xt)) and B̂∗n := (nh)1/2((nh)−1
∑n

t=1 ktβ̂
∗
h(xt)−

β̂∗h(x)), where

β̂∗h(x) = (nh)−1
n∑
t=1

ktβ̂h(xt) + (nh)−1
n∑
t=1

ktε
∗
t ,

ktβ̂
∗
h(xt) = (nh)−1

n∑
j=1

ktktjβ̂h(xj) + (nh)−1
n∑
j=1

ktktjε
∗
j ,

so it follows that

B̄∗n − B̂n = B̂∗n − B̂2,n = ξ∗2,n, ξ∗2,n :=
1√
nh

n∑
t=1

(
1

nh

n∑
j=1

kjktj − kt)ε
∗
t .

Thus, the proof is completed by showing that

ξ∗n := (ξ∗1,n, ξ
∗
2,n)
′ d∗→p N(0, V ). (A.2.15)

Conditional on Dn, it holds that ξ
∗
n ∼ N(0, V̂n), where

V̂n = σ̂2
n

1

nh

n∑
t=1

[
k2t kt(

1
nh

∑n
j=1 kjktj − kt)

kt(
1
nh

∑n
j=1 kjktj − kt) ( 1

nh

∑n
j=1 kjktj − kt)

2

]
p→ V

by approximating the summations by integrals and using σ̂2
n →p σ

2. This proves (A.2.15)

and hence completes the proof of Lemma 1.4.7. □

A.2.4 Inference under heavy tails

Setup. We consider a simple location model with heavy-tailed data, thus demonstrating

that our analysis applies to a non-Gaussian asymptotic framework. Specifically, consider a

sample of n i.i.d. random variables {yt}. Interest is in inference on θ in the location model

yt = θ + εt, E(εt) = 0,

when the εt’s follow a symmetric, stable random variable S(α) with tail index α ∈ (1, 2)

and the location parameter is local to zero; i.e., θ = n1/α−1c.2 Under these assumptions,

E(|εt|α+δ) = +∞ for any δ ≥ 0; in particular, εt has infinite variance. Notice that θ is

local of order n1/α−1 rather than the usual n−1/2 because of the slower convergence rate

of the OLS-type estimator when the variance of εt is infinite. We consider the biased

estimator

θ̂n := ωȳn, ȳn := n−1
n∑
t=1

yt,

2The results in this section can easily be generalized to the case where the εt’s are not necessarily
symmetric and/or are in the domain of attraction of a stable law with index α ∈ (0, 1), as in Cornea-
Madeira and Davidson (2015). Moreover, the results apply to the case of non-local θ as well; i.e., θ ̸= 0
fixed.
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where ω ∈ (0, 1). In the finite variance case, this estimator improves upon ȳn in terms of

MSE when θ is local to zero. It holds that

Tn := n1−1/α(θ̂n − θ) = (ω − 1)c+ ωn1−1/αε̄n ∼ B + ωS(α) (A.2.16)

with B := (ω − 1)c; equivalently, Tn − B ∼ ξ1 := ωS(α). Hence, Assumption 1.3.1 is

satisfied with Gγ(u) = P (ωS(α) ≤ u) = Ψα(ω
−1u), where Ψα(u) := P (S(α) ≤ u) is

continuous. Inference based on quantiles of ξ1 is invalid because it misses the term B.

Bootstrap. It is well known that the standard bootstrap fails to be valid under infi-

nite variance (Knight, 1989). The ‘m out of n’ bootstrap (see Politis et al., 1999, and

the references therein) is an attractive option, but it fails to mimic the non-centrality pa-

rameter B; see Remark A.2.2 below. Instead, we consider the parametric bootstrap of

Cornea-Madeira and Davidson (2015), which only requires a consistent estimator α̂n of

the tail index α, assumed to lie in a compact set. The bootstrap sample is generated as

y∗t = ȳn + ε∗t , ε∗t ∼ i.i.d.S(α̂n),

and the bootstrap estimator is θ̂∗n := ωȳ∗n = ω(ȳn + ε̄∗n) with ε̄∗n := n−1
∑n

t=1 ε
∗
t . The

bootstrap analogue of Tn then satisfies

T ∗n := n1−1/α(θ̂∗n − ȳn) = ωn1−1/αε̄∗n + B̂n with B̂n := (ω − 1)n1−1/αȳn.

Now, n1−1/αε̄∗n
d∗→p S(α) by Proposition 1 in Cornea-Madeira and Davidson (2015) and,

therefore,

T ∗n − B̂n
d∗→p ξ1 := ωS(α).

This shows that Assumption 1.3.1(i) is satisfied in this example. Notice that the bias

term in the bootstrap world satisfies, jointly with (A.2.16),

B̂n −B = (ω − 1)n1−1/αε̄n ∼ (ω − 1)S(α) =: ξ2.

Specifically, because both Tn and B̂n depend on the data through ε̄n only, we have that

(ξ1, ξ2) ∼ (ω, ω − 1)S(α), implying that ξ1 − ξ2 ∼ S(α). Hence, Assumption 1.3.1(ii)

is satisfied with Fϕ(u) = P (S(α) ≤ u) = Ψα(u). Since the cdf of ξ1 ∼ ωS(α) can be

written as Gγ(u) = Ψα(ω
−1u), it follows by Theorem 1.3.1 that p̂n →d Gγ(F

−1
ϕ (U[0,1])) =

Ψα(ω
−1Ψ−1α (U[0,1])) and, therefore,

P (p̂n ≤ u) → H(u) := P (Ψα(ω
−1Ψ−1α (U[0,1])) ≤ u) = Ψα(ωΨ

−1
α (u)),

which differs from u unless ω = 1.

Because ω is known and we can estimate α consistently with α̂n, we can estimate H(u)

consistently with Ĥn(u) := Ψα̂n(ωΨ
−1
α̂n
(u)) and obtain a valid plug-in modified p-value,

p̃n = Ĥn(p̂n) = Ψα̂n(ωΨ
−1
α̂n
(p̂n)),
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by application of Corollary 1.3.2.

Alternatively, we can estimate H(u) using the double bootstrap estimator Ĥn(u) :=

P ∗(p̂∗∗n ≤ u), where p̂∗∗n := P ∗∗(T ∗∗n ≤ T ∗n). Specifically, let the double bootstrap sample

{y∗∗t } be generated as

y∗∗t = ȳ∗n + ε∗∗t , ε∗∗t ∼ i.i.d.S(α̂n),

and set θ̂∗∗n := ωȳ∗∗n = ωȳ∗n+ωε̄
∗∗
n , where ε̄∗∗n := n−1

∑n
t=1 ε

∗∗
t . The (second-level) bootstrap

analogue of T ∗n then satisfies

T ∗∗n := n1−1/α(θ̂∗∗n − ȳ∗n) = ωn1−1/αε̄∗∗n + B̂∗n with B̂∗n := (ω − 1)n1−1/αȳ∗n.

Since ε∗∗t is generated from S(α̂n), where α̂n depends only on Dn, the distribution of ε∗∗t ,

conditionally on D∗n and Dn, is the same as the distribution of ε∗t , conditionally on Dn.

This implies that

n1−1/αε̄∗∗n
d∗∗→p∗ S(α),

in probability, by Proposition 1 of Cornea-Madeira and Davidson (2015). Therefore,

T ∗∗n − B̂∗n
d∗∗→p∗ ξ1 = ωS(α),

in probability, showing that Assumption 1.3.2(i) is satisfied. Since

B̂∗n − B̂n = (ω − 1)n1−1/α(ȳ∗n − ȳn) = (ω − 1)n1−1/αε̄∗n

and T ∗n − B̂n = ωn1−1/αε̄∗n, Assumption 1.3.2(ii) is also satisfied in this example. Thus,

p̃n = Ĥn(p̂n) →d U[0,1] by Theorem 1.3.2.

Remark A.2.2 Consider the ‘m out of n’ bootstrap data generating process,

y∗t = ȳn + ε∗t , t = 1, . . . ,m,

where ε∗t is an i.i.d. sample from the residuals ε̂t = yt − ȳn, t = 1, . . . , n. Then, with

θ̂∗m := ωȳ∗m, ȳ
∗
m := m−1

∑m
t=1 y

∗
t , the ‘m out of n’ bootstrap statistic is

T ∗m := m1−1/α(θ̂∗m − ȳn) = ωm1−1/αε̄∗m + (ω − 1)m1−1/αȳn,

where m1−1/αε̄∗m
d∗→p S(α) as m → ∞; see Arcones and Giné (1989). Moreover, if

m = o(n),

B̂m := (ω − 1)m1−1/αȳn = (ω − 1)m1−1/αn1/α−1(n1−1/αȳn) = Op((m/n)
1/α−1) = op(1),

which shows that T ∗m
d∗→p ωS(α). Hence, Assumption 1.3.1(i) is satisfied with ξ1 := ωS(α)

and B̂n = 0. Since B := (ω−1)c ̸= 0, we have ξ2 := −B a.s., so that Assumption 1.3.1(ii)

does not hold. As in Remark 1.3.1, it then follows that

p̂m := P ∗(T ∗m ≤ Tn)
d→ Gγ(G

−1
γ (U[0,1])−B)) = Ψα(Ψ

−1
α (U[0,1])−B).
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This shows that the limiting distribution of p̂m depends on B. Since B cannot be consis-

tently estimated, the ‘m out of n’ bootstrap cannot be used to solve the problem.

A.2.5 Nonlinear dynamic panel data models with incidental

parameter bias

Another example that fits our framework is inference based on panel data estimators

subject to incidental parameter bias. We consider the properties of the cross-sectional

pairs bootstrap considered by Kaffo (2014), Dhaene and Jochmans (2015), and Gonçalves

and Kaffo (2015) in the context of a general nonlinear panel data model. Although this

bootstrap cannot replicate the bias, we show that our prepivoting approach based on a

plug-in estimator of the bias is valid. Recently, Higgins and Jochmans (2022) proposed a

(double) bootstrap procedure that retains asymptotic validity without an explicit plug-

in estimator of the bias, but their procedure relies heavily on the parametric distribution

assumption.

Setup. Let zit denote a vector of random variables for a set of n individuals, i = 1, . . . , n,

over T time periods, t = 1, . . . , T . Given a model for the density function fit(θ, αi) :=

f(zit, θ, αi), the parameter of interest is θ ∈ Θ, which is common to all the individuals,

while αi ∈ A denote the individual fixed effects. The fixed effects estimator of θ is the

maximum likelihood estimator defined as

θ̂n = argmax
θ∈Θ

n∑
i=1

T∑
t=1

log fit(θ, α̂i(θ)), where α̂i(θ) = argmax
αi∈A

T∑
t=1

log fit(θ, αi). (A.2.17)

Under certain regularity conditions (see, e.g., Hahn and Kuersteiner, 2011), including

letting n, T → ∞ jointly such that n/T → ρ <∞,

Tn :=
√
nT (θ̂n − θ)

d→ N(B, v2), (A.2.18)

where B denotes the incidental parameter bias and v2 is the asymptotic variance of θ̂n.

Hence, Assumption 1.3.1 is satisfied with ξ1 ∼ N(0, v2) (equivalently, Assumption A.1 is

satisfied).

The exact forms of B and v2 may be quite involved and depend on the type of

heterogeneity and dependence assumptions imposed on zit. A standard assumption is

that zit is independent across i while allowing for time series dependence of unknown

form; see Hahn and Kuersteiner (2011).

Bootstrap. Given the cross sectional independence assumption, a natural bootstrap

method in this context is the cross sectional pairs bootstrap. The idea is to resample zi =

(zi1, . . . , ziT )
′ in an i.i.d. fashion in the cross sectional dimension. If zit = (yit, xit)

′ and

f(zit, θ, αi) = f(yit|xit, θ, αi) is the conditional density of yit given xit, this is equivalent to

a cross sectional pairs bootstrap. As the results of Kaffo (2014, Theorem 3.1) show, this

125



bootstrap fails to capture the bias term B. In particular, letting θ̂∗n denote the bootstrap

analogue of θ̂n, we have that

T ∗n :=
√
nT (θ̂∗n − θ̂n)

d∗→p N(0, v2),

which implies that, as in Remarks 1.3.1 and A.2.2,

p̂n := P ∗(T ∗n ≤ Tn) = Φ(v−1Tn) + op(1)
d→ Φ(v−1B + Φ−1(U[0,1])).

Thus,

P (p̂n ≤ u) → H(u) := P (Φ(Φ−1(U[0,1]) + v−1B) ≤ u) = Φ(Φ−1(u)− v−1B),

which shows that the bootstrap test based on p̂n is asymptotically invalid since its limiting

distribution is not uniform.

Remark A.2.3 Note that, in this example, L̂n(u) := P ∗(T ∗n ≤ u) →p Φ(u/v), showing

that the bootstrap conditional distribution of T ∗n is not random in the limit. The invalidity

of p̂n is due to the fact that the cross sectional pairs bootstrap induces B̂n = 0, whereas

B ̸= 0. This implies that B̂n−B = −B := ξ2 is not random. The fact that ξ2 is not zero

is the cause of the bootstrap invalidity. See Remark 1.3.1, which contains this example as

a special case.

Contrary to previous examples (e.g., Remark A.2.2), B and v can both be consistently

estimated. Hence, in this example we can restore bootstrap validity by modifying the

bootstrap p-value using a plug-in approach. More specifically, let B̃n and v̂n denote

consistent estimators of B and v, respectively.3 By Corollary 1.3.2,

p̃n = Ĥn(p̂n) = Φ(Φ−1(p̂n)− v̂−1n B̃n)
d→ U[0,1]

because Ĥn(u) := Φ(Φ−1(u)− v̂−1n B̃n) is a consistent estimator of H(u).

Remark A.2.4 A double bootstrap modified p-value version of p̃n is not valid in this

setting. The reason is that the double bootstrap mimics the behavior of the first-level

bootstrap, i.e.

T ∗∗n :=
√
nT (θ̂∗∗n − θ̂∗n)

d∗∗→p N(0, v2),

so that B̂∗n in Assumption 1.3.2(i) is zero. Since B̂n = 0, Assumption 1.3.2(ii) holds with

B̂∗n − B̂n = 0, whereas Assumption 1.3.1(ii) has B̂n −Bn = −B a.s. Then,

p̂∗n = P ∗∗(v−1T ∗∗n ≤ v−1T ∗n) = Φ(v−1T ∗n)
d∗→p Φ(Φ

−1(U[0,1])) = U[0,1],

3Since we reserve the notation B̂n for the bootstrap-induced bias estimator (which is zero for the
cross sectional pairs bootstrap), we use the notation B̃n to denote any consistent estimator of B in this
setup. For instance, B̃n could be the plug-in estimator proposed by Hahn and Kuersteiner (2011), which
is based on a closed-form expression of B1. Another option is the half-split panel jackknife estimator of
Dhaene and Jochmans (2015).
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whereas

p̂n
d→ Φ(Φ−1(U[0,1]) + v−1B).

Thus, Ĥn(u) := P ∗(p̂∗n ≤ u) is not a consistent estimator of H(u), invalidating p̃n =

Ĥn(p̂n).

Remark A.2.5 A special case of the previous setup is a linear panel dynamic model,

where zit = (yit, x
′
it)
′ and xit is a vector containing lags of yit (Hahn and Kuersteiner,

2002). In this case, the plug-in modified p-value, p̃n, based on the cross sectional pairs

bootstrap can be implemented using any consistent estimator of B, as described above.

However, we can also use a recursive bootstrap that exploits the linearity of the model to

obtain an asymptotically valid standard bootstrap p-value, p̂n. The validity of p̂n follows

from the fact that the recursive bootstrap estimates B consistently, contrary to the pairs

bootstrap (Gonçalves and Kaffo, 2015). In light of this, prepivoting p̂n by computing a

double bootstrap modified p-value p̃n = Ĥn(p̂n) is not needed in this example, but it is still

a valid alternative.
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Appendix B

Appendix to Chapter 2

B.1 “Modified” prepivoting: high-level

conditions

Let us now consider a further generalization of the high-level assumptions in Cavaliere

et al. (2024) which allow to avoid the issues discussed in Section 3.1. Let Tn and T ∗n

be the asymptotic and bootstrap statistic, with “bias terms” B1,n and B̂n, respectively,

defined as general functions of the samples Dn and D∗n, respectively. We here show that

prepivoting can be applied to obtain valid p-values even in cases in which Tn − B1,n is

asymptotically centered at zero but B̂n−B1,n is not. This is done via proper modifications

of T ∗n which still do not require estimation of B1,n.

Assumption B.1.1 Tn − Bn
d→ ξ1, where ξ1 is centered at zero and the cdf G(u) :=

P (ξ1 ≤ u) is continuous and strictly increasing over its support.

Assumption B.1.1 is analogous to Assumption 1 in Cavaliere et al. (2024). The main

difference with the setup in Cavaliere et al. (2024) is given by the introduction of a second

“bias term” B2,n which is asymptotically different from B1,n and such that B̂n − B2,n is

asymptotically centered at zero.

Assumption B.1.2 For some Dn-measurable random variable B̂n, it holds that: (i) T
∗
n−

B̂n
d∗−→p ζ1, where ζ1 is centered at zero and the cdf J(u) := P (ζ1 ≤ u); (ii)(

Tn −Bn

B̂n −Bn

)
d−→

(
0

ϕ

)
+

(
ξ1

ξ2

)
where ξ1 and ξ2 are both centered at zero and the cdf F (u) := P(ξ1−ξ2 ≤ u) is continuous.

The setup embedded in Assumption B.1.1 and B.1.2 is a generalization of the setup

considered in Cavaliere et al. (2024) – specifically, to the conditions of Theorem 3.4 –

which allow B1,n and B2,n not to be the same quantity, not even asymptotically. In case

we have that B1,n−B2,n → 0, then the conditions of Theorem 3.4 in Cavaliere et al. (2024)
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hold and “standard” prepivoting can be applied. However, if B1,n−B2,n ↛ 0 Assumption

5 in Cavaliere et al. (2024) breaks down and the results in Theorem 3.4 are not valid.

We here focus the attention on situations in which B1,n and B2,n are hard or impossible

to estimate, but their ratio is measurable or more easily estimable. As we will show in

Section 3.3, this is the case in the setup of local polynomial estimation at the boundary

of the design space.

Assumption B.1.3 Suppose Q := plimn→∞{B1,n/B2.n} with |Q| ∈ (0,∞) is Dn-measurable.

Assumption B.1.3 formalizes measurability of the limit of the ratio between B1,n and B2.n.

Crucially, the above condition rules out the fact that either B1,n = 0 or B2,n = 0 (the latter

being the case, for instance, for least squares linear regression with omitted variable bias).

Let us consider the modified bootstrap test statistic T̃ ∗n = QT ∗n ; its “bias term”

becomes B̃n := QB̂n. The aim of this modification is to make B̃n − B1,n asymptotically

centered at zero; in fact,

B̃n −B1,n = QB̂n −B1,n = Q(B̂n −B2,n) +QB2,n −B1,n

= Q(B̂n −B2,n) + op(1)
d−→ Qξ2 =: ξ̃2

where the last equality is given by the fact thatQB2,n−B1,n =
(
plimn→∞

{
B1,n

B2,n

}
· B2,n

B1,n
− 1
)
B1,n =

op(1). Moreover, note that ξ̃2 is centered at zero since ξ2 is centered at zero.

Theorem B.1.1 Under Assumptions A.1–A.3, it holds that: (i) T̃ ∗n − B̃n
d∗−→p Qζ1 =: ζ̃1

where ζ̃1 is centered at zero and the cdf J̃(u) := P(ζ̃1 ≤ u); (ii)(
Tn −B1,n

B̃n −B1,n

)
d−→

(
ξ1

ξ̃2

)

where ξ1 and ξ̃2 are both centered at zero and the cdf F̃ (u) := P(ξ1− ξ̃2 ≤ u) is continuous.

Theorem B.1.1 shows that considering the modified bootstrap test statistic allows the

application of prepivoting since ζ̃1, ξ1 and ξ̃2 are all centered at zero and do not depend

on the “bias terms”. Specifically, Theorem B.1.1 states that the conditions of Theorem

3.4 in CGNZ hold under Assumptions A-C.

Suppose now that Qn is not observable by the researcher but a consistent estimator of

Q exists. Then a result analogous to Theorem 3 can be derived when Assumption B.1.3

is replaced by Assumption B.1.4 below.

Assumption B.1.4 (i) For a sequence rn such that rn −→ 0, suppose there exists an

estimator Q̂n such that Q̂n − Q = Op(rn), where |Q| ∈ (0,∞); (ii) B2,n = Op

(
rδ−1n

)
for

some δ > 0.
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Let us now define the modified bootstrap test statistic Ť ∗n := Q̂nT
∗
n , with “bias term”

given by B̌∗n := Q̂nB̂n; then, we have that

B̌n −B1,n = Q̂nB̂n −B1,n = QB̂n −B1,n + (Q̂n −Q)B̂n,

where QB̂n −B1,n
d→ ξ̃2 by the same arguments in Theorem 3, and

(Q̂n −Q)B̂n = (Q̂n −Q)(B̂n −B2,n) + (Q̂n −Q)B2,n = op(1).

where the last equality is given by the fact that (Q̂n−Q)(B̂n−B2,n) = op(1)Op(1) = op(1)

and (Q̂n −Q)B2,n = Op(r
δ
n) = op(1).

Theorem B.1.2 Under Assumptions A.1–A.3 it holds that: (i) Ť ∗n − B̌n
d∗−→p Qζ1 =: ζ̃1

where ζ̃1 is centered at zero and the cdf J̃(u) := P(ζ̃1 ≤ u); (ii)(
Tn −B1,n

B̌n −B1,n

)
d−→

(
ξ1

ξ̃2

)

where ξ1 and ξ̃2 are both centered at zero and the cdf F̃ (u) := P(ξ1− ξ̃2 ≤ u) is continuous.

Theorem B.1.2 formalizes the validity of “modified” prepivoting which - analogously than

for Theorem B.1.1 - implies that the conditions of Theorem 3.4 in Cavaliere et al. (2024)

are satisfied.

B.2 Asymptotic validity of the FL

bootstrap-based CIs

Proposition B.2.1 Let Assumptions 1-3 hold, then,

v−11n ξ
∗
1n := v−11n (T

∗
n − B̃n)

d∗−→p N(0, 1).

Proposition B.2.2 Let the conditions of Proposition 2.3.1 hold, then: (i)

V
−1/2
FL,n ξ̃n

d−→ N(0, I2); (B.2.1)

(ii) moreover, if x is an interior point,

VFL,n
p−→ VFL; (B.2.2)

whereas if x is a boundary point,

VFL,n
p−→ V̈FL (B.2.3)

where VFL := (v2ij,FL) and V̈FL := (v̈2ij,FL), with v2,FL, v̈2,FL > 0 and VFL and V̈FL are

defined in Appendix B.

Proposition B.2.3 Let Assumptions 1-3 hold, then: (i) if x is an interior point,

p̂n
d−→ Φ

(
mFLΦ

−1 (U[0,1]

))
(B.2.4)
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where mFL =
√
v21,FL + v22,FL − 2v12,FL/v1,FL; and (ii) if x is a boundary point,

p̂n
d−→ Φ

(
m̈FLΦ

−1 (U[0,1]

))
(B.2.5)

where m̈FL := v̈d,FL/v̈1,FL :=
√
v̈21,FL + v̈22,FL − 2v̈12,FL/v̈1,FL.

B.3 Proof of the Main Results

B.3.1 Proof of Proposition 3.1

The proof of Proposition 3.1 follows analogous steps as the proof of Proposition 3.2 and

is thus omitted for brevity.

B.3.2 Proof of Proposition 3.2

We let ε∗ = (ε∗1, ..., ε
∗
n)
′ and note that:

T ∗n − B̂n =
√
nhe′1(Z

′
xWxZx)

−1Z ′xWxε
∗

Let us first focus on Z ′xWxZx and notice that:

Γ1n :=
Z ′xWxZx

n
=

(
1
nh

∑n
i=1K

(
xi−x
h

)
1
nh

∑n
i=1K

(
xi−x
h

) (
xi−x
h

)
1
nh

∑n
i=1K

(
xi−x
h

) (
xi−x
h

)
1
nh

∑n
i=1K

(
xi−x
h

) (
xi−x
h

)2
)

So that, by Lemma B.4.1,

Γ1n = Γ1 +Op

(
1√
nh

)
if x is interior

Γ1n = Γ̈1 +Op

(
1√
nh

)
if x is boundary

Let us now consider the term
√
nhZ ′xWxε

∗/n. We can notice that:

√
nhZ ′xWxε

∗/n =
1√
nh

n∑
i=1

K

(
xi − x

h

)(
1

xi−x
h

)
ε∗i

=
1√
nh

n∑
i=1

K

(
xi − x

h

)(
1

xi−x
h

)
εie
∗
i + op(1)

So that

E∗
[

1√
nh

n∑
i=1

K

(
xi − x

h

)(
1

xi−x
h

)
εie
∗
i

]
= 0

and

E∗
[(

1√
nh

n∑
i=1

K

(
xi − x

h

)(
1

xi−x
h

)
εie
∗
i

)(
1√
nh

n∑
i=1

K

(
xi − x

h

)(
1

xi−x
h

)
εie
∗
i

)′]
= hZ ′1xWxΣWxZ1x/n
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Moreover,

hZ ′1xWxΣWxZ1x/n = Ψn =

(
σ2(x) 1

nh

∑n
i=1K

2
(
xi−x
h

)
σ2(x) 1

nh

∑n
i=1K

2
(
xi−x
h

) (
xi−x
h

)
σ2(x) 1

nh

∑n
i=1K

2
(
xi−x
h

) (
xi−x
h

)
σ2(x) 1

nh

∑n
i=1K

2
(
xi−x
h

) (
xi−x
h

)2
)

where, by Lemma B.4.2

Ψ11n = Ψ11 +Op

(
1√
nh

)
if x is interior

Ψ11n = Ψ̈11 +Op

(
1√
nh

)
if x is boundary

such that

Ψ22 :=

ψ0 ψ1 ψ2

ψ1 ψ2 ψ3

ψ2 ψ3 ψ4

 Ψ̈22 :=

ψ̈0 ψ̈1 ψ̈2

ψ̈1 ψ̈2 ψ̈3

ψ̈2 ψ̈3 ψ̈4


Γ1 :=

(
γ0 γ1

γ1 γ2

)
Γ̈1 :=

(
γ̈0 γ̈1

γ̈1 γ̈2

)
where the elements of the above matrices are defined in Lemmas B.4.1 and B.4.2. More-

over,

v1n = V
[√

nhe′1(Z
′
xWxZx)

−1Z ′xWxε|Xn

]
= e′1Γ

−1
1nΨ11nΓ

−1
1n e1

p−→

e′1Γ−11 Ψ11Γ
−1
1 e1 if x is interior

e′1Γ̈
−1
1 Ψ̈11Γ̈

−1
1 e1 if x is boundary

We are now left with proving asymptotic normality. To do so, we observe that:

v−11,LP,n(T
∗
n − B̂n) =

1√
nh

n∑
i=1

ωi(x)εie
∗
i + op(1)

where ωi(x) = e′1(plimn−→∞Sn)−1ZixK((xi − x)/h)/plimn−→∞v1n. Then, asymptotic nor-

mality follows from a bootstrap version of Lyapunov’s CLT, noting that E∗[(nh)−1/2
∑n

i=1 ωi(x)εie
∗
i ] =

0 and E∗[(nh)−1
∑n

i=1 ω
2
i (x)ε

2
i e
∗2
i ]

p−→ 1 since, for δ > 1,

1

(nh)δ

n∑
i=1

E∗ (wi(x)εie∗i )
2δ =

1

(nh)δ

n∑
i=1

ω2δ
i (x)E∗ (εie∗i )

2δ

≤ C1
1

(nh)δ

n∑
i=1

ω2δ
i (x)ε2δi = Op

(
1

(nh)δ−1

)
where the last result is given by Markov’s inequality given the fact that E[ε4i |xi] ≤ ∞ by

Assumption 1.
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B.3.3 Proof of Proposition 3.3

Let wi(x) = e′1Γ
−1
1nZixK((xi − x)/h), our aim is to derive a CLT for:(

ξ1n

ξ2n

)
=

1√
nh

n∑
i=1

(
wi(x)

w̃i(x)

)
εi

where w̃i(x) = (nh)−1
∑n

j=1wj(x)wi(xj) − wi(x). We will do so by considering the two

cases of interior and boundary point separately. Let us consider the case in which x is

an interior point first. First of all, by noting that that Γ1n = Γ1 + op(1) it immediately

follows that:

ξ1n =
1√
nh

n∑
i=1

w̄i(x)εi + op(1)

where

w̄i(x) := e′1Γ
−1
1

(
1

xi−x
h

)
K

(
xi − x

h

)
We now consider how to apply the same idea to ξ2, and we let bi(x) := (nh)−1

∑n
j=1wj(x)wi(xj).

By the same reasoning than above, we have that:

1√
nh

n∑
i=1

bi(x)εi =
1√
nh

n∑
i=1

b̄i(x)εi + op(1)

where

b̄i(x) := e′1Γ
−1
1

(
1

xj−x
h

)
K

(
xj − x

h

)
wi(xj)

Let us expand the term wi(xj). Following its definition,

wi(xj) := e′1Γ
−1
1n,jZ1xjiK

(
xi − xj
h

)
;

Γ1n,j :=

(
1
nh

∑n
l=1K

(xl−xj
h

)
1
nh

∑n
l=1K

(xl−xj
h

) (xl−xj
h

)
1
nh

∑n
l=1K

(xl−xj
h

) (xl−xj
h

)
1
nh

∑n
l=1K

(xl−xj
h

) (xl−xj
h

)2
)
; Z1xji :=

(
1(xi−xj
h

))

We can note that, differently than before, we cannot take Γ−11n,j out of the summations.

What we can do is to remove the randomness of Γ−11n,j coming from the summations over

the l = 1, ..., n, and to replace it with deterministic functions of the random quantity xj.

If we have that, for r = 0, 1, 2:

sup
x̃∈intSx

∣∣∣∣∣ 1nh
n∑
l=1

K

(
xl − x̃

h

)(
xl − x̃

h

)r
− E

[
1

nh

n∑
l=1

K

(
xl − x̃

h

)(
xl − x̃

h

)r]∣∣∣∣∣ = op(1)
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and

sup
x̃∈intSx

∣∣∣∣∣E
[

1

nh

n∑
l=1

K

(
xl − x̃

h

)]
− f(x̃)

∣∣∣∣∣ = op(1)

sup
x̃∈intSx

∣∣∣∣∣E
[

1

nh

n∑
l=1

K

(
xl − x̃

h

)(
xl − x̃

h

)]
− f(x̃)µ1

∣∣∣∣∣ = op(1)

sup
x̃∈intSx

∣∣∣∣∣E
[

1

nh

n∑
l=1

K

(
xl − x̃

h

)(
xl − x̃

h

)2
]
− f(x̃)µ2

∣∣∣∣∣ = op(1)

Conditions which are satisfied by (B.61) and the discussion above in Hall and Horowitz’s

supplement, then we can write

1√
nh

n∑
i=1

bi(x)εi =
1√
nh

n∑
i=1

¯̄bi(x)εi + op(1)

where

¯̄bi(x) = e′1Γ
−1
1

(
1

xj−x
h

)
K

(
xj − x

h

)
e′1Γ

−1
1,j

(
1

xi−xj
h

)
K

(
xi − xj
h

)
and

Γ1,j :=

(
f(xj) f(xj)µ1

f(xj)µ1 f(xj)µ2

)
If x is a boundary point, by the same steps, we have that:

1√
nh

n∑
i=1

bi(x)εi =
1√
nh

n∑
i=1

¯̄bi,bnd(x)εi + op(1)

where

¯̄bi,bnd(x) = e′1Γ
−1
1

(
1

xj−x
h

)
K

(
xj − x

h

)
e′1Γ

−1
1,j

(
1

xi−xj
h

)
K

(
xi − xj
h

)
and

Γ̈1,j :=

(
f(xj)µ̈0,xj/h f(xj)µ̈1,xj/h

f(xj)µ̈1,xj/h f(xj)µ̈2,xj/h

)

such that µ̈l,xj/h :=
∫ 1

−xj/h u
lK(u)du.

From now on, we focus on the interior point case only, although the same steps apply

also to the boundary case. A remark below will specify the parallelism with the following

approximation and an analogous approximation for the boundary point case. By noting
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that µ1 = 0 if x is an interior point, we can simplify our arguments to get:

1√
nh

n∑
i=1

biεi =
1

f(x)

1

(nh)3/2

n∑
i=1

n∑
j=1

1

f(xj)
K

(
xj − x

h

)
K

(
xi − xj
h

)
εi + op(1)

=
1

f(x)

1√
nh

n∑
i=1

K̃

(
xi − x

h

)
εi + op(1)

where

K̃

(
xi − x

h

)
=

1

nh

n∑
j=1

1

f(xj)
K

(
xj − x

h

)
K

(
xi − xj
h

)
We now want to approximate K̃ with a function not involving a convolution sum, replac-

ing the summation over the j index with an integral. This can be seen as an asymptotic

approximation of that summation. Specifically, we want to show that:

1

f(x)

1√
nh

n∑
i=1

K̃

(
xi − x

h

)
εi =

1

f(x)

1√
nh

n∑
i=1

˜̃K

(
xi − x

h

)
εi + op(1) (B.3.1)

with
˜̃K

(
xi − x

h

)
:=

1

h

∫ b−x

a−x
K
(u
h

)
K

(
xi − x− u

h

)
du

where a = 1 and b = 0 since we assumed without loss of generality that Sx = [0, 1].

Remark B.3.1 In the boundary case, analogous steps as for the following proof of (B.3.1)

yield to

1√
nh

n∑
i=1

bi(x)εi =
1√
nh

n∑
i=1

b̃i,bnd(x)εi + op(1)

where

b̃i,bnd(x) = e′1Γ̈
−1
1

∫ 1

0

(
1
u
h

)
K
(u
h

)
e′1Γ̈

−1
1,u

(
1

xi−x−u
h

)
K

(
xi − x− u

h

)
du

Proof of (B.3.1). We have that

1

f(x)

1√
nh

n∑
i=1

K̃

(
xi − x

h

)
εi =

1

f(x)

1√
nh

n∑
i=1

˜̃K

(
xi − x

h

)
εi+

+
1

f(x)

1√
nh

n∑
i=1

(
K̃

(
xi − x

h

)
− ˜̃K

(
xi − x

h

))
εi

=:
1

f(x)

1√
nh

n∑
i=1

˜̃K

(
xi − x

h

)
εi +Rn
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we aim to show that Rn = op(1). To do so, we observe that, for η > 0:

P (|Rn| ≥ η) ≤ η−1E

∣∣∣∣∣ 1

f(x)

1√
nh

n∑
i=1

(
K̃

(
xi − x

h

)
− ˜̃K

(
xi − x

h

))
εi

∣∣∣∣∣
≤ η−1

√√√√E

∣∣∣∣∣ 1

f(x)

1√
nh

n∑
i=1

(
K̃

(
xi − x

h

)
− ˜̃K

(
xi − x

h

))
εi

∣∣∣∣∣
2

= (ηf(x))−1

√√√√E

[
1

nh

n∑
i=1

(
K̃

(
xi − x

h

)
− ˜̃K

(
xi − x

h

))2

σ2(xi)

]

where the last equality follows from E[εi|x1, ..., xn] = 0. Now we expand the squared

difference inside the summation to get that:

E

[
1

nh

n∑
i=1

(
K̃

(
xi − x

h

)
− ˜̃K

(
xi − x

h

))2

σ2(xi)

]
=

= E

[
1

nh

n∑
i=1

(
1

nh

n∑
j=1

1

f(xj)
K

(
xj − x

h

)
K

(
xi − xj
h

)
− 1

h

∫ b−x

a−x
K
(u
h

)
K

(
xi − x− u

h

)
du

)2

σ2(xi)

]
=

= E

 1

nh

n∑
i=1

(
1

nh

n∑
j=1

1

f(xj)
K

(
xj − x

h

)
K

(
xi − xj
h

))2

σ2(xi)

+

+ E

[
1

nh

n∑
i=1

(
1

h

∫ b−x

a−x
K
(u
h

)
K

(
xi − x− u

h

)
du

)2

σ2(xi)

]

− 2 · E

[
1

nh

n∑
i=1

(
1

nh

n∑
j=1

1

f(xj)
K

(
xj − x

h

)
K

(
xi − xj
h

))(
1

h

∫ b−x

a−x
K
(u
h

)
K

(
xi − x− u

h

)
du

)
σ2(xi)

]
=

=: R1n +R2n − 2R12n

We will now prove the result by showing that R1n, R2n and R12n have the same limit.
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We start with deriving the limit of R1n as follows.

R1n := E

 1

nh

n∑
i=1

(
1

nh

n∑
j=1

1

f(xj)
K

(
xj − x

h

)
K

(
xi − xj
h

))2

σ2(xi)

 =

= E

[
1

(nh)3

n∑
i=1

n∑
j=1

n∑
j′=1

1

f(xj)

1

f(xj′)
K

(
xj − x

h

)
K

(
xi − xj
h

)
K

(
xj′ − x

h

)
K

(
xi − xj′

h

)
σ2(xi)

]
=

= E

[
1

(nh)3

n∑
i=1

n∑
j=1,j ̸=i

n∑
j′=1,j′ ̸=i,j′ ̸=j

1

f(xj)

1

f(xj′)
K

(
xj − x

h

)
K

(
xi − xj
h

)
K

(
xj′ − x

h

)
K

(
xi − xj′

h

)
σ2(xi)

]
+

+ 2K (0)E

[
1

(nh)3

n∑
i=1

n∑
j=1,j ̸=i

1

f(xi)

1

f(xj)
K

(
xi − x

h

)
K

(
xj − x

h

)
K

(
xi − xj
h

)
σ2(xi)

]
+

+ E

[
1

(nh)3

n∑
i=1

n∑
j=1,j ̸=i

1

f 2(xj)
K2

(
xj − x

h

)
K2

(
xi − xj
h

)
σ2(xi)

]
+

+ E

[
K2(0)

(nh)3

n∑
i=1

1

f 2(xi)
K2

(
xi − x

h

)
σ2(xi)

]
=:

=: R1n,1 +R1n,2 +R1n,3 +R1n,4

Note that, referring to the indexes in the second line above, R1n,1 refers to the contribu-

tions to the triple sum such that i ̸= j ̸= j′, R1n,2 to the contributions such that i = j ̸= j′

and i = j′ ̸= j, R1n,3 to the contributions such that j = j′ ̸= i and R1n,4 to the contri-

butions such that i = j = j′. We will show that R1n,1 is the dominant term of R1n by

proving that R1n,2 = o(1), R1n,3 = o(1) and R1n,4 = o(1). To do so, note that:

R1n,2 = 2K (0)E

[
1

(nh)3

n∑
i=1

n∑
j=1,j ̸=i

1

f(xj)

1

f(xj′)
K

(
xi − x

h

)
K

(
xj − x

h

)
K

(
xi − xj
h

)
σ2(xi)

]

= 2K (0)
n(n− 1)

(nh)3
E
[

1

f(xj)

1

f(xj′)
K

(
xi − x

h

)
K

(
xj − x

h

)
K

(
xi − xj
h

)
σ2(xi)

]
= 2K (0)

n(n− 1)

(nh)3

∫ ∫
K

(
x1 − x

h

)
K

(
x2 − x

h

)
K

(
x1 − x2

h

)
σ2(x1)dx1dx2

= 2K (0)
n(n− 1)

n3h

∫ ∫
K (s+ u)K (s)K (u)σ2(x+ (s+ u)h)duds

= (1 + o(1))2σ2(x)K (0)
n(n− 1)

n3h

∫ ∫
K (s+ u)K (s)K (u) duds = O(n−1h−1) = o(1)

where the third equality above follows from the change of variables x2 = x + sh;x1 =
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x2+uh = x+(u+s)h. One can show that R1n,3 = O(n−1h−1) by analogous steps. Finally,

R1n,4 =
K2(0)

n2h3
E
[

1

f 2(x1)
K2

(
x1 − x

h

)
σ2(x1)

]
=
K2(0)

n2h3

∫
1

f(x1)
K2

(
x1 − x

h

)
σ2(x1)dx1

=
K2(0)

n2h2

∫
1

f(x+ uh)
K2 (u)σ2(x+ uh)du

= (1 + o(1))
K2(0)

n2h2
σ2(x)

f(x)

∫
K2 (u) du = O(n−2h−2) = o(1)

We now focus on the leading term, R1n,1, and derive its limit. We have that

R1n,1 := E

[
1

(nh)3

n∑
i=1

n∑
j=1,j ̸=i

n∑
j′=1,j′ ̸=i,j′ ̸=j

1

f(xj)

1

f(xj′)
K

(
xj − x

h

)
K

(
xi − xj
h

)
K

(
xj′ − x

h

)
K

(
xi − xj′

h

)
·

· σ2(xi)

]
=

= (h−3 + o(1))

∫ ∫ ∫
K

(
x2 − x

h

)
K

(
x1 − x2

h

)
K

(
x3 − x

h

)
K

(
x1 − x3

h

)
σ2(x1)f(x1)dx1dx2dx3

= (h−3 + o(1))h3
∫ ∫ ∫

K (r)K (s+ u)K (s+ r)K (u) ·

· σ2(x+ (u+ s+ r)h)f(x+ (u+ s+ r)h)dudrds =

= (1 + o(h3))(1 + o(1))σ2(x)f(x)

∫ ∫ ∫
K (r)K (s+ u)K (s+ r)K (u) dudrds

= σ2(x)f(x)

∫ [∫
K (r)K (s+ r) ds

]2
dr + o(1) =: R1 + o(1)

where the third equality follows from the change of variables:
x1 = x3 + uh

x3 = x2 + sh

x2 = x+ rh

↔


x1 = x+ (r + s+ u)h

x3 = x+ (r + s)h

x2 = x+ rh

We now move to the derivation of the limit of R2n. This limit can be achieved again by
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a similar procedure than for the leading term of R1n,1. To see this, note that:

R2n := E

[
1

nh

n∑
i=1

(
1

h

∫ b−x

a−x
K
(u
h

)
K

(
xi − x− u

h

)
du

)2

σ2(xi)

]

=
1

h3

∫ (∫ b−x

a−x
K
(u
h

)
K

(
x1 − x− u

h

)
du

)2

σ2(x1)f(x1)dx1

=
1

h3

∫ ∫ b−x

a−x

∫ b−x

a−x
K
(u
h

)
K

(
x1 − x− u

h

)
K

(
u′

h

)
K

(
x1 − x− u′

h

)
σ2(x1)f(x1)dudu

′dx1

=

∫ ∫ (b−x)/h

(a−x)/h

∫ (b−x)/h−v

(a−x)/h−v
K (v)K (r + v)K (r + s)K (s) f(x+ (v + r + s)h)σ2(x+ (v + r + s)h)dsdvdr =

= (1 + o(1))σ2(x)f(x)

∫ ∫ ∫
K (v)K (r + v)K (r + s)K (s) dsdvdr

= σ2(x)f(x)

∫ [∫
K (r)K (s+ r) ds

]2
dr + o(1) =: R1 + o(1)

where the fourth equality follows from the change of variables:
x1 = x+ u′ + sh

u′ = u+ rh

u = vh

↔


x1 = x+ (v + r + s)h

u′ = (v + r)h

u = vh

We are left with deriving the limit of R12n. We have that:

R12n := E

[
1

nh

n∑
i=1

(
1

nh

n∑
j=1

1

f(xj)
K

(
xj − x

h

)
K

(
xi − xj
h

))(
1

h

∫ b−x

a−x
K
(u
h

)
K

(
xi − x− u

h

)
du

)
σ2(xi)

]

=
1

n2h3
E

[
n∑
i=1

n∑
j=1,j ̸=i

1

f(xj)
K

(
xj − x

h

)
K

(
xi − xj
h

)∫ b−x

a−x
K
(u
h

)
K

(
xi − x− u

h

)
duσ2(xi)

]
+ o(1)

=
1

h3

∫ ∫ ∫ b−x

a−x
K

(
x2 − x

h

)
K

(
x1 − x2

h

)
K
(u
h

)
K

(
x1 − x− u

h

)
f(x1)σ

2(x1)dudx1dx2 + o(1)

=

∫ ∫ ∫ (b−x)/h−v

(a−x)/h−v
K (v)K (r + s)K (r + v)K (s) f(x+ (r + s+ v)h)σ2(x+ (r + s+ v)h)drdsdv + o(1) =

= (1 + o(1))f(x)σ2(x)

∫ ∫ ∫
K (v)K (r + s)K (r + v)K (s) drdsdv =: R1 + o(1)

where the fourth equality follows from the change of variables:
x1 = x+ u+ sh

u = x2 − x+ rh

x2 = x+ vh

↔


x1 = x+ (v + r + s)h

u = (v + r)h

x2 = x+ vh

This concludes the proof of (1.1).
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Following (1.1), we can write(
ξ1n

ξ2n

)
=

1

f(x)

1√
nh

n∑
i=1

(
K
(
xi−x
h

)
˜̃K
(
xi−x
h

)
−K

(
xi−x
h

)) εi + op(1)

=

[
1 0

−1 1

]
1

f(x)

1√
nh

n∑
i=1

(
K
(
xi−x
h

)
˜̃K
(
xi−x
h

)) εi︸ ︷︷ ︸
=:s̃i

+op(1)

We are now interested in deriving a CLT for

1√
nh

n∑
i=1

s̃i :=
1√
nh

n∑
i=1

(
K
(
xi−x
h

)
˜̃K
(
xi−x
h

)) εi = 1√
nh

n∑
i=1

(
K
(
xi−x
h

)
1
h

∫ b−x
a−x K

(
u
h

)
K
(
xi−x−u

h

)
du

)
εi

We start by proving asymptotic normality. To do so, we note that s̃i is a sequence

of independent random variables. Hence, we can check if Lyapunov’s condition holds

together with the Cramer-Wold device. Specifically, for (α, β) ∈ R2, we want to verify

asymptotic normality of
∑n

i=1(nh)
−1/2(αK((xi−x)/h+β ˜̃K((xi−x)/h)εi =:

∑n
i=1 ηi. To

do so, we first note that:

n∑
i=1

V
[
(nh)−1/2

(
αK

(
xi − x

h

)
+ β ˜̃K

(
xi − x

h

))
εi

]
=

= (nh)−1
n∑
i=1

E

[(
αK

(
xi − x

h

)
+ β ˜̃K

(
xi − x

h

))2

σ2(xi)

]

= (nh)−1α2

n∑
i=1

E
[
K2

(
xi − x

h

)
σ2(xi)

]
+ (nh)−1β2

n∑
i=1

E
[
˜̃K2

(
xi − x

h

)
σ2(xi)

]
+ (nh)−12αβE

[
K

(
xi − x

h

)
˜̃K

(
xi − x

h

)
σ2(xi)

]
where

(nh)−1α2

n∑
i=1

E
[
K2

(
xi − x

h

)
σ2(xi)

]
= h−1α2

∫
K2

(
x1 − x

h

)
σ2(x1)f(x1)dx1 (B.3.2)

= α2

∫
K2 (u)σ2(x+ uh)f(x+ uh)du = (B.3.3)

= (1 + o(1))σ2(x)f(x)α2

∫
K2 (u) du = O(1)

(B.3.4)
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and

(nh)−12αβE
[
K

(
xi − x

h

)
˜̃K

(
xi − x

h

)
σ2(xi)

]
= h−12αβ

∫
K

(
x1 − x

h

)
˜̃K

(
x1 − x

h

)
σ2(x1)f(x1)dx1

(B.3.5)

= h−22αβ

∫ ∫ b−x

a−x
K

(
x1 − x

h

)
K
(u
h

)
K

(
x1 − x− u

h

)
f(x1)σ

2(x1)dudx1

(B.3.6)

= 2αβ

∫ ∫ (b−x)/h

(a−x)/h
K (r)K (v)K (r − v) f(x+ rh)σ2(x+ rh)drdv (B.3.7)

= 2αβf(x)σ2(x)

∫ ∫
K (r)K (v)K (r − v) drdv + o(1) = O(1) (B.3.8)

Moreover, note that

β2(nh)−1
n∑
i=1

E
[
˜̃K2

(
xi − x

h

)
σ2(xi)

]
= β2R2n = β2R1 + o(1) = O(1) (B.3.9)

We can now show that Lyapunov’s condition holds. Specifically, we have to prove that,

for some δ > 0, ∑n
i=1 E|ηi|2+δ

(
∑n

i=1 V(ηi))
2+δ

= o(1)

Since we already proved that (
∑n

i=1V(ωi))
2+δ

= O(1) for all δ > 0, it suffices to show

that
∑n

i=1 E|ηi|2+δ = o(1); for simplicity, we take δ = 2 and note that:

n∑
i=1

E|ηi|4 =
1

n2h2

n∑
i=1

E

[(
αK

(
xi − x

h

)
+ β ˜̃K

(
xi − x

h

))4

ε4i

]
≤

≤ c1
nh2

E

[(
αK

(
x1 − x

h

)
+ β ˜̃K

(
x1 − x

h

))4
]
=

=
c1α

4

nh2
E
[
K4

(
x1 − x

h

)]
+ β

c1α
4

nh2
E
[
˜̃K4

(
x1 − x

h

)]
+

+
4c1α

3β

nh2
E
[
K3

(
x1 − x

h

)
˜̃K

(
x1 − x

h

)]
+

4c1α
2β2

nh2
E
[
K2

(
x1 − x

h

)
˜̃K2

(
x1 − x

h

)]
+

4c1αβ
3

nh2
E
[
K

(
x1 − x

h

)
˜̃K3

(
x1 − x

h

)]
We are going to conclude this proof by showing that each term above is o(1). First of all,

we can see that

E
[
K4

(
x1 − x

h

)]
=

∫
K4

(
x1 − x

h

)
f(x1)dx1

= (1 + o(1))hf(x)

∫
K4 (u) du
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which proves that the first term is O(n−1h−1). To handle the remaining four terms, we

will show that for γ = 0, 1, 2, 3:

E
[
Kγ

(
x1 − x

h

)
˜̃K4−γ

(
x1 − x

h

)]
= O(h)

To see why, we write:

E
[
Kγ

(
x1 − x

h

)
˜̃K4−γ

(
x1 − x

h

)]
:=

∫
Kγ

(
x1 − x

h

)
˜̃K4−γ

(
x1 − x

h

)
f(x1)dx1

=

∫
Kγ

(
x1 − x

h

)(
1

h

∫ b−x

a−x
K
(u
h

)
K

(
x1 − x− u

h

)
du

)4−γ

f(x1)dx1

= hγ−4
∫
Kγ

(
x1 − x

h

)(∫ b−x

a−x
K
(u
h

)
K

(
x1 − x− u

h

)
du

)4−γ

f(x1)dx1

= hγ−4
∫ ∫ b−x

a−x
...

∫ b−x

a−x︸ ︷︷ ︸
4−γ

Kγ

(
x1 − x

h

) 4−γ∏
j=1

{
K
(uj
h

)
K

(
x1 − x− uj

h

)}
du1...du4−γf(x1)dx1

= h

∫ ∫ (b−x)/h

(a−x)/h
...

∫ (b−x)/h

(a−x)/h︸ ︷︷ ︸
4−γ

Kγ (v)

4−γ∏
j=1

{
K (sj)K (v − sj)

}
f(x+ vh)ds1...ds4−γdv

= (1 + o(1))hf(x)

∫ ∫
...

∫
︸ ︷︷ ︸

4−γ

Kγ (v)

4−γ∏
j=1

{
K (sj)K (v − sj)

}
ds1...ds4−γdv = O(h)

where the fourth equality follows from the change of variables

x1 = x+ vh

u1 = s1h

...

u4−γ = s4−γh

with the corresponding Jacobian matrix:

J :=


∂x1/∂v ∂x1/∂s1 ... ∂x1/∂s4−γ

∂u1/∂v ∂u1/∂s1 ... ∂u1/∂s4−γ
...

...
. . .

...

∂u4−γ/∂v ∂u4−γ/∂s1 ... ∂u4−γ/∂s4−γ

 = diag(h, h, ..., h)

so that det(J) = h5−γ. This concludes the proof of asymptotic normality of
∑n

i=1 ηi. We

are now only left with deriving the asymptotic variance of (nh)−1/2
∑n

i=1 s̃i. From (1.4),
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we have that

E

[
1√
nh

n∑
i=1

K2

(
xi − x

h

)
εi

]
= σ2(x)f(x)

∫
K2(u)du+ o(1) =: ω1 + o(1)

From (1.8), we have that

E

[
1√
nh

n∑
i=1

K

(
xi − x

h

)
˜̃K

(
xi − x

h

)
εi

]
= f(x)σ2(x)

∫ ∫
K (s)K (v)K (s+ v) dsdv + o(1)

=: ω12 + o(1)

Finally, from (1.9), we obtain

E

[
1√
nh

n∑
i=1

˜̃K2

(
xi − x

h

)
εi

]
= R1 + o(1)

= σ2(x)f(x)

∫ [∫
K (r)K (s+ r) ds

]2
dr + o(1)

=: ω2 + o(1)

Hence, defining

Ω =

[
ω1 ω12

ω12 ω2

]
we have that

1√
nh

n∑
i=1

s̃i
d−→ N(0,Ω) (B.3.10)

and (
ξ1

ξ2

)
d−→ N(0, VLP ) (B.3.11)

with

VLP :=
1

f 2(x)

[
1 0

−1 1

]
Ω

[
1 −1

0 1

]
(B.3.12)

Finally, the proof is completed by noting that

V

[
1√
nh

n∑
i=1

s̃i|Xn

]
p−→ VLP

and from the following remark.

Remark B.3.2 In the boundary case, by exploiting the approximation in Remark B.3.1,

we obtain that (
ξ1

ξ2

)
d−→ N(0, V̈LP ) (B.3.13)

and

Vn
p−→ V̈LP (B.3.14)
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where

V̈LP :=

[
1 0

−1 1

][
ω̈1 ω̈12

ω̈12 ω̈2

][
1 −1

0 1

]
with

ω̈1 = σ2(0)e′1Γ̈
−1
1 Ψ̈11Γ̈

−1
1 e1

ω̈12 := σ2(0)e′1Γ̈
−1
1

(
γ11 γ12

γ21 γ22

)
Γ̈−11 e1

ω̈2
2 := σ2(0)e′1Γ̈

−1
1

(
λ11 λ12

λ21 λ22

)
Γ̈−11 e1

γll′ := f(0)

∫ 1

0

∫ 1

−u
(s)l−1 (u+ s)l

′−1K (s)K (u+ s) e′1(Γ̈
†
1,s)
−1

(
1

u

)
K (u) dsdu

λll′ := f(0)

∫ 1

0

∫ 1

−r

∫ 1

−s−r
(r)l−1 (s+ r)l

′−1K (r)K (s+ r) e′1(Γ̈
†
1,r)
−1

(
1

u+ s

)

· e′1(Γ̈
†
1,(s+r))

−1

(
1

u

)
K (u+ s)K (u) dudsdr

and

Γ̈†1,u =

(
µ̈0,u µ̈1,u

µ̈1,u µ̈2,u

)

B.3.4 Proof of Proposition 3.4

We start by considering the expansion on B̂n, which holds for both interior and boundary

points. Let us write

B̂n =
1√
nh

n∑
i=1

wi(x) (m̂(xi)− m̂(x))

=
1√
nh

n∑
i=1

wi(x)

(
1

nh

n∑
j=1

wj(xi)g(xj)− g(xi)

)

+
1

nh

n∑
i=1

wi(x)

(
1

nh

n∑
j=1

wj(xi)εj − εi

)
=: B̂1,n + ξ2,n
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Note that, by the mean value theorem:

1√
nh

n∑
i=1

wi(x)
1

nh

n∑
j=1

wj(xi)g(xj) =

=
1√
nh

n∑
i=1

wi(x)
1

nh

n∑
j=1

wj(xi)

[
g(xi) + hg′(xi)

(
xj − xi
h

)
+
h2g′′(xi)

2

(
xj − xi
h

)2

+
h3g(3)(x̃ij)

6

(
xj − xi
h

)3
]

=
1√
nh

n∑
i=1

wi(x)
1

nh

n∑
j=1

wj(xi)

[(
1
(xj−xi

h

))( g(xi)

hm′(xi)

)
+
h2g′′(xi)

2

(
xj − xi
h

)2

+
h3g(3)(x̃ij)

6

(
xj − xi
h

)3
]

=
1√
nh

n∑
i=1

wi(x)g(xi) +
h2

2

1√
nh

n∑
i=1

wi(x)g
′′(xi)

1

nh

n∑
j=1

wj(xi)

(
xj − xi
h

)2

+Op(h)

with x̃ij some value between xi and xj. The above implies that:

B2n =
h2

2

1√
nh

n∑
i=1

wi(x)g
′′(xi)

1

nh

n∑
j=1

wj(xi)

(
xj − xi
h

)2

+Op(h)

and

B2n −Bn =
h2

2

1√
nh

n∑
i=1

wi(x)g
′′(xi)

[
1

nh

n∑
j=1

wj(xi)

(
xj − xi
h

)2

−
(
xi − x

h

)2
]
+Op(h)

= κ1/2
g′′(x)

2

1

nh

n∑
i=1

wi(x)

[
1

nh

n∑
j=1

wj(xi)

(
xj − xi
h

)2

−
(
xi − x

h

)2
]
+Op(h) +Op(h) =

= κ1/2
g′′(x)

2
[C2n − Cn] +Op(h)

For part (i), and by the same reasoning as in the Proof of Proposition 3.3, we have that

C2n =
1

f(x)

1

nh

n∑
i=1

˜̃K

(
xi − x

h

)(
xi − x

h

)2

+ op(1)

so that by mean squared error convergence we can prove that

C2n = E

[
1

nh

n∑
i=1

˜̃K

(
xi − x

h

)(
xi − x

h

)2
]
+ op(1)

where

E

[
1

nh

n∑
i=1

˜̃K

(
xi − x

h

)(
xi − x

h

)2
]
= µ2 (B.3.15)
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and

B2n = κ1/2
g′′(x)µ2

2
+ op(1)

By combining this result with the probability limit of Bn, it follows that B2n−Bn = op(1).

For part (ii), from the results in Proposition 3.3:

C2n =
1

nh

n∑
i=1

b̃i,bnd(x)

(
xi − x

h

)2

+ op(1)

so that by mean squared error convergence we can prove that

C2n = E

[
1

nh

n∑
i=1

b̃i,bnd(x)

(
xi − x

h

)2
]
+ op(1)

where

E

[
1

nh

n∑
i=1

b̃i,bnd(x)

(
xi − x

h

)2
]
= e′1Γ̈

−1
1

∫ 1

0

K (s)

(
1

s

)
e′1Γ̈

−1
1,sh

[∫ 1

−s
K (u)

(
u2

u3

)
du

]
ds =: C2

and

B2n = κ1/2
g′′(x)C2

2
+ op(1)

By combining this result with the probability limit of Bn, it follows that B2n − Bn =

A+ op(1).

B.3.5 Proof of Proposition 3.5

We note that

P∗ (T ∗n ≤ Tn) = P∗
(
T ∗n − B̂n

v1,LP,n
≤ Tn − B̂n

v1,LP,n

)

= P∗
(
T ∗n − B̂n

v1,LP,n
≤ vd,LP,n
v1,LP,n

ξ1n − ξ2n
vd,LP,n

+
B2n −Bn

v1,LP,n

)
d−→ Φ

(
plim{(B2n −Bn)/v1,LP,n}+ plim{vd,LP,n/v1,n}Φ−1

(
U[0,1]

))
where the last convergence result is given by Propositions 2.3.2 and 2.3.3. The result

then applies to the case of interior and boundary points by considering the different

specifications of the probability limits included in Propositions 2.3.2, 2.3.3 and 2.3.4.

B.3.6 Proof of Theorem 3.1

Note that Proposition 2.3.1 ensures that Assumption 1 in Cavaliere et al. (2024) is

satisfied. Moreover, Propositions 2.3.2 and 2.3.3 ensure that Assumption 2 in Cavaliere et

al. (2024) is satisfied. Then, the conditions of Corollary 3.2 in Cavaliere et al. (2024) are
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satisfied because H is continuous in mLP and m̂LP,n = mLP +op(1). Hence, we have that:

P
(
g(x) ∈ C̃ILP

)
= P

(
α/2 ≤ ĤLP,n (p̂n) ≤ 1− α/2

)
−→ 1− α

B.3.7 Proof of Proposition 3.6

For part (i), just note that

(v1nQn)
−1(T ∗n,mod − B̂n,mod) = v−11n (T

∗
n − B̂n) = v−11n ξ

∗
1n

so that the result follows from Proposition 3.2 directly. For part (ii), just note that

B̂mod,n −Bn = QnBLP,n −BAT,n +Qnξ2,n + op(1) =: ξ2,mod,n + op(1)

where the first equality is given by (2.3.4) and (2.3.5) and by Proposition 2.3.4. Finally,

note that part (iii) follows directly from Proposition 2.3.3 and from the fact that ξmod,n :=

diag(1, Qn)(ξ1n, ξ2n)
′, which ensures that VLP,mod,n = diag(1, Qn)VLP,ndiag(1, Qn).

B.3.8 Proof of Proposition 3.7

By the usual expansion

P∗
(
T ∗mod,n ≤ Tn

)
= P∗

(
T ∗mod,n − B̂mod,n

Qnv1,LP,n
≤ Tn − B̂mod,n

Qnv1,LP,n

)

= P∗
(
T ∗mod,n − B̂mod,n

Qnv1n
≤ vd,LP,mod,n

Qnv1,LP,n

ξ1n − ξ2,mod,n
vd,LP,mod,n

+
QnB2n −Bn

Qnv1,LP,n

)
d−→ Φ

(
plim{vd,LP,mod,n/Qnv1,n}Φ−1

(
U[0,1]

))
where the last convergence result is given by Propositions 2.3.6. The result then applies

to the case of interior and boundary points by considering the different specifications of

the probability limits included in Propositions 2.3.2, 2.3.3 and 2.3.4.

B.3.9 Proof of Theorem 3.2

For interior points Qn = 1 + op(1), so that the result follows directly from Theorem 3.1.

For boundary points, note that Proposition 2.3.1 ensures that Assumption A in Ap-

pendix A is satisfied. Moreover, Propositions 2.3.2, 2.3.3 and 2.3.4 ensure that Assump-

tion B and C in Appendix A are satisfied. Then, the conditions of Theorem B.1.2 in Ap-

pendix A are satisfied because H is continuous in m̈LP,mod and m̂LP,mod,n = m̈LP,mod +

op(1). Hence, we have that:

P
(
g(x) ∈ C̃ILP,mod

)
= P

(
α/2 ≤ ĤLP,mod,n (p̂mod,n) ≤ 1− α/2

)
−→ 1− α
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B.3.10 Proof of Proposition 3.8

The proof of Proposition 3.8 is analogous to that of proposition 3.2 and it thus omitted

for the seek of brevity.

B.3.11 Proof of Proposition 3.9

Let wi(x) = e′1Γ
−1
1nZixK((xi − x)/h), our aim is to derive a CLT for:(

ξ1n

ξ̃2n

)
=

1√
nh

n∑
i=1

(
wi(x)

Cnl̃i(x)

)
εi

First of all, we note that(
ξ1n

ξ̃2n

)
= diag(1, C)

1√
nh

n∑
i=1

(
w̄i(x)

l̄i(x)

)
εi + op(1)

where

w̄i(x) := e′1Γ
−1
1

(
1

xi−x
h

)
K

(
xi − x

h

)

l̄i(x) := e′3Γ
−1
2

 1
xi−x
h(

xi−x
h

)2
K

(
xi − x

h

)

Then the result follows immediately as a bivariate estension (i.e., by exploiting the

Cramer-Wold device) of the central limit theorem proposed in Lemma A2 in Calonico et

al. (2014), where

v21,FL := v21,LP

v212,FL := σ2(x)e′1Γ
−1
1 Ψ12Γ

−1
2 e3

v222,FL := σ2(x)e′3Γ
−1
2 Ψ22Γ

−1
2 e3

v̈21,FL := v̈21,LP

v̈212,FL := σ2(0)e′1Γ̈
−1
1 Ψ̈12Γ̈

−1
2 e3

v̈222,FL := σ2(0)e′3Γ̈
−1
2 Ψ̈22Γ̈

−1
2 e3

such that:

Ψ12 :=

(
ψ0 ψ1 ψ2

ψ1 ψ2 ψ3

)
Ψ̈12 :=

(
ψ̈0 ψ̈1 ψ̈2

ψ̈1 ψ̈2 ψ̈3

)

Γ2 :=

γ0 γ1 γ2

γ1 γ2 γ3

γ2 γ3 γ4

 Γ̈2 :=

γ̈0 γ̈1 γ̈2

γ̈1 γ̈2 γ̈3

γ̈2 γ̈3 γ̈4


where the elements of the above matrices are defined in Lemmas B.4.1 and B.4.2.
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B.3.12 Proof of Proposition 3.10

We note that

P∗ (T ∗n ≤ Tn) = P∗
(
T ∗n − B̂n

v1,FL,n
≤ Tn − B̂n

v1,FL,n

)

= P∗
(
T ∗n − B̂n

v1,FL,n
≤ vd,FL,n
v1,FL,n

ξ1n − ξ2n
vd,FL,n

)
d−→ Φ

(
plim{vd,FL,n/v1,FL,n}Φ−1

(
U[0,1]

))
where the last convergence result is given by Propositions B.2.1 and B.2.2. The result

then applies to the case of interior and boundary points by considering the different

specifications of the probability limits included in Propositions B.2.1 and B.2.2.

B.3.13 Proof of Theorem 3.3

Note that Proposition 2.3.1 ensures that Assumption 1 in Cavaliere et al. (2024) is

satisfied. Moreover, Propositions B.2.1 and B.2.2 ensure that Assumption 2 in Cavaliere

et al. (2024) is satisfied. Then, the conditions of Corollary 3.2 in Cavaliere et al. (2024)

are satisfied because H is continuous in mFL and m̂FL,n = mFL + op(1). Hence, we have

that:

P
(
g(x) ∈ C̃IFL

)
= P

(
α/2 ≤ ĤFL,n (p̂n) ≤ 1− α/2

)
−→ 1− α

B.3.14 Proof of Proposition 3.11

The results follows immediately from the proofs of Propositions 3.2, 3.3, 3.8 and 3.9,

where we define the elements in the covariance matrices in the according central limit

theorems, noting that the quantities:

Kvd,LP :=
f(x)

σ2(x)
v2d,LP

Kvd,FL :=
f(x)

σ2(x)
v2d,FL

K̈vd,LP :=
f(0)

σ2(0)
v̈2d,LP

K̈vd,FL :=
f(0)

σ2(0)
v̈2d,FL

are measurable functions of the kernel K only.
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B.4 Auxiliary results

Lemma B.4.1 Let Assumptions 1-3 hold, then: (i) if x is an interior point

γj,n = f(x)µj +Op

(
1√
nh

)
= γj +Op

(
1√
nh

)
, j = 0, 1, 2, ... (B.4.1)

(ii) whereas if x is a boundary point

γj,n = f(0)µ̈j +Op

(
1√
nh

)
= γ̈j +Op

(
1√
nh

)
j = 0, 1, 2, ... (B.4.2)

Proof of Lemma B.4.1. For part (i), note that

E

[
1

nh

n∑
i=1

K

(
xi − x

h

)(
xi − x

h

)j]
=

1

nh

n∑
i=1

E

[
K

(
xi − x

h

)(
xi − x

h

)j]
=

=
1

h
E

[
K

(
x1 − x

h

)(
x1 − x

h

)j]
=

1

h

∫ 1

0

K

(
x1 − x

h

)(
x1 − x

h

)j
f(x1)dx1

=

∫ (1−x)/h

−x/h
K (u)ujf(x+ uh)du −→ f(x)

∫ +∞

−∞
K (u)ujdu = f(x)

∫ 1

−1
K (u)ujdu =: f(s)µj

and

1

(nh)2

n∑
i=1

E

[
K2

(
xi − x

h

)(
xi − x

h

)2j
]
+

+
1

(nh)2

∑
i ̸=i′

E

[
K

(
xi − x

h

)(
xi − x

h

)j]
E

[
K

(
xi′ − x

h

)(
xi′ − x

h

)j]
=

= O

(
1

nh

)
+

1

h2

[
E

[
K

(
x1 − x

h

)(
x1 − x

h

)j]]2
= O

(
1

nh

)
+ f 2(x)µ2

j

For part (ii), just note that, if x is a boundary point in the sense of Remark 2.3.1,∫ (1−x)/h

−x/h
K (u)ujf(x+ uh)du =

∫ (1−x)/h

0

K (u)ujf(uh)σ2(uh)du

−→ σ2(0)f(0)

∫ +∞

0

K (u)ujdu = σ2(0)f(0)

∫ 1

0

K (u)ujdu =: σ2(0)f(0)µ̈j

which concludes the proof.

Lemma B.4.2 Let Assumptions 1-3 hold, then: (i) if x is an interior point

ψj,n = σ2(x)f(x)νj +Op

(
1√
nh

)
= ψj +Op

(
1√
nh

)
, j = 0, 1, 2, ... (B.4.3)
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(ii) whereas if x is a boundary point

ψj,n = σ2(0)f(0)ν̈j +Op

(
1√
nh

)
= ψ̈j +Op

(
1√
nh

)
, j = 0, 1, 2, ... (B.4.4)

Proof of Lemma B.4.2. For part (i), note that

E [ψj,n] =
1

h
E

[
K2

(
x1 − x

h

)(
x1 − x

h

)j
σ2(x1)

]

=
1

h

∫ 1

0

K2

(
x1 − x

h

)(
x1 − x

h

)j
f(x1)σ

2(x1)dx1

=

∫ (1−x)/h

−x/h
K2 (u)ujf(x+ uh)du −→ σ2(x)f(x)

∫ 1

−1
K2 (u)ujdu =: σ2(x)f(x)νj

and

E
[
ψ2
j,n(x)

]
= E

[
1

nh

n∑
i=1

K2

(
xi − x

h

)(
xi − x

h

)j
σ2(xi)

]2

=
1

(nh)2

n∑
i=1

E

[
K4

(
xi − x

h

)(
xi − x

h

)2j

σ4(xi)

]
+

+
1

(nh)2

∑
i ̸=i′

E

[
K2

(
xi − x

h

)(
xi − x

h

)j
σ2(xi)

]
E

[
K2

(
xi′ − x

h

)(
xi′ − x

h

)j
σ2(xi′)

]

= Op

(
1

nh

)
+ f 2(x)ν2j

For part (ii), note that∫ (1−x)/h

−x/h
K2 (u)ujf(x+ uh)σ2(x+ uh)du =

∫ (1−x)/h

0

K2 (u)ujf(uh)σ2(uh)du

−→ σ2(0)f(0)

∫ 1

0

K2 (u)ujdu =: f(0)ν̈j
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Appendix C

Appendix to Chapter 3

C.1 Mathematical Appendix

C.1.1 Proof of Theorem 3.4.1

Introduce x̃t := (1, xn,t−1)
′. Let µn := n1/2(θ̂ − θ0), Mn := n−1

∑n
t=1 x̃tx̃

′
t and N∗n :=

n−1/2
∑n

t=1 ε
∗
t x̃t. Moreover, let the normalized bootstrap estimator be denoted by µ∗n :=

n1/2(θ̂∗ − θ̂); similarly, µ̃∗n := n1/2(θ̃∗ − θ̂), where θ̃∗ is the unrestricted (OLS) bootstrap

estimator. On the event {det(Mn) > 0} with P (det(Mn) > 0) → 1, the estimator θ̃∗

is well-defined and unique. As we are interested in distributional convergence results,

without loss of generality we proceed as if P (det(Mn) > 0) = 1.

By arguments similar to the proof of Theorem 4.1 in Cavaliere and Georgiev (2020), it

can be concluded that (µn,Mn, N
∗
n)

w∗
→w (ℓ(θ0),M,M1/2ξ∗)|(M, ℓ(θ0)) in R2×4, whereM is

of full rank with probability one, ξ∗|(M, ℓ(θ0)) ∼ N(0, σ2
eI2) and σ

2
e denotes the variance

of εt corrected for ∆xn,t. To derive the result (3.4.1), we analyze the properties of µ∗n on

a special probability space where (µn,Mn, N
∗
n) given the data converge weakly a.s. rather

than weakly in distribution. Specifically, by Lemma A.2(a) in Cavaliere and Georgiev

(2020) we can consider a probability space (where ℓ(θ0),M and, for every n ∈ N , also the

original data and the bootstrap sample can be redefined, maintaining their distribution),

such that

µn
a.s.→ ℓ(θ0), Mn

a.s.→ M , N∗n
w∗
→a.s. M

1/2ξ∗|(M, ℓ(θ0)) =M1/2ξ∗|M, (C.1.1)

the last equality being an a.s. equality of conditional distributions.

Let q∗n(θ) := n−1
∑n

t=1(y
∗
t − θ′x̃t)

2 with θ̃∗ := argminθ∈R2 q∗n(θ) being well-defined and

unique for outcomes in the event {det(Mn) > 0}. On the special probability space, the

asymptotic distribution of µ̃∗n = n1/2(θ̃∗ − θ̂) =M−1
n N∗n follows from (C.1.1) and a CMT

(Theorem 10 of Sweeting, 1989):

µ̃∗n
w∗
→a.s. ℓ̃

∗|(M, ℓ(θ0)) = ℓ̃∗|M , ℓ̃∗ := σ2
eM

−1/2ξ∗. (C.1.2)
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Let us turn now to the bootstrap estimator θ̂∗. If g(θ0) > g∗(θ0), then the consistency

facts θ̂
a.s.→ θ0 (from (C.1.1)) and θ̃∗

w∗
→a.s. θ0 (from (C.1.2)), jointly with the continuity of

g, g∗ at θ0, imply that P ∗(g(θ̃∗) ≥ g∗(θ̂))
a.s.→ 1. Hence, θ̃∗ uniquely minimizes q∗n on Θ∗

with P ∗-probability approaching one a.s. This establishes the existence of θ̂∗ with P ∗-

probability approaching one a.s., as well as the facts P ∗(θ̂∗ = θ̃∗)
a.s.→ 1 and P ∗(µ∗n = µ̃∗n)

a.s.→
1. Using also (C.1.2), it follows that µ∗n

w→a.s. ℓ̃
∗|M on the special probability space, and

since µn
a.s.→ ℓ(θ0) on this space, it follows further that (µn, (µ

∗
n|Dn))

w→w (ℓ(θ0), (ℓ̃
∗|M))

on a general probability space, as asserted in (3.4.1).

In the case where g∗(θ0) = g(θ0), it still holds that θ̃∗ uniquely minimizes q∗n on Θ∗

whenever g(θ̃∗) ≥ g∗(θ̂), such that θ̂∗ exists and equals θ̃∗ on the event {g(θ̃∗) ≥ g∗(θ̂)}.
However, the probability of this event no longer tends to one. Whenever g(θ̃∗) < g∗(θ̂),

a minimizer of q∗n on Θ∗ exists if and only if a minimizer, say θ̌∗, of q∗n on ∂Θ∗ exists

and minimizes q∗n over the entire Θ∗ (this claim is due to the fact that, for outcomes

in the event {det(Mn) > 0}, the function q∗n(θ) is locally minimized uniquely at θ̃∗).

Let I∗n := I{b(θ̃∗)≥0} with b(θ) := g(θ) − g∗(θ̂). We show in Section C.1.2 below that

θ̌∗(1− I∗n), with a measurable θ̌∗, is well-defined with P ∗-probability approaching one a.s.

and (q∗n(θ̌
∗)− q∗n(θ))(1− I∗n) ≤ 0 for all θ ∈ Θ∗, with P ∗-probability approaching one a.s.

This establishes the possibility to define the bootstrap estimator θ̂∗ as

θ̂∗ = θ̃∗I∗n + θ̌∗(1− I∗n) (C.1.3)

and, therefore, the existence of θ̂∗ with P ∗-probability approaching one a.s. The existence

result carries over to a general probability space with P ∗-probability approaching one in

probability.

In Section C.1.2 we also show that ∥θ̌∗− θ̂∥(1− I∗n) = Op∗(n
−1/2) a.s., and as a result,

∥θ̂∗− θ̂∥ = Op∗(n
−1/2) a.s., using also (C.1.2). We do not discuss the uniqueness of θ̌∗ but

instead we argue next that the measurable minimizers of q∗n over the bootstrap boundary

are asymptotically equivalent, as they give rise to the same asymptotic distribution of θ̂∗.

To accomplish this, we use the result of Section C.1.2 that θ̌∗ satisfies a first-order

condition [foc] with P ∗-probability approaching one a.s. Let dots over function names

denote differentiation w.r.t. θ (e.g., q̇∗n(θ) := (∂q̇∗n/∂θ
′)(θ), a column vector). Then the

foc takes the form

{q̇∗n(θ̌∗) + δ̌nḃ(θ̌
∗)}(1− I∗n) = {q̇∗n(θ̌∗) + δ̌nġ(θ̌

∗)}(1− I∗n) = 0, b(θ̌∗)(1− I∗n) = 0,

where δ̌n ∈ R is a Lagrange multiplier. The foc implies, by means of a standard argument,

the existence of a measurable θ̄∗ between θ̌∗ and θ̂ such that

{n1/2(θ̌∗ − θ̂)− (I2 − A∗nġ(θ̄
∗)′)µ̃∗n + A∗nn

1/2b(θ̂)}(1− I∗n) = 0,

where A∗n :=M−1
n ġ(θ̌∗)[ġ(θ̄∗)′M−1

n ġ(θ̌∗)]−1 is well-defined with P ∗-probability approaching
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one a.s. As further ∥θ̌∗ − θ̂∥(1− I∗n) = Op∗(n
−1/2) a.s., ∥θ̄∗ − θ̂∥(1− I∗n) = Op∗(n

−1/2) a.s.

and θ̂ − θ0 = O(n−1/2) a.s., using the continuity of ġ(θ) at θ0 it follows that

{n1/2(θ̌∗ − θ̂)− [(I2 − A∗ġ′)µ̃∗n − A∗(ġ − ġ∗)′n1/2(θ̂ − θ0)]}(1− I∗n) = op∗(1) a.s.,

where A∗ :=M−1ġ[ġ′M−1ġ]−1 and P ∗(|op∗(1)| > η)
a.s.→ 1 for all η > 0.

Returning to (C.1.3), we conclude that

n1/2(θ̂∗− θ̂) = µ̃∗nI∗n+{(I2−A∗ġ′)µ̃∗n−A∗(ġ− ġ∗)′n1/2(θ̂−θ0)}(1−I∗n)+op∗(1) a.s. (C.1.4)

Consider the event indicated by I∗n. As ∥θ̂∗− θ̂∥ = Op∗(n
−1/2) a.s. and θ̂− θ0 = O(n−1/2)

a.s., by the mean value theorem and the continuous differentiability of g, g∗ it holds that

n1/2b(θ̃∗) = ġ′µ̃∗n + (ġ − ġ∗)′µn + op∗(1) a.s.

Then I∗n
w∗
→a.s. I∞|(M, ℓ(θ0)) with I∞ := I{ġ′ℓ̃∗≥(ġ∗−ġ)′ℓ(θ0)}, by (C.1.1)-(C.1.2) and the

CMT for weak a.s. convergence (Theorem 10 of Sweeting, 1989), as the probability of

the limiting discontinuities is 0: P (ġ′ℓ̃∗ = (ġ∗ − ġ)′ℓ(θ0)|(M, ℓ(θ0))) = 0 a.s. By exactly

the same facts, passage to the limit directly in (C.1.4) yields

n1/2(θ̂∗ − θ̂)
w∗
→a.s. {ℓ̃∗I∞ + ℓ̌∗(1− I∞)}|(M, ℓ(θ0)), ℓ̌

∗ := (I2 − A∗ġ′)ℓ̃∗ − A∗(ġ − ġ∗)′ℓ

on the special probability space, where also µn
a.s.→ ℓ(θ0) by (C.1.1). Therefore, on a

general probability space it holds that

(µn, (n
1/2(θ̂∗ − θ̂)|Dn))

w∗
→w (ℓ(θ0), [{ℓ̃∗I∞ + ℓ̌∗(1− I∞)}|(M, ℓ(θ0))]).

As I2 − A∗ġ′ = ġ⊥(ġ
′
⊥Mġ⊥)

−1ġ′⊥M and ℓ̃∗ =M−1/2ξ∗, it follows that

ℓ̃∗I∞ + ℓ̌∗(1− I∞) = ġ⊥(ġ
′
⊥Mġ⊥)

−1ġ′⊥M
1/2ξ∗

+M−1ġ(ġ′M−1ġ)−1max{(ġ∗ − ġ)′ℓ, ġ′M−1/2ξ∗},

which is argmin{ġ′λ≥(ġ∗−ġ)′ℓ} ||λ−M−1/2ξ∗||M a.s. as asserted in (3.4.2). □

For use in the proof of Corollary 3.4.1, we notice here a useful consequence of the

previous argument. Return to the special probability space where

(µn, (n
1/2(θ̂∗ − θ̂)|Dn))

w∗
→a.s. (ℓ(θ0), [{ℓ̃∗I∞ + ℓ̌∗(1− I∞)}|(M, ℓ(θ0))]).

Let τn := ϕ(µn), τ
∗
n := ϕ(n1/2(θ̂∗ − θ̂)), τ := ϕ(ℓ(θ0)) and τ

∗ := ϕ(ℓ̃∗I∞ + ℓ̌∗(1− I∞)) for
a continuous ϕ : R → R. Then

(τn, (τ
∗
n|Dn))

w∗
→a.s. (τ, τ

∗|(M, ℓ(θ0)))

by the CMT of Sweeting (1989). Furthermore, the regular conditional distributions τ ∗n|Dn

converge weakly to the regular conditional distribution τ ∗|(M, ℓ(θ0)) for almost all out-

comes; see Theorem 2.2 of Berti, Pratelli and Rigo, (2006). For any fixed outcome such
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that the previous convergence holds, also F ∗−1n (qi) → F−1M,ℓ(qi), i = 1, 2, hold for the sam-

ple paths of the respective conditional quantile functions, provided that q1, q2 are conti-

nuity points of the sample path of F−1M,ℓ. If q1, q2 are continuity points of almost all sam-

ple paths of F−1M,ℓ, it follows that F
∗−1
n (qi) →a.s. F

−1
M,ℓ(qi), i = 1, 2. Therefore, on a general

probability space,

(τn, F
∗−1
n (q1), F

∗−1
n (q2), (τ

∗
n|Dn))

w∗
→w (τ, F−1M,ℓ(q1), F

−1
M,ℓ(q2), τ

∗|(M, ℓ(θ0))) (C.1.5)

provided that F−1M,ℓ is a.s. continuous at q1, q2.

C.1.2 Details of the proof of Theorem 3.4.1

Let g∗(θ0) = g(θ0) throughout this subsection. For outcomes such that θ̃∗ /∈ Θ∗ and

λmin(Mn) > 0, the quadratic function q∗n is not minimized over Θ∗ at any interior point

of Θ∗ (for otherwise this point would have to be the stationary point θ̃∗ /∈ Θ∗ of q∗n, a

contradiction). For such outcomes, if q∗n is at all minimized over Θ∗, then this has to occur

at a boundary point of Θ∗. Since ∂Θ∗ ⊆ {θ ∈ R2 : g(θ) = g∗(θ̂)} =: ∂̃Θ∗, we proceed by

constructing a minimizer of q∗n over the latter set and by showing that this minimizer is in

fact a global one over Θ∗. This (and some added measurability considerations) establishes

the well-definition of θ̌∗ in (C.1.3). Then we establish the n−1/2 consistency rate of θ̌∗ in

the sense that ∥θ̌∗ − θ̂∥(1− I∗n) = Op∗(n
−1/2) a.s.

Step 1. Existence of a minimizer of q∗n over a portion of ∂̃Θ∗ close to θ0.

The point (θ′, c)′ = (θ′0, g(θ0))
′ ∈ R3 trivially satisfies the equation g(θ) = c. Since g is

continuously differentiable in a neighborhood of θ0 and ġ = (ġ1(θ0), ġ2(θ0))
′ ̸= 0 (say that

ġ1(θ0) ̸= 0, with the subscript denoting partial differentiation), by the implicit function

theorem there exist an r > 0 and a unique function γ : [θ2,0 − r, θ2,0 + r] × [g(θ0) −
r, g(θ0)+r] → [θ1,0−r, θ1,0+r] such that γ(θ2,0, g(θ0)) = θ1,0, g(γ(θ2, c), θ2) = c; moreover,

γ is continuously differentiable. For outcomes such that |g∗(θ̂) − g(θ0)| ≤ r, the (non-

empty) portion of the curve ∂̃Θ∗ = {θ ∈ R2 : g(θ) = g∗(θ̂)} contained in the square

Π := [θ1,0 − r, θ1,0 + r] × [θ2,0 − r, θ2,0 + r] can be parameterized as θ1 = γ(θ2, g
∗(θ̂)),

θ2 ∈ [θ2,0−r, θ2,0+r]. Define θ̌∗ := (γ(θ̌∗2, g
∗(θ̂r)), θ̌∗2)

′, where θ̌∗2 is a measurable minimizer

of the continuous function q∗n(γ(θ2, g
∗(θ̂r)), θ2) over θ2 ∈ [θ2,0 − r, θ2,0 + r], with θ̂r :=

θ̂I{|g∗(θ̂)−g(θ0)|≤r} + θ0I{|g∗(θ̂)−g(θ0)|>r}. Since I{|g∗(θ̂)−g(θ0)|≤r}
a.s.→ 1 under g∗(θ0) = g(θ0), it

follows that θ̌∗ minimizes q∗n over ∂̃Θ∗ ∩ Π with P ∗-probability approaching one a.s.

Step 2. Minimization of q∗n over the entire bootstrap parameter space. For

outcomes in

An := {|g∗(θ̂)− g(θ0)| ≤ r} ∩ {g(θ̃∗) < g∗(θ̂)} ∩ {∥θ̂ − θ0∥+ ∥θ̃∗ − θ̂∥ ≤ r
2
},

the minimum of q∗n over the entire bootstrap parameter space Θ∗ exists and is attained
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only in Π (e.g., at θ̌∗ defined in Step 1), provided that

αn := λmin(Mn)
r2

4
− λmax(Mn)∥θ̃∗ − θ̂∥2 > 0.

To see this, consider θc := cθ̂+(1− c)θ̃∗ where c := inf{a ∈ [0, 1] : b(aθ̂+(1−a)θ̃∗) = 0};
θc is well-defined whenever g(θ̃∗) < g∗(θ̂) because g(θ̂) ≥ g∗(θ̂) and b is continuous.

Moreover, θc ∈ Π for outcomes in An because ∥θc − θ0∥ ≤ ∥θ̂ − θ0∥ + ∥θ̃∗ − θ̂∥ ≤ r
2
and,

hence, q∗n(θ
c) ≥ q∗n(θ̌

∗) for outcomes in An, by the minimizing property of θ̌∗ on ∂̃Θ∗ ∩Π

and the fact that b(θc) = 0. For any θ ̸∈ Π and outcomes in An, we therefore find that

q∗n(θ)− q∗n(θ̌
∗) ≥ q∗n(θ)− q∗n(θ

c) = q∗n(θ)− q∗n(θ̃
∗) + q∗n(θ̃

∗)− q∗n(θ
c)

≥ λmin(Mn)∥θ − θ̃∗∥2 − λmax(Mn)∥θ̃∗ − θc∥2

≥ λmin(Mn){∥θ − θ0∥ − ∥θ̃∗ − θ0∥}2 − λmax(Mn)∥θ̃∗ − θ̂∥2

≥ λmin(Mn){r − ∥θ̃∗ − θ̂∥ − ∥θ̂ − θ0∥}2 − λmax(Mn)∥θ̃∗ − θ̂∥2

≥ λmin(Mn)
r2

4
− λmax(Mn)∥θ̃∗ − θ̂∥2 = αn.

Thus, for outcomes in An ∩ {αn > 0}, q∗n out of Π is larger than minθ∈∂̃Θ∗∩Π q
∗
n(θ). As

∂̃Θ∗ ⊆ Θ∗, it follows that minθ∈Θ∗∩Π q
∗
n(θ) (which exists) for such outcomes is actually

minθ∈Θ∗ q∗n(θ). Moreover,

min
θ∈Θ∗

q∗n(θ)= min
θ∈Θ∗∩Π

q∗n(θ)= min
θ∈∂̃Θ∗∩Π

q∗n(θ)= min
θ∈∂Θ∗∩Π

q∗n(θ),

for if minθ∈Θ∗∩Π q
∗
n(θ) <minθ∈∂Θ∗∩Π q

∗
n(θ), then minθ∈Θ∗∩Π q

∗
n(θ) (and thus, minθ∈Θ∗ q∗n(θ))

is achieved at an interior point of Θ∗, which can only be θ̃∗, a contradiction with θ̃∗ /∈ Θ∗

(i.e., with g(θ̃∗) < g∗(θ̂)). To summarize, for outcomes in An ∩ {αn > 0}, θ̌∗ minimizes

q∗n over Θ∗ and is at the boundary of Θ∗.

We find the associated probability

P ∗
(
(1− I∗n)q∗n(θ̌∗) < (1− I∗n)qn(θ) ∀θ ∈ Θ∗ \ Π

)
≥ P ∗

(
|g∗(θ̂)− g(θ0)| ≤ r, ∥θ̂ − θ0∥ ≤ r

4
, ∥θ̃∗ − θ̂∥ ≤ r

4
, αn > 0

)
= I{|g∗(θ̂)−g(θ0)|≤r}∩{∥θ̂−θ0∥≤r/4}P

∗
(
∥θ̃∗ − θ̂∥ ≤ r

4
, αn > 0

)
a.s.→ 1

because g(θ̂)
a.s.→ g(θ0), λmin(Mn) → λmin(M) > 0 a.s., λmax(Mn) → λmax(M) < ∞ a.s.

and ∥θ̃∗−θ̂∥ w∗
→a.s. 0. This establishes the fact that θ̂

∗ of (C.1.3), with θ̌∗ as defined in Step

1, minimizes q∗n over the bootstrap parameter space Θ∗ with P ∗-probability approaching

one a.s.

Step 3. Consistency rate of θ̌∗. Similarly to Step 2, for outcomes in An,

0 ≥ q∗n(θ̌
∗)− q∗n(θ

c) ≥ λmin(Mn)∥θ̌∗ − θ̃∗∥2 − λmax(Mn)∥θ̃∗ − θ̂∥2,
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the first inequality by the minimizing property of θ̌∗ over ∂̃Θ∗ ∩ Π. Therefore,

P ∗
(
(1− I∗n)∥θ̌∗ − θ̃∗∥2 ≤ (1− I∗n)

λmax(Mn)

λmin(Mn)
∥θ̃∗ − θ̂∥2

)
≥ P ∗

(
|g∗(θ̂)− g(θ0)| ≤ r, ∥θ̂ − θ0∥ ≤ r

4
, ∥θ̃∗ − θ̂∥ ≤ r

4

)
= I{|g∗(θ̂)−g(θ0)|≤r}∩{∥θ̂−θ0∥≤r/4}P

∗
(
∥θ̃∗ − θ̂∥ ≤ r

4

)
a.s.→ 1.

As λmax(Mn)/λmin(Mn)
a.s.→ λmax(M)/λmin(M) and ∥θ̃∗ − θ̂∥ = Op∗(n

−1/2) P -a.s. (the

latter, by (C.1.2)), it follows that (1− I∗n)∥θ̌∗ − θ̃∗∥ = Op∗(n
−1/2) P -a.s. and ∥θ̂∗ − θ̃∗∥ =

Op∗(n
−1/2) P -a.s. for θ̂∗ of (C.1.3). Thus, θ̂∗ has the same consistency rate as θ̃∗. This

argument applies to any θ̌∗ which is measurable and minimizes q∗n over ∂̃Θ∗ ∩ Π for

outcomes in An. This completes Step 3.

Finally, consider the first-order condition [foc] for minimization of q∗n on ∂̃Θ∗. As

∥θ̌∗− θ0∥(1− I∗n) ≤ {∥θ̌∗− θ̃∗∥+ ∥θ̌∗− θ0∥}(1− I∗n)
w∗
→a.s. 0, it follows that I{θ̌∗∈int(Π)}(1−

I∗n) + I∗n
w→a.s. 1. As additionally ġ(θ0) ̸= 0, by continuity of ġ(θ) := (∂g/∂θ′)(θ), the foc

takes the form

P ∗
(
{q̇n(θ̌∗) + δ̌nġ(θ̌

∗)}(1− I∗n) = 0
) a.s.→ 1,

where δ̌n ∈ R are measurable Lagrange multipliers that can be determined, for outcomes

in the event I∗n = 1, by involving also the constraint b(θ̌∗)(1− I∗n) = 0. □

C.1.3 Proof of Corollary 3.4.1

We only discuss the bootstrap validity part of the corollary, as the convergence part

(3.4.3) was explained in the main text.

Let τn := ϕ(n1/2(θ̂−θ0)), τ ∗n := ϕ(n1/2(θ̂∗− θ̂)) and τ := ϕ(ℓ(θ0)). Convergence (3.4.3)

and the continuity of ϕ imply that

(τn, (τ
∗
n|Dn))

w→w (τ, (τ |M)).

If the (random) cdf of τ |M is sample-path continuous, bootstrap validity follows from

Theorem 3.1 and Lemma A.2(b) of Cavaliere and Georgiev (2020). We reduce the general

case to the globally continuous case by a local argument for the cdf’s F (·) := P (τ ≤ ·)
and FM(·) := P (τ ≤ ·|M). For concreteness, we focus on the technically more involved

possibility g(θ0) = 0, such that θ0 ∈ ∂Θ given the assumption ġ ̸= 0. With

l(B) := ġ⊥(ġ
′
⊥Bġ⊥)

−1ġ′⊥B
1/2ξ +B−1ġ(ġ′B−1ġ)−1max{0, ġ′B−1/2ξ}

for positive definite B ∈ R2×2 and with ℓ = l(M), notice the following. If B is a fixed

positive definite matrix such that

P (ϕ (l(B)) = a) > 0 (C.1.6)

for some a ∈ R, then by equivalence (i.e., mutual absolute continuity) considerations for
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non-singular Gaussian distributions, also

P (ϕ (l(D)) = a) > 0

for any positive definite D ∈ R2×2. In fact, let ψ : R → R be defined as ψ(·) := ϕ(ġ⊥(·))
and let ϕ←(·), ψ←(·) denote inverse images. Then the probability in (C.1.6) equals

P (l(B) ∈ ϕ←({a}) ∩ ∂Λ) + P (l(B) ∈ ϕ←({a}) ∩ intΛ)

= P ({ġ′B−1/2ξ ≤ 0} ∩ {(ġ′⊥Bġ⊥)−1ġ′⊥B1/2ξ ∈ ψ←({a})})

+ P ({ġ′B−1/2ξ > 0} ∩ {B−1/2ξ ∈ ϕ←({a})})

= P (ġ′B−1/2ξ ≤ 0)P ((ġ′⊥Bġ⊥)
−1ġ′⊥B

1/2ξ ∈ ψ←({a})})

+ P (B−1/2ξ ∈ ϕ←({a}) ∩ intΛ),

the equality because Cov(ġ′B−1/2ξ, (ġ′⊥Bġ⊥)
−1ġ′⊥B

1/2ξ) = 0 and ξ is Gaussian. In the

previous display, P (ġ′B−1/2ξ ≤ 0) = P (N(0, ġ′B−1ġ) ≤ 0) > 0 for all positive definite B,

P ((ġ′⊥Bġ⊥)
−1ġ′⊥B

1/2ξ ∈ ψ←({a})}) = P (N(0, (ġ′⊥Bġ⊥)
−1) ∈ ψ←({a}))

is either 0 for all positive definite B or positive for all positive definite B, and the same

applies to P (B−1/2ξ ∈ ϕ←({a})∩intΛ). Therefore, the sign of the probability in (C.1.6)

is the same (zero or positive) for all positive definite B.

The cdf FM is a measurable transformation of M determined a.s. uniquely by the

distribution of (M, ξ); it can be identified (up to a set of measure zero) as

FM(·) = P (ϕ (l(B)) ≤ ·)|B=M

by virtue of the independence of M and ξ. Since M is positive definite a.s., from the

argument in the previous paragraph we can conclude that every point on the line is either

a discontinuity point of almost all sample paths of FM , or a continuity point of almost

all sample paths of FM . By averaging, a point on the line is a discontinuity point of F if

and only if it is a discontinuity point of almost all sample paths of FM .

Let now q0 be an interior point of the set

C = {q ∈ (0, 1) : lim
n→∞

P (F (τn) ≤ q) → q|H0}

such that the asymptotic test is correctly sized for q ∈ (q0 − 2ϵ, q0 + 2ϵ) ⊂ (0, 1) for

some ϵ > 0. As τn
w→ τ ∼ F , this implies that F and (by the discussion in previous

paragraph) FM skip no values from the interval (q0 − 2ϵ, q0 + 2ϵ) (for FM , a.s.). In

particular, almost all sample paths of FM are continuous on the (random) open superset(
F−1M (q0 − 3

2
ϵ), F−1M (q0 +

3
2
ϵ)
)
of Iϵ := [F−1M (q0 − ϵ), F−1M (q0 + ϵ)], with

F−1M (q0 −
3

2
ϵ) < F−1M (q0 − ϵ) < F−1M (q0 + ϵ) < F−1M (q0 +

3

2
ϵ) a.s. (C.1.7)
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Without loss of generality, ϵ can be considered such that q0 ± ϵ are continuity points of

F−1M a.s. (because F−1M is chosen to be càdlàg and its discontinuity points on, say [ q0
2
, q0+1

2
]

are countably many). Let Ψ−(a, x) and Ψ+(a, x) be generalized inverses of the cdf’s of a

standard Gaussian variable conditioned to take values respectively in (−∞, a] and [a,∞).

On extensions of the probability spaces where the data and (τ,M) are defined, consider

a U[0,1] variable υ. Define F
∗
n(·) := P ∗(τ ∗n ≤ ·), In,ϵ := [F ∗−1n (q0 − ϵ), F ∗−1n (q0 + ϵ)] and

τ̃n = τnI{τn∈In,ϵ} +Ψ−(F ∗−1n (q0 − ϵ), υ)I{τn<F ∗−1
n (q0−ϵ)}

+Ψ+(F ∗−1n (q0 + ϵ), υ)I{τn>F ∗−1
n (q0+ϵ)},

τ̃ ∗n = τ ∗nI{τ∗n∈In,ϵ} +Ψ−(F ∗−1n (q0 − ϵ), υ)I{τ∗n<F ∗−1
n (q0−ϵ)}

+Ψ+(F ∗−1n (q0 + ϵ), υ)I{τ∗n>F ∗−1
n (q0+ϵ)},

τ̃ = τI{τ∈Iϵ} +Ψ−(F−1M (q0 − ϵ), υ)I{τ<F−1
M (q0−ϵ)}

+Ψ+(F−1M (q0 + ϵ), υ)I{τ>F−1
M (q0+ϵ)}.

Then

(τ̃n, (τ̃
∗
n|Dn))

w→w (τ̃ , (τ̃ |M))

because

(f1(τ̃n), E{f2(τ̃ ∗n)|Dn})
w→ (f1(τ̃n), E{f2(τ̃)|M})

for any continuous and bounded real functions f1, f2, as a result of (C.1.5) with τ
∗|(M, ℓ(θ0) =

τ |M in the sense of a.s. equality of conditional distributions and the fact that P (τ =

F−1M (q0 ± ϵ)|M) = 0 a.s. by sample-path continuity of FM an open superset of Iϵ. As the

cdf of τ̃ |M is a.s. sample-path continuous by construction, it follows that P ∗(τ̃ ∗n ≤ τ̃n)
w→

U[0,1], by Theorem 3.1 and Lemma A.2(b) of Cavaliere and Georgiev (2020).

Let F̃ ∗n(·) := P ∗(τ̃ ∗n ≤ ·). We now return to the original variables. By considerations

of equalities of events, it holds that

P (F ∗n(τn) ≤ q0) = P (F ∗n(τ̃n) ≤ q0) = P (F̃ ∗n(τ̃n) ≤ q0) = P (P ∗(τ̃ ∗n ≤ τ̃n) ≤ q0) = q0

using the fact that P ∗(τ̃ ∗n ≤ τ̃n)
w→ U[0,1]. This completes the proof.
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Table 1: Empirical rejection probabilities (ERPs) of bootstrap tests under the null.

Nominal level: 0.05

θ0 = (0, 0)′ θ0 = (−0.75, 0.75)′ θ0 = (−1.50, 1.50)′

b1 b2 b1 b2 b1 b2
κ κ κ

dist. n 0.25 0.50 1.0 2.0 0.25 0.50 1.0 2.0 0.25 0.50 1.0 2.0
ξ1 100 4.2 4.7 5.0 5.3 5.4 6.9 7.0 7.2 7.3 7.5 6.3 6.3 6.3 6.4 6.5

400 3.9 4.8 5.1 5.3 5.3 5.5 5.6 5.8 6.2 6.7 5.3 5.3 5.3 5.3 5.3
800 3.7 4.8 5.1 5.2 5.2 5.2 5.3 5.4 5.6 6.2 5.2 5.2 5.2 5.2 5.2

ξ2 100 4.2 4.7 5.0 5.3 5.5 7.1 7.3 7.4 7.6 7.8 6.2 6.3 6.3 6.4 6.5
400 3.8 4.7 5.0 5.1 5.2 5.7 5.9 6.1 6.4 6.9 5.3 5.3 5.3 5.3 5.3
800 3.6 4.6 4.8 4.9 4.9 5.1 5.2 5.3 5.5 6.0 5.1 5.1 5.1 5.1 5.1

ξ3 100 4.3 4.7 5.0 5.3 5.5 7.1 7.2 7.3 7.5 7.7 6.4 6.4 6.4 6.5 6.6
400 3.7 4.6 4.9 5.1 5.1 5.5 5.7 5.9 6.2 6.7 5.2 5.2 5.2 5.2 5.2
800 3.7 4.8 5.0 5.1 5.2 5.1 5.2 5.3 5.5 6.0 5.1 5.1 5.1 5.1 5.1

Nominal level: 0.10

θ0 = (0, 0)′ θ0 = (−0.75, 0.75)′ θ0 = (−1.50, 1.50)′

b1 b2 b1 b2 b1 b2
κ κ κ

dist. n 0.25 0.50 1.0 2.0 0.25 0.50 1.0 2.0 0.25 0.50 1.0 2.0
ξ1 100 8.0 9.0 9.7 10.3 10.6 13.0 13.3 13.6 14.1 14.6 11.5 11.6 11.6 11.7 11.8

400 7.7 9.5 10.1 10.4 10.5 10.4 10.5 10.8 11.3 12.4 10.3 10.3 10.3 10.3 10.3
800 7.4 9.4 9.9 10.1 10.1 10.4 10.4 10.5 10.7 11.5 10.1 10.1 10.1 10.1 10.1

ξ2 100 8.1 9.0 9.7 10.3 10.5 13.2 13.5 13.8 14.3 14.7 11.3 11.3 11.4 11.5 11.6
400 7.5 9.2 9.9 10.2 10.3 10.7 10.9 11.1 11.6 12.5 10.2 10.2 10.2 10.2 10.3
800 7.2 9.2 9.8 10.0 10.0 10.2 10.3 10.3 10.5 11.3 10.3 10.3 10.3 10.3 10.3

ξ3 100 8.3 9.2 9.9 10.5 10.8 13.3 13.7 14.0 14.5 15.0 11.7 11.7 11.8 11.9 12.0
400 7.6 9.4 10.0 10.3 10.3 10.4 10.5 10.8 11.3 12.4 10.2 10.2 10.2 10.2 10.2
800 7.4 9.3 9.9 10.1 10.1 10.1 10.1 10.2 10.4 11.2 10.0 10.0 10.0 10.0 10.0

Note: bootstrap tests are based on a standard fixed-regressor wild bootstrap (b1) and on the proposed

corrected wild bootstrap method (b2) of Section 4, using g∗ = g−|g|1+κ. ERPs are estimated using 50,000

Monte Carlo replications and 999 bootstrap repetitions. The column “dist.” shows the distributions of

εt: ξ1 ∼ iidN(0, 1), ξ2 ∼ ARCH(1) and ξ3 =
√
0.5vt +

√
0.5εx,t, where vt ∼ iidN(0, 1) and εx,t is the

error term of the predictive variable xn,t.
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Table 2: Empirical rejection probabilities (ERPs) of bootstrap tests under local alter-
natives.

Nominal level: 0.05

a0 = (−3, 0)′ a0 = (3, 0)′ a0 = (5, 0)′

b1 b2 b1 b2 b1 b2
κ κ κ

dist. n 0.25 0.50 1.0 2.0 0.25 0.50 1.0 2.0 0.25 0.50 1.0 2.0
ξ1 100 21.0 21.0 21.1 21.2 21.3 40.6 40.9 41.0 41.0 41.0 68.0 68.0 68.0 68.0 68.0

400 18.9 19.1 19.3 19.4 19.5 38.5 38.8 38.8 38.8 38.8 64.9 64.9 64.9 64.9 64.9
800 18.6 18.8 19.0 19.1 19.1 37.6 37.9 37.9 37.9 38.0 64.0 64.0 64.0 64.0 64.0

ξ2 100 21.7 21.8 21.9 22.0 22.1 41.9 42.1 42.2 42.2 42.2 68.5 68.5 68.5 68.5 68.5
400 19.2 19.4 19.5 19.7 19.8 38.3 38.7 38.7 38.7 38.7 64.7 64.8 64.8 64.8 64.8
800 18.6 18.8 19.0 19.1 19.1 37.8 38.1 38.1 38.1 38.1 64.2 64.2 64.2 64.2 64.2

ξ3 100 20.6 20.7 20.8 20.8 21.0 40.8 41.0 41.1 41.1 41.1 67.3 67.3 67.3 67.3 67.3
400 19.0 19.1 19.3 19.4 19.4 38.1 38.4 38.5 38.5 38.5 65.0 65.0 65.0 65.0 65.0
800 18.3 18.5 18.8 18.9 18.9 37.7 38.0 38.1 38.1 38.1 63.5 63.5 63.5 63.5 63.5

Nominal level: 0.10

a0 = (−3, 0)′ a0 = (3, 0)′ a0 = (5, 0)′

b1 b2 b1 b2 b1 b2
κ κ κ

dist. n 0.25 0.50 1.0 2.0 0.25 0.50 1.0 2.0 0.25 0.50 1.0 2.0
ξ1 100 29.6 29.8 29.9 30.1 30.3 54.7 55.0 55.1 55.2 55.2 81.7 81.7 81.8 81.8 81.8

400 27.0 27.3 27.7 28.1 28.2 52.2 52.6 52.7 52.7 52.7 79.6 79.6 79.6 79.6 79.6
800 26.4 26.9 27.3 27.6 27.6 51.7 52.1 52.2 52.2 52.2 78.7 78.7 78.7 78.7 78.7

ξ2 100 30.2 30.4 30.6 30.8 31.0 55.7 55.9 56.0 56.0 56.0 82.0 82.0 82.0 82.0 82.0
400 27.1 27.4 27.9 28.2 28.3 51.8 52.1 52.2 52.2 52.2 79.3 79.3 79.3 79.3 79.3
800 26.6 27.0 27.5 27.7 27.7 51.5 51.9 51.9 51.9 51.9 78.6 78.6 78.6 78.6 78.6

ξ3 100 29.1 29.3 29.4 29.7 29.9 54.2 54.5 54.6 54.6 54.6 80.9 80.9 80.9 80.9 80.9
400 26.7 27.0 27.4 27.7 27.8 51.7 52.1 52.2 52.2 52.2 79.4 79.4 79.4 79.4 79.4
800 26.2 26.6 27.1 27.3 27.3 51.3 51.7 51.7 51.7 51.7 78.5 78.5 78.5 78.5 78.5

Note: bootstrap tests are based on a standard fixed-regressor wild bootstrap (b1) and on the proposed

corrected wild bootstrap method (b2) of Section 4, using g∗ = g−|g|1+κ. ERPs are estimated using 50,000

Monte Carlo replications and 999 bootstrap repetitions. The column “dist.” shows the distributions of

εt: ξ1 ∼ iidN(0, 1), ξ2 ∼ ARCH(1) and ξ3 =
√
0.5vt +

√
0.5εx,t, where vt ∼ iidN(0, 1) and εx,t is the

error term of the predictive variable xn,t.

C.2 Alternative data generating processes

The asymptotic theory in the paper is presented under the assumption that xn,t is a unit-

root non-stationary process. Here we show that the choice of a bootstrap parameter space

is fundamental for bootstrap validity also under alternative stochastic specifications for

xn,t, e.g., a near-unit root and a stationary specification. More importantly, a common

definition of the bootstrap parameter space could be appropriate for all the considered

specifications of xn,t. Still, the functional forms of the limit distributions are not identical

across the specifications of xn,t and, in the stationary case, we perform OLS estimation

under the additional constraint δ̂ = 0 in (3.3.2). The implications for bootstrap inference

are discussed below.
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C.2.1 Near-unit root regressor

Consider a modification of Assumption 1 where in part (c) the limit process becomes

(X,Z)′ =

(∫ ·
ec(s−·)dW (s), Z

)′
, c > 0,

for a Brownian motion (W,Z)′ ∼ BM(0,Ω). Thus, X is an Ornstein-Uhlenbeck process

originating from a near-UR posited predicting variable xn,t. The asymptotic distribution

of θ̂ has a more complex structure than in the unit root case. Now n1/2(θ̂ − θ0)
w→

M−1/2ξ + vc with vc := (0, cωxzω
−1
xx )
′ if θ0 ∈ intΘ. On the other hand,

n1/2(θ̂ − θ0)
w→ argmin

λ∈Λ
||λ−M−1/2ξ − vc||M , Λ := {λ ∈ R2 : ġ′λ ≥ 0} (C.2.1)

if g(θ0) = 0. The limiting shift by vc is due to the fact that n1/2∆xn,t in the near-unit

root case is not a sufficiently good proxy for the innovations driving xn,t. Eqs. (3.3.5)–

(3.3.6) for the standard bootstrap hold in the near-unit root case if X in the definition

of M is understood as an Ornstein-Uhlenbeck process. Therefore, the possibility that

θ0 ∈ ∂Θ induces the same kind of limiting bootstrap randomness as in the exact unit-

root case. Additionally, the bootstrap limit distribution does not replicate the shift in

the limit distribution of n1/2(θ̂ − θ0) induced by the vector vc, as a consequence of the

conditional independence of the bootstrap innovations and the regressor xn,t−1. This fact

is not related to the position of θ0 relative to Θ and requires separate treatment. Consider

now the bootstrap estimator of Corollary 3.4.1 with the choice g∗ = g− |g|1+κ for κ > 0.

In the case where xn,t is near-unit root non-stationary, instead of (3.4.3) it holds that

(n1/2(θ̂ − θ0), (n
1/2(θ̂∗ − θ̂)|Dn))

w→w

(
M−1/2ξ + vc, (M

−1/2ξ|M)
)

if g(θ0) > 0, and

(n1/2(θ̂ − θ0), (n
1/2(θ̂∗ − θ̂)|Dn))

w→w

(
argmin
λ∈Λ

||λ−M−1/2ξ − vc||M ,(
argmin
λ∈Λ

||λ−M−1/2ξ||M
∣∣∣M))

if g(θ0) = 0, where X in the definition of M should again be read as an Ornstein-

Uhlenbeck process. This means that g∗ still does the job it is designed for (remove the

random shift from the half-plane in the limiting bootstrap distribution). Nevertheless,

bootstrap invalidity due to the limiting shift by vc, not related to the position of θ0 in Θ,

remains to be tackled.

C.2.2 Stationary regressor

If xn,t = xt is stationary, then the inclusion of ∆xn,t = ∆xt among the regressors of (3.3.2)

will, in general, compromise the consistency of θ̂ for the true value θ0 in the predictive
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regression (3.3.1). Assume, however, that n−1
∑n

t=1 x̃tx̃
′
t

p→M for x̃t := (1, xn,t−1)
′ and a

non-random positive definite matrix M , and that the unconstrained OLS estimator of θ

from the predictive regression (3.3.1) is consistent at the n−1/2 rate and has asymptotic

N(0, ωzzM
−1) distribution. Then the constrained OLS estimator θ̂ of (3.3.1) subject to

g(θ̂) ≥ 0 (equivalently, the constrained OLS estimator of (3.3.2) subject to g(θ̂) ≥ 0,

δ̂ = 0) satisfies n1/2(θ̂ − θ0)
w→ ℓst(θ0) = ℓ̃st := M−1/2ζ with ζ ∼ N(0, ωzzI2) in the case

where θ0 ∈ intΘ, and

n1/2(θ̂ − θ0)
w→ ℓst(θ0) = ℓst := argmin

λ∈Λ
||λ−M−1/2ζ||M , Λ := {λ ∈ R2 : ġ′λ ≥ 0}

in the case where g(θ0) = 0. In the stationary case with a non-random limiting M ,

the limiting behavior of the standard bootstrap is entirely analogous to the introductory

location model example, as the possibility that θ0 ∈ ∂Θ is the only source of bootstrap

randomness in the limit. For θ̂ defined in the previous paragraph, it holds that n1/2(θ̂∗−
θ̂)

w∗
→p M

−1/2ζ∗ with ζ∗ ∼ N(0, ωzzI2) in the case where θ0 ∈ intΘ, such that the limit

bootstrap distribution is non-random in this case, and

n1/2(θ̂∗ − θ̂)
w∗
→w

(
argmin
λ∈Λ∗

ℓ

||λ−M−1/2ζ∗||M
)∣∣∣ℓ, Λ∗ℓ := {λ ∈ R2 : ġ′λ ≥ −ġ′ℓ},

with ζ∗|ℓ ∼ N(0, ωzzI2) in the case where g(θ0) = 0. We conclude that the same discrep-

ancy between Λ and Λ∗ℓ emerges in the case g(θ0) = 0 irrespective of the stochastic prop-

erties of the regressor. Consider now the bootstrap estimator of Corollary 3.4.1 with the

choice g∗ = g− |g|1+κ for κ > 0. For a stationary xn,t and a non-random M , the original

and the bootstrap estimators satisfy

(n1/2(θ̂ − θ0), (n
1/2(θ̂∗ − θ̂)|Dn))

w→p (ℓst(θ0), ℓst(θ0))

and bootstrap validity is restored as in Corollary 3.4.1, in particular because the random

shift from the half-plane in the limiting bootstrap distribution is again removed.

C.2.3 Concluding remarks

An inferential framework that would be asymptotically valid in the unit root, near-unit

root, and stationary cases, allowing the researcher to remain agnostic to the stochastic

properties of the regressor, could be based on two main ingredients. First, the definition

of the bootstrap parameter space in a way such that it approximates sufficiently well the

geometry of the original parameter space; e.g., by setting g∗ = g−|g|1+κ in the definition

of Θ∗ for some κ > 0, see above. This definition is independent of the stochastic properties

of the regressor. Second, the use of an estimator (different from our choice of OLS) that

gives rise to limit distributions that (a) in the near-unit root case depend on c only through

the process X (and thus, the matrix M), but are free from shifts in the direction of vc,

and (b) allow for a common treatment of the contemporaneous correlation between the
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innovations of the predictive regression and the shocks driving xn,t (vs. the inclusion or

omission of ∆xn.t in the estimated eq. (3.3.2)). We conjecture that constrained versions of

both the IVX (extended instrumental variables) estimator and the associated bootstrap

schemes as discussed in Demetrescu et al. (2023) would give rise to asymptotically valid

bootstrap inference. A detailed discussion is beyond the scope of this appendix due to

our focus on issues attributable to the boundary of the parameter space.

C.3 Additional Monte Carlo simulations

In this section, we present additional numerical results in support of the theoretical

arguments provided in CGZ. In particular, Tables S.1 and S.2 refer to the same testing

procedure considered in Tables 1 and 2 in CGZ, respectively, but focus on the case

g∗ = g∗2 := g − n−κ|g|. Furthermore, in Tables S.3 and S.4 we present the simulated

ERPs of bootstrap tests under local alternatives such that θ0 ∈ int(Θ), using g∗ = g∗1

and g∗ = g∗2, respectively.
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Table S1: Empirical rejection probabilities (ERPs) of bootstrap tests under the null.

Nominal level: 0.05

θ0 = (0, 0)′ θ0 = (−0.75, 0.75)′ θ0 = (−1.50, 1.50)′

b1 b2 b1 b2 b1 b2
κ κ κ

dist. n 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40
ξ1 100 4.2 4.9 5.3 5.5 5.6 6.9 7.0 7.3 8.3 9.6 6.3 6.4 6.6 7.3 9.6

400 3.9 4.8 5.1 5.3 5.3 5.5 5.7 6.0 7.1 9.2 5.3 5.3 5.3 5.7 8.6
800 3.7 4.7 5.0 5.2 5.2 5.2 5.3 5.6 6.7 9.4 5.2 5.2 5.2 5.3 8.4

ξ2 100 4.2 4.9 5.3 5.6 5.7 7.1 7.3 7.5 8.4 9.9 6.2 6.4 6.6 7.2 9.5
400 3.8 4.6 5.0 5.1 5.2 5.7 6.0 6.3 7.3 9.4 5.3 5.3 5.3 5.7 8.7
800 3.6 4.5 4.8 4.9 4.9 5.1 5.2 5.5 6.7 9.3 5.1 5.1 5.1 5.3 8.6

ξ3 100 4.3 4.9 5.3 5.6 5.7 7.1 7.2 7.4 8.5 9.9 6.4 6.5 6.7 7.4 9.8
400 3.7 4.6 4.9 5.1 5.1 5.5 5.8 6.1 7.2 9.3 5.2 5.2 5.2 5.6 8.6
800 3.7 4.6 5.0 5.1 5.2 5.1 5.2 5.4 6.5 9.1 5.1 5.1 5.1 5.3 8.4

Nominal level: 0.10

θ0 = (0, 0)′ θ0 = (−0.75, 0.75)′ θ0 = (−1.50, 1.50)′

b1 b2 b1 b2 b1 b2
κ κ κ

dist. n 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40
ξ1 100 8.0 9.1 9.9 10.5 10.7 13.0 13.3 13.7 15.4 18.6 11.5 11.7 12.0 12.9 17.2

400 7.7 9.2 9.9 10.3 10.5 10.4 10.6 11.1 12.9 17.6 10.3 10.3 10.3 10.7 15.9
800 7.4 9.0 9.7 10.0 10.1 10.4 10.4 10.7 12.2 18.1 10.1 10.1 10.1 10.2 15.5

ξ2 100 8.1 9.2 9.9 10.5 10.7 13.2 13.5 13.9 15.6 18.7 11.3 11.5 11.8 12.7 16.9
400 7.5 9.0 9.7 10.2 10.3 10.7 11.0 11.4 13.2 18.0 10.2 10.3 10.3 10.7 15.9
800 7.2 8.9 9.5 9.9 10.0 10.2 10.3 10.5 12.0 17.7 10.3 10.3 10.3 10.4 15.7

ξ3 100 8.3 9.4 10.2 10.8 11.0 13.3 13.7 14.1 15.8 19.0 11.7 11.9 12.2 13.2 17.5
400 7.6 9.1 9.8 10.2 10.3 10.4 10.6 11.1 13.1 17.7 10.2 10.2 10.2 10.6 15.9
800 7.4 9.0 9.6 10.0 10.1 10.1 10.1 10.4 11.9 17.6 10.0 10.0 10.0 10.1 15.5

Note: bootstrap tests are based on a standard fixed-regressor wild bootstrap (b1) and on the proposed

corrected wild bootstrap method (b2) of Section 4, using g∗ = g−n−κ|g|. ERPs are estimated using 50,000

Monte Carlo replications and 999 bootstrap repetitions. The column “dist.” shows the distributions of

εt: ξ1 ∼ iidN(0, 1), ξ2 ∼ ARCH(1) and ξ3 =
√
0.5vt +

√
0.5εx,t, where vt ∼ iidN(0, 1) and εx,t is the

error term of the predictive variable xn,t.
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Table S2: Empirical rejection probabilities (ERPs) of bootstrap tests under local alter-
natives.

Nominal level: 0.05

a0 = (−3, 0)′ a0 = (3, 0)′ a0 = (5, 0)′

b1 b2 b1 b2 b1 b2
κ κ κ

dist. n 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40
ξ1 100 21.0 21.1 21.3 21.5 21.5 40.6 40.8 40.9 41.0 41.0 68.0 68.0 68.0 68.0 68.0

400 18.9 19.1 19.3 19.5 19.5 38.5 38.7 38.8 38.8 38.8 64.9 64.9 64.9 64.9 64.9
800 18.6 18.8 19.0 19.1 19.1 37.6 37.8 37.9 37.9 37.9 64.0 64.0 64.0 64.0 64.0

ξ2 100 21.7 21.9 22.0 22.2 22.3 41.9 42.1 42.2 42.2 42.3 68.5 68.5 68.5 68.5 68.5
400 19.2 19.4 19.6 19.7 19.8 38.3 38.6 38.7 38.7 38.7 64.7 64.8 64.8 64.8 64.8
800 18.6 18.8 19.0 19.1 19.1 37.8 38.0 38.1 38.1 38.1 64.2 64.2 64.2 64.2 64.2

ξ3 100 20.6 20.7 20.9 21.2 21.3 40.8 41.0 41.1 41.1 41.1 67.3 67.3 67.3 67.3 67.3
400 19.0 19.1 19.3 19.4 19.4 38.1 38.3 38.4 38.5 38.5 65.0 65.0 65.0 65.0 65.0
800 18.3 18.5 18.7 18.8 18.9 37.7 38.0 38.0 38.1 38.1 63.5 63.5 63.5 63.5 63.5

Nominal level: 0.10

a0 = (−3, 0)′ a0 = (3, 0)′ a0 = (5, 0)′

b1 b2 b1 b2 b1 b2
κ κ κ

dist. n 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40
ξ1 100 29.6 29.8 30.1 30.5 30.7 54.7 55.0 55.1 55.2 55.2 81.7 81.7 81.7 81.8 81.8

400 27.0 27.3 27.8 28.1 28.2 52.2 52.5 52.6 52.7 52.7 79.6 79.6 79.6 79.6 79.6
800 26.4 26.8 27.2 27.5 27.6 51.7 52.1 52.1 52.2 52.2 78.7 78.7 78.7 78.7 78.7

ξ2 100 30.2 30.4 30.7 31.2 31.4 55.7 55.9 55.9 56.0 56.1 82.0 82.0 82.0 82.0 82.0
400 27.1 27.4 27.9 28.2 28.3 51.8 52.0 52.1 52.2 52.2 79.3 79.3 79.3 79.3 79.3
800 26.6 26.9 27.4 27.7 27.7 51.5 51.8 51.9 51.9 51.9 78.6 78.6 78.6 78.6 78.6

ξ3 100 29.1 29.3 29.6 30.1 30.3 54.2 54.4 54.5 54.6 54.6 80.9 80.9 80.9 80.9 80.9
400 26.7 27.0 27.4 27.8 27.8 51.7 52.0 52.1 52.2 52.2 79.4 79.4 79.4 79.4 79.4
800 26.2 26.5 27.0 27.3 27.3 51.3 51.6 51.7 51.7 51.8 78.5 78.5 78.5 78.5 78.5

Note: bootstrap tests are based on a standard fixed-regressor wild bootstrap (b1) and on the proposed

corrected wild bootstrap method (b2) of Section 4, using g∗ = g−n−κ|g|. ERPs are estimated using 50,000

Monte Carlo replications and 999 bootstrap repetitions. The column “dist.” shows the distributions of

εt: ξ1 ∼ iidN(0, 1), ξ2 ∼ ARCH(1) and ξ3 =
√
0.5vt +

√
0.5εx,t, where vt ∼ iidN(0, 1) and εx,t is the

error term of the predictive variable xn,t.
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Table S3: Empirical rejection probabilities (ERPs) of bootstrap tests under local alter-
natives.

Nominal level: 0.05

a0 = (−3, 1)′ a0 = (2, 2)′ a0 = (3, 4)′

b1 b2 b1 b2 b1 b2
κ κ κ

dist. n 0.25 0.50 1.0 2.0 0.25 0.50 1.0 2.0 0.25 0.50 1.0 2.0
ξ1 100 12.8 12.9 13.0 13.2 13.4 48.4 49.6 50.1 50.3 50.4 73.0 73.9 74.4 74.7 74.7

400 11.4 11.6 11.9 12.2 12.3 45.4 47.2 47.5 47.6 47.6 70.0 71.6 72.0 72.0 72.0
800 10.9 11.2 11.6 11.7 11.8 44.8 46.9 47.1 47.1 47.2 69.3 71.1 71.4 71.4 71.4

ξ2 100 13.1 13.2 13.3 13.5 13.6 49.6 50.8 51.3 51.6 51.6 73.2 74.1 74.7 75.0 75.0
400 11.4 11.6 11.8 12.1 12.2 46.1 48.0 48.3 48.3 48.3 70.2 71.8 72.2 72.3 72.3
800 11.0 11.3 11.7 11.9 11.9 45.2 47.2 47.4 47.4 47.4 69.6 71.5 71.7 71.7 71.7

ξ3 100 12.3 12.4 12.5 12.7 12.9 48.1 49.3 49.9 50.1 50.1 72.4 73.2 73.8 74.1 74.1
400 11.4 11.6 11.9 12.2 12.3 46.0 47.8 48.2 48.2 48.3 69.9 71.5 72.0 72.0 72.0
800 11.1 11.4 11.8 12.0 12.1 45.0 46.9 47.1 47.1 47.1 69.4 71.3 71.6 71.6 71.6

Nominal level: 0.10

a0 = (−3, 1)′ a0 = (2, 2)′ a0 = (3, 4)′

b1 b2 b1 b2 b1 b2
κ κ κ

dist. n 0.25 0.50 1.0 2.0 0.25 0.50 1.0 2.0 0.25 0.50 1.0 2.0
ξ1 100 21.2 21.5 21.6 22.0 22.4 58.8 60.4 61.1 61.5 61.5 80.7 81.6 82.2 82.5 82.5

400 19.2 19.6 20.2 21.0 21.2 56.0 58.2 58.6 58.7 58.7 78.2 79.9 80.3 80.4 80.4
800 18.3 18.9 19.7 20.2 20.2 55.8 58.1 58.5 58.5 58.5 77.8 79.8 80.1 80.1 80.2

ξ2 100 21.8 22.0 22.1 22.5 23.0 59.6 61.1 61.8 62.1 62.2 81.0 81.9 82.5 82.9 82.9
400 19.1 19.5 20.1 20.7 21.0 56.8 59.0 59.5 59.6 59.6 78.6 80.4 80.8 80.8 80.9
800 18.9 19.5 20.2 20.7 20.8 56.0 58.4 58.7 58.8 58.8 78.0 79.9 80.2 80.3 80.3

ξ3 100 20.6 20.8 20.9 21.3 21.8 58.5 60.1 60.8 61.1 61.2 80.2 81.2 81.7 82.0 82.1
400 19.1 19.5 20.1 20.8 21.0 56.6 58.7 59.2 59.3 59.3 78.3 80.1 80.5 80.6 80.6
800 18.7 19.2 20.0 20.5 20.6 55.7 58.2 58.5 58.6 58.6 77.8 79.5 79.9 79.9 79.9

Note: bootstrap tests are based on a standard fixed-regressor wild bootstrap (b1) and on the proposed

corrected wild bootstrap method (b2) of Section 4, using g∗ = g−|g|1+κ. ERPs are estimated using 50,000

Monte Carlo replications and 999 bootstrap repetitions. The column “dist.” shows the distributions of

εt: ξ1 ∼ iidN(0, 1), ξ2 ∼ ARCH(1) and ξ3 =
√
0.5vt +

√
0.5εx,t, where vt ∼ iidN(0, 1) and εx,t is the

error term of the predictive variable xn,t.

168



Table S4: Empirical rejection probabilities (ERPs) of bootstrap tests under local alter-
natives.

Nominal level: 0.05

a0 = (−3, 1)′ a0 = (2, 2)′ a0 = (3, 4)′

b1 b2 b1 b2 b1 b2
κ κ κ

dist. n 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40
ξ1 100 12.8 13.0 13.2 13.6 13.7 48.4 49.6 50.1 50.4 50.4 73.0 74.0 74.5 74.7 74.7

400 11.4 11.6 12.0 12.2 12.3 45.4 47.0 47.4 47.6 47.6 70.0 71.4 71.9 72.0 72.0
800 10.9 11.1 11.5 11.7 11.8 44.8 46.5 47.0 47.1 47.2 69.3 70.8 71.3 71.4 71.4

ξ2 100 13.1 13.3 13.5 13.9 14.0 49.6 50.8 51.3 51.6 51.6 73.2 74.2 74.7 75.0 75.0
400 11.4 11.6 11.9 12.1 12.2 46.1 47.7 48.1 48.3 48.3 70.2 71.6 72.1 72.3 72.3
800 11.0 11.3 11.7 11.8 11.9 45.2 46.9 47.3 47.4 47.4 69.6 71.2 71.6 71.7 71.7

ξ3 100 12.3 12.4 12.8 13.2 13.3 48.1 49.3 49.9 50.1 50.2 72.4 73.4 73.9 74.1 74.2
400 11.4 11.7 12.0 12.2 12.3 46.0 47.6 48.0 48.2 48.3 69.9 71.4 71.8 72.0 72.0
800 11.1 11.4 11.8 12.0 12.1 45.0 46.5 47.0 47.1 47.2 69.4 71.0 71.5 71.6 71.6

Nominal level: 0.10

a0 = (−3, 1)′ a0 = (2, 2)′ a0 = (3, 4)′

b1 b2 b1 b2 b1 b2
κ κ κ

dist. n 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40
ξ1 100 21.2 21.5 21.9 22.7 23.0 58.8 60.2 60.9 61.4 61.5 80.7 81.6 82.1 82.4 82.5

400 19.2 19.6 20.3 21.0 21.2 56.0 57.7 58.3 58.6 58.7 78.2 79.6 80.1 80.4 80.4
800 18.3 18.8 19.6 20.1 20.2 55.8 57.7 58.2 58.5 58.5 77.8 79.4 79.9 80.1 80.1

ξ2 100 21.8 22.0 22.5 23.3 23.7 59.6 61.0 61.6 62.1 62.2 81.0 81.9 82.5 82.9 82.9
400 19.1 19.5 20.1 20.8 21.0 56.8 58.5 59.2 59.5 59.6 78.6 80.0 80.6 80.8 80.8
800 18.9 19.4 20.1 20.7 20.8 56.0 57.9 58.5 58.7 58.8 78.0 79.5 80.1 80.3 80.3

ξ3 100 20.6 20.8 21.3 22.2 22.6 58.5 59.9 60.6 61.1 61.2 80.2 81.1 81.7 82.0 82.1
400 19.1 19.5 20.2 20.8 21.0 56.6 58.3 58.9 59.2 59.3 78.3 79.7 80.3 80.5 80.6
800 18.7 19.1 19.9 20.5 20.6 55.7 57.7 58.3 58.6 58.6 77.8 79.2 79.7 79.9 79.9

Note: bootstrap tests are based on a standard fixed-regressor wild bootstrap (b1) and on the proposed

corrected wild bootstrap method (b2) of Section 4, using g∗ = g−n−κ|g|. ERPs are estimated using 50,000

Monte Carlo replications and 999 bootstrap repetitions. The column “dist.” shows the distributions of

εt: ξ1 ∼ iidN(0, 1), ξ2 ∼ ARCH(1) and ξ3 =
√
0.5vt +

√
0.5εx,t, where vt ∼ iidN(0, 1) and εx,t is the

error term of the predictive variable xn,t.
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Appendix D

Appendix to Chapter 5

D.1 Results, quarterly VAR

In this section we repeat the analysis carried out above using a sample of quarterly instead

of monthly data. This is done for two reasons. First, it should be seen as a robustness

exercise, since by using quarterly data we get rid of some noise that can be induced by

intra-quarter volatility in the time series. Second, in this way we reproduce the empirical

analysis made by ? in a time-varying parameters context.

Our quarterly time-varying-parameters VAR (TVP-VAR) specification includes a set

of six endogenous variables: (1) the unemployment rate; (2) core inflation, measured by

the annualized quarterly growth rate of the personal consumption expenditures index;

(3) inflation, measured by the annualized quarterly growth rate of the GDP deflator;

(4) the log of real per capita GDP; (5) the Fed Funds rate and (6) the Excess Bond

Premium (EBP), by ?. The set of variables mimics the one used by ?, though we drop

some variables they used in their Bayesian VAR to avoid over-fitting and an explosion

of the number of parameters to estimate, given the time-varying nature of our model.

The quarterly data sample covers the period from 1973Q1 to 2019Q3, for a total of 187

observations. We estimate the VAR with 1 lag, as suggested by the BIC criterion.

Figure D.1 shows the estimated time-varying IRFs to the EBP shock, identified by

ordering it last in a Cholesky decomposition. The pattern observed are similar to the

results from the monthly sample, though the estimated time variation of IRFs is smoother.

The response of unemployment is again strong but less persistent in the first part of the

sample, while it is strong and persistent in the last part of the sample (after 2000). A

reduction in the magnitude of the unemployment response is observed during the 90’s.

The IRFs of inflation is very strong until 1990, very muted afterwards. A similar

pattern emerges for the interest rate, again suggesting that the story of a more aggres-

sive response to demand shocks by the Federal Reserve, causing the flattening of the

unemployment-inflation relationship, is not supported by the data.

Finally, we implement the ? technique to estimate the structural parameters of the
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NKPC, specified as in equation (4.5.9). Again, as our VAR contains the annualized

quarter-on-quarter inflation rate, a proper adjustments of the estimated IRFs had to be

made. This time we used horizons h = 0, 1, 2, . . . , 17 to construct the IRF vectors in

(4.2.7).

Results are shown in Figure D.2. The resulting evidence is in line with the monthly

analysis, and even more clear. The slope of the NKPC reaches value zero already around

1990, and remains zero afterwards. γb,t clearly decreases over time while γf,t increases.

Figure D.1: Time-varying impulse response functions to an EBP shock, for a selected set
of variables. VAR at quarterly frequency.

D.2 Sign restrictions

In this section, we revisit our empirical analysis, employing an alternative identification

strategy for the demand shock. Departing from the Cholesky ordering of variables, we
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Figure D.2: Time-varying estimates of the NKPC parameters, from the regression in
impulse responses estimated on quarterly data. Blue areas show 68% and 90% wild
bootstrap confidence intervals.

adopt a sign-restrictions approach.

The motivation behind this choice stems from its dual utility. Not only does it pro-

vide insights into the dependence of our results on the identification strategy, but it also

facilitates a meaningful juxtaposition with studies utilizing a sign-restriction approach for

estimating structural PC coefficients, as elaborated earlier. Notably, the literature em-

ploying this methodology often leans towards supporting the hypothesis of no-structural

change, in contrast to studies utilizing external instrument identification or Cholesky or-

dering. Consequently, our analysis aims to elucidate whether such disparities persist even

when incorporating our fully time-varying methodology.

Our algorithm works slightly different from the typical sign-restrictions method used

in the SVARs literature after the seminal paper of ?. Notice that for the identification

of NKPC parameters we need to identify any demand shock, rather than a specific type

of demand shock (e.g. a monetary policy shock). Consequently, our approach consists in

exploiting information from all identified shocks that look like a demand type shock.

Our definition of a demand shock is based on a minimal set of sign restrictions, namely

that it should induce an opposite contemporaneous response of unemployment and core

inflation.

More precisely, consider our estimate for the N ×N time-varying variance-covariance

of VAR residuals Σ̂t. It is known that there are infinite many matricesBt such thatBtB
′
t =
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Σ̂t, where Bt is the matrix of contemporaneous responses to the structural shocks, i.e:

ut = Btεt (D.2.1)

Our sign-restriction algorithm works as follows. For each t = 1, 1 . . . , T and s = 1, . . . , S:

1. We randomly generate a candidate matrix Bt,s that satisfies the condition Bt,sB
′
t,s =

Σ̂t. This is done as usual by multiplying the Cholesky decomposition of Σ̂t, P̂t, by

a randomly generated orthonormal matrix Hs : HsH
′
s = I. Hence Bt,s = P̂tHs.

2. For each generated Bt,s, we check whether any of the identified shocks in ε̂t,s =

B−1t,s ût satisfy our sign-restrictions for being classified as a demand shock. Denote

by Nd,s,t ∈ [0, N ] the number of shocks satisfying the restriction.

3. If Nd,s = 0, we go back to step 1 and generate a new matrix. If Nd,s > 0, we

compute impulse responses for all the shocks satisfying the restriction. Denote by

εj,t,s, j = 1, . . . , Nd,s,t. Also denote by Θ̃Y,t,j,s the (H + 1) × 1 vector of impulse

responses of inflation to the shock εj,t,s, hence:

Θ̃Y,t,j,s =


Îrf 0,j,s (π)

Îrf 1,j,s (π)
...

ÎrfH,j,s (π)

 (D.2.2)

Denote by Θ̄Y,t,s =
[
Θ̃Y,t,1,sΘ̃Y,t,2,s . . . Θ̃Y,t,Nd,s,t,s

]
the (H+1)×Nd,s,t matrix collecting

the response of inflation for all demand-like shocks in ε̂t,s. Finally, denote by ΘY,t,s =

vec
(
Θ̄Y,t,s

)
the (H +1)Nd,s,t× 1 vector collecting all impulse responses of inflation.

Similarly define:

Θ̃X,t,j,s =


Îrf 0,j,s(x) 0 Îrf 1,j,s(π)

Îrf 1,j,s(x) Îrf 0,j,s(π) Îrf 2,j,s(π)
...

...
...

ÎrfH,j,s(x) ÎrfH−1,j,s(π) ÎrfH+1,j,s(π)

 (D.2.3)

that is the matrix collecting the impulse responses of unemployment and the lagged

and forwarded impulse responses of inflation. ΘX,t,s collects the three responses for

all the Nd,s,t shocks that satisfy the restrictions:

ΘX,t,s =
[
Θ̃′X,t,1,s Θ̃

′
X,t,2,s . . . Θ̃

′
X,t,Nd,s,t,s

]′
(D.2.4)

4. Hence, our estimate for the NKPC parameters at time t for the sth model is given

by: [
λ̂t,sγ̂b,t,sγ̂f,t,s

]′
=
(
Θ′X,t,sΘX,t,s

)−1
Θ′X,t,sΘY,t,s (D.2.5)

Finally we get the identified set of admissible values for the NKPC parameters at time

174



t:
Iλ,t =

[
λ̂t,1 . . . λ̂t,s . . . λ̂t,S

]
Iγb,t = [γ̂b,t,1 . . . γ̂b,t,s . . . γ̂b,t,S]

Iγf ,t = [γ̂f,t,1 . . . γ̂f,t,s . . . γ̂f,t,S]

(D.2.6)

Two caveats apply here. First, as we did in the baseline specification with Cholesky

ordering, we adjust impulse responses of inflation to the year-on-year and quarter-on-

quarter definitions in order to follow the specification of the NKPC used by ? (see

equation (4.5.9)). Also we use only horizons h = 0, 3, 6, . . . , 33. Second, we impose the

restriction γb,t + γf,t = 1 when running the OLS regression in equation (D.2.5).

Figure D.3: Sign-restrictions admissible sets for the three KNPC parameters over time.
Black lines denote the median values, over time, of the identified sets. Blue areas show
the 5− 10− 32− 68− 90− 95 percentiles.

Figure D.3 shows the identified sets for the three KNPC parameters obtained by

using the above sign restrictions procedure, setting S = 1000. The three panels show the

median value of the identified set and the 5%, 10%, 32%, 68%, 90% and 95% percentiles.

Results for the slope λt are supportive of the hypothesis of a strong flattening of the

structural PC over the years. Differently from the Cholesky estimates, the decline is more

gradual and the slope seems to be not different from zero only starting from year 2000

approximately. However, it is noticeable that our approach confirms the structural change

hypothesis even by using a very different identification strategy. This may suggests that

the literature using sign-restrictions to identify NKPC parameters, failed to identify the

structural source of the PC flattening because of the arbitrary sample splitting that is

necessary if one does not make use of a fully time-varying specification.
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The results for the γb,t and γf,t parameters, however, differ substantially with respect

to the baseline Cholesky estimation. The identified set for γb,t suggest a very small value

for “persistence” parameter, with the zero almost always included all over the sample,

and no big change over the years. This mirrors in the results for γf,t (which recall that

it has been restricted to be equal to 1 − γb,t), which point to a very high and close to 1

value for the “expectation” parameter.

D.3 Results for the Euro Area

We repeat our empirical analysis by applying our methodology to data for the Euro

Area, to see whether the results observed for the US extend to other countries. Our

baseline VAR specification mirrors the one used for the US. We have a set of seven

endogenous variables: (1) the unemployment rate for the Euro Area; (2) core inflation,

measured by the annualized monthly growth rate of the seasonally-adjusted HICP index,

excluding energy, food and tobacco; (3) the 12-month growth rate of the manufacturing

PPI index for the Euro Area ; (4) the log change of total industrial production, excluding

construction, in the Euro Area; (5) the 10-year German bond rate; (6) the 3-month

interbank rate and (7) the Credit Risk Premium (CRP).

The CRP is the Euro Area version of the EBP used above and it is constructed by

? as the spread between a measure of cost of financing for a large set of European non-

financial corporations and the German bund rate. Compared to EBP, it is a less clean

measure of credit frictions. However it is often used for this purpose (see, for example, ?).

As usual, we face the issue of having to work with a much shorter time-span of

observations. We have a total of 252 monthly observations, from 1999M1 to 2019M12.1

Figure D.4 shows the estimated values of the three NKPC parameters over time,

using the Cholesky identification of the risk-premium shock. In the Euro Area sample,

the slope λt is never significantly different from zero, suggesting a flat NKPC all over the

existence period of the Euro Area. As for the US estimates, we document an increase

over time of the expectation coefficient γf,t and a consequent decline over time of γb,t.

Figure D.5 shows the admissible set of values for the three NKPC parameters resulting

from the sign-restrictions identification strategy applied to the Euro Area sample. Here

the results are strikingly different from the ones produced by Cholesky ordering. The

slope λt is estimated to increase (in absolute value) over time, suggesting a steeper NKPC

in the last part of the sample. As for the γb,t, γf,t parameters, the trend resulting from

Figure D.4 is confirmed: a decreasing role of past inflation together with an increasing

role of inflation expectations.

1We exclude observations from the Covid19 recession.
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Figure D.4: Time-varying estimates of the NKPC parameters for the Euro Area, from
the regression in impulse responses estimated on monthly data. Blue areas show 68%
and 90% wild bootstrap confidence intervals.

Figure D.5: Sign-restrictions admissible sets for the three KNPC parameters for the Euro
Area. Black lines denote the median values, over time, of the identified sets. Blue areas
show the 5− 10− 32− 68− 90− 95% percentiles.
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Appendix E

Appendix to Chapter 5

Proof of Theorem 1. We start by considering Bn. Let us define σ
2
x := E(x21) have that:

Bn := σ̂−1x,n

n∑
j=1

ktj(βj − βt)x
2
j

= σ−1x
1√
H

n∑
j=1

ktj(βj − βt)x
2
j + op(1)

where the second equality follows from E[H−1
∑n

j=1 ktjx
2
j ] = σ2

xH
−1∑n

j=1 ktj = σ2
x and

1
H
σ̂2
x,n = 1

H

∑n
i=1 ktj

(
x2j − E(x2j)

)
+E(x2j) = E(x2j)+op(1), where 1

H

∑n
i=1 ktj

(
x2j − E(x2j)

)
=

op(1) from Lemma 1. Furthermore, we can note that, by Lemma 2:

σ−1x
1√
H

n∑
j=1

ktj(βj − βt)x
2
j = σx

1√
H

n∑
j=1

ktj(βj − βt) + op(1) (E.0.1)

We are now deriving the following proposition as an intermediate result.

Proposition 1. Let the conditions of Theorem 1 hold, then:

Sn :=
σx√
H

n∑
j=1

ktj(βj − βt)
d−→ N

(
0, κσ2

νσ
2
x

∫
K2(u)u2du

)
(E.0.2)

where κ := limn−→∞H2/n.

Proof of Proposition 1. The proof is tri

Lemma 1. Let {zj}nj=1 be a covariance stationary process with autocovariance function

γ(k) satisfying
∑⌊arn⌋

k=1 |γ(k)| = o(rn), for every a > 0 and r2n = O(n), {wj}nj=1 be a se-

quence of bounded real numbers such that wj = 0 if j ̸∈ Sw,n for some closed interval
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Sw,n = [sl,n, su,n] such that |su,n − sl,n| = brn, for some b > 0 then

r−1n

n∑
j=1

wj [zj − E [zj]] = op(1) (E.0.3)

Proof of Lemma 1. We are going to prove this result through L2-convergence together

with Chebychev’s inequality. We write z̃j := zj − E[zj] and note that:

E

(r−1n n∑
j=1

wj [zj − E [zj]]

)2
 = r−2n

n∑
j=1

n∑
j′=1

wjwj′E [z̃j z̃j′ ]

= r−2n

brn∑
k=0

γ(k)

su,n∑
j′=sl,n

wjwj+k

= O

(
1

rn

) brn∑
k=0

|γ(k)| = O

(
1

rn

)
o(rn) = o(1)

where the penultimate inequality follows from setting a = b and the result proves by Cheby-

chev’s inequality.

Lemma 2. Let {zj}nj=1 be a covariance stationary process with autocovariance function

γ(k) satisfying
∑⌊arn⌋

k=1 |γ(k)| = o(rn), for every a > 0 and r2n = O(n), {wj}nj=1 be a se-

quence of bounded real numbers such that wj = 0 if j ̸∈ Sw,n for some closed interval

Sw,n = [sl,n, su,n] such that |su,n − sl,n| = brn, for some b > 0 and
∑n

j=1wj = O(rn), and

{yj}nj=1 be a process satisfying supj,j′∈Sw,n
E[yjyj′ ] = Op(rn/n), then

r−1/2n

n∑
j=1

wj [zj − E [zj]] yj = op(1) (E.0.4)

Proof of Lemma 2. We are going to prove this result through L2-convergence together
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with Chebychev’s inequality. We write z̃j := zj − E[zj] and note that:

E

(r−1/2n

n∑
j=1

wj [zj − E [zj]] yj

)2
 = r−1n

n∑
j=1

n∑
j′=1

wjwj′E [z̃j z̃j′ ]E [yjyj′ ]

= O(n−1)
n∑
j=1

n∑
j′=1

wjwj′E [z̃j z̃j′ ]

= O(n−1)

su,n∑
j=sl,n

su,n∑
j′=sl,n

wjwj′γ(|j − j′|)

= O(n−1)
brn∑
k=0

γ(k)

su,n∑
j′=sl,n

wjwj+k

= O
(rn
n

) brn∑
k=0

|γ(k)| = O
(rn
n

)
o(rn) = o(1)

where the penultimate inequality follows from setting a = b and the result proves by

Chebychev’s inequality.
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