On the Wick product and Wong-Zakai approximations.

Scorolli, Ramiro (2023) On the Wick product and Wong-Zakai approximations., [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Scienze statistiche, 35 Ciclo. DOI 10.48676/unibo/amsdottorato/10684.
Documenti full-text disponibili:
[img] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (6MB)

Abstract

This thesis is a compilation of 6 papers that the author has written together with Alberto Lanconelli (chapters 3, 5 and 8) and Hyun-Jung Kim (ch 7). The logic thread that link all these chapters together is the interest to analyze and approximate the solutions of certain stochastic differential equations using the so called Wick product as the basic tool. In the first chapter we present arguably the most important achievement of this thesis; namely the generalization to multiple dimensions of a Wick-Wong-Zakai approximation theorem proposed by Hu and Oksendal. By exploiting the relationship between the Wick product and the Malliavin derivative we propose an original reduction method which allows us to approximate semi-linear systems of stochastic differential equations of the Itô type. Furthermore in chapter 4 we present a non-trivial extension of the aforementioned results to the case in which the system of stochastic differential equations are driven by a multi-dimensional fraction Brownian motion with Hurst parameter bigger than 1/2. In chapter 5 we employ our approach and present a “short time” approximation for the solution of the Zakai equation from non-linear filtering theory and provide an estimation of the speed of convergence. In chapters 6 and 7 we study some properties of the unique mild solution for the Stochastic Heat Equation driven by spatial white noise of the Wick-Skorohod type. In particular by means of our reduction method we obtain an alternative derivation of the Feynman-Kac representation for the solution, we find its optimal Hölder regularity in time and space and present a Feynman-Kac-type closed form for its spatial derivative. Chapter 8 treats a somewhat different topic; in particular we investigate some probabilistic aspects of the unique global strong solution of a two dimensional system of semi-linear stochastic differential equations describing a predator-prey model perturbed by Gaussian noise.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Scorolli, Ramiro
Supervisore
Dottorato di ricerca
Ciclo
35
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Wick product, Wong-Zakai approximations, stochastic differential equations, White noise, Malliavin derivative.
URN:NBN
DOI
10.48676/unibo/amsdottorato/10684
Data di discussione
6 Aprile 2023
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^