Unveiling the Neural Code: computing intentions in V6A

Buonfiglio, Antonio Roberto (2025) Unveiling the Neural Code: computing intentions in V6A, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Scienze biomediche e neuromotorie, 37 Ciclo.
Documenti full-text disponibili:
[thumbnail of PhD_Thesis_AMS.pdf] Documento PDF (English) - Accesso riservato fino a 31 Gennaio 2028 - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (30MB) | Contatta l'autore

Abstract

The title of this thesis, Unveiling the Neural Code: Computing Intentions in V6A, reflects the overarching objective of elucidating the brain’s processing of motor intentions during spatial target perception, with a specific focus on the V6A parietal cortical area. The primary focus of this thesis is revealing the computations occurring within V6A in motor intentions related to spatial target perception. The findings herein highlight V6A’s crucial role in translating sensory inputs into actionable motor plans, bridging perception and action within the brain’s sensorimotor circuitry. The second major contribution of this work proposes advanced methods for analysis of the neural activity inspired by biological processes. The brain-inspired decoding approach is grounded in the concept of predictive coding, a fundamental principle in brain function. In particular, the framework of active inference, suggests that the brain continuously predicts sensory inputs and motor outcomes, refining its actions through feedback. This bio-inspired model not only aligns with the current understanding of predictive coding but also offers a novel perspective on how motor intentions are formed and executed. The transferability of this model across different neural datasets is demonstrated. In collaboration with the Spanish research center Tecnalia, neural data recorded from a human patient with a motor cortex (M1) lesion following a stroke were analyzed. This dataset allowed for testing the robustness of the model and exploring its applicability beyond V6A, providing insights into neural recovery and compensation mechanisms in damaged cortical areas. This research thesis elucidates the neural code underlying motor intentions and offer models that can potentially inform the design of future neural interfaces and rehabilitation strategies.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Buonfiglio, Antonio Roberto
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
37
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Non-human primates, Sensorimotor control, Intentions, Reference Frame, Deep Networks, Decoding, Posterior Parietal Cortex, V6A, Active Inference, Predictive coding, BMI, Human Stroke Patient, Neural data
Data di discussione
19 Marzo 2025
URI

Altri metadati

Gestione del documento: Visualizza la tesi

^