ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

DOTTORATO DI RICERCA IN
ECONOMICS

Ciclo 36

Settore Concorsuale; 13/A5 - ECONOMETRIA

Settore Scientifico Disciplinare: SECS-P/05 - ECONOMETRIA

ESSAYS ON BOOTSTRAP METHODS IN ECONOMETRICS

Presentata da; Edoardo Zandlli

Coordinatore Dottorato Supervisore

Andrea Mattozzi Giuseppe Cavaliere

Esame finale anno 2025



ESssAYS ON BOOTSTRAP METHODS IN
ECONOMETRICS

Edoardo Zanelli
Unwversity of Bologna



ACKNOWLEDGMENTS

Writing a doctoral thesis is a long and intense process, full of uncertainty, doubts and ob-
stacles that may seem insurmountable for long times. If I apparently managed to be here
writing this page is mostly due to the people I had the luck to encounter during my jour-

ney, whose help I partly want to acknowledge here.

First of all, I want to express all my gratitude to Giuseppe Cavaliere, for being the
best supervisor I could have asked for. Since your first lecture I attended as a Master stu-
dent, I wanted to be as cool and smart as you are. You guided my path since the begin-
ning, and saw potential in my work even when my knowledge was extremely limited and
the mistakes were trivial. But most of all, you never made me feel uncomfortable through
my insecurities. 1 will never forget the time spent together, and will forever be grateful

for the unparalleled honor to be calling myself your coauthor.

I want to thank my mentors and coauthors Silvia Gongalves, Morten Orregaard Nielsen,
lliyan Georgiev and Prosper Dovonon for giving me the chance to learn how an econome-
trician should work from the bests. All of you have gifted me with different though valu-
able perspectives on how this profession should be done. Most importantly, you are really

enjoyable people whom I like spending my time with.

Thanks to the Department of Economics at the University of Bologna for supporting
my process as a PhD student, and especially to Michele Costa and Luca Fanelli for always
having a word of encouragement in my regards and for making me feel a valuable resource
for this prestigious department. Moreover, a special word goes to my colleague, desk-mate,
but most of all, my best friend, Claudio Lissona, for the life-lasting conversations and our
competition-less bond. I also want to thank the Departments of Economics at Concordia
University and McGill University for hosting me during my visiting periods, which were

extremely fruitful experiences, both personally and from a professional viewpoint.

I thank my mother and my father for taking all their effort in trying to understand
choices that seemed unreasonable for them, for staying close to me at my lowest and for
showing their pride in me to the world. Even if I seem to be reluctant to it, this is one
thing that has always pushed me on. I thank my brother Filippo for never asking ques-
tions, but simply showing me his unconditional love everyday. You are, and will always
be, my role model. I thank my family as a whole for following every step. In particular,
I want to thank my little brother Tommaso and my grandparents: to those who are still
here physically, because every kiss and hug is a gift, to those who are not, because your

loving memory will always be part of me. Ciao Giorgio, mi manchi e ti penso ogni giorno.



I want to dedicate this work to a person who has profoundly and irreversibly made
my life a better place to be in. FEvery smile, every song, every trip, every lunch, every
poem. are just realizations of what has always been inside me and us. Thank you for never
discouraging expressing myself, thank you for making everyday a present and thank you
for showing interest in the concept of indicator function. All the obstacles I mentioned
are irrelevant if you are with me, as your sweet care is the purest form of love I have
ever experienced. Simply, thank you for making me, everyday, a better man. This is to

Giulia, the love of my life.



ABSTRACT

This thesis proposes novel implementations of the bootstrap in econometrics. Chapter 1
explores bootstrap methods for test statistics showing an asymptotic bias which is dif-
ficult, or impossible, to estimate, proposing modifications of standard bootstrap meth-
ods delivering valid inference, totally bypassing bias estimation. Chapter 2 develops en-
hanced inference techniques for nonparametric regression and regression-discontinuity de-
signs, introducing novel bootstrap approaches for debiasing with greater efficiency than
the current state-of-the-art. Chapter 3 tackles the problem of invalidity of “standard”
bootstrap methods in a predictive regression setup, when the predictability parameter
may lie on the boundary of the parameter space, proposing a modified approach restor-
ing bootstrap validity. Chapter 4 investigates the flattening of the Phillips Curve, pre-
senting a time-varying structural estimation framework to disentangle underlying drivers
of macroeconomic shifts. Finally, Chapter 5 contributes to robust inference on stochastic
time-varying coefficients, proposing new confidence intervals which are robust to “large”
— and more efficient — bandwidths. Collectively, these contributions advance theoretical

and practical econometric tools for addressing complex real-world economic problems.



GENERAL INTRODUCTION

The development in analytical and computational methods at the economists’ disposal
over the last decades have allowed for the revision of old challenges with new tools.
Among these, the bootstrap is a powerful method for several purposes related to inference,
with bias correction, variance estimation and hypothesis testing being its main — but not

exclusive — implementations.

This thesis explores novel and heterogeneous applications of the bootstrap in the field
of econometrics and it is divided in 5 chapters, with each chapter targeting a distinct yet
interconnected set of challenges, contributing to the advancement of robust and efficient

econometric inference.

Chapter 1 is based on the paper “Bootstrap Inference in the Presence of Bias”, a
joint work with Giuseppe Cavaliere, Silvia Gongalves and Morten Orregaard Nielsen,
recently published in the Journal of the American Statistical Association, focusing on the
application of the bootstrap when test statistics show asymptotic bias. In particular, we
focus on situations in which such asymptotic bias is difficult, or impossible, to estimate
and “standard” bootstrap methods are invalid. This chapter proposes a solution that
leverages the idea of prepivoting — originally proposed by Beran (1987, 1988) to deliver
asymptotic refinements over first order asymptotics — to obtain valid (i.e., unbiased)
confidence intervals and test statistics without the need to consistently estimate such bias

term, thus ensuring asymptotically valid inference.

In Chapter 2, based on the paper “Improved Inference for Nonparametric Regres-
sion and Regression-Discontinuity Designs”; a joint work with Giuseppe Cavaliere, Silvia
Gongalves and Morten Orregaard Nielsen, we give an in-depth analysis on the applica-
bility of the bootstrap and prepivoting to the nonparametric problem of inference on un-
known function at a fixed point in their support. While being related to the results in the
previous one, this chapter defines novel and insightful conclusions in this setup. Specif-
ically, on the one hand, we show that prepivoting can be applied via two bootstrap al-
gorithms, which we label the local-polynomial (LP) bootstrap and fixed-local (FL) boot-
strap; on the other hand, we note that “standard” prepivoting might fail at the bound-
ary of the support of the regressors, and we provide an ad hoc modification which is ro-
bust to the entire support (i.e., for boundary and interior points). Moreover, we show
that the current state-of-the-art method in this class of problems (i.e., robust bias cor-
rection, see Calonico et al., 2014, 2018) is asymptotically equivalent to the proposed FL
bootstrap. Finally, we compare the two proposed methods on the grounds of efficiency,
showing that the LP bootstrap achieves up to ~ 20% shorter Cls asymptotically.

Chapter 3, based on the paper “Parameters on the Boundary in Predictive Regres-
sion”, a joint work with Giuseppe Cavaliere and Iliyan Georgiev, recently accepted for

publication on Econometric Theory, investigates predictive regressions with parameters



on the boundary of the parameter space, a scenario that invalidates standard bootstrap
inference. We propose a modifications to standard bootstrap methods by shifting the
bootstrap parameter space using data-dependent functions, therefore restoring bootstrap
validity. These contributions are particularly relevant for testing hypotheses about pre-
dictability in financial markets, where parameter constraints often arise from economic
theory.

The empirical relevance of econometric techniques is underscored in Chapter 4, based
on the paper “When did the Phillips Curve Become Flat? A Time-varying Fstimate of
Structural Parameters”, written jointly with Claudio Lissona and Antonio Marsi. This
chapter examines the flattening of the Phillips Curve by considering a time-varying struc-
tural estimation framework that combines instrumental variable methods with nonpara-
metric estimation of impulse response functions. Inference, in this setup, is based on ad
hoc bootstrap methods which guarantee robustness to time-variation of the time-varying
parameters. By analyzing US data, the chapter identifies a declining structural slope in
the Phillips Curve, attributing this to shifts in macroeconomic dynamics rather than in-
creased monetary policy responsiveness. The findings provide nuanced insights into the
interplay between inflation and unemployment over time, with significant implications
for monetary policy.

Finally, Chapter 5 is a short note about models with time-varying coefficient that
evolve stochastically as a random walk process with bounded variation. The chapter
underlines the importance of adopting “large” bandwidths (e.g., chosen in a MSE-optimal
sense) and shows that, under such choices, standard methods for constructing confidence
intervals fail. We propose a alternative CIs that restore validity of inference by considering
appropriately higher standard errors. Numerical simulations provide evidence in support
of the proposed Cls, as well as the practical relevance of the bootstrap in this setup.

The contributions of this thesis lie at the intersection of theory and practice, ad-
dressing longstanding challenges while opening avenues for future research. By integrat-
ing novel bootstrap techniques, addressing boundary issues, and developing time-varying
structural models, this work provides a robust toolkit for econometricians seeking to an-

alyze complex economic phenomena.
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CHAPTER 1

BOOTSTRAP INFERENCE IN THE
PRESENCE OF BIAS

(written with Giuseppe Cavaliere, Silvia Gongalves and Morten
Orregaard Nielsen)

1.1 INTRODUCTION

SUPPOSE THAT  is a scalar parameter of interest and let 6,, denote an estimator for which
T, = g(n)(én —0) 4 B+ &1, (1.1.1)

where g(n) — oo is the rate of convergence of én, & is a continuous random variable
centered at zero, and B is an asymptotic bias (our theory in fact allows for a more
general formulation of the bias). A typical example is g(n) = n'/? and & ~ N(0,0?).
Unless B can be consistently estimated, which is often difficult or impossible, classic
(first-order) asymptotic inference on 6 based on quantiles of & in (1.1.1) is not feasible.
Furthermore, the bootstrap, which is well known to deliver asymptotic refinements over
first-order asymptotic approximations as well as bias corrections (Hall, 1992; Horowitz,
2001; Cattaneo and Jansson, 2018, 2022; Cattaneo, Jansson, and Ma, 2019), cannot in
general be applied to solve the asymptotic bias problem when a consistent estimator of
B does not exist. Examples are given below.

Our goal is to justify bootstrap inference based on T}, in the context of asymptotically
biased estimators and where a consistent estimator of B does not exist. Consider the

bootstrap statistic T := g(n)(6* — 0,,), where 0% is a bootstrap version of 0,, such that

T - B, 5, €, (1.1.2)
where B, is the implicit bootstrap bias, and ‘d—*>p’ denotes weak convergence in probability
(defined below). When B, — B = 0,(1), the bootstrap is asymptotically valid in the usual
sense that the bootstrap distribution of 7} is consistent for the asymptotic distribution
of T,,, i.e., sup,cp |[P* (T < z) — P(T,, < x)| = 0,(1).
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We consider situations where B, — B is not asymptotically negligible so the bootstrap
fails to replicate the asymptotic bias. For example, this happens when the asymptotic

bias term in the bootstrap world includes a random (additive) component, i.e.
B, — B % & (jointly with (1.1.1)), (1.1.3)

where & is a random variable centered at zero. In this case, the bootstrap distribution
is random in the limit and hence cannot mimic the asymptotic distribution given in
(1.1.1). Moreover, the distribution of the bootstrap p-value, p,, := P*(T¥ < T,,), is not
asymptotically uniform, and the bootstrap cannot in general deliver hypothesis tests (or
confidence intervals) with the desired null rejection probability (or coverage probability).

In this paper, we show that in this non-standard case valid inference can successfully
be restored by proper implementation of the bootstrap. This is done by focusing on
properties of the bootstrap p-value rather than on the bootstrap as a means of estimating
limiting distributions, which is infeasible due to the asymptotic bias. In particular, we
show that such implementations lead to bootstrap inferences that are valid in the sense
that they provide asymptotically uniformly distributed p-values.

Our inference strategy is based on the fact that, for some bootstrap schemes, the large-
sample distribution of the bootstrap p-value, say H(u), u € [0, 1], although not uniform,
does not depend on B. That is, we can search for bootstrap algorithms which generate
bootstrap p-values that, in large samples, are not affected by unknown bias terms. When
this is possible, we can make use of the prepivoting approach of Beran (1987, 1988), which
— as we will show in this paper — allows to restore bootstrap validity. Specifically, our

proposed modified p-value is defined as
ﬁn = Hn (ﬁn)7

where H,(u) is any consistent estimator of H(u), uniformly over u € [0,1]. The (asymp-
totic) probability integral transform p,, — H(p,), continuity of H(u), and consistency of
ﬁn(u) then guarantee that p, is asymptotically uniformly distributed. Interestingly, Be-
ran (1987, 1988) proposed this approach to obtain asymptotic refinements for the boot-
strap, but did not consider asymptotically biased estimators as we do here.

We propose two approaches to estimating H. First, if H = H,, where v is a finite-
dimensional parameter vector, and a consistent estimator 4, of ~ is available, then a
‘plug-in’ approach setting H, = H, can deliver asymptotically uniform p-values. Second,
if estimation of v is difficult (e.g., when ~ does not have a closed form expression), we
can use a ‘double bootstrap’ scheme (Efron, 1983; Hall, 1986), where estimation of H is
achieved by resampling from the bootstrap data originated in the first level.

For both methods, we provide general high-level conditions that imply validity of the
proposed approach. Our conditions are not specific to a given bootstrap method; rather,

they can in principle be applied to any bootstrap scheme satisfying the proposed sufficient

12



conditions for asymptotic validity.

Our approach is related to recent work by Shao and Politis (2013) and Cavaliere and
Georgiev (2020). In particular, a common feature is that the distribution function of the
bootstrap statistic, conditional on the original data, is random in the limit. Cavaliere
and Georgiev (2020) emphasize that randomness of the limiting bootstrap measure does
not prevent the bootstrap from delivering an asymptotically uniform p-value (bootstrap
‘unconditional’ validity), and provide results to assess such asymptotic uniformity. Our
context is different, since the presence of an asymptotic bias term renders the distribution
of the bootstrap p-value non-uniform, even asymptotically. In this respect, our work is
related to Shao and Politis (2013), who show that ¢-statistics based on subsampling or
block bootstrap methods with bandwidth proportional to sample size may deliver non-
uniformly distributed p-values that, however, can be estimated.

To illustrate the practical relevance of our results and to show how to implement them
in applied problems, we consider three examples involving estimators that feature an
asymptotic bias term. In the first two examples (model averaging and ridge regression),
B is not consistently estimable due to the presence of local-to-zero parameters and the
standard bootstrap fails. In the third example (nonparametric regression), the bootstrap
fails because B depends on the second-order derivative of the conditional mean function,
whose estimation requires the use of a different (suboptimal) bandwidth. In these ex-
amples, & is normal, but g(n) and B are example-specific. Two additional examples are
presented in the supplement. The fourth is a simple location model without the assump-
tion of finite variance, where &; is not normal and estimators converge at an unknown
rate. The fifth example considers inference for dynamic panel data models, where B is
the incidental parameter bias.

The remainder of the paper is organized as follows. In Section 1.2 we introduce our
three leading examples. Section 1.3 contains our general results, which we apply to the
three examples in Section 1.4. Section 1.5 concludes. The supplemental material contains
two appendices. Appendix A.1 specializes the general theory to the case of asymptotically
Gaussian statistics, and Appendix A.2 contains details and proofs for the three leading

examples, as well as two additional examples.

NOTATION

Throughout this paper, the notation ~ indicates equality in distribution. For instance,
Z ~ N(0,1) means that Z is distributed as a standard normal random variable. We write
‘r .=y and ‘y =: &’ to mean that x is defined by y. The standard Gaussian cumulative
distribution function (cdf) is denoted by ®; Up s is the uniform distribution on [0, 1],
and Iy is the indicator function. If F' is a cdf, F~' denotes the generalized inverse,
i.e. the quantile function, F~!'(u) := inf{v € R : F(v) > u}, u € R. Unless specified

otherwise, all limits are for n — oco. For matrices a, b, ¢ with n rows, we let Sy, := a’b/n
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and Sup.c := Sap — SacS' S, assuming that S.. has full rank.

For a (single level or first-level) bootstrap sequence, say Y., we use Y’ p—*>p 0, or
equivalently Y * LN 0, in probability, to mean that, for any ¢ > 0, P*(|Y,"| > €) —, 0,
where P* denotes the probability measure conditional on the original data D,,. An
equivalent notation is Y,* = 0,+(1) (where we omit the qualification “in probability” for
brevity). Similarly, for a double (or second-level) bootstrap sequence, say Y,**, we write
Y = 0p(1) to mean that for all e > 0, P**(|Y,*| > ¢) Qp 0, where P** is the probability
measure conditional on the first-level bootstrap data D} and on D,,.

We use Y; ﬁp ¢, or equivalently Y LN &, in probability, to mean that, for all
continuity points u € R of the cdf of &, say G(u) := P({ < u), it holds that P*(Y," <
u) — G(u) —, 0. Similarly, for a double bootstrap sequence Y,**, we use Y,* Cz;p* &, in

probability, to mean that P**(Y,* < u) — G(u) p—*>p 0 for all continuity points u of G.

1.2 EXAMPLES

In this section we introduce our three leading examples. Example-specific regularity
conditions, formally stated results, and additional definitions are given in Appendix A.2.
For each of these examples, we argue that (1.1.1), (1.1.2), and (1.1.3) hold, such that
the bootstrap p-values p,, are not uniformly distributed rendering standard bootstrap
inference invalid. We then return to each example in Section 1.4, where we discuss how

to implement our proposed method and prove its validity.

1.2.1 INFERENCE AFTER MODEL AVERAGING

SETUP. We consider inference based on a model averaging estimator obtained as a
weighted average of least squares estimates (Hansen, 2007). Assume that data are gen-

erated according to the linear model
y=aB+ Z0 +e, (1.2.1)

where [ is the (scalar) parameter of interest and e is an n-vector of identically and
independently distributed random variables with mean zero and variance o (henceforth
i.i.d.(0,0%)), conditional on W := (z, Z).

The researcher fits a set of M models, each of them based on different exclusion
restrictions on the g-dimensional vector . This setup allows for model averaging both
explicitly and implicity. The former follows, e.g., Hansen (2007). The latter includes
the common practice of robustness checks in applied research, where the significance of
a target coefficient is evaluated through an (often informal) assessment of its significance
across a set of regressions based on different sets of controls; see Oster (2019) and the
references therein. Specifically, letting R,, denote a ¢ X ¢, selection matrix, the m™®
model includes z and 7, := ZR,, as regressors, and the corresponding OLS estimator

of BiS Bm = Sia s Seyzn- Given a set of fixed weights w := (wy,...,wy )" such that
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wm € 10,1] and Z%zl wm = 1, the model averaging estimator is 3, := Z%zl Win B

Then T, := n'/2(3, — 3) satisfies T}, — B,, —4 &1 ~ N(0,v?), where v? > 0 and
M
B, :=Qum'"?5, Qu:=> wnSy, S22,
m=1

Thus, the magnitude of the asymptotic bias B, depends on n'/2§. If § is local to zero
in the sense that § = cn~'/2 for some vector ¢ € R? (as in, e.g., Hjort and Claeskens,
2003; Liu, 2015; Hounyo and Lahiri, 2023), then B, —, B := Qc with Q) := plimQ,,
so that (1.1.1) is satisfied with nonzero B in general. Because B depends on ¢, which is
not consistently estimable, we cannot obtain valid inference from a Gaussian distribution

based on sample analogues of B and v?.

FIXED REGRESSOR BOOTSTRAP. We generate the bootstrap sample as y* = a;Bn + 76, +
e*, where e*|D,, ~ N(0,621,), (B,,0,,62) is the OLS estimator from the full model, and
D,, = {y, W}. Similar results can be established for the nonparametric bootstrap where
e* is resampled from the full model residuals. The bootstrap model averaging estimator is
given by g =M | me:,w, where B;"mn =8,y Suy .z, Letting T := n'/2(Bx — B,),
we can show that (1.1.2) holds with B, = anl/zgn such that, as in (1.1.3),

Bn - Bn = anl/Q(gn - 6) i §2 ~ N(O, U22)7 Voo > 07

given in particular the asymptotic normality of n'/ Q(Sn — ). Because the bias term in the
bootstrap world is random in the limit, the conditional distribution of 77} is also random
in the limit, and in particular does not mimic the asymptotic distribution of the original
statistic T,,.

PAIRS BOOTSTRAP. Consider now a pairs (random design) bootstrap sample {y;, =}, 2;;t =
1,...,n}, based on resampling with replacement from the tuples {y;, z;, z;t = 1,...,n}.

As is standard, it is useful to recall that the bootstrap data have the representation
Y =B+ 2700+ €7,

where ¢* = (e7,...,¢}) and €} is an ii.d. draw from & = y — 210, — 2;0,. The pairs

rn

bootstrap model averaging estimator is
M
5:; = Z wmﬁ;,n with ﬁ;kn,n = Sg;}x*.Z;‘nSm*y*-an
m=1
and Z = Z*R,,. The pairs bootstrap statistic is then
Tr=n"*(3: — B,) = B +n'/?S7 .Sy,
where

M

§ -1 1/2¢
B:L = wmsx*w*.zjnsx*Z*.Z:nn / 51’1,

m=1
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Therefore, and in contrast with the fixed regressor bootstrap (FRB), the term B} is
stochastic under the bootstrap probability measure and replaces the bias term B,,. This
difference is not innocuous because it implies that 7, — B, no longer replicates the
asymptotic distribution of 7,, — B,, and (1.1.2) does not hold. However, this does not
prevent our method from working, but it will require a different set of conditions which

we will give in Section 1.3.5.

1.2.2 RIDGE REGRESSION

SETUP. We consider estimation of a vector of regression parameters through regulariza-
tion; in particular, by using a ridge estimator. The model is y; = 0'x; + e, t =1,....,n,
where x; is a p X 1 non-stochastic vector and ¢, ~ i.i.d.(0,0?). Interest is on testing
Ho : ¢'60 = r, based on ridge estimation of 6. Specifically, the ridge estimator has closed
form expression 6,, = S1S,,, where S, := S,. +n'c,I, and ¢, is a tuning parameter
that controls the degree of shrinkage towards zero. Clearly, ¢, = 0 corresponds to the
OLS estimator, f,. We are interested in the case where the regressors have limited ex-
planatory power, i.e., where § = én~/? is local to zero, which can in fact be taken as a
motivation for shrinkage towards zero and hence for ridge estimation. To test Hy, we con-
sider the test statistic 7}, = n'/2(¢'0, —r). If n™'¢, — ¢o > 0 (as in, e.g., Fu and Knight,
2000) then, under the null, it holds that T}, — B,, —4 & ~ N(0,v?), where

By = —en 45200 = —ean 55— B = g5k

with im = Mgz +colp and X, = lim S,,. Hence, for ¢y > 0, én is asymptotically biased
and the bias term cannot be consistently estimated. Consequently, (1.1.1) is satisfied,

and inference based on the quantiles of the N(0,v?) distribution is invalid unless ¢y = 0.

BooTsTrRAP. Consider a pairs (random design) bootstrap sample {y;, xf;t = 1,...,n}
built by i.i.d. resampling from the tuples {y;, ;¢ = 1,...,n}. The bootstrap analogue
of the ridge estimator is 5: = g;*lx*Sx*y*, where wa = Sy + n’lcnlp. The bootstrap
statistic is T := n'/2¢/(0% — 6,,), which is centered using 6, to guarantee that e} and
x; are uncorrelated in the bootstrap world. Because we have used a pairs bootstrap, we
now have T — B* % . & for B! := —c,n~Y2¢'S;:L.6,. However, B* — B, = 0,+(1) with

~

B, := —c,n " Y2¢'S-10,, such that T* — B,, still satisfies (1.1.2). Then (1.1.3) holds with
Bn — Bn = —Cnn_lglgw_xlnlﬂ(én — 0) i) §2 ~ N(O, Ugg), Voo > O,

so the bootstrap fails to approximate the asymptotic distribution of 7, (see also Chat-
terjee and Lahiri, 2010, 2011).
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1.2.3 NONPARAMETRIC REGRESSION
SETUP. Consider the model
Yt :B<I't)+€t, t= 1,...,n, (].22)

where 3(+) is a smooth function and &; ~ 1.i.d.(0,?). For simplicity, we consider a fixed-
design model; i.e., x; = t/n. The goal is inference on f(x) for a fixed = € (0,1). We apply
the standard Nadaraya-Watson (fixed-design) estimator 3y (z) = (nh)™' S5, K((z, —
x)/h)y;, where h = cn™'/® for some ¢ > 0 is the MSE-optimal bandwidth and K is the
kernel function. We do not consider the more general local polynomial regression case,
although we conjecture that very similar results will hold. We leave that case for future
research. The statistic T, = (nh)Y/2(B,(x) — B(x)) satisfies T), — B, —vq & ~ N(0,02),
where v? := 02 [ K (u)?*du > 0 and

B, (nh) 1/2 ( A Zktﬁ ) )) (1.2.3)

with &k, :== K((x; — x)/h). The bias B,, satisfies
B, = (nh)Y2(h2B"(2)k2/2 + o(h?)) = B = */*8" (2)ky/2, (1.2.4)

where ko := [©?K(u)du and 8”(z) denotes the second-order derivative of S(x). Thus,
(1.1.1) is satisfied. Estimating B or B, is challenging because it involves estimating 8" (z),
and although theoretically valid estimators exist, they perform poorly in finite samples.
This issue is pointed out by Calonico, Cattaneo, and Titunik (2014) and Calonico, Cat-
taneo, and Farrell (2018), who propose more accurate bias correction techniques specifi-

cally for regression discontinuity designs and nonparametric curve estimation.

BoorsTrAP. The (parametric) bootstrap sample is generated as y; = Bh(a:t) + €},
t=1,...,n, where £/|D,, ~ i.i.d.N(0,62) with D,, = {y;,t = 1,...,n} and 62 denotes a
consistent estimator of o2; e.g. the residual variance. Let 3;(z) = (nh)~* 321, ky: and
T = (nh)Y2(B;(x) — Bu(z)). Then (1.1.2) is satisfied with

B, := (nh) 1/2< Zktﬁh ) — B(z ))

Because h = cn™'/°, (1.1.3) holds with

B, — By = (nh)'” (n—lh S () = Bla) — (Bule) - B(:v))) % 6o~ N(0,vm),

where v99 > 0, so the bootstrap is invalid. Two possible solutions to this problem are
to generate the bootstrap sample as y; = Bg(wt) + ¢f, where g is an oversmoothing

bandwidth satisfying ng® — oo (e.g., Hardle and Marron, 1991) or to center the bootstrap
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statistic at its expected value and add a consistent estimator of B (e.g., Hérdle and
Bowman, 1988; Eubank and Speckman, 1993). Both approaches require selecting two
bandwidths, which is not straightforward. An alternative approach suggested by Hall and
Horowitz (2013) focuses on an asymptotic theory-based confidence interval and applies
the bootstrap to calibrate its coverage probability. However, this requires an additional
averaging step across a grid of x (their step 6) to asymptotically eliminate &, and it
results in an asymptotically conservative interval. Finally, a non-bootstrap-based solution
is undersmoothing using a bandwidth A satisfying nh® — 0, although of course that is
not MSE-optimal and may result in trivial power against certain local alternatives; see
Section 1.4.3.

1.3 GENERAL RESULTS

1.3.1 FRAMEWORK AND INVALIDITY OF THE STANDARD BOOTSTRAP

The general framework is as follows. We have a statistic T}, defined as a general function
of a sample D,,, for which we would like to compute a valid bootstrap p-value. Usually
T, is a test statistic or a (possibly normalized) parameter estimator; for example, T, =
g(n)(8, — 0y). Let D¥ denote the bootstrap sample, which depends on the original data
and on some auxiliary bootstrap variates (which we assume defined jointly with D,, on a
possibly extended probability space). Let T.F denote the bootstrap version of 7;, computed
on D7: for example, T = g(n)(0% — 6,,). Let Ly,(u) := P*(T* < u), u € R, denote its
distribution function, conditional on the original data. The bootstrap p-value is defined as

Pn = P*(TF < T,) = L.(T},).

First-order asymptotic validity of p, requires that p, converges in distribution to a
standard uniform distribution; i.e., that p, —4 Ujp ). In this section we focus on a class
of statistics 7,, and T for which this condition is not necessarily satisfied. The main
reason is the presence of an additive ‘bias’ term B,, that contaminates the distribution of
T,, and cannot be replicated by the bootstrap distribution of 77;.

T, — B, —4 &, where & is centered at zero and the cdf G,(u) = P(& < w) is
continuous and strictly increasing over its support.

When B,, converges to a nonzero constant B, Assumption 1.3.1 can be written T,, —4
B+ ¢ asin (1.1.1). If T,, is a normalized version of a (scalar) parameter estimator, i.e.,
T, = g(n)(#, — 6y), then we can think of B as the asymptotic bias of 6, because & is
centered at zero. Although we allow for the possibility that B, does not have a limit
(and it may even diverge), we will still refer to B,, as a ‘bias term’. More generally, in
Assumption 1.3.1 we cover any statistic T, that is not necessarily Gaussian (even asymp-
totically) and whose limiting distribution is G, only after we subtract the sequence B,,.

We index the limiting distribution G., by a parameter « to allow for the possibility that
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T, — B, is not an asymptotic pivot.

Inference based on the asymptotic distribution of 7T, requires estimating B, and ~.
Alternatively, we can use the bootstrap to bypass estimation of B, and ~ and directly
compute a bootstrap p-value that relies on 7, and 7;, alone; that is, we consider p,, :=
P*(Ty < T,). A set of high-level conditions on 7' and T,, that allow us to derive the
asymptotic properties of this p-value are described next.

For some D,,-measurable random variable En, it holds that: (i) 7} — B, ﬁp &1, where

& is described in Assumption 1.3.1; (ii)

( Tn_Bn ) d (fl )
A — s
Bn_Bn 52

where & is centered at zero and F(u) = P(& — & < u) is a continuous cdf.

Assumption 1.3.1(i) states that T* — B, converges in distribution to a random variable
& having the same distribution function G, as T}, — B,." Thus, Z%n can be thought of as
an implicit bootstrap bias that affects the statistic 7);, in the same way that B,, affects the
original statistic T},. Assumption 1.3.1(ii) complements Assumption 1.3.1 by requiring
the joint convergence of T,, — B,, and Bn — B, towards & and &, respectively; see also
(1.1.1)~(1.1.3).

Given Assumption 1.3.1(i), we could use the bootstrap distribution of T — B, to
approximate the distribution of 7,, — B,,. Since B,, is typically unknown, this result is not
very useful for inference unless B, is consistent for B,. In this case, Assumption 1.3.1
together with Assumption 1.3.1 imply that p, is asymptotically distributed as Ujg,1;. This
follows by noting that if B, — B,, = 0p(1), then & = 0 a.s., implying that F,(u) = G, (u).
Consequently,

pp =P (T* <T,) = P(T* — B, <T,— B,)
= G.(T, — B,) + 0,(1) (by Assumption 1.3.1(i))
N G, (& — &) (by Assumption 1.3.1(ii) and continuity of G.)
~ Upp,,
where the last distributional equality holds by F,, = G, and the probability integral

transform. However, this result does not hold if Bn — B,, does not converge to zero in
probability. Specifically, if B, — B, =4 & (jointly with T, — B, —4 &), then

T, — B, = (T, — B,) — (En — B,) 4 &1 — &~ Fgl(U[OJ])

Note that we write T)F — B, d—>p &1 to mean that T — B, has (conditionally on D,,) the same
asymptotic distribution function as the random variable ;. We could alternatively write that 7}, -B, d—>p

& and T, —B, S &1 where £ and &; are two independent copies of the same distribution, i.e. P(&§; < u) =
P& < uw). We do not make this distinction because we care only about distributional results, but it
should be kept in mind.
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under Assumptions 1.3.1 and 1.3.1(ii). When &, is nondegenerate, Fy # G.,, implying
that p, = G(T, — B,) + 0,(1) is not asymptotically distributed as a standard uniform

random variable. This result is summarized in the following theorem.

THEOREM 1.3.1 Suppose Assumptions 1.5.1 and 1.5.1 hold. Then p, —4 GV(Fgl(U[O,H)).
PROOF. First notice that p, and G,(T, — Bn) have the same asymptotic distribution
because Assumption 1.3.1(i) and continuity of G, imply that, by Polya’s Theorem,

|pn, — G (T}, — En)| < sup |P* (T — B, < u) — G (u)] 50.

ueR

Next, by Assumption 1.3.1(ii), 7}, — B, —q &1 — &, such that

G (T, = Ba) 5 Gy (&1 — &)
by continuity of G and the continuous mapping theorem. Since &; — & has continuous
cdf Fy, it holds that & — & ~ Fqﬁ_l(U[Oyl]), which completes the proof. O

REMARK 1.3.1 The value of B, in Assumption 1.5.1(i) depends on the chosen bootstrap
algorithm. It is possible that B, —p 0 for some bootstrap algorithms; examples are given
in Remark A.2.2 and Appendiz A.2.5. If this is the case, then & = —B a.s., which
implies that

Fy(u) == P(& — & <u)=P(&G <u—B) =G, (u— B),
and hence Assumption 1.3.1(ii) is not satisfied. In this case the bootstrap p-value satisfies

Pn e GW(GJI(U[OJ}) + B).

Note that this distribution is uniform only if B = 0. Hence, the p-value depends on B,

even in the limait.

REMARK 1.3.2 Under Assumptions 1.5.1 and 1.5.1, standard bootstrap (percentile) con-
fidence sets are also in general invalid. Consider, e.g., the case where T, = g(n) (0, — ;)
and T* is its bootstrap analogue with (conditional) distribution function Ly(u). A right-
sided confidence set for 6y at nominal confidence level 1 — « € (0,1) can be obtained as
(e.g., Horowitz, 2001, p. 3171) CI}= := [0, — g(n) ' 4u(1 — a), +00), where (1 —a) :=
L7Y(1—a). Then

P(0 € CI ™) = P(0, — g(n) 'Gu(1 — @) < ) = P(Ty, < (1 — )
<1-—

= P(L,(T))<1—a)=P(po<1—a)=»1—a
because by Theorem 1.5.1 p, is not asymptotically uniformly distributed.
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REMARK 1.3.3 [t is worth noting that, under Assumptions 1.3.1 and 1.3.1, the bootstrap
(conditional) distribution is random in the limit whenever &, is non-degenerate. Specifi-
cally, assume for simplicity that B,, —, B. Recall that in(u) = P*(T} <u),ueR, and
let Gy n(u) := P*(T* — B, <wu). It then holds that

Lo(u) = Gy p(u— B,) = Gy (u— B — (B, — B)) + én(u),

where Gy (1) < supyeg |Gyn(w) — Gy (u)| = 0,(1) by Assumption 1.3.1(i), continuity of G,
and Polya’s Theorem. Because B, — B =4 &, it follows that when & is non-degenerate,
Ln(u) = Gy(u — B — &), where —,, denotes weak convergence of cdf’s as (random)
elements of a function space (see Cavaliere and Georgiev, 2020). The presence of & in
G.(u— B — &) makes this a random cdf.* Therefore, the bootstrap is unable to mimic

the asymptotic distribution of T,,, which is G, (u — B) by Assumption 1.3.1.

Next, we describe two possible solutions to the invalidity of the standard bootstrap p-
value p,,. One relies on the prepivoting approach of Beran (1987, 1988); see Section 1.3.2.
The basic idea is that we modify p,, by applying the mapping p,, — H(p,), where H (u)
is the asymptotic cdf of p,, which makes the modified p-value H(p,) asymptotically
standard uniform. Contrary to Beran (1987, 1988), who proposed prepivoting as a way of
providing asymptotic refinements for the bootstrap, here we show how to use prepivoting
to solve the invalidity of the standard bootstrap p-value p,. This result is new in the
bootstrap literature. The second approach relies on computing a standard bootstrap p-
value based on the modified statistic given by 7, — B,,; see Section 1.3.4. Thus, we modify

the test statistic rather than modifying the way we compute the bootstrap p-value.

1.3.2 PREPIVOTING
Theorem 1.3.1 implies that
P(po < u) = P(G,(F; (Upa)) < u) = P(Upa < Fy(G W) = Fo(G5 (w) = Hyoy (w) = H(u)

uniformly over u € [0,1] by Polya’s Theorem, given the continuity of G, and F,. Al-
though H is not the uniform distribution, unless G, = Fy, it is continuous because G,
is strictly increasing. Thus, the following corollary to Theorem 1.3.1 holds by the proba-

bility integral transform.
COROLLARY 1.3.1 Under the conditions of Theorem 1.3.1, H(py) —q Ujg 1.

Therefore, the mapping of p, into H(p,) transforms p, into a new p-value, H(p,),

whose asymptotic distribution is the standard uniform distribution on [0, 1]. Inference

2The same result follows in terms of weak convergence in distribution of T;*|D,,. Specifically, because
T: = (T; — By) + (By — By) + By, where T; — B, &, ¢ and (jointly) B, — B, % & with ¢ ~ &
independent of &3, we have that T*|D,, = (B + & + &)|&.
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based on H(p,) is generally infeasible, because we do not observe H(u). However, if we
can replace H(u) with a uniformly consistent estimator H,(u) then this approach will
deliver a feasible modified p-value p,, := ﬁn (Pn). Since the limit distribution of p,, is the
standard uniform distribution, p, is an asymptotically valid p-value. The mapping of p,,
into p, = H, (pn) by the estimated distribution of the former corresponds to what Beran
(1987) calls ‘prepivoting’. In the following sections, we describe two methods of obtaining

a consistent estimator of H (u).

REMARK 1.3.4 The prepivoting approach can also be used to solve the invalidity of con-

fidence sets based on the standard bootstrap; see Remark 1.5.2. In particular, replace the
~ ~ 11—« ~ ~

nominal level 1—a by H, ' (1—a) and consider CI,, = [0,—g(n)'¢.(H,*(1-a)), +00).

Then

~1l—«

P(bo € CI, ) = P(pu < H, (1= @)) = P(Hu(p) <1—0) > 1 —a,
where the last convergence is implied by Corollary 1.3.1 and consistency of H,.

REMARK 1.3.5 Corollary 1.3.1 can also be applied to right-tailed or two-tailed tests.

A

The right-tailed p-value, say pn, = P*(T) > T,) = 1 — L,(T,) = 1 — p,, has cdf
P(ppy <u)=P(p,>1—u)=1—P(p, <1—u)=1—H(1—u)+o(1) uniformly in u.
Note that, because the conditional cdf of T); is continuous in the limit, the p-value D, , is
asymptotically equivalent to P*(T)) > T,,). Thus, by Corollary 1.3.1, the modified right-

A~

tailed p-value, Py, =1 — H,(pn,), satisfies
N . . d
Pnr = 1-— H(]- - pn,r) + Op(l) =1- H(pn) + 010(1) — U[O,l]~

Similarly, for two-tailed tests the equal-tailed bootstrap p-value, Dy ¢t = 2Min{py, Pn,} =
2min{p,, 1 — pn}, satisfies Pn et —d Upp,1) by Corollary 1.5.1 and the continuous mapping

theorem.

PLUG-IN APPROACH

In view of Theorem 1.3.1, a simple approach to estimating H (u) is to use
Hy(u) = Hy 5 (u),

where %, and ngSn denote consistent estimators of v and ¢, respectively. This leads to a

plug-in modified p-value defined as
o= Hg 5, (Dn).

By consistency of 4,, and an and under the assumption that Hy . is continuous in (¢, ),

it follows immediately that
. . d _ _
Pn = H(pn) + 0p(1) = Fo(G (G (F, (Up ) = Up,-
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This result is summarized next.

COROLLARY 1.3.2 Let Assumptions 1.3.1 and 1.3.1 hold, and suppose Hy.(u) is con-
tinuous in (¢,~) for every w. If (in, dn) —p (7, @) then p, = Hy o (Pn) —a Up,-

The plug-in approach relies on a consistent estimator of the asymptotic distribution
H , but does not require estimating the ‘bias term’ B,,. When estimating v and ¢ is simple,
this approach is attractive since it does not require any double resampling. Examples
are given in Section 1.4. However, computation of v and ¢ is case-specific and may be
cumbersome in practice. An automatic approach is to use the bootstrap to estimate

H(u), as we describe next.
DOUBLE BOOTSTRAP

Following Beran (1987, 1988), we can estimate H (u) with the bootstrap. That is, we let

where p? is the bootstrap analogue of p,,. Since p,, is itself a bootstrap p-value, computing
Py requires a double bootstrap. In particular, let D;* denote a further bootstrap sample
of size n based on D} and some additional bootstrap variates (defined jointly with D,, and
D7 on a possibly extended probability space), and let 7** denote the bootstrap version of

T computed on D;*. With this notation, the second-level bootstrap p-value is defined as
by =PI < T7),

where P** denotes the bootstrap probability measure conditional on D} and D,, (making
pr a function of D and D,,). This leads to a double bootstrap modified p-value, as given
by

Dn = f{n(ﬁn) = P*(ﬁi} < ﬁn)

In order to show that p, = f[n (Pn) = Up,1), we add the following assumption.

Let & and & be as defined in Assumptions 1.3.1 and 1.3.1. For some (D}, D,)-
measurable random variable B, it holds that: (i) 7 — B ﬁp* &1, in probability, and
(i) T = By 5 &1 — &.

Assumption 1.3.2 complements Assumptions 1.3.1 and 1.3.1 by imposing high-level
conditions on the second-level bootstrap statistics. Specifically, Assumption 1.3.2(i) as-
sumes that 7' has asymptotic distribution G only after we subtract B;; This term is
the second-level bootstrap analogue of B,. It depends only on the first-level bootstrap
data D} and is not random under P**. The second part of Assumption 1.3.2 follows from
Assumption 1.3.1 in the special case that B:L — B, = 0p+(1), in probability; i.e., when
& = 0 a.s., implying Fy = G.,. When Fy # G, B;‘l is not a consistent estimator of B,,.
However, under Assumption 1.3.2,

A

T:— By = (T; — B,) — (B, — B,) &, & — & = F; (Up)
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implying that T — E; mimics the distribution of 7,, — B,,. This suffices for proving the
asymptotic validity of the double bootstrap modified p-value, p, = ﬁn(ﬁn), as proved
next.

THEOREM 1.3.2 Under Assumptions 1.5.1, 1.3.1, and 1.53.2, it holds that p,, = f[n(ﬁn) —d
Up,1)-

PROOF. To prove this result, recall that H,(u) = P*(p < u) and P(p, < u) — H(u) =
Fy(G5(u)) uniformly in v € R, since H is a continuous distribution function by Assump-
tions 1.3.1 and 1.3.1. We have that

P, =PI < T;) = P(T0 — B, < T; - B;)

=G, (T — B;,) + 0,+(1), by Assumption 1.3.2(i),
= GW(FJI(U[OJ])) +0,+(1), by Assumption 1.3.2(ii),

where G (F "(Up,1)) is a random variable whose distribution function is H. Hence,

sup | Hy, (u) — H(u)| = o0,(1).

u€R

Since H (prn) —+q Ujo,1}, we can conclude that p, = ffn(ﬁn) —q Up)- O

Theorem 1.3.2 shows that prepivoting the standard bootstrap p-value p, by apply-
ing the mapping H,, transforms it into an asymptotically uniformly distributed random
variable. This result holds under Assumptions 1.3.1, 1.3.1, and 1.3.2, independently of
whether G, = F or not. When G, = F, then p,, —4 U 1) (as implied by Theorem 1.3.1).
In this case, the prepivoting approach is not necessary to obtain a first-order asymptot-
ically valid test, although it might help further reducing the size distortion of the test.
This corresponds to the setting of Beran (1987, 1988), where prepivoting was proposed
as a way of reducing the level distortions of confidence intervals. When G, # F, then p,
is not asymptotically uniform and a standard bootstrap test based on p,, is asymptoti-
cally invalid, as shown in Theorem 1.3.1. In this case, prepivoting transforms an asymp-
totically invalid bootstrap p-value into one that is asymptotically valid. This setting was

not considered by Beran (1987, 1988) and is new to our paper.

1.3.3 POWER OF TESTS

In this section we explicitly consider a testing situation. Suppose we are interested in
testing Hy : 0 = 6 against Hy; : 0 < . Specifically, defining T,,(0) = g(n)(6, — 6),

we consider the test statistic 7, (). The corresponding bootstrap p-value is p,(#) with
Pu(0) == P*(T¥ < T,,()). When the null hypothesis is true, i.e., when § = 6, with 6,

denoting the true value, we find 7,,(0) = T,,(6y) = T,, and p,(0) = p,(6o) = Pn, where
T, and p, are as defined previously. If Assumptions 1.3.1 and 1.3.1 hold under the
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null, Theorem 1.3.1 and Corollary 1.3.1 imply that tests based on H(p,(#)) have correct
asymptotic size, where H continues to denote the asymptotic cdf of p,.

To analyze power, we consider 6y = 6 + a,, for some deterministic sequence a,,. Then
a, = 0 under the null hypothesis, whereas a,, = a < 0 corresponds to a fixed alternative
and a,, = a/g(n) for a < 0 corresponds to a local alternative. Thus, we define m, =

g(n)(0y — 0) = g(n)a, so that T,,(0) = T, + m,.

THEOREM 1.3.3 Suppose Assumptions 1.5.1 and 1.5.1 hold. (i) If 7, — 7 then H(p,(0)) —4
F¢(F¢:1(U[0,1]) + 7). (i) If 7, — —oc then P(H(p,(0)) < a) — 1 for any nominal level

a > 0.

PROOF. As in the proof of Theorem 1.3.1 we have, by Assumption 1.3.1(i),

~

Pn(0) = PX(TF < T,(0)) = P*(T} — B, < T, — By + 1) = G(T,, — By + m,) + 0,(1).
If 7, — 7 then py,(0) —a Go(F, ' (Uga) +7) by Assumption 1.3.1(ii), so that

H(pa(9)) % H(G,(F; (Up ) + 7)) = Fo(F; (Upp) + 7)

by definition of H(u). If m, — —oo then () —, 0 because T, — B, = O,(1) by

Assumption 1.3.1(ii), so that H(p,(6)) =, H(0) = 0 and P(H(p,(d)) < o) — 1 for any
a > 0. U

It follows from Theorem 1.3.3(ii) that a left-tailed test that rejects for small values
of H(p,(f)) is consistent. Furthermore, it follows from Theorem 1.3.3(i) that such a test
has non-trivial asymptotic local power against © < 0. Specifically, the asymptotic local
power against 7 is given by P(H (p,(9)) < a) — F¢(F(;1(a) — 7). Interestingly, this only
depends on Fy and not on G.,. As above, to implement the modified p-value, H (p,(6)),
in practice, we would need a (uniformly) consistent estimator of H, i.e., the asymptotic
distribution of the bootstrap p-value when the null hypothesis is true. This could be either
the plug-in or double bootstrap estimators, as discussed in Sections 1.3.2 and 1.3.2.

Note that Assumption 1.3.1 is still assumed to hold in Theorem 1.3.3. That is, the
bootstrap statistic 77 is assumed to have the same asymptotic behavior under the null
and under the alternative. This is commonly the case when the bootstrap algorithm does

not impose the null hypothesis when generating the bootstrap data.

A

1.3.4 BOOTSTRAP P-VALUE BASED ON T, — B,

The double bootstrap modified p-value p,, depends only on the statistic 7,, and their
bootstrap analogues T and 7,7*. It does not involve computing explicitly B, or BZ, but in
some applications it can be computationally costly as it requires two levels of resampling.
As it turns out, p,, is asymptotically equivalent to a single-level bootstrap p-value that is

based on bootstrapping the statistic 7,, — B, as we show next.
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A

By definition, the double bootstrap modified p-value is given by p, := P*(p! < pn),

where

n

in probability, given Assumption 1.3.2. Similarly, under Assumptions 1.3.1 and 1.3.1,
P = P(T; <T,) = P (T} — B, < T, — B,) = G(T), — By) + 0,(1).

It follows that

~

Pn 1= P*@Z < ﬁn) = P*(G’Y(T; - B:L) < G~/<Tn - Bn)) + Op(l)
— P*(TF — B < T, — B,) + 0,(1)

because G is continuous. We summarize this result in the following corollary.

COROLLARY 1.3.3 Under Assumptions 1.3.1, 1.3.1, and 1.3.2, p, = P*(T — B;; <
T, — B,) + 0,(1).

Theorem 1.3.2 shows that p, —4 Up,1) and hence is asymptotically valid. In view of
this, Corollary 1.3.3 shows that removing B, from T,, and computing a bootstrap p-value
based on the new statistic, 1;, — En, also solves the invalidity problem of the standard
bootstrap p-value, p, = P*(T¥ < T,). Note that we do not require {& = 0, i.e. B, — B,
and B;; — B, do not need to converge to zero.

When B, and BZ are easy to compute, e.g., when they are available analytically as
functions of D,, and D}, respectively, Corollary 1.3.3 is useful as it avoids implementing
a double bootstrap. When this is not the case, i.e., when deriving B, and l%; explicitly
is cumbersome or impossible, we may be able to estimate B, from the bootstrap and EZ
from a double bootstrap. Corollary 1.3.3 then shows that the double bootstrap modified
p-value p,, is a convenient alternative since it depends only on 7;,, 7', and T)*. It is

important to note that none of these approaches requires the consistency of B, and B;z

1.3.5 A MORE GENERAL SET OF HIGH-LEVEL CONDITIONS

We conclude this section by providing an alternative set of high-level conditions that
cover bootstrap methods for which T* — B, has a different limiting distribution than
T, — B,. This may happen, for example, for the pairs bootstrap; see Section 1.2.1 and
Remark 1.3.6.

Assumption 1.3.1 holds with part (i) replaced by (i) T* — B, gp (1, where (7 is
centered at zero and the cdf J,(u) = P(¢; < u) is continuous and strictly increasing over
its support.

Under Assumption 1.3.5, T — B,, does not replicate the distribution of T,, — B,,. This
is to be understood in the sense that there does not exist a P*-measurable term B’n such

that 1" — Bn has the same asymptotic distribution as 7}, — B,.
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An important generalization provided by Assumption 1.3.5 compared with Assump-
tion 1.3.1 is to allow for bootstrap methods where the ‘centering term’, say B}, depends
on the bootstrap data. That is, to allow cases where there is a random (with respect
to P*, i.e., depending on the bootstrap data) term B} such that T, — B} d—*>p &1 and hence
has the same asymptotic distribution as 7,, — B,,. Clearly, this violates Assumption 1.3.1
unless B* — B, p—*>p 0 (as in the ridge regression in Section 1.2.2). However, letting ¢; be

such that B} — B, d—*>p (1 — &1, then Assumption 1.3.5 covers the former case.

REMARK 1.3.6 A leading example where T — B ﬁp &1 and hence has the same asymp-
totic distribution as T,, — B, s the pairs bootstrap as in Section 1.2.1 for the model av-

eraging example. We study this case in more detail in Section 1./.1.

The asymptotic distribution of the bootstrap p-value under Assumption 1.3.5 is given
in the following theorem. The proof is identical to that of Theorem 1.3.1, with G, replaced
by J,, and hence omitted.

THEOREM 1.3.4 If Assumptions 1.5.1 and 1.5.5 hold then p, —q4 JW(FJI(U[O71})).

Theorem 1.3.4 implies that now P(p, < u) = P(J,(F;  (Ujy)) < u) = Fy(J; () =:
H(u). Clearly, a plug-in approach to estimating this H(u) based on G, as described in
Section 1.3.2 would be invalid because G., # J, in general. However, it follows straight-
forwardly by the same arguments as applied in Section 1.3.2 that a plug-in approach
based on J, will deliver an asymptotically valid plug-in modified p-value.

To implement an asymptotically valid double bootstrap modified p-value we consider
the following high-level condition.

Assumption 1.3.2 holds with part (i) replaced by (i) T** — B* ﬂp* (1, in probability,
where (; is defined in Assumption 1.3.5.

Under Assumption 1.3.5, the second-level bootstrap statistic, 7,:* — 3’;, replicates the

distribution of the first-level statistic, 7¢ —B,. Thus, the second-level bootstrap p-value is

A

P = PU(L < T)) = P(TL — By < T — BY) = J(T; - BY) + 0, (1)

Sy (61— &) = T (F5 (Vo)

under Assumption 1.3.5. Hence, the second-level bootstrap p-value has the same asymp-
totic distribution as the original bootstrap p-value. It follows that the double bootstrap
modified p-value, p, = H,(p,) = P*(p* < pn), is asymptotically valid, which is stated

next. The proof is essentially identical to that of Theorem 1.3.2 and hence omitted.

~

THEOREM 1.3.5 Under Assumptions 1.3.1, 1.3.5, and 1.5.5, it holds that p, = H,,(pn) —a
U[O,l]'
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REMARK 1.3.7 Consider again the case with a random bootstrap centering term in Re-
mark 1.5.0, where B} — En gp C1 — & such that Ty — B gp & . Within this setup, we
can consider double bootstrap methods such that, for a random (with respect to P**) term
Br* we have T* — B}* d—>**p* &1, in probability. Thus, the asymptotic distribution of the
second-level bootstrap statistic mimics that of the first-level statistic. When B}* and ¢y
are such that B}* — B:; ﬁp* (1 — &1, in probability, then Assumption 1.5.5 is satisfied. As

i Remark 1.3.6 this setup allows us to cover the pairs bootstrap.

1.4 EXAMPLES CONTINUED

In this section we revisit our three leading examples from Section 1.2, where we argued
that standard boostrap inference is invalid due to the presence of bias. In this section we
show how to apply our general theory in each example. Again, we refer to Appendix A.2

for detailed derivations.

1.4.1 INFERENCE AFTER MODEL AVERAGING

FIXED REGRESSOR BOOTSTRAP. Extending the arguments in Section 1.2.1, we obtain

the following result.

LEMMA 1.4.1 Under regularity conditions stated in Appendix A.2.1, Assumptions 1.3.1
and 1.3.1 are satisfied with (§&1,&) ~ N(0,V), where V = (v;;),4,5 = 1,2, is positive

definite and continuous in w, o2, and Ly = plim Sy .

By Lemma 1.4.1, the conditions of Theorem 1.3.1 hold with G.(u) = ®(u/vy;) and
Fy(u) = ®(u/vq), where v3 = v1; + vg2 — 2012 > 0. Then Theorem 1.3.1 implies that the
standard bootstrap p-value satisfies p, —4 ®(m®~*(Ujp,1))) with m? := v3/v?. Because
w is known and o2, Xy are easily estimated, a consistent estimator 7, —, m is avail-
able, and the plug-in approach in Corollary 1.3.2 can be implemented by considering the
modified p-value, p, = ®(1,, ' ®1(p,)). Inspection of the proofs shows that our modified
bootstrap approach is asymptotically valid whether ¢ is fixed or local-to-zero. In the for-
mer case, B, is O,(n'/?) rather than O,(1), implying that B, diverges in probability and
3, is not even consistent for 8. Despite this, the modified bootstrap p-value is asymp-
totically valid.

Alternatively, we can implement the double bootstrap as in Section 1.3.2. Specifically,
let

Y = afl + 208 + &,

’

where e**|{D,,, D%} ~ N(0,6721,), (8,0 ,6*2)is the OLS estimator obtained from the

nr’n’vn

full model estimated on the first-level bootstrap data, and D} = {y*, W}. The double

bootstrap statistic is 7 := n"/2(35* — %), where B:* = YN w,. B, with B, =

Syez Suy.z, defined as the double bootstrap OLS estimator from the m™ model. The
double bootstrap modified p-value is then p, = P*(p! < p,) with p = P**(T** < T%).
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LEMMA 1.4.2 Under the conditions of Lemma 1./.1, Assumption 1.5.2 holds with B;; =
Q,n'/%5%.

Lemma 1.4.2 shows that Assumption 1.3.2 is verified in this example. The asymptotic
validity of the double bootstrap modified p-value now follows from Lemmas 1.4.1 and 1.4.2
and Theorem 1.3.2.

PAIRS BOOTSTRAP. For the pairs bootstrap we verify the high-level conditions in Sec-
tion 1.3.5. To simplify the discussion we consider the case with scalar z; in (1.2.1) and
where we “average” over only one model (M = 1), which is the simplest model in which
z; is omitted from the regression. That is, we estimate [ by regression of y on z, i.e., Bn =
S-1S,,. In this special case, T}, — B, —4 N(0,v?) with v? = ¢?¥} and B,, = S;1S,.n'/?6.

LEMMA 1.4.3 Under regularity conditions stated in Appendix A.2.1, it holds that T); —
B, ﬂp N(0,v% + K2), where By, := S;15,.n"%6, and K2 = d,(6)S,d,(8) with d,.(5) :=
S(E L =225,

xT )

Notice that, in contrast to the FRB, the asymptotic variance of 7T; fails to replicate

that of T, because of the term &2

> 0. This implies that the methodology developed
in Theorem 1.3.1 and its corollaries no longer applies. Instead we can apply the the-
ory of Section 1.3.5. In particular, Lemma 1.4.3 shows that Assumption 1.3.5(i) holds
in this case with (; ~ N(0,v* + k?). Lemma 1.4.3 also shows that B, is the same for
the pairs bootstrap and the FRB, such that Lemma 1.4.1 shows that Assumptions 1.3.1
and 1.3.1(ii) are verified. This implies that Theorem 1.3.4 holds for this example. Using
similar arguments, it can be shown that Assumption 1.3.5 also holds for this example,
which would imply that the double bootstrap p-values are asymptotically uniformly dis-
tributed.

Under local alternatives of the form 8y, = B+an~"/2, where /3 is the value under the null
(Section 1.3.3), the asymptotic local power function for the modified p-value is given by
P(d1(a)—a/vy); see Theorem 1.3.3. Tt is not difficult to verify that this is the same power

function as that obtained from a test based directly on 3, from the full model (1.2.1).

1.4.2 RIDGE REGRESSION
To complete the example in Section 1.2.2, we can proceed as in the previous example.
LEMMA 1.4.4 Under the null hypotheses and the reqularity conditions stated in Ap-

pendiz A.2.2, Assumptions 1.3.1 and 1.5.1 are satisfied with (&1,&) ~ N(0,V), where

V= (vij),4,7 = 1,2, is positive definite and continuous in co, 02, and 3.

Asin Section 1.4.1, Lemma 1.4.4 and Theorem 1.3.1 imply that the standard bootstrap
p-value satisfies p, —4 ®(m® (U 1)), where we now have m? = (¢/S,1%,,5,1g) "' ¢'S, 1g.
Note that this result holds irrespectively of 6 being fixed or local to zero. Thus, the
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bootstrap is invalid unless ¢y = 0 which implies m = 1. For the plug-in method, a sim-
ple consistent estimator of m is given by m?2 := (¢’S:1S,.5.1g)"1¢'S= g, and inference
based on the plug-in modified p-value p, = ®(m,, ' ®~*(p,)) is then asymptotically valid
by Corollary 1.3.2.

To implement the double bootstrap method, we can draw the double bootstrap sample
{y* x5t =1,...,n} as i.i.d. from {y/,z};t = 1,...,n}. Accordingly, the second-level
bootstrap ridge estimator is é;;* = Sx*iw**Sx**y** with associated test statistic 1" :=
n'/2g/ (62 — %), which is centered at the first-level bootstrap OLS estimator, 6%. It is
straightforward to show that, without additional conditions, Assumption 1.3.2 holds.

LEMMA 1.4.5 Under the conditions of Lemma 1.4./, Assumption 1.5.2 holds with é;; =
—c,n Y2/ STL 0

Validity of the double bootstrap modified p-value p,, = P*(p;, < p,) now follows by
application of Theorem 1.3.2.

1.4.3 NONPARAMETRIC REGRESSION

Again, we complete the example in Section 1.2.3 by proceeding as in the previous exam-

ples.

LEMMA 1.4.6 Under reqularity conditions stated in Appendiz A.2.5, Assumptions 1.5.1
and 1.3.1 are satisfied with (&1,&)" ~ N(0,V), where V' := (v5),4,j = 1,2, is positive

definite and continuous in o® and the kernel function.

As before, Lemma 1.4.6 and Theorem 1.3.1 imply that the standard bootstrap p-value
satisfies p, —q4 ®(mP 1 (Up1])), where we now have m? := 4+ ([ K*(u)du) ([ ([ K(s—
uw)K(s)ds)*du — 4 [ K(u) [ K(u — s)K(s)dsdu). Thus, in this example, m need not be
estimated because it is observed once K is chosen. Therefore, valid inference is feasible
with the modified p-value p, = H(p,) = ®(m1®"(p,)); see Corollary 1.3.1.

We can also apply a double bootstrap modification. Let y;* = B;(xt) +ef t =
1,...,n, where e/*|{D,,, D} ~ iid.N(0,67%) with D} := {y;,t = 1,...,n} and 52
denoting the residual variance from the first-level bootstrap data. The double bootstrap
analogue of T), is T** := (nh)Y/%( A**( ) — Bi(x)), where Gi*(x) = (nh)™' S0 k™
This can be decomposed as T;* = &, + B, where B} := (nh)'/?((nh)"' 1, ko B (24) —
Br(x)). Unfortunately, although &1, satisfies Assumption 1.3.2(i), B* does not satisfy
Assumption 1.3.2(ii). The reason is that BX — B, = Eon t By, — B, where &5, satisfies
Assumption 1.3.2(ii), but By, := (nh)"' 3.1, kB (x;) is a smoothed version of B,
(evaluated at ;) and although Bg,n — B,, is mean zero it is not 0p(1). However, B%n —- B,
is observed, so this is easily corrected by defining T := T** — (B, — B,). Then we

have the following result.
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LEMMA 1.4.7 Under the conditions of Lemma 1.4.6, Assumption 1.3.2 holds with T*
and B? replaced by T** and B := B* — (By,, — B,), respectively.

The validity of the double bootstrap modified p-value p, = P*(p; < p,), where
pr = P(T < T7), follows from Lemma 1.4.7 and Theorem 1.3.2. This in turn implies
that confidence intervals based on the double bootstrap are asymptotically valid; see also
Remark 1.3.4. We note that Hall and Horowitz (2013) also proposed, without theory, a
version of their calibration method based on the double bootstrap. Our double bootstrap-
based method for confidence intervals corresponds to their steps 1-5, and where we need
a correction they have instead a step 6 in which they average over a grid of z.

Finally, under local alternatives of the form By(x) = 3 + an~%/°, where f3 is the value
under the null (Section 1.3.3), the asymptotic local power function for the modified p-
value is given by ®(®~!(a) —a/vy); see Theorem 1.3.3. Alternatively, we could consider a
“bias-free” test based on undersmoothing; that is using a bandwidth h satisfying nh® — 0
such that B, — 0 and inference can be based on quantiles of &, ~ N(0,v%). In contrast

-2/5

to our procedure, however, such a test has only trivial power against 3 + an because

(nh)Y2an=2/5 = 0.

1.5 CONCLUDING REMARKS

In this paper, we have shown that in statistical problems involving bias terms that can-
not be estimated, the bootstrap can be modified to provide asymptotically valid infer-
ence. Intuitively, the main idea is the following: in some important cases, the bootstrap
can be used to ‘debias’ a statistic whose bias is non-negligible, but when doing so ad-
ditional ‘noise’ is injected. This additional noise does not vanish because the bias can-
not be consistently estimated, but it can be handled either by a ‘plug-in” method or by
an additional (i.e., double) bootstrap layer. Specifically, our solution is simple and in-
volves (i) focusing on the bootstrap p-value; (ii) estimating its asymptotic distribution;
(iii) mapping the original (invalid) p-value into a new (valid) p-value using the prepiv-
oting approach. These steps are easy to implement in practice and we provide sufficient
conditions for asymptotic validity of the associated tests and confidence intervals.

Our results can be generalized in several directions. For instance, there is a growing
literature where inference on a parameter of interest is combined with some auxiliary in-
formation in the form of a bound on the bias of the estimator in question. These bounds
appear, e.g., in Oster (2019) and Li and Miiller (2021). It is of interest to investigate
how our analysis can be extended in order to incorporate such bounds. Other possible
extensions include non-ergodic problems, large-dimensional models, and multivariate es-

timators or statistics. All these extensions are left for future research.
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CHAPTER 2

IMPROVED INFERENCE FOR
NONPARAMETRIC REGRESSION AND
REGRESSION-DISCONTINUITY DESIGNS

(written with Giuseppe Cavaliere, Silvia Gongalves and Morten
Orregaard Nielsen)

2.1 INTRODUCTION

Nonparametric regression for the analysis of (possibly) non-linear economic data have a
long tradition. This class of models has the appealing property of relaxing the assumption
of linearity of the conditional expectation function of the dependent variable without the
need of imposing any parametric structure on its functional form. One of the most im-
portant applications of nonparametric regression is the Regression-Discontinuity Design
(RDD); a popular tool for the analysis of quasi-experimental phenomena. On the one
hand, RDDs have proven to be a reliable method for applied researchers (see, e.g., Black,
1990; Angrist and Lavy, 1999; and Chay et al., 2005), but on the other hand, method-
ological challenges have raised the attention of theoretical research (see, e.g., Hahn et al.,
2001; Imbens and Kalyanaraman, 2012; Calonico et al., 2014; and Imbens and Lemieux,
2008, for a detailed review).

One of the main methodological issues in estimating (possibly) non-linear conditional
expectations is that the popular choice of the local polynomial estimator — despite be-
ing consistent — is asymptotically biased when implemented with a mean-squared-error-
minimizing bandwidth, and this poses a crucial challenge for inference. One possibility to
deal with such asymptotic bias is the use of undersmoothing bandwidths, for which the
bias term is asymptotically negligible. However, this implies inefficiency of the local poly-
nomial estimator and is in contrast with most bandwidth selectors, which typically tend to
pick “large” bandwidths; see Calonico et al. (2014) for a detailed discussion. Another way

to deal with the asymptotic bias is direct bias estimation, which generally involves local
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polynomial estimation of higher-order derivatives of the conditional expectation function.
Direct bias estimation has generally proven to be outperformed by undersmoothing tech-
niques when constructing confidence bands for kernel-based estimators (see Hall, 1992,
1993). However, recent important contributions by Calonico et al. (2014, 2018) has proven
that proper studentizations of the test statistic to appropriately account for the variabil-

ity of the bias estimator drastically improves the performance of “direct” bias correction.

The bootstrap is generally considered a useful tool for bias correction. However,
invalidity of “standard” bootstrap methods for the estimation of smooth regression curves
is a well-known issue when dealing with kernel-based estimators. Such invalidity is due
to the fact that the bootstrap test statistic, say 77, is not able to mimic the asymptotic
bias of the local polynomial estimator when a “large” bandwidth is considered, resulting
in an asymptotic distribution which is random in the limit. Other than undersmoothing,
which makes the asymptotic bias negligible both for the asymptotic and the bootstrap
statistic, the literature on nonparametric regression has explored various possibilities to
remove randomness in the limit distribution of 7¥ in order to restore “standard” bootstrap
validity. Héardle and Bowman (1988) show the validity of bootstrap confidence bands
based on a version of 7" which is centered at a consistent estimator of the asymptotic
bias B. Hérdle and Marron (1991) propose a fixed-regressor bootstrap in which the
conditional expectation of the bootstrap dependent variable is an oversmoothed version
of the local polynomial estimator, guaranteeing consistency of the bootstrap bias to B
and standard bootstrap validity. However, both these approaches require calibration of
two different bandwidths and suffer from undercoverage in finite samples. An approach
more related to ours is that considered by Hall and Horowitz (2013), which focuses on
an asymptotic theory-based confidence interval and applies the bootstrap to correct its
coverage probability. However, their approach is asymptotically conservative and only

over a subset of the support of x that does not include boundary points.

We propose a novel bootstrap-based approach to obtain asymptotically valid (unbi-
ased) inference in nonparametric regression and RDD, which does not involve neither un-
dersmoothing nor direct bias estimation. Our method is based on the concept of prepiv-
oting, originally proposed by Beran (1987, 1988) to deliver asymptotic refinements and
recently considered by Cavaliere et al. (2024) in the context of asymptotically biased es-
timators. The idea of prepivoting is the following. Even if the bias of the bootstrap test
statistic does not converge in probability to the asymptotic bias, thus implying invalidity
of the bootstrap using “standard” arguments, the distribution of the bootstrap p-value
often does not depend on the original bias, but only on some nuisance parameters for
which consistent estimation is possible. In such cases, the distribution of the bootstrap
p-value is not uniform, not even for large samples (thus motivating the need for “non-
standard” bootstrap algorithms), but its cdf can be uniformly estimated; see Cavaliere et
al. (2024). We show that valid two-sided confidence intervals (CIs) can therefore be ob-
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tained by replacing the nominal levels 1 — a/2 and «/2, « € (0,1), in “standard” boot-
strap Cls, with the inverse of such a uniformly consistent estimator evaluated at 1 — a/2
and «/2. Specifically, we present two bootstrap algorithms, which we label the local poly-
nomial (LP) and fixed-local (FL) bootstraps, that both deliver ClIs with asymptotically
correct coverage through prepivoting. Of course, even though we restrict our attention
to these two algorithms, the application of prepivoting is not exclusive to them.

In the context of estimation of the conditional expectation at a fixed point x of the de-
pendent variable in a bivariate, cross-sectional dataset, the LP bootstrap is based on the
commonly considered fixed-regressor wild bootstrap algorithm in which the conditional
expectation (conditionally on the original data) of the bootstrap dependent variable is a
different local polynomial estimator at each observation point. This or analogous boot-
strap algorithms are widely considered in the statistics literature; see, for instance, in
Hérdle and Bowman (1988), Hérdle and Marron (1991) and Hall and Horowitz (2013).
We show that standard bootstrap validity does not hold in this setup when a “large”
bandwidth is selected and propose prepivoting as a possible solution. Interestingly, we
show that “standard” prepivoting (i.e., as presented in Cavaliere et al., 2024) is not suffi-
cient to delivier valid confidence intervals when z is a boundary point. Indeed, we prove
that in such cases the large-sample distribution of the bootstrap p-value still depends on
the asymptotic bias. Therefore, we propose a “modified” prepivoting approach based on
a simple modification of the bootstrap test statistic involving known sample quantities.
This modification ensures that the large-sample distribution of the bootstrap p-value is
not a function of the asymptotic bias. Crucially, the “modified” prepivoting approach is
valid both for interior and boundary points.

The overall idea of the FL bootstrap is similar, but the bootstrap conditional expecta-
tion function is based on a single Taylor series approximation of the original conditional
expectation at x, where the coefficients of the Taylor series are estimated via local poly-
nomial estimation. If this local polynomial order is larger than that considered to derive
the original test statistic, we show that the bootstrap bias is not consistent for the orig-
inal bias, but it does allow the application of “standard” prepivoting without the need
for any modification, both for interior and boundary points.

Our contribution to the literature is threefold. First, we show that bootstrap validity
can be restored in the context of local polynomial estimation of regression curves without
the need of undersmoothing or direct bias correction, via the use of prepivoting for the
LP and FL bootstrap algorithms. Second, we compare the efficiency properties of the two
bootstrap methods. Finally, we show that the FL bootstrap-based prepivoted Cls are
asymptotically equivalent to those obtained via robust bias correction (RBC), the leading
approach in the literature proposed by Calonico et al. (2014, 2018). By combining the
second and the third contribution, we show that the LLP bootstrap-based prepivoted Cls
are asymptotically more efficient than those obtained through RBC and are about 20%
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shorter.

The remainder of this paper is organized as follows. In Section 2, we describe the idea
of prepivoting in nonparametric regression. In Section 3, we first present the estimators
and review the asymptotic theory. We then present the LP and FL bootstrap algorithms
and formalize the validity of their prepivoted Cls. We conclude the section by compar-
ing their efficiency and relating them with the RBC approach. In Section 4 we show the
applicability of our method to (sharp) RDD. Finally, in Section 5 we assess the perfor-
mance of our methods in finite samples via the results of Monte Carlo simulations, and

Section 6 concludes. All technical derivations are included in the Appendix.

NOTATION

Throughout this chapter, the notation ~ indicates equality in distribution. For instance,
Z ~ N(0,1) means that Z is distributed as a standard normal random variable. We write
‘z =y’ and ‘y =: 2’ to mean that x is defined by y. The standard Gaussian cumulative
distribution function (cdf) is denoted by ®; Uy is the uniform distribution on [0, 1], and
Iy is the indicator function. If F is a cdf, F'~! denotes the right-continuous generalized
inverse, i.e., F7!(u) := sup{v € R : F(v) < u}, u € R. Unless specified otherwise, all
limits are for n — oco. To define a matrix A we write A := (a;;) meaning that a;; is the
(i, j)-th element of A, and if A is a variance matrix we use the convention that a; = a?.
If fo and f; are a left-continuous and a right-continuous function, respectively, we write
fo(0—) for lim,qo fo(z) and f1(0+4) for lim, o f1(x).

For a bootstrap sequence, say Y,*, we use Y p—*>p 0, or equivalently Y,* LN 0, in
probability, to mean that, for any € > 0, P*(|Y,"| > €) —, 0, where P* denotes the
probability measure conditional on the original data D,,. An equivalent notation is Y* =
0p+(1) (where we omit the qualification “in probability” for brevity). Similarly, we use
Y gp &, or equivalently Y* LR &, in probability, to mean that, for all continuity points
u € R of the cdf of £, say G(u) := P({ < u), it holds that P*(Y, <u) — G(u) —, 0.

2.2 PREPIVOTING IN NONPARAMETRIC REGRESSION

We consider the problem of inference on an unknown smooth function g at a fixed point
x. In a standard nonparametric regression, g(x) is defined as the conditional expectation
E [y;|x; = x] for an observed bivariate random sample D,, = {(y;,2;) : i = 1,...,n}.
Suppose a consistent estimator §,(x) = g,(z;h, D,, K) — indexed by a bandwidth h =
h(n) > 0 and a kernel function K — of g(x) exists, a popular choice for g,(z) being
a local approximation of g(x) to a polynomial of order p. Inference based on g,(x) is
typically challenging due to the presence of an asymptotic bias. For instance, letting
T, := vV/nh(gn(x) — g(x)), the standard confidence interval

Clys = [gn(z) — (nh) 0, ® (1 — a/2), Gu(x) — (nh)_l/va@_l(a/Qﬂ (2.2.1)
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is such that P (g(z) € Cl,s) = 1 — a, for some «a € (0, 1), if and only if the condition
oM, 4 N(0,1) (2.2.2)

holds. However, it is typically the case that (2.2.2) is only satisfied under “undersmooth-
ing” choices of the sequence of bandwidths A — which the label “us” in (2.2.1) refers to.
Unfortunately, most bandwidth selectors tend to opt for choices of h which are larger
than the undersmoothing bandwidths (see Calonico et al., 2014, for a detailed discussion
on the issue), leading to

oI T, 4 N(vr'B, 1) (2.2.3)

where v; is such that vy, = v; + 0,(1) and B = B(x,¢®*Y(z), K) is an asymptotic bias
with ¢+ denoting the (p + 1)-th order derivative of g.

We propose valid confidence intervals based on the bootstrap. Bootstrap inference
in the context of nonparametric regression is challenging, as the bias of the bootstrap
estimator is typically not able to mimic the behavior of the “true” bias B, not even
asymptotically; see, e.g., Hardle and Marron (1991). To see why, let D = {(y,z}) : i =
1,...,n} be a bootstrap sample and ¢} (x) = g,(z; h, D}, K) be the associated bootstrap

estimator. A natural candidate for a bootstrap confidence interval would then be:
Clius 1= |Gul) = (nh) 2L (1 = 0/2), Gu(@) = (k) 2L (/2)] (2.2.4)

where Ly, (u) := P*(T* <) with T* := Vnh (§:(x) — gn(z)). Similarly to CI,, also
Cly s delivers asymptotically correct coverage when h converges to zero sufficiently fast,

ensuring that
o T L) N(0,1) (2.2.5)

so that the bootstrap is said to be valid through standard arguments. On the contrary,
when a “large” bandwidth is selected, letting £, = v/nh (§%(x) — E* [§%(x)]) and B, :=
Vnh(E*[§2(2)] = Gn(x)), we have that vy ¢ £>p N(0,1) but B, # B +o0,(1). As shown
in Section 3, B, actually converges in distribution to a Gaussian random variable with
variance v3 > 0 and might not even be centered at B. Therefore, the distribution of T is
random in the limit and the bootstrap cannot be justified through standard arguments,

see Cavaliere and Georgiev (2020).

We here show that the bootstrap can be used to deliver asymptotically valid confi-
dence intervals even when a “large” bandwidth is selected, without an explicit bias cor-
rection. Our approach is based on Beran’s (1987, 1988) prepivoting idea, recently dis-
cussed in Cavaliere et al. (2024). We show conditions under which a simple change of

the significance levels in (2.2.4) is sufficient to deliver confidence intervals with asymp-
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totically correct coverage. Specifically we propose the prepivoted confidence intervals:

CT = [gnlw) = (nh) 2L (A1 (1= 0/2)) , gulw) = (nh) 215" (A, (0/2))]
(2:2.6)
such that the values 1 — /2 and /2 in (2.2.4) are replaced by H;'(1 —a/2) and
H;' (a/2), respectively, where H,(u) is a uniformly consistent estimator of H(u), i.e. the

large-sample distribution function of the bootstrap p-value p,,, where p, := P* (T < T,).
The intuition is the following. Even if the distributions of 7}, and 77" depend on the

value of the unknown bias term B, we find conditions under which H does not. Therefore,
even if H is not uniform (condition which holds if the bootstrap is valid using “standard”
arguments), it only depends on nuisance parameters which are relatively easy to estimate,

with their estimation not requiring the calibration of additional tuning tools. Therefore,

~

P <g(x) e 6*7) —P (L;l (ﬁn—l (a/2)> <T, <L (ﬁf,;l (1- a/2)>>
=P (£, (a/2) < po < B, (1= 0/2)
:P<a/2§ﬁn(ﬁn) < 1—a/2) S 1-a

where the convergence is given by the fact that uniform consistency of H(u) to H(u)
implies H, (py) 4 Up,1; see Cavaliere et al. (2024).

In the setup of nonparametric curve estimation, we find that a crucial condition for
H not to depend on B is that the large sample distribution of B, is centered at B.
We find that for some bootstrap DGPs and test statistics, this is not always the case
and show proper modifications of L,, which allow such condition to be satisfied. In this
regards, notice that prepivoting does not restrict to a single specifications of D} and L.
In Section 3 we implement prepivoting through two different procedures, namely the LP
and FL bootstraps, which indeed imply different specifications of D} and ﬁn, and the

applicability of prepivoting to alternative bootstrap procedures is left for future research.

2.3 MAIN RESULTS

In this section we show the main results of this paper. Specifically, in Section 3.1 we
introduce the considered DGP, the main assumptions and the estimator. In Section 3.2
and 3.3 we implement our prepivoted confidence intervals via two different bootstrap
methodology, the LP and FL bootstrap, respectively. In Section 3.4 we analyze the

efficiency properties of the prepivoted confidence intervals.

2.3.1 REVIEW OF ASYMPTOTIC THEORY

Let D,, :== {(yi,x;) : i = 1,...,n} be a random sample from the model
ylzg(xz)+€za izl)"'ana
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where E (g;|x;) = 0, V (g4|z;) =: 0 (x;), x; is a random variable with bounded support
S = [a,b], (a,b) € R?, and pdf f(x) such that f : S, — (0,+0c0), while g is a smooth
function such that ¢ : S, — R. We consider local polynomial estimation of g at a
fixed point x. For the seek of simplicity of exposition, we here make the normalization

[a,b] = [0, 1] and restrict to the most popular case of the local linear estimator, given by
in () = & (ZLWoZ,) ™" ZL Wy,

where ¢} := (1,0), y :== (Y1, ¥n)'s Z1z := (Z1a1s o Z1en)'s Zrwi = (1, (x; — x)/h))" and
W(z) := diag(h 'K ((x1 — z)/h), ..., h 'K ((x, — x)/h)). Letting

Z/ mZ T - i
wi(z) = ¢, (#) ZuK (x - x) , (2.3.1)

we can rewrite g,(x) as
R 1
gn(z) = h ;wz‘@)yz‘,

We now focus on the asymptotic behavior of g, (z) when properly centered and scaled.
We provide results for both interior points and points on the boundary of the support of
x. Although these results are well-known in the literature, they are useful for deriving
our bootstrap results and hence we summarize them here.

We make the following assumptions.
AssuMPTION 2.3.1 (i) (y;,x;) are i.i.d. such that E(ef|z; = z) < +oo; (i1) g: S, = R
is three times continuously differentiable, and (iii) o*(z) = V (yilx; = x) is continuous

and bounded away from zero.

ASSUMPTION 2.3.2 The function K : R — [0,+00) is a symmetric, continuous and
bounded function on (—1,1) which equals zero outside the interval [—1,1]. In addition,

we assume that K is a second-order kernel function such that fil K (u)du = 1.

ASSUMPTION 2.3.3 The bandwidth h = h(n) is such that h — 0 as n — oo and nh®> — k

for some Kk € [0, +00).

Let T, := vVnh(g,(z) — g(x)), note that we can decompose T,, into a “bias” and a
“variance” component,
T, =B, + flna

where
1 - 1 n
B, = \/ﬁ Zzlwz(J?)[g(ZL’z) - g(l‘)] and £1n = \/ﬁ ZZIMZ(x)gz

The variance component &,, drives the asymptotic Gaussianity of 7T;,, whereas B,, is a
bias term that shifts this asymptotic distribution away from zero. Let X, := (z1, ..., x,)’

and v? =V (&,]X,), then the following proposition holds.
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PROPOSITION 2.3.1 Let Assumptions 1-3 hold, then:

2.3.2 LP BOOTSTRAP

Consider a fixed-regressor wild bootstrap DGP of the form:
yr = gnlz;) +f (2.3.2)

where ¢f := £;e, such that ¢; are the leave-one-out residuals €; := y; — g, —i(x;), and e} is
a iid random variable, conditionally on the original data, satisfying E*[e}] = 0, E*[e}?] = 1
and E*[e}*] < co. As for the asymptotic test statistic, we focus to the case in which the
bootstrap conditional expectation function is based on a local linear estimator. Note that
fixed-regressor bootstrap DGPs of this or similar forms have been widely adapted to the
problem of bootstrapping a kernel-based estimator in nonparametric regression; see, e.g.,
Hérdle and Marron (1988), Hardle and Bowman (1991) and Hall and Horowitz (2013).

The local linear bootstrap estimator is then:
gn(2) = (21, W Z10) " (21, Way)

where y* := (v, ...,y:)"; moreover, we let 7' := vnh (g:(x) — gn(z)). It is well known
that standard bootstrap validity does not generally apply to this setup as 7} does not
mimic the asymptotic bias of T, making the confidence intervals (2.2.4) invalid unless

k = 0. Indeed, by letting g, := (Gn(21), .-, gn(xy,))’, we have that the bootstrap bias
By := Vnh (E* [35(2)] = gu(2) = Vb [(Z,WaZe) (2, Wabn) = dn(@)]

is such that T — B, is asymptotically Gaussian and centered at zero, with asymptotic
variance equal to the asymptotic variance of &;,,, but B, — B, # 0p(1). We formalize the

first result in the following proposition.
PROPOSITION 2.3.2 Let Assumptions 1-8 hold, then,
1 es e By dF
Ul,:zfln = Ul,i(T — B,) —, N(0,1).

n

In order to analyze the asymptotic behavior of Bn — B,,, we note that also Bn can be

split into a “bias” and “variance” component. Specifically, we write:

T o) S et~ St

1 1 1
+ m - wl(x) (E ij(:ci)aj - % sz(a:)sz>

= B2n + £2n
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B, is a stochastic term driving the expectation of B,,, whereas &9, is an asymptotically
Gaussian random variable centered at zero. Intuitively, if By, converged in probability to
B :=plim,_, B, and &, was asymptotically negligible, then standard bootstrap valid-
ity would apply and the confidence intervals in (2.2.4) would deliver asymptotically cor-
rect coverage. In this specific setup, we note that both such conditions can be violated,
justifying the need for alternative implementations of the bootstrap. We start by consid-
ering the behavior of &y,. Let &, := (&1n, o) and Vip, = V(&,|AX,) = (vijn), then the

following proposition holds.

PROPOSITION 2.3.3 Let Assumptions 1-3 hold, then: (i)
Viphi€n = N(0, I);
(i) moreover, if x is an interior point,
VLP,n £> Vip;

whereas if x is a boundary point,

P
Vipn = Vip

where Vip := (vijLp) and Vip = (Uij.p), with vopp, V2 p > 0, are defined in Appendix
B.

REMARK 2.3.1 Proposition 2.5.3 shows a joint convergence in distribution argument for
&n, making a distinction between interior and boundary points (we here focus on left-
boundary points for simplicity of exposition, though the analysis for right-boundary points
is analogous). In Proposition 2.5.3, as well as in the results below, we refer to boundary
points as left-boundary points, i.e. with x = 0, for simplicity of exposition, though the

conclusions are equivalent for the case x = 1.

Note that, even if the limit of V; p,, changes depending on the location of z, there exist
estimators such that they adaptively converge in probability to Vyp when x is an interior
point and to Vzp when z is a boundary point. Such estimators are typically based on a
feasible version of Vi p,,, which replaces the unknown quantity o?(z) by some functions
of the estimated residuals; see, e.g., Calonico et al. (2018) and Bartalotti (2019). For

instance, let ‘A/Lp’n := (0yj,Lpn), Where
~ 1 < i i(z)w;
Vipn = — ( v @ wile)w m) £ (2.3.3)
n . .
=1

and w(z;) := (nh) ™' Y77 (wj(w)w;(x;) — wi(x)). Then, Vibm — Vipn = 0p(1).
We now consider B,, and show that it may not converge in probability to the same

limit as B,,. To motivate this statement, note that a standard result in nonparametric
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regression states that

"
Bn = BAT,n + Op(l), BAT,n =V nh5g éx) Cn (234)

where C,, = Cy,(z) := (nh) "' >0 wi(x)((x; — x)/h)?. A similar expansion can be made

for B,,, for which we note that:

1"
B2n = BLP,n + OP(l), BLP,n =V nh5g ;l') an (235)

where Cy,, = Cy,(x) := (nh)~' 37" w;(2)C,(x;). Hence, the limit of By, — B, is driven
by the limit of Cs,, — C),. Crucially, we find that such limit depends on the distance of x

to the boundaries of S,, as formalized by the following proposition.

PROPOSITION 2.3.4 Let Assumptions 1-3 hold, then: (i) if x is an interior point,
Con —Cp=0y(1) = Bay,— B, =0,(1)
(i) if x is a boundary point,
Cop — Cy #0y(1) = By — B, =A+0,(1)

where A = \/EW(CQ — C) such that Cy = plim,,—y . Ca, and C = plim,_,  C,, are
defined in Appendiz B.

Table 2.1: Limits of C,,, Cy, and C,,/Cy, for different choices of K.

‘ Interior Boundary
K ‘ C Co C/Cy ‘ C Co C/Cy
Triangular 0.1667 0.1667 1.0000 | -0.1000 -0.0710 1.4082
Uniform 0.3333 0.3333 1.0000 | -0.1667 -0.1389 1.2000
Epanechnikov | 0.2000 0.2000 1.0000 | -0.1158 -0.0853 1.3571
Biweight 0.1429 0.1429 1.0000 | -0.0886 -0.0624 1.4211
Triweight 0.1111 0.1111 1.0000 | -0.0718 -0.0493 1.4551

Propositions 2.3.3 and 2.3.4 show the two limiting sources of the invalidity of the
“standard” confidence intervals C'; . Standard invalidity of C'I; ,s can be view through
the lenses of the distribution of the bootstrap p-value p, := P (T < T,,). Indeed, to allow
Cly s to be valid, the bootstrap p-value should be uniformly distributed:

P(g(x) € Clyws) =P(a/2<pn<1—0/2) = 1—a, Yae(0,1) & p,SUgy

However, this is not true due to the results in Propositions 2.3.3 and 2.3.4. The limit

distribution of p,, is derived as follows.
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PROPOSITION 2.3.5 Let Assumptions 1-3 hold, then: (i) if x is an interior point,

Pu 5 @ (mp®" (Ug)) (2.3.6)

where mrp = \/UiLP + v%}LP — 2u19.Lp/v1Lp; and (i) if © is a boundary point,

pn L @ (arp + mrp® ! (Upy)) (2.3.7)

.. _ .o .. o .o e ..2 ..2 .. ..
where arp — A/Ul,LP and mrp = Ud,LP/Ul,LP = \/vl,LP + v2,LP — 2U127Lp/?}17Lp.

Proposition 2.3.5 shows that the bootstrap p-value would be uniformly distributed -
both for interior and boundary points - if and only if: (1) mpp = myp = 1; and (2)
arp = 0. We can see from Proposition 2.3.3 that (1) is violated because vy p, Vo rp > 0,
i.e., the bootstrap bias does not have a probability limit; moreover, (2) is violated because
the convolution term Cf,, entering the definition of By p,, implies that darp # 0.

We here propose prepivoting as a way to restore bootstrap validity. Specifically, we
show that our prepivoted confidence intervals (2.2.6) are able to provide asymptotically
correct coverage without the need to directly estimate B and despite the invalidity sources
arising from Proposition 2.3.3 and 2.3.4. Additionally, the procedure does not require
additional tuning parameters. As depicted in Section 2, our approach is based on the
inversion of a uniformly consistent estimator the cdf of p,. We see that “standard”
prepivoting — i.e., as considered in Cavaliere et al. (2024) — can restore validity of the
bootstrap when (1) is not satisfied, but is not sufficient if invalidity arises from the
violation of condition (2). Therefore, it can only be applied for interior points in the sense
of Remark 2.3.1. However, as we will show below, a “modified” prepivoting approach can
be applied to restore validity without ex-ante knowledge about the location of x relatively
to the boundaries of its support.

We first consider the case in which x is an interior point. Proposition 2.3.5 implies that
P(p, <u)—P (<I> (mLp<I>_1 (U[O,l])> < u) =P (U[OJ} <o (mzllg@_l (u))) =o (m;}ﬂfl (u)) =: H(u)

Therefore, even if the distribution of p,, is not uniform because mpp # 1, uniformity can

be retrieved by applying its cdf transform, i.e.:
L\ d
H(pn) = Up,

As depicted in Proposition 2.3.3, H does not depend on the value of B, but only on nui-
sance parameter for which consistent estimation is possible and does not involve calibra-
tion of additional tuning parameters; see (2.3.3). Hence, letting m,, := (@%,LP,n + @%LP’n —

2012.1,pn) 2 /01.1.pm, & uniformly consistent estimator of H is
Hipn(u) = (Mpp,® " (u)) (2.3.8)
Valid confidence intervals can thus be based on H,, as stated in the following theorem.
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THEOREM 2.3.1 Let Assumptions 1-3 hold and x be an interior point, then
P(g($) = &Lp> —1—a, ac(0,1)

where CA’JILP is the prepivoted confidence interval in (2.2.0) with ﬁn = ngm and [:n the
probability distribution (conditional on the data) of the LP bootstrap statistic T .

We now move to the case in which z is a boundary point. In this scenario, “standard”
prepivoting is not able to restore bootstrap validity as it cannot correct the source of in-
validity arising from the presence of dpp. In the following, we show how a “modified”
prepivoting approach, based on a simple modification of 7}/, is able to provide asymptot-
ically correct confidence intervals. Crucially, the resulting confidence intervals are valid
both for interior and boundary points without ex-ante knowledge about the relative dis-
tance of = to the boundaries of its support.

To see how, we note that

A _ plimn-)oo(BLPﬂ - BATJZ) _ \/Eg//(0+)(02 - C)

U1 1p U1 Lp 201, Lp

de =

Clearly, the fact that d;p depends on ¢” implies that also the cdf of p, will depend on
g”, thus preventing “standard” prepivoting to avoid direct estimation of B to obtain
asymptotically valid confidence intervals. However, we note that, Vo € S,:

BAT,n . ﬂ
BLP,n CQn

=: Qn (2.3.9)

where @,, = Q,(x) is an observed quantity only depending on the observed K, h and A,,.

Moreover,

Qn =Q +0,(1) (2.3.10)
where Q = C/Cy = 1 if x is an interior point @) # 1 if x is a boundary point. Since @, is
observed, we can think of a modified bootstrap statistic being 777, ; , := Q,T);. Clearly,
the decomposition of the bootstrap test statistic between a “bias” and a “variance”

component can also be applied to such modified bootstrap statistic, so that:

A

*
modn — BmOd,n + fl,mod,n

where Bmod,n = Qan and &1 modn = Qnéin. We note that &1 ,04.n preserves the property
of being an asymptotically Gaussian random variable centered at zero, whereas émod’n
drives the bias of the modified bootstrap statistic. Crucially, by (2.3.4) and (2.3.5) we

have that:

Bmod,n - Bn = QnBLP,n - BAT,n + Qn§2n + op(]-) = 527mod,n + Op(l)

where this result is valid both for interior and boundary points. The asymptotic properties
of T

modn are summarized in the following proposition.
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PROPOSITION 2.3.6 Let the conditions in Proposition 2.3.1, then Yz € S,: (i)

(01nQn) ™ (Toain — Brmodn) “+p N(0,1); (2.3.11)

mod,n
and (ii)
Buodn — Bn = Emodn + 0p(1); (2.3.12)

(111) moreover, by letting &modan = (&1n, &2.mod.n)

Vil Codm = N(0, 1) (2.3.13)

Pymod,n

where Vipmodn = V[€modn|Xn]-

The first part of Proposition 2.3.6 shows that the modified bootstrap statistic is asymp-
totically a standard normal when properly studentized and centered; the result follows
directly from Proposition 2.3.2. The second part of the proposition formalizes the fact
that the bootstrap bias is asymptotically centered at the limit of B, when the proposed
modification is applied, no matter the location of z relatively to the boundaries of its
support. Finally, the third part shows that the joint convergence argument of &;,, and
the “variance” component of the bootstrap bias is preserved after the modification.
Intuitively, the asymptotic covariance matrix of 04, is affected by the presence of
Qn. However, if z is an interior point, @, = 14+0,(1) implies that Vipmean = Vip+0,(1).

If, instead, x is a boundary point:

VLP,mod,n = VLP,mod + Op(l); VLP,mod = (ﬁij,LP,mod) = diag(l, Q) : VLP : diag(lv Q)

(2.3.14)
Therefore, an adaptive estimator of the limit of V,, ,,,0q takes the form:
VLP,mod,n = dlag(L Qn) : VLP,n . dlag(la Qn) (2315)

where V;, pn is defined in (2.3.3). Then, the consistency result 1% Pomod.n — VLPmodn = 0p(1)
follows directly from the fact that Vi pn— Vipn = 0p(1).
By Proposition 2.3.6, one can intuitively obtain valid confidence intervals by applying

“standard” prepivoting to the modified statistic T, ,,,. To this purpose, let pyoan =
P*(T

modn < T), then the following proposition holds.

PROPOSITION 2.3.7 Let Assumptions 1-3 hold, then: (i) if x is an interior point,

. d _

Pmodn — (mLP(I) ! (U[O,l])) (2316)

where mpp is defined in Proposition 2.3.5; and (ii) if x is a boundary point,

ﬁmod,n i> P (ﬁquP,mod(D_1 (U[O,l])) (2317)

.. e .. . . ..2 ..2 .. ..
where Mrpmod ‘= ’Ud,LP,mod/ULLP,mod = \/Ul,mewd + V2 LPmod — 2’012,LP,mod/QU1,LP-
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Proposition 2.3.7 shows that, if one considers the modified p-value p,,04.,, then the only
source of invalidity of the bootstrap arises from the presence of mpp and 1Mz pmeq, Which
are only functions of nuisance parameter not depending on higher order derivatives of g.
The existence of a consistent estimator of V., ,, see (2.3.15), implies that a consistent
estimator of myp and Mmppmea exists, such that it does not require ex-ante knowledge
on the location of x. Therefore, if we let H,,,q(u) denote the limit of P (Prean < u), a

uniformly consistent estimator of H,,,q is

oot (1) = @ (1107} oqn® " () (2.3.18)
where 117 poan = (03 modn T U3 modn — 2012.modn) /@207 .- And the LP bootstrap can
provide asymptotically correct coverage both for interior and boundary points thanks to

the following theorem.

THEOREM 2.3.2 Let the conditions of Proposition 2.3.1 and x € S,, then

P <g(:1c) c &prmod> S1-a, aec(0,1) (2.3.19)

where Cﬁ'jprmod is the prepivoted confidence interval in (2.2.6) with ]:In = Amodvn and
L, the probability distribution (conditionally on the data) of the modified LP bootstrap
statistic T7, 4,
REMARK 2.3.2 Note that our results can also be extended by allowing the LP bootstrap
DGP to be of the form yf = gn(x;) + F where §,(x;) is a local linear estimator adopting
a different bandwidth with respect to h, say A = A\(n) with A — 0 as n — oco. By taking
A to be sufficiently larger than h, then &, would be asymptotically negligible. Standard
bootstrap validity would then follow when x is an interior point, whereas a correction
would still be needed when x is a boundary point. Hardle and Marron (1991) implemented
a similar procedure, without the use of prepivoting, remarking significant distortions in
finite samples. Prepivoting could then be relevantly applied to get better performances in
finite samples through the presence of Minedn, which would asymptotically, but not for

small n, be equal to 1.

2.4 COMPARISON WITH RBC METHODS

In this section, we compare the LP bootstrap-based prepivoted Cls presented in Section
3 to the RBC CIs proposed by Calonico et al. (2014, 2018). Specifically, in Section 4.1
we show that prepivoting can be applied to an alternative bootstrap DGP — which we
label the fixed-local (FL) bootstrap — delivering ClIs with asymptotically correct cover-
age under the same assumptions as those exploited in Section 3.1 and without the need

for a correction specifically for boundary points. Note that Section 4.1 only includes the
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main technical result about the validity of the FL prepivoted Cls, whereas all the remain-
ing details can be found in Appendix B. In Section 4.2, we show that the Cls presented
in Section 4.1 are asymptotically equivalent to the RBC Cls. Finally, in Section 4.3, we
compare the properties of the FL. and LP bootstrap-based Cls in terms of asymptotic effi-
ciency, showing that the LP bootstrap provides asymptotically shorter confidence lengths

for all the most commonly used kernel functions.

2.4.1 FL BOOTSTRAP

Let us consider the alternative fixed-regressor wild bootstrap DGP
- 5 5 14
Gn(7) = Bon(x) + Brn(@)(7 —2) + 5Pan(2)(7 — )°

where 3(x) = (Bon(2), Bin(x), Bon(x)) are coefficients estimated via local quadratic
regression at the fixed point z, i.e.

n

~

Pu(w) = axgmin 37 (g = by = (05 = 2)by = (@i = 2)%) K (“; - x)

(bo,b1,b2)€R3 i=1 h

Then, bootstrap data are generated as
Yi = Gnl®:) + €5 (2.4.1)

where ef := £;ef where &; are the leave-one-out residuals &; := y; — g, —(;) and e is a iid
random variable, conditionally on the original data, satisfying E*[e;] = 0 and E*[e}?] = 1.
Similar bootstrap DGPs have been considered in the recent literature, specifically in the
context of sharp and fuzzy RDDs in Bartalotti et al. (2017) and He and Bartalotti (2020).

Notice that (2.4.1) can be viewed as a “fixed” bootstrap DGP, in the sense that the
bootstrap conditional expectation E*[yf|x;] = E*[yf] is based on a second-order Taylor
approximation of the original conditional expectation g(7) = E[y;|z; = 7] around the
fixed point x. This differs from the LP bootstrap, whose conditional expectation is based
on different Taylor approximations of the original conditional expectations around each
point x;. Other than being computationally faster, this property of the FL bootstrap has
the appealing advantage of not involving convolutions of the observed quantities, therefore
bypassing the boundary issues shown in Section 3.2. Note, moreover, that we restrict
here to the case in which g is driven by coefficient estimators of local quadratic order for
simplicity, but any order greater than that considered for deriving the test statistic can
be applied if the latter is odd.

Let T,, be defined as in Section 3.1 and §(x) be a local linear estimator applied to
the bootstrap sample generated as (2.4.1). The FL bootstrap analogue of T,, becomes

T = Vnh(g;(x) — Gu(x)), where

n
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such that B, := (nh)~2 3" w(x;) (§u(zi) — Gn(x)), and &, is the same as in Section
3.2 (with the only difference given by the residuals &;). It can be shown — see Proposition
B.2.1 in Appendix B — that &],, is asymptotically Gaussian with limit variance equivalent
to that of &y,,.

We now consider the asymptotic behavior of Bn — B,,. By the definition of Bn, we
have that:

B, = \/% ; w(;) (Gn(2:) — Gn(x))

-~ IS (Bl (@) — ) + 5 (o) o x)?)

where the second equality follows from " | w(x;) = nh. Moreover, since Y ., w(z;)(z;—

x) =0,

. " 5 .
B, = Wﬁzg(:ﬂ) n_lh ;w(%‘) (xz }: :v) _ W%@)Cn (2.4.2)
We now aim at expanding this bootstrap bias. Specifically, we note that, since BQ(x)
is not a consistent estimator of ¢”(z), “standard” bootstrap validity will fail because
B, — B, # 0,(1). However, the FL bootstrap statistic will be such that B, — B, is always
asymptotically Gaussian and centered at zero, therefore allowing “standard” prepivoted
CIs to deliver asymptotically correct coverage. Let e} := (0,0,1), v := (y1, ...Yn); Zow :=
(Zowy -y Zown) Where Zoy; := (1, (x; —x)/h), (z; —x)/h)?)". The equivalent kernel for the
FL estimator becomes

lz(x) = 2h72€§, (ZQQ;VZ%ZZ%) Z2mK (xz A x) )

so that fy(z) == (nh) "' S0 Li(x)y: = (nh) ™ 320 1i(x)(g(x;) + &;). By a Taylor expan-
sion of g(z;) around x, one can show that (nh)™' >"" | li(z)g(x;) = ¢"(x) + O,(h), so that

Ba(x) = ¢"(x) + % Zli(:c)éi + 0,(1) (2.4.3)

By letting &, := (nh) V23" I(2;)e;, with [;(x) = h*l;(2)/2, the above implies that
By, = Bary + Eon + 0,(1) (2.4.4)

so that B, — B, is asymptotically centered at zero Va € S,. Let én = (fln,égn)’ and
Virn = V[fn\k'n], then we show in Proposition B.2.2, in Appendix B, that &, is asymp-
totically Gaussian with variance defined as the limit of Vzr ,. The fact that the limit of
Vo FLn = V[én])(n] is greater than 0 — both for interior and boundary points — is the
only source of invalidity of the FL bootstrap “naive” (i.e., not prepivoted) Cls. Similarly

than for the LP bootstrap, the limit of Vg, can be estimated without ex-ante knowl-
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edge about the location of x via the consistent estimator

- _ 1 - w;(x) w;(x)Chl;(2) -
VFL,n = nh ; (wz(x)C’nL(x) 02222( ) ) i (2.4.5)

such that Vip, — Vira, = 0,(1). Note that (2.4.5) is equivalent to the 42,-HC3 formula
for standard errors proposed in Calonico et al. (2018).

Since VFL,n —Vrrn = 0p(1), an estimator mpgy, , such that mpr,, = mpr +0,(1) exists
if z is an interior point; moreover, the same 7, is such that mpy,, = MmpL + 0,(1) if = is

a boundary point. As in Section 3.2; m,, is a plug-in estimator of the form

N2 ~9 ~
~ U1,FL,n + ’UQ,FL,n - 2?)12,FL,n (2 A 6)
MmprLn = — 4.
U1,FLn

which guarantees the presence of a uniformly consistent estimator of the cdf of p,, i.e.,
Hppn(u) = (g, @ (Upy)) (2.4.7)

The following theorem formalizes the validity of the FL bootstrap-based prepivoted con-

fidence intervals.
THEOREM 2.4.1 Let Assumptions 1-3 hold, then, Vx € S,,
P (g(x) c cA*}FL) S1-a, ac(01) (2.4.8)

where C/ﬁpL is the prepivoted confidence interval in (2.2.6) with ﬁn = PAIFL,H and in the
probability distribution (conditional on the data) of the FL bootstrap statistic T).

2.4.2 ASYMPTOTIC EQUIVALENCE WITH RBC

We now show that the FL bootstrap-based prepivoted confidence intervals Ccl FL are
asymptotically equivalent to those proposed in Calonico et al. (2018).
The FL bootstrap-based prepivoted Cls are defined as:

Clpp = |gn(x) — (nh)" V2L (@ (MrLan® ' (1—a/2))), gulz) — (nh)~Y2L1 (@ (Mppn®" (a/2)))}

Since Bn is a measurable function of D,, and [A/n is a probability distribution conditional
on D,,, we have
L, (u) = By + L (u) (2.4.9)

where Le,,(u) := P* (&, < u). Moreover, by Proposition 2.3.2,
Lgi(u) =00 ! (u) + 0,(1) uniformly in u € (0,1) (2.4.10)
therefore,

Clpr, = [(gn(x) - (nh)’mBn) + (nh) V204 pra® (1 — a/2)] 4o, ((nh)~V?) (2.4.11)
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Equation (2.4.11) shows that the dominant part of CI rr is equal to the CI proposed by
Calonico et al. (2018), based on the “robust bias correction” (RBC) method, which we
label C'14r. To see this, note that (nh)~'/2B, is exactly equal to their local quadratic bias
estimator; moreover, (nh)~" 204,71, is equivalent to their studentization term, defined as a
consistent estimator of the variance of §,(x) — (nh)~'/2B,,. Since we focused on the leave-
one-out residuals &;, our standard errors are equivalent to those Calonico et al. (2018)
label “62-HC3”, though implementation of their 62 -HCk method with k = 0,1,2,3 is
possible by appropriately changing the functional form of &;. .

2.4.3 EFFICIENCY CONSIDERATIONS
We now compare the efficiency properties of the two proposed confidence intervals. We
start with the prepivoted Cls based on the LP bootstrap, which are defined as:

Clip = [Qn(a:) — (nh) V2L (@ (1, @7 (1 — a/2))) , Ga(x) — (nh) V2L (@ (i, @ (a/Z)))}

By the same arguments as those used in Section 4.2 and by exploiting Proposition 2.3.2,

we have that
Clip = [(gn(m) - (nh)*mBn) + (nh) Y20y ppa® (1 — a/z)} +o,((nh)™Y?) (2.4.12)

Our efficiency considerations will be based on comparisons on the dominant terms of the
absolute length of the Cls. We let A(& rp) denote the absolute length of CI rp; then,
by (2.4.9) and (2.4.10),

(nh) Y20y 1 p|®7 (1 — a/2) — @71 (a/2)| + 0,((nh)~1/2) if x is an interior point;

A(CIpp) = ) o |
(nh)~Y25, 1p|®7 (1 — a/2) — @Y (a/2)| + 0,((nh)~1/?) if z is a boundary point;

By the same reasoning, by letting A(CA‘/[ rr,) denote the length of the FL bootstrap-based
prepivoted CI, we have

(nh) Y20y pr|®7H(1 — a/2) — @71 (a/2)| + 0,((nh)~1/2) if  is an interior point;

A(&FL> - B . . :
(nh) Y25, pr |11 — a/2) — @71 (a/2)| + 0,((nh)~1/?) if z is a boundary point;

Therefore, efficiency comparisons between C'I;p and C'I gy, can be based on the difference
between vy p and vy pp if £ is an interior point and between g rp and v pr if z is a

boundary point. The following Proposition summarizes the properties of these quantities.
PROPOSITION 2.4.1 Let Assumptions 1-3 hold, then,

Ug,LP 202@) Kosrp . @gl,LP 202(0) Ié“d:LP .
Uﬁ,FL flx) \K,,rr 7 i}?[’FL fQ0) \K,, rr 7

where Ky, rp, Ky, rr, Ky,Lp and lévd,FL are measurable functions of the kernel K, defined

in Appendiz B.
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Proposition 2.4.1 shows that efficiency considerations can be reduced to a comparison of
the known quantities K., p, Ky, FL, ICUd’Lp and ICUd,FL. Table 1 shows the value of these
quantities — computed via numerical integration — when the most commonly used kernel
functions are adopted, showing that the LP bootstrap yields shorter confidence intervals
under each considered scenario. This result will be confirmed by the Monte Carlo analysis
shown in Section 5. Let us consider, for instance, the two most popular choices of K, i.e.,
the Epanechnikov’s kernel when x is an interior point and the Triangular kernel when x
is a boundary point. In the first scenario, the FL bootstrap provides about 21% larger
confidence intervals, whereas in the second, the FL bootstrap displays a theoretical length
which higher by about 20%.

Table 2.2: Comparison of the measurable components of v3

Interior Boundary
K Kogrp Kogrr Koprr Kogrr
Triangular 0.95 1.33 7.18 10.29
Epanechnikov ~ 0.85 1.25 6.80 9.82
Biweight 1.01 1.41 7.67 10.87
Triweight 1.15 1.55 8.54 11.87

Finally, since the dominant components in C'I47 and CI rr, are asymptotically equiv-
alent, we can conclude that the dominant part of C'I;p is also smaller than that of CIr,

providing theoretical justification for the numerical results shown in Section 5

2.5 PREPIVOTING IN (SHARP)
REGRESSION-DISCONTINUITY DESIGN

As an application of our theory for local polynomial estimators, we now consider the
relevant example of (sharp) regression-discontinuity. Specifically, let
Yi = 90(J7i)]1{xi<c} + gl(l‘i)ﬂ{xizc} + &, 1=1,...,n; (2~5'1)

where E (g;|x;) = 0, V (g4|z;) =: 0 (x;), x; is a random variable with bounded support
Se := [a,b], (a,b) € R?, and pdf f(z) such that f : S, — (0, 4+00), while go : [a,c] — R and
g1 : [¢,b] = R. For simplicity of exposition and without loss of generality, we set (a,b,c) =
(—1,1,0). We are interested in estimating the difference on the conditional expectations

at the right and at the left of the cutoff ¢ = 0; therefore, our parameter of interest is
Tsrd = G1 (O+) - 90(0_) (252)

In sharp RD, 7,,4 identifies the average treatment effect at the threshold; see Hahn, Todd,
and van der Klaauw (2001). Let §go,(0) and §;,(0) denote the local linear estimators
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(at the induced boundary ¢ = 0) of go(0+) and go(0—), respectively; then, a natural
estimator of 7.4 1S
Tord = 91.n(0) — go.n(0). (2.5.3)
Being the difference of two local polynomial estimators, the bias of 7.4 will be equivalent
to the difference of biases of the two estimator. Indeed, if we let 7, := \/7%(731 — Tsrd)s
we have that 7, = B, + {sra,1n. The asymptotic properties of {541, and B, immediately
follow from the results in Section 3. Intuitively, B,, will converge in probability to a term
which is proportional to the difference between the right and left derivative of g at 0,
whereas &,.4.1, is asymptotically Gaussian and centered at zero.
Let us now consider our prepivoted Cls in this context. The LP bootstrap DGP

becomes:

Ui = Gon(Ti) gz <0y + Grn(®i) (2,0 + €] (2.5.4)
where ] := £;e; and &; the leave-one-out residuals &; 1= y;—(§o,—in (%) Liz, <0y +G1,—in (i) Lz, >0} )-
On the other hand, if we let go,(z;) := Boo +ﬁ01xi + 5’021‘?/2 and gy ,(z;) == BlO +B11x¢ +
Blgm?/Q, where 5’0 = (300,301,/@02)’ and 3 := (310,311,,@12)’ are the coefficient obtained
through the usual local quadratic estimator at the left and at the right of the cutoff, re-
spectively, we can define the FL bootstrap DGP as

Yi = Gon (i) iz, <0y + G1n (i) Lz, z0) + &5 (2.5.5)

By performing local linear estimation to both of these bootstrap DGP, one can obtain an
estimator 7 analogously to (2.5.3) and the bootstrap test statistic 7.*. Such test statistic
will be equal to Q,v/nh(7 —17,) for the “modified” LP bootstrap and v/nh(7 — (§1,(0) —
9on(0))) for the FL bootstrap.

REMARK 2.5.1 Note that the modification for the LP bootstrap statistic is identical if the
same kernel function is used to the right and to the left of the cutoff. Indeed, one could
decompose the unmodified LP bootstrap bias into two terms: one considering the contri-
bution of the bias arising from the observations to the left of the cutoff, one considering
those arising from the observations to the right of the cutoff. By (2.5.5), the two con-
tributions will be a product of a weighted convolution of ((x; — x)/h)? and the right- (or
left-) second order derivative of g at the cutoff. Crucially, the limit of the weighted con-
volution of ((x; — x)/h)? is the same, no matter if only the contributions to the right or
to the left of the cutoff are considered, if the same kernel K is considered. The modifi-
cation can still be generalized to allow for different kernels to the right or to the left of
the cutoff by decomposing the unmodified LP bootstrap statistic in two components (one
considering the contributions at each side of the cutoff) and re-weighting each component

according to the different kernel used.

If we denote by B, the generic bias of the bootstrap test statistic (either “modified”
LP or FL), then it follows from the results in Section 3.2 and 3.3 that Bn - B, =:
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Esrdon +0p(1), where &4,q.9,, is asymptotically Gaussian and centered at zero, allowing for

the constructions of the prepivoted Cls
Clya = [Ty — (R) 2L (@ (gran® ™ (1 — a/2))) 70 — (0h) V2L (@ (10, @7 (a/?)))}

where L, := P* (T < T, and M2,q,, & consistent estimator of m?, ,; := plim, _y {V[T, —
B,|X,]} /plim, _s {V*[T* — By]}. As we have seen in Section 3.2 and 3.3, such estimator

exists and can be based on leave-one-out residuals from the original model.

2.6 MOoONTE CARLO

We now discuss the finite sample performance of the proposed Cls and compare them both
with invalid bootstrap CI (i.e., not prepivoted), as well as with the RBC ClIs proposed
by Calonico et al. (2018), through the results of Monte Carlo simulations. Specifically,
we focus on two simulation designs, which we label DGP1 and DGP2. Both DGP’s take
the form
Yi = g(v:) + &

where g; ~ 1idN(0,0%). In DGP1, ¢ = 1, g(z) = ¢1(z) = sin(37z/2)[1 + 1822 (sgn(z) +
D)7 and x; ~ #dUj_y 1j; whereas in DGP2, 0 = 0.1295, g(z) = g2(x) = 0.52 4 0.842 —
0.3022+2.3972%—0.9012*+3.562° and z; ~ iidUpp ;). On the one hand, DGP1 is equivalent
to a simulation setup previously considered in Berry, Carroll, and Ruppert (2001), Hall
and Horowitz (2013) and Calonico et al. (2018). On the other hand, the conditional
expectation gs(x) and the value of o in DGP2 are taken from Model 3 in Calonico et al.
(2014); specifically, go(z) is equal to the conditional at the right of the cutoff in a sharp
RD setup and arises from a modification of the estimated coefficients in Lee (2008). For
both DGP’s, we consider estimation for an interior and a boundary point. In DGP1, the
evaluation points are x = —1/3 and = = —1, whereas for DGP2 those are x = 0.5 and
x = 0. Under all the considered scenarios, we make use of the Epanechnikov’s kernel and
the MSE-optimal bandwidth. 5000 independent Monte Carlo draws are generated, with
999 bootstrap replications for each Monte Carlo draw. For all the wild bootstrap DGP’s,

{ef} is a sequence of iid random variables distributed as Rademacher on [—1, 1].

The results of the Monte Carlo simulations are summarized in Table 2, where average
empirical coverage and length of the Cls are shown. Other than the prepivoted LP,
Cl 1p, modified LP, Cl LP.mood, and FL, Cl rL, bootstrap Cls, we also report results for
the “naive”, i.e. not prepivoted, Cls based on the LP bootstrap DGP, CI.p, and FL
bootstrap DGP, C'Iry, as well as those based on RBC, CI 4. First of all, we detect
significant undercoverage of both the “naive” (i.e., not prepivoted) bootstrap Cls, thus
underlining the practical need of proper debiasing tecniques. Second, we observe that the
prepivoted ClIs show empirical coverage probabilities which are very close to the nominal

levels — and comparable to RBC — under all considered scenarios. Moreover, asymptotic
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Table 2.3: Coverage and length of 95% confidence intervals

DGP1: Interior Point

coverage

n h Clrp Clpy, Clpp CIrpmod Clpy, Clar
250 0.189 89.1 82.4 93.9 94.1 93.2 94.8
500 0.165 89.1 82.4 93.5 93.7 93.7 95.0
750 0.152 89.7 82.1 94.5 94.4 94.2 95.1
1000 0.143 90.0 82.8 94.6 94.7 94.3 95.0

length

250 0.189 0.637 0.641 0.747 0.754 0.884 0.943
500 0.165 0.479 0.481 0.565 0.567 0.677 0.701
750 0.152 0.405 0.406 0.479 0.481 0.575 0.590
1000 0.143 0.361 0.361 0.427 0.428 0.514 0.525

DGP1: Boundary Point

coverage

n h Clrp Clry, Clpp CIrpmod Clpy, Clar
250 0.353 87.7 82.4 93.4 94.9 93.4 95.4
500 0.307 88.0 81.7 94.4 95.9 93.0 94.6
750 0.283 89.7 82.9 95.7 96.8 94.2 95.4
1000 0.267 90.0 82.3 95.6 96.7 94.2 95.3

length

250 0.353 1.272 1.365 1.558 1.775 1.853 2.152
500 0.307 0.963 0.998 1.194 1.335 1.394 1.522
750 0.283 0.815 0.835 1.017 1.130 1.187 1.264
1000 0.267 0.725 0.740 0.907 1.003 1.057 1.110

DGP2: Interior Point

coverage

n h Clpp Clpp, Clrp CILpmod Clry, Clar
250 0.209 88.2 81.6 93.5 93.5 93.4 94.1
500 0.182 89.5 82.6 94.5 94.7 94.8 95.2
750 0.168 89.0 81.6 94.1 94.2 94.3 94.6
1000 0.158 88.8 81.8 94.5 94.5 94.4 94.5

length

250 0.209 0.055 0.055 0.065 0.066 0.078 0.080
500 0.182 0.042 0.042 0.049 0.050 0.059 0.060
750 0.168 0.035 0.035 0.042 0.042 0.050 0.051
1000 0.158 0.031 0.031 0.037 0.037 0.045 0.045

DGP2: Boundary Point

coverage
n h Clpp Clrr, Clrp CILpmod Clpy, Clar
250 0.574 69.4 87.8 82.5 92.2 96.3 97.1
500 0.500 85.2 84.8 93.5 97.4 96.0 96.0
750 0.461 88.2 82.7 94.7 96.8 94.7 95.0
1000 0.435 90.5 83.2 96.2 96.6 95.0 95.7
54 length
250 0.574 0.092 0.106 0.117 0.130 0.148 0.152
500 0.500 0.069 0.075 0.087 0.096 0.106 0.109

750 0.461 0.059 0.062 0.074 0.081 0.089 0.090



equivalence of CI rr, and C'lyp, as stated in Section 3.4, is confirmed by the numerical
results, as the two methods behave very closely to each other both in terms of empirical
coverage and average interval length. Finally, the efficiency results theoretically analyzed
in Section 3.4 are confirmed by the numerical analysis, where C'I 41 shows, for n = 1000,

between 9%-22% larger confidence intervals with respect to 1 LP.mod-

2.7 CONCLUSION

This paper advances the literature on nonparametric regression and RD designs by ad-
dressing a fundamental challenge: obtaining valid inference in the presence of asymptotic
bias without resorting to undersmoothing or direct bias correction. We introduce two
bootstrap methods — the LP and FL bootstraps — that restore validity and deliver asymp-
totically correct confidence intervals in a computationally practical manner via the use
of prepivoting. While the FL bootstrap is asymptotically equivalent to RBC methods,
the LP bootstrap offers higher efficiency, making it particularly advantageous in empir-
ical applications. Importantly, our “modified” prepivoting approach ensures robustness
of the widely-used LP bootstrap DGP even at boundary points, addressing a critical gap
in existing methods. Monte Carlo simulations corroborate the theoretical advantages of
our methods, showing empirical coverage close to the nominal levels and efficiency of the
LP bootstrap across a variety of scenarios. Furthermore, we show that our methodol-
ogy extends to RD designs, a cornerstone of applied econometrics. These results provide
researchers with powerful tools for unbiased and efficient inference in nonparametric re-
gression, promising to enhance the reliability of quasi-experimental analysis in economics

and beyond.
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CHAPTER 3

PARAMETERS ON THE BOUNDARY IN
PREDICTIVE REGRESSION

(written with Giuseppe Cavaliere and lliyan Georgiev)

3.1 INTRODUCTION

In this paper we revisit the well-known problem of bootstrap inference in regressions
with parameter space defined by means of smooth inequality constraints. For instance,
consider the setup of a regression y; = a+fz;_1+¢; where the parameter space for (o, ) is
defined by the constraint S > 0. This framework arises when only the possibilities = 0
of no predictability (or no first-order Granger causality, generalizable to higher orders),
and # > 0 of sign-restricted predictability, are entertained, and the model is estimated
under the constraint 8 € [0,00). In applications, economic theory is often informative
about the direction of predictability, and such information could be used to improve the
efficiency of estimators and increase the power of hypotheses tests. A prominent example
is provided by predictive regressions for financial returns; see, e.g., Phillips (2014) and the
references therein. Interest can then be in testing the very hypothesis of no predictability
(i.e., f = 0) by means of a one-sided test, or a special case of this hypothesis (e.g.,
a = = 0), or a hypothesis where the parameter vector may but need not lie on the

boundary of the parameter space (e.g., « + 5 = 0).
While in this context the bootstrap is potentially useful, its application is not straight-

forward if the parameter vector may lie on the boundary of the parameter space; see
Andrews (2000). In particular, as we discuss in the following, even in a simple location
model where the parameter space is a closed half-line, the cumulative distribution func-
tion [cdf] of the parametric bootstrap t-statistic, conditional on the original data, con-
verges weakly to a random cdf, rather than to the target asymptotic distribution of the

t-statistic computed from the original data.

Our first contribution is to show that in predictive regressions with parameter val-
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ues on the boundary, the distribution of fixed regressor! bootstrap statistics, like the t-
statistic for f = 0 in the regression above, may be random in the limit. Limiting ran-
domness may arise in two ways. A first possible source of randomness in the limit boot-
strap measure is in the non-stationarity of the regressor, which operates through the ran-
dom limits of sample product moments. This is hardly surprising, see e.g. Georgiev et al.
(2019). A second potential source of randomness is the location of the parameter vector
on the boundary of the parameter space. Invalidity of standard bootstrap schemes when
a parameter is on the boundary was initially discussed in Andrews (2000), where a simple
location-model example was given; see also Chatterjee and Lahiri (2011). In the context
of hypotheses tests in predictive regressions, we revisit Andrews’ result and show that,
for a general bootstrap scheme, the occurrence or non-occurrence of limiting bootstrap
randomness due to the possible location of a parameter on the boundary of the parame-
ter space depends on how well the bootstrap scheme approximates the mutual position of
three objects: (i) the boundary, (ii) the parameter set identified by the null hypothesis,
and (iii) the true parameter value. Standard bootstrap approximations of this mutual
position may not be sufficiently precise, giving rise to complex conditioning in the limit
bootstrap distribution, with ensuing bootstrap validity only for special types of statistics.

Our second contribution is to show that certain non-standard bootstrap schemes, de-
signed to provide a better match with the geometric configuration in the original param-
eter space, give rise to limit bootstrap distributions where randomness, if present, is not
attributable to the boundary value of the parameter vector. This fact allows us to es-
tablish bootstrap validity in an ‘unconditional’ sense; see Cavaliere and Georgiev (2020).
That is, although randomness of the limiting bootstrap cdf prevents the possibility that
the bootstrap could mimic the asymptotic distribution of the original statistic, we can
show that in large samples bootstrap tests and asymptotic tests are correctly sized for
essentially the same set of nominal sizes.

Formally, we make use of the following definition, which generalizes the definition of
unconditional bootstrap validity given in Cavaliere and Georgiev (2020, p.2555). Let p,
and p; be respectively the p-value of an asymptotic test and of its bootstrap analogue.

Let also
C:={g€(0,1): lim P(p, <q) = qHo},
such that a test rejecting for p, < ¢ (or for p, > q) is correctly sized for nominal

significance levels ¢ (resp. 1—¢) with ¢ € C, as n — o0o.? If, under the null hypothesis H,

P(p;, < q) — g for all ¢ € intC, (3.1.1)

'We focus on ‘fixed regressor’ bootstrap schemes as they do not require knowledge on the regressor
generating process. For instance, and in contrast to recursive-based schemes, they can be applied to
both I(0) and I(1) settings.

2For ¢ € intC it holds that P(p, = ¢) — 0 and rejections for p, < ¢ (or p, > q) are
asymptotically equivalent to rejections for p, < ¢ (or p, > q).
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where intC' denotes the interior of the set C, we say that the bootstrap test based on p;
is valid for Hy.> The meaning is that the bootstrap test and the asymptotic test are first-
order asymptotically equivalent in terms of correct size control. In particular, bootstrap
validity for simple hypotheses Hy characterizes pointwise size control.

Notice that bootstrap validity as in (1.1) is implied by the classic definition of boot-
strap consistency, namely that sup,cg |F;f(z) — F(x)| —, 0 for a bootstrap statistic with
cdf F conditionally on the data and an original test statistic with continuous asymp-
totic cdf F. The converse does not hold; that is, (3.1.1) does not imply classic bootstrap
consistency, see the discussion in Cavaliere and Georgiev (2020).

For test statistics whose asymptotic distribution is continuous, it holds that intC' =
(0,1) and hence condition (3.1.1) should hold for all ¢ € (0,1) for the bootstrap to be
valid. Unfortunately, parameter values on the boundary of the parameter space may
induce discontinuities in the limiting cdf’s, such that not even the exact p-values of the
associated tests are asymptotically standard uniform on [0,1]. This makes the above
weaker version of the validity definition unavoidable.

Finally, we turn to the special case of one-sided tests for the null hypothesis that the
parameter vector lies on the boundary of the parameter space, such that the boundary
coincides with the parameter set identified by the null hypothesis. This case provides
a transparent example of a limit bootstrap cdf which is random only on a subset of its
domain. Then, if bootstrap validity is defined as in (3.1.1), in this case also some standard
bootstrap schemes can be proved to be valid.

This paper is related to recent work by Fang and Santos (2019) and Hong and Li
(2020). The latter two papers propose nonstandard bootstrap schemes — involving a
tuning tool — which correct the inconsistency of ‘classic’ bootstrap methods in settings
that cover parameters on the boundary as a special case. The main difference from
the present contribution is that our theory applies to random limit bootstrap measures.
Thus, Fang and Santos (2019) consider bootstrap inference in settings where the target
asymptotic distribution, say that of a random element 7, can be thought of as a trans-
formation ¢ of another random element 7/, and both the distribution of 7/ and the trans-
formation ¢ need to be estimated; see also the related works by Diimbgen (1993), Hi-
rano and Porter (2012), Fang (2014) and Chen and Fang (2019). Although Fang and
Santos (2019) consider deterministic ¢ and the unconditional distribution of 7/, such
that their results are not directly applicable here, their way of conceptualizing the prob-
lem remains fruitful also in the case of random ¢ and random conditional distributions
7'|7" (for some random element 7). We discuss this in Section 3.5.2.

Our contribution is also related to Hong and Li (2020), who propose a ‘numerical

bootstrap’ which is valid in settings where a parameter space can be approximated locally

3Bootstrap unconditional validity as in Cavaliere and Georgiev (2020) is obtained as the special case
mntC = (0,1).
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by a cone with vertex at the true value of the parameters; see Geyer (1994) for a detailed
discussion of the approximation. Both the approaches in this paper and that by Hong
and Li (2020) are connected to the large body of literature considering estimation and
inference for constrained M-estimators; see, among others, Geyer (1994), Andrews (1999,
2000), and the references therein. In Section 3.5.2 we argue that, when applied to a
restricted predictive regression, the ‘numerical bootstrap’ of Hong and Li (2020) performs
a geometric approximation of the kind we propose, though at the cost of a slower-than-

standard convergence rate for the resulting bootstrap estimator.

We present our main idea using first a simple location model for i.i.d. scalar data
whose location parameter is constrained to be positive. This is done in Section 3.2.
The predictive regression framework is presented in Section 3.3; in this section we also
show that the bootstrap limit measure associated with standard fixed regressor wild
bootstrap schemes is random. A new family of bootstrap algorithms and their validity
are discussed in Section 3.4. Results on the validity of one-sided tests, connections to
the previous literature, and uniform size control for the bootstrap tests are discussed
in Section 3.5. Section 3.6 provides simulation evidence, whereas Section 3.7 concludes.

Proofs are collected in the Appendix.

NOTATION AND DEFINITIONS

We use the following notation throughout. The spaces of cadlag functions [0, 1] — R",
[0,1] = R™™ and R — R, all equipped with the respective Skorokhod J;-topologies, are
denoted by D,,, D« and D(R), respectively; see Kallenberg (1997, Appendix A2). For
n = 1, the subscript in D,, is suppressed. C,,(R™) is the space of continuous functions from
R" to R™ equipped with the topology of uniform convergence on compacts. Integrals are
over [0, 1] unless otherwise stated, ® is the standard Gaussian cdf, Uy is the uniform
distribution on [0, 1] and I is the indicator function. If F'is a cdf, possibly random, F~!
stands for the right-continuous generalized inverse, i.e., F~'(u) := sup{v € R : F (v) <

u}, u € R. Unless differently specified, limits are for n — oc.

With (Z,,Y,) and (Z,Y) being random elements of the metric spaces Sz x Sy, and
Sz x Sy (n € N), and defined on a common probability space, we denote by ‘Z,|Y, —,
ZIY? (vesp. ‘Z|Yn —as Z|Y') the fact that E{g(Z,)|Y,} —=E{g(Z)|Y} in probabil-
ity (resp. a.s.) for all bounded continuous functions g : Sz — R. When Z, is a boot-
strap statistic and Y,, denotes the original data, we write ‘Z, ﬂp Z|Y’ (resp. ‘Z, ga,s,
Z|Y?). Finally, with (Z,,Y,) and (Z,Y) possibly defined on different probability spaces,
Zp|Yn S0 Z|Y means that E(g(Z,)|Y,) — E(g(Z)|Y) for all bounded continuous func-
tions g : Sz — R, see Kallenberg (1997, 2017); we label this fact ‘weak convergence in
distribution’. For the special case of scalar random variables Z,, and Z, if the conditional

distribution Z|Y is diffuse (non-atomic), weak convergence in distribution is equivalent
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to the following weak convergence in D(R):
F.(-|Y,) == P(Z, <|Y,)) 2 P(Z <:|Y) =: F(-|Y). (3.1.2)

When Z, is a bootstrap statistic and conditioning is on the original data, we use the
notation ‘gw’. For multivariate generalizations we refer to Cavaliere and Georgiev (2020,

Appendix A).

3.2 PREVIEW OF THE RESULTS IN A LOCATION MODEL

To illustrate the main arguments that will be proposed in the predictive regression frame-

work later, consider as in Andrews (2000) and Cavaliere et al. (2017) the location model
Yy = 9+€t (t = 1, ,TL)

where the ¢;’s are 1.1.d.(0, 1) and the parameter space is © := {# € R: 6 > 0}. Interest
is in inference on the true value fy of 6 by using the Gaussian QMLE, 6. With 1, () :=
—% St (ye — 0)?, we find 0 := arg maxgpco ln (0) = max{0,¥n}, Un :=n"1 D1y If O
is an interior point of ©, i.e. #y > 0, then nl/Q(é —0y) =3 €, €~ N(0,1). In contrast, if
0y is on the boundary of O, i.e. , = 0, the asymptotic distribution of 6 is

n'’2(0 — 0,) = n'/?0 5 ¢ := max{0, £} (3.2.1)

again with £ ~ N (0,1).

The first takeaway of this section is the fact that the location of a parameter on the
boundary of the parameter space may induce limiting bootstrap randomness of a kind
that invalidates bootstrap inference. To see this, consider in the context of the location

model a standard Gaussian parametric bootstrap based on the bootstrap sample
Y, = 6+ £},

where the ¢;’s are 1.i.d.N (0,1) independent of the original data. The bootstrap coun-
terpart of [, (6) is % (0) :== —5 > i, (y; — 0)?, and the usual bootstrap QMLE is 0% =
arg maxgee I (0) = max{0,7:}, 7 == 0 + &, & = n~' 3.1 . Conditionally on the

original sample, 0*’s exact distribution is
n'2(0* — 0) = n'? max{—0,2%} ~ max{—n'"20,Y0, |0 ~ £ ~ N (0,1), (3.2.2)

with associated conditional cdf given by
Pr(n'?(6" = 0) < z) = @ (x) I 1s_ /29y, © € R. (3.2.3)

Now, when 6, is an interior point of ©, —n!/ 29 diverges to —oo in probability and the

distribution of n'/ 2(é* — 0) given the data converges weakly in probability to the non-

random distribution of £*; the bootstrap therefore mimics the NV (0, 1) asymptotic distri-
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bution of the original statistic, the bootstrap distributional approximation is consistent
and bootstrap inference is valid in the sense of (3.1.1), with intC' = (0,1). Conversely,
when 6 is on the boundary of the parameter space, the cdf in (3.2.3) converges weakly

in D(R) to the random cdf ® (z) I,>_¢. In terms of weak convergence in distribution,
n' 20" — 0) U, £°|¢, 0* = max{—(, £}, (3.2.4)

where ¢ is distributed as in (3.2.1) and is independent of £*. The limit distribution in
(3.2.4) is random, since its cdf is a stochastic process depending on the conditioning
random variable ¢. Thus, it is distinct from the limit distribution in (3.2.1), which is
unconditional and hence characterized by a non-random cdf. Because the bootstrap limit

distribution is random, the bootstrap approximation is not consistent for the limit in
(3.2.1).

As we shall see in Section 3.4, limiting bootstrap randomness could be of two kinds:
‘benign’, thus not compromising the validity of bootstrap inference in the sense of (3.1.1),
or ‘malignant’, thus invalidating bootstrap inference. In this example, a bootstrap
test employing a bootstrap statistic 7} ::¢(n1/2(é* — é)) as the analogue of a statistic
T :=(n*/20), where ¢ is a real function, may not be valid in the sense of (3.1.1) under
the null hypothesis Hy : 85 = 0 even if the function ¢ is continuous, thus implying ‘ma-

lignant” randomness.

To get some further insight into the source of limiting bootstrap randomness, which
will be exploited in the next sections, it is useful to notice that the asymptotic distribu-
tions in (3.2.1) and (3.2.2) can be written as

¢ = max{0,{} = argminyep |A —&|, A:={A€R: A >0}
10 = max{—0, &} = (argminyep) |A — &) |6, A(l) ;= {AER:A> —l} =A— ¢,

respectively. Hence, bootstrap randomness, and the implied bootstrap invalidity, can be
attributed to the fact that in the bootstrap world the limit constraint set for the objective
function |A — £*| is the random half line A(¢) rather than the original fixed half line
A = A(0). That is, the chosen bootstrap scheme shifts the constraint set by the random
variable —¢, which is non-zero with probability 1/2.

The second takeaway of this section is the fact that bootstrap validity could be restored
by offsetting properly the previous shift of the limit constraint set. Specifically, this
requires an ad hoc construction of a bootstrap parameter space intended to approximate
well the mutual position of the true parameter value and the boundary of the original

parameter space.

Consider a bootstrap scheme where the boundary of the bootstrap parameter space
©* is chosen in a data-driven way such that the mutual position of 8y and the boundary

of © is well approximated irrespective of whether 6, belongs to 9O or not. To this aim,
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introduce the half line ©* := {0 : 0 > ¢*(d)}, where g*(0) := 0 — |0]"**, k > 0, and
the associated 0 := arg maxgeo- I (/) = max{g*(f),7:}. The bootstrap QMLE statistic
is then given by n*/2(6* — 0) = n*2max{g*(d) — 6,&*}. Conditionally on the data, it
is distributed as max{n'/2(¢g*(0) — ),£*}|0, with £*|6 ~ N(0,1). If §, = 0, it then
follows that n'/2(¢g*(9) — 0) = —n'/26'*% 5 0, and the bootstrap statistic conditionally
on the data converges weakly in probability to ¢ of (3.2.1). Conversely, if 6y > 0 then
nt2(g*(0) — ) = —n'/20"* 2 _ oo and the bootstrap statistic conditionally on the data
converges weakly in probability to the N (0, 1) distribution. In both cases, the bootstrap
mimics the asymptotic distribution of n'/2(d — 6,) and bootstrap validity in the sense of

(3.1.1) can be seen to be successfully restored.

REMARK. In the location model, an appropriate choice of ©* simultaneously restores
bootstrap validity and removes all the randomness from the limit bootstrap distribution.
In the predictive regression framework we shall conclude that, in order to achieve boot-
strap validity, it is essential to remove only the portion of limiting bootstrap randomness
that is due to the location of the parameter vector on the boundary of the parameter
space. As no other sources of limiting bootstrap randomness exist in the context of the
location model, in this section the previous conclusion simplifies to eliminating all the

limiting bootstrap randomness. O

Before moving on to predictive regressions, we notice that when a test of Hy : 85 = 0
against Hy : 6y > 0 is performed, employing 7 := n'/ Q(é* — é) as the bootstrap analogue
of 7, := n/ 2@, the standard parametric bootstrap with ©* = © is valid in the sense
of (3.1.1); see also Andrews (2000). Specifically, the bootstrap test rejects Hy when the
bootstrap p-value p; = 1 —p? is small, with the following convergence satisfied under the
null hypothesis:

P = P(rs < 1) = PY(E" < 1) 5 0(0).

A similar convergence is satisfied by the p-value p, = 1 — p,, of the asymptotic test, with

Pn =Pl < w)|ucr, = Lm0y + ©(70) [, 50p = O(75) = @(0).

As ¢ is distributed like &~ (U)Ips1/2y, U ~ Uj 1, it follows that ®(¢) is distributed like
O(O1(U)Liy=1/2y). As aresult, both the bootstrap and the asymptotic test are correctly
sized for nominal levels below 1/2. This phenomenon, whose extensions to predictive
regression are discussed in Section 3.5.1, does not generalize to hypotheses where one-
sided tests are not appropriate or straightforward. Therefore, a remedy is necessary for
the inference-invalidating limiting bootstrap randomness induced by the location of a

parameter on the boundary.
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3.3 THE PREDICTIVE REGRESSION SETUP

Consider the following predictive regression in a triangular array setup:
Yy =01+ 0z 1+, (t=1,..,n n=12..), (3.3.1)

where ¢; is a martingale difference sequence [mds] and z,,; is a non-stationary posited
predicting variable satisfying the following assumption; see, e.g. Miiller and Watson
(2008) for references to primitive conditions.

Let 2,, :=n""23"!_ e,. Then:

(a) {e:} is an mds w.r.t. some filtration to which (z,, z,;) is adapted, with Ee} =
w,, € (0,00).

(b) a law of large numbers holds as n — oo:
& A n T xrz
Z( “)(A% Az ) B (w ¢ >>0.
— AZn,t Wez Wzz
(c) an invariance principle holds in Dy as n — oo:
(xnan'J y Zan.J)/ ﬂ> (X, Z)/ ~ BM(O, Q),

a bivariate Brownian motion on [0, 1].

Assumption 1 covers the specification z,,; = n~Y2z, for an I (1) process x; driven by
an mds that could be contemporaneously correlated with &;.%°

Assumption 1 implies that 2?21 Tnt—1 024 = f XdZ, which need not have a mixed
Gaussian distribution because X and Z need not be independent. Nevertheless, it holds
that o1 Zny-1(Azny — Wit ATy ) = [ Xd(Z —w,w;l X), which is zero-mean mixed
Gaussian with conditional variance o2 [ X2, where 02 := w,, —w?2,w,.} is the variance of ¢,
corrected for Ax,, ;. The bootstrap schemes discussed below all rely on the independence
of the processes X and Z — w,,w, ! X.

Further, Assumption 1 imposes unconditional homoskedasticity for simplicity. As
all the bootstrap schemes below are based on ‘wild’ bootstrap schemes, unconditional
heteroskedasticity can be accommodated at only a notational cost.

The next assumption specifies the parameter space, say ©, by means of a smooth
inequality constraint.

The parameter space is © := {0 = (01,6,) € R? : g(f) > 0}, with non-empty
boundary 90 := {6 € R? : g(0) = 0}, where g : R*> — R is continuously differentiable in

4As the bootstrap p-values discussed in the paper are invariant to rescaling of the regressor, the
normalization of x; by n~/? has no practical implication. It is equivalent to specifying a local-to-zero
regression coefficient, as is frequent in applications where y; is a financial return and z; is non-stationary.

®Results under two alternative stochastic specifications of z,, +, as a near-unit root and as a stationary
process, are given in the accompanying supplement, Section C.2.

64



some neighborhood of the true parameter value 0y := (610, 02,0)" with gradient %g(@) #0
in that neighborhood.

In the following, ¢ will denote the gradient of the function g evaluated at 6.

Assumption 2 generalizes the leading example of the parameter space © = R x [0, 00)
obtained by setting g(6) = (0,1)0 = 65. The boundary of © then corresponds to the case
0 = 0 of no predictability of y; by x,;_1 whereas the interior of © corresponds to the
case of sign-restricted predictability.

Interest is in bootstrap inference on a null hypothesis Hy identifying a set of parameter
values that has a non-empty intersection with the boundary of the parameter space. In

particular, we consider the following mutual positions of the boundary, the parameter set
identified by Hy and the true value 6,:

G1. Hg is the hypothesis that 6§, belongs to the boundary: Hy : g(6y) = 0;
Gy. Hy is a simple null hypothesis on the boundary: Hg : 6 = 6, g(8) = 0;
G3. Ho : h(6p) = 0, where {6 € R? : h(f) = 0} is not a subset of the boundary 96, but

meets 0O at a singleton set.

For example, let again g(f) = 65, such that the parameter space is R x [0,00) with
boundary 0© = R x{0}. Then the hypothesis of no predictability Hy : 65 = 0 falls under
G1. The hypothesis Hy : 6y = 6 = (0,0)" that g, is unpredictable with zero mean falls
under G,. Finally, the hypothesis Hg : (1,1)0y = 010 + 020 = 0 falls under G5 by setting
h(0) := (1,1)0; in this case, the intersection point of the boundary and the parameter
set identified by Hy is (0,0)" which might, but need not, be the true value under Ho.

3.3.1 ASYMPTOTIC DISTRIBUTIONS
Let 0 be the OLS estimator of (6y,6,)" in the equation
Y =01+ 61+ Az, + € (3.3.2)

subject to the constraint 6 e O, i.e. g(é) > (0, and where the role of the regressor Az, is
to ensure that the residuals are asymptotically uncorrelated with the innovations driving
Znt, @ convenient prerequisite for the bootstrap implementations. The existence, with
probability approaching one, of a measurable minimizer of the residual sum of squares
(3.3.2) over the set © can be established in a similar but simpler way than that of
its bootstrap counterpart in our detailed proof of Theorem 3.4.1. Moreover, any two
such minimizers are first-order asymptotically equivalent, explaining our usage of ‘the’
associated with the constrained OLS estimator. Specifically, any such minimizer 0 satisfies
n2(0 — 6,) = €(6,), with £(6y) depending on the position of 6, relative to the boundary
00. Thus, ((0,) =  := M~%¢ if §, €int® := ©\ 9O, where M := [ X X', X := (1, X,

& ~ N (0,02L,) is independent of X, and ¢ > 0 is the variance of &; corrected for Axp 4,
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whereas

n2(0 — 0y) 3 0(0y) = ¢ := argmin||X\ — M2y, A= { A eR?: ¢ A >0} (3.3.3)
AEA

if g(6p) = 0, with ||z||as := (2’Mz)'/? for z € R?; see Section 12 in the working paper
version of Andrews (1999) or the proof of Theorem 3.4.1 for the bootstrap counterpart.

The previous asymptotic result is sufficient in order to see that the possibility of having
0y at the boundary of the parameter space © induces a dichotomy in the limit distribution
of n'/ 2(@ — 6) similar to the dichotomy established in the introductory location-model
example. Replicating the constraint set in the limit distribution by means of a bootstrap

scheme will be our main concern in what follows.

3.3.2 STANDARD BOOTSTRAP INVALIDITY

Consider first a fixed-regressor wild bootstrap sample generated as
yr =01+ Oszpy 1 + 6, (3.3.4)

where ¢} = éwf, t = 1,...,n, with é the residuals of (3.3.2) and wy ii.d. N(0,1), inde-
pendent of the original data.® Then the distribution of n'/2( — 6,) could be tentatively
approximated by the distribution of n'/ 2(5* — é) conditional on the original data, where
6* is obtained by regressing y; on (1,z,,1)" under the constraint 6 ¢ ©* = 0O, ie.,
g(6%) > 0 as for the original estimator; see Andrews (2000)".

To motivate the analysis in the next section, it is useful to anticipate some asymptotic
properties of 6* which obtain by specializing Theorem 3.4.1 below to the fixed-regressor
wild bootstrap scheme. For 6y €int©, it turns out that the bootstrap distribution con-

verges to a conditional version of the limit distribution of n'/2(f — ) found earlier:

n'2(0° = 0) = n"2(6* — 0) + 0,(1) S, 1| M, (3.3.5)
where 6% denotes the unconstrained OLS estimator from the bootstrap sample. The
limit bootstrap distribution is, therefore, random. The vehicle of limiting bootstrap ran-
domness is the random matrix M, such that limiting bootstrap randomness is fully at-
tributable to the stochastic properties of the regressor. Due to the fact that the boot-
strap replicates a conditional version of the limit distribution of the original estimator é,
bootstrap inference is not invalidated. Rigorous statements in this sense will be provided

in Corollary 3.4.1.

6The conclusions do not change if another zero-mean unit-variance distribution with a finite fourth
moment is used instead of the standard Gaussian distribution.

"Note that the term Az, ¢+ is no longer necessary because ;1 and ¢; are independent conditionally
on the data.
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On the other hand, if 8y € 00O the bootstrap statistic converges as follows:

nt/2(6% — 8) %, 7| (M. 0) (3:3.6)
0 = argmin||A — M7V |y, A] = {A € R? 1 fA > =4t}
AEA;

where £* ~ N(0,021;) is independent of (M,¢). In contrast with the case 6, €int©®
and additionally to the random matrix M, in (3.3.6) also the random vector ¢ appears
as a vehicle of limiting bootstrap randomness. Moreover, the limit in (3.3.6) is not a
conditional version of the limit of n'/2( — 6;), inasmuch as A in (3.3.6) is a random
half-plane, rather than the original admissible set A of (3.3.3). The kind of limiting
bootstrap randomness introduced by ¢ is similar to the one established in the introductory
location model and, in general, it invalidates bootstrap inference. The reason for the
discrepancy between A and Aj is that the parameter space of the standard fixed-regressor
wild bootstrap does not approximate well the original mutual position of the true value
6y and the boundary, unless g(é) = 0. Other, non-standard bootstrap schemes may be
designed in order to provide better approximations, at least under the null hypothesis.
Under these schemes the possible boundary position of 6 is no longer a vehicle of limiting
bootstrap randomness, while the role of the random matrix M in the limit bootstrap

distribution is maintained. This topic is analyzed in the next section.

3.4 ASYMPTOTICALLY VALID BOOTSTRAP SCHEMES

In order to unify the discussion of several bootstrap schemes for inference on Hy under
the three cases G, Go and G3, consider a bootstrap sample generated as in (3.3.4) and,
more generally than before, a bootstrap OLS estimator 6* constrained to belong to a
bootstrap parameter space ©* satisfying the following assumption.

The bootstrap parameter space is ©* := {6 € R? : g(0) > ¢*(f)} for some function
g* : R? — R which is continuously differentiable in a neighborhood of #, and satisfies
g*(0) < g(0) for 6 € O.

The standard bootstrap considered in Section 3.3 obtains by setting ¢g* = 0, such
that ©* = O, the original parameter space. Alternatively, setting ¢* = ¢ restricts the
bootstrap true value 6 to lie on the boundary of the bootstrap parameter space ©*.%

|~ for some x > 0 introduces a correction, in the spirit of an

Finally, setting ¢* =g —|g
alternative to the standard bootstrap mentioned in Andrews (2000, p.403, Method two),
Fang and Santos (2019, Example 2.1) and Cavaliere et al. (2022), where the bootstrap
true value either shrinks to the boundary of the bootstrap parameter space at a proper

rate or remains bounded away from this boundary, according to whether 6, belongs to the

8As 0 5 6y and g(6p) # 0, it follows by continuity that P(g(é) # 0) — 1, such that, with probability
approaching one, 6 is not a stationary point of g. In particular, with probability approaching one, 6 is
not a local minimizer of g, implying that § € 90* under ©* = {# € R?: g() > g()}.
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original boundary 90 or not. Other choices of ¢* with the same implication are discussed
in Sections 3.5.2 and 3.6.3.

To formulate the next theorem, recall M and ¢(6,) introduced in Section 3.3.1, and
let &*|(M, £(6y)) ~ N(0,021;) as in Section 3.3.2. Let also D,, = {y;, .1}, denote the
original data. Finally, call a convergence in distribution Z, — Z and a weak convergence
of random distributions Z*|D,, =, Z*|Y joint, denoted as (Z,, (Z*|D,)) = (Z,(Z*|Y)),
if (Z,, E{g(Z?)|Dn}) = (Z, E{g(Z)|Y'}) for all continuous and bounded real functions g

with matching domain.

THEOREM 3.4.1 Under a null hypothesis Hy as in G1—G3 and under Assumptions 1-3,
the bootstrap estimator 0* obtained by regressing y; of (3.3.4) on (1,2p4—1) under the

constraint 0* € O, satisfies
(n'2(8 = 6o), (/20" = 0)| Dn)) S0y (£(80), (€ (60)| (M. £(60)))) .
where in the case g*(0y) < g(0o),
0*(0o) = 0* == M~Y2¢* with 0*|(M, £(6,)) = (| M (3.4.1)

in the sense of a.s. equality of conditional distributions, whereas in the case g*(6y) =
9(00)7

0*(60) = £* := argmin|| A — M~Y2¢%| |y, Aj = {NER?: ¢'A> (" —§)'l(Ao)}. (3.4.2)

XeA]

The following conclusions could be drawn.

(i) Consider first configurations G; and Go under Hy, such that ¢g(6y) = 0. Consider the
magnitude order, in probability, of the distance between the bootstrap ‘true’ value
6 and the bootstrap boundary 0O©* as a measure of how precisely the bootstrap ap-
proximates the geometry of G; and GG5. As seen previously, the standard bootstrap
corresponds to ¢g* = 0 and approximates the geometry up to an exact magnitude

order of n=1/2

, resulting in a situation where the belonging of 6y to the boundary
contributes to the randomness of the limit bootstrap distribution given by (3.3.6)
and (3.4.2) via conditioning on the r.v. ¢(6y) = ¢. Conversely, bootstrap schemes
employing ¢*(6y) = g(6p) and ¢* = ¢, such that the bootstrap boundary is tangent
to the original boundary at 6, give rise to approximations of order o,(n~/2) and
all the randomness in the bootstrap limit is due to the properties of the stochas-
tic regressor via the random variable M, as now ¢*|(M,{¢) = ¢|M in the sense of
a.s. equality of random distributions; see (3.3.3) and (3.4.2). Moreover, for such
schemes the bootstrap mimics a conditional version of the asymptotic distribution
of the original estimator: n!/2(6* — §) “>,, £|M. Examples are the ‘restricted’ boot-

strap based on ¢* = g, which replicates the geometry of the original data under Hy
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by putting 6 on the bootstrap boundary, and the choices g* = g — |g|'™ for some
k > 0. In general, the limit distribution of the resulting bootstrap estimator is ran-
dom, with randomness depending on both the stochastic regressor and the position
of 6y relative to the boundary.

(ii) Consider now the case in G, such that g(6y) = 0 need not, but may hold under
Ho. Among the bootstraps considered in (i), the standard one would fail to mimic
a conditional version of the original limit distribution if g(6y) = 0, while the ‘re-
stricted” one would fail if g(fy) > 0. As an alternative, consider the bootstrap based
on g* = g — |g|*™* for some x > 0. If € 9O, then this choice puts the bootstrap
true value 6 at the asymptotically negligible distance of op(n_l/ 2) from the boot-
strap boundary, whereas if 6, €int®, then 6 is bounded away from the bootstrap
boundary, in probability. This guarantees bootstrap validity under some regularity

conditions, see (ii) in Corollary 3.4.1 below.

In general, bootstrap validity in the sense of (3.1.1) can be evaluated through the

following corollary of Theorem 3.4.1 above.

COROLLARY 3.4.1 Under the assumptions of Theorem 5.4.1, a necessary and sufficient

condition for the convergence
(n'2(0 = 6o), (n'2(6" = 0)| D)) 5 (£(60), (£(6)[M)) (3.4.3)

is that: (i) under Gy and G, g(6y) = g*(0p) and § = §*; (ii) under G, either g(6y) =
g*(6o) and g = g*, or g(6o) > max{0, g*(6o)}.

Moreover, under (3.4.3) the bootstrap is valid in the sense of (3.1.1) for any pair of
statistics T,, 7 such that, under Hy, 7, = ¢(n"/2(6 — 0y)) + 0,(1) and 7 = ¢(n'/2(6* —

~

6)) + 0,(1) for some continuous real function ¢ such that ¢(£(6y)) is well-defined a.s.

The class of functions g* = g — |g|*™* for £ > 0 satisfies both conditions (i) and (ii) of
Corollary 3.4.1; hence, the ensuing bootstrap inference is valid under all of G1-G3. In
contrast, the standard bootstrap violates condition (i) and, in general, is asymptotically
invalid if g(6y) = 0. An exception is when the discrepancy between the original and the
bootstrap geometry is offset by the use of a test statistic that takes into account the
geometric position of the null hypothesis in the original parameter space. Section 3.5.1

focuses on this setup.

REMARK. The practical implications of Corollary 3.4.1 depend on the choice of the
statistic 7, and the respective function ¢, which will typically be a linear ¢(I) =1 %(QO)
arising from the delta method, with | € R2, %(90) # 0. For instance, if g(6y) = 0 and
#(¢) depends on ¢ only through ¢’/ = max{0, y’M~'/2¢}, then the cdf of ¢(¢) will not

be continuous. Still, the bootstrap will be valid in the sense of (3.1.1), meaning that
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the largest open subset of [0, 1] on which the bootstrap test is correctly sized as n — oo
coincides with the analogous set for the asymptotic test. This set will be smaller than
(0,1), however. An example is 7, = n'/2¢(0), 75 = n*/2(g(6*) — g(f)) with ¢(¢) = ¢,
corresponding to a right-sided test of Hy : g(6y) = 0.

REMARK. Bootstrap validity extends readily to statistics where n'/ 2(@—90) is normalized
by some 3 = (M,) + o0,(1) for a function ¥ : R2*?> — R**2 which is continuous on
the set of positive definite matrices. Specifically, bootstrap validity holds if, under Hy,
T = d(n25(0 — 0y)) + 0,(1) and 7 = ¢(n'/25(6* — 0)) + 0,(1), where ¢ is a continuous
real function such that ¢(X(M)€(6y)) is a.s. well-defined. O

3.5 DISCUSSION AND EXTENSIONS

In this section we address the following three issues: (i) the validity of one-sided bootstrap
tests; (ii) a discussion of the bootstrap schemes from Corollary 3.4.1 within the paradigm
of some previous works — specifically, Fang and Santos (2019) and Hong and Li (2020);

and (iii) uniform bootstrap validity.

3.5.1 VALIDITY OF ONE-SIDED STANDARD BOOTSTRAP TESTS

Under case Gy, consider testing Hy : ¢g(fy) = 0 against the alternative Hy : g(6p) > 0
using a one-sided test and the standard bootstrap, i.e., with ¢g* = 0. For a test statistic
of the form 7, := n'/2¢(0), a bootstrap counterpart is given by 7 := n'/2(g(6*) — ¢(f))
and the associated one-sided bootstrap test rejects for large values of the bootstrap p-
value p} := P*(1} < 7,); equivalently, for small values of p! := 1 — p’. As for 6%, also
7 is affected in the limit by extra randomness due to 6y being on the boundary. From
(3.4.1), which reduces to (3.3.3) and (3.3.6), it follows by the delta method that

(Tas (T2 D)) = (96, (§'€°|(M, €))) = (9/¢, (max{=§'t, §'C"}|(M, 1)), (3.5.1)

with ¢, ¢* and ¢* as previously defined. For 7, however, the randomness induced by
conditioning on ¢ affects the sample paths of the associated random cdf on the negative

half-line alone, because ¢’¢ > 0, and is thus irrelevant for bootstrap tests with nominal

1
12
distributed below % This follows rigorously from the next generalization of Theorem

3.1 in Cavaliere and Georgiev (2020), the proof being analogous, where conditions for

size in (0,5). Put differently, the bootstrap p-values p; are asymptotically uniformly

bootstrap validity restricted to a subset of nominal testing levels are formulated.

THEOREM 3.5.1 Let there exist a random variable 7 and a random element X, both
defined on the same probability space, such that the support of T, is contained in a finite or
infinite closed interval T, and (7, F*) = (7, F) in R x D(T) for F¥(u) := P(r} <u|D,)
and F(u) := P(r < u|X), u € T. If the possibly random cdf F is sample-path continuous
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on T, then the bootstrap p-value p} := F'(7,) satisfies

P(p: <q) —q

for q such that ¢ € F(T) a.s.

By Theorem 3.5.1 with T = [0, 00), which corresponds to the support of 7, and 7 := §'¢, it
follows that the standard bootstrap applied to the one-sided statistic 7, is asymptotically

correctly sized for nominal test sizes in (0, 3).

3.5.2 FANG AND SANTOS (2019) AND HONG AND L1 (2020)

In this section we put the geometric considerations of Section 3.4 in the perspective of
Fang and Santos (2019), and of the numerical bootstrap of Hong and Li (2020). The
discussion is often specialized to the case of an affine constraint.

Consider the constrained OLS estimator 6 of Section 3.3.1. Its limit distribution, see
(3.3.3), is the distribution of £(6) = g, (M ~1/2¢) with

SOHO(U): . ./ . 1'/ 1- ./ 1' 1 ./ . )
919 MgL) gy Mu+ M~ g(g'M~"g)"  max{0, g'u}  if g(6p) =0
with v € R%. By a projection identity, the expression in the second line of the previous
display collapses to u whenever ¢'u > 0. Note that the distribution of M ~1/2¢ conditional
on M can be estimated consistently by the distribution of the unconstrained bootstrap

OLS estimator conditional on the data; that is,
n'2(0% — 0) L, M~V M.

One can then ask what properties of an estimator ¢, of g, are sufficient for @, (n'/2(6* —
0)) Y ©o, (M~Y26)|M to hold. Fang and Santos (2019) address this question in the
setup of deterministic transformations of non-random limit distributions, instead of the
random transformation (g, of the random distribution M~'/2¢|M. Although not directly
applicable here, Theorem 3.2 of Fang and Santos (2019) provides the key insight: there

should be sufficient uniformity in the convergence of ¢,, to ¢g,. Consider for instance
Pu(w) = gL(g\ Mngr) "¢\ Mou (3.5.2)

~

+M, (9 M, g) ! max{—n'?[g(6)]"", g'u}, u € R?,

where ¢ = %g(é), M, =n '3 &3, with & = (1,2,4-1)", and £ > 0. Given that
M, M, g5 g and n'/2|g(0)]*+~ & 00l y(60)>01, it is easily checked that @, — w4, on

C5(R2), and the convergence of @, is joint with that of n'/2(8 — 6,) and n'/2(8* — 6), the

latter one given the data. These facts are sufficient to ensure that
(n'2(8 = 60), (2n(n"/?(6% = 0))|Dy)) S (¢(60), (£(80)| M)
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on R* essentially as a consequence of the continuous mapping theorem (CMT) and the
continuity of the evaluation map from Cy(R?) x R? to R%. As the previous limit is the
same as in Corollary 3.4.1, it follows that bootstrap inference based on the distribution
of ¢n(n'/2(6* — 6)) conditional on the data is valid. Moreover, for the valid bootstrap
schemes obtained from Corollary 3.4.1 with g* = g—|g|'™*, k > 0, the bootstrap estimator
0" satisfies n'/2(6* — f) = ¢, (n"/2(8* — 6)) for affine functions g. It can be concluded that
o of (3.5.2) implicitly performs the geometric approximation proposed in Section 3.4,
and so does any other estimator of yy, that converges like ¢,,.

We now argue that such an estimator of ¢y, is embedded in the numerical bootstrap
of Hong and Li (2020). This ensures the validity of the numerical bootstrap for the
predictive regression of interest here, though at the cost of a slower consistency rate of
the bootstrap estimator than in Corollary 3.4.1. Let s, — oo be a sequence such that
n~'2s, — 0. Hong and Li (2020) propose in their eq. (4.9) a bootstrap estimator 07,
where the constraint set of our £(6p) (i.e., R? if ) € int® and the half-plane A if 6, € 90),
would be estimated by A*, = {\ € R?: g(é—l—s;l)\) > 0}, the implied bootstrap parameter
space being O}, = 0+ sy A%, = ©. The bootstrap estimator itself, adapted to our setup,
could be written as

0r, = argmin|[s, (0 — ) — M, "¢ ||,
9(6)=0
where &' is a bootstrap variable such that £ w—;p N(0,L,); eg., & = nl/zMrll/Q(@N* — é)
In the simple case of an affine g we find the explicit expression

Sn( A:zb - é) = @N<M_1/2£*>

n n

for ¢, defined similarly to ¢,,, with the only difference that in (3.5.2) the term n/2|g(0)[*+*
is replaced by s,9(8). As s,9(8) 2 colygy)>0y similarly to n/2|g(@)|"**, xk > 0, it fol-

lows that @, converges similarly to ¢,,. As a result,
(n!2(0 = 00), (505, = )| D)) 5us (£(00), (£(60)| M) ,

ensuring the validity of the numerical bootstrap, though the consistency rate of é:b is s, =
o(n'/?) instead of n'/2. In contrast, the rate of n'/? would be achieved by our proposed
bootstrap estimator, with n'/2(6* — 6) = @, (M, /2¢?), if ©* = {# € R? : g(6) > ¢7(0)}

n

with g* = g — n~'/2s,|g| is specified in Assumption 3.

3.5.3 UNIFORMITY CONSIDERATIONS

In agreement with Chatterjee and Lahiri (2011), Remark 3, the focus in this paper is
on pointwise bootstrap validity. For situations where uniform bootstrap validity is of
interest, our key takeaways are similar to the literature on non-random limiting boot-
strap measures. First, for the null hypothesis G; that the true parameter value lies on

the boundary of the parameter space, the pointwise-valid bootstrap schemes outlined
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in Corollary 3.4.1 display asymptotic rejection probabilities matching the local power of
the bootstrap test whenever the true parameter value varies along a sequence that is lo-
cal to the boundary at the n~'/2 rate. This fact is associated with rejection frequencies
above the nominal test size along local-to-the-boundary parameter sequences (cf. Fang
and Santos, 2019, Remark 3.6). Second, if conservative bootstrap inference along such
parameter sequences is desired, it can be achieved for hypotheses G;—-G3 by adapting the
approach of Doko Tchatoka and Wang (2021), and Cavaliere et al. (2024), at the cost of
a potential decrease in power.
To illustrate these points, consider a sequence of true parameter values 6,, = 0y+n—1/29
such that g(fy) = 0 and ¢’ = ¢ > 0 with g(6,) = n="/2c + o(n=1/2). Moreover, let
09, ¢) :== 10 + argmin||A — M V2|, A= {\ € R?: ¢ A+ ¢ >0}, (3.5.3)

AEAC

and £(0,0) = ¢ of eq. (3.3.3). Then, the joint convergence result
(n"2(8 = 6o), (n"2(6" — )| Dn)) S (£(9, ), (£(0,0)|M)) (3.5.4)

holds for the bootstrap schemes satisfying conditions (i) and (ii) of Corollary 3.4.1. For
a function r : R?> — R which is continuously differentiable close to 6y, consider the
statistics 7, = n*/2r() and 7% = n'/2(r(6*) — r(0)), and distinguish among the extreme
possibilities 7 = ag with o > 0, and 7 = ag, with a # 0, where 7 = %(HO). The former
possibility arises in testing the null hypothesis that 6y lies on the boundary (e.g., with
r = g), whereas the latter one arises when the null is orthogonal to the boundary (e.g.,
with 7(0) =0y, Hy: 6 =0 and Q =R x [0,00)). If 7 = ¢ and, without loss of generality,
a = 1, the delta method yields

(s (77| Dp)) = (max{0, §'M 2 + e}, (max{0, ' M2} | M)).
With vy := (¢’ M~1g)~/2, it follows that

PH(1; <) = m(c; M, §) = %H{Q’M*1/2£+c<0} + q’(WM(g/M_l/zf + C))H{g'Mfl/Q&czo}
> mw(0; M, §),

where 7(0; M, ) 4 %]I{U<0‘5} + Uliy>o5y, U ~ Uppa, represents the limit distribution of
the bootstrap p-value under the null. The inequality above implies that bootstrap tests
rejecting for large bootstrap p-values will exhibit rejection frequencies above the nominal

test size.

On the other hand, if 7 = g, , it holds that
(o, (T21Dn)) i (33 MY2E 4 #73y MO, (3 M€ M),

with vi; := g1d) (¢, Mg,)~, such that the boundary is asymptotically irrelevant. Boot-

strap tests of the null that r(6y) = 0 could be conservative or liberal according to the
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sign of 7'¢, ¢, M. Similar considerations apply whenever /¢, # 0.

For situations where liberal tests are not desirable, a possible remedy is suggested
next. It involves a continuum of boundaries for the bootstrap parameter space and its

implementation requires a discretization of that continuum.

Let 6 be the unrestricted OLS estimator of @ in regression (3.3.2). For every s €
I, == [—|g()]*~*, g(0)], let 6% be the bootstrap estimator over the parameter space ©* :=
{0 e R?: g(0) > s — g(6)"*"}, where € (0,1) and x > 0 are fixed. For a continuously
differentiable function r, let p*(s) be the p-value of a test based on 7, = n'/2r(f) and
75 = n'2(r(6*) — (). Then
lim sup P(sup pj,(s) < q) < ¢

n—00 s€ln

for all ¢ € intC, where C' is the set from display (3.1.1) for the benchmark asymptotic
test based on the unfeasible statistic n'/2(r(f) — r(6,)) and the simple null hypothesis
that 6, is the true parameter value. This conservative generalization of the validity
property (3.1.1) holds irrespective of the values of the drift parameter c. Specifically, the
role of —|g(@)]** in the definition of I, is to guarantee that g(d) — cn~Y2 € I, with
probability approaching one. Conservative size control then follows from the fact that é;‘
with s = g(0) — en~ /2 satisfies

(n"2(0 = 6,), (n'2(8% = 0)| D)) = (£(0, ), (£(0, ¢) | M)

see eqgs. (3.5.3)—(3.5.4).

3.6 NUMERICAL RESULTS AND CHOICE OF THE TUNING
PARAMETERS

In this section we analyze the finite sample performance of the proposed bootstrap
methodology by means of numerical simulations. The purpose is twofold: first, to in-
vestigate the practical advantage of our methodology over standard bootstrap methods;
second, to provide some practical guidance on how to choose the functions ¢g* and the
tuning parameter x in the definition of the bootstrap parameter space. Simulations are
based on setup Gz of Section 3.3, as it covers the general case of a true parameter value
that could, but need not, lie on the boundary of the parameter space under the null hy-
pothesis. This section is organized as follows. In Section 3.6.1 we describe the data gen-
erating processes, the null hypotheses and the adopted bootstrap schemes. In Section
3.6.2 we discuss the performance of the tests both under the null and under local alter-
natives. Section 3.6.3 deals with the choice of ¢* and k. Additional numerical results are

provided in the accompanying supplement, Section C.3.
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3.6.1 MONTE CARLO DESIGN

1/2

We consider the same data generating process (DGP) as in (3.3.1), where x,,; = n="/?xy,

Ty = Yt €nis Exp ~ did N(0,1), with the following specifications of &;:
1. & ~ iid N(0, 1);
2. & = oy, where 02 = 0.7+ 0.3¢2_; and v; ~ 4id N(0,1);
3. & = V0.5e, + V0.5, where n, ~ iid N(0,1).

In each case, {€,.} is independent of, respectively, {e;}, {v:} and {n;}. In Case 1,
the regression errors are independent and Gaussian, while in Case 2 they exhibit ARCH-
type conditional heteroskedasticity. Case 3 allows for correlation between e; and the
regressor’s innovation € .

The parameter space is specified as © := {# € R? : g() > 0} where g(0) = 6,. That
is, © := R x [0, 00) — such that its boundary is given by 00 = R x {0}. For all parameter
values, we test the null hypothesis Hy : h(6y) = 0, with h(0) = 6, + -, against the two-
sided alternative h(fy) # 0. To do so, we employ the test statistics 7, = ¢(v/nh(0))
and 7F = ¢(/n(h(6*) — h(h))), where ¢(z) = 22, while 0 and 6* denote the original and
bootstrap constrained LS estimators, respectively. In order to analyze size control and
power of the proposed tests, we consider both empirical rejection probabilities [ERPs]
under the null and under local alternatives. For tests performed under the null, we
consider three different choices of the true value 6y, one located on 90 and two located
on ©\00; specifically, 6, € {(0,0),(—=0.75,0.75)", (—=1.5,1.5)"}. Under H;, we employ a
local alternative of the form 6y = agn™'/%, ay € R?, such that h(f) # 0 unless a = (0, 0)’.

Tests are based on p-values obtained using a ‘standard’ — i.e., with ©* = © — fixed-
regressor Gaussian wild bootstrap and the proposed ‘corrected’ bootstrap scheme. For
the latter, the bootstrap parameter space is set to ©* = R x [g*(ég),oo), where the
function g* satisfies the assumptions of Corollary 3.4.1, see also Section 3.6.3. In order to
assess the impact of the tuning parameter s, we consider a grid of possible values for .
Numerical results are based on 50,000 Monte Carlo simulations, each involving B = 999
bootstrap repetitions. Sample sizes are set to n € {100, 200,400, 800, 1600}.

3.6.2 EMPIRICAL REJECTION PROBABILITIES

We now discuss the ERPs of the bootstrap tests. Specifically, the Monte Carlo results in
Table 1 and 2 refer to the case in which data are generated under the null and under local
alternatives, respectively. The proposed modified bootstrap parameter space is based on
the function g* = g — |g|'™* for several values of k > 0.

Table 1 shows that the ‘standard’ bootstrap scheme typically under-rejects the true
null hypothesis when the parameter lies on the boundary of the parameter space ©
whereas, as expected, its ERPs are closer to the nominal level when 6, is in the interior of

©. Our proposed bootstrap performs similarly to the ‘standard’ bootstrap for very small
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values of k, with the impact of the correction becoming more relevant as s increases. If the
parameter is on the boundary of the parameter space (6y € 90), our proposed bootstrap
scheme gives rise to smaller absolute size distortions than the ‘standard’ bootstrap, for
all the considered DGPs and all values of k. When 6, € int®, we observe very little
variability in the ERPs across the different bootstrap methods, at least for reasonably
small values of .

Table 2 reports the ERPs of the tests when data are generated under local alternatives
0o = aon~%, ag € {(—3,0),(3,0),(5,0)'}, such that the true parameter values lie on
the boundary of the parameter space. Results show that both bootstrap schemes have
power under local alternatives, with the ‘corrected’ bootstrap generally showing higher
ERPs than the ‘standard’ bootstrap, in line with the results obtained under the null.
Finally, we notice that the sign of the deviations from the null hypothesis matters, with
positive deviations showing higher ERPs. This finding can be explained by the fact that
the limit distribution of n'/2(h(f) — h(6y)) is asymmetric when 6, lie on the boundary
of ©. Results about local alternatives such that 6, are n~'/%local to the boundary are

substantially similar and are reported in Section S.2 of the supplement.

3.6.3 (CHOICE OF ¢g* AND K

We now consider the practical issue of choosing the function g* and the tuning parameter
k used to construct the modified bootstrap parameter space ©*.

Regarding ¢*, in Section 4 we discussed the functions 9y =9~ lg|***, k > 0, which
satisfy the assumptions of Corollary 3.4.1 and were employed in the simulations so far,
whereas in Section 3.5.2 we considered also gfy) := g—n""|g|, & € (0,1/2), corresponding
to s, = n'/?>~* in the concluding paragraph of Section 3.5.2. Numerical results in Table
1 and 2 and in the accompanying Supplement, Section S.2, show that both choices of
g* deliver good test performance, both under the null and under local alternatives. The
most salient difference between gz‘l) and 92‘2) is that tests based on ga) tend to be more
robust to the choice of kK when g(6y) > 1.

Concerning the choice of the tuning parameter s, we focus on g* = gz‘l). Preliminary
considerations point at a possible trade-off between the cases of a boundary and an interior
location of the true parameter ;. Thus, for 6y € 00, larger values of k accelerate the
convergence of g(é)H” to zero, which can be expected to favor bootstrap performance as
the bootstrap true value 0 is put at a smaller distance from the bootstrap boundary. On
the other hand, if 6, € int(©) and g(6y) € (0,1), in small samples large values of x may
put 6 too close to the bootstrap boundary, yielding inferior bootstrap performance.

Our Monte Carlo study indeed confirms that small values of x are preferable when
0o € int(O) and g(fy) € (0, 1); however, it also shows that the proposed correction quickly
provides satisfactory size control for small values of x even when 6, € 00. Finally, we

notice that when 6y € int(©) and g(6y) > 1 the choice of x has negligible impact on the
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ERPs. Overall, our numerical analysis suggests that choices of x close to 0.5 provide

quite satisfactory size control across all the considered scenarios.

REMARK. The above guideline about the choice of x is based on numerical evidence; it
delivers a reasonable simple choice which can be easily implemented. It is not optimal
in any sense, and indeed alternative methods could be employed to obtain data-driven
choices of k. For instance, the unrestricted parameter estimates could be used to assess
how far the true parameter value 6, is from the boundary of the parameter space, and then
calibrate the choice of k accordingly. This approach would be in the spirit of Romano,
Shaikh and Wolf (2014), who suggest to improve the power of tests of moment inequalities
by introducing a first step, where a confidence region for the moments is constructed
using their unrestricted estimates. Although this approach may improve the finite sample
properties of our tests, it would require a preliminary choice of further tuning parameters,

such as # in Romano et al. (2014), hence introducing an extra layer of complexity. [

3.7 (CONCLUSIONS

In this paper we analyzed the problem of bootstrap hypotheses tests on the parameters
(ar, B) of a predictive regression y, = o + ;1 + €, generalizable to higher dimensions,
when the parameter space is defined by means of a smooth constraint g(«, 8) > 0 and
the true parameter vector under the null hypothesis may lie on the boundary of the
parameter space. In the framework of constrained parameter estimation, implementation
of the bootstrap is not straightforward, as the presence of a parameter on the boundary
of the parameter space makes the bootstrap measure random in the limit.

We discussed possible solutions to this inference problem. Specifically, we presented
some modifications of standard bootstrap schemes where the bootstrap parameter space is
shifted by a data-dependent function, thus allowing us to regain control over the boundary
as a source of limiting bootstrap randomness. We also proved validity of the associated
bootstrap inference in the cases where the posited predicting variable is I(1).

Our contribution is novel in the framework of predictive regression, in that the exist-
ing literature has not analyzed the bootstrap in contexts combining non-stationarity of
the posited predictor with a priori knowledge about the possible form of predictability,
represented by a restricted parameter space. The value of our work is to provide valid

bootstrap implementations in this setting.
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CHAPTER 4

WHEN DID THE PHILLIPS CURVE
BECOME FrLAT? A TIME-VARYING
ESTIMATE OF STRUCTURAL
PARAMETERS

(written with Claudio Lissona and Antonio Marsi)

4.1 INTRODUCTION

The disconnect between the observed fluctuations in unemployment and inflation in the
last decades is a well-known empirical fact in the macroeconomic literature (Stock and
Watson, 2020; Ball and Mazumder, 2020; Bobeica et al., 2021). As shown by Stock and
Watson (2020), a set of simple OLS regressions of core inflation on a measure on the un-
employment gap, for the US, reveals a declining pattern. The estimated OLS coefficient
is -0.48 for the 1960-83 sample, -0.26 for the 1984-99 sample and -0.03 (and not statisti-
cally different from zero) for the 2000-2019 sample. However, these are changes in reduced
form correlations, which can be the result of different underlying structural changes. As
shown extensively in Del Negro et al. (2020); McLeay and Tenreyro (2020); Bergholt et al.
(2023), among others, a decreasing correlation between inflation and unemployment can
be caused by at least three different phenomena: (1) a decreasing value of the structural
coefficient relating changes in economic slack and inflation; (2) an increase in the strength
of the reaction of the central bank to business cycle shocks; (3) an increase in the propor-
tion of aggregate fluctuations driven by supply-type shocks as compared to demand-type
shocks. Other structural explanations are based on some departure from rational expec-
tations models (see e.g. Coibion et al., 2018) or stems from the involved network struc-
ture of the economy (see e.g. Rubbo, 2022). Disentangling among these different expla-
nations essentially boils down to being able to identify the structural Phillips Curve (PC),

rather than a reduced form version (Mavroeidis et al., 2014). Furthermore, different ex-
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planations would lead to opposite monetary policy considerations. In fact, a decrease in
the structural slope of the PC (i.e. explanation (1) above), would imply that the central
bank’s ability to control inflation is impaired, since it is based on the idea that by set-
ting the interest rate the central bank can affect economic slack and thus inflation via the
PC. On the other hand, it is clear that explanation (2) above is much more comforting
for central bankers. As we explain in the related literature section, evidence is still mixed
and conclusions crucially depend on the empirical strategy used to identify the structural
equation. The PC can be formulated in many different ways. Here we refer to its hybrid

New- Keynesian formulation, following Barnichon and Mesters (2020a) and many others:

T = Wii—1 + YpEym + Az + (4.1.1)

where ; is some measure of inflation and +;, v are the parameters governing the stickiness
of inflation and the role played by expectations about future inflation, respectively. z;
is some measure of economic slack and the unemployment gap can be conveniently used
for this purpose (Gali et al., 2011; Gali, 2011). Notice that m; should be intended as a
deviation from the long run trend, as we will discuss later. 7 is a cost-push (supply-type)
shock.

Over recent decades, an extensive portion of the literature has focused on PC estima-
tion, given its major implications, in primis for monetary policy (Mavroeidis et al., 2014).
However, apart from few exceptions such as Inoue et al. (2022) and Gali and Gambetti
(2019), the literature is still missing a precise estimate of the evolution over time of A,
where the coefficient is allowed to be fully time-varying. In this paper we contribute to
filling this gap, using an innovative approach. We believe that tracking the value of A over
time is extremely useful, as it enables not only to show whether \ has in fact decreased or
not, but also when exactly did the structural change take place. Understanding when the

change happened can help to shed light on the ultimate forces behind the phenomenon.

To do this, we first model the dynamics of aggregate macro variables, in a time-varying
fashion. We do this by using a non-parametric specification of a stochastic time-varying
VAR model, following Giraitis et al. (2018). Details of this model are presented in Section
2. This choice has several useful advantages compared to competing alternatives. Simple
splitting of the sample, as in Del Negro et al. (2020), fails to provide evidence on the
exact timing of the occurrence of any structural change and is subject to the arbitrary
choice of the splitting date. Rolling window analysis would reduce sample size in an
inefficient way. Competing time-varying VAR models, such as the bayesian TVC-VAR
(Primiceri, 2005; Del Negro and Primiceri, 2015) - besides being much more demanding
from a computational viewpoint - impose ex-ante parametric restrictions on the process

driving the evolution of time-varying coefficients.
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Notice also that the approach we use enables us to circumvent the usual problem of
cleaning for the long run trend in both 7, and z;. The stochastic time-varying VAR model
embeds the estimation of a random attractor which can be interpreted as an estimate of
the long-run inflation trend and the natural unemployment rate (see the details in the
next section). This permits to avoid using methods such as the Hodrick-Prescott filter

to estimate long run components of the time series.

We identify an aggregate demand shock in the time-varying VAR model, by using
the Excess Bond Premium (EBP) by Gilchrist and Zakrajsek (2012) and ordering it last
in a recursive-ordering (Cholesky) identification strategy. This is the same identification
strategy used in Del Negro et al. (2020) and it is a convenient choice in our setup for
several reasons that we will detail later. At this stage we are therefore able to estimate a
set of time-varying impulse response functions to the identified aggregate demand shock.
Furthermore, an alternative identification strategy, based on sign-restrictions, is explored
in Appendix D.2.

Lewis and Mertens (2022) show that a structural macro equation like (4.1.1) can
be conveniently and consistently estimated by computing the impulse responses of the
variables in the equation (namely m; and ;) to a properly identified structural shock
(for the PC, a demand shock orthogonal to the supply shock 7,), and by then regressing
impulse responses one on each other. Armed with our time-varying impulse responses,
we can in fact get a time-varying estimate of the NKPC by applying this idea. This
methodology, called the SP-IV estimator in Lewis and Mertens (2022), is an extremely
smart way to solve many issues practically faced by researchers when trying to estimate
structural equations like the PC. In a nutshell, the endogeneity of E;m; 1 and x; is the
main challenge here. Let us consider equation (4.1.1) and forget for simplicity about past
and future inflation components and focus only of z;. Equation (4.1.1) is only one of a
large set of structural equations driving macroeconomic fluctuations, hence E (nz;) # 0,
and (4.1.1) cannot be estimated by OLS. The traditional solution is to use past values
of macro variables as external instruments, under the assumption that E (z;—1n;) = 0.
However, it is enough for 7; to exhibit some persistence for the assumption not to be
valid anymore. Using further lags could solve the problem, but at the strong cost of
reducing instrument’s relevance. Barnichon and Mesters (2020a) proposes then to use a
sequence of past and present (properly identified) shocks, e.g. a sequence of past monetary
surprises, to instrument x;. This approach however requires the strongest assumption of
contemporaneous and lag exogeneity of the instrument. The SP-IV method by Lewis and
Mertens (2022) conveniently addresses all these issues and we refer to their paper for all
the details. In our case, the most convenient feature of SP-IV is that the IRFs to the
demand shock can be identified using any valid identification scheme, hence it enables us

to employ the Cholesky ordering strategy of Del Negro et al. (2020).

Using this approach we are able to trace out the evolution over time of the parameters
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of a time-varying NKPC, which can be framed within a DSGE model with exogenous
variation in the structural parameters (Canova and Sala, 2009; Castelnuovo, 2012; Galvao
et al., 2016). We apply our methodology to a sample of monthly US macroeconomic
variables and estimate a strong reduction of the slope of the NKPC. Specifically, the
estimated slope goes sharply to zero already in the 80’s and remain zero from 1990 onward.
At the same time, we show that the v; coefficient, measuring the importance of inflation
expectations, grows over time. Notice that a combination of high v; and low A is, from a
theoretical point of view, a dangerous situation where the central bank’s ability to control
inflation is impaired while expectations are at the same time quite important, hence any
news shock to expectations can significantly influence the inflation rate, possibly leading
to explosive behaviors.

By comparing the estimated IRFs of the interest rate to the demand shock over time,
we rule out the hypothesis of a stronger reaction of the central bank as a driver of the
flattening of the PC (i.e. explanation (2) above). If anything, the estimated response of
the interest rate seems to become more muted over time.

To show that our approach provides valid estimates of the structural parameters
of interest, we conduct a simulation study where we analyze the performance of our
methodology by generating data from a time-varying-parameters version of a simple NK
model & la Gali and Gertler (1999).

The remainder of the paper proceeds as follows. First, we briefly review the related
literature. In Section 4.2 we explain in details the methodology used. In Section 4.3 we
present the data used and how we specify the time-varying VAR model. In Section 4.4 re-
sults from the baseline specification are presented. In Section 77 the procedure we use to
conduct inference on the parameters of interest is discussed. In Section 4.5 the evidence
from the simulation analysis is presented, while Section 4.6 provides some concluding re-
marks. Appendix D.1 shows results when using variables at quarterly frequency. Ap-
pendix D.2 presents results using the sign-restrictions identification strategy. Appendix
D.3 shows the results for the Euro Area.

4.1.1 RELATED LITERATURE

The empirical literature on the PC is huge and a exhaustive survey is not the aim of this
paper (see Mavroeidis et al., 2014, for a survey of older contributions. We limit ourselves
to list some relevant papers that study the evolution over time of PC coefficients.
Barnichon and Mesters (2020a), for instance, estimates A for the US, from two over-
lapping samples: for the 1969-2007 sample, they estimate a value of -0.42, while focusing
on the 1990-2007 sample yields an estimate of -0.24, pointing to a reduction of the struc-
tural slope of the NKPC, A\. However, the external instruments used for identification in
the two samples are different: the Romer and Romer (2004) narrative measure of mon-

etary policy shocks in the first sample, high-frequency monetary surprises a la Kuttner
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(2001) in the second sample

Del Negro et al. (2020) estimates a bayesian-VAR on US data, splitting the sample
in two parts: 1973-1989 and 1990-2019 and identify a structural shock associated to
the EBP, as we did in this paper. The document a significantly smaller reaction of the
inflation rate to the shock in the second sample, even when conditioning for the path
of unemployment. There are few studies in the literature trying to estimate a fully
time-varying version of the PC. A notable example is Giraitis et al. (2021), who use a
nonparametric time-varying stochastic IV estimator to directly estimate a time-varying
version of (1). Differently from us, they estimate the PC coefficients by using a set of
lags of unemployment and inflation as external instruments. This identification strategy
presents all the issues briefly mentioned above and discussed extensively in Barnichon
and Mesters (2020a) and Lewis and Mertens (2022). Their analysis on US data points
a decline in the slope of the PC, which is estimated to be significantly different from
zero only in the early 80’s. Another study very much related to this paper is Gali and
Gambetti (2019). They analyze the evolution of the wage-NKPC over time for the US,
documenting a decreasing slope. However, we differ from Gali and Gambetti (2019),
along several dimensions. First, to model time-varying dynamics of the macroeconomic
variables, they use the methodology in Del Negro and Primiceri (2015): a bayesian TVC-
VAR. This model assumes time-varying coefficients to follow a random-walk, while the
methodology we use is consistent with a much wider class of dynamic models, as explained
in section 2. Second, they focus on the wage Phillips Curve while we focus on the price
one. Third, their structural identification strategy is based on a combination of long-
run and short-run sign-restrictions applied to the set of structural shock,' while we rely
on the Excess Bond Premium to identify the demand shock, as in Del Negro et al.
(2020). Fourth, they use their estimates of the time-varying impulse response functions
to construct time-varying “Phillips Multipliers” (Barnichon and Mesters, 2020b). In
short, it consists in computing the trade-off between inflation and unemployment, at
different horizons, by taking the ratio of the cumulative impulse reponses of the two
variables. However, compared to the Lewis and Mertens’s (2022) SP-IV method, this
methodology has important shortcomings: (i) the estimated trade-off between inflation
and unemployment is horizon specific; (ii) it does not allow to control for (and include in
the estimated time-varying coefficients) the lagged and forward inflation components of
the Phillips Curve.

Berger et al. (2016) and Fu (2020) estimate a series of reduced form models for
the PC, allowing for time variation in the coefficients. While Berger et al. (2016) find
evidence of stability of reduced form PC parameters over time, Fu (2020) concludes that

it is important to account for time variation. We differ from these studies as we focus on

In their framework, they have the following set of structural shocks: technology, demand (non-
monetary), monetary policy, price markup, wage markup.
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the estimation of structural parameters, rather than reduced form ones.

4.2 METHODOLOGY

In this paper, the estimation of time-varying NKPC parameters is achieved by combin-
ing two advanced econometric techniques that have been recently proposed. We use a
nonparametric stochastic time-varying VAR model (Giraitis et al., 2014, 2018) to obtain
time-varying impulse response functions to a structural aggregate demand shock. We
then exploit the novel methodology proposed by Lewis and Mertens (2022) to estimate

the structural parameters of the NKPC over the sample considered.

4.2.1 ESTIMATION OF THE STRUCTURAL NKPC
Given the structural NKPC:

T = Vo1 + Y Eemepr + Axy + 1y (4.2.1)
Barnichon and Mesters (2020a) and Lewis and Mertens (2022) show that its param-

eters can be estimated using a “regression in impulse responses” approach. Denote by
Irfy (7)), Ir f, (x) the impulse responses of variables 7, and z;, after h periods, to a struc-

tural shock v; orthogonal to 7;:

Irfu () = E(Teon/Li1, 00 = 1) — E(Teqn/Li1)

(4.2.2)
Irfp(m) = E(xi4n/Li1,00 = 1) — E(2p40/Ti1)
NKPC parameters can then be estimated by:
N ! B
353] = (©k0x) " oxey (4.2.3)
where O, Oy collect the estimated response of variables across horizons:
Irfo(m) Irfo(z) 0 Irf(n)
Irf(m Irf (z Irf.(m Irf,(m
o _ | RO | o | T@ Th@ T o
I fy(m) Irfy(x) Irfy () ITfH+1<7T)

Lewis and Mertens (2022) show that the necessary impulse responses can be obtained
with any valid forecasting model and identification scheme, hence a VAR can be used to

estimate O, Oy, as long as m; and z; are part of the vector of endogenous variables.

4.2.2 TiME-VARYING NKPC

The NKPC should be seen as one of the equations of small- and large-scale structural
macroeconomic models, namely DSGE models. Introducing time-variation of the param-
eters in a DSGE model is not straightforward (see, for a discussion, Kapetanios et al.,

2019). One way to model time-variation of the parameters is to define a stochastic pro-
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cess for the parameters (or a subset of them) and assume that agents know how param-
eters evolve over time and take this into account when forming expectations; this as-
sumption is made for instance in Justiniano and Primiceri (2008). This approach makes
the time-varying DSGE model much more complicated and requires to augment the set
of shocks with the innovations to parameters’ value, which implies that only a subset of
the parameters can be let vary over time. We use a different approach, following Canova
and Sala (2009); Castelnuovo (2012); Galvao et al. (2016), and assume that agents take
parameter variation as exogenous when forming expectations about the future. This as-
sumption keeps the model tractable and simple. At each point in time agents take pa-
rameters’ value as given and think they will stay at the same value forever. In the next
period agents learn about the changes in parameters and adjust their equations, but do
not use this change to forecast future changes in the parameters. A similar result would
be obtained by assuming that parameters follow a random walk process, hence the best

guess about their future value would still be the current value.

Under these assumptions about time-variation of the “deep” parameters, we can

rewrite the NKPC, in a time-varying fashion:

T = VouTi—1 + Ve Lemepn + My + 1y (4.2.5)

We can use the methodology outlined above to estimate A, 7, and v, over time, as

long as we are equipped with time-varying impulse response functions:

Irft,h (7T) =F (7Tt+h/It—17Ut = 1) —F (7Tt+h/It—1)

(4.2.6)
[Tft,h ($) =F (xt+h/It—17Ut = 1) -k ($t+h/It—1)
AT Are| = (0,0x0) ™ OO, (4.2.7)
Ir fo, () Irfo(x) 0 Irf, ()
I I I I
Oy = rfl;t(ﬂ) Oy, — 7"f1t($) Tf():,t(ﬂ) rfzz,t(ﬂ) (4.2.8)
Irfy () Irfuy@) Irfy_y(n) Irf.,(n)

where H is the maximum horizon included in the regression, chose a priori.

4.2.3 TIME-VARYING VAR

To estimate time-varying impulse responses we follow Giraitis et al. (2018) and specify

a time-varying-parameters VAR, given by:
Yo — e = Ve (Y1 — 1)+, t=1,...,T (4.2.9)
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where y; and u; a n—dimensional vectors and u; is a persistent stochastic attractor. The
VAR innovations u; have zero-mean and conditional variance-covariance ¥; = E (u,u}|l;_1)
and E (uu) = 0 for t # s. Innovations w,; are related to n structural shocks by u; = Pey,
where P, is the Cholesky decomposition of ¥, so that PP/ = 3, and E (;€}) = I,,.

Notice that we do not assume any parametric structure for the time variation of both
the autoregressive parameters W; and the volatility process >; as we only require either
them to be bounded in probability or their expectation to be bounded. In particular, by
letting || - |[sp be the spectral norm, we assume supg <, ||¥; — |2, = O, (k/t) and
SUp,.s_y<k BI[P, — Pil|2, = O (k/t). Finally, unit and explosive roots are bounded away
by assuming that ||U||s, < 1,Vt € [0,T].

The dynamic structural impulse response functions at time ¢, for horizon h are given
by:

®y = VIR, (4.2.10)

We estimate the above model, following ?, by a nonparametric kernel estimator. Let?
K (z) be a bounded, nonnegative kernel function with piecewise-bounded derivative such
that [ K(z)dz = 1. We estimate y; as follows:

T
=K kyy; (4.2.11)
j=1

where kyj = K ((t — j) /Hy), K; = Z?:l kij and Hy is a bandwith parameter such that
Hy — oo. The formula above basically corresponds to a weighted average of y;, with
weights defined by the kernel function and the bandwidth parameter.

Define 3, = y; — f1;, we estimate U, as follows:

T T -1
Ve = (Z ktjyt,j?%j—l) (Z ktj@t,j—l@f&,j—l) (4.2.12)
Jj=1 j=1

We then estimate YJ;, based on the variance-covariance of the residuals @; = 4, ; —

\iftij_l, as follows:
Sy =LY Lyl (4.2.13)

where [ := K (%) , Ly:= Zle ly; and Hj, is another bandwidth parameter satis-
fying Hy, — oc.

Finally we estimate time-varying impulse response functions by:

o, ), = VPP, (4.2.14)

2Notice that these conditions are satisfied by many of the most widely used kernel functions, including
kernels with both finite and infinite support. Examples of valid kernels in this setting are the flat kernel,
the Epanechnikov’s kernel and the Gaussian kernel, see 7.
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where ]575 is the Cholesky factorization of f]t.
Following the methodology in Giraitis et al. (2018), in our empirical study we set

Hy =T% H, = T for the Gaussian kernel function:

K(z) = <\/%) e/ (4.2.15)

4.3 DATA AND VAR SPECIFICATION

We apply our methodology on a sample of US macroeconomic variables observed at
monthly frequency. In Appendix D.1 we repeat the analysis on variables at quarterly fre-
quency. The time-varying-parameters VAR (TVP-VAR) includes a set of seven endoge-
nous variables: (1) the unemployment rate; (2) core inflation, measured by the annualized
monthly growth rate of the core CPI; (3) the 12-month growth rate of the PPI for all com-
modities; (4) the log change of industrial production; (5) the 10-year treasury rate; (6) the
3-month T-bill rate and (7) the Excess Bond Premium, by Gilchrist and Zakrajsek (2012).
The set of variables mimics the one used by Lewis and Mertens (2022). The monthly
data sample covers the period from 1973M1 to 2019M12, for a total of 564 observations.

We order the Excess Bond Premium last and identify the structural shocks by a
Cholesky decomposition. The EBP shock is our structural shock of interest, i.e. the
demand-type shock. Let us recall that the Phillips Curve is the aggregate-supply curve in
the New-Keynesian models, hence a demand shock should be used to properly identify it.
The EBP is ordered last, which means that it is assumed have zero-instantaneous effect
on all the other variables in the VAR, while it is allowed to adjust instantaneously to
all the other structural shocks. This is the same identification strategy employed by Del
Negro et al. (2020). The idea is that the EBP is a measure of credit/financial frictions,
hence an exogenous increase in its value should be interpreted as an exogenous worsening
of financial conditions which should ultimately affect the economy via a demand channel

(e.g. by a reduction of the access to bank loans for firms).

Our choice for an identification strategy based on a simple Cholesky ordering is justi-
fied by the need of keeping it as simple as possible, as other more involved strategies may
not be the best choice in the complex fully time-varying model we propose. For instance,
it is typical in the literature to use external proxy variables such as monetary surprises
Barnichon and Mesters (2020a) or other proxies such as the unemployment shock of An-
geletos et al. (2020), used e.g. by Lewis and Mertens (2022). However, using an external
instrument approach in our time-varying context is not trivial as the relevance condition,
which is hardly met in simpler context with fixed-over-time parameters, would need to
be met at each point in time. Nonetheless, in Appendix D.2 we explore a different iden-

tification strategy based on sign restrictions which provide additional interest insights.

The number of lags to include in the VARs is a tricky subject in our time-varying
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context and a rule to follow in this regard is still missing in the literature. We decide
to include 2 lags in the monthly VAR, for several reasons. First, since we employ a
time-varying dynamic model, with a time-varying attractor, we certainly need a smaller
number of lags to achieve a good fit of the data, compared to a VAR with fixed coefficients.
Furthermore, the BIC criterion applied to a fixed-coefficients VAR indicates one single
lag as the best choice for the quarterly data sample and two lags for the monthly one.
The BIC criterion is known to be a very parsimonious indication, but it can be used as

a rough rule of thumb in our context.

4.4 RESuULTS, MONTHLY VAR

Figure 4.1 shows the estimated time-varying IRFs to the EBP shock, over the sample
analyzed. The responses have been normalized, for each ¢, such that the instantaneous
response of the EBP to the EBP shock is equal to 1. We observe a stronger but shorter-
lasting response of the unemployment rate at the beginning of the sample. In fact around
1980 the unemployment response reverts in the log run, turning into the negative territory.
The estimated peak unemployment response drops significantly in the 90’s and then
increase again after 2000, then steadily decreasing again toward the end of the sample.

The estimated response of core inflation looks strong and negative only until mid 80’s,
while it is very muted further on. This provides a first evidence of a flattening of the PC,
consistent with the results found by Del Negro et al. (2020).

It is interesting to look at the estimated responses of the interest rate to the EBP shock
as they provide a partial answer to the question of what caused the documented flattening.
As explained above, a flatter PC would be observed if the central bank becomes more
committed to stabilize inflation and thus reacts more strongly to demand shocks hitting
the economy. In that case, we would observe a muted response of inflation combined with
an increase response of the interest rate. Figure 4.1 shows that the estimated response
of the interest rate has, if anything, become softer along the years considered. More in
details, the decrease in the interest rate observed after an EBP shock is very strong in
the 1973-1983 period and in the 1995-2005 period. Outside of these two windows the
reaction of interest rate looks more modest.

To give a more meaningful answer to the main question of this paper, namely the
value of the NKPC parameters over time, we apply the methodology described in the
previous section. We specify a NKPC as in Lewis and Mertens (2022), but in a time-

varying-parameters fashion:
’7Tth = (1 — ")/fﬂg) 7Tt133 + ’Yf,tﬂtlilg + )\tfﬂt + (441)

where 7Ttl ?is the annualized percent change in the Core CPI from a quarter ago in month
t, 7rt1 Y is the percent change in the Core CPI over the preceding year in month ¢, and z;

is the unemployment rate in month ¢. The variable definitions in terms of quarterly and
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annual inflation rates follows Barnichon and Mesters (2020a). Since our IRFs are esti-
mated by using the annualized monthly inflation rate, IRFs have been adjusted accord-
ingly to implement the regression shown in equation (4.2.7). Furthermore, as in Lewis
and Mertens (2022), we include only horizons h = 0, 3,6, . .., 33 to construct the impulse
response vectors. Results are shown in Figure 4.2, withe the estimated values of A, v,
and vy, over time.

To construct confidence intervals for the estimated parameters over time, we use the
fixed-regressor wild bootstrap Zanelli (2023).

Regarding \; we observe a very clear pattern: the NKPC becomes almost totally flat
already at the end of the 80’s and remain flat from that moment onward. This result is
new in the literature and shows that practically all the structural change from a steep to
a flat PC took place in the 80’s.

As for the ,, and vy, coeflicients, a clear pattern emerges: past inflation matters less
and less as we move forward along the sample, while the coefficient associated to expected
inflation increases, accordingly (recall that we impose v, + v = 1). This suggests a
growing importance over time of expectations, together with a decreasing role of past
inflation. Notice that this result is in line with the findings of arnichon and Mesters
(2020a), despite their identification strategy is based on monetary policy shocks rather
than on the EBP. While the observed trend is that of a shift from past to future inflation,
a big and temporary jump in the 7, coefficient is estimated after 2000, which brings its
value back to the 1973 one.

4.5 MONTE CARLO SIMULATIONS

To verify the performance of our methodology in the estimation of a time-varying NKPC,
we perform some simulation exercises. We simulate data from a simple textbook New
Keynesian (NK) model (Woodford, 2003; Gali, 2008) which features indexation to past
inflation as in Gali and Gertler (1999). We follow Bergholt et al. (2023) for the exposition
and specification of the most part of the model.

We let some of the parameters to be time-varying. Introducing time-variation of the
parameters in a DSGE model is not straightforward see Kapetanios et al., 2019, for a
discussion). One way to model time-variation of the parameters is to define a stochastic
process for the parameters (or a subset of them) and assume that agents know how
parameters evolve over time and take this into account when forming expectations; this
assumption is made for instance in Justiniano and Primiceri (2008). This approach makes
the time-varying DSGE model much more complicated and requires to augment the set of
shocks with the innovations to parameters’ value, which implies that only a subset of the
parameters can be let vary over time. We follow a different approach, following Canova
and Sala (2009); Castelnuovo (2012); Galvao et al. (2016), and assume that agents take

parameter variation as exogenous when forming expectations about the future. This
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Figure 4.1: Time-varying impulse response functions to an EBP shock, for a selected set
of variables. VAR at monthly frequency.

assumption keeps the model tractable and simple. At each point in time agents take
parameters’ value as given and think they will stay at the same value forever. In the next
period agents learn about the changes in parameters and adjust their equations, but do
not use this change to forecast future changes in the parameters. A similar result would
be obtained by assuming that parameters follow a random walk process, hence the best
guess about their future value would still be the current value. Three deep structural
parameters are allowed to be time-varying: 6;, the Calvo parameter setting the degree of
price stickyness; ¢+, the strength of reaction of the central bank to changes in inflation;

out, the variance of the demand shock.

Letting these three specific deep parameters to be time varying is a grounded choice.

The time-variation of #; implies a time-variation of the PC coefficients; specifically, it
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Figure 4.2: Time-varying estimates of the NKPC parameters, from the regression in im-
pulse responses estimated on monthly data. Blue areas show 68% and 90% wild boot-
strap confidence intervals.

implies an increasing over time slope A;, a decreasing 7,; and an increasing 7. Time-
variation of the variance of demand shocks o, ; and the responsiveness of monetary policy
¢=+ have on the contrary no effect on structural NKPC parameters, although they affect
the reduced form correlation between inflation and the output gap. Indeed, these two
forces are often invoked as possible explanations of the observed trends in reduced form
correlations, alternative to the structural change hypothesis. In this way we simulate a
world in which we estimate the structural NKPC over time with possible confounding

factors in action.

The model in log-linearized form is summarized by the following equations:

Yo = Byyrr — % (i — Eymresr — ue) (4.5.1)
Y = Qg + 1y (4.5.2)

wy = Py + oY + Py (4.5.3)

me; = wy — ay (4.5.4)

T = YouTi—1 + Vel + Aemey + 2 (4.5.5)

which feature five endogenous variables, which are denoted as log-deviations from the
steady state: the output gap y;; hours worked n,; the real wage w;; real marginal costs
mcy; price inflation ;. There are four exogenous shocks: demand shocks u,;; productivity

shocks ay; labor supply shocks vy; cost-push shocks z;. Equation (4.5.5) is the Phillips
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Curve formulation of Gali and Gertler (1999), where

A= (1—w)(1 —6)(1 - Bo)e;

Ve = B0 (4.5.6)

Vo = Wy !
with ¢ = 0; +w[l — 6,(1 — B)]. ; denotes the Calvo parameter, i.e. the fractions of firms
which are not able to adjust the price at any given period. Following Gali and Gertler
(1999), we assume that a fraction 1 —w of firms behave as in the standard Calvo pricing
setting: they set their price optimally, according to their expectations of future marginal

costs. The remaining fraction w use a simple rule of thumb and index their price to prices

in £ — 1. The model is closed by a simple Taylor monetary policy rule:
it = gbpi,tﬂ-t + ¢yyt + my (457)

where m; is a monetary policy shock.

Equations (1)-(6) can be combined to arrive at a two-equations specification:

1
= E — On E d 4.5.8
Yt —y (OEyi41 — Oy + Eymiy + dy) ( )

T = Vp,tTt—1 T ’Yf,tEtﬂ't_g_l + Kty + S¢ (459)

Equation (4.5.8) denotes the IS curve, where d; = u; — my collects the two demand
shocks. Equation (4.5.9) is the NKPC, with k; = A\; (0 + @) and s; = 2+ My — A(1+@)ay
collects the three supply-side shocks.

We further assume that all the five shocks follow an AR(1) process and that all demand

(supply) shocks feature the same autoregressive parameter py (ps). Hence we can write:
dy = padi—1 + €4 St = PsSt—1 1+ Est (4.5.10)

where €44 = €yt — Emy and €54 = €, + Meyr — A1+ @)eq s

We assume that innovations are normally distributed, with time-varying variance:
e ~N(0,05,) e ~N(0,02,) (4.5.11)

with 07, = 07, + o7, and 02, = 07 + Mo}, + N (1 + )02,

We conduct four different simulation experiments, which differ in the assumption
about the process followed by time-varying parameters. In the first scenario, we assume
that all parameters are fixed over time. Table 4.1 show the value chosen for all the

parameters of the model, which are standard values used in the literature.

In the second scenario, we let the three time-varying parameters to vary over time
in a linear fashion. Namely we assume that 6; follows a linearly increasing pattern,

starting from 0.6 at the beginning of the sample and reaching value 0.9 at the end of
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Parameter Value Parameter Value

0 0.75 o 1
O 1.5 Oy 0.125
% 2 B 1
Pd 0.75 Ps 0.75
Oy 1 Om 0
Oq 0.2 Oy 0.2
o 0.05 w 0.25

Table 4.1: Chosen values for the parameters of the NK model, when they are set to be
fixed over time.

the sample, i.e. 6, = 0.6 + (0.9 — 0.6)4=. Similarly, we set ¢, = 1+ (2 — 1)2= and
Oup = 1.5+ (0.5 — 1.5) 1=
In the third scenario we assume that the three parameters follow a deterministic

sinusoidal pattern over time, differing from sample to sample. We set:

t
0, = 0.75 + 0.15 sin l27r <,Utheta,s + f—T)} (4.5.12)
¢rr = 1.5+ 0.5sin {QW (qu,s + %)} (4.5.13)
t
our =1+ 0.5sin |:27T (ums + f_T>} (4.5.14)

Notice that the processes above are such that the three parameters are bounded above
and below by the same values used in the linear processes used in the second scenario.
Furthermore, the three parameters jig 5, ft4 s, lho,s are drawn randomly in each sample from
a Uniform(0, 27) distribution, shifting randomly the staring point of the process in each
sample. Finally, the parameter f governs the frequency of the sinusoidal pattern, hence
the degree of time variation in the parameter. We conduct three simulations exercises
with, respectively, f =1 (Sinl), f =2 (Sin2) and f = 3 (Sin3).

Finally in the fourth scenario the three parameters are allowed to follow bounded

stochastic processes. We set:

Qg t

6, = 0.75 + 0.15 (4.5.15)

maxo<<t |ag,j|
brs = 1.5+ 0.5——04 (4.5.16)

maxo<j<t |ag ;|
Guy =1+ 05—t (4.5.17)

maxo<j<t |doj|
where:

Qg = Qpr—1 +Voy Vg = QUpy—1 + gy (4.5.18)
Apt = Agt—1 + Vot Vpt = AUy t—1 + Eot (4519)
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Qgt = Qg t—1 + Vot Vot = QUgt—1 + Eot (4520)

g+, Qg t, Gyy are Tandom walks with persistent error terms vg ¢, vy ¢, V. The parameter
a governs the degree of persistence in the error terms, hence the overall smoothness in
the variation of the parameters, with higher o implying greater smoothness. Again, we
conduct three simulations exercises setting, respectively, & = 0.5 (Rwl),a = 0.8 (Rw2)

and a = 0.99 (Rw3).

For each experiment, we simulate 500 samples from the NK model solution, under
the eight different specification explained above. In each sample we first estimate the
coefficients of the NKPC using a fixed-parameters version of the methodology used in
the paper. In this case, we estimate a single VAR model for the full sample and use
Lewis and Mertens (2022) methodology to recover the NKPC parameters. Structural
impulse responses to the demand shock are recovered by using the demand shock series
as an external instrument. We do this by simply adding the demand shock the vector
of estimated residuals and then compute the Cholesky decomposition of the resulting
variance-covariance matrix, as suggested by Plagborg-mgller and Wolf (2021). Notice that
we are assuming the shock is fully observed, while typically we observe only a proxy for
it, with some measurement error left. We make this assumption to see the performance of
our methodology in the simplest and best possible scenario. After the fixed-parameters
estimation, we apply our time-varying methodology. By comparing the two estimation,
we can appreciate the extent to which our methodology capture the time variation of
the NKPC parameters. The Appendix provides other interest insights by exploring other

identification strategies and extending the analysis to the Euro Area.

Table 4.2 shows the resulting bias and mean squared error for the three NKPC pa-
rameters . For the NKPC slope A, we can see that the time-varying estimation always
results in a sharp drop in the bias and in the MSE, for all specifications but for the fixed
parameter one. For the v, and 7 coefficients this is not always the case and the fixed pa-
rameter estimation performs better than the time-varying one in some cases. This is due
to the fact that the three deep parameters we allow to vary over time (and the bounds
we impose for them) imply only a rather small variation in these two parameters, making
them almost constant over time. Notice also that since we impose the usual constraint
that the two coefficients some to one, the bias and MSE of the two coefficients are deter-

ministically related.

Figure 4.3 provides a visualization of the performance of our methodology in the
specification where deep parameters are allowed to vary linearly. We can see how our

methodology is able to track quite precisely the evolution of NKPC coefficients over time.
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Bias x1000

Fixed Coef. VAR T.V. Coef. VAR
A Vo Yy A Vo Vs
Fixed 1.4016 1.1238  -1.1238 5.5171 2.9949 -2.9949
Linear -35.6856 -13.9714 13.9714 6.7828 3.5507 -3.5507
Sinl  -61.8254 -20.7109 20.7109 6.6713 3.6371 -3.6371
Sin2 -31.8063 -12.7159 12.7159  7.081 2.4202 -2.4202
Sin3  -15.9856 -3.02508 3.02508 8.7397 7.1829 -7.1829
Rwl -14.7815 -3.3333 3.3333  7.2565 4.4142 -4.4142
Rw2 -16.9236 -5.30863 5.30863 6.6709 2.8273 -2.8273
Rw3 -20.8632 -6.29557 6.29557 7.7829 1.1187 -1.1187

MSE %1000

Fixed Coef- VAR T.V. Coef. VAR
A Yo Vs A Vb Vs
Fixed 0.13071 0.54061 0.54061 0.72497 2.4577 2.4577
Linear 10.7359 1.10001 1.10001  1.176  2.5209 2.5209
Sinl  25.4701 2.03697 2.03697 2.3328 3.335  3.335
Sin2  13.0518 1.42993 1.42993 2.0583 3.1808 3.1808
Sin3 6.6213  0.91404 0.91404 2.1404 3.0606 3.0606
Rwl 6.5545  0.87429 0.87429 2.6711 3.3484 3.3484
Rw2 6.8627  0.96797 0.96797  2.327  3.4049 3.4049
Rw3 8.9312 1.2783 1.2783  2.8211 4.3974 4.3974

Table 4.2: Bias and mean squared error for the three NKPC coefficients in the different
simulation experiments.

4.6 (CONCLUSION AND FURTHER DEVELOPMENTS

In this paper we estimated a time-varying structural NKPC for the US, by combining
the SP-IV method by Lewis and Mertens (2022) with a nonparametric estimate of time-
varying impulse response functions. Results show a drastic decline in the slope of the
PC in the years 1973-1990 and a flat PC from 1990 onward. Furthermore, the coefficient
related to inflation expectations is estimated to increase over time. These results, in
line with other studies, support the hypothesis of a decrease in the structural slope of
the PC as the main force behind the observed decline in the reduced form correlation
between unemployment and inflation. Other possible explanations, such as as increased
responsiveness of monetary policy to demand shocks, are not supported by our analysis.
Furthermore, our study allows to place the time at which the NKPC becomes practically
flat somewhere between years 1985 and 1990. A simulation analysis from a simple DSGE

model confirms the validity of our methodology.
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Figure 4.3: Simulation results in the specification with linearly changing parameters.
Black lines show the true value of NKPC parameters over time. Red lines show the average
estimate. Blue areas show 5-10-32-68-90-95 percentiles of the empirical distribution of
the estimates.
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CHAPTER 5

A NOTE ON ROBUST INFERENCE ON
STOCHASTIC TIME-VARYING
COEFFICIENTS

5.1 INTRODUCTION

Models with time-varying coefficients have recently gained considerable interest in par-
allel with the growing need to model structural changes of macroeconomic and finan-
cial variables. The business cycle, rare disasters (e.g., pandemic outbreaks) and regime
changes in monetary policy represent some of the possible reasons why models with time-
constant parameters might not be representative of the observed economic phenomena;
see, among others, Cogley and Sargent (2001); Stock and Watson (2002); Kapetanios and
Tzavalis (2010); Demetrescu et al. (2020). Nonparametric techniques have the appealing
advantage — with respect to competing methods, e.g., Bayesian methods — of being com-
putationally efficient, and have shown to provide the desired properties of consistency
and asymptotic normality when estimating persistence and volatility of such processes -
see Giraitis et al. (2014, 2018).

In this note, we focus on a simple time-varying coefficient model in which the time-
varying slope coefficient evolves as a random walk with bounded variation. The random
walk specification has been widely adopted in the literature (see, e.g., Stock and Wat-
son, 2002, Primiceri, 2005, Fu et al., 2022), but there is no contribution in the literature
focusing on the behavior of nonparametric methods in this setup when a “large” band-
width is adopted. We show that the standard local-constant kernel estimator of the time-
varying coefficient preserves its properties of consistency and convergence to a mean-zero
Gaussian distribution when the bandwidth is “large”, but the variance of such limit dis-
tribution is larger. Hence — differently than in the case of a deterministic time-varying
coefficient — the use of a “large” bandwidth does not affect the center of the limit distri-

bution of the estimator, but only its variance.
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In this note, we provide novel results in the literature of stochastic time-varying coef-
ficient by: i) deriving the value of the MSE-optimal bandwidth when the coefficient is a
random walk with local-to-zero variance; ii) showing that the confidence intervals (CIs)
proposed by Giraitis et al. (2014, 2018) are invalid in this setup, whereas a different stu-
dentization based on the variability of the stochastic time-varying coefficient is necessary
to deliver Cls asymptotically correct coverage. The practical importance of the method is
shown via numerical simulations. Moreover, we discuss the important issue of delivering
correct intervals without the need to estimate the local-to-zero variance of the stochastic
time-varying coefficient via the bootstrap.

The rest of the note is structured as follows. In Section 5.2, we present the model and
the estimator. In Section 5.3 we show the main theoretical and numerical results, as well

as a discussion on possible implementations of the bootstrap. Section 5.4 concludes.

5.2 'THE MODEL AND THE ESTIMATOR
We consider a DGP of the form:

Y = By + €4
By = P11+ Ay

where ¢; is a mds and v, is (for simplicity) assumed to be a iid process with E[ry] = 0
and E[v?] = 1. Moreover, we let

1/2

A =1 0, (5.2.1)

so that the variance of the time-varying parameter is local-to-zero. In order to derive
a central limit theorem for Bt, a crucial condition to bound the “bias” term of the test

statistic associated to the estimator is

sup |8y — Bil = O, < E) (5.2.2)

Lt~ <k n
REMARK 5.2.1 Condition (5.2.2) is satisfied under the considered scenario because:

!
2

=1

sup |8y — il = A sup = O(n )0, (k'?)

L:jt—1|<k L:[t—l|<k

where the last equality follows from the fact that

17
(I) 2N v =y W(r), 1= o0 (5.2.3)

j=1

where T € [0,1] and W is a standard Brownian motion.

Even though the analysis can be extended to any class of local-polynomial estimators

of B, for a fixed t, we here focus, for simplicity, on the asymptotic properties of the local
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constant kernel estimator: .
s 2 kgyn
b= 3 o (5.2.4)
>t ks
where k;; == K((t — j)/H) such that K : R — [0,400) is a standard (truncated) kernel

function and H is a bandwidth satisfying H — oo and H/T — 0. Let us define 57, :=

" 2 2 .\ 1.2 2.2, .
> iy ki and o5, =3 0 kjxies; then we can write:
Tan (B B) _ Zj:l kit (53 6'5)%' I Zj:1 kijxje;
= t — Pt] =
Oxen n 2 2.2 n 2 2.2
Z]*l ktjxjgj Zj:l ktjx_jg]
g . >
v v~
=:Bn =iCln

Then the following proposition follows directly from Theorem 2.3 in Giraitis et al. (2014).

Proposition 1. (i) Let the assumptions above hold, then, as H — oo, we have:

’ H
Jeenp, =0, < —) (5.2.5)

02, n
a'zs,n 1
&Tgln =0, (\/_ﬁ) (5.2.6)
and
E1n 5 N(0,1) (5.2.7)
(i1) If additionally H = o(y/n),
~2
62, 7
= (B 5) S & (5.28)

From Proposition 1 we can see that confidence intervals based on the standard errors
62,/ Ouen are only valid if the condition H = o(+/n) is satisfied. The intuition behind this
result is that setting H = o(y/n) is equivalent to setting an “undersmoothing” bandwidth
in nonparametric regression, which makes the term B, asymptotically negligible. This
can be seen from the fact that 62, /Gpen = O,(vVH), implying — from (5.2.5) — that:

o ()

where O, (\%) = 0,(1) only if H = o(y/n).

REMARK 5.2.2 A choice of H of the form H = o(y/n) poses two main issues.
(i) It can be shown that a choice of the bandwidth of the form H = o(y/n) is MSE-
suboptimal. To see this, one can note that, on the grounds of MSE-optimality, one should

equate the rates of convergence of the squared bias and the variance of the centered esti-
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mator. Intiuitively, if we have:

52 2
z,m
( o Bn)
Uxe,n

where ¢; and cy are constants defined in Section 5.3. Then, by equating the two dominant

E

H
:Cl—+0(1) E
n

<0§n §1n> ] - CQ% +o(1) (5.2.9)

Ozen

terms terms one obtains:

Hyse = \/eanjer = O (Vn) (5.2.10)
where which clearly is not consistent with the condition H = o(y/n).
(i1) One could reasonably pick a bandwidth of the form H = o(y/n) on the grounds of
easier tractability of the bias term. However, this poses the question of which bandwidth
satisfying H = o(y/n) is better to choose, as infinitely many such choices (and infinitely

many rates of convergence) ezist.

Issue (i) above shows that an MSE-optimal bandwidth should be of the form H = O(y/n).
If this is the case, then confidence intervals based on the standard errors 636,” /O ren (those
suggested by Giraitis et al., 2014) are not valid, as they do not account for the additional
variability given by B,,. Therefore, CIs based on ﬁm /e Will show undercoverage for
the true value of §;. Since the variance of B,, directly proportional to the value of ¢,,, what
we expect to see is that, for a fixed n and a fixed bandwidth of the form H = O(y/n),
the undercoverage would be more accentuated as o, increases. This is confirmed by the

results in Section 5.3.

5.3 MAIN RESULTS

This section is divided in the parts. In Section 5.3.1, we show derive the MSE-optimal
bandwidth for the local-constant kernel estimator in this setup, and a proper studentiza-
tion for the demeaned estimator that is valid when a “large” bandwidth is selected. In
Section 5.3.2, we show numerical evidence in support of the use of the proposed stan-
dard errors. Finally, in Section 5.3.3, we give preliminary intuition on how the bootstrap

could be used to deliver asymptotically valid confidence intervals in this setup.

5.3.1 THEORETICAL RESULTS

We now move to formalizing the theoretical results. To do so, we impose the following
set of assumptions.

Assumption 1. (1) z; is a covariance stationary stochastic process with E|x;|” < C}
for some C; € RT and some r > 4 and satisfying Zle |v(k)| = o(Ly) for v(k) =
Cov(xy, 74 1) and some L, — 0o; (i) &, is a mds with Elg,|z;] = 0 and E|g,|"" < Cy for

some Cy € RT and some r' > 4.

Assumption 2. f; is a random walk process By = Pi—1 + Ay, independent with (xy,€4)’,
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with A\, :=n"Y%0,, with 0, > 0, E|ly,|> = 1 and E|i;]° < Cs for some & > 4.

Assumption 3. K : R — [0, +00) is a second order kernel function such that K(z) =0
if || > 1 and K(x) > 0 otherwise.

Assumption 1 is a standard regularity condition on the regressor and the error term,
widely adopted in the literature (see, for instance, Fu et al., 2022); Assumption 2 de-
fines the main properties of the stochastic time-varying coefficient; whereas Assumption
3 characterizes the kernel function; note that Assumption 3 allows for all the most widely

adopted truncated kernel functions, e.g., the Uniform or the Epanechnikov’s kernel.
THEOREM 5.3.1 Let Assumptions 1-3 hold, then:
MSE|3)] = —0 o2 /K2 2du+ /K2 (5.3.1)

and the MSE-optimal bandwidth is:

no? [ K?(u)du
Hysg = \/020 T K (u)ldu (5.3.2)

Theorem 5.3.1 provides the value of the MSE-optimal bandwidth in the considered sce-
nario. As expected, such value is inversely proportional to the value of o,: the larger the
variability of the stochastic time-varying coefficient, the shorter should be the window of

observations considered for estimating ; at a fixed time point.

THEOREM 5.3.2 Let Assumptions 1-3 hold, then, if H = O(\/n):

~2

Ozn 5 d
’ <ﬁt - @) — & (5.3.3)
\/&;n + k0262 [ K2(u)udu

where k = lim,—s, H/\/n.

Theorem 5.3.2 shows that the standard errors for the local constant estimator of Bt at
a time fixed point changes when “large” bandwidth is adopted in place of an “under-
smooothing” bandwidth. The practical relevance of Theorem 5.3.2 is analyzed in the fol-

lowing section.

5.3.2 NUMERICAL RESULTS

We now show that the results in Section 5.3.1 have practical relevance via Monte Carlo
simulations. The aim is twofold: first, we show that CIs based on the standard errors
proposed by Giraitis et al. (2014) suffer from undercoverage, even in large samples, when
a “large” bandwidth is selected; second, we show that the modified standard errors based

on Theorem 2 are able to correct this undercoverage. Specifically, we consider simulations
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for the model

Y = By + €4
Br = Bi—1 + A

where x; = pry_1 + u; and (g4, v, us) ~ N (0341, ) where Q = diag(c?,02,02). We set

eIV U

(p,0c,04) = (0.3,1,1) and show results for a grid of values of o,. Simulations are based
on 5,000 Monte Carlo replications of the above DGP.

n

o, | 100 250 500 750 1000
1 1833 8.0 89.3 90.0 88.8
1.5 | 81.6 851 85.1 874 884
2 | 777 804 82.0 823 80.7

251|752 80.7 781 782 785
3 | 732 761 73.0 749 756

Table 5.1: Coverage probabilities of 95% confidence intervals based on Giraitis et al.
(2014) method with H = /n.

Table 1 and 2 report average empirical coverage probabilities (ECPs) of Cls for the
stochastic time-varying parameter at a fixed time point 7 = |0.5n] for the values n €
{100, 250, 500, 750, 1000} and o, € {1,1.5,2,2.5,3}. Specifically, Table 1 shows ECPs
of CIs based on Giraitis et al.’s (2014) standard errors for the choice H = /n, i.e.,
that suggested in Giraitis et al. (2014, 2018). It is clear from Table 1 that the Cls are
undercovering, with such effect being more accentuated as o, increases. On the other
hand, Table 2 compares the same method to the CIs relying on the standard errors based
on Theorem 2, for the choice H = H);5r. Two main conclusions can be drawn from Table
2. First, CIs based on Theorem 2 are inevitably wider to a level that suffices to capture
the additional variability of the estimator given by the fact that B, # o,(1), therefore
delivering ECPs very close to the nominal lever under all considered scenarios. Second,

the choice H = Hsp seems to have some also for Giraitis et al.’s (2014) Cls;

5.3.3 BOOTSTRAP INFERENCE

The main limitation of the proposed procedure is that standard errors based on Theorem
2 are unfeasible, as they depend on o.,0, and o,. While 0. and o, are relatively easily
to estimate, the fact that o, is a local-to-zero variance of a latent random walk process
makes its estimation not straightforward. We here show how the bootstrap could be a
potential solution of the problem.

Consider a fixed regressor wild bootstrap DGP of the form
vy = By + €], (5.3.4)
where €} := n;é,;, such that n; is an independent and identically distributed (conditionally
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Coverage Av. Length

n n

o, | Method | 100 250 500 750 1000 | 100 250 500 750 1000
1 | GKY14 | 76.8 779 77.7 781 784 |0.584 0.460 0.384 0.347 0.322
724 94.2 95.1 949 953 94.9 | 0.935 0.734 0.613 0.554 0.514
1.5 | GKY14 | 76.3 772 77.0 782 782 |0.724 0.570 0.475 0.427 0.396
724 94.7 94.8 94.6 95.1 95.2 | 1.169 0.909 0.758 0.681 0.632
2 | GKY14 | 75.2 76.8 781 77.0 779 ]0.840 0.663 0.553 0.496 0.460
724 94.0 94.3 953 94.7 94.5 | 1.368 1.064 0.883 0.792 0.734
25| GKY14 | 740 76.0 76.3 776 77.5|0.950 0.746 0.622 0.557 0.515
724 93.5 94.3 945 953 94.8 | 1.554 1.203 0.992 0.890 0.823
3 | GKY14 | 734 759 76.6 774 76.8|1.043 0.825 0.684 0.614 0.571
724 93.3 939 94.2 947 94.0 | 1.744 1.331 1.096 0.982 0.910

Table 5.2: Coverage probabilities of 95% confidence intervals based on Giraitis et al.
(2014) method (GKY14) - therefore based on the standard errors in (1.8) - and the method
of this paper (Z24) - therefore based on the (unfeasible) standard errors in (2.3) - both
using H = Hysg.

on the original data) random sequence with mean zero and unit variance and é; are
the residuals from the original model. As typical in the bootstrap literature, the above
bootstrap method would be valid in the standard sense if the condition

~2

Ja:,n D% 5 d*
<ﬁt _ ﬁt> L3 (5.3.5)
\/a—g,n + ko262 [ K?(u)u?du

Preliminary numerical evidence shows that condition (5.3.5) is not satisfied in our setup.
Preliminary numerical results suggest that the source of invalidity of the bootstrap seems
to be twofold: first, the center of the bootstrap distribution seems to be random, sug-
gesting that the distribution of the bootstrap test statistic distribution is random in the
limit (see Cavaliere and Georgiev, 2020); second, the variance of such random in the limit
distribution seems to be different from that of the asymptotic test statistic.

As there is evidence in support of the fact that the bootstrap is not valid in a stan-
dard sense, we here propose an alternative bootstrap method, based on the same fixed-
regressor wild bootstrap DGP, which has the potential to be able to remove both sources
of invalidity of the bootstrap in a standard sense.

Let us define T}, := VH(B3, — ;) and T* := vH(B; — f3,); moreover, let us denote
with v? the limit variance of T,, and with v3 the limit variance of T*. The main idea
behind our procedure is that, even if 7)' is random in the limit, if v; = vy, then there are
conditions under which the bootstrap p-value p, := P*(T;} < T,,) is valid, see Cavaliere
and Georgiev (2020). Since v; # v9, then one could think about restoring validity by

considering the modified p-value
~mod .,

Pt = P(QT; < To) (5.3.6)
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where Q = (v1/v3), which would be able to correct both sources of invalidity of the
“standard” bootstrap method. Even if v; and vy are both infeasible, as they both depend
on the value of o,, we show evidence to the fact that ) does not. Specifically, we
performed the following simulation exercise: (i) we simulate the same DGP used in Section
5.3.2 with o, = 1; (ii) we compute the sample variance (over Monte Carlo replications)

of T,, and T; (iii) we run a new Monte Carlo simulation in which, at each replication,

mod
n )

we compute the value of p using the sample values of v; and vy obtained in point
(ii); (iv) we compute the empirical distribution function; (v) we replicate points (iii)-(v)
for different values of o,, keeping the same value of () obtained in point (ii). Figure 5.1
shows the empirical distribution functions of p°¢, where we have evidence in favor of the
uniformity of the proposed modified p-value.

The derivation of the distribution of 77 and () and, in general, the proof of the validity

of the proposed bootstrap method, is current work in progress of the author.

)
Fo
)

(a) op =1,0, =1 (b) o, =1,0, =2 (¢) o, =25,0,=1

Figure 5.1: Empirical distribution function of pme?.

5.4 CONCLUSION

In this note, we have analyzed the properties of nonparametric estimation methods for
time-varying coefficient models under the assumption that the coefficient follows a random
walk with local-to-zero variance.

We derived the MSE-optimal bandwidth for the random walk specification and demon-
strated that it is proportional to the square root of the sample size. This finding chal-
lenges the common practice of using “undersmoothing” bandwidths to simplify bias anal-
ysis, as such choices are MSE-suboptimal and result in inefficient confidence intervals
(Cls). Furthermore, we showed that the Cls proposed by Giraitis et al. (2014) are in-
valid for large bandwidths because they fail to account for the additional variability intro-
duced by the stochastic nature of the time-varying coefficient. We proposed a modified
standardization procedure, which corrects this issue and ensures valid Cls with asymp-
totically correct coverage.Our theoretical contributions are complemented by numerical
simulations, which confirm the practical relevance of our results.

In conclusion, this note highlights the importance of adapting nonparametric inference
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methods to account for the stochastic nature of time-varying coefficients. By addressing
the limitations of existing approaches, our results provide a more accurate framework for
modeling and inference in time-varying systems, paving the way for future advancements

in this growing field of research.
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APPENDIX A
APPENDIX TO CHAPTER 1

A.1 SPECIAL CASE: T, IS ASYMPTOTICALLY (GAUSSIAN

In this section, we specialize Assumptions 1.3.1, 1.3.1, and 1.3.2 to the case where T, =
Vn(6,, — ) is a normalized parameter estimator whose limiting distribution is normal.
We consider the following special case of Assumption 1.3.1.

It holds that T}, — B, —4 N(0,v?), where v? > 0.

Assumption A.1 covers statistics T}, based on asymptotically biased estimators: when
B, —, B, we have T,, —4 N (B,v?), in which case B is the asymptotic bias of 0,.
More generally, we can interpret B, as a bias term that approximates E(y/n(6, — 6))
although B, does not need to have a limit. Note that Assumption A.1 obtains from
Assumption 1.3.1 when we let £ ~ N(0,0?) and G, (u) = ®(u/v), in which case v = v.

Let D} denote a bootstrap sample from D,, and let é; be a bootstrap version of 0,.
The bootstrap analogue of T}, is T = /(6 — 6,,).

It holds that (i) T* — B, &, N(0,v?), and (ii)

( g::i’; ) L NO,V), Vi=(vy), ij=12
where v3 := vy1 + V9 — 2012 > 0 with vy :== 0% > 0.

Assumption A.1(i) requires the bootstrap statistic 7" — B,, to mimic the asymptotic
distribution of T,, — B,,, as in Assumption 1.3.1(i). However, and contrary to Assump-
tion 1.3.1(i), here this limiting distribution is the zero mean Gaussian distribution (i.e.
G,(u) = ®(u/v)), which means that we can interpret B, as a bootstrap bias correc-
tion term; i.e., B, = E*(y/n(07 — 0,)). Assumption A.1(ii) assumes that B, — B, is
also asymptotically distributed as a zero mean Gaussian random variable (jointly with

T, — By,).! An implication of this assumption is that

T, — B, = (T, — B,) — (B, — By) % N(0,02), (A.1.1)

n terms of Assumption 1.3.1, Assumption A.1 corresponds to the case where the vector £ = (£1, &)’
is a multivariate normal distribution with covariance matrix V.
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where 1)3 = v11 + Uy — 2012. We do not require V' to be positive definite; for instance,
vge = 0 whenever B, — B, = 0p(1), and in fact V' can be rank deficient even when
vge > 0. However, we do impose the restriction that v3 > 0. This ensures that the
limiting distribution function of T}, — B,, given by Fjy(u) = ®(u/vy), is well-defined and
continuous, as assumed in Assumption 1.3.1(ii). Note that we can let ¢ = V' in this case,
or simply set ¢ = v,.

Let p, denote the standard bootstrap p-value as defined in Section 1.3. We then

obtain the following.

COROLLARY A.1.1 Under Assumptions A.1 and A.1, p, —4 ®(mP 1 (Upy))), where

m? = v3/v?.

Corollary A.1.1 follows immediately from Theorem 1.3.1 when we let G, (u) = ®(u/v)
and Fy(u) = ®(u/vg). It shows that the asymptotic distribution of p,, is uniform only
when m = 1, or equivalently when v = v2. In this case, the difference B, — B, is 0,(1).
When v3 # v?, B,, — B, is random even in the limit, implying that the limiting bootstrap
distribution function of T7' is conditionally random. Although random limit bootstrap
measures do not necessarily invalidate bootstrap inference, as discussed by Cavaliere and
Georgiev (2020), this is not the case here. However, we can solve the problem of bootstrap
invalidity by applying the prepivoting approach or by modifying the test statistic from
T, to Tp, — B,.

To describe the prepivoting approach, note that the limiting distribution of p,, is given
by

H(u) = lim P(p, < u) = d(m 'd(u)).

Hence, a plug-in approach amounts to estimating m? := v3/v?, where v? and v? are defined
in Assumption A.1. Suppose that 0} and 07, are consistent estimators of v* and v} (i.e.,
assume that (07,97,) —p (v*,v3)) and let m; := 07, /05. Then, by Corollary 1.3.2, it

immediately follows that
P = (1, 87 (p0)) > U
under Assumptions A.1 and A.1. For brevity, we do not formalize this result here.

To describe the double bootstrap modified p-value, p, := ﬁn(ﬁn) = P*(p; < pn),
when applied to the special case where T,, satisfies Assumption A.1, we now introduce
Assumption A.1.

Let T = /n(6* — 67) and suppose that (i) T — B ‘Sp* N(0,v?), in probability,
and (i) T* — B: ﬂp N(0,v3), where v3 is as defined in Assumption A.1(ii).

Under Assumption A.1(i), the double bootstrap distribution of 7, — B;ﬁ mimics the
distribution of T* — B, where the double bootstrap bias term Bf = E**(\/n(0: —
é;’;)) is asymptotically centered at B, under Assumption A.1(ii). When v3 # v?, the

double bootstrap bias is not a consistent estimator of B, but that is not needed for
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the asymptotic validity of the modified double bootstrap p-value p,, = H, (prn) defined in
Section 1.3.

By application of Theorem 1.3.2, p, = Hn(ﬁn) —4 Upp) under Assumptions A.1,
A.1, and A.1. We can also provide a result analogous to Corollary 1.3.3 under these
assumptions. In this case, if closed-form expressions for B, and B;ﬁ are not available,
we can approximate these bootstrap expectations by Monte Carlo simulations and then
compute P*(T} — f)’,’: <T, — E’n) as a valid bootstrap p-value. Note, however, that this
approach is computationally as intensive as the prepivoting approach based on p,, since

it too requires two layers of resampling.

REMARK A.1.1 In the case of asymptotically Gaussian statistics discussed in this sec-
tion, the more general Assumptions 1.3.5 and 1.5.5 simplify straightforwardly. In As-
sumption A.1(i) we assume that T* — B, ﬁp N(0,v2) and in Assumption A.1(i) that
T;*—B; ﬂp* N(0,v?), in probability, for some v > 0, while the rest of Assumptions A.1-
A.1 are unchanged. The results of this section continue to apply under these more gen-
eral conditions, replacing G (u) = ®(u/v) with J,(u) = ®(u/vs) and consequently defin-

ing m = v3 /v

REMARK A.1.2 Contrary to Beran (1987, 1988), in our context the first level of prepiv-
oting, e.g., by the double bootstrap, is used to obtain an asymptotically valid bootstrap p-
value. Therefore, inference based on p,, does not necessarily provide an asymptotic refine-
ment over inference based on an asymptotic approach that does not require the bootstrap.
Newvertheless, the Monte Carlo results in Table 77 below seem to suggest an asymptotic
refinement for the double bootstrap, at least for the non-parametric bootstrap scheme. In
the special case where the bias term B, is of sufficiently small order, the arguments in
Beran (1987, 1988) apply, and an asymptotic refinement can be obtained. We also con-
jecture that, in the general case, an asymptotic refinement could be obtained by further

iterating the bootstrap.

A.2 EXAMPLES WITH DETAILS

A.2.1 INFERENCE AFTER MODEL AVERAGING

In this section we first provide the regularity conditions required in Lemmas 1.4.1 and 1.4.2,
and then we give the proofs of the lemmas. We subsequently provide some brief Monte
Carlo evidence. Finally, at the end of the section, we provide regularity conditions for

the extension to the pairs bootstrap and a proof of the associated Lemma 1.4.3.
ASSUMPTIONS AND NOTATION

We impose the following conditions.
(i) &|W ~ 1.i.d.(0,0?), where W := (z,2); (ii) Sww —p Zww with rank(Syw) =
q + 1; (iil) n'/2Syw. —4 N(0,Q) with Q := oSy
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REMARK A.2.1 We assume that the weights w are fixed and independent of n. A popular
example in forecasting is to use equal weighting. We could allow for stochastic weights
as long as these are constant in the limit. This would be the case, for example, when the

weights are based on moments that can be consistently estimated.

To proceed, we introduce the following notation. First, partition Yy according

to W,
Z:m: ZxZ
EWW = .
( ZZx EZZ >

Let E:ch = 2szim; ZZmZm = R/mEZZRma 2:c.t.Zm = Z:v:c_ZwZRm(R;nEZZRm)ilR;nZZ:m
and X, 7.7, = Vez—SezRn(R, X z7Rn) 'R, Y. Alsolet A, := Ei\le meZ’lZmn_lx’MZm,

xT.

where My, =1, — Z,,(Z' Z,)"'Z! , such that A,Z = Q,. With this notation,

B = Apy = AyB + Qud + Ape = B+ Qud + Aye, (A2.1)

By = Any” = Bu + Qudn + Ane™. (A.2.2)

Finally, define
- M
d/]\/[,n = Z me;:cl.Zm (17 _S:ch SE:LZmem)?
m=1

- M
b?\/l,n = Zm:l wm‘swasl.ZmSfCZZmSZé.z(_SZl‘S:mvl’ Iq)7
and let d), and b, denote their probability limits, which exist and are well-defined under
Assumption A.2.1.
PROOFS OF LEMMAS

PrOOF OF LEMMA 1.4.1. We first verify Assumption 1.3.1 (or equivalently, Assump-
tion A.1). Using (A.2.1) we can write T,, = B,, + &1, with

M M
éLn = nl/QAn€ = n1/2 Z me;xl.Zmnflx/MZmE = n1/2 Z me:;xl.Zme‘g'Zm'
m=1 m=1
Then
Seez, =n 0'My e=n"Y2'e —2'Z,,(Z Z,) 'R, Z'¢)
= (1,-8:2,,(52,,2,) " R.,)Swe = Ci;nSWs,
so that

M
-1 . 1/2 7 1/2
gl,n = § mezm.Zmdmn / Swe = dMynn / Swe.

m=1
Hence, &, —4 N(0,0?) with v? := d),Qd.
Next, we verify Assumption 1.3.1 (or Assumption A.1). From (A.2.2) we write T)f =
B, + &, with &, == n'/2A,e* ~ N(0,624,AL), conditional on D,,. Part (i) now follows
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straightforwardly because 62 —, 0% and A,A! = J/M,nSWWCZM,n —p dy Swwdy. To

prove Part (ii), note that

n1/2(8’ﬂ - 5) = SE%CL’SZ€CE = S§é$(_SZCCS_1

Tx )

Iq)nl/QSWg,
from which it follows that

B, — B, = Qun'*(0, — 8) = QuSyy . (—Sz:S, I)n' 2 Swe = by 0" *Swe.

xT )

Hence,

T, — B, ! dyQdyy - diy Qb

. = DM )P we SN0, V), Vo= DM DM
which completes the proof. Il

PROOF OF LEMMA 1.4.2. First note that B;‘;* = Ay = Aan; + AnZ5; + A e Tt
follows that

T = nl/Q(B,*L* — B:L) = é;; +n'2A,e*,
where B := n!/2Q,,6* and & = nt2 A, ~ N(0,672A,AL), conditional on (D, D}).
The conditions in Assumption 1.3.2(i) or A.1(i) now follows as in Part (i) of the previous

) 2

proof because & p—*>p o®. For Assumption 1.3.2(ii) or A.1(ii) we consider the joint

convergence of (1" — B, B;: — f?n)’ By noticing that

n'2(5% = 0,) = S;3,57: 0 = Sz 5.0(—Sz:Spm TN Spyes,

T — B, d, A
T ) = M ) 28y ~ N(0, V),
B — B, .

conditional on D,,, where

~ dy . Swwdarn  dyy, Swiwbin
Vn _ 5_721 _/]\/[,n WWw _M, _/]\4,71 WW_M, £> V.
bM,nSWWdM,n bMﬂ—LSWWbM,n

it follows that

The desired result follows. O

A SMALL MONTE CARLO EXPERIMENT

In Table 77 we present the results of a small Monte Carlo simulation experiment to
illustrate the above results numerically. We generate the data from the regression model
(1.2.1) with sample sizes n = 10,20,40. The regressors z; and z; are both scalar and
multivariate normally distributed with unit variances and correlation 0.7, and the errors
are either standard normal, ¢3, or x? distributed. The true values are 8 = +an~'/? with
B =1and § = 1 (the results are invariant to 3 and ¢ because we use the unrestricted
estimates to construct the bootstrap samples). We test the null hypothesis Hy : 3 = 3

against a left-sided alternative. Results for right-tailed and two-tailed tests are analogous
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to those presented here for left-tailed tests. The case a = 0 corresponds to rejection
frequencies under the null, and a = —1, —2, —4 corresponds to rejection frequencies under
local alternatives. The estimator puts weight w; = 1/2 on the short model that includes
only z (and a constant term) and weight ws = 1/2 on the long model that includes both
regressors (and a constant term). We consider two bootstrap schemes. The first is the
parametric bootstrap scheme, where £ ~ i.i.d.N(0, 1), which is denoted as “par.” in
the table. The second is the non-parametric bootstrap scheme, where ¢} is resampled
independently from the (centered) residuals from the long regression, which is denoted as
“non-par.” Results are based on 10,000 Monte Carlo simulations and B = 999 bootstrap
replications.

First consider the case a = 0. The simulation outcomes in Table 77 clearly illustrate
our theoretical results. The standard bootstrap p-value, p,, is much larger than the
nominal level of the test. The plug-in modified p-value, py, ,, is close to the nominal level
for the parametric bootstrap scheme, but is still over-sized for the non-parametric scheme
with the smaller sample sizes. Finally, the double bootstrap modified p-value, py, 4, is
nearly perfectly sized throughout the table.

Table 77 for a = —1,—2,—4 clearly shows nontrivial power, which increases as a
increases. The discrepancies in finite-sample power are due to differences in size. For
example, consider the standard parametric bootstrap with 5% nominal level and normal
errors (top left of the table). It has finite-sample size very close to 10%. Comparing this
with our modified bootstrap test with nominal size 10% (towards the right in the same

panel of the table), we see that the finite-sample powers are nearly identical.
EXTENSION TO THE PAIRS BOOTSTRAP

In addition to Assumption A.2.1 we also impose the following conditions.
With w; := (24, z)" it holds that (i) sup, E ||w,||* < oo, Ee} < oo; (i) n~' S0, 22¢? —,
028, nTE Y wFwaw) —p X >0, and Tt YT afwey —, 0.

PrROOF OF LEMMA 1.4.3. We first prove that

Swew+ — Sww Ly 0, (A.2.3)
n1/2S$*€* 22 O
S = | nY2(Spr — S) | B, N(O, T, T, = ( ? O“ - ) . (A.2.4)

nl/z(Sx*x* - S:c:c)

Here, (A.2.3) follows by straightforward application of Chebyshev’s LLN.

To prove (A.2.4), we first compute the mean and variance of S*. Note that the
mean of S is zero by construction; for example, E*(n'/2S,...) = n= V23" E*(x}e)) =
n'/2S,: = 0 by the OLS first-order condition. In addition,

n n
_ — ~2 P
Var*(n'/2S,...) = n~! E E* (2% =nt 5 1T D 070
t=1 t=1
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Table A.1: Simulated rejection frequencies (%) of bootstrap tests

5% nominal level

10% nominal level

par. non-par. par. non-par.

dist. a n ﬁn ﬁn,p ﬁn,d pn ﬁn,p ﬁn,d ﬁn ﬁn,p ﬁn,d ﬁn ]an,p ﬁn,d
N 0 10 10.1 5.0 5.0 16.2 11.2 6.3 15.9 10.0 10.0 21.5 16.2 10.5
20 9.7 5.0 5.1 12.6 7.8 5.4 15.1 9.8 9.8 18.2 129 104

40 9.8 5.1 5.2 10.5 5.8 4.9 154 10.1 10.2 16.5 11.0 9.8

-1 10 25,5 159 16.0 34.0 26.1 16.2 35.7 259 258 42.3 34.3 24.8

20 26.0 16.5 16.7 30.1 21.0 159 36.5 269 26.6 40.0 30.9 26.1

40 274 177 179 29.3 194 16.9 37.8 284 284 38.9 30.0 27.6

-2 10 47.7 35.6 35.7 57.0 475 33.2 58.4 485 48.1 64.9 574 45.7

20 51.6 38.3 38.3 56.3 44.0 36.2 62.5 521 52.3 65.9 56.9 514

40 52,5 39.9 39.8 54.8 43.0 39.1 63.9 53.6 53.8 64.9 55.5 528

-4 10 849 756 75.6 88.2 825 71.6 90.1 84.5 84.3 91.9 879 81.2

20 90.5 829 827 91,5 855 80.2 94.2 90.3 90.0 944 91.3 88.8

40 91.7 854 85.3 92,5 &87.0 84.7 95.3 922 92.0 95.8 92.7 91.7

t3 0 10 7.3 3.7 38 15.6 10.8 5.8 12.0 7.3 7.2 21.5 15.8 10.2
20 7.5 4.1 4.2 13.2 8.1 5.6 12.7 7.6 7.9 19.0 134 10.9

40 7.5 3.8 3.9 10,5 5.7 4.9 12.8 7.8 7.8 16.6 10.8 9.6

-1 10 209 12.0 11.9 39.4 30.6 19.8 31.7 214 21.3 477 39.8 295

20 233 13.1 133 35.2 253 19.3 34.2 239 24.0 45.0 36.3 31.1

40 24.6 14.7 14.7 31.8 214 19.2 35.6 25.3 25.3 42.3 329 30.5

-2 10 475 32.2 322 65.2 56.6 42.8 60.3 47.7 47.6 72.7 654 55.1

20 514 36.7 37.0 63.7 523 45.1 64.4 524 524 72.5 63.9 59.1

40 52.8 38.1 383 60.8 47.8 44.6 65.6 539 53.7 709 61.7 58.9

-4 10 87.7 781 779 91.3 86.9 78.6 92.1 873 87.2 941 91.2 859

20 91.8 85.0 84.9 92.6 88.1 84.2 95.1 916 091.6 95.3 928 91.0

40 93.2 87.7 87.6 93.2 88.2 &86.8 96.1 93.3 93.3 96.0 93.3 92.5

X% 0 10 8.3 4.7 4.7 16.0 10.7 5.8 126 8.0 8.0 215 16.2 99
20 8.5 4.9 4.9 122 7.0 5.0 13.5 8.6 8.6 18.1 124 9.8

40 9.2 4.9 4.8 109 6.1 5.3 14.8 9.7 9.5 17.1 11.2 10.1

-1 10 21.1 12.6 126 419 33.2 225 30.9 21.7 21.2 50.1 42.0 31.9

20 234 143 14.3 35.1 25.1 19.7 33.6 24.0 24.1 45.2 359 31.2

40 25.5 15.8 159 31.7 21.2 19.1 36.2 26.6 26.7 42.2 32.7 304

-2 10 46.9 31.3 31.5 65.2 57.2 45.3 60.6 476 47.6 72.0 654 55.8

20 51.2 36.3 364 62.2 514 44.3 64.3 524 525 71.3 629 57.9

40 539 39.2 39.1 59.4 469 439 65.2 55.1 54.9 69.9 604 57.8

—4 10 872 785 783 888 843 766 915 866 864  91.8 836 83.2

20 91.1 84.7 84.7 90.6 84.6 80.4 94.2 91.0 90.8 93.9 90.5 884

40 92.6 86.8 86.8 91.8 86.7 85.2 95.6 92.7 925 94.8 92.0 91.0

Notes: p, denotes the standard bootstrap; p, and py,q denote the modified bootstrap using the

plug-in and the double bootstrap methods, respectively. The parametric bootstrap scheme, where

ey ~1.i.d.N(0,1), is denoted as “par.” and the non-parametric bootstrap scheme, where & is re-sampled

independently from the long regression (centered) residuals, is denoted as “non-par.” The &;’s are i.i.d.

draws from (standardized) N, t3, and x? distributions. The parameter a denotes the drift under the lo-

cal alternative 8y = 8 + an

~1/2

bootstrap replications for each level.
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under Assumptions A.2.1 and A.2.1. Similarly, letting

( nl/Q(Sx*z* - S:vz)

= 'Sy~ — Saw),

we find that

n

Var*(n'/? (Speps — Spw)) =n " Z(xtwt — B (zjw)))(zpw, — E* (xfw)))

t=1

n
-1 2 ' P
=n g TyWwWy — SewSwae = Ly — W LW
t=1

Note also that the covariance between n'/2S,... and n'/?(S .+ — Spw) is zero because

n n n
E*(nSyecx Speyy+) = n L E* ( E xie} g xij) =n'E* ( E x;‘&wt*e:)
s=1 t=1

t=1
n
_ ~ D
= E*(z*w}e}) =n"! E ziwiéy = 0
t=1

by Assumption A.2.1(ii). Thus, we have shown that E*(S}) = 0 and E*(S}S}) —, .
The result (A.2.4) now follows because the stated moment conditions imply the Lindeberg

condition by standard arguments.

Next we can write
T — B, =n'?S.! .S + B — B,

where
Bf — B, = (51,8, — 8218, )n'/%5,.

xr*x*

Adding and subtracting appropriately, we can write this difference as
B — By = n"?(S51. Speae — S50802)0 + (S5 Syeae — S1Spa )2 (6, — 0),

where n'/2(6,, — §) is O,(1) by a central limit theorem and Syt Spe.e — S!Sy = 0, (1),
in probability, by (A.2.3). The first term in B* — B, can be written as

SoL o2 (Spe e — S,2)0 — S

x r*r*

1/2 _
_ —1 -2 n (SJZ*Z* sz)
= ez, ~¥r Bs) ( WV2(Syege — Sya) ) o ()

Sx_wl (Sx*x* - mm>n1/25m26

in probability, by application of (A.2.3) and Assumption A.2.1(ii). It follows that
A 1/2(5 * ok T S )

T — B, = S=L 025" 1ozt —n=2w, ) [ Ve T e ) L g

n T*T e ( T Tx ) nl/Z(Sx*x* . ng) p ( )

= (2}

Tx )

e 0, —Y525520) S + 0 (1),
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in probability. The required result now follows from (A.2.4) because

Y 0
@a&zg&—zxxm®< . )Q;;EJ&—E£EM®’

=Y I8 +d,.(6)%,d,(6) = v* + K,

which completes the proof upon noting that 3, = 023, implies v? = ¢2¥_L. O

A.2.2 RIDGE REGRESSION

ASSUMPTIONS AND NOTATION

As in Fu and Knight (2000) we assume the following.

n T3y = o(n); (iii) Sy, is nonsingular for any n and

converges to a positive definite matrix, ¥,,; (iv) = 6n~"/?; and (v) n"'¢, — co > 0.

(i) e ~ i.i.d.(0,0?); (ii) max;—

.....

For the bootstrap we will also need the following.

.....

the additional condition (vi) Ee} < oc.

Finally, we define

V = o2 gli;xl Yirw i;ajlg _009/{2;;2;:519
RC/ e Yy BC-1/ D Wik Yok Ve

where v? := vy, and it holds that

_ 2 /Z—l
m? V11 + Va2 Uiz _ _ g m{l , (A.2.5)
V11 Y IY,. Y g

where the last equality is derived in the proof of Lemma 1.4.4.

PROOFS OF LEMMAS

PROOF OF LEMMA 1.4.4 AND DERIVATION OF (A.2.5). The result follows by showing
that

Tn _ Bn /Sf—l
: _ 95 w28, 4 ()~ NOY) V= (),
B, — B, _Cnn_lglsz_lsm_ml 52

(A.2.6)
and that
T* — B =T — By +0,-(1) 5, N(0,0?). (A.2.7)

To prove (A.2.6) we first notice that, since c,n~! — ¢y, under Assumption A.2.2 we
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have that n'/2S,. —4 N(0,02%,,) and hence

T,— B ~ I
An n = (I, ® /S—l p nl/QSm
< Bn . Bn ) ( 2 g J:ac) ( _n,ICnS;;

S Emz —col,
4 (Lo gdSHN [ 0,02 QCOj ~NO,V),  (A2.8)
—C()] Co E

V — O' g Z lzﬂvmzxxg —G glz Ex:cg
—Cog E Zxxg Cog 2 12 12:(::59
This immediately implies that m? in (A.2.5) is given by

'Z IZMZ 2 'E Z Z IE 12
m2 g zz 9 =+ Cog xa:g + COg :msg (AQQ)
’E 1lezmg

The numerator of m? in (A.2.9) can be written as

IE (S + 20, + S DS g = 08 (X ) S g = ¢80 kg,

rxr

and hence (A.2.5) follows.
To prove (A.2.7) we note that T); — B, = &, + B, — B,,, where &, := n"/2¢'S;}. Sy

and

~

B:;—Bn:_cn —1/2 /S 1 9 +em _1/2 /S 19
= —can g (Sphe = S (0, — 0) — con™'g (S — S21)6,

rxr T rx

such that B* — B, p—*>p 0if S;t. — S} p—*>p 0. Because ||S;!|| = O(1) under the stated
assumptions, it follows that ||S;.t. — S.'|| has the same rate as |[Speg- — Spe||. Thus,
Spewr — Sew = Sprgr — Sy = 171 Yo xiay — E*(xyxy) p—*>p 0 by a straightforward
application of Chebyshev’s LLN using that max; 2}z, = o(n'/?) by Assumption A.2.2(ii’).
The proof is completed by showing that &7, satisfies the bootstrap central limit theo-
rem. By the above results it holds that &, = n/2¢g'S; 1S, +0,+(1), s0 it is only required
to analyze the term n'/2¢’S71S,... = n'/2Sz., where #F := ¢’S-lzf. First, we have
E*(n'/2S5.) = ¢S E*(n'/28,...) = n'/2g/S71S,. = 0. Second, with Z, := ¢S}y,

n

n
Var' (n'/2 S ) =n ™ty a2 =n- Z i2(&2 — o 4 o?)

t=1

= ‘729’2 12501‘295:59 +nt Z Ty (e )+ 0p(1).

Because ¢; is i.i.d. and #7 is non-stochastic, a sufficient condition for n=!'>"7" | #2(e? —
0?) =, 0 is that Apin (>, 77) — 00, where Ayin(+) denotes the minimum eigenvalue of

the argument, and this is implied by n™' Y"1, & — ¢ Do 1ZmEmg > 0.

Third, we check Lindeberg’s condition, where we set s? := nSz;. For € > 0 it holds
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that

1 -
=) E BN @ g esn) = 5 BT (Fe ey nsaa))
Sn =1

rx

B (@)

=2
€2nSz;
n —1 ~4 n
S R L LI SN
T 21262 ot = 2 G2 t
en?Sg; = €55 N
because n~! max; 7} = o(1) and &; has bounded fourth-order moment. O

PrROOF OF LEMMA 1.4.5. The proof follows closely the proofs of Lemma 1.4.4 and is
omitted for brevity. O

A.2.3 NONPARAMETRIC REGRESSION

ASSUMPTIONS AND NOTATION

We impose the following conditions.

(i) & ~ 1.i.d.(0,0%); (ii) Ele/|**° < oo; (iii) 8 : [0,1] — R is three times continuously
differentiable with bounded derivatives; (iv) K : R — [0,00) is symmetric and satisfies
K(u) = 0 for all u ¢ (-1,1), [K(u)du = 1, £* :== [«w?*K(u)du # 0, and Ry :=
[ K (u)?du € (0, 00).

Note that Assumption A.2.3 allows for the most popular choices of symmetric and
truncated kernels.

To simplify notation, we define k; := K((z; — z)/h) and k;; = K((x, — x;)/h). We

also define the variance matrix

v? Wiy — V2
V.= s o ,
Wi — U v° + W — 2&)12

where v* := 0?Rg, wip == 02 [ K(u) [ K(s — u)K(s)dsdu, and wa = o* [([ K(s —
u) K (s)ds)?du.

PROOFS OF (1.2.4) AND LEMMAS

Although it is well known (e.g., Li and Racine, 2007) that (1.2.4) and Assumption 1.3.1
hold in this example, we give short proofs for completeness.
PROOF OF (1.2.4). Under Assumption A.2.3 we obtain by Taylor expansion the following

well-known result,
Ef(z) = — k = | K h)d h)~!
(o) = > k(o) = [ KB + uh)du + o (b))

_ / K(u) (B(x) + B (x)uh + 8"(2)u?h?/2 + o(h?)) du + o( (nh) ™)
= B(z) + h*B"(x)Ka/2 + o(h?) + o((nh) 1), (A.2.10)
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where the last equality follows by [K(u)du = 1 and [uK(u)du = 0. Setting the
bandwidth as h = cn~!/° thus implies (1.2.4). Note that the limits of integration are u €
((n='—=x)/h, (1—2z)/h), but for n sufficiently large this is the same as u € (—1, 1) because
K(u) =0 for all u ¢ (—1,1). We use this property throughout the remaining proofs.

PROOF OF LEMMA 1.4.6. First, we verify Assumption 1.3.1 by showing that & ,, := T, —
B, = (nh)~Y23"" | ke, satisfies the central limit theorem. Because k;eq,t =1,...,n,isa

sequence of independent random variables with mean zero and Var(k;e;) = k202, we have

Var(61,) = — Zk22 —/ (S;x)2ds+0<<nh>—l>

== /K(u)Qd(m +uh) +o((nh)™) = 0?Rg = v*.

Moreover, Lyapunov’s condition holds because

(nh)—(l—HS) Z E(kt2+6‘5t’2+5) < C(nh)—(l—i-&) Z kt2+5

t=1 t=1

< c(nh)™ )N g < e(nh) " hn — 0. (A.2.11)

t:|ze—z|<h

Next, we verify Assumption 1.3.1(i). Note that T — B, = (nh)~/2 Doty kel =1 &8,
where, conditional on D, &, ~ N(0,62(nh)~" 377 k7). Hence, the result follows from
62 —, 0% and (nh)' 3" k¥ = Rp.

Finally, we verify Assumption 1.3.1(ii). We first show that we can write

B, — B, =&n+0(1), &= \/_ Z — Z kike — ki)er, (A.2.12)

and then we show that

En = (E1n E20) > N(0,V). (A.2.13)

To prove (A.2.12) we write

B, B, = (nh)" (% >kl () = Blan) — (Ba(z) - ﬁ<x>>> ,

t=1

where

Bn(x) = (nh)™! Z k() + (nh) ™) ke,

ktﬁh It Z ktkt]/B I] (nh)fl Z ]{?tkftjéfj.
j=1
By reversing the summations and exploiting symmetry of k;;, it immediately follows that
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Byu(x) = (nh)™" >k Biy(x,) = (nh) V?Zk ( _liktjﬁ(xj)—ﬁ(xt)>.
By (A.2.10) we find }
By () — Byn(z) = (nh) WZk (h2B"(x4)k2/2 + o(h?) + o((nh) ™))
(nh>”2h2 "(@)r2/2 + o(h*) + o((nh) ™)

= (nh)1/2%h2 (%Zktﬂﬂ(fﬂt) _BN(I)) —i—o((nh)1/2h2) +0((nh)_1/2),

where
1 n

s 2 ) = [ 8+ um) K ()du + o (b)) = 8"(2) + O(h) + o (k) )

by first-order Taylor expansion, similar to (A.2.10), together with the assumption of

continuous and bounded . The result now follows because h = cn~'/5.

Finally, to prove (A.2.13) we show that

- k, .
Jn = — n e _> N O, Q 5 Q = wl.. i, . 2, A214
V nh tzz; ( (nh)_l Zj:1 kjkt] ) t ( ) ( ]) i=1,2 ( )

from which the result follows by noting that v? = w;; and

10
g”:[—l 1]’]"'

It is clear that J,, has mean zero and independent increments. Approximating summations

by integrals, it can be straightforwardly shown that
vaI,(J ) — 0_2 (nh)_l Z?:l th (nh)_2 ZZ]':I ktkjkt]
(nh) =2 320 oy Kekjky (nh) ™1 320 ((nh) ™1 320 Kk )

By the same proof as in (A.2.11), we can show that the Lyapunov condition is satisfied,
and result (A.2.14) follows. O

— Q.

PROOF OF LEMMA 1.4.7. We first verify Assumption 1.3.2(i). We notice that T —
Bf = T — B* = (nh)™'/? > iy kel =1 &%, where, conditional on (D,, D},), &%, ~
N(0,6:2(nh)~t 371 | k?). Hence, the result follows from 62 gp o?and (nh) ™ty " K —
Rg.

Next, we verify Assumption 1.3.2(ii). We first write T* — BX = T — B, — (B* — B,) =
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A

&, — (B — B,), where B* — B, = B* —
(nh)_1/2 Z?:l kt((nh)_l ZJ 1 ktjﬁh( ) B
BZ(JU)), where

By Recall By, := (nh)™' 20 kB, (2,) =
() and By, := (nh)'/*((nh)™ 30, kel () —

Bh Z ktﬁh ¢) + (nh)™! Z kier,
t=1
ki3 (x0) = (nh) ™! Z kekei Bu(;) + (nh) ™) kikiyie,
P =1

so it follows that

n

% > % S * * 1 1
Bn - Bn = Bn - BZ,n = §2,n7 fQ,n = \/ﬁ nh Zk kt] t t'
7j=1

t=1

n

Thus, the proof is completed by showing that

&= (6, 6.,) S N(O,V). (A.2.15)
Conditional on D,, it holds that £ ~ N (0, Vn), where
U =62 1 ¢ ki F (o 20— ke — k) I

"nh =1 kt(n_lh Z?:l kjktj - kt) (nh Z k; ktj kt)Q

by approximating the summations by integrals and using 62 —, 0. This proves (A.2.15)

and hence completes the proof of Lemma 1.4.7. O

A.2.4 INFERENCE UNDER HEAVY TAILS

SETUP. We consider a simple location model with heavy-tailed data, thus demonstrating
that our analysis applies to a non-Gaussian asymptotic framework. Specifically, consider a

sample of n i.i.d. random variables {y; }. Interest is in inference on 6 in the location model
yt:9+€t7 E(gt) :0,

when the ¢,’s follow a symmetric, stable random variable S ( ) with tail index a € (1,2)
and the location parameter is local to zero; i.e., § = n'/*'¢.? Under these assumptions,
E(|g]**?) = +o00 for any § > 0; in particular, &; has infinite variance. Notice that @ is

1/a—1

local of order n rather than the usual n~'/2? because of the slower convergence rate

of the OLS-type estimator when the variance of ¢; is infinite. We consider the biased

Qn = wgna gn = n_l Zyta
t=1

estimator

2The results in this section can easily be generalized to the case where the €;’s are not necessarily
symmetric and/or are in the domain of attraction of a stable law with index « € (0, 1), as in Cornea-
Madeira and Davidson (2015). Moreover, the results apply to the case of non-local 6 as well; i.e., 8 # 0
fixed.
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where w € (0,1). In the finite variance case, this estimator improves upon g, in terms of
MSE when 6 is local to zero. It holds that

T, :=n* Y0, — 0) = (w—1)c+wn' ", ~ B+ wS(a) (A.2.16)
with B := (w — 1)¢; equivalently, T,, — B ~ & := wS(«a). Hence, Assumption 1.3.1 is
satisfied with G, (u) = P(wS(a) < u) = ¥,(w tu), where U, (u) := P(S(a) < u) is

continuous. Inference based on quantiles of &; is invalid because it misses the term B.

BoOOTSTRAP. It is well known that the standard bootstrap fails to be valid under infi-
nite variance (Knight, 1989). The ‘m out of n’ bootstrap (see Politis et al., 1999, and
the references therein) is an attractive option, but it fails to mimic the non-centrality pa-
rameter B; see Remark A.2.2 below. Instead, we consider the parametric bootstrap of
Cornea-Madeira and Davidson (2015), which only requires a consistent estimator &, of

the tail index «, assumed to lie in a compact set. The bootstrap sample is generated as
Yy =Un +¢&;, & ~ 1.id.S(4,),

and the bootstrap estimator is 0, := wy = w(y, + &) with & = n"' 31 &f. The

bootstrap analogue of T}, then satisfies
T* = n' "V 0r — ) = wn' V& + B, with B, := (w — 1)n'""/g,.

Now, n'=/ez% % S(a) by Proposition 1 in Cornea-Madeira and Davidson (2015) and,
therefore,

T* — B, d—*>p & = wS(a).
This shows that Assumption 1.3.1(i) is satisfied in this example. Notice that the bias
term in the bootstrap world satisfies, jointly with (A.2.16),

B,—B=(w—1n""%, ~(w-1)S(a) = &.
Specifically, because both 7, and B, depend on the data through £, only, we have that
(&1,&) ~ (w,w — 1)S(a), implying that & — & ~ S(a). Hence, Assumption 1.3.1(ii)
is satisfied with Fj(u) = P(S(a) < u) = U, (u). Since the cdf of & ~ wS(a) can be

written as G (u) = Wo(w '), it follows by Theorem 1.3.1 that p, —4 G (F, ' (Ujy)) =
Vo (w0 (Up,q)) and, therefore,

P(pn < u) = H(u) i= P(Uo(w W (Up)) < u) = Va(w¥; ' (u)),

«

which differs from u unless w = 1.
Because w is known and we can estimate « consistently with &, we can estimate H (u)

consistently with H,,(u) := ¥4, (w¥"(u)) and obtain a valid plug-in modified p-value,
Pn = f{n(ﬁn) = qjdn@”\p;i(ﬁn))v
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by application of Corollary 1.3.2.

Alternatively, we can estimate H(u) using the double bootstrap estimator H, (u) :=
P*(prr < wu), where pi* := P*(T** < T). Specifically, let the double bootstrap sample
{y;*} be generated as

yt =y e, g ~ 1id.S(qn),
and set 7 1= W = Wik +wES, where & := n~ ! 31 e*. The (second-level) bootstrap

analogue of T then satisfies
T = p Vo0 — ) = wn' Ve 4 B with B := (w— 1)n'~Vog.

Since ;* is generated from S(&,), where &, depends only on D,,, the distribution of £;*,
conditionally on D} and D,, is the same as the distribution of €}, conditionally on D,,.
This implies that

pit/ag ‘ﬁp* S(a),
in probability, by Proposition 1 of Cornea-Madeira and Davidson (2015). Therefore,
T - B 5, & = wS(a),

in probability, showing that Assumption 1.3.2(i) is satisfied. Since

~ A

B; — Bn = ((,u — 1)n1—1/a<g:; _ gn) _ (w . 1)n1—1/a€—*

n

and T, — B, = wn'~Yeg* - Assumption 1.3.2(ii) is also satisfied in this example. Thus,

A

Dn = Hu(Pn) =4 Upp,1;) by Theorem 1.3.2.

REMARK A.2.2 Consider the ‘m out of n’ bootstrap data generating process,
Vi =Yn+ep, t=1,...,m,

where €f s an i.1.d. sample from the residuals &, = y — Yo, t = 1,...,n. Then, with
é;"n =Wy, Uk =mTEY " yr, the ‘moout of n” bootstrap statistic is

T =m0, — 5,) = wm' Vo 4+ (w— )m' Vg,
where m'=Y/og* gp S(a) as m — oo; see Arcones and Giné (1989). Moreover, if

m=ofn),

A

By = (= Dm0, = (1 — D!~ o= (010G, = O,((m/n)'17) = 0,(1)

which shows that T, gp wS(«a). Hence, Assumption 1.5.1(i) is satisfied with & = wS(«a)
and B, = 0. Since B := (w—1)c¢ # 0, we have & := —B a.s., so that Assumption 1.3.1(ii)
does not hold. As in Remark 1.5.1, it then follows that

P = PH(T7 < To) % GL(G5 (Upy) — B)) = Wa (¥ (Upp,n) — B).
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This shows that the limiting distribution of p,, depends on B. Since B cannot be consis-

tently estimated, the ‘m out of n’ bootstrap cannot be used to solve the problem.

A.2.5 NONLINEAR DYNAMIC PANEL DATA MODELS WITH INCIDENTAL
PARAMETER BIAS

Another example that fits our framework is inference based on panel data estimators
subject to incidental parameter bias. We consider the properties of the cross-sectional
pairs bootstrap considered by Kaffo (2014), Dhaene and Jochmans (2015), and Gongalves
and Kaffo (2015) in the context of a general nonlinear panel data model. Although this
bootstrap cannot replicate the bias, we show that our prepivoting approach based on a
plug-in estimator of the bias is valid. Recently, Higgins and Jochmans (2022) proposed a
(double) bootstrap procedure that retains asymptotic validity without an explicit plug-

in estimator of the bias, but their procedure relies heavily on the parametric distribution

assumption.
SETUP. Let z; denote a vector of random variables for a set of n individuals, i = 1,...,n,
over T time periods, t = 1,...,T. Given a model for the density function f;;(0,qa;) :=

f(zit, 0, a;), the parameter of interest is # € ©, which is common to all the individuals,
while «; € A denote the individual fixed effects. The fixed effects estimator of 8 is the

maximum likelihood estimator defined as

n T T
0, = log fir(0, &:()), where a;(0) = log fu(0, ;). (A.2.1
n argrggag;; og fir(0,6i(0)), where &;(0) arggjg;;; og fir(0, ;). (A.2.17)

Under certain regularity conditions (see, e.g., Hahn and Kuersteiner, 2011), including

letting n, T — oo jointly such that n/T — p < oo,
T, := VnT (6, — 6) > N(B,v?), (A.2.18)

where B denotes the incidental parameter bias and v? is the asymptotic variance of 0,.
Hence, Assumption 1.3.1 is satisfied with & ~ N(0,v?) (equivalently, Assumption A.1 is
satisfied).

The exact forms of B and v? may be quite involved and depend on the type of
heterogeneity and dependence assumptions imposed on z;. A standard assumption is
that z; is independent across ¢ while allowing for time series dependence of unknown

form; see Hahn and Kuersteiner (2011).

BooTsTRAP. Given the cross sectional independence assumption, a natural bootstrap
method in this context is the cross sectional pairs bootstrap. The idea is to resample z; =
(zi1, ..., 2r) in an i.i.d. fashion in the cross sectional dimension. If z; = (y;,z4) and
f(zit,0,05) = f(yit|it, 0, ;) is the conditional density of y;; given x;, this is equivalent to

a cross sectional pairs bootstrap. As the results of Kaffo (2014, Theorem 3.1) show, this

125



bootstrap fails to capture the bias term B. In particular, letting é; denote the bootstrap

analogue of 6,,, we have that
T = V(0 — 0,) S, N(0,0%),
which implies that, as in Remarks 1.3.1 and A.2.2,
P = PH(T; < Tp) = B(v'T) + 0,(1) 2 D071 B + &~ (Ujg.1))).
Thus,
P(py < u) — H(u) == P(@(® U ) +v7'B) < u) = 2(2 (u) —v'B),

which shows that the bootstrap test based on p,, is asymptotically invalid since its limiting

distribution is not uniform.

~

REMARK A.2.3 Note that, in this example, L, (u) := P*(T)} < u) —, ®(u/v), showing
that the bootstrap conditional distribution of T\ is not random in the limit. The invalidity
of pn is due to the fact that the cross sectional pairs bootstrap induces B, = 0, whereas
B # 0. This implies that B,—B=-B:= &y is not random. The fact that & 1s not zero
1s the cause of the bootstrap invalidity. See Remark 1.3.1, which contains this example as

a special case.

Contrary to previous examples (e.g., Remark A.2.2), B and v can both be consistently
estimated. Hence, in this example we can restore bootstrap validity by modifying the
bootstrap p-value using a plug-in approach. More specifically, let B, and ¥, denote

consistent estimators of B and v, respectively.® By Corollary 1.3.2,

~ A —1/A P d
Pn = Hn(pn) CI)((I) 1(pn> - Unan) — U[O,l]

because H,(u) := ®(®'(u) — ;' B,) is a consistent estimator of H ().

—~

REMARK A.2.4 A double bootstrap modified p-value version of p, is not valid in this
setting. The reason s that the double bootstrap mimics the behavior of the first-level

bootstrap, i.e.
*% N)x* Axy d*F
Ty = VnT(0; —6;) =, N(0,0°),
so that B in Assumption 1.3.2(i) is zero. Since B,, =0, Assumption 1.3.2(ii) holds with

A

B* — B, =0, whereas Assumption 1.3.1(i1) has B, — B, = —B a.s. Then,

n

P = P T <o) = (07T S, ©(0 (Upa))) = U,

3Since we reserve the notation B, for the bootstrap-induced bias estimator (which is zero for the
cross sectional pairs bootstrap), we use the notation B,, to denote any consistent estimator of B in this
setup. For instance, B,, could be the plug-in estimator proposed by Hahn and Kuersteiner (2011), which
is based on a closed-form expression of B;. Another option is the half-split panel jackknife estimator of
Dhaene and Jochmans (2015).

126



whereas
P = B(@ " (Upy) + v ' B).

Thus, H,(u) := P*(p} < u) is not a consistent estimator of H(u), invalidating p, =

~

H,,(Pn)-

REMARK A.2.5 A special case of the previous setup is a linear panel dynamic model,
where zy = (yu, x},)" and xy is a vector containing lags of yix (Hahn and Kuersteiner,
2002). In this case, the plug-in modified p-value, p,, based on the cross sectional pairs
bootstrap can be implemented using any consistent estimator of B, as described above.
However, we can also use a recursive bootstrap that exploits the linearity of the model to
obtain an asymptotically valid standard bootstrap p-value, p,. The validity of p, follows
from the fact that the recursive bootstrap estimates B consistently, contrary to the pairs
bootstrap (Gongalves and Kaffo, 2015). In light of this, prepivoting p, by computing a

double bootstrap modified p-value p, = H,(p,) is not needed in this example, but it is still

a valid alternative.
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APPENDIX B
APPENDIX TO CHAPTER 2

B.1 “MODIFIED” PREPIVOTING: HIGH-LEVEL

CONDITIONS

Let us now consider a further generalization of the high-level assumptions in Cavaliere
et al. (2024) which allow to avoid the issues discussed in Section 3.1. Let T,, and T}
be the asymptotic and bootstrap statistic, with “bias terms” B, and B, respectively,
defined as general functions of the samples D,, and D}, respectively. We here show that
prepivoting can be applied to obtain valid p-values even in cases in which 7;,, — B, is
asymptotically centered at zero but B, — B, ,, is not. This is done via proper modifications

of T which still do not require estimation of B ,,.

AssumpTION B.1.1 T,, — B, A &1, where & is centered at zero and the cdf G(u) =

P (& < u) is continuous and strictly increasing over its support.

Assumption B.1.1 is analogous to Assumption 1 in Cavaliere et al. (2024). The main
difference with the setup in Cavaliere et al. (2024) is given by the introduction of a second
“bias term” By, which is asymptotically different from B, and such that Bn — By, is

asymptotically centered at zero.

ASSUMPTION B.1.2 For some D,-measurable random variable B, it holds that: (i) T —
B, i*—>p (1, where (; is centered at zero and the cdf J(u) =P (( < u); (i)

T, — B, 0
. 4 + (&
Bn - Bn ¢ 52
where & and & are both centered at zero and the cdf F(u) := P(& —& < u) is continuous.

The setup embedded in Assumption B.1.1 and B.1.2 is a generalization of the setup
considered in Cavaliere et al. (2024) — specifically, to the conditions of Theorem 3.4 —
which allow B, and Bs, not to be the same quantity, not even asymptotically. In case
we have that By ,,—Bs, — 0, then the conditions of Theorem 3.4 in Cavaliere et al. (2024)
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hold and “standard” prepivoting can be applied. However, if B; ,, — By, - 0 Assumption
5 in Cavaliere et al. (2024) breaks down and the results in Theorem 3.4 are not valid.
We here focus the attention on situations in which B; ,, and B, ,, are hard or impossible
to estimate, but their ratio is measurable or more easily estimable. As we will show in
Section 3.3, this is the case in the setup of local polynomial estimation at the boundary

of the design space.
ASsuMPTION B.1.3 Suppose Q := plim,,_, . .{B1.n/Ba.n} with |Q| € (0,00) is D,,-measurable.

Assumption B.1.3 formalizes measurability of the limit of the ratio between B; ,, and By ,,.
Crucially, the above condition rules out the fact that either By, = 0 or By, = 0 (the latter
being the case, for instance, for least squares linear regression with omitted variable bias).
QTy; its “bias term”

Let us consider the modified bootstrap test statistic T =
becomes Bn = QBn. The aim of this modification is to make Bn — By, asymptotically

centered at zero; in fact,

Bn - Bl,n = Qén - Bl,n = Q(En - B2,n) + QBZn - Bl,n
=Q(B, — Ban) +0,(1) - Qb =: &

where the last equality is given by the fact that QBs ,,— B ,, = (plimn_}oo{ g;: } : gf’: — 1) By, =

0p(1). Moreover, note that & is centered at zero since & is centered at zero.

THEOREM B.1.1 Under Assumptions A.1-A.3, it holds that: (i) T* — B, i*—>p QG =G
where (; is centered at zero and the cdf J(u) = P((; < u); (i)

Tn - Bl,n d 51
_ = |
Bn - Bl,n §2
where & and & are both centered at zero and the cdfﬁ(u) = P(6—& < w) is continuous.

Theorem B.1.1 shows that considering the modified bootstrap test statistic allows the
application of prepivoting since 51, & and ég are all centered at zero and do not depend
on the “bias terms”. Specifically, Theorem B.1.1 states that the conditions of Theorem
3.4 in CGNZ hold under Assumptions A-C.

Suppose now that (),, is not observable by the researcher but a consistent estimator of
(@ exists. Then a result analogous to Theorem 3 can be derived when Assumption B.1.3

is replaced by Assumption B.1.4 below.

AssuMPTION B.1.4 (i) For a sequence r, such that r, — 0, suppose there exists an
estimator Q,, such that Q, — Q = O,(r,), where |Q| € (0,00); (ii) Byy = O, (r27) for
some 6 > 0.
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Let us now define the modified bootstrap test statistic T* := Q.T = with “bias term”
given by B;’; = Qan, then, we have that

Bn - Bl,n = Qan - Bl,n - QBR - Bl,n + (Qn - Q)Bna

where QBn - By, 4 & by the same arguments in Theorem 3, and

N

(Qn - Q)Bn - (Qn - Q)(Bn - B2,n) + (Qn - Q)BQ,n = Op(l)-
where the last equality is given by the fact that (Q, —Q)(Bn— Ban) = 0,(1)0,(1) = 0,(1)
and (Qn — Q) Bayn = Oy(r7) = 0p(1).

THEOREM B.1.2 Under Assumptions A.1-A.3 it holds that: (i) T* — B, £>p QG =:
where Cy is centered at zero and the cdf J(u) == P((; < w); (ii)

Tn - Bl,n d 51
. — ~
Bn - Bl,n 62
where & and & are both centered at zero and the cdf F(u) := P(&,—& < u) is continuous.

Theorem B.1.2 formalizes the validity of “modified” prepivoting which - analogously than
for Theorem B.1.1 - implies that the conditions of Theorem 3.4 in Cavaliere et al. (2024)

are satisfied.

B.2 ASYMPTOTIC VALIDITY OF THE FL

BOOTSTRAP-BASED CIS
PROPOSITION B.2.1 Let Assumptions 1-3 hold, then,
o

Ul_nlfikn = Ul_nl(T* - én) —p N(0,1).

PROPOSITION B.2.2 Let the conditions of Proposition 2.5.1 hold, then: (i)
Vi h2€, = N(0, Ib); (B.2.1)

(ii) moreover, if x is an interior point,

Virn 2 Vir; (B.2.2)
whereas if x is a boundary point,

Virn 2 VeL (B.2.3)
where Vpp == (v}, o) and Vip 1= (93, pr), with vapr, Uy pr, > 0 and Vpp and Vpr are

defined in Appendiz B.
PROPOSITION B.2.3 Let Assumptions 1-8 hold, then: (i) if x is an interior point,
P % @ (mpr® ™t (Upy)) (B.2.4)
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where mpy, = \/vf’FL + U%,FL — 2u19.5L/01 pL; and (i) if © is a boundary point,

P L @ (@' (Upyy)) (B.2.5)

.. e .. .. . o-2 -.2 .. ..
where Mpr, == Vg pL/V1pL 1= \/Ul,FL + 03 pp, — 2019, /01 FL-

B.3 PROOF OF THE MAIN RESULTS

B.3.1 PROOF OF PROPOSITION 3.1

The proof of Proposition 3.1 follows analogous steps as the proof of Proposition 3.2 and

is thus omitted for brevity.
B.3.2 PROOF OF PROPOSITION 3.2
We let e* = (e7, ..., e%)" and note that:
T* — B, = Vnhe\(Z. W, Z,) ' Z. W,e*
Let us first focus on Z,W,Z, and notice that:

:_ZéWxe:< ML K () T K (5) (””?”)2)
n a2 K (05) (55) ap 20 K (%) (%)

Fln .

So that, by Lemma B.4.1,

1
I, =T1+0, (\/—_h) if z is interior
n

. 1
I, =T1+0, (\/—_h) if x is boundary
n

Let us now consider the term vVnhZ,W,e*/n. We can notice that:
\/nhZ’Wa*/n—LiK(xi_m) ! el

1 “ T, — 1
\/_nh; ( D )<T> @t oll)

So that

= hZ W, XW, 71y,

(s () (L)) (s s () () )




Moreover,

W2 WoSW,o Zio/n = 0, = ( (@) L K2 () @)y Xl K2 () (%) )

0 ()4 Sy K2 (55) (552) o () 4 Sor, K2 (552) (22)

where, by Lemma B.4.2
if x is interior

Ui, =¥ + 0, (

if x is boundary

3-2l-
N~y =

N— " —0

Ty, = Uy + 0, (

such that
o 1 Yo ) o U1 o
Wor = [ Y1 ¥y 93 Wag 1= 1%1 TLQ 1&3
Yo 3 Yy Uy s Wy

' = oo fl = 70 71
Y1 2 71 Y2

where the elements of the above matrices are defined in Lemmas B.4.1 and B.4.2. More-

over,

T T ey if x is interior

o =V \/nhe’l(Z;szx)*lz;wmgm} — TN e B o
S V) R if x is boundary

We are now left with proving asymptotic normality. To do so, we observe that:
ke = Bo) = == Y ealw)ese; + 0,1
o nh i

where w;(z) = €} (plim,_s..S,) "' Zi K ((x; — x)/h)/plim,, s v1,. Then, asymptotic nor-
mality follows from a bootstrap version of Lyapunov’s CLT, noting that E*[(nh)~Y2 3" wi(z)e.ef] =
0 and E*[(nh) ' 31", w?(z)e?e?] & 1 since, for § > 1,

ﬁ ZE* (wi(z)eie})> = (nz)a ZW36($)E* (eie})”

<O L@ = 0, ()

where the last result is given by Markov’s inequality given the fact that Ele}|z;] < oo by

Assumption 1.
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B.3.3 PROOF OF PROPOSITION 3.3

Let w;(z) = €\I';} Zi K ((z; — x)/h), our aim is to derive a CLT for:

fn) _ 1 (w0
(5%) = Vi 2 (wxx)) Z

where w;(z) = (nh)~' 377 wj(x)wi(2;) — wi(xr). We will do so by considering the two

cases of interior and boundary point separately. Let us consider the case in which z is
an interior point first. First of all, by noting that that I'y, = I'1 + 0,(1) it immediately
follows that:

1 _
§in = m;wi@)& + 0p(1)

1 o
e :—earf(‘ )K( )

We now consider how to apply the same idea to &, and we let b;(z) := (nh) ' 37, wj(z)wi(z;).

where

By the same reasoning than above, we have that:

\/% IGEE \/% > b+ o,(1)

bi(z) == €\I;" (xji_x> K (xj;:lj) w;(;)

Let us expand the term w;(z;). Following its definition,

where

_ i — X;
wl(xj) = 6/1F1n17jzlleK <Tj) ;

m,:( T K (555) n—zz;;lx(“f%)@;x%)z). Z:< 1)
TR T K () (52) BT () () NE
-1

1In,j

What we can do is to remove the randomness of '} ; coming from the summations over

We can note that, differently than before, we cannot take I'; . out of the summations.

the [ = 1,...,n, and to replace it with deterministic functions of the random quantity z;.

If we have that, for r = 0,1, 2:
1 - xl—fﬁ xl—iz "
— K = 0,(1
i () (7)o

1 - xl—i: .’L’l—f "
— E K —E
nh =1 ( h ) ( h ) =1
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and

TE€intSy

sup (E nhz <xlhj>] f(@)] =

s 53 () (P50 < o - )
o |53 (250 (22 | - o < 0

Conditions which are satisfied by (B.61) and the discussion above in Hall and Horowitz’s

supplement, then we can write

\/% IGEE \/% > B+ o)

where

and

flx)p fxg)pe

If x is a boundary point, by the same steps, we have that:

= ( I f@m)
: ib'()' 1 i? (2)e; + 0p(1)
vk i=1 S Vnh — ipna(2)€i + 0p(

b 1 - 1 N
biwma(z) =Tt |, o, | K (x] x)e’lnj- v K(IZ “”"’J>
]h h ), zhj h

i = (f(l’j)ﬂ()@j/h f(xj>ﬂ1,xj/h>
N J(@g)jiine,m f(25)fi20,/m

where

and

such that iy ./, := f_lm_/h u' K (u)du.
J

From now on, we focus on the interior point case only, although the same steps apply
also to the boundary case. A remark below will specify the parallelism with the following

approximation and an analogous approximation for the boundary point case. By noting
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that 1 = 0 if x is an interior point, we can simplify our arguments to get:

\/%izn;b’”:f(lx 3/2zzf < hgj>K(xi;xj)5i+0p(1)

i=1 j=1

n

v

f () - () < ()

We now want to approximate K with a function not involving a convolution sum, replac-

3”) e + 0,(1)

where

ing the summation over the j index with an integral. This can be seen as an asymptotic

approximation of that summation. Specifically, we want to show that:
R I 1 1 < fm—

—_— K € = ——~—F—= K
f(fﬂ)\/nh; ( h ) f(ﬂﬁ)\/nh; ( h

()=t R ()

where a = 1 and b = 0 since we assumed without loss of generality that S, = [0, 1].

f”) e + 0,(1) (B.3.1)

with

REMARK B.3.1 In the boundary case, analogous steps as for the following proof of (B.3.1)
yield to

1 — 1 -
— bi(x)e; = — b; bna()e; + 0,(1
m; () m; 7bd() p()

- . L/ . 1 R
bi,bnd(l') = 6/11"1—1/ (u) K (%) 6/1]‘_‘1_,111 (wi—az—u> K (W) du
0 \h h
Proof of (B.3.1). We have that

1 u T, — X 1 1 =z (zi—=x .
v () v () =

where




we aim to show that R, = 0,(1). To do so, we observe that, for n > 0:

s (F () -k () -

where the last equality follows from Ele;|z1,...,2,] = 0. Now we expand the squared

difference inside the summation to get that:

i (K (557) - # (457)) o) -
3 (s () € (57 -3 [ (e (2= o) e

=1

E %i(%jﬁ;f(ij)ff(xjhx)K(xihxj))202($i) +

E

=K

+E %i (% /aij (7) K (x _;_“) du)QJQ(xi)]
el (e (7)< (57) G L A O (7))

=: Ry, + Rop — 2Ry,

We will now prove the result by showing that Ry,, R, and Ris, have the same limit.
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We start with deriving the limit of R;,, as follows.

i =2 %i(iiﬂ;)K(%;gj)K(xiﬁx]’)yﬁwi) -
[y S ()52 (5

i=1 j=1 j/'=1

. nh S Z Z Z f(lxj) féj,)K (m;}: x) % (:z:Z ; xj> i (xgh— x) K

i=1 j=1,j#i7'=1,5'#1,5'#j

SZ Z f (xi;x)K(:Bj;x>K(xi;xj)02(xi)

i=1 j=1,j#i

1 u T;—T Ty — T
T (nh)® = j;ﬁ fz(l’j)K2 ( h )K2 ( h )aQ(xi)

_K2(0) "1 2 (T 2|
tE <nh>3;f2<xi>K( ) “)] =

= Rip1+ Rin2 + Ripns + Rina

+ 2K (0

Note that, referring to the indexes in the second line above, Ry, ; refers to the contribu-
tions to the triple sum such that i # j # j', Ry, 2 to the contributions such that i = j # j
and i = j' # j, Ry, 3 to the contributions such that j = j' # ¢ and Ry, 4 to the contri-
butions such that ¢ = j = j. We will show that Ry, ; is the dominant term of Ry, by
proving that Ry,2 = o(1), Ry,3 = o(1) and Ry, 4 = o(1). To do so, note that:

Rln,Z

i=1 j=1,j7#i
n(n —1)

= 2K (0) = E[ 1)f(;])K(xi}:x>K(xj;$)K(xi;xj)Uz(:m)]

— 2K (0 ”(Zh_l // (9”1_3”) ($2}:$>K(‘”1;”) o2z, )da ds

ok ()M=Y //Ks—l—u (s) K (u) 0(x + (s + u)h)duds

- n3h

= (14 0(1))20%(z)K (0) W//K(S +u) K (s) K (u) duds = O(n~'h™1) =

where the third equality above follows from the change of variables o = x + sh;x; =
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Ta+uh = z+ (u+s)h. One can show that Ry, 3 = O(n~'h™!) by analogous steps. Finally,

o e (252)

1 _
= n2h3 /f (xlh :U) 7 (e1)doy

K? (u) 0*(z + uh)du

B n2h2 /f$+uh)
— +o<1>>f;—,(f’2) e

We now focus on the leading term, R;, 1, and derive its limit. We have that

G XS sk (e (e () e (M

i=1 j=1,j7#ij'=1,5'#1,5'#Jj

0'2 (1’2)] =

:(h-3+o(1>)///K(IQ_SC)KC”;@)K(x?’;x)f((xlf?’) o2 (11) f (1) dzrdas
(™ +0(1 h3///K K(s+u)K(s+7r)K (u)-

o?(x + (u+s+7r)h) f(x + (u+ s+ r)h)dudrds =

= (1+ o(h*))(1 + o(1) ///K K (s +u) K (s + ) K (u) dudrds

/K2 (u) du = O(n?h™%) = o(1)

Rln,1 =E

_ /[/K s—l—r)ds] dr+ o(1) = By + o(1)

where the third equality follows from the change of variables:

1 = T3 + uh ri=x+(r+s+uh
r3=x9+sh S qrz=x+(r+s)h

To =x+rh To=x+rh

We now move to the derivation of the limit of Ry,. This limit can be achieved again by
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a similar procedure than for the leading term of Ry, ;. To see this, note that:
R, —F 1i 1/sz(u)K Ti—r—u 2 ()
e nh i=1 h a—=x h h v g\t
1 b u T —T—u 2 )
T K (ﬁ) K{———)du) o (1) f(21)dz
T1—T—U u T ——u
“w/ /a /a (IT) () o () st

//b x/h/b x/h ' V) K (r+0) K (r+s) K (s) f(x + (v + 7+ 8)h)o?(x + (v +r + s)h)ds
(a—z)/h aa:/hv

(14 o(1) ///K K (r+0) K (r+ 5) K (s) dsdudr
_ /[/K s—i—r)ds} dr+ o(1) = Ry + o(1)

where the fourth equality follows from the change of variables:

Ty =z +u +sh ry=x+ (v+7r+s)h
u =u+rh < qu = (w+r)h
u=uvh u=uvh

We are left with deriving the limit of Ry5,. We have that:
[ 1 © 1 © 1 T; — a: 1 u T, — T —U
ni=E[— — K[ — Kl=2——)d
Ry nhZ(nhfoj < h ) h h) ( h ) “)“
1 -z acz xj U Ti =T —u 9

Li=1 j=1,j#4

/// (x2 3 m) K (xl ;@) K (%) K (W) F(21)0*(21)dudz1dzs + o(1)

///b j/;/zh v V) K (r+8) K (r+v) K (s) f(z + (r+s+v)h)o*(x + (r + s+ v)h)drdsdv + of

= (1+o0(1))f(z)o? (a:)///K(v) K (r+s)K (r+wv)K (s)drdsdv =: Ry + o(1)

+o(1)

where the fourth equality follows from the change of variables:

1 =2+ u+ sh ri=x+(w+r+s)h
u=zxo—x+rh < Su=@w+rh

To = T + vh To =2 + vh

This concludes the proof of (1.1).
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Following (1.1), we can write

We are now interested in deriving a CLT for

IR e P S o A O A DR S K (25) 5
th Z'_MZ;(R(%)) FMZ(%&%(%W(WW) ’

We start by proving asymptotic normality. To do so, we note that 5; is a sequence

of independent random variables. Hence, we can check if Lyapunov’s condition holds
together with the Cramer-Wold device. Specifically, for (94, B) € R?, we want to verify
asymptotic normality of 3", (nh) ™Y (aK ((z; — x)/h+ BK ((x; — 2)/h)e; = S0 n;. To

do so, we first note that:
oo (on (55) < o8 (457 )< -
— (nh)™! ZZ:;IE (aK (x - ’
_ (nh)—1a2§ﬂz {W (w - ’

20 1 (55 e (2 o)

where
(nh)-loﬁgE {KQ (“”;‘”) 02(33,-)} - —1a2/K2 (‘”1;”“’) o*(11) f(21)dz, (B.3.2)

=a? / K2 (u) o*(x 4+ uh) f(x + uh)du = (B.3.3)

— (14 0(1))0%(x) f(x)® / K2 (u)du = O(1)
(B.3.4)
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(nh)"12a6E [K (‘“ - ”3) K (9” - x) 02(:@)} - h‘12aﬁ/K (“””1; x) K ("“; x) o2(x) f (1) da

(B.3.5)

_ h22a5//:: K <x1; ‘”) K (%) K (W) F(a1)o? (a1 dud,
(B.3.6)
208 / /( O e VK ) K (r— o) fla 4 rh)o* a4 rhydrde (BAT)
— 208f(x //K K(r—v)drdv+o(l)=0(1)  (B38)

Moreover, note that

A2 (nh)~t ilE {f@ (‘” ; w) o—2<xi>} = 2Ry, = 2Ry 4 o(1) = O(1) (B.3.9)

We can now show that Lyapunov’s condition holds. Specifically, we have to prove that,

for some 0 > 0,

> iy Bl
n 19
(i, V()™

Since we already proved that (>, V(w;))*™ = 0(1) for all § > 0, it suffices to show
that Y"1 E|n:|>*° = o(1); for simplicity, we take § = 2 and note that:

3 o= 3o (o (57 09 (7)) 4

e (o (0 f)wd“‘”))]
e ()] e (“4>} |
i B () K ()] e (2 e o5
e () e (2]

We are going to conclude this proof by showing that each term above is o(1). First of all,

(5] - o (5

= (1%—0(1))hf(x)/K4 (u) du

= o(1)

IN

we can see that
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which proves that the first term is O(n~'h™!). To handle the remaining four terms, we

will show that for v =0, 1,2, 3:
)i (7))o

E [KV (xl
To see why, we write:
“””) fe (fﬁh‘ “") F (o)

el () ke ()| = [ (“

[ () G L G () ) st

:m—4/m($1h_”3 (/a:wf((%)f((xl_x_u> ) f(@1)dy

:m—4//abj.../abjm (mlh_”“) ﬁ{K (xl_x )}dul duy_ f (1) dey
\_4\_,7_/ Jj=1

(b—z)/h (b—z)/h 4=
:h// / K7 (U)H{K(Sj)K(U_Sj)}f($+vh)d81...d84_,ydv
( h ( j=1

a—x)/ a—x)/h |

= (1+ 0(1))hf(m)//.../K7 (v) ﬁ{K (s;) K (v— sj)}dsl...ds4_7dv = O(h)
— j=1

where the fourth equality follows from the change of variables

(
r1 =x + vh

Uy = Slh

\U4_,y = 84_7h
with the corresponding Jacobian matrix:

Oxy/0v 0x1/0s1 ... 0x1/0s4_,
Ouy /0 Ouy /0 e Ouy/0s4_

= “1,/1’ “1,/ T ul/,s‘” _ diag(h, h, ..., h)
Oug— OV Ouy_ry/O0s1 ... Ouy_r/0S4_,

so that det(J) = 7. This concludes the proof of asymptotic normality of Y"1 | ;. We

are now only left with deriving the asymptotic variance of (nh)~Y23"" 5, From (1.4),
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we have that

\/%Zzn;m (“”f) gi] :a2(x)f(m)/K2(u)du+o(1) — w +o(l)

From (1.8), we have that

E

E \/%ZIK (l“ - ‘”) K (m - l“) gi] - f(x)aZ(x)//K(s) K (v) K (s +v) dsdv + o(1)
=: wyz + o(1)
Finally, from (1.9), we obtain
E \/%ilf@ (x;x) el = R+ o(1)

2

202(:1:')]”(:1:)/ {/K(T)K(s—l—r)ds dr + o(1)

=: wy + 0(1)
Hence, defining
0= w1 Wiz
Wiz W2
we have that
1 n
—Y "5 4 N(0,Q) (B.3.10)
nh
and
& i>N(0,VLP) (B.3.11)
&
with )
1 1 0 1 -1
Vip i = —— Q B.3.12
P [—1 1 [0 1] (B5.12)

Finally, the proof is completed by noting that

\Y% 51X | & Vip

1 n

and from the following remark.

REMARK B.3.2 In the boundary case, by exploiting the approximation in Remark B.5.1,

we obtain that

2

(§1> 4 N(0, Vip) (B.3.13)

and
V., B Vip (B.3.14)
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where

.. 1 0f |w g |1 —1
Vip = . .
-1 1 W12 W2 0 1

with

= £(0) / / ()~ (u+ )/ VK (3) K (u+ 5) €) (] ) (

o= F(0) /0 1 /_ 1 /_ :_T () (s 4 ) UK (1) K (s 4 ) & (P <u13>
1

' 6/1 (fﬂ;,(s—i-r))il (

) K (u+ s) K (u) dudsdr

and

= ,dO,u ,dl,u
Mla=1{""" 0
(Nl,u MQ,u)

B.3.4 PROOF OF PROPOSITION 3.4

We start by considering the expansion on B,,, which holds for both interior and boundary

points. Let us write
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Note that, by the mean value theorem:
e St -
n =1
B T — h2g" (x;) Tj— 2
_—nhizlwi th]le xl—l—hg(xl)( ; )—i— 5 .

+ Wg® (&) (2 — i)
6 h

) \/%éwl ij 5 [( wj_@)) (hiilgz;)i)> . hQQ;(:cz') (:cj ; a:i>2
. h3g(3é(if ) (%‘ ;95)3]

= =S wlalgle) + g Sl ) Sl () 0,0

i=1

with Z;; some value between x; and x;. The above implies that:

n

Bsy, = h—QLZw(x) "(m)izn:w-(m) A 2+o (h)
2n — 92 /—nh — 7 g 7 Tl,h, — 7 ) h D

and

1l = i — 1\ 7 — >
Bn_Bn:__ % g ] : - :
? zx/nh;w(l“) [ ijzv ( ) < h )

" n 2 2
_ 129 (x)i 1 A AN
T ;U’Z(I) nh ;wf(%) h h

g// T
= lﬁlﬂ% [an - Cn] + Op<h)

For part (i), and by the same reasoning as in the Proof of Proposition 3.3, we have that

o 1 nhz <xz—x)<xi;x)2+op<l>

so that by mean squared error convergence we can prove that
1 zn: ]:( T, — X T, — 2
nh = h h
1Zn:f( o) (ro )| (B.3.15)
nh & h h — -
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Cy, =E + 0p(1)

where




and

/!
x
B, — /{1/29 (2)M2 +o,(1)

By combining this result with the probability limit of B,,, it follows that Ba, —B,, = 0,(1).

For part (ii), from the results in Proposition 3.3:

1 i —z\’
CZn - E ; bi,bnd(x) ( h ) + Op(]-)

so that by mean squared error convergence we can prove that

1 s 7 — 2\
Con =E oh Zbi,bnd(ﬂﬁ) ( A > + 0,(1)
i=1
where
1 - z— 2\ e [* 1\ el 1 u?
E — ;bi,bnd($) ( A ) ] = e\ T 1/0 K (s) (3) €1F1,ih [/_SK(u) <u3) du] ds =: Cy
and

7 T C
Bs,, = ,il/?% + 0,(1)

By combining this result with the probability limit of B,, it follows that By, — B, =
A+ 0,(1).

B.3.5 PROOF OF PROPOSITION 3.5

We note that

T - B, T,— B,
P*(T;ng):P*<” < )

V,LPn  UL,LPn

]P)* <T;Lk - Bn < Vd,LPn gln — £2n + B2n - Bn>

V1,LP;n  V1,LPn Vd,LPn UV1,LPn
d ) ) _
— @ (phm{<B2n - Bn)/UI,LP,n} + phm{vd,LP,n/Ul,n}(I) ! (U[O,l]))

where the last convergence result is given by Propositions 2.3.2 and 2.3.3. The result
then applies to the case of interior and boundary points by considering the different

specifications of the probability limits included in Propositions 2.3.2, 2.3.3 and 2.3.4.

B.3.6 PROOF OF THEOREM 3.1

Note that Proposition 2.3.1 ensures that Assumption 1 in Cavaliere et al. (2024) is
satisfied. Moreover, Propositions 2.3.2 and 2.3.3 ensure that Assumption 2 in Cavaliere et
al. (2024) is satisfied. Then, the conditions of Corollary 3.2 in Cavaliere et al. (2024) are
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satisfied because H is continuous in myp and mpp, = mrp+0,(1). Hence, we have that:

P (g(x) c &LP> —P (a/2 < Hipo (n) <1— a/2> S1-a

B.3.7 PROOF OF PROPOSITION 3.6
For part (i), just note that
(01nQn) ™ (T nod = Bumoa) = vis (T = Ba) = v, &5,
so that the result follows from Proposition 3.2 directly. For part (ii), just note that

Bmod,n - Bn = QnBLP,n - BAT,n + Qn€2,n + Op(1> = 52,mod,n + Op(l)

where the first equality is given by (2.3.4) and (2.3.5) and by Proposition 2.3.4. Finally,
note that part (iii) follows directly from Proposition 2.3.3 and from the fact that &4, =
diag(1, @) (&in, E2n)', which ensures that Vipmedn, = diag(l, Qn)Vipadiag(l, @y).

B.3.8 PROOF OF PROPOSITION 3.7

By the usual expansion

P* ( * < Tn) _ P (Tmod,n - BmOdﬂ < Tn - Bmod,n)

dn = <
moan QnV1,LPn QnV1.LPn

. ~
_ P Tmod,n - Bmod,n < Vd,LP,mod,n fln - 62,mod,n + QnBZn - Bn
QnV1n T QnU1,LPn  Vd,LPmodn QnV1,LPn

i> o (phm{vd,LP,mod,n/QnUl,n}q)_l (U[O,l}))

where the last convergence result is given by Propositions 2.3.6. The result then applies
to the case of interior and boundary points by considering the different specifications of
the probability limits included in Propositions 2.3.2, 2.3.3 and 2.3.4.

B.3.9 PRrROOF OF THEOREM 3.2

For interior points @, = 1 + 0,(1), so that the result follows directly from Theorem 3.1.

For boundary points, note that Proposition 2.3.1 ensures that Assumption A in Ap-
pendix A is satisfied. Moreover, Propositions 2.3.2, 2.3.3 and 2.3.4 ensure that Assump-
tion B and C in Appendix A are satisfied. Then, the conditions of Theorem B.1.2 in Ap-
pendix A are satisfied because H is continuous in mrpmed and MLPmoedn = MLPmod +

0p(1). Hence, we have that:
P (g(ﬂf) S C/?}LP,mod> =P <Oé/2 S F[LP,mod,n (ﬁmod,n) S 1— 04/2) —1—-a
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B.3.10 PROOF OF PROPOSITION 3.8

The proof of Proposition 3.8 is analogous to that of proposition 3.2 and it thus omitted
for the seek of brevity.

B.3.11 PRrROOF OF PROPOSITION 3.9

Let w;(z) = €,I'1,} Zi K ((z; — x)/h), our aim is to derive a CLT for:

fln wz( )
(5) Vinh & Z ( <x>> K
First of all, we note that

gln 1 a
<€~2n> = dlag ]. C m - (M@) € + 017(]-)

where

— _ o T, — X
li(z) = esT5t 272 K( - )

(%55
Then the result follows immediately as a bivariate estension (i.e., by exploiting the

Cramer-Wold device) of the central limit theorem proposed in Lemma A2 in Calonico et

al. (2014), where

U1, rL = V1,LpP

2 2 /-1 -1

Vigpp *— 0 (z)eil Wial's ey
2 /-1 —1

..9

Ui FL -+

o o, P

Vig,pr = 0 (0)e 7 Wil e

.9 L 9 Sl e

g, (Y0 U b, (Yo Y1 2
wl w2 ¢3 1/}1 ¢2 2/}3

such that:

Y M1 2 Yo N1 Ve
Foi=1m 72 7 Poi= 1% A s
Y2 Y3 V4 Y2 V3 Ya

where the elements of the above matrices are defined in Lemmas B.4.1 and B.4.2.

149



B.3.12 PROOF OF PROPOSITION 3.10

We note that

VI,FLn  V1,FLn

P*(T;ng):P*(

b (T;: — Bu _ Varrn in = 52n)

T — B, Tn—Bn>
<

VI,FL;n  V1,FL;n Vd,FLn
d ) _
= @ (plim{va rrn/v1,rLn}® " (Up))

where the last convergence result is given by Propositions B.2.1 and B.2.2. The result
then applies to the case of interior and boundary points by considering the different

specifications of the probability limits included in Propositions B.2.1 and B.2.2.

B.3.13 PROOF OF THEOREM 3.3

Note that Proposition 2.3.1 ensures that Assumption 1 in Cavaliere et al. (2024) is
satisfied. Moreover, Propositions B.2.1 and B.2.2 ensure that Assumption 2 in Cavaliere
et al. (2024) is satisfied. Then, the conditions of Corollary 3.2 in Cavaliere et al. (2024)
are satisfied because H is continuous in mpg, and mpr, = mpr + 0,(1). Hence, we have
that:

P (g(x) e 67FL> —P (a/2 < Hppo () <1 a/2> S1-a

B.3.14 PROOF OF PROPOSITION 3.11

The results follows immediately from the proofs of Propositions 3.2, 3.3, 3.8 and 3.9,
where we define the elements in the covariance matrices in the according central limit

theorems, noting that the quantities:

_ f(@) o

Koy Lp = %Ud,LP

f(x) o

Ko, rr = %Ud,m

fQ0) ..

Koy 1P i= 0_2—<O)Ud,LP

f0) .

Koy Fr = JQ—(O)Ud,FL
are measurable functions of the kernel K only.
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B.4 AUXILIARY RESULTS

LEMMA B.4.1 Let Assumptions 1-3 hold, then: (i) if x is an interior point

1 1
=@+ 0, ——) =7+ 0, [ —), =012, .. B.4.1
i, J (@) p(m) Vs p(\/%) J ( )
(i) whereas if x is a boundary point
= F(0)ji; + O ( L )—"»+0( ! ) = 0,1,2 (B.4.2)
rYJ,TL ,LL] j4 m ’7] D m j 9 9 g e e %

Proof of Lemma B.4.1. For part (i), note that
1 & T, — X T, — X i 1 & T, — X T; — X 7
— K = — E|K =
a7 () e e () ()
J 1 J

T — T —x 1 T, —x I —
K = — K

() () =3 e () () e

1

(1—z)/h +00
= / K (u) v f(x +uh)du — f(x) K ) wdu= f(z) | K (u)wdu=: f(s);

xz/h —o0 -1

e () () | '
w() (el () () -
<) () )]

E

1
= _E
h

and

+

E

For part (ii), just note that, if z is a boundary point in the sense of Remark 2.3.1,

(1=a)/h | (1=2)/h |
/ K (u) v f(x + uh)du = / K (u) v’ f(uh)o?*(uh)du
—xz/h 0

—+o00 1
— 0*(0)£(0) K (u) v du = UQ(O)f(O)/O K (u)w'du =: 0*(0)f(0)fi;

0

which concludes the proof.

LEMMA B.4.2 Let Assumptions 1-3 hold, then: (i) if x is an interior point

Yjn = 0*(2) f(2)v; + O, <¢%) =1, + O, (ﬁ) . j=0,1,2.. (B43)
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(ii) whereas if x is a boundary point

42 1 —— L -
Yin=0°(0)f(0)i; + O, <m> Y+ O, (M) ) j=0,1,2, .. (B.4.4)
Proof of Lemma B.4.2. For part (i), note that
E [¢;,] = “E E | K2 (:mh x) (a:lh :Jc> 02(x1)]
() (5 e
(1-2)/h
:/ K? (u) v f(z + uh)du — o*(z / K? (u) v du =: o*(z) f(x)v;
z/h
and
o) e o]
1 -
= P & e () (9 ) "

+W;E K? <xh “”) (x];a’> o (x;)

1 2 2
= Op (m) + f (ZL‘)Vj

For part (ii), note that
(1-=z)/h A (1—z)/h A
/ K? () f(z + uh)o?(z + uh)du = / K? (u) ! f(uh)o?(uh)du
_ 0

z/h
2(0 (0)/0 K? (u) v/ du =: f(0)i;
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APPENDIX C

APPENDIX TO CHAPTER 3

C.1 MATHEMATICAL APPENDIX

C.1.1 PRrROOF OF THEOREM 3.4.1

Introduce Z; = (1,z,,-1). Let p, = n2(0 — 0y), M, = n~* S @@ and Nj =
n~ Y23 €;%,. Moreover, let the normalized bootstrap estimator be denoted by p :=
nY/2(6* — 0); similarly, ¥ := n'/2(6* — 0), where 0* is the unrestricted (OLS) bootstrap
estimator. On the event {det(M,) > 0} with P(det(M,) > 0) — 1, the estimator 6*
is well-defined and unique. As we are interested in distributional convergence results,

without loss of generality we proceed as if P(det(M,) > 0) = 1.

By arguments similar to the proof of Theorem 4.1 in Cavaliere and Georgiev (2020), it
can be concluded that (i, My, N7) %y (£(60), M, MY29)| (M, £(6y)) in R>4, where M is
of full rank with probability one, £*|(M, £(6y)) ~ N(0,02I;) and ¢? denotes the variance
of &; corrected for Az, ;. To derive the result (3.4.1), we analyze the properties of x on
a special probability space where (u,, M,, N;) given the data converge weakly a.s. rather
than weakly in distribution. Specifically, by Lemma A.2(a) in Cavaliere and Georgiev
(2020) we can consider a probability space (where £(6y), M and, for every n € N, also the
original data and the bootstrap sample can be redefined, maintaining their distribution),
such that

w*

fin 5 0(00), My, ©5 M, N %y MY2E¥|(M,0(6)) = MY2¢*| M, (C.11)

the last equality being an a.s. equality of conditional distributions.

Let ¢:(0) == n~' S0 (y; — 0'4,)? with 0% := arg mingege ¢ (6) being well-defined and
unique for outcomes in the event {det(M,) > 0}. On the special probability space, the
asymptotic distribution of fif, = n*/2(0* — ) = M;*N* follows from (C.1.1) and a CMT
(Theorem 10 of Sweeting, 1989):

i, s, UM €(00) = C|M, 0 = o2 Mg (C.1.2)
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Let us turn now to the bootstrap estimator 8*. If g(6y) > g* (), then the consistency
facts 6 %3 6y (from (C.1.1)) and 6* Y es. 00 (from (C.1.2)), jointly with the continuity of
g,g* at 6, imply that P*(g(6*) > ¢*(0)) “¥ 1. Hence, 6* uniquely minimizes ¢* on ©*
with P*-probability approaching one a.s. This establishes the existence of 0* with P*-

a.s.

probability approaching one a.s., as well as the facts P*(6* = 6*) “¥ 1 and P*(u* = %) &3
1. Using also (C.1.2), it follows that p S, g*\M on the special probability space, and
since i, =3 €(6y) on this space, it follows further that (t,, (15| Dyn)) —w (£(60), (€*|M))

on a general probability space, as asserted in (3.4.1).

In the case where g*(6) = g(6y), it still holds that 6* uniquely minimizes g% on ©*
whenever g(6*) > g*(f), such that 0* exists and equals 0* on the event {g(6*) > g*(6)}.
However, the probability of this event no longer tends to one. Whenever ¢(6*) < g*(é),
a minimizer of ¢¢ on ©* exists if and only if a minimizer, say 6*, of q: on 0O exists
and minimizes ¢} over the entire ©* (this claim is due to the fact that, for outcomes
in the event {det(M,) > 0}, the function ¢*(6) is locally minimized uniquely at 6*).
Let I, = L5, With b(6) := g(6) — g*(d). We show in Section C.1.2 below that
0*(1—1I), with a measurable 6*, is well-defined with P*-probability approaching one a.s.
and (¢ (6*) — ¢ ())(1 —I*) < 0 for all # € ©*, with P*-probability approaching one a.s.
This establishes the possibility to define the bootstrap estimator 0% as

0* =0T +6*(1 - (C.1.3)

and, therefore, the existence of 60* with P*-probability approaching one a.s. The existence
result carries over to a general probability space with P*-probability approaching one in

probability.

In Section C.1.2 we also show that [|§* —0||(1 —I%) = Op+(n"'/?) a.s., and as a result,
16* —0]| = Op-(n~1/?) a.s., using also (C.1.2). We do not discuss the uniqueness of 6* but
instead we argue next that the measurable minimizers of ¢ over the bootstrap boundary

are asymptotically equivalent, as they give rise to the same asymptotic distribution of 6*.

To accomplish this, we use the result of Section C.1.2 that #* satisfies a first-order
condition [foc] with P*-probability approaching one a.s. Let dots over function names
denote differentiation w.r.t. 6 (e.g., ¢:(6) := (94} /06')(0), a column vector). Then the

foc takes the form
{@5(07) + 0ub(6) (1 = I) = {5 (67) + 0ng(6")} (1 = I;) = 0, b(6)(1 = T;,) = 0,

where 6, € R is a Lagrange multiplier. The foc implies, by means of a standard argument,

the existence of a measurable #* between §* and # such that
{(n'2(6" — 0) — (I, — A3g(07)) iy, + Az /b(0)}(1 - T;) = 0,
where A% == M1 ¢(6*)[¢(6*) M g(6*)]~" is well-defined with P*-probability approaching
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one a.s. As further [|* — ](1 —I%) = Ope (n~V/2) aus., [|0* — 0](1 = I%) = Ope (n"1/2) as.
and 6 — 6y = O(n='/2) a.s., using the continuity of §(6) at 6, it follows that

{n'2(0" = 0) = (I = A9t — A7(§ = §7)'n'?(0 — 60)] (1 — L) = 0,-(1) as.,
where A* := M~1g[¢’M~1g]~! and P*(|o,-(1)] > n) “3 1 for all n > 0.
Returning to (C.1.3), we conclude that
n2(0*—0) = B+ {(I,— A* )il — A*(g—g*)'n* /2 (0—00)} (1 =T ) 40,- (1) a.s. (C.1.4)
Consider the event indicated by I%. As [|§* — || = O, (n"/?) a.s. and 6 — 6y = O(n~'/?)
a.s., by the mean value theorem and the continuous differentiability of g, ¢* it holds that
n'20(6%) = §'fis, + (9 — ) i + 0 (1) aus.

Then I, %o Lol (M, €(60)) with Lo = Lyyrsie_peenys by (C.1.1)-(C.1.2) and the
CMT for weak a.s. convergence (Theorem 10 of Sweeting, 1989), as the probability of
the limiting discontinuities is 0: P(¢'0* = (¢* — §)"0(60)|(M, £(6,))) = 0 a.s. By exactly
the same facts, passage to the limit directly in (C.1.4) yields

n'2(0% — 0) Doy {010 + (1 = LO)Y(M, £(60)), = (I — A*§) 0" — A*(g — §*)'¢

on the special probability space, where also p, %3 €(6;) by (C.1.1). Therefore, on a
general probability space it holds that

(ttms (720" = 0)[ D)) B (£(Bo), [{F o + (1 — Too) Y (M, £(65))]).
As I — A% = g1 (¢, Mg.) "¢/, M and ¢* = M~'/2¢* it follows that
Pl + 0 (1=1) = gu(giMgy)tg, MV
+M (g’ M T g) T max{(¢g* — ¢)'¢, ¢ M€Y,

which is arg minggsg-—gye ||A — M~Y2E*| s a.s. as asserted in (3.4.2). O
For use in the proof of Corollary 3.4.1, we notice here a useful consequence of the

previous argument. Return to the special probability space where
(ttns (020" = 0)| D)) “as. (€(00), [{ o + £ (1 = L) } (M, £(60)))]).

Let 7, = ¢(pn), 75 = ¢(n/2(6* — 0)), 7 := ¢(£(6y)) and 7 := ¢((* o + 0*(1 — L)) for
a continuous ¢ : R — R. Then

(TTH (T;‘Dn)) w_;a.s. (7-7 T*’(M> g((g[))))

by the CMT of Sweeting (1989). Furthermore, the regular conditional distributions 7,¥| D,,
converge weakly to the regular conditional distribution 7*|(M, ¢(6y)) for almost all out-

comes; see Theorem 2.2 of Berti, Pratelli and Rigo, (2006). For any fixed outcome such
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that the previous convergence holds, also F*~!(¢;) — F A}’lg(qi), i = 1,2, hold for the sam-
ple paths of the respective conditional quantile functions, provided that ¢, ¢» are conti-
nuity points of the sample path of F' J\_4,lz- If ¢1, qo are continuity points of almost all sam-
ple paths of FA_&, it follows that F*"1(q;) —a.s. FA}}E(qi), 1 = 1,2. Therefore, on a general
probability space,

(7o (@), B H(a2), (7321 Dn)) = (7 Fyp(an), Fap(az), 7|(M €(60)))  (C.1.5)

provided that F JQ’IL, is a.s. continuous at qi, gs.

C.1.2 DETAILS OF THE PROOF OF THEOREM 3.4.1

Let g*(fp) = g(fy) throughout this subsection. For outcomes such that 6* ¢ ©* and
Amin(M,,) > 0, the quadratic function ¢ is not minimized over ©* at any interior point
of ©* (for otherwise this point would have to be the stationary point 9~*§Z O* of ¢, a
contradiction). For such outcomes, if ¢} is at all minimized over ©*, then this has to occur
at a boundary point of ©*. Since 90* C {# € R? : g(f) = g*(é)} —: 9O*, we proceed by
constructing a minimizer of g’ over the latter set and by showing that this minimizer is in
fact a global one over ©*. This (and some added measurability considerations) establishes
the well-definition of #* in (C.1.3). Then we establish the n~'/2 consistency rate of * in
the sense that [|6* — 0]|(1 — I¥) = Op+(n~1/2) a.s.

STEP 1. EXISTENCE OF A MINIMIZER OF ¢ OVER A PORTION OF JO* CLOSE TO 0.
The point (¢, ¢) = (6, 9(6p)) € R? trivially satisfies the equation g(§) = c. Since g is
continuously differentiable in a neighborhood of 6y and ¢ = (§1(6y), g2(6o))" # 0 (say that
g1(0p) # 0, with the subscript denoting partial differentiation), by the implicit function
theorem there exist an > 0 and a unique function v : [fag — 7,620 + 7] X [g(6y) —
T, g(6o)+7] = [01,0—7,010+7] such that y(620,9(00)) = 01,0, g(7(02,¢),02) = ¢; moreover,
~ is continuously differentiable. For outcomes such that |g*(6) — g(6o)| < r, the (non-
empty) portion of the curve 00* = {0 € R? : g(0) = g*(é)} contained in the square
I := [010 — 7,010 + 7] X [f20 — 7,020 + ] can be parameterized as 6, = ~(0s, g*()),
0 € [030—71,050+7]. Define % := (y(6%, g*(07)), 03)', where 5 is a measurable minimizer
of the continuous function q;('y(ﬁg,g*(é")),eg) over Oy € [fa9 — 1,620 + 1], with or =
O g0 0)-atomi<rt + O0(ige)-gtansry S Tigeiygianyry =+ 1 under g7 (6o) = g(6), it
follows that #* minimizes ¢’ over 00©* N II with P*-probability approaching one a.s.

STEP 2. MINIMIZATION OF q;kL OVER THE ENTIRE BOOTSTRAP PARAMETER SPACE. For

outcomes in
Ap = {1g"(0) = g(6o)| < 7} N {g(0") < g"(0)} N {ll0 — ol + 16" — 0| < 5},
the minimum of ¢, over the entire bootstrap parameter space ©* exists and is attained

156



only in II (e.g., at #* defined in Step 1), provided that

2

Oy = )\min(Mn)T_ - AmaX(Mn)Hé* - 6)A||2 > 0.

4

To see this, consider 0 := ¢f + (1 — ¢)0* where ¢ := inf{a € [0,1] : b(af+ (1 —a)d*) = 0};
0 is well-defined whenever g(6*) < g¢*(0) because g() > ¢*(f) and b is continuous.
Moreover, 6 € 11 for outcomes in A, because [|0° — 0, < [|0 — 6o|| + ||6* — || < % and,
hence, ¢*(6¢) > ¢ (6*) for outcomes in A,,, by the minimizing property of 6* on 00* N1l
and the fact that b(#°) = 0. For any 6 ¢ II and outcomes in A,,, we therefore find that

an(0) = a;(07) = 4;(0) — a,(0°) = 4;(8) — 4;(0") + 4 (0") — a;,(¢)
> Nuain (M) 1 = 61 — A (M) 16 — 6°]
> Anin(Mo) {110 = Goll = 16" = Goll}* = Anax (M) 16" — 6]
> Nunin(Ma) {7 = 116" =81 = 16 = 01} — Mnax (M) 1" — 0]?
> Nin (M) 5 = Anac (M) [0 = 0| = .

Thus, for outcomes in A, N {a, > 0}, g out of II is larger than miny_jo. y ¢5;(0). As
90* C ©*, it follows that mingee-nm¢:(f) (which exists) for such outcomes is actually

mingeo+ ¢ (0). Moreover,

i g, (0)=,min ¢,(0)= min q, ()= min  q,(0),

for if mingee+nm ¢ (0) <mingesonm ¢ (0), then mingee+nm ¢ (#) (and thus, mingee- ¢5(0))
is achieved at an interior point of ©*, which can only be 6*, a contradiction with 6* ¢ OF
(i.e., with g(6*) < ¢*(9)). To summarize, for outcomes in A, N {e, > 0}, §* minimizes

g, over ©* and is at the boundary of ©*.
We find the associated probability

P ((1-T)qs(0") < (1 —IL)g.(0) VO € ©\1I)
> P* (19°(0) = (60)| < 7 10— 0ol| < 5,116 = 0]| < T, > 0)

= Lo 0)-g00)1 <r3nt10-v0l <1 L (”9* —0l < g 0n> 0) —+ 1

because g(é) 2 9(00), Amin(My) = Amin(M) > 0 a.s., Amax(My,) — Amax (M) < 00 a.s.
and ||0* —4)|| 3 o.s. 0. This establishes the fact that 6* of (C.1.3), with 0* as defined in Step
1, minimizes ¢ over the bootstrap parameter space ©* with P*-probability approaching

one a.s.

STEP 3. CONSISTENCY RATE OF 6*. Similarly to Step 2, for outcomes in A,
0> g (67) = g5 (6°) = Auin( M) 167 = 071> = Anax (M) 167 — 6],
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the first inequality by the minimizing property of 8* over 90* N II. Therefore,
TR Amax(Myp) =, A
P (1 =T)]0" — 0% < (1 — ') =219 — 42
(=106 - 1P < - w01
> P (I9"(6) — g(60)] <. 10— 6ol < 5.10" ~ 6] < )

a.s.

Lo @) -g00)1<ringd-ao<r/y E” (”9* —0l = ﬁ) — 1

AS Amax (M) /Amin (M) 23 Anax (M) /Amin (M) and [|6* — 0]| = Oy (n12) P-as. (the
latter, by (C.1.2)), it follows that (1 —I%)[|6* — 6%|| = O, (n~1/2) P-a.s. and ||0* — 0" =
O, (n1/%) P-as. for 0% of (C.1.3). Thus, 0* has the same consistency rate as 0*. This
argument applies to any 6* which is measurable and minimizes q, over 00* N 11 for

outcomes in A,,. This completes Step 3.

Finally, consider the first-order condition [foc| for minimization of ¢* on 9©*. As
16% — Bo||(1 —T%) < {[|6* — 6%|| + ||6* — 6ol }(1 —I¥) s, 0, it follows that L. ¢y my (1 —
I*) + I 3., 1. As additionally ¢(6y) # 0, by continuity of ¢(#) := (9¢g/06')(6), the foc
takes the form

P ({gn(07) + 0ng(0)}(1 = T;) = 0) 5 1,
where 0, € R are measurable Lagrange multipliers that can be determined, for outcomes
in the event I = 1, by involving also the constraint b(6*)(1 — I*) = 0. O

C.1.3 PRoOF oF COROLLARY 3.4.1

We only discuss the bootstrap validity part of the corollary, as the convergence part
(3.4.3) was explained in the main text.

Let 7, := ¢p(n2(0—0p)), 7 == ¢p(n*/2(6* —0)) and 7 := ¢(£(6y)). Convergence (3.4.3)
and the continuity of ¢ imply that

(s (T2 D)) = (7, (7]M)).

If the (random) cdf of 7|M is sample-path continuous, bootstrap validity follows from
Theorem 3.1 and Lemma A.2(b) of Cavaliere and Georgiev (2020). We reduce the general
case to the globally continuous case by a local argument for the cdf’s F(-) := P(7 < +)
and Fy(+) := P(r < :|M). For concreteness, we focus on the technically more involved
possibility ¢(6y) = 0, such that 0y € 0O given the assumption ¢ # 0. With

UB) = g1(3,Bg1) 3L B¢ + B~ g(5' B 9)~ max{0,' B¢}

for positive definite B € R**? and with ¢ = [(M), notice the following. If B is a fixed

positive definite matrix such that
P(p(I(B))=a)>0 (C.1.6)
for some a € R, then by equivalence (i.e., mutual absolute continuity) considerations for

158



non-singular Gaussian distributions, also
P(o(l(D)) =a)>0

for any positive definite D € R?**2. In fact, let ¢ : R — R be defined as 9(-) := ¢(g.(*))
and let ¢ (+),¥* (-) denote inverse images. Then the probability in (C.1.6) equals

P((B) € " ({a}) nOA) + P(I(B) € ¢* ({a}) NintA)
= P({g/B™"?¢ <0} n{(¢) BgL) "  B*¢ € v~ ({a})})
+ P({g'B7?¢ > 0y N {B7'*¢ € ¢~ ({a})})
= P(§B'?¢ <0)P((§. Bg.) "¢ B*¢ € v ({a})})
P(B™Y2¢ € ¢~ ({a}) NintA),

+

the equality because Cov(g'B~Y2¢, (¢, Bgy) ¢/ BY?¢) = 0 and ¢ is Gaussian. In the
previous display, P(¢’'B~/2¢ < 0) = P(N(0,¢'B~'g) < 0) > 0 for all positive definite B,

P((¢,Bg.)"'9\ B?¢ € v~ ({a})}) = P(N(0, (9. Bg.)™") € ¥ ({a}))

is either 0 for all positive definite B or positive for all positive definite B, and the same
applies to P(B~/2¢ € ¢ ({a})NintA). Therefore, the sign of the probability in (C.1.6)

is the same (zero or positive) for all positive definite B.

The cdf F); is a measurable transformation of M determined a.s. uniquely by the

distribution of (M, €); it can be identified (up to a set of measure zero) as

Fu(:) = P(¢(U(B)) <)l p_ns

by virtue of the independence of M and &. Since M is positive definite a.s., from the
argument in the previous paragraph we can conclude that every point on the line is either
a discontinuity point of almost all sample paths of Fj;, or a continuity point of almost
all sample paths of F);. By averaging, a point on the line is a discontinuity point of F' if

and only if it is a discontinuity point of almost all sample paths of Fy,.

Let now ¢y be an interior point of the set
C={qe(0,1): lim P(F(r,) <q) — q|Ho}
n—oo

such that the asymptotic test is correctly sized for ¢ € (qo — 2¢,q0 + 2¢) C (0,1) for
some € > 0. As 7, — T ~ F, this implies that F' and (by the discussion in previous
paragraph) Fj, skip no values from the interval (g9 — 2¢,qy + 2¢) (for Fy, a.s.). In
particular, almost all sample paths of F; are continuous on the (random) open superset
(Fj\jll(qo —3¢), Fit (g0 + %6)) of I, := [Fy;/ (g0 — €), Fy/ (qo + €)], with

3

3
Filt (g0 — 56) < Fyf (qo—¢) < Fyf(qo+¢€) < Fyffgo + 56) a.s. (C.1.7)
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Without loss of generality, € can be considered such that gy 4= € are continuity points of

90 QO+1]
27 2

are countably many). Let ¥~ (a,z) and W' (a, z) be generalized inverses of the cdf’s of a

F;/' as. (because Fy;' is chosen to be cadlag and its discontinuity points on, say |

standard Gaussian variable conditioned to take values respectively in (—oo, a] and [a, c0).
On extensions of the probability spaces where the data and (7, M) are defined, consider
a Upq variable v. Define Fi(-) := P*(1; <), I == [F (g0 — €), F (g0 + €)] and

o = Talpreny + 9 (Fr 7 g0 — €),0) L, pe1(g0—epy
+ U (Fy g0 + o), Vs s i1 (gt}
T = Tol{rser, 3 + U (F (g0 —¢), U)H{T;;<F:*1(qo—e)}
F U @0+ €), V) g}
7 =1lrery + 9 (Faf (00 =€), V) cpi(ge—o
+ Ut (Fy' (g0 +e), U)]I{T>FI;,1(qo+e)}'
Then
(Fas (721 Dn)) = (7, (FIM))
because
(f1(7n), E{(F)IDn}) = (fi(F0), E{f2(7)|M})
for any continuous and bounded real functions fi, fa, as a result of (C.1.5) with 7*|(M, £(6y) =

T|M in the sense of a.s. equality of conditional distributions and the fact that P(r =

Fi/'(go £ €)|M) = 0 a.s. by sample-path continuity of Fy; an open superset of I.. As the

cdf of 7| M is a.s. sample-path continuous by construction, it follows that P*(7* < 7,,) =

Upo,1), by Theorem 3.1 and Lemma A.2(b) of Cavaliere and Georgiev (2020).
Let F*(-) := P*(7F < -). We now return to the original variables. By considerations

of equalities of events, it holds that
P(F;(1,) < @) = P(F;(7) < q0) = P(F;(7a) < q0) = P(P*(7; < 7) < 60) = o

using the fact that P*(7; < 7,) = Ujpy). This completes the proof.
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TABLE 1: Empirical rejection probabilities (ERPs) of bootstrap tests under the null.

Nominal level: 0.05

6o = (0,0) 0o = (—0.75,0.75)’ 6o = (—1.50, 1.50)’
b | by by | bs by | by
K K K
dist. n 025 050 1.0 20 025 050 1.0 20 025 050 1.0 2.0

& 100 || 42 | 47 50 53 54 6.9 | 7.0 7.2 73 75 6.3 | 6.3 6.3 64 6.5
400 | 39| 48 51 53 53 5.5 | 5.6 5.8 6.2 6.7 5.3 | 5.3 5.3 53 5.3
800 || 3.7 | 48 51 52 52 52 | 5.3 5.4 56 6.2 52 | 5.2 5.2 52 52
& 100 || 42| 47 50 53 5.5 71 ] 7.3 7.4 76 7.8 6.2 | 6.3 6.3 6.4 6.5
400 || 3.8 | 47 50 51 52 5.7 | 5.9 6.1 64 6.9 53 | 5.3 5.3 53 5.3
800 || 3.6 | 46 48 49 49 5.1 | 5.2 5.3 5.5 6.0 51 | 5.1 5.1 51 51
& 100 || 43 | 47 50 53 55 71| 7.2 7.3 75 17 64 | 6.4 6.4 6.5 6.6
400 || 3.7 | 46 49 51 5.1 55 | 5.7 5.9 6.2 6.7 52 | 5.2 5.2 52 52
800 || 3.7 | 48 50 51 5.2 51 | 5.2 5.3 55 6.0 51 | 5.1 5.1 51 51

Nominal level: 0.10

0 = (0,0 0o = (—0.75,0.75)’ 0o = (—1.50, 1.50)'
by | bo by | bo b | bo
KR K K
dist. n 025 050 1.0 20 025 050 1.0 2.0 025 050 1.0 2.0

& 100 | 80| 90 97 103 106 | 13.0 | 13.3 13.6 141 146 | 11.5 | 116 11.6 11.7 11.8
400 | 7.7 | 9.5 101 104 10.5 | 104|105 108 11.3 124 | 10.3 | 103 103 103 10.3
800 | 74| 94 99 101 10.1 | 104|104 105 10.7 11.5 | 10.1 |10.1 10.1 10.1 10.1
& 100 || 81| 9.0 9.7 103 105 || 13.2 | 13.5 138 143 14.7 | 11.3 |11.3 114 115 11.6
400 || 75 92 99 102 103 | 10.7 | 109 11.1 11.6 125 10.2 | 10.2 10.2 10.2 10.3
800 || 7.2 92 9.8 100 10.0 || 10.2 | 103 103 105 11.3 || 10.3 | 10.3 103 103 10.3
& 100 | 83| 92 99 105 108 133 |13.7 140 145 15.0 | 11.7 | 11.7 11.8 119 12.0
400 || 76 | 94 100 103 10.3 || 104 | 105 108 11.3 124 || 10.2 | 10.2 10.2 10.2 10.2
800 || 74| 93 99 101 101 | 101|101 102 104 11.2 || 10.0 | 10.0 10.0 10.0 10.0

Note: bootstrap tests are based on a standard fixed-regressor wild bootstrap (b1) and on the proposed
corrected wild bootstrap method (bs) of Section 4, using g* = g—|g|'**. ERPs are estimated using 50,000
Monte Carlo replications and 999 bootstrap repetitions. The column “dist.” shows the distributions of
g0 &1 ~ iidN(0,1), & ~ ARCH(1) and & = v/0.5v; + v0.5e,.+, where vy ~ #idN(0,1) and &, is the

error term of the predictive variable x,, ;.
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TABLE 2: Empirical rejection probabilities (ERPs) of bootstrap tests under local alter-
natives.

Nominal level: 0.05

ap = (—3,0) ap = (3,0) ap = (5,0)
b1 b2 bl b2 bl b2
KR R R
dist. n 0.25 0.50 1.0 2.0 0.25 0.50 1.0 2.0 0.25 0.50 1.0 2.0

& 100 || 21.0 | 21.0 21.1 21.2 21.3 | 40.6 | 409 41.0 41.0 41.0 || 68.0 | 68.0 68.0 68.0 68.0
400 || 18.9 | 19.1 19.3 194 19.5 | 38.5 | 38.8 38.8 388 388 64.9 | 649 649 649 64.9
800 || 18.6 | 188 19.0 19.1 19.1 || 37.6 | 379 379 379 38.0 || 64.0 | 64.0 64.0 64.0 64.0
& 100 || 21.7 | 21.8 21.9 22.0 22.1 || 41.9 | 42.1 422 422 422 || 68.5 | 68.5 68.5 68.5 68.5
400 || 19.2 | 19.4 195 19.7 19.8 || 38.3 | 38.7 387 38.7 38.7 | 64.7 | 64.8 64.8 64.8 64.8
800 || 18.6 | 188 19.0 19.1 19.1 || 37.8 | 38.1 38.1 38.1 38.1 || 64.2 | 64.2 642 64.2 64.2
& 100 || 20.6 | 20.7 20.8 20.8 21.0 | 40.8 | 41.0 41.1 41.1 41.1 || 67.3 | 67.3 67.3 67.3 673
400 || 19.0 | 19.1 193 194 194 | 38.1 | 384 385 385 385 | 65.0 | 65.0 65.0 650 65.0
800 || 18.3 | 185 18.8 189 189 || 37.7 | 380 38.1 381 381 || 635|635 635 635 63.5

Nominal level: 0.10

ag = (—3, 0)/ apg = (3,0)/ ag = (5., U)/
b ba b1 by b1 ba
K K K
dist. n 0.25 0.50 1.0 2.0 0.25 0.50 1.0 2.0 0.25 0.50 1.0 2.0

& 100 || 29.6 | 29.8 29.9 30.1 30.3 || 54.7 | 55.0 55.1 55.2 55.2 || 81.7 | 81.7 81.8 81.8 818
400 || 27.0 | 27.3 27.7 281 282 | 52.2 | 52.6 52.7 52.7 52.7 | 79.6 | 79.6 79.6 79.6 79.6
800 || 26.4 | 26.9 273 27.6 27.6 || 51.7 | 52.1 52.2 52.2 52.2 || 78.7 | 787 787 7187 787
& 100 || 30.2 | 30.4 30.6 30.8 31.0| 55.7 | 559 56.0 56.0 56.0 || 82.0 | 82.0 82.0 82.0 82.0
400 || 27.1 | 274 279 282 283 | 51.8 | 52.1 522 522 522 | 79.3 | 793 793 793 793
800 || 26.6 | 27.0 27.5 27.7 27.7 || 51.5 | 51.9 51.9 519 51.9 || 786 | 786 78.6 786 78.6
& 100 | 29.1 | 29.3 294 29.7 299 || 54.2 | 54.5 54.6 54.6 54.6 || 80.9 | 80.9 80.9 80.9 80.9
400 || 26.7 | 27.0 274 277 27.8 | 51.7 | 52.1 52.2 522 522 | 794 | 794 794 794 794
800 || 26.2 | 26.6 27.1 273 27.3 || 51.3 | 51.7 51.7 51.7 51.7 || 785 | 785 785 785 785

Note: bootstrap tests are based on a standard fixed-regressor wild bootstrap (b1) and on the proposed
corrected wild bootstrap method (bs) of Section 4, using g* = g—|g|'**. ERPs are estimated using 50,000
Monte Carlo replications and 999 bootstrap repetitions. The column “dist.” shows the distributions of
g0 &1 ~ 1dN(0,1), & ~ ARCH(1) and & = v0.50; + \/ﬁem, where v, ~ #dN(0,1) and e, is the
error term of the predictive variable x,, ;.

C.2 ALTERNATIVE DATA GENERATING PROCESSES

The asymptotic theory in the paper is presented under the assumption that x, ; is a unit-
root non-stationary process. Here we show that the choice of a bootstrap parameter space
is fundamental for bootstrap validity also under alternative stochastic specifications for
Tnt, €.8., a Near-unit root and a stationary specification. More importantly, a common
definition of the bootstrap parameter space could be appropriate for all the considered
specifications of x, ;. Still, the functional forms of the limit distributions are not identical
across the specifications of z,,; and, in the stationary case, we perform OLS estimation
under the additional constraint 6 = 0 in (3.3.2). The implications for bootstrap inference

are discussed below.
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C.2.1 NEAR-UNIT ROOT REGRESSOR

Consider a modification of Assumption 1 where in part (¢) the limit process becomes

(X,2) = (/ eC(S_‘)dW(s),Z>/, c>0,

for a Brownian motion (W, Z)" ~ BM(0,). Thus, X is an Ornstein-Uhlenbeck process
originating from a near-UR posited predicting variable z,, ;. The asymptotic distribution
of § has a more complex structure than in the unit root case. Now n'/ Q(é —0) =
M=Y2¢ + v, with v, := (0, cw,.w;}) if Oy € int©. On the other hand,

n'2(6 — 6y) % ar§rjr\11n||/\ — M7Y2¢ — v ||ur, ={AeR*: ¢\ >0} (C.2.1)
S

if g(6p) = 0. The limiting shift by v. is due to the fact that n'/2Ax, ; in the near-unit
root case is not a sufficiently good proxy for the innovations driving x, . Eqs. (3.3.5)-
(3.3.6) for the standard bootstrap hold in the near-unit root case if X in the definition
of M is understood as an Ornstein-Uhlenbeck process. Therefore, the possibility that
0y € 00 induces the same kind of limiting bootstrap randomness as in the exact unit-
root case. Additionally, the bootstrap limit distribution does not replicate the shift in
the limit distribution of n!/2(6 — 6,) induced by the vector v, as a consequence of the
conditional independence of the bootstrap innovations and the regressor z,, ;1. This fact
is not related to the position of dy relative to © and requires separate treatment. Consider
now the bootstrap estimator of Corollary 3.4.1 with the choice g* = g — |g|*** for k > 0.

In the case where x,; is near-unit root non-stationary, instead of (3.4.3) it holds that
(/20 = o), (/207 = 0)| D)) oy (M6 + v, (M™% M))
if g(6y) > 0, and

(0500 = 60, (020" = 0)1D0)) o (g 372 — v,

(argminH)\ - Ml/QgHM‘M>)
AEA

if g(6p) = 0, where X in the definition of M should again be read as an Ornstein-
Uhlenbeck process. This means that g* still does the job it is designed for (remove the
random shift from the half-plane in the limiting bootstrap distribution). Nevertheless,
bootstrap invalidity due to the limiting shift by v., not related to the position of ¢, in O,

remains to be tackled.

C.2.2 STATIONARY REGRESSOR

If x,; = x; is stationary, then the inclusion of Az,,; = Ax; among the regressors of (3.3.2)

will, in general, compromise the consistency of 6 for the true value 6, in the predictive
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regression (3.3.1). Assume, however, that n=' "7 7,3, 5 M for &, := (1,2,,_1) and a
non-random positive definite matrix M, and that the unconstrained OLS estimator of ¢
from the predictive regression (3.3.1) is consistent at the n~'/? rate and has asymptotic
N(0,w,, M) distribution. Then the constrained OLS estimator 6 of (3.3.1) subject to
g(f) > 0 (equivalently, the constrained OLS estimator of (3.3.2) subject to g(6) > 0,
o = 0) satisfies n*/2(0 — 0y) = €y (0y) = ly := M~1/2¢ with ¢ ~ N(0,w,.I,) in the case
where 6y € int©, and

n'2(0 — 0y) B Ly(00) = ly := argmin [|A — M~Y2¢||y, A:={AeR®:§X>0}
AEA

in the case where g(p) = 0. In the stationary case with a non-random limiting M,
the limiting behavior of the standard bootstrap is entirely analogous to the introductory
location model example, as the possibility that 6, € 0O is the only source of bootstrap
randomness in the limit. For § defined in the previous paragraph, it holds that n'/2(6* —
0) gp M~Y2¢* with ¢* ~ N(0,w..]5) in the case where 6y € int©, such that the limit

bootstrap distribution is non-random in this case, and

R 2067 — ) 45, <arg min||\ — M‘1/2§*||M> ‘e, A= eR: gA> g0},
XEA]

with (*|¢ ~ N(0,w,.I5) in the case where g(6y) = 0. We conclude that the same discrep-
ancy between A and A} emerges in the case g(y) = 0 irrespective of the stochastic prop-
erties of the regressor. Consider now the bootstrap estimator of Corollary 3.4.1 with the

|1+/€

choice g* =g — |g for k > 0. For a stationary z,,; and a non-random M, the original

and the bootstrap estimators satisfy
(n'2(0 = 00), (n'/2(0" = 0)| Dn)) =5, (€at(60). Lt (60)

and bootstrap validity is restored as in Corollary 3.4.1, in particular because the random

shift from the half-plane in the limiting bootstrap distribution is again removed.

C.2.3 CONCLUDING REMARKS

An inferential framework that would be asymptotically valid in the unit root, near-unit
root, and stationary cases, allowing the researcher to remain agnostic to the stochastic
properties of the regressor, could be based on two main ingredients. First, the definition
of the bootstrap parameter space in a way such that it approximates sufficiently well the
geometry of the original parameter space; e.g., by setting g* = g — |g|'** in the definition
of ©* for some k > 0, see above. This definition is independent of the stochastic properties
of the regressor. Second, the use of an estimator (different from our choice of OLS) that
gives rise to limit distributions that (a) in the near-unit root case depend on ¢ only through
the process X (and thus, the matrix M), but are free from shifts in the direction of v,

and (b) allow for a common treatment of the contemporaneous correlation between the
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innovations of the predictive regression and the shocks driving x,; (vs. the inclusion or
omission of Az, ; in the estimated eq. (3.3.2)). We conjecture that constrained versions of
both the IVX (extended instrumental variables) estimator and the associated bootstrap
schemes as discussed in Demetrescu et al. (2023) would give rise to asymptotically valid
bootstrap inference. A detailed discussion is beyond the scope of this appendix due to

our focus on issues attributable to the boundary of the parameter space.

C.3 ADDITIONAL MONTE CARLO SIMULATIONS

In this section, we present additional numerical results in support of the theoretical
arguments provided in CGZ. In particular, Tables S.1 and S.2 refer to the same testing
procedure considered in Tables 1 and 2 in CGZ, respectively, but focus on the case
g* = g5 == g — n7"|g|. Furthermore, in Tables S.3 and S.4 we present the simulated
ERPs of bootstrap tests under local alternatives such that 0y € int(0), using ¢* = ¢

and g* = g;, respectively.
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TABLE S1: Empirical rejection probabilities (ERPs) of bootstrap tests under the null.

Nominal level: 0.05

6o = (0,0) 0y = (—0.75,0.75)" 6o = (—1.50,1.50)’
by bo by bo by bo
K K K
dist. n 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40
& 100 || 4.2 | 4.9 5.3 5.5 5.6 6.9 7.0 7.3 8.3 9.6 6.3 6.4 6.6 7.3 9.6
400 || 3.9 | 4.8 5.1 5.3 5.3 5.5 5.7 6.0 7.1 9.2 5.3 5.3 5.3 5.7 8.6
800 || 3.7 | 4.7 5.0 5.2 5.2 5.2 5.3 5.6 6.7 9.4 5.2 5.2 5.2 5.3 8.4
& 100 || 4.2 | 4.9 5.3 5.6 5.7 7.1 7.3 7.5 8.4 9.9 6.2 6.4 6.6 7.2 9.5
400 || 3.8 | 4.6 5.0 5.1 5.2 5.7 6.0 6.3 7.3 9.4 5.3 5.3 5.3 5.7 8.7
800 || 3.6 | 4.5 4.8 4.9 4.9 5.1 5.2 5.5 6.7 9.3 5.1 5.1 5.1 5.3 8.6
&3 100 || 4.3 | 4.9 5.3 5.6 5.7 7.1 7.2 7.4 8.5 9.9 6.4 6.5 6.7 7.4 9.8
400 || 3.7 | 4.6 4.9 5.1 5.1 5.5 5.8 6.1 7.2 9.3 5.2 5.2 5.2 5.6 8.6
800 || 3.7 | 4.6 5.0 5.1 5.2 5.1 5.2 5.4 6.5 9.1 5.1 5.1 5.1 5.3 8.4
Nominal level: 0.10
6o = (0,0) 0o = (—0.75,0.75)’ 6o = (—1.50,1.50)"
by b by b by b
K K K
dist. n 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40
& 100 || 8.0 | 9.1 99 105 10.7 | 13.0 | 13.3 13.7 154 186 || 11.5 | 11.7 120 129 17.2
400 || 7.7 | 9.2 99 103 10.5 10.4 | 10.6 11.1 129 176 | 10.3 | 10.3 10.3 10.7 159
800 || 7.4 | 9.0 9.7 10.0 10.1 | 10.4 | 10.4 10.7 122 181 | 10.1 | 10.1 10.1 10.2 15.5
& 100 || 8.1 | 9.2 99 105 10.7 | 13.2 | 13.5 139 156 187 | 11.3 | 11.5 11.8 12.7 16.9
400 || 7.5 ] 9.0 9.7 10.2 103 | 10.7 | 11.0 114 13.2 18.0 | 10.2 | 10.3 10.3 10.7 15.9
800 || 7.2 | 8.9 9.5 99 100 10.2 | 10.3 10.5 12.0 17.7| 10.3 | 103 10.3 104 15.7
&3 100 || 83| 94 102 10.8 11.0 || 13.3 | 13.7 14.1 158 19.0 || 11.7 | 11.9 12.2 13.2 175
400 || 7.6 | 9.1 98 102 103 | 10.4 | 10.6 11.1 13.1 17.7 ] 10.2 | 10.2 10.2 10.6 15.9
800 || 7.4 | 9.0 96 10.0 10.1 | 10.1 | 10.1 104 119 176 | 10.0 | 10.0 10.0 10.1 15.5

Note: bootstrap tests are based on a standard fixed-regressor wild bootstrap (b1) and on the proposed
corrected wild bootstrap method (bs) of Section 4, using g* = g—n~"|g|. ERPs are estimated using 50,000
Monte Carlo replications and 999 bootstrap repetitions. The column “dist.” shows the distributions of
g0 &1 ~ iidN(0,1), & ~ ARCH(1) and & = v/0.5v; + v0.5e,.+, where vy ~ iidN(0,1) and &, is the

error term of the predictive variable x,, ¢.
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TABLE S2: Empirical rejection probabilities (ERPs) of bootstrap tests under local alter-
natives.

Nominal level: 0.05

ag = (_37 0)/ ag = (37 0)/ ag = (5/ 0)/
by ba b1 b2 by ba
K K K
dist. n 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40

& 100 || 21.0 | 21.1 213 21.5 21.5 | 40.6 | 40.8 409 41.0 41.0 | 68.0 | 68.0 68.0 68.0 68.0
400 || 18.9 | 19.1 193 19.5 19.5 | 38.5 | 38.7 388 388 3881 649 | 649 649 649 64.9
800 || 18.6 | 188 19.0 19.1 19.1 || 37.6 | 37.8 379 379 379 || 64.0 | 64.0 64.0 64.0 64.0
& 100 || 21.7 | 21.9 22.0 222 223 || 41.9 | 42.1 422 422 423 | 68.5 | 685 685 68.5 68.5
400 || 19.2 | 19.4 19.6 19.7 19.8 | 38.3 | 38.6 387 38.7 38.7 | 64.7 | 64.8 64.8 64.8 64.8
800 || 18.6 | 18.8 19.0 19.1 19.1 || 37.8 | 38.0 38.1 381 381 || 642|642 64.2 642 64.2
& 100 || 20.6 | 20.7 20.9 21.2 213 || 40.8 | 41.0 41.1 41.1 411 | 673 | 67.3 673 673 67.3
400 || 19.0 | 19.1 193 194 194 | 38.1 | 383 384 385 385 65.0 | 65.0 65.0 650 65.0
800 || 18.3 | 185 18.7 188 189 || 37.7 | 38.0 38.0 381 381 || 63.5 | 63.5 63.5 635 63.5

Nominal level: 0.10

ap = (_37 0), ag = (37 0), ag = (5‘ 0)/
by by by by by b2
K K K
dist. n 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40

& 100 || 29.6 | 29.8 30.1 30.5 30.7 || 54.7 | 55.0 55.1 55.2 55.2 || 81.7 | 81.7 81.7 81.8 818
400 || 27.0 | 27.3 27.8 28.1 28.2 | 52.2 | 52.5 52.6 527 52.7 | 79.6 | 796 79.6 79.6 79.6
800 || 26.4 | 26.8 27.2 275 27.6 | 51.7 | 52.1 52.1 52.2 522 || 787 | 787 787 787 787
& 100 || 30.2 | 30.4 30.7 31.2 31.4 | 55.7 | 55.9 559 56.0 56.1 || 82.0 | 82.0 82.0 82.0 82.0
400 || 27.1 | 274 279 28.2 283 | 51.8 |52.0 521 522 522 793|793 793 793 793
800 || 26.6 | 26.9 27.4 277 27.7 | 51.5|51.8 519 51.9 519 | 786 | 786 786 78.6 78.6
&3 100 || 29.1 | 29.3 29.6 30.1 30.3 || 54.2 | 54.4 54.5 54.6 54.6 || 80.9 | 80.9 80.9 80.9 &0.9
400 || 26.7 | 27.0 274 278 27.8 | 51.7 | 52.0 52.1 522 522 | 794|794 794 794 794
800 || 26.2 | 26.5 27.0 273 273 | 513|516 51.7 51.7 51.8 | 785 | 785 785 785 785

Note: bootstrap tests are based on a standard fixed-regressor wild bootstrap (b1) and on the proposed
corrected wild bootstrap method (bs) of Section 4, using g* = g—n~"|g|. ERPs are estimated using 50,000
Monte Carlo replications and 999 bootstrap repetitions. The column “dist.” shows the distributions of
g0 & ~ 4idN(0,1), & ~ ARCH(1) and &3 = /0.50; + \/ﬁsm’t, where v; ~ 4dN(0,1) and € is the

error term of the predictive variable xy, ;.
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TABLE S3: Empirical rejection probabilities (ERPs) of bootstrap tests under local alter-
natives.

Nominal level: 0.05

ag = (_37 1)/ ag = (25 2)/ ag = (3/4)/
by b by b by by
K K K
dist. n 0.25 0.50 1.0 2.0 0.25 0.50 1.0 2.0 0.25 0.50 1.0 2.0

& 100 || 12.8 | 129 13.0 132 134 || 484|496 50.1 50.3 504 | 73.0 | 73.9 744 747 747
400 || 114 | 11.6 119 122 123 | 454 | 472 475 476 476 || 70.0 | 71.6 72.0 72.0 720
800 || 10.9 | 11.2 11.6 11.7 11.8 || 44.8 | 469 471 471 472|693 | 71.1 714 714 714
& 100 || 13.1 | 13.2 133 135 13.6 || 49.6 | 50.8 51.3 51.6 51.6 | 73.2 | 741 747 750 75.0
400 || 114 | 11.6 11.8 121 12.2 | 46.1 | 48.0 483 483 483 || 70.2 | 71.8 722 723 723
800 || 11.0 | 11.3 11.7 11.9 119 || 45.2 | 472 474 474 474 | 69.6 | 71.5 717 71.7 T71.7
& 100 || 12.3 | 124 125 127 129 || 48.1 | 493 499 50.1 50.1 || 724 | 73.2 738 741 741
400 || 114 | 11.6 119 122 123 | 46.0 | 47.8 482 482 483|699 | 71.5 72.0 72.0 720
800 || 11.1 | 11.4 11.8 12.0 12.1 || 45.0 | 46,9 47.1 47.1 471|694 | 713 716 716 71.6

Nominal level: 0.10

ag = (—3, 1), ag = (2, 2), ag = (3‘4)/
by by by by by b2
K K K
dist. n 0.25 0.50 1.0 2.0 0.25 0.50 1.0 2.0 0.25 0.50 1.0 2.0

& 100 || 21.2 | 21.5 21.6 22.0 224 || 58.8 | 60.4 61.1 61.5 61.5| 80.7 | 81.6 82.2 82.5 82.5
400 || 19.2 | 19.6 20.2 21.0 21.2 | 56.0 | 58.2 58.6 587 587 || 782|799 80.3 804 804
800 || 18.3 | 189 19.7 20.2 20.2 || 55.8 | 58.1 58.5 585 58.5 || 77.8 | 79.8 80.1 80.1 80.2
& 100 || 21.8 | 22.0 22.1 225 23.0 | 59.6 | 61.1 61.8 62.1 62.2 || 81.0 | 81.9 82.5 82.9 82.9
400 || 19.1 | 19.5 20.1 20.7 21.0 || 56.8 | 59.0 59.5 59.6 59.6 || 78.6 | 80.4 80.8 80.8 80.9
800 || 189 | 19.5 20.2 20.7 20.8 || 56.0 | 58.4 58.7 588 588 || 78.0 | 79.9 80.2 80.3 80.3
&3 100 || 20.6 | 20.8 20.9 21.3 218 || 58.5 | 60.1 60.8 61.1 61.2 | 80.2 | 81.2 81.7 82.0 82.1
400 || 19.1 | 19.5 20.1 20.8 21.0 || 56.6 | 8.7 59.2 59.3 59.3 || 783 | 80.1 80.5 80.6 80.6
800 || 18.7 | 19.2 20.0 20.5 20.6 || 55.7 | 58.2 58.5 586 586 || 77.8 | 79.5 799 79.9 799

Note: bootstrap tests are based on a standard fixed-regressor wild bootstrap (b1) and on the proposed
corrected wild bootstrap method (by) of Section 4, using g* = g—|g|*T*. ERPs are estimated using 50,000
Monte Carlo replications and 999 bootstrap repetitions. The column “dist.” shows the distributions of
g0 & ~ 4idN(0,1), & ~ ARCH(1) and &3 = /0.50; + \/ﬁsm’t, where v; ~ 4dN(0,1) and € is the

error term of the predictive variable xy, ;.
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TABLE S4: Empirical rejection probabilities (ERPs) of bootstrap tests under local alter-
natives.

Nominal level: 0.05

ag = (_37 1)/ ag = (25 2)/ ag = (3/4)/
by ba b1 b2 by ba
K K K
dist. n 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40

& 100 || 12.8 | 13.0 13.2 13.6 13.7 || 48.4 | 49.6 50.1 504 504 | 73.0 | 74.0 745 747 747
400 || 114 | 11.6 12.0 122 123 | 454 | 47.0 474 476 476 || 70.0 | 714 719 720 720
800 || 10.9 | 11.1 11.5 11.7 11.8 || 44.8 | 46.5 47.0 471 472 | 69.3 | 70.8 713 714 714
& 100 || 13.1 | 13.3 135 139 14.0 || 49.6 | 50.8 51.3 51.6 51.6 | 73.2 | 742 747 750 75.0
400 || 114 | 11.6 119 121 12.2 | 46.1 | 47.7 481 483 483 || 70.2 | 71.6 721 723 723
800 || 11.0 | 11.3 11.7 11.8 11.9 || 45.2 | 46,9 47.3 474 474 | 69.6 | 71.2 716 71.7 T71.7
& 100 || 12.3 | 124 12.8 132 13.3 || 48.1 | 493 499 50.1 50.2 || 724 | 734 739 741 742
400 || 114 | 11.7 12.0 12.2 123 | 46.0 | 47.6 48.0 482 483|699 | 714 71.8 720 720
800 || 11.1 | 11.4 11.8 12.0 12.1 || 45.0 | 46.5 47.0 47.1 472 | 694 | 71.0 715 71.6 71.6

Nominal level: 0.10

ag = (—3, 1), ag = (2, 2), ag = (3‘4)/
by by by by by b2
K K K
dist. n 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40

& 100 || 21.2 | 21.5 219 227 23.0 || 58.8 | 60.2 60.9 61.4 61.5| 80.7 | 81.6 82.1 824 825
400 || 19.2 | 19.6 20.3 21.0 21.2 | 56.0 | 57.7 583 586 587 || 782 | 79.6 80.1 804 804
800 || 18.3 | 18.8 19.6 20.1 20.2 || 55.8 | 57.7 58.2 585 585 || 77.8 | 794 79.9 80.1 &0.1
& 100 || 21.8 | 22.0 225 23.3 23.7 || 59.6 | 61.0 61.6 62.1 62.2 | 81.0 | 81.9 82.5 829 829
400 || 19.1 | 19.5 20.1 20.8 21.0 | 56.8 | 58.5 59.2 59.5 59.6 || 78.6 | 80.0 80.6 80.8 80.8
800 || 189 | 19.4 20.1 20.7 20.8 || 56.0 | 57.9 58.5 587 588 || 78.0 | 79.5 80.1 80.3 80.3
&3 100 || 20.6 | 20.8 21.3 222 226 || 58.5 | 59.9 60.6 61.1 61.2 | 80.2 | 81.1 81.7 82.0 82.1
400 || 19.1 | 19.5 20.2 20.8 21.0 || 56.6 | 58.3 589 59.2 593 || 783 | 79.7 80.3 80.5 80.6
800 || 18.7 | 19.1 19.9 20.5 20.6 || 55.7 | 57.7 58.3 586 586 || 77.8 | 79.2 79.7 79.9 799

Note: bootstrap tests are based on a standard fixed-regressor wild bootstrap (b1) and on the proposed
corrected wild bootstrap method (bs) of Section 4, using g* = g—n~"|g|. ERPs are estimated using 50,000
Monte Carlo replications and 999 bootstrap repetitions. The column “dist.” shows the distributions of
g0 & ~ 4idN(0,1), & ~ ARCH(1) and &3 = /0.50; + \/ﬁsm’t, where v; ~ 4dN(0,1) and € is the

error term of the predictive variable xy, ;.
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APPENDIX D

APPENDIX TO CHAPTER 5

D.1 RESULTS, QUARTERLY VAR

In this section we repeat the analysis carried out above using a sample of quarterly instead
of monthly data. This is done for two reasons. First, it should be seen as a robustness
exercise, since by using quarterly data we get rid of some noise that can be induced by
intra-quarter volatility in the time series. Second, in this way we reproduce the empirical
analysis made by 7 in a time-varying parameters context.

Our quarterly time-varying-parameters VAR (TVP-VAR) specification includes a set
of six endogenous variables: (1) the unemployment rate; (2) core inflation, measured by
the annualized quarterly growth rate of the personal consumption expenditures index;
(3) inflation, measured by the annualized quarterly growth rate of the GDP deflator;
(4) the log of real per capita GDP; (5) the Fed Funds rate and (6) the Excess Bond
Premium (EBP), by ?. The set of variables mimics the one used by ?, though we drop
some variables they used in their Bayesian VAR to avoid over-fitting and an explosion
of the number of parameters to estimate, given the time-varying nature of our model.
The quarterly data sample covers the period from 1973Q1 to 2019Q3, for a total of 187
observations. We estimate the VAR with 1 lag, as suggested by the BIC criterion.

Figure D.1 shows the estimated time-varying IRFs to the EBP shock, identified by
ordering it last in a Cholesky decomposition. The pattern observed are similar to the
results from the monthly sample, though the estimated time variation of IRF's is smoother.
The response of unemployment is again strong but less persistent in the first part of the
sample, while it is strong and persistent in the last part of the sample (after 2000). A
reduction in the magnitude of the unemployment response is observed during the 90’s.

The IRFs of inflation is very strong until 1990, very muted afterwards. A similar
pattern emerges for the interest rate, again suggesting that the story of a more aggres-
sive response to demand shocks by the Federal Reserve, causing the flattening of the
unemployment-inflation relationship, is not supported by the data.

Finally, we implement the ? technique to estimate the structural parameters of the
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NKPC, specified as in equation (4.5.9). Again, as our VAR contains the annualized
quarter-on-quarter inflation rate, a proper adjustments of the estimated IRFs had to be
made. This time we used horizons h = 0,1,2,...,17 to construct the IRF vectors in
(4.2.7).

Results are shown in Figure D.2. The resulting evidence is in line with the monthly
analysis, and even more clear. The slope of the NKPC reaches value zero already around

1990, and remains zero afterwards. <, clearly decreases over time while 7, increases.

TV-IRF of Unemployment TV-IRF of Inflation

1980

TV-IRF of Int. Rate TV-IRF of EBP

Figure D.1: Time-varying impulse response functions to an EBP shock, for a selected set
of variables. VAR at quarterly frequency.

D.2 SIGN RESTRICTIONS

In this section, we revisit our empirical analysis, employing an alternative identification

strategy for the demand shock. Departing from the Cholesky ordering of variables, we
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Figure D.2: Time-varying estimates of the NKPC parameters, from the regression in
impulse responses estimated on quarterly data. Blue areas show 68% and 90% wild
bootstrap confidence intervals.

adopt a sign-restrictions approach.

The motivation behind this choice stems from its dual utility. Not only does it pro-
vide insights into the dependence of our results on the identification strategy, but it also
facilitates a meaningful juxtaposition with studies utilizing a sign-restriction approach for
estimating structural PC coefficients, as elaborated earlier. Notably, the literature em-
ploying this methodology often leans towards supporting the hypothesis of no-structural
change, in contrast to studies utilizing external instrument identification or Cholesky or-
dering. Consequently, our analysis aims to elucidate whether such disparities persist even

when incorporating our fully time-varying methodology.

Our algorithm works slightly different from the typical sign-restrictions method used
in the SVARs literature after the seminal paper of 7. Notice that for the identification
of NKPC parameters we need to identify any demand shock, rather than a specific type
of demand shock (e.g. a monetary policy shock). Consequently, our approach consists in

exploiting information from all identified shocks that look like a demand type shock.

Our definition of a demand shock is based on a minimal set of sign restrictions, namely
that it should induce an opposite contemporaneous response of unemployment and core

inflation.

More precisely, consider our estimate for the N x N time-varying variance-covariance

of VAR residuals f]t. It is known that there are infinite many matrices B; such that B, B, =
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3%, where B, is the matrix of contemporaneous responses to the structural shocks, i.e:
Uy = BtEt (D21)

Our sign-restriction algorithm works as follows. Foreacht=1,1... . Tand s =1,...,5:

1. We randomly generate a candidate matrix B, ; that satisfies the condition B, SBQ s =
53;. This is done as usual by multiplying the Cholesky decomposition of S, P by
a randomly generated orthonormal matrix H, : HiH., = I. Hence B, ; = PtHS.

2. For each generated B;,, we check whether any of the identified shocks in &, , =
By L4, satisfy our sign-restrictions for being classified as a demand shock. Denote
by Nas+ € [0, N] the number of shocks satisfying the restriction.

3. If Ngs = 0, we go back to step 1 and generate a new matrix. If Ny, > 0, we
compute impulse responses for all the shocks satisfying the restriction. Denote by
€itsy J = 1,..., Ngss. Also denote by Oy, the (H + 1) x 1 vector of impulse

responses of inflation to the shock ¢;; 5, hence:

]Tfo,j,s ()

[Tf1,j,s (m)

Oyijs = (D.2.2)

[er,j,s (ﬂ-)

Denote by éy7t75 = [éyﬂtl’séyytjgys - éY,t,Nd,s,t,s the (H+1)x Ny ¢ matrix collecting
the response of inflation for all demand-like shocks in €, ;. Finally, denote by Oy, ; =
vec ((:)yﬂf,s) the (H 4 1) Ny x 1 vector collecting all impulse responses of inflation.

Similarly define:

ITfO,j,s(‘r) 0 Irfl,j,s(ﬂ-)

ITij,s(a?) [Tfo,j,s(ﬂ—> h’fzj,s(ﬁ)

Ox s = (D.2.3)

Ier,j,s(m) ITfH—l,j,s(W) Ier+1,j,s(7T)
that is the matrix collecting the impulse responses of unemployment and the lagged

and forwarded impulse responses of inflation. ©x ;s collects the three responses for

all the Ny, shocks that satisfy the restrictions:

~ ~ - /
_ / / !
®X,t75 - |:@X,t,1,s X,t,2,5 " X,t,NdY51t75i| <D24)

4. Hence, our estimate for the NKPC parameters at time ¢ for the sth model is given
by:
. /
|:)\t,s:yb,t,sﬁyf,t,si| = (@/X,t’s@X,t,s) X t, g@Yt s <D25)

Finally we get the identified set of admissible values for the NKPC parameters at time
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I)\,t — |:)\t,1 e )\t,s e )\t,S

Tyt =[ber - Ants - Aoss) (D-2.6)
Lyw = pan - Atts - V1t8]

Two caveats apply here. First, as we did in the baseline specification with Cholesky
ordering, we adjust impulse responses of inflation to the year-on-year and quarter-on-
quarter definitions in order to follow the specification of the NKPC used by ? (see
equation (4.5.9)). Also we use only horizons h = 0,3,6,...,33. Second, we impose the

restriction 75, + 77+ = 1 when running the OLS regression in equation (D.2.5).

Unemp. (A) Past inf. () Future Inf. (,)
of >
13F
1 0.3
121
2 0.2
1.1
3 0.1
’
4k 0
0.9
5F 01
08
BF 0.2
0.7
7k 0.3
| . . ) . ) ) . 06, ) ) \
1980 1990 2000 2010 1980 1990 2000 2010 1980 1990 2000 2010

Figure D.3: Sign-restrictions admissible sets for the three KNPC parameters over time.
Black lines denote the median values, over time, of the identified sets. Blue areas show
the 5 — 10 — 32 — 68 — 90 — 95 percentiles.

Figure D.3 shows the identified sets for the three KNPC parameters obtained by
using the above sign restrictions procedure, setting S = 1000. The three panels show the
median value of the identified set and the 5%, 10%, 32%, 68%, 90% and 95% percentiles.
Results for the slope A; are supportive of the hypothesis of a strong flattening of the
structural PC over the years. Differently from the Cholesky estimates, the decline is more
gradual and the slope seems to be not different from zero only starting from year 2000
approximately. However, it is noticeable that our approach confirms the structural change
hypothesis even by using a very different identification strategy. This may suggests that
the literature using sign-restrictions to identify NKPC parameters, failed to identify the
structural source of the PC flattening because of the arbitrary sample splitting that is

necessary if one does not make use of a fully time-varying specification.
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The results for the v, and 7, parameters, however, differ substantially with respect
to the baseline Cholesky estimation. The identified set for 7, suggest a very small value
for “persistence” parameter, with the zero almost always included all over the sample,
and no big change over the years. This mirrors in the results for v, (which recall that
it has been restricted to be equal to 1 — ~,;), which point to a very high and close to 1

value for the “expectation” parameter.

D.3 RESULTS FOR THE EURO AREA

We repeat our empirical analysis by applying our methodology to data for the Euro
Area, to see whether the results observed for the US extend to other countries. Our
baseline VAR specification mirrors the one used for the US. We have a set of seven
endogenous variables: (1) the unemployment rate for the Euro Area; (2) core inflation,
measured by the annualized monthly growth rate of the seasonally-adjusted HICP index,
excluding energy, food and tobacco; (3) the 12-month growth rate of the manufacturing
PPI index for the Euro Area ; (4) the log change of total industrial production, excluding
construction, in the Euro Area; (5) the 10-year German bond rate; (6) the 3-month
interbank rate and (7) the Credit Risk Premium (CRP).
The CRP is the Euro Area version of the EBP used above and it is constructed by
? as the spread between a measure of cost of financing for a large set of European non-
financial corporations and the German bund rate. Compared to EBP, it is a less clean
measure of credit frictions. However it is often used for this purpose (see, for example, ?).
As usual, we face the issue of having to work with a much shorter time-span of
observations. We have a total of 252 monthly observations, from 1999M1 to 2019M12.!
Figure D.4 shows the estimated values of the three NKPC parameters over time,
using the Cholesky identification of the risk-premium shock. In the Euro Area sample,
the slope \; is never significantly different from zero, suggesting a flat NKPC all over the
existence period of the Euro Area. As for the US estimates, we document an increase
over time of the expectation coefficient v;; and a consequent decline over time of 7.
Figure D.5 shows the admissible set of values for the three NKPC parameters resulting
from the sign-restrictions identification strategy applied to the Euro Area sample. Here
the results are strikingly different from the ones produced by Cholesky ordering. The
slope \; is estimated to increase (in absolute value) over time, suggesting a steeper NKPC
in the last part of the sample. As for the 7,4, v, parameters, the trend resulting from
Figure D.4 is confirmed: a decreasing role of past inflation together with an increasing

role of inflation expectations.

IWe exclude observations from the Covid19 recession.
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Figure D.4: Time-varying estimates of the NKPC parameters for the FEuro Area, from
the regression in impulse responses estimated on monthly data. Blue areas show 68%
and 90% wild bootstrap confidence intervals.
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Figure D.5: Sign-restrictions admissible sets for the three KNPC parameters for the Euro
Area. Black lines denote the median values, over time, of the identified sets. Blue areas
show the 5 — 10 — 32 — 68 — 90 — 95% percentiles.
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APPENDIX E

APPENDIX TO CHAPTER 5

Proof of Theorem 1. We start by considering B,. Let us define o2 := E(2?) have that:

where the second equality follows from E[H ' Y"7 | kja?] = ofH ' Y0 ki = o} and

70mn = 7 izt by (2F — B(23)) +E(2}) = E(2})+0,(1), where 3 351, kyj (2F — E(2)) =
0p(1) from Lemma 1. Furthermore, we can note that, by Lemma 2:

ka —B)a? =o0,—— Zkt] — By) + 0,(1) (E.0.1)
We are now deriving the following proposition as an intermediate result.
Proposition 1. Let the conditions of Theorem 1 hold, then:
Sy = Zktj —B) LN (o,mzag / K2(u)u2du> (E.0.2)
where k = lim,—., H*/n.
Proof of Proposition 1. The proof is tri
Lemma 1. Let {2;}7_, be a covariance stationary process with autocovariance function

v(k) satisfying ZW"J [7(k)| = o(ry), for every a > 0 and r; = O(n), {w;}7_, be a se-

quence of bounded real numbers such that w; = 0 if j ¢ S,,,, for some closed interval
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Swn = [Sin, Sun) such that |s,, — s.,| = br,, for some b > 0 then

'Y ws s~ Elyl) = o) (E03)

Proof of Lemma 1. We are going to prove this result through L?-convergence together

with Chebychev’s inequality. We write Z; == z; — E[z;] and note that:

E <7“771 Z wj[2; — E [Zj]]) =2 > wjwyE (%3]

j=1j'=1
bryn Su,n

_ .2

=12y k) Y wywg
k=0 j/:Sl,n

n

~o() :ﬁ;ww =0 () o) = ot

where the penultimate inequality follows from setting a = b and the result proves by Cheby-

chev’s inequality.

Lemma 2. Let {z; };;:1 be a covariance stationary process with autocovariance function
(k) satisfying 21 |y (k)| = o(r,), for every @ > 0 and 72 = O(n), {w;}7_; be a se-
quence of bounded real numbers such that w; = 0 if j ¢ S,,,, for some closed interval

Swn = [Sin, Sun) such that |s,, — s.,| = bry,, for some b > 0 and Z?Zl w; = O(ry), and

{y; }?:1 be a process satisfying SUD; jres, Ely;yj:] = Op(rn/n), then

r, /2 Z wj [2; — Efz]] y; = 0,(1) (E.0.4)

Proof of Lemma 2. We are going to prove this result through L?-convergence together
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with Chebychev’s inequality. We write Z; := z; — E[z;] and note that:

n 2 n n
E (%m > wjlz — Ez]] yj) =7, Y ) wjwp B E [yy5]
j=1

j=1 ji=1
n n
=0 > wjwiE (5]
j=1 ji=1
Su,n Su,n

=0(m™) > > wiwpy(li— )

j:Sl,n j,:'sl,n

bry, Su,n
=0y (k) D wiwj
k=0 j/:5l,n

~o(™) Z (k)] =0 () o) = o(1)

where the penultimate inequality follows from setting a = b and the result proves by

Chebychev’s inequality.
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