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Abstract

This thesis is a compilation of 6 papers that the author has written together with
Alberto Lanconelli1 (chapters 3, 5 and 8) and Hyun-Jung Kim2 (ch 7). The logic
thread that link all these chapters together is the interest to analyze and approximate
the solutions of certain stochastic differential equations using the so called Wick
product as the basic tool.

In the first chapter we present arguably the most important achievement of this
thesis; namely the generalization to multiple dimensions of a Wick-Wong-Zakai ap-
proximation theorem proposed by [1]. By exploiting the relationship between the
Wick product and the Malliavin derivative we propose an original reduction method
which allows us to approximate semi-linear systems of stochastic differential equa-
tions of the Itô type by solving an associated deterministic system of partial dif-
ferential equations. Furthermore in chapter 4 we present a non-trivial extension of
the aforementioned results to the case in which the system of stochastic differential
equations are driven by a multi-dimensional fraction Brownian motion with Hurst
parameter bigger than 1/2.

In chapter 5 we employ our approach and present a “short time” approximation for
the solution of the Zakai equation from non-linear filtering theory and provide an
estimation of the speed of convergence.

In chapters 6 and 7 we study some properties of the unique mild solution for the
Stochastic Heat Equation driven by spatial white noise of the Wick-Skorohod type.
In particular by means of our reduction method we obtain an alternative derivation
of the Feynman-Kac representation for the solution, we find its optimal Hölder
regularity in time and space and present a Feynman-Kac-type closed form for its
spatial derivative.

Chapter 8 treats a somewhat different topic; in particular we investigate some prob-
abilistic aspects of the unique global strong solution of a two dimensional system of
semi-linear stochastic differential equations describing a predator-prey model per-
turbed by Gaussian noise. We obtain non-trivial estimations of upper and lower
bounds for the solutions and distribution functions in a "short-time" context. It’s
interesting to notice that our findings are consistent with the asymptotic results
present in the literature.

Key words and phrases: Wick product, Wong-Zakai approximations, stochastic
differential equations, White noise, Malliavin derivative.

AMS 2000 classification: 60H10, 60H15, 60H40, 60H30

1Dipartimento di Scienze Statistiche Paolo Fortunati, Universitá di Bologna, Bologna, Italy.
2Department of Mathematics, UCSB, Santa Barbara, CA 93106, USA.



1

Chapter 1

Introduction

The Wick product was originally introduced by the Italian physicist Gian Carlo
Wick in the context of Quantum Fields Theory as a way to deal with certain infinite
quantities. In its original formulation, the Wick product (which back then was
known as S-product) was more of a renormalization method rather than an actual
product in the usual sense of the word.

Later on Hida and Ikeda proposed to use this same technique in the context of
stochastic calculus. Since then a number of researchers have actively studied prop-
erties and applications of this theoretical tool.

The Wick product , which is denoted by the symbol ⋄ could be seen as an actual
product between random variables1 satisfying the usual properties, namely commu-
tativity, associativity and distributivity.

Surprisingly it is closely related to the Itô (and Skorohod) integration, and in short
words one could say that the Wick product is to Itô integration, the same as standard
product is to Riemann integration.

Motivated by this fact we decided to apply this tool to the study of the Wong-Zakai
approximation method for the solutions of stochastic differential equations of the
Itô type, both ordinary and partial.

The fundamental idea behind this approach is that of constructing a smooth ap-
proximation of the Brownian motion driving the equation (in the Itô sense), plug
the latter into the equation and try to solve it; finally one is interested in studying
the behavior of this approximated solution when the let the approximation of the
Brownian motion become more rough. The fundamental result of the Wong-Zakai
theory is that, due to the wild oscillations of the Brownian motion, the approximated
solution won’t converge to the solution of the original equation we were considering.

1As we shall see later on, we are actually able to compute the Wick product between stochastic
distributions, i.e. generalized random variables.
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As we shall see, this discrepancy between the starting point and the final result is
a direct consequence of the use of the standard pointwise product which is not the
natural one when dealing the integrals of the Itô type.

This thesis is devoted to partially answer a question that arise 25 years ago, namely:
what would happen if we incorporate the Wick product into the Wong-Zakai approx-
imation? Will this scheme converge to the solution of original Itô equation?

As we shall see this question is far from trivial and trying to provide an answer
requires the use of several techniques.
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Chapter 2

Preliminaries

In this chapter we will introduce some of the important mathematical concepts and
tools that will be used in the following chapters. The first section deals with the
basic concepts from classical stochastic calculus such as Brownian motion, Wiener
space, Wiener integral, Itô integrals and a brief explanation about the Feynman-
Kac representation. The second section deals with an infinite dimensional analysis
i.e. Gaussian analysis and the Gaussian Hilbert space formalism which allows to
treat concepts such as the Wiener chaos and stochastic integration under great
generality. Furthermore this theoretical framework allows for a painless transition
into another infinite dimensional calculus as the Malliavin calculus and the White
noise distribution theory that we will treat latter on-

The idea is to show how this 3 different ways of looking at stochastic calculus are
related.

For the sake of brevity many results are enunciated without a proof although the
more important/enlightening results are treated in detail.

2.1 Brownian motion and SDE
We start by introducing arguably the most important stochastic process out there
and one of the fundamental objects in this thesis, namely the Brownian motion.
The following results can be found virtually in every stochastic processes book but
we will attach to the following great references [2] and [3].

2.1.1 The Brownian motion

Definition 1. Let (Ω,F ,P) be a generic probability space. A d-dimensional stochas-
tic process indexed by T ⊂ R is a measurable map

X : Ω → (Rd)T
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given by

Ω ∋ ω 7→ (T ∋ t 7→ X(t, ω) ∈ Rd).

Unless we state it otherwise we will consider the case in which T = [0, T ] for some
positive real constant T .

Definition 2. A d-dimensional Brownian motion {B(t)}t∈[0,T ] is a stochastic process
indexed by [0, T ] taking values in Rd such that

1. B(0) = 0 almost surely,

2. For any partition {0 = t0 < t1 < · · · < tn = T} for any n ∈ N it holds that
B(tn)−B(tn−1), · · · , B(t1)−B(t0) are independent random vectors.

3. B(t)−B(s) and B(t+h)−B(s+h) are identically distributed for all 0 ≤ s <
t, h ≥ −s.

4. B(t)−B(s) ∼ N (0, (t− s))⊗d where N (0, t)(dx) = 1√
2πt

exp
(
−x2

2t

)
dx

5. t 7→ B(t) is a.s. continuous.

Choose a finite partition π := {0 = t0 < t1 < · · · < tN = T} of the interval [0, T ],
and set ∥π∥ := maxi∈{0,1,...,N} |ti − ti−1|. The real number ∥π∥ is called mesh of the
partition π. From now on we will assume without loss of generality that the partition
is equally spaced, i.e. ti =

iT
N

, for all i ∈ {0, ..., N}; in this case we simply have
∥π∥ := T

N
but we will continue to use the notation π = {0 = t0 < t1 < · · · < tN = T}

and ∥π∥.

Proposition 3. Let {B(t)}t∈[0,T ] be a one-dimensional Brownian motion and let π
be a partition of the interval [0, T ] as the one described above. Then

lim
∥π∥→0

N∑
j=1

|B(tj)−B(tj−1)|2 = T convergence in L2(Ω).

Proof. To ease the notation we set

SN
2 [0, T ] :=

N∑
j=1

|B(tj)−B(tj−1)|2.
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Notice that

E
[
SN
2 [0, T ]

]
= E

[
N∑
j=1

|B(tj)−B(tj−1)|2
]

=
N∑
j=1

E
[
|B(tj)−B(tj−1)|2

]
=

N∑
j=1

tj − tj−1 = T.

Therefore

E
[∣∣SN

2 [0, T ]− T
∣∣2] = V

[
SN
2 [0, T ]

]
,

where for any random variable X, V [X] denotes its variance.

Now notice that the independence of the Brownian increments allows us to write

V
[
SN
2 [0, T ]

]
=

N∑
j=1

V
[
|B(tj)−B(tj−1)|2

]
= 3

N∑
j=1

|tj − tj−1|2

≤ 3 max
0≤i≤N

|ti − ti−1|
N∑
j=1

|tj − tj−1|

= 3T max
0≤i≤N

|ti − ti−1|.

Clearly the last term goes to zero as N → ∞ proving the desired result.

Proposition 4. The trajectories of the Brownian motion are of unbounded variation
a.s.

Proof. We start by writing

N∑
j=1

[B(tj)−B(tj−1)]
2 ≤ max

i∈{0,1,...,N}
|B(ti)−B(ti−1)|

N∑
j=1

|B(tj)−B(tj−1)|,

and notice that from the previous proposition we know that the lefter side converges
in the L2(Ω) sense ( and thus almost surely for a subsequence) to T . On the other
hand since the paths of the Brownian motion are a.s. uniformly continuous in [0, T ]
we have that lim∥π∥→0maxi∈{0,1,...,N} |B(ti) − B(ti−1)| = 0. This implies that the
second term on the right must diverge which proves the desired result.
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Definition 5. Let (Ω,F ,P) be a probability space carrying a one-dimensional Brow-
nian motion {B(t)}t∈[0,T ]. The natural filtration {FB

t }t∈[0,T ] ⊂ F is a family of sigma
algebras defined by:

FB
t := σ(B(s); 0 ≤ s ≤ t).

Without loss of generality we may enrich FB
0 with all the P-zero measure sets. In

such a case the filtration would be called the augmented filtration.

2.1.2 The Wiener space

In this section we will discuss the canonical construction of the Brownian motion.
For the sake of simplicity we will consider the case for d = 1 since the general case
could be obtain under trivial modifications.

We start by introducing the following space1

C0 := C0[0, T ] :=
{
f : [0, T ] → R : f is continuous and f(0) = 0

}
Proposition 6. If we equip C0 with the metric of locally uniform convergence

ρ(f, g) =
∞∑
n=1

1

2n

(
1 ∧ sup

0≤t≤n
|f(t)− g(t)|

)
,

then C0 becomes a complete separable metric space.

Lets denote with Oρ the topology induced by the metric ρ and consider the Borel
sigma-algebra B(C0) := σ(Oρ) on C0.

Definition 7. A cylindrical subset A of C0 is a set of the form

A := {f ∈ C0 : (f(t1), f(t2), ..., f(tn)) ∈ U} (2.1)

where 0 < t1 < · · · < tn < T and U ∈ B(Rnd) for any n ∈ N.

From now on we will denote with A the collection of all such cylindrical subsets of
C0.

Proposition 8. We have the following equivalence

B(C0) = σ(A)

Proof. Under the metric ρ the coordinate projection map

C0 ∋ f 7→ pt(f) := f(t)

1The construction of the Wiener space can be done in a much more general fashion, in particular
we can costruct it over any metric space M not only on bounded intervals.
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is continuous for every t and hence measurable with respect to the Borel sigma
algebra B(C0). Same thing can be extended to the multi-dimensional projections
and hence we conclude that since the mapping C0 ∋ f 7→ (f(t1), f(t2), ..., f(tn)) is
continuous then it’s Borel measurable. This in turn implies that

A ⊂ B(C0) =⇒ B(A) ⊂ B(C0).

We now need to show that B(A) ⊃ B(Co) and in order to do so it is enough to notice
that the totality of the sets of the form {f : sup0≤t≤n |f(t)− f0(t)| ≤ ϵ}, f0 ∈ C0, ϵ >
0, n ∈ N forms a basis of neighborhoods in C0 and

{
f : sup

0≤t≤n
|f(t)− f0(t)| ≤ ϵ

}
=

⋂
Q∩[0,n]

{f : f(r) ∈ Bϵ(f0(r))}.

Thus such a set is representable as a countable intersection of cylindrical sets. It
follows that B(C0) ⊂ B(A).

Now suppose that A ∈ A and define PW (A) by

PW (A) :=

∫
A

n∏
i=1

(
1√

2π(ti − ti−1)
exp

[
−(ui − ui−1)

2

2(ti − ti−1)

])
du1 · · · dun.

Since the collection A of cylindrical subsets in an generator of B(C0) which is stable
under countable intersections it follows from [4, theorem 5.7] that PW has a unique
extension to the sigma algebra B(C0).

The triplet (C0,B(C0),PW ) is a probability space known as the (classical) Wiener
space

Theorem 9. The stochastic process B(t, ω) = ω(t), ω ∈ C0, t ≥ 0 is a one-
dimensional Brownian motion.

We can treat each element of the Wiener space as one particular trajectory of a
Brownian motion. Using this same approach we construct Brownian motion indexed
by generic intervals T ⊂ R.

2.1.3 The Wiener integral

Let T be a positive real constant; for notational convenience, we will identify (un-
less stated otherwise) the triple (Ω,F ,P) with the Wiener space (C0,B(C0),PW )
and {B(t)}t∈[0,T ] will denote the one-dimensional Brownian motion introduced in
theorem 9.
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The aim of this section is that of introducing the concept of integration with respect
to a Brownian motion, namely we will be concerned with objects like∫ T

0

f(t)dB(t)

where the integrand f is a square integrable deterministic function. This kind of
integral was considered for the first time in [5]. Here we will present a simpler
construction based on approximation by simple functions following [6].

The fact that the paths of a Brownian motion have almost-surely non-finite variation
precludes us to define

∫ T

0
f(t)dB(t) in the Riemann-Stieltjes sense (e.g. [7]) for a

general continuous function f 2 . Nonetheless we can use an alternative approach in
order to obtain a well-defined notion of integration againts a Brownian motion as
follows:

Step 1: Assume that f is a step function given by

f :=
N∑
i=1

ci χ[ti−1,t−i) (2.2)

where the ci’s are real numbers and {0 = t0 < · · · < tN = T} is a finite partition of
the interval [0, T ]. In this particular case we define the Wiener integral and denote
it with I(•) as

I(f) ≡
∫ T

0

f(t)dB(t) :=
N∑
i=1

ci[B(ti)−B(ti−1)].

Notice the analogy between this construction and the usual definition of the Lebesgue
integral (e.g. [4])

Proposition 10. I(•) is a linear operator and for any f given by (2.2) I(f) is a
N
(
0,
∑N

i=1 c
2
i (ti − ti−1)

)
random variable.

Proof. To show that when dealing with simple functions I is indeed a linear operator
is trivial from the definition.

On the other hand in this particular case it’s straightforward to see that for any
i ∈ {0, ..., N}

ci(B(ti)−B(ti−1)) ∼ N (0, c2i (ti − ti−1)).

Furthermore since the intervals of the partition are disjoint we have by basic prop-
erties of the Brownian motion that

(B(ti)−B(ti−1)) is independent of (B(tj)−B(tj−1)), for any i ̸= j.

2In fact the family of functions for which we would be allowed to do so is rather restrictive
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Having this in mind and using the fact that linear combinations of jointly Gaussian
random variables are again Gaussian random variables the conclusion follows.

Corollary 11. It follows from the last proposition that for any step function f we
have

E
[
|I(f)|2

]
=

∫ T

0

f(t)2dt,

where E denotes the expectation on (Ω,F ,P). This implies that the Wiener integral
is an isometry between the subspace of step functions in L2([0, T ]) and L2(Ω).

Step 2: From [4, Corollary 12.11] we have that for any function f ∈ L2([0, T ])
there exits at least one sequence of step functions {fn}n∈N such that

f = lim
n→∞

fn, convergence in L2([0, T ]) .

Now notice that by linearity of I(•) we have that

E
[
|I(fn)− I(fm)|2

]
= E

[
|I(fn − fm)|2

]
,

and since the linear combination of step functions is again an step function it follows
from the previous proposition that

E
[
|I(fn)− I(fm)|2

]
=

∫ b

a

|fn(t)− fm(t)|2dt.

Since {fn}n∈N is convergent in L2([0, T ]) then it follows that the sequence {I(fn)}n∈N
is a Cauchy sequence in L2(Ω) and thus convergent in the latter.

Definition 12. Let f ∈ L2([0, T ]). Then let us define the Wiener integral I(f) as

I(f) = lim
n→∞

I(fn), convergence in L2(Ω) (2.3)

Theorem 13. Let f ∈ L2([0, T ]) then

I(f) ∼ N
(
0, ∥f∥L2([0,T ])

)
Proof. By proposition 10 the result holds true if f is a step function. Then the con-
clusion follows from the definition above and the fact that L2(Ω) converges implies
convergence in distribution.

An important property of the Wiener integral is that for any f ∈ L2([0, t]) it holds
that

E
[
I(f)|FB

t

]
=

∫ t

0

f(s)dB(s).
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Another way of putting this is that if we define Xt := I(χ[0,t]f) then the process
{Xt}t∈[0,T ] is a {FB

t }t∈[0,T ] martingale.

We will now introduce a family of random variables that will be extensively used in
this thesis.

Definition 14. Let f ∈ L2([0, T ]), then the stochastic exponential of f , denoted by
E(f) is defined by

E(f) := exp

{∫ T

0

f(t)dB(t)− 1

2
∥f∥2L2([0,T ])

}
.

Furthermore the family E := {E(f) : f ∈ L2([0, T ])}3 is dense in Lp(Ω) for any
p > 1.

Notice that this family of random variables posses the following nice properties which
will become handy latter on, namely:

1. For any f ∈ L2([0, T ]) we have that E [E(f)] = 1. This result follows trivially
by using the moment generating function of a Gaussian random variable.

2. For any f ∈ L2([0, T ]) define Et(f) := exp

{∫ t

0
f(s)dB(s)− 1

2
∥χ[0,t]f∥2L2([0,T ])

}
.

Then the stochastic process {Et(f)}t∈[0,T ] is a {FB
t }t∈[0,T ] martingale.

2.1.4 The Itô integral

In this section we will extend the concept of “integral with respect to a Brownian
motion” to random integrands (satisfying certain conditions that we will describe in
the following). This construction was proposed for the first time by Itô in [8]. The
strategy we will use could be summarized as follows: we start with step stochas-
tic processes for which we are able to define the stochastic integral in the usual
fashion. Then we will employ an approximation result which roughly states that
for any well behaved stochastic process there exits a sequence of step stochastic
processes converging to the latter in some opportune topology. Then the integral
is extended to the whole family of “well behaved stochastic processes” using the
isometry property.

As usual we let {B(t)}t∈[0,T ] be a Brownian motion and let {Ft}t∈[0,T ] be an admis-
sible filtration, i.e. a sequence of sigma algebras satisfying:

(i) Fs ⊆ Ft for any s ≤ t, s, t ∈ [0, T ].

(ii) B(t) is Ft-measurable for any t ∈ [0, T ].

(iii) B(t)−B(s) is independent of Fs for any t, s ∈ [0, T ].
3We will always use E to denote the family of stochastic exponential independently of the

domain of the associated functions.
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Definition 15. Let L2
ad([0, T ] × Ω) denote the space of all stochastic processes

satisfying:

1. f(t, ω) is adapted to the filtration {Ft}t∈[0,T ].

2.
∫ T

0
E [|f(t)|2] dt < ∞.

In this section we will explain how we can extend the Wiener integral to integrands
which belong to L2

ad([0, T ]×Ω). Again we will divide our exposition in steps.

Step 1: If f is a step stochastic process in L2
ad([0, T ] × Ω), i.e. a process of the

form

f(t, ω) =
N∑
i=1

ξi−1(ω)χ[ti−1,t−i)(t)

where ξi−1 is Fti−1
measurable and E

[
ξ2i−1

]
< ∞ for every i ∈ {1, ..., N}. In analogy

with the construction presented in section 2.1.3 we define∫ T

0

f(t, ω)dB(t, ω) :=
N∑
i=1

ξi−1(ω) · [B(ti)−B(ti−1)](ω). (2.4)

Notice that a consequence of this definition is that

E

[(∫ T

0

f(t)dB(t)

)2
]
= E

[∫ T

0

|f(t)|2dt
]
=

N∑
i=1

ξ2i−1∥π∥.

Step 2: Now in order to extend the concept of Itô integral to more general stochas-
tic processes we need an approximation result which roughly states the stochastic
analogous of [4, Corollary 12.11] .

Lemma 16. Suppose f ∈ L2
ad([0, T ] × Ω). Then there exists a sequence of step

stochastic processes {fn}n∈N ⊆ L2
ad([0, T ]× Ω) such that

lim
n→∞

∫ T

0

E
[
|f(t)− fn(t)|2

]
dt = 0.

Definition 17. Let f ∈ L2
ad([0, T ] × Ω) and let {fn}n∈N be a sequence of step

stochastic processes converging to f in L2
ad([0, T ] × Ω). Then we defined the Itô

integral of f as∫ T

0

f(t)dB(t) = lim
n→∞

∫ T

0

fn(t)dB(t), convergence in L2(Ω).
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A consequence of the definition above is the so called Itô isometry, which basically
states that for any f ∈ L2

ad([0, T ]× Ω) we have

E

[(∫ T

0

f(t)dB(t)

)2
]
= E

[∫ T

0

|f(t)|2dt
]
,

i.e. the Itô integral is an isometry between the space of square integrable random
variables L2(Ω) and L2

ad([0, T ]× Ω).

Remark 18. There exists various generalizations of the concept of Itô integral. In
particular one could consider adapted integrands which belong to some space larger
than L2

ad([0, T ]× Ω) in which case the resulting integral present weaker properties.
One could also consider stochastic integrals of the Itô type in which the integrator
is not a Brownian motion, but rather a more general semi-martingale with even
discontinuous trajectories (e.g. [6],[2],[9]).

Theorem 19. Let {u(t)}t∈[0,T ] be a stochastic process in L2
ad([0, T ] × Ω) such that

E[u(t)u(s)] is a continuous function in (t, s) ∈ [0, T ]2. Furthermore let {0 = t0 <
t1 < · · · < tN = T} a uniform partition of the interval [0, T ] (this assumption is just
for the sake of simplicity). Then it holds that

lim
N→∞

N−1∑
i=0

u(ti)[B(ti+1)−B(ti)] =

∫ T

0

u(t)dB(t), convergence in L2([0, T ]) .

(2.5)

Remark 20. It’s important to remark the fact that unlike the deterministic Riemann
sum when defining the Itô integral we must always use the left evaluation point. If
instead we take the mid-point evaluation ti+ti+1

2
the limit will equal the so called

Fisk-Stratonovich integral
∫ T

0
u(t) ◦ dB(t). On the other hand by taking the right

evaluation point ti+1 the limit will be given by the Hänggi-Klimontovich integral∫ T

0
u(t) ⋆ dB(t). Finally if we consider a generic evaluation point in the interval

[ti, ti+1], namely we evaluate the integrand at αti+(1−α)ti+1 for some α ∈ [0, 1] the
limit will coincide with the alpha integral

∫ T

0
u(t)dαB(t) introduced by (Da Pelo,

Lanconelli, Stan)

2.1.5 The Itô rule

Theorem 21. Let θ : [0, T ]×R → R be a functions of class C1,2([0, T ]×R) and let
{Xt}t∈[0,T ] be an Itô process given by

X(t) = X(0) +

∫ t

0

h(s)dB(s) +

∫ t

0

g(s)ds
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then

θ(t,X(t)) = θ(0, X(0)) +

∫ t

0

∂θ

∂x
(s,X(s))f(s)dB(s)

+

∫ t

0

[
∂θ

∂t
(s,X(s)) +

∂θ

∂x
(s,X(s))g(s) +

1

2

∂2θ

∂x2
(s,X(s))

]
ds,

or which is the same

dθ(t,X(t)) =
∂θ

∂x
(t,X(t))h(t)dB(t) +

[
∂θ

∂t
(t,X(t)) +

∂θ

∂x
(t,X(t))g(t) +

1

2

∂2θ

∂x2
(t,X(t))

]
dt

2.1.6 Stochastic differential equations

Consider an ordinary differential equation of the type

d

dt
X(t) = f(t,X(t)), X(0) = x0;

then under certain conditions on f we know that a solution can be found. Now
imagine that this equation describes, for instance, some idealized physical process.
Still we know that there are sources of noise, and then in order to obtain a more
realistic representation of the process under consideration we perturb the equation
with the formal time derivative of a Brownian Motion Ḃ(t)4 leading to

d

dt
X(t) = b(t,X(t)) + σ(t,X(t))Ḃ(t), X(0) = x0.

In the Itô calculus the terms Ḃ(t) and dt are combined into dB(t) yielding the
stochastic differential equation

dX(t) = b(t,X(t))dt+ σ(t,X(t))dB(t), X(0) = x0,

which is just a shorthand for the integral equation

X(t) = x0 +

∫ t

0

b(s,X(s))ds+

∫ t

0

σ(s,X(s))dB(s)

where the integral on the right should be understood in the Itô sense.

Definition 22. A jointly measurable stochastic process {X(t)}t∈[0,T ] is called a
solution of the above stochastic integral equation if:

• The stochastic process σ(t,X(t))t∈[0,T ] belongs to ... .

4At this point this is merely an heuristic discussion, latter on we will show how we can do this
in a rigorous fashion.
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• Almost all sample paths of the stochastic process b(t,X(t))t∈[0,T ] belong to
L1([0, T ]).

• For each t ∈ [0, T ] the expression above holds almost surely.

We now present the most important existence-uniqueness theorem for solutions of
stochastic differential equations.

We must bear in mind that here we are dealing with strong solutions. For more
information about weak solutions and general properties of stochastic differential
equations the reader is referred to ...

2.1.7 Feynman-Kac representations

Consider the following homogeneous heat equation{
∂tu(t, x) =

1
2
∂2
xxu(t, x), (t, x) ∈ [0, T ]× R

u(0, x) = φ(x) ∈ C2
b (R).

(2.6)

It’s well known that

u(t, x) =

∫
R
φ(y)p(t, x− y)dy,

where p(t, x) := 1√
2πt

exp
(
−x2

2t

)
solves the Cauchy problem 2.6. An alternative

probabilistic representation of the solution is given by

u(t, x) = E[φ(B(t) + x)].

Let us now consider a more general Cauchy problem{
∂tu(t, x) =

1
2
L (x)u(t, x) + c(x)u(t, x), (t, x) ∈ [0,+∞)× Rd

u(0, x) = φ(x),
(2.7)

where

L (x) =
1

2

d∑
i,j=1

aij(x)
∂2

∂xi∂xj

+
d∑

i=1

bi(x)
∂

∂xi

,

and we assume that all the coefficients of L and c be bounded and Lipschitz con-
tinuous and the initial condition φ is bounded and continuous.

The characteristic form of
∑d

i,j=1 aij(x) is assumed to be positive semi-definite, i.e.∑d
i,j=1 aij(x)vivj ≥ 0 for any vector v = (v1, ..., vd), x ∈ R. We also assume that the

matrix (aij(x))ij can be represented in the form (aij(x))ij = σ(x)σ(x)T where σ is a
matrix whose elements are Lipschitz continuous.
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Let us now consider the stochastic differential equation

dXx(t) = b(Xx(t))dt+ σ(Xx(t))dB(t), Xx(0) = x ∈ Rd, (2.8)

where b : Rd → Rd, σ : Rd → Rd×d and {B(t)}t≥0 is a d-dimensional Brownian
motion indexed by the interval [0,∞).

It follows from [10, Theorem 7.3.3] that L is the infinitesimal generator of the
process {Xx(t)}t≥0 i.e.

L f(x) = lim
t↓0

E[f(Xx(t))]− f(x)

t
, x ∈ Rd,

(where f is such that this limit actually exists).

Theorem 23. [11, Theorem 1.1] Let u(t, x) be a solution of the Cauchy problem
2.7 which, for every t ≥ 0, is bounded and has first and second order bounded and
uniformly continuous derivatives in x and moreover has first order derivative in t
which is locally uniformly continuous in t and x. Then

u(t, x) = E
[
φ(Xx(t)) exp

{∫ t

0

c(Xx(s))ds

}]
. (2.9)

Notice that the theorem assumes in advance the existence of a classical solution sat-
isfying certain conditions. Nevertheless we can a priori consider the expression (2.9)
as a generalized solution of the problem 2.7. Under certain conditions regarding the
coefficients of equation 2.7 the Feynman-Kac representation is a classic solution (see
for instance the discussion in [11, page 122] ) This is to say that even though a clas-
sical solution may not exist one could still consider the Feynman-Kac representation
as a sort of solution for the problem in some weaker sense.

Proof. Assume that u(t, x) is the solution of 2.7.

Then define

Z1(s) := e
∫ s
0 c(Xx(r))dr, Z2(s) := u(X(s)x, t− s).

Applying Itô rule we obtain the following

dZ1(s) = Z1(s)c(X(s)x)ds

dZ2(s) = (−∂tu(X
x(s), t− s) + L (x)u(Xx(s), t− s))ds+ σ(Xx(s))∇u(Xx(s), t− s)dB(s),

where ∇u denotes the spatial gradient of u.

Then by the product rule we have

d(Z1(s)Z2(s)) = Z1(s)dZ2(s) + Z2(s)dZ1(s)

= Z1(s) [−∂tu+ L (x)u+ cu]︸ ︷︷ ︸
=0

ds+ Z1(s)σ∇uB(s)
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Integrating and taking expectations

E [Z1(t)Z2(t)] = E [Z1(0)Z2(0)] = u(t, x) = E
[
φ(Xx(t))e

∫ t
0 c(Xx(s))ds

]
.

2.1.8 Wong-Zakai approximations

The Wong-Zakai approximation theorem is a key result in the theory of stochastic
calculus and it appeared for the first time in [12] and [13]. Assume we are considering
a SDE of the form

dX(t) = b(t,X(t))dt+ σ(t,X(t))dB(t), X(0) = x, t ∈ [0, T ],

where as usual {B(t)}t∈[0,T ] denotes a standard Brownian motion.

Now let’s consider a smooth (differentiable) approximation {Bϵ(t)} of the Brownian
motion which depends on a parameter ϵ and that converges to {B(t)}t∈[0,T ] in some
opportune topology as ϵ → 0 (we could for instance take the convolution of B with
a mollifier, a piecewise approximation, or a truncated Karuhnen-Loève series).

What if we replace the Brownian motion in the SDE above with our smooth ap-
proximation? In that case we would be left to consider the following (random)
ODE

Ẋϵ(t) = b(t,Xϵ(t)) + σ(t,Xϵ(t))Ḃϵ(t), Xϵ(0) = x, t ∈ [0, T ].

An interesting question then arises; will Xϵ converge (in some opportune sense) to
X as ϵ → 0?

Surprisingly (or not so much as we will see in the following sections) Wong and Zakai
give us a negative answer; Xϵ won’t converge to X but rather to a close relative of
it. In fact Xϵ will converge as we let the approximation of our Brownian motion
become more rough to the solution of the following SDE

dX (t) = b(t,X (t))dt+ σ(t,X (t)) ◦ dB(t), X(0) = x, t ∈ [0, T ],

where ◦ denotes the fact that the stochastic integration must be understood in the
Stratonovich sense (e.g. [14]) or equivalently the following SDE of the Itô type

dX (t) =

[
b(t,X (t)) +

1

2
σ′σ(X (t))

]
dt+ σ(t,X (t))dB(t), X(0) = x, t ∈ [0, T ],

For a proof of this result the reader is referred to the original paper [13] and to
[15].
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2.2 Gaussian analysis and elements of Malliavin Cal-
culus

2.2.1 Gaussian Hilbert spaces

In the previous section we presented the concept of Brownian motion and the
stochastic integrals of Wiener and Itô type using tools from the classical stochastic
analysis. In that setting the paths of the Brownian motion where seen as elements
in the Wiener space which acted as our canonical probability space. In this section
we will allow for more general probability spaces, in fact, unless stated otherwise we
won’t assume anything regarding the structure of the underlying probability space.
This will allow to treat concepts in great generality.

The main aim of this section is that of introducing the so called Wiener chaos
decomposition and explain how it relates with the concepts trated so far.

Definition 24. A Gaussian linear space is a real linear space of random variables
defined on an arbitrary probability space (Ω,F ,P) such that each variable in the
space is centered Gaussian. A Gaussian Hilbert space is a Gaussian linear space
which is complete.

Theorem 25. If G ⊂ L2(Ω,F ,P) is a Gaussian linear space, then its closure G in
L2(Ω,F ,P) is a Gaussian Hilbert space.

A nice property of this spaces (which can be shown by linearity) is that any set of
random variables in a Gaussian Hilbert space has a joint normal distribution.

Example 26. Let T be a positive real constant and let (Ω,F ,P) denote the Wiener
space5 on the interval [0, T ], furthermore let {B(t)}t∈[0,T ] be the canonical one-
dimensional Brownian motion. An example of a Gaussian Hilbert space that will be
extensively used in this thesis is given by{∫ T

0

f(t)dB(t) : f ∈ L2([0, T ])

}
,

where the integral above must be understood in the Wiener sense (see section 2.1.3).

Example 27. Let (Ω,F ,P) = (R,B(R), γ) where γ is the one-dimensional standard
Gaussian measure. Let ι : Ω → R be given by x 7→ ι(x) = x, then it’s evident that
ι ∼ N (0, 1). The space defined by {

ιt : t ∈ R
}
,

is a Gaussian Hilbert space.
5We could actually consider any probability space rich enough to carry a Brownian motion but

for the sake of conciseness we shall work with the Wiener space
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Notice that in two examples above each element of the Gaussian Hilbert space could
be identified with an element of a real Hilbert space. This in fact can be formalized
using the following definition.

Definition 28. A Gaussian Hilbert space indexed by a (real) Hilbert space H is a
Gaussian Hilbert space G together with a specific linear isometry h 7→ W (h) of H
onto G (notice that the underlying probability space is not explicitated, and in fact
it’s irrelevant as stated in [16, page 1])

In order to emphasize the indexing space we will write G(H), then the spaces in the
two examples above will be denotes by G(L2([0, T ])) and G(R) respectively.

2.2.2 Wiener Chaos

This section will be devoted to introduce an extremely important result in stochastic
calculus, namely the Wiener chaos decomposition. We start by presenting an ab-
stract version of the latter and later on we will introduce the more usual one based
upon the multiple Wiener integrals.

For the easiness of exposition we will focus our attention on the simpler case illus-
trated by assumption 1 bellow, but the reader must bear in mind that this theory
could be developed under a more general setting.6

Assumption 1. Let T be some arbitrary positive real number and let (Ω,F ,P) be the
Wiener space over the interval [0, T ] where we define the canonical one-dimensional
Brownian motion {B(t)}t∈[0,T ]. In order to ease the notation we will denote with H
the Gaussian Hilbert space we’ve introduced in example 26, i.e.

H := G(L2([0, T ])) =

{∫ T

0

f(t)dB(t) : f ∈ L2([0, T ])

}
.

Definition 29. Let {FB
t }t∈[0,T ] be the natural filtration of {B(t)}t∈[0,T ]. Then a

random variable F defined on (Ω,F ,P) is called a Brownian functional if F is FB
T -

measurable.

Notice that under assumption 1 it holds that FB
T = F = σ(H).

From now on we will denote the space of square integrable Brownian functionals
with L2 (which in our current setting equals L2(Ω,F ,P)).

It is important to keep in mind that by definition any element ξ ∈ H can be seen as
the Wiener integral I(f) for some f ∈ L2([0, T ]).

6As a matter of fact we could assume that (Ω,F ,P) is some generic probability space, that H is
some real Hilbert space and that G(H) is some Gaussian Hilbert space indexed by H. Furthermore
we could let W be an isometry of H onto G(H). In that case instead of working with the space of
square integrable Brownian functionals L2 we would consider L2(Ω, σ(G(H)),P); see for instance
section 2.3.3.
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Definition 30. Let, for n ∈ N0, Pn(H) be the closure in L2 of the linear space

Pn(H) : =
{
p(ξ1, ..., ξm) : p is a polynomial of degree ≤ n on ξ1, ..., ξm ∈ H;m < ∞

}
,

and let the n-th homogeneous chaos be given by

H:n: := Pn(H) ∩ Pn−1(H)
⊥,

where the symbol ⊥ denotes the orthogonal complement. For n = 0 we let H:0: be
the space of constants.

We are now ready to enunciate the Wiener chaos decomposition theorem in its more
abstract form.

Theorem 31. The spaces H:n:, n ∈ N are mutually orthogonal, closed subspaces of
L2 and furthermore we have that

L2 =
∞⊕
n=0

H:n:.

Proof. The mutual orthogonality is clear from the definition so the only thing we
need to show is that if F is orthogonal to H:n: for all n ∈ N0 then F = 0 a.s. .

Let ξ ∈ H then by the triangular inequality and the Taylor expansion of the expo-
nential function we have∣∣∣∣∣eiξ −

n∑
k=0

(iξ)k

k!

∣∣∣∣∣ ≤ 1 +
n∑

k=0

|ξ|k

k!
≤ 1 + e|ξ|.

Taking the L2 norm on both sides and using the dominated convergence theorem
(DCT for brevity) yields that

∑n
k=0

(iξ)k

k!
converges to eiξ in L2 as n → ∞. Since ξk ∈

Pk(H) ⊂
⊕∞

n=0H
:n: this shows that eiξ ∈

⊕∞
n=0H

:n: whenever ξ ∈ H. Consequently
if F is orthogonal to

⊕∞
n=0H

:n: we have that E
[
Fe−iξ

]
= 0. Finally [16, lemma 2.7]

implies the desired result.

Corollary 32. Let F ∈ L2 then from theorem 31 it follows that

F =
∞∑
n=0

Fn convergence in L2

where Fn := πn(F ) and πn stands for the orthogonal projection of L2 on H:n:.

From definition 30 it’s clear that the homogeneous chaoses are formed by orthogonal
polynomials, we will formalize this intuition in the following theorem.
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Theorem 33. Let {mj}j∈N be an orthonormal basis of L2([0, T ]), then it’s clear
that the family of random variables {I(mj)}j∈N forms an orthonormal basis of the
Gaussian Hilbert space H.

Let J := (NN
0 )c denote the space of “multi-indexes”, i.e. the space of integer-valued

sequences with finitely many non-zero components and define

Hα :=

(
∞∏
j=1

αj!

)−1/2 ∞∏
j=1

Hαj
(I(mj)) , α ∈ J ,

where for any n ∈ N0, Hn stands for the n-th Hermite polynomial and is given by

Hn(x) := (−1)nex
2/2 dn

dxn
e−x2/2.

Then the family of random variables {Hα, α ∈ Jn} where Jn := {α ∈ J : |α| = n}
and for any multi-index α we write |α| :=

∑∞
j=1 αj, forms an orthonormal basis of

H:n: .

Proof. We start by observing that for any α, β ∈ Jn it holds that

E [HαHβ] =
∞∏
i=1

E [Hαi
(In(mi)) Hβi

(In(mi))] =

{
1, if α = β

0, otherwise.

Thus when n varies the families {Hα, α ∈ Jn} are mutually orthogonal. Further-
more it’s clear that the latter belongs to Pn(H). It is then enough to show that
every polynomial random variable in Pn can be approximated by polynomials in
{I(mj)}j∈N, which is clear because the latter is a basis of H.

Corollary 34. A corollary of this lemma due to Cameron and Martin [17] is that
for any F ∈ L2 we have that

F =
∑
α∈J

FαHα, convergence in L2,

where Fα = E [FHα] and

∥F∥L2 =
∑
α∈J

F 2
α.

In the next definition we will introduce a tool that will be extensively used in this
thesis, namely the Wick product.
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Definition 35. If ξ1, ..., ξn is a finite sequence of elements of H their Wick product
: ξ1 · · · ξn : is given by

: ξ1 · · · ξn : = πn(ξ1 × · · · × ξn),

sometimes : ξ1 · · · ξn : is called the renormalization of ξ1 × · · · × ξn.

Remark 36. It’s important to remark the fact that although from the definition above
it could seem that the Wick product is an operation exclusively defined between
elements of some Gaussian Hilbert space this is not actually the case. In fact in
section 2.3.6 we will present a much more general definition of the Wick product.

Proposition 37. [16, Theorem 3.20] If ξ1, ..., ξn and η1, ..., ηm are centered jointly
Gaussian variables, such that E [ξiηj] = 0 for all i and j, then

: ξ1 · · · ξnη1 · · · ηm : = : ξ1 · · · ξn : : η1 · · · ηm :

A proof of this proposition can be obtained using the tools we will develop in section
2.3, see in particular the example 103.

Proposition 38. Let ξ be a standard Gaussian random variable, then it holds that

: ξn : = Hn(ξ), n ∈ N0 (2.10)

where Hn denotes the n-th Hermite polynomial and we impose H0(x) ≡ 1.

Proof. Since the Wick product : ξ1 · · · ξn: coincides on any Gaussian Hilbert space
containing ξ1, . . . , ξn, it is enough to consider the Wick power : ξn: on the one di-
mensional Gaussian Hilbert space Ξ ⊂ H given by the span of some arbitrary ξ ∈ H.

In particular by theorem 33, Ξ:n: is one-dimensional and is spanned by Hn(ξ). There-
fore

: ξn: = πn(ξ
n) = λHn(ξ)

a.s. for some λ ∈ R.

To identify λ, notice that by standard properties of orthogonal projections

E [: ξn : Hn(ξ)] = E [ξnHn(ξ)]

Now since ξn ∈
⊕n

j=0 Ξ
:j:, we have the decomposition ξn =

∑n
j=0 E [ξnHn(ξ)]Hj(ξ).

Since the leading coefficient of Hn is equal to 1 and n-th order coefficients must
match, we see that E [ξnHn(ξ)] = 1. Therefore

λ = E [: ξn : Hn(ξ)] = E [ξnHn(ξ)] = 1.
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Corollary 39. Let n ∈ N0 be fixed, and let Hn denote the n-th Hermite polynomial.
Then we have the following equivalence

H:n: ≡ span
{
Hn(ξ); ξ ∈ H

}
(2.11)

Remark 40. The connection between Wick powers and Hermite polynomials was
already present in the Physics’ literature, specially when computing powers of the
position operator in Quantum Field Theory (e.g. [18],[19] or [20])

If ξ1, ..., ξn and η1, ..., ηm are centered jointly normal variables, then

E [: ξ1 · · · ξn : : η1 · · · ηm :] =

{∑
σ∈Pn

∏n
i=1 E

[
ξiησ(i)

]
, m = n,

0, m ̸= n.

Following [21] we have that since the left hand side above is symmetric, it suffices
to prove it for ξ1 = η1, ..., ξn = ηn. Furthermore using the polarization identity it
suffices to consider the case in which ξ1 = · · · = ξn = ξ where we assume as well
that ξ is a standard Gaussian random variable. Then under this assumptions the
formula above reads

E
[
| : ξn : |2

]
= E

[
Hn(ξ)

2
]
= n!,

which is the well known normalization of Hermite polynomials.

Theorem 41. If ξ1, ..., ξn ∈ H then the map

ξ1 ⊙ · · · ⊙ ξn 7→ : ξ1 · · · ξn :

defines a Hilbert space isometry of H⊙n onto H:n:.

Proof. From the definition of symmetric tensor product in the Hilbert space context
we know that

(ξ1 ⊙ · · · ⊙ ξn , η1 ⊙ · · · ⊙ ηn)H⊙n =
∑
σ∈Pn

(
ξ1, ησ(1)

)
H
· · ·
(
ξn, ησ(n)

)
H
.

This together with the fact that for any ξ ∈ H it holds that (ξ, 1)H = E [ξ] = 0
implies the result stated above.

The previous result states that from an abstract point of view the Wick product,
understood as an operation between Gaussian random variables is the same as the
symmetric tensor product if we consider those same random variables as elements
of a (Gaussian) Hilbert space.
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2.2.3 Multiple stochastic integration and Wiener Chaos.

In section 2.1.3 we’ve introduced the concept of Wiener integral in a way that
resembles the construction of the Lebesgue integral, namely we’ve started from step
functions and then extended the definition by a density argument. In this section
instead, we will work under a more abstract framework . For the sake of simplicity
all throughout this section we will work under assumption 1 (the reader is referred
to [16] and [22] for a more general treatment).

From example 26 we have that the Wiener integral I is an isometry of L2([0, T ])
onto the Gaussian Hilbert space H; then the tensor power I⊙n is an isometry of
L2([0, T ])⊙n onto H⊙n which as we stated in theorem 41 can be identified with
H:n:.

In accordance with assumption 1 we will consider only the case of functions defined
on a bounded interval [0, T ] for some positive real constant T , but the results can
nonetheless be extended to the case of a generic interval T ⊂ R and more generally
to the case of a metric space M (see [16, chapter 7.2])

Proposition 42. Let T be some positive real constant and define the simplex

Tn
[0,T ] := {(t1, ..., tn) : 0 < t1 < · · · < tn < T}. (2.12)

We have the following identifications

L2([0, T ])⊙n ∼= L2
sym ([0, T ]n) ∼= L2(Tn

[0,T ]),

where as usual the symbol ∼= denotes the fact that the spaces are isomorphism and
L2sym ([0, T ]n) denotes the subspace of symmetric functions in L2([0, T ]) where for
“symmetric function” we refer to any function f ∈ L2([0, T ]n) such that

f(t1, ..., tn) = f
(
tσ(1), ..., tσ(n)

)
, (t1, ..., tn) ∈ Rn

for any permutation σ ∈ Pn where Pn denotes the permutation group of {1, 2, ..., n}.

With all this in hand we are now ready to introduce the multiple Wiener inte-
gral.

Theorem 43. For each n ∈ N0 there exists a map

In : L2
sym ([0, T ]n) → H:n:,

such that

In(f1 ⊙ · · · ⊙ fn) = : I(f1) · · · I(fn) : (2.13)

and

E
[
|In(f1 ⊙ · · · ⊙ fn)|2

]
= n!∥f1 ⊙ · · · ⊙ fn∥L2([0,T ]n). (2.14)
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The idea is now to show that the map In defines a n-fold multiple Wiener inte-
gral.

Let X (t1, ..., tn) := χ(a1,b1] ⊙ · · · ⊙ χ(an,bn](t1, ..., tn) where 0 ≤ a1 < b1 ≤ a2 < · · · <
bn−1 ≤ an < bn ≤ T .

Then by the definition above, the independence of the increments of the Brownian
motion over disjoint time intervals and proposition 37 we have that

In(X ) = :
n∏

i=1

[B(bi)−B(ai)] : =
n∏

i=1

[B(bi)−B(ai)],

and

In−1(X (•, tn)) =
n−1∏
i=1

[B(bi)−B(ai)]χ(an,bn](tn).

The latter is clearly Itô-integrable and it’s clear that

In(X ) =

∫ T

0

In−1(X (•, tn))dB(tn);

where the integral above must be understood in the Itô sense. Proceeding by induc-
tion we obtain

In(X ) = n!

∫ T

0

∫ tn

0

· · ·
∫ t2

0

X (t1, ..., tn)dB(t1) · · · dB(tn),

or using a more compact notation

In(X ) = n!

∫
Tn
[0,T ]

X (t1, ..., tn)dB
⊗n(t1, ..., tn) = n!Jn(X ),

where Jn denotes the n-fold iterated Wiener integral. The result holds for any
function in L2sym([0, T ]n) since functions like X are dense in the latter.

This implies that if f ∈ L2sym([0, T ]n)

In(f) := n!

∫
Tn
[0,T ]

f(t1, ..., tn)dB
⊗n(t1, ..., tn),

since the simplex Tn
[0,T ] occupies a fraction of the box [0, T ]n equal to 1/n! is clear

from the symmetric nature of f that we can think of In as an n-fold multiple Wiener
integral over [0, T ]n.
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In order to show (2.14) we iteratively apply Itô’s isometry to get

E
[
J2
n(f)

]
= E

(∫
Tn
[0,T ]

f(t1, ..., tn)dB
⊗n(t1, ..., tn)

)2


= E

∫ T

0

(∫
Tn−1
[0,tn]

f(t1, ..., tn)dB
⊗(n−1)(t1, ..., tn−1)

)2

dtn


...

=

∫
Tn
[0,T ]

f(t1, ..., tn)
2dt1 · · · dtn = ∥f∥2

L2
(
Tn
[0,T ]

).
Then it follows that

E
[
|In(f)|2

]
= (n!)2E

[
|Jn(f)|2

]
= (n!)2∥f∥2

L2
(
Tn
[0,T ]

) = n!∥f∥2L2([0,T ]),

where in the last equality we used the symmetry of f .

The n-fold Wiener integral can be extended to a non-symmetric function h ∈
L2([0, T ]n) by letting

In(h) := In (Symh) , (2.15)

where

Symh(t1, ..., tn) :=
1

n!

∑
ρ∈Pn

h
(
tρ(1), ..., tρ(n)

)
.

is called the symmetrization of h.

Corollary 44. From theorem 43 and proposition 38 it follows that if f ∈ L2sym([0, T ]n)
then

In(f) = Hn(I(f);σ) = σnHn(I(f)/σ)

with
σ = ∥f∥L2([0,T ]n).

Now we are ready to present the connection between Wiener chaos expansion and
multiple Wiener integrals.

Lets start by considering any square integrable Brownian functional F ∈ L2. The-
orem 31 states that such a random variable can be written as an infinite series of
the form

∑∞
n=0 πn(F ) where πn(F ) denotes the orthogonal projection of the random

variable F on the n-th homogeneous chaos. Furthermore from theorem 33 we know
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that the family {Hα : α ∈ Jn} forms an orthonormal basis of H:n:. Then we must
have that

H:n: ∋ πn(F ) =
∑
α∈Jn

E [FHα]Hα (2.16)

In the following we will need the next result which shows the connection between
multiple Wiener integrals and the generalized Hermite polynomials.

Lemma 45. Let {mj}j∈N be an orthonormal basis of L2([0, T ]) and let α ∈ Jn, n ∈
N then it holds that

Hα =

(
∞∏
j=1

αj!

)−1/2

In

(
∞⊙
j=1

m
⊙αj

j

)
. (2.17)

Proof. Let us write α! :=
(∏∞

j=1 αj!
)

then by definition (see theorem 33) we have
that

Hα := (α!)−1/2

∞∏
j=0

Hαj
(I(mj)),

and since the m’s have unitary norm we can use theorem 43 and proposition 38 to
write the latter as

(α!)−1/2

∞∏
j=0

Iαj
(mj).

The orthogonality of the elements of {mj}j∈N together with Itô’s isometry implies
that E[I(mk)I(mj)] = 0, ∀j ̸= k and then by proposition 37 we can see that the
product above could as well be interpreted as a Wick product, i.e. we can write the
last expression as

(α!)−1/2 :
∞∏
j=0

Iαj
(mj) : .

Finally the conclusion follows from theorem 43.

Plugging (2.17) into (2.16) we obtain

πn(F ) = In(fn),

where

L2
sym([0, T ]n) ∋ fn :=

∑
α∈Jn

E [FHα] (α!)
−1/2

∞⊙
j=1

m
⊙αj

j . (2.18)

The discussion above allows us to state the most well known form of Wiener chaos
decomposition in terms on multiple Wiener integrals.
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Theorem 46. Let F ∈ L2 then

F =
∞∑
n=0

In(fn) convergence in L2,

where fn ∈ L2sym([0, T ]n), n ∈ N.

From this theorem we are able to see that each square integrable Brownian func-
tional F ∈ L2 is in a one-to-one relationship with a sequence of kernels. This
last consequence could be summarized as (see [16] and [23] for in-detailed explana-
tions)

Theorem 47. Let L2 denote the space of square integrable Brownian functionals
then the Itô-Wiener-Segal isomorphism tells us that

L2 ∼= Γ(L2([0, T ]))

where the symmetric Fock space Γ(L2([0, T ])) over L2([0, T ]) is defined by

Γ(L2([0, T ])) :=

{
(fn)

∞
n=0 : fn ∈ L2

sym([0, T ]n),
∞∑
n=0

n!∥fn∥2L2sym([0,T ]n) < ∞

}
.

Remark 48. One could adapt all the discussions we’ve presented in this chapter to
the case in which the Gaussian Hilbert space is indexed by L2(M,M,m) where
(M,M,m) is some arbitrary measure space (see [16, chapter 7.2]).

An alternative (and less technical) derivation of Wiener chaos decompo-
sition.

An alternative derivation of the Wiener chaos decomposition in terms of multiple
Wiener integrals can be obtained by an application of the Itô representation theorem.
This proof based upon the set of notes [24].

Let F ∈ L2, the Itô representation theorem tells us that there exist a {FB
t }t∈[0,T ]-

adapted (where as usual {FB
t }t∈[0,T ] denotes the natural filtration) process {φ1(t)}t∈[0,T ]

such that

F = E[F ] +

∫ T

0

φ1(t1)dB(t1) (2.19)

with

E
[∫ T

0

|φ1(t1)|2dt1
]
≤ ∥F∥2L2 .
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Now for any fixed t1 ∈ [0, T ] we can apply the Itô representation theorem to the
random variable φ1(t1) and find a {FB

t }t∈[0,T ] adapted process {φ2(t1, t)}t∈[0,t1] such
that

φ1(t1) = E[φ1(t1)] +

∫ t1

0

φ2(t1, t2)dB(t2), (2.20)

and

E
[∫ T

0

|φ2(t1, t2)|2dt2
]
≤ ∥φ1(t1)∥2L2 .

Plugging (2.20) into (2.19) we obtain

F = E[F ] +

∫ T

0

E[φ1(t1)]dB(t1) +

∫ T

0

∫ t1

0

φ2(t1, t2, ω)dB(t2)dB(t1). (2.21)

We can continue iteratively with this procedure and we would arrive to the following
equality

F = E[F ] +
N∑

n=1

∫
Tn
[0,T ]

E[φn(t1, ..., tn)]dB
⊗n(t1, ..., tn)

+

∫
TN+1
[0,T ]

φN+1(t1, ..., tN+1)dB
⊗(N+1)(t1, ..., tN+1).

We can ease the notation by letting g0 := E[F ], gn(t1, ..., tn) := E[φn(t1, ..., tn)], n ∈
{1, ..., N} and using Jn to denote the n-fold iterated Wiener integral. By doing so
we obtain the following expression

F =
N∑

n=0

Jn(gn) +

∫
TN+1
[0,T ]

φN+1(t1, ..., tN+1)dB
⊗(N+1)(t1, ..., tN+1)

An iterative application of Itô’s isometry shows that

E

[(∫
TN+1
[0,T ]

φN+1dB
⊗(N+1)

)
Jn(fn)

]
= 0, for any fn ∈ L2(Tn

[0,T ]) with n ≤ N,

and hence

∥F∥2L2 =
N∑

n=0

∥Jn(gn)∥2L2 +

∥∥∥∥∥
∫
TN+1
[0,T ]

φN+1dB
⊗(N+1)

∥∥∥∥∥
2

L2

, for any interger N .
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This in turn implies that
∑∞

n=0 Jn(gn) is convergent in L2 and thus

Ψ := L2 − lim
N→∞

∫
TN+1
[0,T ]

φN+1dB
⊗(N+1),

must exits. By the argument above we must have that

E[ΨJn(fn)] = 0, for any fn ∈ L2(Tn
[0,T ]), n ∈ N,

and thus it follows from and the density of Hermite polynomials that Ψ = 0. This
implies that

F =
∞∑
n=0

Jn(gn), convergence in L2,

but we would like to express the random variable as a series involving In not Jn.
In order to do that we can extend the domain of gn from the simplex to the whole
box by imposing its value on [0, T ]n\Tn

[0,T ] to be simply 0; let us call this modified
function g̃n. Then take the symmetrization of g̃n and notice that then

In (Sym g̃n) = Jn(gn),

which finally allow us to write

F =
∞∑
n=0

In(fn)

and since ∥gn∥L2(Tn
[0,T ]

) = n!∥fn∥L2([0,T ]n) it follows that

∥F∥L2 =
∞∑
n=0

n!∥fn∥L2([0,T ]n).

2.2.4 Elements of Malliavin Calculus

The Malliavin calculus (also known as the stochastic calculus of variations) is an
infinite dimensional on the Wiener space. The fundations of this theory were set
by Paul Malliavin in [25] in which he proposed a probabilistic proof of Hörmander’s
theorem. Later on this a very rich theoretical apparatus was build upon this original
idea.

In the following we will introduce some of basic ideas regarding the Malliavin cal-
culus, in particular we will be concerned with the computation of derivatives of
random variables with respect to the chance parameter ω.

Once again for the sake of uniformity and easiness of exposition in this section we will
work under the setting described in assumption 1 (we should bear in mind the fact
that we could consider much more general settings, see for instance [22],[16],[26])and
in correspondence with the notation used so far we will denote with Lp the space of
p-integrable Brownian functionals for any p ≥ 1.
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The Malliavin derivative

In the following we will be interested in calculating the derivative of a square inte-
grable random variable F ∈ L2 with respect to the chance parameter ω ∈ Ω.

Let S denote the class of smooth random variables F having the form

F = f(I(h1), ..., I(hn)), n ∈ N,

where h1, ..., hn ∈ L2([0, T ]) and f ∈ C∞
p (Rn) which stands for the set of all infinitely

continuously differentiable functions such that each function together with all its
derivatives has a polynomial growth. We will refer to S as the family of smooth
Brownian functionals.

Proposition 49. The space S is dense in L2. This is easily seen by noticing that
Sp ⊂ S where S is the class of random variables of the form F = f(I(h1), ..., I(hn))
where f is a polynomial, and that Sp is dense in L2.

Definition 50. The Malliavin derivative of a smooth random variable F is the
L2([0, T ])-valued random variable given by

DF =
n∑

i=1

∂if(I(h1), . . . , I(hn))hi,

where ∂i denotes the partial derivative with respect to the i-th variable. In the
same way, we can define the k-th derivative of F for any k ∈ N, which will be a
L2([0, T ])⊗k-valued random variable.

Definition 51. Let S be the space of smooth random variables, and define the
following semi-norm on S for k ∈ N and p ≥ 1,

∥F∥k,p :=

[
E (|F |p) +

k∑
j=1

E
(
∥DjF∥p

L2([0,T ])⊗j

)]1/p
.

We will denote by Dk,p the completion of the family S with respect to the norm
∥ • ∥k,p and for any F ∈ Dk,p, we will let

DkF = lim
n→∞

DkFn in Lp
(
L2([0, T ])⊗k

)
,

where (Fn)n∈N ⊂ S is any sequence converging to F in Lp. The spaces Dk,p are
referred to as Sobolev-Malliavin spaces in analogy with the usual Sobolev spaces
(e.g. [27]).

Proposition 52. Let φ : Rm → R be a continuously differentiable function with
bounded partial derivatives. Suppose that F = (F1, ..., Fm) is a random vector whose
components belong to the space D1,p for some p ≥ 1. Then φ(F ) ∈ D1,p and

D(φ(F )) =
m∑
i=1

∂iφ(F )DFi (2.22)
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Notice that the condition regarding the boundedness of the derivatives of φ is a
somewhat restrictive condition and it is by no means optimal (see [28, Proposition
2.3.7]). In fact we have the following two well known examples

Example 53. Let f ∈ L2([0, T ]) then

DI(f)n = mfI(f)(m−1), m ∈ N.

Example 54. Let f ∈ L2([0, T ]) then

DE(f) = fE(f),

and since E(f) ∈ Lp for any p ≥ 1 we conclude that the family of stochastic expo-
nentials E is contained in Dk,p for any k ∈ N, p ≥ 1.

Proposition 55. The space D1,2 is dense in L2.

Proof. The proof follows from the fact that the family of stochatic exponentials E
is contained in D1,2.

Fix h ∈ L2([0, T ]) then we can define the directional Malliavin derivatite of F in the
direction of h by

DhF := (DF , h)L2([0,T ])

Definition 56. The space of smooth random variables (in the sense of Malliavin)
will be given by

D∞,2 :=
⋂
k≥1

Dk,2.

Proposition 57.

Let F = In(fn) for some fn ∈ L2
sym([0, T ]n). Then

DtF = nIn−1(fn(•; t)), for any t ∈ [0, T ]. (2.23)

Proof. We consider a simple symmetric function of the form

fn(t1, ..., tn) =
N∑

i1,...,in=1

ai1,...,inχAi1
(t1)× · · · × χAin

(tn)
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where ai1,...,in = aiρ(1),...,iρ(n)
for any permutation ρ ∈ Pn and ai1,...,in = 0 if ik = il for

some i, l ∈ {1, ..., n}, k ̸= l and the elements of {Ai}i∈{1,...,n} are disjoint subsets of
B([0, T ]). In that case

In(fn) =
N∑

i1,...,in=1

ai1,...,inI(χAi1
)× · · · × I(χAin

),

and by definition 50 we obtain

DtIn(fn) =
n∑

j=1

N∑
i1,...,in=1

ai1,...,inI(χAi1
)× · · ·χAij

(t)× · · · × I(χAin
) = nIn−1(fn(•; t)).

The result follows easily by a limit argument.

Proposition 58. Let F ∈ L2 have the following Wiener chaos decomposition

F =
∞∑
n=0

In(fn).

Then

F ∈ D1,2 ⇐⇒
∞∑
n=1

nn!∥fn∥2L2([0,T ]n) < ∞,

and in this case

DtF =
∞∑
n=1

nIn(fn(•; t)), convergence in L2.

Lemma 59. Let F ∈ D∞,2 have the following chaos decomposition

F =
∞∑
n=0

In(fn).

Then it holds that fn =
1

n!
E[DnF ]. This is sometimes referred to as the Strook-

Taylor formula (see for instance [29]).

Example 60. From example 54 we know that for any f ∈ L2([0, T ]) the random
variable E(f) belongs to the space D∞,2. Furthermore we also showed that E[E(f)] =
1 for any f ∈ L2([0, T ]), thus from the lemma above we have the following Wiener
chaos decomposition of the stochastic exponential

E(f) =
∞∑
n=0

1

n!
In(f

⊗n).
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The divergence operator and Skorohod integral

The Malliavin derivative D introduced in the previous section is an unbounded oper-
ator from L2 into L2(L2([0, T ])) (space of square integrable L2([0, T ])-valued Brow-
nian functionals). Nonetheless it’s densely defined (remember that the Malliavin-
Sobolev space D1,2 is dense in L2) and that means that we can define its formal
adjoint δ. The domain of this operator denote by Dom(δ), is the set of random
variables v ∈ L2(L2([0, T ])) such that for any F ∈ D1,2,∣∣E [(DF , v)L2([0,T ])

] ∣∣ ≤ c∥F∥L2 ,

where c is a constant depending on v. If v ∈ Dom(δ) then δ(v) is a random variable
in L2 characterized by

E [δ(v)F ] = E
[
(DF , v)L2([0,T ])

]
, for any F ∈ D1,2. (2.24)

Equation (2.24) a generalization of integration by parts formula

Proposition 61. Let F ∈ D1,2 and let u ∈ Dom(δ) such that Fu ∈ L2(L2([0, T ])).
Then Fu ∈ Dom(δ) and

δ(Fu) = Fδ(u)− (DF, u)L2([0,T ]) . (2.25)

Theorem 62. The class of Itô-integrable stochastic processes is contained in Dom(δ).
Morover if {u(t)}t∈[0,T ] is an Itô-integrable stochastic process, then

δ(u) =

∫ T

0

u(t)dB(t),

where the right-hand side denotes an Itô integral.

Proof. Let {u(t)}t∈[0,T ] be a Itô integrable stochastic process such that E[u(t)u(s)]
is a continuous function of t ∈ [0, T ] and s ∈ [0, T ]7. Then lets consider the simple
process

uN(t) :=
N∑
j=1

u(tj)χ[tj−1,tj)(t), t ∈ [0, T ], N ≥ 1,

where {0 = t0 < t1 < · · · < tN = T} is an arbitrary partition of the interval [0, T ].
It’s clear that uN converges to u in L2(L2([0, T ])) and from the discussion present
in section 2.1.4 we have that∫ T

0

u(t)dB(t) = lim
N→∞

∫ T

0

uN(t)dB(t), convergence in L2.

7This assumption is not needed for the validity of the theorem but it eases the presentation of
the proof
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Assume for a moment that u(tj) ∈ S for any j ∈ {0, 1, ..., N} then we have that

δ
(
uN
)
= δ

(
N∑
j=0

u(tj)χ[tj ,tj+1)

)
=

N∑
j=0

δ(χ[tj ,tj+1))

=
N∑
j=0

u(tj)I(χ[tj ,tj+1))−
N∑
j=0

(
Du(tj) , χ[tj ,tj+1)

)
L2([0,T ])

=
N∑
j=0

u(tj)[B(tj+1)−B(tj)]

=

∫ T

0

uN(t)dB(t),

since Dtu(tj) = 0 for t > tj. This holds in general if we approximate u(tj), j =
0, 1, ..., N with a sequence of smooth random variables in S (such a sequence exists
due to the density of S in L2) This shows that δ and the Itô integral coincides on
the class of adapted simple processes. A limit argument shows that if u ∈ Dom(δ)

then δ(u) =
∫ T

0
u(t)dB(t).

If the integrand is non-adapted then the operator δ coincides with an anticipat-
ing stochastic integral introduced by Skorohod in [30]. In that case we will write
instead

δ(u) =

∫ T

0

u(t)δB(t),

where the right-hand-side will be referred to as a Skorohod integral.

2.3 White noise distribution theory.
The basis for white noise calculus were presented by Hida in his work [31] and was
subsequently developed by several authors (see for instance [32],[23],[33] and refer-
ences therein). This theoretical framework allows for a rigorous construction of the
white noise functionals (in analogy with the concept of Brownian functionals we’ve
introduced in the previous sections ), where the white noise process is identified
with the derivative of a Brownian motion.

Although it’s well known that the paths of Brownian motions are not smooth enough
to posses an actual derivative we are able to compute its derivative in a distributional
sense.

The mathematical framework is based upon an infinite dimensional analogue of the
Schwartz distribution theory where the role of the Lebesgue measure on R is played
by an infinite dimensional Gaussian measure [23].
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So far we have always consider the case in which the indexing interval was given
by [0, T ] for some positive real constant T . This is due to the fact that in general
we interpret the interval [0, T ] as a time interval which for the great majority of
applications can be assumed to be bounded.

Under risk of slight confusion in what follows we shall, instead, use the whole real line
as the indexing space, intuitively this means we will have to do with the derivative
of a Brownian motion indexed by R 8. This is particularly useful when dealing with
applications in which the indexing space represents (one of the dimensions of ...)
the physical space as we will do in chapters 6 and 7. For a construction of the
white noise distribution theory based upon bounded intervals the reader is referred
to [34].

2.3.1 The Schwartz Space

Definition 63. We start by introducing the so called Schwartz space of test func-
tions, which, together with its dual will be two key elements in the development of
the white noise theory.

The Schwartz space of rapidly decreasing functions S (R) is the linear space of all
functions f : R → C satisfying

sup
x∈R

∣∣∣∣xad
bf(x)

dxb

∣∣∣∣ < ∞

for all a, b ∈ N0 where d0

dx0 equals the identity operator.

The finiteness condition implies that f ∈ S (R) together with all its derivatives goes
to zero faster than any polynomial as |x| → ∞. From now on we will refer to any
element of S (R) as a Schwartz function. Obviously we can extend the definition
above to functions defined on Rd, d ∈ N this is, let α, β ∈ (N0)

d be two multi-indices
then the multi-dimensional Schwartz space is given by the functions f : Rd → C
satisfying

sup
x∈Rd

|xαDβf(x)| < ∞

where we use the following notation

|γ| = γ1 + · · ·+ γd, for all γ = (γ1, ..., γd) ∈ (N0)
d

xα :=
d∏

i=1

xαi
i , and Dβ :=

∂|β|

∂β1
x1 · · · ∂βd

xd

.

8More generally one could use Rd as the indexing space, but we attach to d = 1 case for the
sake of simplicity
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Definition 64. If we write

[[•]]a,b := sup
x∈R

∣∣∣∣xa db

dxb
•
∣∣∣∣

then {[[•]]a,b, a, b ∈ N0} constitutes a family of semi-norms in S (R).

Reconstruction of the Schwartz space.

Following [35] and [33] we present a construction of the Schwartz space which will
be extremely useful in the following.

Lets consider the operator

A = − d2

dx2
+ x2 + 1, (2.26)

which coincides with the Hamiltonian of the harmonic oscillator (after some op-
portune normalization, e.g. [19]). This operator plays a very important role in the
construction of the Schwartz space as we shall see.

Let n ∈ N and define

en(x) :=
1√√

π2n−1(n− 1)!
Hn−1(

√
2x)e−x2/2 (2.27)

where Hn(x) := (−1)ne−x2/2 dn

dxn (e
−x2/2), n ∈ N0 is the n-th Hermite polynomial.

The family {en}n∈N are the so called Hermite functions9 and will be used several
times throughout this thesis.

In fact it is well known that the family {en}n∈N are solutions of the time-independent
Schrödinger equation (e.g. [36]); in particular they satisfy the following eigenvalue
problem

Aen = 2nen, n ∈ N,

and forms an orthonormal basis of the space L2(R).

An important property that follows easily from the definition (notice the presence
of the Gaussian kernel) is that en ∈ S (R) for any n ∈ N and from here we can
immediately see that S (R) is a dense subset of L2(R).

Now for any p ≥ 0 define

|f |p = ∥Apf∥L2(R).

9Notice that we use a different numbering of the Hermite functions in order to avoid having a
0 order term.
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Equivalently |f |p is given by

|f |p =

(
∞∑
n=1

(2n)2p(f , en)
2
L2(R)

)1/2

.

Let

Sp(R) :=
{
f ∈ L2(R) : |f |p < ∞

}
. (2.28)

Notice that the space Sp(R) is a Hilbert space with norm | • |p, furthermore we have
the following facts:

1. S (R) =
⋂

p≥0 Sp(R).

2. The families {[[•]]a,b ; a, b ∈ N} and {| • |p ; p ≥ 0} are equivalent in the sense
that they generate the same topology on S (R).

2.3.2 Space of Tempered distributions

The dual space of S (R) is known as the space of Tempered distributions and it’s
denoted by S ′(R). One of the most important examples of a tempered distribution
is the so called Dirac’s delta function δ0.

Following the reconstruction of the Schwartz space we’ve presented in the last section
we can conclude that formally

S ′(R) =
⋃
p≥0

S−p(R),

where S−p(R) is the dual space of Sp(R) for p ≥ 0.

Finally we arrive to the following chain of continuous inclusions maps

S (R) ⊆ Sp(R) ⊆ L2(R) ⊆ S−p(R) ⊆ S ′(R).

Proposition 65. The following properties will be used extensively in this thesis:

1. The Schwartz space S (R) is separable.

2. S (R) is dense in S ′(R) in the weak topology on S ′(R).

It follows that if ϕ ∈ S ′(R) we have the following series expansion

ϕ =
∞∑
n=1

⟨ϕ , en⟩en, weak convergence on S ′(R),

where ⟨•, •⟩ denotes the bilinear product between S ′(R) and S (R) and {en}n∈N
denotes as always the family of Hermite functions. The latter will be referred to as
the Hermite expansion.
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2.3.3 The White noise probability space.

The aim of this section is that of introducing a particular probability space will play
a role analogous to that of the Wiener space we’ve defined in section 2.1.2, i.e. that
will constitute the basis for the canonical construction of the so called white noise
functionals.

Definition 66. The white noise probability space will be given by the triplet
(S ′(R),B, µ) where B := B(S ′(R)) denotes the Borel sigma algebra on S ′(R)
which can be identified with the sigma algebra generated by the family A of cylin-
drical subsets

A :=
{
ω ∈ S ′(R) : (⟨ω, φ1⟩, ..., ⟨ω, φn⟩) ∈ U

}
where φ1, ..., φn ∈ S (R) and U ∈ B(Rn) for any n ∈ N. The measure µ which will
be called from now one the hite noise measure is an infinite dimensional analog of
the Gaussian measure whose existence is guaranteed by the following theorem.

Theorem 67. There exists a unique probability measure µ on S ′(R) with the fol-
lowing property: ∫

S ′(R)
ei⟨ω,φ⟩dµ(ω) = e

− 1
2
∥φ∥2

L2(R) , ∀φ ∈ S (R).

Remark 68. Interestingly if instead of S ′(R) we consider any infinite dimensional
Hilbert space the theorem above is no longer valid. In particular if H is an infinite
dimensional Hilbert space with norm ∥ • ∥H there is no Borel measure µ in H such
that

µ̂(x) = e−
1
2
∥x∥2H ,

where •̂ denotes the Fourier transform (see for instance [33] or [37]).

Corollary 69. It’s easy to see that for any φ ∈ S (R) the random variable ω 7→
⟨ω, φ⟩ is well defined for any ω ∈ S ′(R). From theorem 67 it follows that µ◦⟨•, φ⟩−1

equals the centered Gaussian measure with variance equal to ∥φ∥2L2(R) or which is
equivalent

⟨•, φ⟩ ∼ N
(
0, ∥φ∥2L2(R)

)
, ∀φ ∈ S (R). (2.29)

So far we’ve denoted with Lp the space of p-integrable Brownian functionals, i.e.
the space of p-integrable random variables defined on the Wiener space (C0,B,PW ).
In analogy with this notation we will write

(Lp) := Lp(S ′(R),B, µ), p ≥ 1. (2.30)

in particular when p = 2, (L2) denote the space of square integrable white noise
functionals.
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We can extend the dual paring to elements in L2(R) by a density argument, let
{fn}n∈N in S (R) be a sequence of Schwartz functions converging to f in L2(R)
(the existence of such a sequence of functions is ensured by the density of S (R) in
L2(R).) Then

∥⟨•, fn⟩ − ⟨•, fm⟩∥(L2) = ∥⟨•, fn − fm⟩∥(L2) = ∥fn − fm∥L2(R),

where in the last equality we used the fact that ⟨•, fn−fm⟩ ∼ N
(
0, ∥fn − fm∥2L2(R)

)
.

Remembering that the sequence {fn}n∈N is convergent, and thus Cauchy we can see
that {⟨•, fn⟩}n∈N is a Cauchy sequence in (L2) and we can define

⟨•, f⟩ := lim
n→∞

⟨•, fn⟩ convergence in (L2).

Proposition 70. Let G(WN) be defined by

G(WN) :=

{
⟨•, f⟩, f ∈ L2(R)

}
.

The the latter is Gaussian Hilbert space (see [16, example 1.16]) and by definition
σ(G(WN)) = B(S ′(R)).

If ⟨•, f⟩ is defined as a (L2) limit then it must be the case that ⟨•, f⟩ is B measurable,
and thus

σ(G(WN)) ⊆ B(S ′(R)).

On the other hand since by definition ⟨•, f⟩ is σ(G(WN))-measurable for any f ∈
L2(R) then it must be the case that ⟨•, φ⟩ is σ(G(WN))-measurable for any φ ∈ S (R).

If we define

B(t, ω) :=

{
⟨ω, χ[0,t]⟩, if t ≥ 0;

− ⟨ω, χ[t,0]⟩, if t < 0,
(2.31)

for any ω ∈ S ′(R) it is easy to check that {B(t)}t∈R is a Brownian motion.

Remark 71. We will now provide an heuristic explanation on why (S ′(R),B, µ) is
called the white noise probability space.

If for ω ∈ S ′(R) we formally write 10

Ḃ(t, ω) = ⟨ω, δt⟩ = “ω(t)”

10It is clear that the expression above is just symbolic, and it does not have a proper meaning
since, in general, one cannot define the dual product between two tempered distributions. In the
next section we will explain how to make sense of this expression by means of an approximation
result in which the convergence must be understood in some weaker topology.
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then Ḃ(t, ω) could be regarded as the distributional derivative of the Brownian
motion defined in (2.31).

In fact for any fixed ω ∈ S ′(R) and φ ∈ S (R) we have that by definition of the
distributional derivative〈

d

dt
B(ω), φ

〉
= −

∫
R
φ′(t)B(t, ω)dt =

∫
R
φ(t)dB(t)

= lim
∆tj→0

∑
j

φ(tj)[B(tj+1)−B(tj)](ω) = lim
∆tj→0

∑
j

φ(tj)⟨ω, χ(tj ,tj+1]
⟩

= lim
∆tj→0

〈
ω ,

∑
j

φ(tj)χ(tj ,tj+1]

〉
= ⟨ω, φ⟩,

where the limits must be understood in the (L2) sense. Formally placing δt in the
place of φ we obtain

Ḃ(t, ω) = ⟨ω, δt⟩ =
(

d

dt
B

)
(t, ω).

By this point we are able to see the some similarities between the classical stochastic
calculus, the Malliavin calculus and the White noise analysis.

In the classical stochastic calculus we’ve introduced in the first few sections the
basic probability space was given by the Wiener space (C0,B,PW ). In that setting
the Brownian motion the sample-paths were taken to be functions in the space
C0(R)11 of continuous functions defined over R starting from the origin. Over the
aforementioned space we defined random variables which we referred to as Brownian
functionals and considered in particular the subset L2 of square integrable Brownian
functionals.

In the white noise calculus setting, instead, the underlying probability space is given
by the triplet (S ′(R),B, µ), where intuitively the space of tempered distributions
S ′(R) could be seen as the space of sample-paths of the distributional derivative of
a Brownian motion.

Notice that although the Malliavin calculus was originally introduced as an analog
of the calculus of variations on the Wiener space we may extend it as well to the
case in which the underlying probability space is given by (S ′(R),B, µ).

So far we haven’t really introduced anything new, in fact we have only considered
random variables defined on a particular probability space. In the next section we
will be introducing the theoretical framework that allow us to give a rigorous sense
to strange objects such as the derivative of a Brownian motion among several other
things.

11Here we changed the indexing interval to be consistent with the setting used in this section.
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2.3.4 Stochastic distributions and test-functions.

In this section we will mimic the construction of the Schwartz space and the space of
tempered distributions in such a way to obtain stochastic analogs of the latter two.
In simple words the idea will be that of obtaining a pair of spaces, one of which will
contain random variables that are very regular and the other will contain ill-behaved
objects that cannot be regarded as random variables, but rather, will be referred to
as stochastic distributions.

S (R) ⊂ L2(R) ⊂ S ′(R),

For a more detailed treatment the reader is referred to [32].

Just as in section 2.3.1 we start by consider the operator A given in (2.26). The
second thing we must do is to remember the Itô-Wiener-Segal isomorphism between
a space of square integrable Brownian functionals and the symmetric Fock-Boson
space that we described in ... .

In our current setting the latter could be summarized by

(L)2 ∼= Γ(L2(R)) :=
∞⊕
n=0

L2(R)⊙n;

this implies that every random variable F ∈ (L2) is uniquely determined by a
sequence of symmetric square integrable kernels fn ∈ L2

sym(Rn), n ∈ N via the
representation

F =
∞∑
n=0

In(fn), convergence in (L2),

where In(•) denotes the n-fold Wiener integral with respect to the Brownian motion
given in (2.31).

Definition 72. Let (L2) ∋ F =
∑∞

n=0 In(fn) and let A be the operator given by
(2.26). Assume that

∞∑
n=0

n!∥A⊗nfn∥2L2(Rn) < ∞,

we then define Γ(A)F ∈ (L2) to be

Γ(A)F :=
∞∑
n=0

In(A
⊗nfn).

The operator Γ(A) is known as the second quantization of the operator A.
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With this in mind we proceed as in section 2.3.1; first thing for p ≥ 0 we define the
norm

∥F∥p := ∥Γ(Ap)F∥(L2),

and we let

(Sp) := {F ∈ (L2) : ∥F∥p < ∞},

i.e. the closure of (L2) with respect to the norm ∥ • ∥p; then (Sp), p ≥ 0 is a Hilbert
space with respect to the latter.

Definition 73. The Hida test-function space denoted by (S) is given by

(S) :=
⋂
p≥0

(Sp).

Its dual will be referred to as the Hida distribution space and is formally given by

(S)∗ :=
⋃
p≤0

(Sp).

Remark 74. This definition implies that any element of φ ∈ (S) has a Wiener chaos
decomposition given by

φ =
∞∑
n=0

In(φn), φn ∈ Ssym(Rn),

where Ssym(Rn) denotes the symmetric part of S (Rn). In fact notice that if φ
belongs to (S) then

∥φ∥p =
∞∑
n=0

n!∥(A⊗n)pφn∥L2(Rn) =
∞∑
n=0

n!|φn|p < ∞, for any p ≥ 0.

From there it follows that all the kernels φn, n ∈ N0 belong to Ssym(Rn).

We thus obtain the following triplet of spaces

(S) ⊂ (L2) ⊂ (S)∗,

and the bilinear pairing between (S) and (S)∗ will be denoted by ⟪•, •⟫.
Proposition 75. Any element Φ ∈ (S)∗ can be represented by a formal series as

Φ =
∞∑
n=0

In(Φn), Φn ∈ S ′
sym(Rn),

where S ′sym(Rn) denotes the symmetric part of S ′(Rn).
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Proof. We must bear in mind that this representation is just formal, in particular
notice that for n = 1 we can’t define the Wiener integral of a generic tempered
distribution, because that would be the same as taking the dual product between
two tempered distributions which is not defined in general, but still we can make
sense of it if we consider the duality product. Let Φ ∈ (S)∗, by construction we
know that there exits p ∈ N0 such that Φ ∈ (S)−p therefore for every φ ∈ (S) it
holds that

|⟪Φ, φ⟫| ≤ ∥Φ∥−p∥φ∥p.

Consider for instance the case in which φ := In(fn), fn ∈ Ssym(Rn). In this case
we would have

|⟪Φ, φ⟫| ≤
√
n!∥Φ∥−p|fn|p.

This implies that if we treat Φ as a functional defined on (S) then its restriction
to (S) ∩G:n:(WN) is in one-to-one correspondence with an element Φn ∈ S ′sym(Rn)
such that

⟪Φ, φ⟫ = n!⟨Φn, fn⟩.

Since a general φ ∈ (S) is a sum of such elements we can write

⟪Φ, φ⟫ =
∞∑
n=0

n!⟨Φn, φn⟩,

and thus we identify Φ with the formal series
∑∞

n=0 In(Φn).

Example 76. The distributional derivative {Ḃ(x)}x∈R of the Brownian motion
{B(x)}x∈R given in (2.31) (also known as a singular white noise process, e.g. [38])
is an (S)∗-valued stochastic process.

In fact as we’ve anticipated one can formally write

Ḃ(x;ω) = ⟨ω, δx⟩, for any x ∈ R.

It follows that ∥Ḃ(x)∥−p = ∥A−pδx∥L2(R) and using the series expansion

δx(•) =
∞∑
n=1

en(•)en(x),

we obtain

∥A−pδx∥2L2(R) =
∞∑
n=1

(2n)−2pen(x)
2.

It’s well known that supt∈R |en(t)| = O(n−1/12). Hence for any p > 5/12 the series
above converges which implies that for any t ∈ [0, T ], Ḃ(t) ∈ (S−p) for such p.
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Remember the definition of stochastic exponential we gave in the section 2.1.3, in
our current setting they are given by

E(f) := exp

{
I(f)− 1

2
∥f∥2L2(R)

}
, f ∈ L2(R). (2.32)

Just as in example ... by applying the Strook-Taylor formula (lemma 59) and notic-
ing that12

DkE(f) = f⊗kE(f) and E[E(f)] = 1,

we obtain the following Wiener chaos decomposition (c.f. ...)

E(f) =
∞∑
n=0

1

n!
In(f

⊗n). (2.33)

Proposition 77. For any η ∈ S (R) the stochastic exponential E(η) belongs to the
space (S).

The proof for this can be done by direct calculations,

∥E(η)∥p =
∞∑
n=0

1

n!
|η⊗n|2p =

∞∑
n=0

1

n!
|η|2np = e|η|

2
p < ∞, ∀p ≥ 0.

Now imagine that ϕ ∈ S ′(R)\L2(R), i.e. ϕ is a non-square integrable temepered
distribution. Then by formally using the formula in equation (2.33) we can define
its stochastic exponential of a tempered distribution, i.e.

E(ϕ) :=
∞∑
n=0

1

n!
In(ϕ

⊗n) ϕ ∈ S ′(Rn),

where this series must be understood in the sense of proposition 75. Notice however
that in this case we cannot in general write an analog for (2.32) since some of the
components wouldn’t be defined.

Still we can make the following interesting heuristic observation. We know that I(ϕ)
is not a random variable but rather a stochastic distribution and for this reason the
expression exp{I(ϕ)} has no actual meaning (just as we cannot define the expo-
nential of a Schwartz distribution). In analogy to (2.32) we can write the following
informal expression

E(ϕ)“ = ” exp

{
I(ϕ)− 1

2
∥ϕ∥2L2(R)

}
= exp{I(ϕ)} × exp

{
1

2
∥ϕ∥2L2(R)

}
12Notice that here we are using a generalization of the concept of Malliavin derivative we’ve

introduced in section 2.2.4 where the indexing space is L2(R).



43

At this point we notice that in general we have ∥ϕ∥2L2(R) = +∞ so in the expres-
sion above we are subtracting a divergent constant to I(ϕ) in the argument of the
exponential (or alternatively multiplying “ exp{I(ϕ)}” by “0”)) and we obtain as a
result a well defined object. This is why the stochastic exponential E(ϕ) is called
the renormalization of the exponential exp{I(ϕ)}.

2.3.5 S-transform and general Wick products

Definition 78. Let Φ ∈ (S)∗ be given by the formal series

Φ =
∞∑
n=0

In(Φn).

Then its S-transform is given by

S(Φ)(η) := ⟪Φ, E(η)⟫ =
∞∑
n=0

⟨Φn, η
⊗n⟩, η ∈ S (R). (2.34)

It’s worth to notice that if we are dealing with a square integrable random variable
F ∈ (L2), then we can extend the domain of S(F ) to the whole L2(R) in which case
we can write

S(F )(h) = ⟪F, E(h)⟫ ≡ E [FE(h)] .

Corollary 79. Let Φ be a Hida distribution in (S)∗. We know that since Φ is not
an actual random variable but rather a stochastic distribution it does not posses a
mean. Nonetheless we can compute a generalized mean which is given by

S(Φ)(0) (2.35)

Definition 80. A function F : S (R) → C is called a U-functional if

1. For every ϕ, φ ∈ S (R) the mapping R ∋ λ 7→ F (λϕ + φ) ∈ C has an entire
extension to z ∈ C.

2. There are constants 0 < K1, K2, p < ∞ such that

|F (φ)| ≤ K1 exp
(
K2|φ|2p

)
, φ ∈ S (R).

We are now ready to introduce a characterization result for the space (S)∗ due to
Potthoff and Streit [39].

Theorem 81. The S-transform defines a bijection between the space (S)∗ and the
space of U-functionals.

This result is extremely useful since it tells us that if two Hida distributions Φ and
Ψ have the same S-transform then they should be equal almost surely, i.e.

S(Φ)(η) = S(Ψ)(η), ∀η ∈ S (R) ⇐⇒ Φ = Ψ a.s.
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2.3.6 The general Wick product

In the previous chapter we briefly introduced the concept of Wick product as an
operation between elements of a Gaussian Hilbert space. This first definition is
closer to the original idea that Wick introduced in [40] as a method for renormalizing
infinite quantities in Quantum field theory.

In fact this is a particular case of a more general definition. In this section we
shall introduce the concept of Wick product in a more general setting and we will
explain the reason why this operation lies in the very core of the theory of Stochastic
integration theory and Gaussian analysis.

It’s important to remark the fact that even though in this section we will work on
the White noise probability space the Wick product can be defined on much more
general probability spaces (see for instance [16, Chapter 3] ).

The Wick product was originally introduced by Wick in [40] (he originally called it
S-product) as a way of renormalizing certain infinite quantities in the Quantum Field
theory (see also [18]). Latter on this concept was brought to the theory of Stochastic
analysis by the pioneer work of Hida and Ikeda (...). Subsequently several authors
have used this powerful tool in many areas of stochastic calculus and applications
(see [33][38][41] and references therein). The reason is that the Wick product lies in
the very core of the theory of stochastic calculus and, as we will see in the following,
is closely connected with the Itô-Skorohod integration.

Unfortunately many probabilists and mathematicians ignore the relevance of this
tool and for this reason its use is not widely spread across the discipline.

Definition 82. Let Φ,Ψ ∈ (S)∗ be two Hida distributions. We define the Wick
product between the two elements, denoted by Φ ⋄Ψ, to be the unique Hida distri-
bution satisfying

S(Φ ⋄Ψ)(η) = S(Φ)(η) · S(Ψ)(η), for every η ∈ S (R).

Remark 83. Notice the similarity between this definition and the well known prop-
erty that relates the Fourier transform with the convolution operator, namely

ĝ ⋆ h = ĝ · ĥ, g, h ∈ S ′(R).

Proposition 84. Let Fn ∈ S ′
sym(Rn) and Gm ∈ S ′

sym(Rm) then it hols that

In(Fn) ⋄ Im(Gm) = In+m(Fn ⊙Gm)
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Proof. The proof is an straightforward application of the S-transform,

S(In(Fn) ⋄ Im(Gm))(η) = S(In(Fn))(η) · S(Im(Gm))(η)

= ⟪In(Fn), E(η)⟫ ⟪Im(Gm), E(η)⟫
= ⟨Fn, η

⊗n⟩⟨Gm, η
⊗m⟩

= ⟨Fn ⊙Gm, η
⊗(n+m)⟩ = S(In+m(Fn ⊙Gm))(η),

the uniqueness of the S-transform implies the desired result.

Remark 85. A consequence of the latter is that if Φ,Ψ ∈ (S)∗ are given by the
formal series

Φ =
∞∑
n=0

In(Fn), Ψ =
∞∑
n=0

In(Gn),

then the series representation for the Wick product between Φ,Ψ ∈ (S)∗ can be
obtained by computing the Cauchy product between the series and using the propo-
sition above, i.e.(

∞∑
n=0

In(Fn)

)
⋄

(
∞∑
n=0

In(Gn)

)
=

∞∑
p=0

p∑
l=0

Il(Fl) ⋄ Ip−l(Gp−l) =
∞∑
p=0

Ip(Kp),

where

Kp :=

p∑
l=0

Fl ⊙Gp−l.

Remark 86. The concept of Wick product we just introduced is strictly related to the
one we gave in defintion 35 which was confined to a Gaussian setting. In particular
if (ξ1, ..., ξn) belong to some Gaussian Hilbert space G then it holds that

ξ1 ⋄ · · · ⋄ ξn = : ξ1 · · · ξn :

The following basic algebraic properties of the Wick product could easily be verified
using the definition;

Lemma 87.

1. (Commutative law) Φ,Ψ ∈ (S)∗ =⇒ Φ ⋄Ψ = Ψ ⋄ Φ.

2. (Associative law)

Φ,Ψ,Ξ ∈ (S)∗ =⇒ Φ ⋄ (Ψ ⋄ Ξ) = (Φ ⋄Ψ) ⋄ Ξ
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3. (Distributive law)

Φ,Ψ,Ξ ∈ (S)∗ =⇒ Φ ⋄ (Ψ + Ξ) = Φ ⋄Ψ+ Φ ⋄ Ξ

The Wick powers are defined inductively as follows

Φ ∈ (S)∗,

{
Φ⋄0 = 1

Φ⋄k = Φ ⋄ Φ⋄(k−1) for k = 1, 2, ...

Corollary 88. The Hida distribution space (S)∗ is an algebra with respect to the
Wick product ⋄.

Definition 89. Let Φ ∈ (S)∗ the Wick exponential is defined by

exp⋄ (Φ) :=
∞∑
n=0

1

n!
Φ⋄n,

i.e. in the Taylor expansion of the standard exponential function we replace the
regular powers with Wick-powers. In particular we have that

S (exp⋄ (Φ)) (ϕ) = exp (S(Φ)(ϕ)) .

Remark 90. Using the same reasoning one could construct Wick versions or Wick
composition of entire functions. For instance let h be a entire function and let
Φ ∈ (S)∗. Then the Wick composition or Wick version h⋄(Φ) is defined by

S(h⋄(Φ))(η) = h(S(Φ)(η)), η ∈ S (R).

Proposition 91. Let f ∈ L2(R) then it holds that

E(f) = exp⋄
{∫

R
f(x)dB(x)

}
,

i.e. the stochastic exponential of f equals the Wick exponential of the Wiener integral
I(f).

Proof. From lemma 59 , remark 86 and the definition above we have that

E(f) =
∞∑
n=0

1

n!
In(f

⊗n) =
∞∑
n=0

1

n!
I(f)⋄n = exp⋄ {I(f)}.
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Proposition 92. Let α ∈ J be a multi-index and let Hα denote the generalized
Hermite polynomial, which in our current setting will be given by (c.f. ...)

Hα := (α!)−1/2

∞∏
j=1

Hαj
(I(ej)).

Using ... we can rewrite the latter as

Hα = (α!)−1/2

∞∏
j=1

I(ej)
⋄αj .

Furthermore by ... and the observation above we can write this as

Hα = (α!)−1/2

∞

♢
j=1

I(ej)
⋄αj

where ♢ denotes the productory in the Wick sense. By the associativity of the Wick
product we can see that for α, β ∈ J it holds that

Hα ⋄ Hβ = (α!)−1/2(β!)−1/2

(
∞

♢
j=1

I(ej)
⋄αj

)
⋄

(
∞

♢
j=1

I(ej)
⋄βj

)
=

√
(α+ β)!

α!β!
Hα+β.

(2.36)

For example we have

Hα ⋄ I(ej) = Hα ⋄ Hϵj =
√
αj + 1Hα+ϵj =:

√
αj + 1Hα+

(j)

2.3.7 Wick multiplication and stochastic integration.

It’s a well known fact that if f : R → R is a good enough function and g : R → R
is a continuously differentiable function then∫ b

a

f(x)dg(x) =

∫ b

a

f(x)g′(x)dx

where the lefter integral is of Riemann-Stieltjes type and as usual the prime ′ denotes
the derivative. The aim of this section is that of showing an analog property for
stochastic integrals of the Itô-Skorohod type. One issue that we may face is the fact
that if we formally let g be Brownian motion then g′ = Ḃ and we know that in general
we are not able to compute the point-wise product between Hida distributions. This
is precisely where the Wick product comes into play.
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Remember the definition of the Skorohod integral we gave in section 2.2.4, and
assume that {Y (t)}t∈R is a Skorohod-integrable stochastic process then it holds
that ∫

R
Y (t)δB(t) =

∫
R
Y (t) ⋄ Ḃ(t)dt (2.37)

where the left hand integral must be understood as Skorohod integal and right hand
one as an (S)∗-valued Pettis (or Bochner) integral (see for instance [42] and [43] for
the theory of vector valued integrals in a deterministic setting).

The integral on the right must be understood as a vector valued integral since we
have that

R ∋ t 7→ (S ′(R) ∋ ω 7→ Ḃ(t;ω))

i.e. R ∋ t 7→ Ḃ(t) is an (S)∗-valued map.

This construction allows us to extend the definition of Skorohod integral to stochastic
processes that do not belong to Dom(δ) (sometimes this generalization is referred
to as Hitsuda-Skorohod integral, see for instance [44]), in particular we are able to
deal with (S)∗-valued processes that satisfy certain conditions.

We start this section giving an heuristic and somewhat informal justification for the
equality above. For the sake of simplicity we will consider the case in which the
underlying probability space is given by the Wiener space over of a finite interval
[0, T ], that {B(t)}t∈[0,T ] is the canonical Brownian motion defined on the latter and
we assume that {Y (t)}t∈[0,T ] is an Itô-integrable stochastic process adapted to the
natural filtration {FB

t }t∈[0,T ].

By definition of the S-transform we have that for any h ∈ L2([0, T ])

S
(∫ T

0

Y (t)dB(t)

)
(h) = E

[∫ T

0

Y (t)dB(t) E(h)
]
.

Remember that from ... we know that if we define Et(h) := E(χ[0,t]h) then the the
stochastic process {Et(h)}t∈[0,T ] is a {FB

t }t∈[0,T ]-martingale. An application of the
Itô formula yields

E(h) = ET (h) =
(
1 +

∫ T

0

h(t)E[E(h)|FB
t ]dB(t)

)
.

Plugging this in the expression above

S
(∫ T

0

Y (t)dB(t)

)
(h) = E

[∫ T

0

Y (t)dB(t)

(
1 +

∫ T

0

h(t)E[E(h)|FB
t ]dB(t)

)]
= E

[∫ T

0

Y (t)dB(t)

(∫ T

0

h(t)E[E(h)|FB
t ]dB(t)

)]
,
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where in the last equality we’ve used the fact that by assumption Y is an Itô-
integrable process which implies that the mean of its Itô integral equals 0. An
application of Itô isometry, using the standard properties of the conditional expec-
tation and Fubini-Tonelli lemma we obtain that

S
(∫ T

0

Y (t)dB(t)

)
(h) =

∫ T

0

E [Y (t)E(h)]h(t)dt.

Finally noticing that formally S(Ḃ(t))(h) := ⟪I(δt), E(h)⟫ = ⟨δt, h⟩ = h(t) the latter
implies that

S
(∫ T

0

Y (t)dB(t)

)
(h) =

∫ T

0

S(Y (t))(h) · S(Ḃ(t))(h)dt =

∫ T

0

S(Y (t) ⋄ Ḃ(t))(h)dt.

Formally interchaning the S-transform and the time integral (we will latter see that
indeed we are actually allowed to do so, e.g. equation (2.38)) we obtain

S
(∫ T

0

Y (t)dB(t)

)
(h) = S

(∫ T

0

Y (t) ⋄ Ḃ(t)dt

)
(h)

which by the uniqueness of the S-transform implies the desired result.

Definition 93. A function Φ : R → (S)∗ (also called an (S)∗-valued process) is
called (S)∗-integrable if

⟪Φ(t), φ⟫ ∈ L1(R) for all φ ∈ (S).

Then the (S)∗-integral of Y denoted by
∫
R Φ(t)dt, is the unique Hida distribution

satisfying

⟪
∫
R
Φ(t)dt , φ⟫ =

∫
R
⟪Φ(t), φ⟫dt.

Technically speaking this integral is a (S)∗-valued Pettis13 integral and in a sense
allows us to extend the concept of Skorohod integral to distributional stochastic
processes.

An immediate consequence of the definition above is that the (S)∗-integral commutes
with the S-transform, i.e.

S
(∫

R
Φ(t)dt

)
(η) =

∫
R
S (Φ(t)) (η)dt, η ∈ S (R). (2.38)

In fact both expressions are equivalent due to the density of the stochastic exponen-
tials in (S).

13In certain cases we are also able to define the integral in the Bochner sense, see for instance
[33, Chapter 13]
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Theorem 94. Assume {Φ(t)}t∈R is a Skorohod-integrable stochastic process. Then
Φ ⋄ Ḃ is (S)∗-integrable and we have∫

R
Φ(t)δB(t) =

∫
R
Φ(t) ⋄ Ḃ(t)dt. (2.39)

Proof. Assume that for any fixed t ∈ [0, T ] the random variable Φ(t) has the repre-
sentation (e.g. Cameron Martin)

Φ(t) =
∑
α∈J

Φα(t)Hα,

and remembering that Ḃ(t) = I(δt) = I (
∑∞

k=1 ek(t)ek) =
∑

k∈N ek(t)Hϵk where
ϵk := (0, 0, ..., 0︸ ︷︷ ︸

k−1

, 1, 0, 0, ...) we have that

∫
R
Φ(t) ⋄ Ḃ(t)dt =

∫
R

∑
α∈J

Φα(t)Hα ⋄
∑
k∈N

ek(t)Hϵ(k)dt

=
∑

α∈J , k∈N

(∫
R
Φα(t)ek(t)dt

)
Hα ⋄ Hϵ(k)

=
∑

α∈J ,k∈N

(Φα , ek)L2(R)
√
αk + 1Hα+

(k)
,

where α+
(k) := α + ϵk. For the left-hand side we obtain

∫
R
Φ(t)δB(t) =

∫
R

∞∑
n=0

In(Φn(•, t))δB(t)

=

∫
R

∞∑
n=0

In

∑
α∈JK

n

Φα(α!)
−1/2

∞⊙
i=1

e⊙αi
i

 δB(t)

=

∫
R

∞∑
n=0

In

∑
α∈JK

n

∞∑
k=1

(Φα , ek)L2(R)(α!)
−1/2

∞⊙
i=1

e⊙αi
i ⊙ ek

 δB(t)

=
∞∑
n=0

∑
α∈JK

n

∞∑
k=1

(Φα , ek)L2(R)(α!)
−1/2In+1

(
∞⊙
i=1

e⊙αi
i ⊙ ek

)
=

∑
α∈J ,k∈N

(Φα , ek)L2(R)
√
αk + 1Hα+

(k)
.

which proves the result. An alternative proof makes use of the integration by parts
formula,
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S(δ(Φ))(η) = E [δ(Φ)E(η)] = E
[
(Φ, DE(η))L2(R)

]
= E

[
(Φ, η)L2(R) E(η)

]
=

∫
R
S(Φ(t))(η)η(t)dt

=

∫
R
S
(
Φ(t) ⋄ Ḃ(t)

)
(η)dt

= S
(∫

R
Φ(t) ⋄ Ḃ(t)dt

)
(η),

and the conclusion follows from the uniqueness of the S-transform

Remark 95. An interesting property that follows from the latter is that the Wick
product satisfies the usual rules of calculus, in fact we can see that for any a, b ∈ R
with a < b it holds that∫ b

a

B(t)⋄ndB(t) =

∫ b

a

B(t)⋄n ⋄ Ḃ(t)dt =

∫ b

a

d

dt

(
B(t)⋄(n+1)

n+ 1

)
dt

=

(
B(b)⋄(n+1) −B(a)⋄(n+1)

n+ 1

)
, n ∈ N0,

where by convention B(t)⋄1 ≡ B(t).

Lemma 96. Assume that {Y (t)}t∈[0,T ] is Skorohod integrable, that X ∈ (S)∗ does
not depend on t and that {X ⋄ Y (t)}t∈[0,T ] is Hitsuda-Skorohod integrable. Then

X ⋄
∫ T

0

Y (t)δB(t) =

∫ T

0

X ⋄ Y (t)δB(t). (2.40)

Corollary 97. Using this result we can see theorem 43 under a new light. Let
f1, ..., fn ∈ L2(R) then remark 86 and the lemma above we can formally write

In(f1 ⊙ · · · ⊙ fn) = I(f1) ⋄ · · · ⋄ I(fn)

=

∫
R
f1(t1)dB(tn) ⋄ · · · ⋄

∫
R
fn(tn)dB(tn)

=

∫
Rn

f1(t1) · · · fn(tn)dB(t1) · · · dB(tn)

=

∫
Rn

f1 ⊙ · · · ⊙ fn(t1, ..., tn)dB
⊗n(t1, ..., tn)

In the following we will discuss an interesting and useful connection between the
Wick product and the so called translation operator.
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Definition 98. Fix ω0 ∈ S ′(R).

1. The map Tω0 : (S) → (S) is called the translation operator and is given by

Tω0X(ω) = X(ω + ω0), ω ∈ S ′(R),

for any X ∈ (S). Notice that if we assume instead that ω0 ∈ L2(R) then we
can extend the domain of the translation operator to (Lp) for any p > 1.

2. The adjoint operator is the map

T∗ω0
: (S)∗ → (S)∗

defined by

⟪T∗ω0
Φ, φ⟫ = ⟪Φ, Tω0φ⟫.

Theorem 99. Let ω0 ∈ S ′(R) and Φ ∈ (S)∗, then

T∗ω0
Φ = Φ ⋄ exp⋄ (⟨•, ω0⟩) .

Proof. By direct computations we have that

S
(
T∗ω0

Φ
)
(ϕ) = ⟪T∗ω0

Φ, exp⋄ (⟨•, ϕ⟩)⟫
= ⟪Φ, Tω0 exp

⋄ (⟨•, ϕ⟩)⟫
= ⟪Φ, exp⋄ (⟨•+ ω0, ϕ⟩)⟫
= ⟪Φ, exp⋄ (⟨•, ϕ⟩) ⋄ exp⋄ (⟨ω0, ϕ⟩)⟫
= ⟪Φ, exp⋄ (⟨•, ϕ⟩)⟫ · exp (⟨ω0, ϕ⟩) (because ⟨ω0, ϕ⟩ is a constant)
= S(Φ)(ϕ) · S (exp⋄ (⟨•, ω0⟩)) (ϕ)
= S (Φ ⋄ exp⋄ (⟨•, ω0⟩)) (ϕ),

and the conclusion follows from the uniqueness of the S-transform. We used the fact
that ⟨ω0, ϕ⟩ is a constant, and then the Wick exponential of a constant equals the
standard exponential.

We are now ready to enunciate a key result that will be used in chapter 3 and 4 due
to Gjessing (e.g. [45], [38])

Theorem 100. Let ϕ ∈ L2(R) and X ∈ (Lp) for some p > 1. Then X ⋄ E(⟨•, ϕ⟩) ∈
(Lq) for all q < p and almost surely we have

(X ⋄ E(⟨•, ϕ⟩))(ω) = T−ϕX · E(⟨ω, ϕ⟩).

It’s important to remark the fact that this hold under more general assumptions
regarding our underlying probability space, see for instance chapter 3 where we
employed Gjessing’s formula in the Wiener space and chapter 4 for a fractional
version.
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2.3.8 Relationship between the Wick product and the Malli-
avin derivative

The aim of this section is that of introducing a property of the Wick product that
represent a key tool in this thesis. In simple words it states a relationship between
the Wick product and the dot product of a random variable with an element of the
first Wiener chaos, i.e. a centered Gaussian random variable.

In chapters 3, 4, 5, 6 this feature is the key ingredient to construct candidate ap-
proximation for the solution of certain stochastic differential equations. At the end
of this section we will present some interesting results that we’ve obtain by making
use of this property.

We now present the result in the simpler setting

Proposition 101. Let T ⊂ R be some arbitrary interval, f ∈ L2(T ) and F ∈ D1,2

then

F ⋄
∫
T
f(t)dB(t) = F ·

∫
T
f(t)dB(t)− (DF , f)L2(T ) (2.41)

Proof. We will start by showing the result for stochastic exponentials. By definition
it holds that

E(f) ⋄ E(ϵg) = E(f + ϵg), ϵ ∈ R.

If we differentiate the expression above with respect to ϵ and evaluate the result at
ϵ = 0 we obtain for the left hand side

d

dϵ
E(f) ⋄ E(ϵg)

∣∣∣∣
ϵ=0

= E(f) ⋄
∫
T
g(t)dB(t). (2.42)

For the right hand side we have instead

d

dϵ
E(f + ϵg)

∣∣∣∣
ϵ=0

= E(f)
[∫

T
g(t)dB(t)−

∫
T
f(t)g(t)dt

]
= E(f) ·

∫
T
g(t)dB(t)− E(f) ·

∫
T
f(t)g(t)dt. (2.43)

Notice that E(f) does not depend on t and thus we can bring it inside the integral in
the last term above. Now using the fact that fE(f) = DE(f) (this follows directly
from definition 50) we can combine (2.42) and (2.43) to obtain

E(f) ⋄
∫
T
g(t)dB(t) = E(f) ·

∫
T
g(t)dB(t)− (DE(f) , g)L2(T ) .

Since the set of finite linear combinations of stochastic exponentials is dense in D1,2

by using a limit argument we obtain the desired result.
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In the following we will present a toy example that would allow for a clearer exposi-
tion of the connection between the Wick product and the Malliavin derivative.

Example 102. Consider the one-dimensional probability space (R,B(R), γ) where
γ denotes the standard Gaussian measure on R, i.e.

γ(B) =
1√
2π

∫
B

e
−x2

2 dx, for any Borel set B ∈ B(R). (2.44)

The random variable ι : R → R given by the map x 7→ ι(x) = x is N (0, 1) as shown
by the following simple calculation,

γ ({x ∈ R} : ι(x) ∈ B) = γ(B), for any Borel set B ∈ B(R).

From this it follows that

{ιt : t ∈ R} := {tι : t ∈ R}

forms a one dimensional Gaussian Hilbert space indexed by R. (e.g. [16, example
1.15])

Let L2(γ) denote the space of square integrable random variables defined on this
probability space and let {Hn}n∈N0 denote the family of Hermite polynomials. It’s
well know that the family of Hermite polynomials forms an orthogonal basis of L2(γ)
and thus any random variable F ∈ L2(γ) has the following series representation

F (x) =
∞∑
n=0

fnHn(x), for a.e. x ∈ R,

and

∥F∥L2(γ) =
∞∑
n=0

n!|fn|2.

This is a one dimensional version of the Wiener chaos decomposition, in fact re-
member that from theorem 43 and remark 86 it holds that

In(f
⊙n) = : I(f) · · · I(f) : = I(f)⋄n, for f ∈ L2([0, T ]).

In this very simple framework f would be a scalar and as we’ve mentioned before
the isometry between the indexing space (in this case R) and the Gaussian Hilbert
space is given by the multiplication with ι, hence in a slight abuse of notation we
have that

“In(f
⊙n)” = fnι⋄n(x) = fnHn(ι(x)) = fnHn(x),

where we used the relationship between Wick powers and Hermite polynomials
(which holds in any arbitrary Gaussian Hilbert space).
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It follows that the Wick product between F and ι can be simply written as

(F ⋄ ι)(x) =
∞∑
n=0

fnHn+1(x).

Using the well known recursion formula for Hermite polynomials that tells us that

Hn+1(x) = xHn(x)−
d

dx
Hn(x)

we can write the latter as

(F ⋄ ι)(x) =
∞∑
n=0

fn

(
xHn(x)−

d

dx
Hn(x)

)
.

Given that the series converges we can write this as

(F ⋄ ι)(x) = ι(x) · F (x)− d

dx
F (x) =

(
x− d

dx

)
F (x). (2.45)

From here we can see that on the Sobolev space W1,2(γ) (which is the same as D1,2

in this one-dimension probability space ) the Wick product acts as a differential
operator. Notice furthermore that d

dx
coincides with the Malliavin derivative D.

It is important to remark the fact that this property is just a particular case of
a much more general property connecting the Wick product with the Malliavin
derivative which states that for X, Y ∈ (S) (see for instance [46] for the proof of a
more general result) it holds that

X ⋄ Y =
∑
n∈N0

(−1)n

n!

∫
[0,T ]n

Dn
t1,...,tn

X ·Dn
t1,...,tn

Y dt1 · · · dtn

Example 103. Let ξ1, ..., ξn and η1, ...., ηm be centered jointly Gaussian random
variables such that E[ξiηj] = 0 for all i and j. In particular we can think that ξi =∫ T

0
fi(t)dB(t) and ηi =

∫ T

0
gi(t)dB(t) where B is a one dimensional Brownian motion

and the kernels are deterministic square integrable functions. Using the isometry
property of the Wiener integral we have that by assumption

∫ T

0
fi(t)gj(t)dt = 0 for

all i and j.

Using the polarization identity it suffices to show this result in case in which ξ1 =
· · · = ξn = ξ and η1 = · · · = ηm = η.

In that case we have

: ξ · · · ξ︸ ︷︷ ︸
n

η · · · η︸ ︷︷ ︸
m

: = ξ⋄n ⋄ η⋄m

=
n∧m∑
k=0

(−1)k

k!

∫
[0,T ]k

Dk
t1,...,tk

ξ⋄n ·Dk
t1,...,tk

η⋄mdt1 · · · dtk
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Notice that Di
t1,...,tk

(ξ⋄n) = Di
t1,...,tk

In(f
⊙n) = f⊗i(t1, ..., tk)In−k(f

⊙(n−k)) and analo-
gously for η⋄m. The result follows invoking the orthogonality between f and g.

Some applications

The following theorem was obtained by the the author and Alberto Lanconelli and
as far as we know is not present in the literature. It basically states that if in the
construction of the Itô integral (see equation ...) one replaces the pointwise product
with the Wick product then it doesn’t matter whether we select the right or left
point evaluation.

Theorem 104. Let f ∈ C1
b (R) i.e. a bounded, continuously differentiable function

with bounded derivative. Then for any finite partition π = {0 = t0 < t1 < · · · tN =
T} with mesh ∥π∥ we have that

lim
∥π∥→0

N∑
j=1

f(B(tj)) ⋄ [B(tj)−B(tj−1)] =

∫ T

0

f(B(t))dB(t), convergence in L2(Ω).

(2.46)

Proof. For the sake of simplicity we will assume as usual that the partition π is
uniform, i.e. that tk =

kT
N

for any k ∈ {0, 1, ..., N}.

Adding and subtracting f(B(tj−1))⋄[B(tj)−B(tj−1)] to each term in the summation
above we obtain

N∑
j=1

f(B(tj)) ⋄ [B(tj)−B(tj−1)] =
N∑
j=1

[f(B(tj))− f(B(tj−1))] ⋄ [B(tj)−B(tj−1)]

· · ·+
N∑
j=1

f(B(tj−1)) ⋄ [B(tj)−B(tj−1)]

= I1 + I2.

An important property that follows from the disjointness of the increments of the
Brownian motion is that

f(B(tj−1)) ⋄ [B(tj)−B(tj−1)] = f(B(tj−1)) · [B(tj)−B(tj−1)]−
(
Df(B(tj−1)), χ[tj−1,tj)

)
L2([0,T ])

= f(B(tj−1)) · [B(tj)−B(tj−1)]

− f ′(B(tj−1))
(
χ[0,tj−1), χ[tj−1,tj)

)
L2([0,T ])

= f(B(tj−1)) · [B(tj)−B(tj−1)],

thus in I2 we can replace the Wick product with the point-wise product.



57

The boundedness of f allows us to use the DCT to show that E[f(B(s))f(B(t))] is
continuous function on [0, T ]2 and thus (e.g.[6])

I2 =
N∑
j=1

f(B(tj−1)) · [B(tj)−B(tj−1)]
∥π∥→0−−−−→

∫ T

0

f(B(s))dB(s), convergence in L2(Ω).

On the other hand by denoting ∆jf := [f(B(tj))−f(B(tj−1))] and ∆jB := [B(tj)−
B(tj−1)] we can write

I1 =
N∑
j=1

∆jf ⋄∆jB =
N∑
j=1

[
∆jf ·∆jB −

(
D∆jf, χ[tj−1,tj ]

)
L2([0,T ])

]
= I3 − I4.

Now we have that by definition

I3 =
N∑
j=1

∆jf ·∆jB
∥π∥→0−−−−→ [f(B), B]T =

∫ T

0

f ′(B(s))ds, convergence in L2(Ω)

where [•, •]T denotes the quadratic covariation evaluated at time T .

By using the chain rule for the Malliavin derivative we obtain

D∆jf = f ′(B(tj))χ[0,tj ] − f ′(B(tj−1))χ[0,tj−1],

and thus (thanks to f ′’s boundedness )

I4 =
N∑
j=1

f ′(B(tj))∥π∥
∥π∥→0−−−−→

∫ T

0

f ′(B(s))ds a.s.

which by means of DCT (again by virtue of f ′ being bounded) implies the L2(Ω)
convergence proving the desired result.

Theorem 105. Let (Ω,F ,P) be a probability space carrying a one dimensional
Brownian motion {B(t)}t∈[0,T ]. Let {X(t)}t∈[0,T ] be an Itô integrable stochastic pro-
cess satisfying:

1. X(t) ∈ D1,2 for a.a. t ∈ [0, T ];

2. {X(t)}t∈[0,T ] is (uniformly) square-mean continuous;

3. ess sup(t,s)∈[0,T ]2 E [|DsX(t)|2] < ∞.

Then for any finite partition π := {0 = t0 < t1 < · · · < tN = T} with mesh ∥π∥, it
holds that

N∑
j=1

X(tj) ⋄ [B(tj)−B(tj−1)]
∥π∥→0−−−−→

∫ T

0

X(t)dB(t), in L2(Ω). (2.47)
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Proof. As usual we will assume that the partition π is uniform and just as before
we start by adding and subtracting to each term in the summation the quantity
X(tj−1) ⋄ [B(tj) − B(tj−1)]. Under our assumptions we can use proposition 101 to
write

X(tj−1)⋄ [B(tj)−B(tj−1)] = X(tj−1) · [B(tj)−B(tj−1)]−
(
DXtj−1

, χ[tj−1,tj)

)
L2([0,T ])

,

notice that since by assumption X is an adapted process then DsXt = 0,∀s > t and
thus the second term above vanishes, i.e. X(tj−1) ⋄ [B(tj) − B(tj−1)] = X(tj−1) ·
[B(tj)−B(tj−1)] for any j ∈ {1, ..., N}.

Then

N∑
j=1

X(tj) ⋄ [B(tj)−B(tj−1)] =
N∑
j=1

[X(tj)−X(tj−1)] ⋄ [B(tj)−B(tj−1)]

+
N∑
j=1

X(tj−1) · [B(tj)−B(tj−1)]

= I1 + I2.

By our assumptions we have that I2 converges in L2(Ω) to the Itô integral and thus
the result would follow if we manage to show that I1 → 0 in the L2(Ω) norm. Notice
that each Brownian increment on the summation in I1 equals

∫ T

0
χ[tj−1,tj)(s)dB(s)

and using theorem ... we can rewrite each summand as

[X(tj)−X(tj−1)] ⋄ [B(tj)−B(tj−1)] =

∫ T

0

[X(tj)−X(tj−1)]χ[tj−1,tj)(s)δB(s),

(2.48)

where the stochastic integral must be understood as a Skorohod integral since the
integrand is not adapted. Thus it follows that

I1 =

∫ T

0

[
N∑
j=1

[X(tj)−X(tj−1)]χ[tj−1,tj)(s)

]
δB(s). (2.49)

Then by letting u(t) :=
[∑N

j=1[X(tj)−X(tj−1)]χ[tj−1,tj)(t)
]

we obtain (e.g. [22, eq.
1.60])

E[|I1|2] = E
[∫ T

0

|u(t)|2dt
]
+ E

[∫
[0,T ]2

Dsu(t)Dtu(s)dsdt

]
= I3 + I4.
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Now by definition we have that

I3 = E

∫ T

0

(
N∑
j=1

[X(tj)−X(tj−1)]χ[tj−1,tj)(t)

)2

dt

 = ∥π∥ ·
N∑
j=1

E
[
(X(tj)−X(tj−1))

2]
≤ ∥π∥N sup

i∈{1,...,N}
E
[
(X(ti)−X(ti−1))

2]
= T sup

i∈{1,...,N}
E
[
(X(ti)−X(ti−1))

2]→ 0,

as ∥π∥ goes to 0, where the convergence follows from the (uniform) square-mean
continuity of {X(t)}t∈[0,T ].

Using the definition of u we have that I4 can be treated as follows,

I4 =
N∑
j=1

E

(∫ tj

tj−1

DsX(tj)ds

)2


≤ ∥π∥
N∑
j=1

E

[∫ tj

tj−1

|DsX(tj)|2ds

]

= ∥π∥
N∑
j=1

∫ tj

tj−1

E
[
|DsX(tj)|2

]
ds

≤ ∥π∥
N∑
j=1

∫ tj

tj−1

ess sup(t,u)∈[0,T ]2 E
[
|DuX(t)|2

]
ds

= ∥π∥T ess sup(t,u)∈[0,T ]2 E
[
|DuX(t)|2

]
→ 0,

as ∥π∥ goes to 0, this implies the desired result.

We will now present a result which is the analogous of .... . This is yet another
proof that Wick product and Itô integration are deeply connected

Let (Ω,F ,P) denote a probability space carrying a one-dimensional Brownian mo-
tion {B(t)}t∈[0,T ], where as usual T is some arbitrary positive real constant.

As in theorem ... we denote with π := {0 = t0 < t1 < · · · < tN = T} a finite
partition of the interval [0, T ]; for the sake of simplicity we shall assume that the
partition is uniform, namely that tk =

kT
N

for any k ∈ {1, 2, ..., N}.

We define the polygonal approximation of {B(t)}t∈[0,T ] as

Bπ(t) :=

∫ T

0

Kπ
t (u)dB(u), for any t ∈ [0, T ] (2.50)
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with

Kπ
t (u) :=

N−1∑
k=0

(
χ[0,tk)(u) +

t− tk
tk+1 − tk

χ[tk,tk+1)(u)

)
χ[tk,tk+1)(t). (2.51)

From here it’s straightforward to see that

Ḃπ(t) :=

∫ T

0

∂tK
π
t (u)dB(u) with ∂tK

π
t (u) =

N−1∑
k=0

1

tk+1 − tk
χ[tk,tk+1)(u)χ[tk,tk+1)(t).

(2.52)

With this in hand we are ready to introduce the main theorem

Theorem 106. Let f ∈ C2
b (R) i.e. a bounded, twice continuously differentiable

function with bounded derivatives. Then it holds that∫ T

0

f(Bπ(t)) ⋄ Ḃπ(t)dt −→
∫ T

0

f(B(t))dB(t) in L2(Ω) (2.53)

as ∥π∥ → 0.

Proof. We start by defining g(x) :=
∫ x

0
f(y)dy such that g′(x) = f(x) and this

together with our assumptions imply that g is a Lipschitz continuous function.

By means of the usual chain rule we obtain

d

dt
g(Bπ

t ) = g′(Bπ
t ) · Ḃπ

t = f(Bπ
t ) · Ḃπ

t . (2.54)

From equation (2.54) and proposition ... we have that

d

dt
g(Bπ(t)) = f(Bπ(t)) ⋄ Ḃπ(t) + f ′(Bπ(t)) (Kπ

t , ∂tK
π
t )L2([0,T ]) .

Integrating both sides over the interval [0, T ] we obtain

g(Bπ(T ))− g(Bπ(0)) =

∫ T

0

f(Bπ(t)) ⋄ Ḃπ(t)dt+

∫ T

0

f ′(Bπ(t)) (Kπ
t , ∂tK

π
t )L2([0,T ]) dt.

Notice that the lefter side converges in the L2(Ω)-norm to the Stratonovich integral∫ T

0
f(B(t)) ◦ dB(t) = g(B(T )), in fact

∥g(Bπ(T ))− g(Bπ(0))− g(B(T )) + g(B(0))∥ ≤ ∥g(Bπ(T ))− g(B(T ))∥+ ∥g(Bπ(0))− g(B(0))∥

≤ L
(
∥Bπ(T )−B(T )∥+ ∥Bπ(0)−B(0)∥

) ∥π∥→0−−−−→ 0.
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where in the last inequality we’ve used the Lipschitz continuity of g.

Then using the equivalency∫ T

0

f(B(t)) ◦ dB(t) =

∫ T

0

f(B(t))dB(t) +
1

2

∫ T

0

f ′(B(t))dt,

it would suffice to show that

∫ T

0

f ′(Bπ(t)) (Kπ
t , ∂tK

π
t )L2([0,T ]) dt −→

1

2

∫ T

0

f ′(B(t))dt

in the L2(Ω) norm as ∥π∥ → 0.

∥∥∥∥∫ T

0

f ′(Bπ(t)) (Kπ
t , ∂tK

π
t )L2([0,T ]) dt−

1

2

∫ T

0

f ′(B(t))dt

∥∥∥∥
≤
∥∥∥∥∫ T

0

f ′(Bπ(t))

[
(Kπ

t , ∂tK
π
t )L2([0,T ]) −

1

2

]
dt

∥∥∥∥+ ∥∥∥∥12
∫ T

0

f ′(Bπ(t))− f ′(B(t))dt

∥∥∥∥
≤
∥∥∥∥∫ T

0

f ′(Bπ(t))

[
(Kπ

t , ∂tK
π
t )L2([0,T ]) −

1

2

]
dt

∥∥∥∥+ 1

2

∫ T

0

∥∥∥∥f ′(Bπ(t))− f ′(B(t))

∥∥∥∥dt = I1 + I2,

where in the last inequality we’ve employed the Minkowski inequality for integrals.

The boundedness of f ′ allows us to employ the DCT which together with the Lipchitz
continuity of f ′ (which is implied by the boundedness of f ′′) implies that

I2 → 0 as ∥π∥ → 0.

Let’s now consider I1; we start by adding and subtracting f ′(B(t))
[
(Kπ

t , ∂tK
π
t )L2([0,T ]) −

1
2

]
to the integrand, then by means of the triangular inequality we have that

I1 ≤
∥∥∥∥∫ T

0

[f ′(Bπ(t))− f ′(B(t))]

[
(Kπ

t , ∂tK
π
t )L2([0,T ]) −

1

2

]
dt

∥∥∥∥
+

∥∥∥∥∫ T

0

f ′(B(t))

[
(Kπ

t , ∂tK
π
t )L2([0,T ]) −

1

2

]
dt

∥∥∥∥ = I3 + I4.

Notice that the function (Kπ
t , ∂tK

π
t )L2([0,T ]) =

∑n−1
i=0

t−ti
∥π∥ χ(ti,ti+1](t) converges to the

constant 1
2

in the weak topology of L2([0, T ]) (as ∥π∥ → 0), this implies that∫ T

0

f ′(B(t))

[
(Kπ

t , ∂tK
π
t )L2([0,T ]) −

1

2

]
dt → 0 a.s. when ∥π∥ → 0, (2.55)
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then noticing that for any t ∈ [0, T ], | (Kπ
t , ∂tK

π
t )L2([0,T ]) | ≤ 1 an application of the

DCT implies that I4 → 0 as ∥π∥ → 0.

On the other hand applying Mikowski inequality for integrals, using the bound on
| (Kπ

t , ∂tK
π
t )L2([0,T ]) | we can use the same reasoning as for I2 to show that I3 → 0

as ∥π∥ → 0. This completes the proof.
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Chapter 3

Wong-Zakai approximations for
quasilinear systems of Itô’s type
stochastic differential equations

Based on: Lanconelli, A., & Scorolli, R. (2021). Wong–Zakai approxima-
tions for quasilinear systems of Itô’s type stochastic differential equations.
Stochastic Processes and their Applications, 141, 57-78.

Abstract

We extend to the multidimensional case a Wong-Zakai-type theorem proved by
Hu and Øksendal in [1] for scalar quasi-linear Itô stochastic differential equations
(SDEs). More precisely, with the aim of approximating the solution of a quasilin-
ear system of Itô’s SDEs, we consider for any finite partition of the time interval
[0, T ] a system of differential equations, where the multidimensional Brownian mo-
tion is replaced by its polygonal approximation and the product between diffusion
coefficients and smoothed white noise is interpreted as a Wick product. We remark
that in the one dimensional case this type of equations can be reduced, by means of
a transformation related to the method of characteristics, to the study of a random
ordinary differential equation. Here, instead, one is naturally led to the investigation
of a semilinear hyperbolic system of partial differential equations that we utilize for
constructing a solution of the Wong-Zakai approximated systems. We show that the
law of each element of the approximating sequence solves in the sense of distribution
a Fokker-Planck equation and that the sequence converges to the solution of the Itô
equation, as the mesh of the partition tends to zero.
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3.1 Introduction and statement of the main results
Let {B(t)}t∈[0,T ] be a standard one dimensional Brownian motion and, for a given
finite partition π of the interval [0, T ], denote by {Bπ(t)}t∈[0,T ] its polygonal approx-
imation. Then, under suitable conditions on the coefficients b : [0, T ]× R → R and
σ : [0, T ] × R → R, the solution {Y π(t)}t∈[0,T ] of the random ordinary differential
equation

dY π(t)

dt
= b(t, Y π(t)) + σ(t, Y π(t)) · dB

π(t)

dt
, (3.1)

converges, as the mesh of π tends to zero, to the strong solution {Y (t)}t∈[0,T ] of the
Stratonovich stochastic differential equation (SDE, for short)

dY (t) = b(t, Y (t))dt+ σ(t, Y (t)) ◦ dB(t), (3.2)

or equivalently (see [2]) of the Itô SDE

dY (t) =

[
b(t, Y (t)) +

1

2
σ(t, Y (t))∂yσ(t, Y (t))

]
dt+ σ(t, Y (t))dB(t).

This is the famous Wong-Zakai theorem [12],[13] whose extension to the multidi-
mensional case can be found in [47].
In [1] the authors suggested how to modify equation (3.1) to get in the limit the
Itô’s interpretation of (3.2): they considered the case with σ(t, x) = σ(t)x, where
σ : [0, T ] → R is a deterministic function, and proved that the solution {Xπ(t)}t∈[0,T ]

of the differential equation

dXπ(t)

dt
= b(t,Xπ(t)) + σ(t)Xπ(t) ⋄ dBπ(t)

dt
, (3.3)

converges, as the mesh of π tends to zero, to the strong solution {X(t)}t∈[0,T ] of the
Itô SDE

dX(t) = b(t,X(t))dt+ σ(t)X(t)dB(t). (3.4)

Observe that the achievement of [1] is twofold: existence of a solution for (3.3) and
its convergence towards the solution of (3.4) (see also the related works [48] and
[49]). As far as the existence is concerned, equation (3.3) is not a standard random
ordinary differential equation but instead an infinite dimensional partial differential
equation. In fact, by proposition 101 we have that

Xπ(t) ⋄ dBπ(t)

dt
= Xπ(t)

dBπ(t)

dt
−D∂tKπ(t,·)X

π(t), (3.5)

where Kπ(t, ·) is a deterministic function that verifies the identity

Bπ(t) =

∫ T

0

Kπ(t, s)dB(s),
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while D∂tKπ(t,·) stands for the directional Malliavin derivative along the function
s 7→ ∂tK

π(t, s), one recognizes equation (3.3) as a nonlinear evolution equation
driven by an infinite dimensional gradient. Nevertheless, the particular form of
σ(t, x) considered in [1] allows for a reduction method which transforms that into
a random ordinary differential equation. We now briefly describe such method: we
Wick-multiply both sides of (3.3) by

Eπ(0, t) := e
−

∫ t
0 σ(s)

dBπ(s)
ds

ds− 1
2
E
[(∫ t

0 σ(s)
dBπ(s)

ds
ds

)2
]
, t ∈ [0, T ],

to obtain

dXπ(t)

dt
⋄ Eπ(0, t) = b(t,Xπ(t)) ⋄ Eπ(0, t) + σ(t)Xπ(t) ⋄ dBπ(t)

dt
⋄ Eπ(0, t),

or equivalently,

dXπ(t)

dt
⋄ Eπ(0, t) = b(t,Xπ(t)) ⋄ Eπ(0, t)−Xπ(t) ⋄ dEπ(0, t)

dt
.

Here, we utilized the identity

dEπ(0, t)

dt
= σ(t)

dBπ(t)

dt
⋄ Eπ(0, t).

Rearranging the terms and exploiting the Leibniz rule for the Wick product we can
write

d

dt
(Xπ(t) ⋄ Eπ(0, t)) = b(t,Xπ(t)) ⋄ Eπ(0, t). (3.6)

Now, if we set

X π(t) := Xπ(t) ⋄ Eπ(0, t), t ∈ [0, T ],

and recall that

Eπ(0, t) ⋄ Eπ(0, t) = 1, for all t ∈ [0, T ],

where

Eπ(0, t) := e

∫ t
0 σ(s)

dBπ(s)
ds

ds− 1
2
E
[(∫ t

0 σ(s)
dBπ(s)

ds
ds

)2
]
, t ∈ [0, T ],

we can reduce (3.6) to

dX π(t)

dt
= b(t,X π(t) ⋄ Eπ(0, t)) ⋄ Eπ(0, t). (3.7)

Equation (3.7) doesn’t look simpler than (3.3); however, in (3.7) one can apply
theorem 100 which produces a Wick product-free expression. First, we observe that



66

resorting to the definition of {Bπ(t)}t∈[0,T ] (see equation (3.16) below) one gets the
representation ∫ t

0

σ(s)
dBπ(s)

ds
ds =

∫ T

0

σπ(t, s)dB(s),

for a suitable σπ : [0, T ]×[0, T ] → R. With this notation at hand, Gjessing’s formula
(theorem 100) can be simply stated as

Z ⋄ Eπ(0, t) = T−σπ(t,·)Z · Eπ(0, t), (3.8)

and

Z ⋄ Eπ(0, t) = Tσπ(t,·)Z · Eπ(0, t), (3.9)

for a general random variable Z belonging to Lp(Ω), for some p > 1. It’s important
to notice that here Tf denotes the operator that translates the Brownian path by the
function

∫ ·
0
f(s)ds (see formula (3.22) below), the difference between this formulation

and the one introduced in theorem 100 is due to the fact that in the latter we were
working with the white noise probability space while here we deal with the Wiener
space.

An application to equation (3.7) of Gjessing’s formula yields the following random
ordinary differential equation

dX π(t)

dt
= b

(
t,X π(t) · (Eπ(0, t))−1) · Eπ(0, t). (3.10)

Standard assumptions on the coefficients ensure the existence of a unique solution
{X π(t)}t∈[0,T ] which, together with equality Xπ(t) = X π(t) ⋄ Eπ(0, t), provides a
unique solution also for (3.3). It is important to remark that the success of this
reduction method is due to the opposite signs appearing in front of σπ(t, ·) in equa-
tions (3.8) and (3.9); this results in the disappearance of the translation operator,
and hence of the Wick product, from equation (3.7).

Aim of the present paper is the extension to the multidimensional case of the exis-
tence theorem for (3.3) and its convergence to (3.4) proven in [1]. More precisely, for
each finite partition π of the interval [0, T ] we introduce the Cauchy problem

dXπ
i (t)

dt
= bi(t,X

π(t)) + σi(t)X
π
i (t) ⋄

dBπ
i (t)

dt
,

for t ∈]0, T ] and i = 1, ..., d;

Xπ
i (0) = ci ∈ R, for i = 1, ..., d,

(3.11)

where {Bπ(t) = (Bπ
1 (t), ..., B

π
d (t))

∗}t∈[0,T ] stands for the polygonal approximation,
relative to the partition π, of the standard d-dimensional Brownian motion {B(t) =
(B1(t), ..., Bd(t))

∗}t∈[0,T ]; the functions b1, ..., bd : [0, T ] × Rd → R and σ1, ..., σd :
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[0, T ] → R are measurable while c ∈ Rd is a deterministic initial condition. System
(3.11) should be thought as a Wong-Zakai-type approximation for the system of
Itô’s SDEs 

dXi(t) = bi(t,X(t))dt+ σi(t)Xi(t)dBi(t),

for t ∈]0, T ] and i = 1, ..., d;

Xi(0) = ci ∈ R, for i = 1, ..., d.

(3.12)

We will assume throughout the paper the following regularity properties for the
coefficients: they guarantee the existence of a unique strong solution for (3.12).

Assumption 2.

• The functions b(t, x), ∂x1b(t, x),..., ∂xd
b(t, x) are bounded and continuous;

• the functions σ1(t), ..., σd(t) are bounded and continuous.

Our first main theorem concerns the existence of a solution for (3.11). It is worth
mentioning that the reduction method described above doesn’t apply to such sys-
tems, unless very particular cases are considered. In fact, the disappearance of the
translation operator mentioned before takes place only when the same one dimen-
sional Brownian motion drives all the equations in (3.11) and moreover σ1(t) = · · · =
σd(t), for all t ∈ [0, T ]. Therefore, to prove the existence of a solution for (3.11) we
have to employ a different approach which can be summarized as follows.
Using identity (3.5) we rewrite (3.11) as

dXπ
i (t)

dt
= bi(t,X

π(t)) + σi(t)X
π
i (t)

dBπ
i (t)

dt
− σi(t)D

(i)
Kπ(t,·)X

π
i (t),

for t ∈]0, T ] and i = 1, ..., d;

Xπ
i (0) = ci ∈ R, for i = 1, ..., d.

(3.13)

(Here, D(i) stands for the Mallivian derivative with respect to the i-th component
of the multidimensional Brownian motion {B(t)}t≥0). If we now divide the inter-
val [0, T ] according to the partition π = {t0, ..., tN} and search on any subinterval
]tk, tk+1] for a solution to (3.13) of the form

Xπ
i (t) := ui(t, B

π(tk+1)−Bπ(tk)), t ∈]tk, tk+1], i = 1, ..., d

where ui : [0, T ] × Rd 7→ R are deterministic functions, we see that u = (u1, ..., ud)
has to solve a semilinear hyperbolic system of partial differential equations of the
type 

∂tui(t, x) = −σi(t)∂xi
ui(t, x) + σi(t)

xi

h
ui(t, x) + bi(t, u(t, x)),

for t ∈]tk, tk+1], x ∈ Rd and i = 1, ..., d;

ui(r, x) = αi, for x ∈ Rd and i = 1, ..., d.

(3.14)
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Here, h denotes the mesh of the partition π while α1, ..., αd are suitable deterministic
initial conditions. This link to the theory of partial differential equations allows us
to state our first main result whose proof can be found in Section 3.3. We will deal
with a weak notion of solution, see Definition 111 below, that doesn’t require any
Malliavin differentiability property of the solution (as it should be implied by the
last term in (3.13)).

Theorem 107 (Existence). Under Assumption equation (3.11) possesses a mild
solution {Xπ(t)}t∈[0,T ] in the sense of Definition 111 below.

Our second main result shows that system (3.11) is naturally connected with a
Fokker-Planck-type equation which is solved in the sense of distributions by the law
of the mild solution {Xπ(t)}t∈[0,T ]. This establishes a further similarity between the
Wong-Zakai approximating equation (3.11) and its exact counterpart (3.12). This
theorem generalizes the one obtained in [50] for the scalar problem (3.3). The proof
is postponed to Section 3.4.

Theorem 108 (Fokker-Planck equation). The law

µπ(t, A) := P (Xπ(t) ∈ A), t ∈ [0, T ], A ∈ B(Rd)

of the random vector Xπ(t) solves in the sense of distributions the Fokker-Planck
equation(

∂t +
d∑

i,j=1

σi(t)xigij(t, xi)∂
2
xixj

+
d∑

i=1

bi(t, x)∂xi

)∗

u(t, x) = 0, t ∈ [0, T ], x ∈ Rd.

(3.15)

Here, gij : [0, T ] × R → R is the measurable function defined in (3.37) and (3.38)
below.

Lastly, we present the convergence of {Xπ(t)}t∈[0,T ] towards the solution of the Itô
equation (3.12), as the mesh ∥π∥ of the partition π tends to zero. For the proof the
reader is referred to Section 3.5.

Theorem 109 (Convergence). The mild solution {Xπ(t)}t∈[0,T ] converges, as the
mesh of π tends to zero, to the unique strong solution {X(t)}∈[0,T ] of the Itô SDE
(3.12). More precisely,

lim
∥π∥→0

d∑
i=1

E [|Xπ
i (s)−Xi(s)|] = 0, for all t ∈ [0, T ].

Remark 110. In the next chapter we will a similar idea and approach to Itô-type
stochastic differential equations driven by fractional Brownian motions (see Section
6.1 in [51]).
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The paper is organized as follows: in Section 2 we describe our framework and
formalize all the mathematical concepts utilized in the introduction to present the
problem; Section 3 contains the most novel part of our paper that consists in the
link between the Wong-Zakai equation (3.11) and the semilinear hyperbolic system
of partial differential equations (3.14); here, we describe in details the construction
of the mild solution {Xπ(t)}t∈[0,T ]; in Section 4 the proof of Theorem 108 on the
Fokker-Planck equation passes through a careful interplay between the Gaussian
nature of the noise and structure of the hyperbolic system; Section 5 concludes the
manuscript with the proof of Theorem 109 which greatly benefits from the notion
of mild solution introduced in Section 2.

3.2 Notation and preliminary results

In this section we set the notation and prepare the ground for proving our main
theorems. We fix a positive time horizon T and a dimension d ∈ N. Let (Ω,F , P )
be the classical Wiener space over the time interval [0, T ] with values on Rd (see
section 2.1.2); we denote by {B(t) = (B1(t), ..., Bd(t))

∗}t∈[0,T ] the coordinate process,
i.e.

B(t) : Ω → Rd

ω 7→ B(t)(ω) := ω(t);

by construction, {B(t)}t∈[0,T ] is a standard d-dimensional Brownian motion.
We choose a finite partition π := {t0, ..., tN} of the interval [0, T ], i.e.

0 = t0 < t1 < · · · < tN = T,

and set ∥π∥ := maxk∈{0,1,...,N} |tk − tk−1|. The real number ∥π∥ is called mesh of the
partition π. We will assume without loss of generality that the partition is equally
spaced, i.e. tk = kT

N
, for all k ∈ {0, ..., N}; in this case we simply have ∥π∥ := T

N
but

we will continue to use the notation π = {t0, ..., tN} and ∥π∥.
We associate to the partition π the polygonal approximation of the Brownian motion
{B(t)}t∈[0,T ]:

Bπ(t) :=

(
1− t− tk

tk+1 − tk

)
B(tk) +

t− tk
tk+1 − tk

B(tk+1), if t ∈ [tk, tk+1[ (3.16)

and Bπ(T ) := B(T ). It is well known that for any ε > 0 and p ≥ 1 there exists a
positive constant Cp,T,ε such that(

E

[
sup

t∈[0,T ]

|B(t)π −B(t)|p
])1/p

≤ Cp,T,ε∥π∥1/2−ε.
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We refer the reader to [15, Lemma 11.8 ] for a sharper estimate. For i = 1, ..., d, we
set

Σi(s, t) :=

∫ t

s

σi(r)dr, 0 ≤ s ≤ t ≤ T, (3.17)

and observe that∫ t

s

σi(r)Ḃ
π
i (r)dr =

∫ tj

s

σi(r)Ḃ
π
i (r)dr +

∫ tj+1

tj

σi(r)Ḃ
π
i (r)dr + · · ·+

∫ t

tk

σi(r)Ḃ
π
i (r)dr

=Σi(s, tj)
Bi(tj)−Bi(tj−1)

h
+ Σi(tj, tj+1)

Bi(tj+1)−Bi(tj)

h

· · ·+Σi(tk, t)
Bi(t)−Bi(tk)

h
, (3.18)

when tj−1 ≤ s < tj < · · · < tk ≤ t, for some j ≤ k in {1, ..., N − 1}. In particular, if
s, t ∈ [tk, tk+1] for some k ∈ {0, ..., N}, the last expression simplifies to∫ t

s

σi(r)Ḃ
π
i (r)dr = Σi(s, t)

Bi(tk+1)−Bi(tk)

h
.

It is important to remark that according to (3.18) the quantity
∫ t

s
σi(r)Ḃ

π
i (r)dr is a

linear combination of independent Gaussian random variables with

E
[∫ t

s

σi(r)Ḃ
π
i (r)dr

]
= 0

and

E

[(∫ t

s

σi(r)Ḃ
π
i (r)dr

)2
]
=

1

h

(
Σi(s, tj)

2 + Σi(tj, tj+1)
2 + · · ·+ Σi(tk, t)

2
)

We now set

Eπ
i (s, t) := e

∫ t
s σi(r)Ḃ

π
i (r)dr−

1
2
E
[
(
∫ t
s σi(r)Ḃ

π
i (r)dr)

2
]

and observe that if s, t ∈ [tk, tk+1], for some k ∈ {0, ..., N}, we get

Eπ
i (s, t) = eΣi(s,t)

Bi(tk+1)−Bi(tk)

h
− 1

2h
Σi(s,t)

2

.

It is easy to verify, using the independence of Brownian increments on disjoint
subintervals [tk, tk+1], that

Eπ
i (s, tk)Eπ

i (tk, t) = Eπ
i (s, t) (3.19)

when s ≤ tk ≤ t for some k ∈ {1, ..., N − 1} and s, t ∈ [0, T ].
A key role in the following will be played by the notion of Wick product (see sec-
tion 2.3.6). For the sake of completeness we briefly remind two particular cases of
proposition 101 and theorem 100
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• if X belongs to the Sobolev-Malliavin space D1,p, for some p > 1 , and f ∈
L2([0, T ]) is a deterministic function, then

X ⋄
∫ T

0

f(t)dBi(t) := X ·
∫ T

0

f(t)dBi(t)−D
(i)
f X, (3.20)

with D
(i)
f being the directional Mallivian derivative with respect to the i-th

component of the multidimensional Brownian motion {B(t)}t≥0 in the direc-
tion f ;

• if X ∈ Lp(Ω), for some p > 1, and s, t ∈ [tk, tk+1], for some k ∈ {1, ..., N − 1},
we set

X ⋄ Eπ
i (s, t) := T−σi,kX · Eπ

i (s, t), (3.21)

where T−σi,k stands for the translation operator

(T−σi,kX)(ω) := X

(
ω − ϵi

Σi(s, t)

h

∫ ·

0

1[tk,tk+1](r)dr

)
. (3.22)

Here, {ϵ1, ..., ϵd} denotes the canonical basis of Rd (recall that we are working
with a d-dimensional Brownian motion and hence T−σi,k acts only on the i-th
component of {B(t)}t∈[0,T ]).

We observe that both definitions (3.20) and (3.21) are actually consequences of the
general definition of Wick product: the first one being related to the interplay be-
tween Wick product and Skorohod integral (e.g. theorem 94)and the latter being
nothing else than Gjessing’s Lemma (recall the use we made of that in the introduc-
tion).
It is known (see for instance [16, Theorem 14.1 (vi)]) that the translation operator
maps Lp(Ω) into Lq(Ω), for all q < p; therefore, since Eπ

i (s, t) ∈ Lp(Ω) for any p ≥ 1,
we conclude that X ⋄ Eπ

i (s, t) belongs to Lq(Ω), for all q < p. It is immediate to
verify using definition (3.21) that

Eπ
i (s, t) ⋄ Eπ

j (s, t) = Eπ
i (s, t) · Eπ

j (s, t), if i ̸= j,

and

Eπ
i (s, tk) ⋄ Eπ

i (tk, t) = Eπ
i (s, tk) · Eπ

i (tk, t) = Eπ
i (s, t), if s ≤ tk ≤ t ≤ tk+1.

By means of the last identity we can extend definition (3.21) to the case where s
and t do not necessarily belong to the same subinterval [tk, tk+1]. In fact, assume
that tk−1 ≤ s ≤ tk ≤ t ≤ tk+1: then,

X ⋄ Eπ
i (s, t) :=(X ⋄ Eπ

i (s, tk)) ⋄ Eπ
i (tk, t)

=(T−σi,k−1X · Eπ
i (s, tk)) ⋄ Eπ

i (tk, t)

=T−σi,k(T−σi,k−1X · Eπ
i (s, tk)) · Eπ

i (tk, t)

=T−σi,kT−σi,k−1X · Eπ
i (s, tk) · Eπ

i (tk, t)

=T−σi,kTσi,k−1X · Eπ
i (s, t).
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The transformation (3.21) inherits from the translation operator a monotonicity
property:

if X ≤ Y , then X ⋄ Eπ
i (s, t) ≤ Y ⋄ Eπ

i (s, t).

In particular,

|X ⋄ Eπ
i (s, t)| ≤ |X| ⋄ Eπ

i (s, t). (3.23)

We are now able to formalize the solution concept that we utilize for solving (3.11).

Definition 111. A d-dimensional stochastic process {Xπ(t)}t∈[0,T ] is said to be a
mild solution of equation (3.11) if:

1. the function t 7→ Xπ(t) is almost surely continuous;

2. for i = 1, ..., d and t ∈ [0, T ], the random variable Xi(t) belongs to Lp(Ω) for
some p > 1;

3. for i = 1, ..., d, the identity

Xπ
i (t) = ciEπ

i (0, t) +

∫ t

0

bi(s,X
π(s)) ⋄ Eπ

i (s, t)ds, t ∈ [0, T ], (3.24)

holds almost surely.

Remark 112. The way one can go from (3.11) to (3.24) is pretty similar to the
reduction method described in the introduction for the scalar case. Namely, if we
Wick-multiply by Eπi (0, t) both sides of

dXπ
i (t)

dt
= bi(t,X

π(t)) + σi(t)X
π
i (t) ⋄

dBπ
i (t)

dt
,

and employ the properties of Wick product mentioned there, we will end up with
the corresponding multidimensional analogue of (3.7), i.e.

dX π
i (t)

dt
= bi(t,X π(t) ⋄ Eπ

i (0, t)) ⋄ Eπi (0, t), (3.25)

where

X π
i (t) := Xπ

i (t) ⋄ Eπi (0, t), t ∈ [0, T ].

We now write (3.25) in the integral form

X π
i (t) = ci +

∫ t

0

bi(s,X π(s) ⋄ Eπ
i (0, s)) ⋄ Eπi (0, s)ds;
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this identity together with

Xπ
i (t) = X π

i (t) ⋄ Eπ
i (0, t),

gives

Xπ
i (t) ⋄ Eπi (0, t) = ci +

∫ t

0

bi(s,X
π
i (t)) ⋄ Eπi (0, s)ds.

If we now Wick-multiply both sides above by Eπ
i (0, t), we obtain (3.24). We recall

that the application of Gjessing’s Lemma here doesn’t reduce the previous equation
to a random ordinary differential equation and hence to prove the existence of a
solution for (3.24) we have to resort to the technique described in the next section.

3.3 Proof of Theorem 107

3.3.1 An auxiliary semilinear hyperbolic system of PDEs

To prove the existence of a mild solution for equation (3.11) we introduce the fol-
lowing auxiliary semilinear hyperbolic system of partial differential equations

∂tui(t, x) = −σi(t)∂xi
ui(t, x) + σi(t)

xi

h
ui(t, x) + bi(t, u(t, x)),

for t ∈]r, R], x ∈ Rd and i = 1, ..., d;

ui(r, x) = αi, for x ∈ Rd and i = 1, ..., d,

(3.26)

where α1, ..., αd are constant initial conditions and h denotes the mesh of the par-
tition under consideration. The validity of Assumption 2 implies the existence of
a unique classical solution for the Cauchy problem (3.26) (see for instance [52] and
[53]).
Now, if u solves (3.26), then from the trivial identity

∂xi

(
ui(t, x)e

− |x|2
2h

)
= ∂xi

ui(t, x)e
− |x|2

2h − xi

h
ui(t, x)e

− |x|2
2h ,

we can argue that the function

v(t, x) := u(t, x)e−
|x|2
2h , t ∈ [r, R], x ∈ Rd, (3.27)

is a classical solution of
∂tvi(t, x) = −σi(t)∂xi

vi(t, x) + bi

(
t, v(t, x)e

|x|2
2h

)
e−

|x|2
2h ,

for t ∈]r, R], x ∈ Rd and i = 1, ..., d;

vi(r, x) = αie
− |x|2

2h , for x ∈ Rd and i = 1, ..., d.

(3.28)
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Rewriting system (3.28) in the mild form
vi(t, x) = αie

− |x−Σi(r,t)ϵi|
2

2h

+
∫ t

r
bi

(
t, v(s, x− Σi(s, t)ϵi)e

|x−Σi(s,t)ϵi|
2

2h

)
e−

|x−Σi(s,t)ϵi|
2

2h ds

for t ∈ [r, R], x ∈ Rd and i = 1, ..., d,

(recall the definition of Σi(s, t) in (3.17)) and using identity (3.27), we obtain that
u solves 

ui(t, x)e
− |x|2

2h = αie
− |x−Σi(r,t)ϵi|

2

2h

+
∫ t

r
bi (t, u(s, x− Σi(s, t)ϵi)) e

− |x−Σi(s,t)ϵi|
2

2h ds

for t ∈ [r, R], x ∈ Rd and i = 1, ..., d,

or equivalently,
ui(t, x) = αie

xi
h
Σi(r,t)− 1

2h
Σi(r,t)

2

+
∫ t

r
bi (t, u(s, x− Σi(s, t)ϵi)) e

xi
h
Σi(s,t)− 1

2h
Σi(s,t)

2
ds

for t ∈ [r, R], x ∈ Rd and i = 1, ..., d.

(3.29)

Note that from the previous identity we get the estimate

|ui(t, x)| ≤|αi|e
xi
h
Σi(r,t)− 1

2h
Σi(r,t)

2

+

∫ t

r

|bi (t, u(s, x− Σi(s, t)ϵi)) |e
xi
h
Σi(s,t)− 1

2h
Σi(s,t)

2

ds

≤|αi|e
xi
h
Σi(r,t)− 1

2h
Σi(r,t)

2

+M

∫ t

r

e
xi
h
Σi(s,t)− 1

2h
(Σi(s,t)

2

ds

≤|αi|e
xi
h
Σi(r,t) +M

∫ t

r

e
xi
h
Σi(s,t)ds. (3.30)

Here, M denotes a positive constant satisfying |bi(t, x)| ≤ M , for all t ∈ [0, T ],
x ∈ Rd and i = 1, ..., d.

3.3.2 Construction of a mild solution for 3.11

In the sequel, in order to stress the dependence on specific initial conditions, we will
write

u(t, x; r, α) = (u1(t, x; r, α), ..., ud(t, x; r, α))
∗, t ∈ [r, R], x ∈ Rd
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to denote the unique classical solution of (3.26). We define the process {Xπ(t)}t∈[0,T ]

inductively:

Xπ(t) :=


u(t, B(t1); 0, c), if t ∈ [0, t1];

u(t, B(t2)−B(t1); t1, X
π(t1)), if t ∈]t1, t2];

· · · · · ·
u(t, B(T )−B(tN−1); tN−1, X

π(tN−1)), if t ∈]tN−1, T ].

(3.31)

We now verify that X(t) is a mild solution of (3.11), that is we check the conditions
of Definition 111.

The almost sure continuity of t ∈ [0, T ] 7→ X(t) follows immediately from the conti-
nuity of t ∈ [r, T ] 7→ u(t, x; r, α), for all x ∈ Rd and α ∈ Rd (u is a classical solution
of (3.26)) and the fact that for all k ∈ {1, ..., N − 1} we have by construction

lim
t→t−k

Xπ(t) = lim
t→t+k

Xπ(t).

We now verify that Xπ(t) ∈ Lp(Ω), for some p > 1 and all t ∈ [0, T ]. If t ∈ [0, t1],
then by the definition of Xπ(t) and estimate (3.30) we can write

|Xπ
i (t)| =|u(t, B(t1); 0, c)|

≤|ci|e
Bi(t1)

h
Σi(0,t) +M

∫ t

0

e
Bi(t1)

h
Σi(s,t)ds,

and hence

∥Xπ
i (t)∥Lp(Ω) ≤|ci|∥e

Bi(t1)

h
Σi(0,t)∥Lp(Ω) +M

∫ t

0

∥e
Bi(t1)

h
Σi(s,t)∥Lp(Ω)ds

=|ci|ep
Σi(0,t)

2

2h +M

∫ t

0

ep
Σi(s,t)

2

2h ds

=|ci|ep
Σi(0,t)

2

2h +Mte
p
2h

sups∈[0,t] Σi(s,t)
2

. (3.32)

This proves the membership of Xπ
i (t) to Lp(Ω), for all i = 1, ..., d, t ∈ [0, t1] and

p ≥ 1. Let us now take t ∈]t1, t2]; again, by the definition of Xπ(t) and estimate
(3.30) we can write

|Xπ
i (t)| =|u(t, B(t2)−B(t1); t1, X

π(t1))|

≤|Xπ
i (t1)|e

Bi(t2)−Bi(t1)

h
Σi(t1,t) +M

∫ t

t1

e
Bi(t2)−Bi(t1)

h
Σi(s,t)ds,
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and hence, using Hölder inequality,

∥Xπ
i (t)∥Lp(Ω) ≤∥|Xπ

i (t1)|e
Bi(t2)−Bi(t1)

h
Σi(t1,t)∥Lp(Ω) +M

∫ t

t1

∥e
Bi(t2)−Bi(t1)

h
Σi(s,t)∥Lp(Ω)ds

≤∥Xπ
i (t1)∥Lq(Ω)∥e

Bi(t2)−Bi(t1)

h
Σi(t1,t)∥q′ +M

∫ t

t1

∥e
Bi(t2)−Bi(t1)

h
Σi(s,t)∥Lp(Ω)ds

≤∥Xπ
i (t1)∥Lq(Ω)e

q′
Σi(t1,t)

2

2h +M

∫ t

t1

ep
Σi(s,t)

2

2h ds

≤∥Xπ
i (t1)∥Lq(Ω)e

q′
Σi(t1,t)

2

2h +M(t− t1)e
p
2h

sups∈[t1,t]
Σi(s,t)

2

.

This last estimate combined with (3.32) provides the desired upper bound for
∥Xπ

i (t)∥Lp(Ω) on the interval ]t1, t2]. It also clear that in a similar manner one ob-
tains analogous estimates for the Lp(Ω)-norm of Xi(t) on any subinterval ]tk, tk+1]
for k = 2, ..., N − 1.

We are left with the verification that {Xπ(t)}t∈[0,T ] as defined in (3.31) satisfies
identity (3.24). To this aim we prove the following auxiliary result.

Proposition 113. Identity (3.24) is equivalent to

Xπ
i (t) = Xπ

i (tk−1) ⋄ Eπ
i (tk−1, t) +

∫ t

tk−1

bi(s,X
π(s)) ⋄ Eπ

i (s, t)ds, t ∈ [tk−1, tk],

(3.33)

for all k ∈ {1, ..., N}.
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Proof. Assume identity (3.24) to be true; then, for t ∈]tk−1, tk] we can write

Xπ
i (t) =ciEπ

i (0, t) +

∫ t

0

bi(s,X
π(s)) ⋄ Eπ

i (s, t)ds

=ciEπ
i (0, t) +

∫ tk−1

0

bi(s,X
π(s)) ⋄ Eπ

i (s, t)ds+

∫ t

tk−1

bi(s,X
π(s)) ⋄ Eπ

i (s, t)ds

=ciEπ
i (0, tk−1) ⋄ Eπ

i (tk−1, t) +

∫ tk−1

0

bi(s,X
π(s)) ⋄ Eπ

i (s, tk−1) ⋄ Eπ
i (tk−1, t)ds

+

∫ t

tk−1

bi(s,X
π(s)) ⋄ Eπ

i (s, t)ds

=ciEπ
i (0, tk−1) ⋄ Eπ

i (tk−1, t) +

(∫ tk−1

0

bi(s,X
π(s)) ⋄ Eπ

i (s, tk−1)ds

)
⋄ Eπ

i (tk−1, t)

+

∫ t

tk−1

bi(s,X
π(s)) ⋄ Eπ

i (s, t)ds

=

(
ciEπ

i (0, tk−1) +

∫ tk−1

0

bi(s,X
π(s)) ⋄ Eπ

i (s, tk−1)ds

)
⋄ Eπ

i (tk−1, t)

+

∫ t

tk−1

bi(s,X
π(s)) ⋄ Eπ

i (s, t)ds

=Xπ
i (tk−1) ⋄ Eπ

i (tk−1, t) +

∫ t

tk−1

bi(s,X
π(s)) ⋄ Eπ

i (s, t)ds.

This proves (3.33). If we now start from (3.33) and replace iteratively Xπ
i (tk−1) with

Xπ
i (tk−2) ⋄ Eπ

i (tk−2, tk−1) +

∫ tk−1

tk−2

bi(s,X
π(s)) ⋄ Eπ

i (s, t)ds,

and then replace Xπ
i (tk−2) with

Xπ
i (tk−3) ⋄ Eπ

i (tk−3, tk−2) +

∫ tk−2

tk−3

bi(s,X
π(s)) ⋄ Eπ

i (s, t)ds,

and so on, we will end up with (3.24).

Remark 114. We observe that according to the definition of Xπ(t) in (3.31), for any
k ∈ {1, ..., N} and t ≤ tk−1 the random vector Xπ(t) depends only on the Brownian
increments on the intervals [0, t1],...,[tk−2, tk−1]. Therefore, the term

Xπ
i (tk−1) ⋄ Eπ

i (tk−1, t), t ∈]tk−1, tk]

in (3.33) can be rewritten for our particular mild solution as

Xπ
i (tk−1)Eπ

i (tk−1, t), t ∈]tk−1, tk].
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In fact, according to (3.21) one has

Xπ
i (tk−1) ⋄ Eπ

i (tk−1, t) = T−σi,k−1X
π
i (tk−1)Eπ

i (tk−1, t)

= Xπ
i (tk−1)Eπ

i (tk−1, t).

(The translation acts on a part of Brownian path which is disjoint from the incre-
ments on which Xπ

i (tk−1) depends).

We are now ready to prove that Xπ(t) defined in (3.31) verifies identity (3.24)
through the equivalent equalities (3.33). Let t ∈ [0, t1]; then, identity (3.29) and
definition (3.31) give

Xπ
i (t) =ui(t, B(t1); 0, c)

=cie
Bi(t1)

h
Σi(0,t)− 1

2h
Σi(0,t)

2

+

∫ t

0

bi (t, u(s, B(t1)− Σi(s, t)ei; 0, c)) e
Bi(t1)

h
Σi(s,t)− 1

2h
Σi(s,t)

2

ds

=ciEπ
i (0, t) +

∫ t

0

bi (t, u(s, B(t1)− Σi(s, t)ei; 0, c)) Eπ
i (s, t)ds

=ciEπ
i (0, t) +

∫ t

0

T−σi,0bi (t, u(s, B(t1); 0, c)) Eπ
i (s, t)ds

=ciEπ
i (0, t) +

∫ t

0

bi (t, u(s, B(t1); 0, c)) ⋄ Eπ
i (s, t)ds

=ciEπ
i (0, t) +

∫ t

0

bi (t,X
π(s)) ⋄ Eπ

i (s, t)ds.

This corresponds to (3.33) for t ∈ [0, t1]. Let us now consider the general subinterval



79

]tk, tk+1], with k ∈ {1, ..., N − 1}; identity (3.29) and definition (3.31) give

Xπ
i (t) =ui(t, B(tk+1)−B(tk); tk, X

π(tk))

=Xπ
i (tk)e

Bi(tk+1)−Bi(tk)

h
Σi(tk,t)− 1

2h
Σi(tk,t)

2

+

∫ t

tk

bi (t, u(s, B(tk+1)−B(tk)− Σi(s, t)ϵi; tk, X
π(tk)))×

× e
B(tk+1)−B(tk)

h
Σi(s,t)− 1

2h
Σi(s,t)

2

ds

=Xπ
i (tk)Eπ

i (tk, t)

+

∫ t

tk

bi (t, u(s, B(tk+1)−B(tk)− Σi(s, t)ϵi; tk, X
π(tk))) Eπ

i (s, t)ds

=Xπ
i (tk)Eπ

i (tk, t) +

∫ t

tk

T−σi,kbi (t, u(s, B(tk+1)−B(tk); tk, X
π(tk))) Eπ

i (s, t)ds

=Xπ
i (tk)Eπ

i (tk, t) +

∫ t

tk

bi (t, u(s, B(tk+1)−B(tk); tk, X
π(tk))) ⋄ Eπ

i (s, t)ds

=Xπ
i (tk)Eπ

i (tk, t) +

∫ t

tk

bi (t,X
π(s)) ⋄ Eπ

i (s, t)ds.

This corresponds to (3.33) and the proof is complete.

3.4 Proof of Theorem 108

Let φ ∈ C2
0([0, T ]× Rd); then,

0 =φ(T,Xπ(T ))− φ(0, c)

=
N∑
k=1

φ(tk, X
π(tk))− φ(tk−1, X

π(tk−1))

=
N∑
k=1

∫ tk

tk−1

[
∂tφ(t,X

π(t)) +
d∑

i=1

∂xi
φ(t,Xπ(t))

d

dt
Xπ

i (t)

]
dt

=
N∑
k=1

∫ tk

tk−1

∂tφ(t, u(t, B(tk)−B(tk−1); tk−1, X
π(tk−1)))dt

+
N∑
k=1

∫ tk

tk−1

d∑
i=1

∂xi
φ(t, u(t, B(tk)−B(tk−1); tk−1, X

π(tk−1)))

· · · × ∂tui(t, B(tk)−B(tk−1); tk−1, X
π(tk−1))dt.

To ease the notation, we now suppress the explicit dependence on the initial con-
ditions in the function u and set Z(k) := B(tk) − B(tk−1); therefore, the previous
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identity reads

0 =
N∑
k=1

∫ tk

tk−1

∂tφ(t, u(t, Z(k)))dt+
N∑
k=1

d∑
i=1

∫ tk

tk−1

∂xi
φ(t, u(t, Z(k)))∂tui(t, Z(k))dt.

(3.34)

We recall that ui is a classical solution of (3.26) and hence we get

∂tui(t, Z(k)) = −σi(t)∂xi
ui(t, Z(k)) + σi(t)

Zi(k)

h
ui(t, Z(k)) + bi(t, u(t, Z(k))).

Substituting this identity into (3.34) yields

0 =
N∑
k=1

∫ tk

tk−1

∂tφ(t, u(t, Z(k)))dt

−
N∑
k=1

d∑
i=1

∫ tk

tk−1

∂xi
φ(t, u(t, Z(k)))σi(t)∂xi

ui(t, Z(k))dt

+
N∑
k=1

d∑
i=1

∫ tk

tk−1

∂xi
φ(t, u(t, Z(k)))σi(t)

Zi(k)

h
ui(t, Z(k))dt

+
N∑
k=1

d∑
i=1

∫ tk

tk−1

∂xi
φ(t, u(t, Z(k)))bi(t, u(t, Z(k)))dt

=A− B + C +D,

where

A :=
N∑
k=1

∫ tk

tk−1

∂tφ(t, u(t, Z(k)))dt,

B :=
N∑
k=1

d∑
i=1

∫ tk

tk−1

∂xi
φ(t, u(t, Z(k)))σi(t)∂xi

ui(t, Z(k))dt,

C :=
N∑
k=1

d∑
i=1

∫ tk

tk−1

∂xi
φ(t, u(t, Z(k)))σi(t)

Zi(k)

h
ui(t, Z(k))dt,

D :=
N∑
k=1

d∑
i=1

∫ tk

tk−1

∂xi
φ(t, u(t, Z(k)))bi(t, u(t, Z(k)))dt.

We now take the expectation of the first and last members above and get

0 = E[A]− E[B] + E[C] + E[D]. (3.35)
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Let us analyse E[C]:

E[C] =
N∑
k=1

d∑
i=1

∫ tk

tk−1

E
[
∂xi

φ(t, u(t, Z(k)))σi(t)
Zi(k)

h
ui(t, Z(k))

]
dt

=
N∑
k=1

d∑
i=1

∫ tk

tk−1

E
[
E
[
∂xi

φ(t, u(t, Z(k)))σi(t)
Zi(k)

h
ui(t, Z(k))

∣∣∣FB
tk−1

]]
dt;

(3.36)

here {FB
t }t∈[0,T ] stands for the natural filtration of the Brownian motion {B(t)}t∈[0,T ].

We remark that u(t, Z(k)) depends implicitly also on the increments Z(1), ...., Z(k−
1) through the initial condition; however, these increments are measurable with re-
spect to the sigma-algebra FB

tk−1
. Therefore, the conditional expectation can be

computed as follows

E
[
∂xi

φ(t, u(t, Z(k)))σi(t)
Zi(k)

h
ui(t, Z(k))

∣∣∣FB
tk−1

]
=

∫
Rd

∂xi
φ(t, u(t, x))σi(t)

xi

h
ui(t, x)

e−|x|2/2h

(2πh)d/2
dx

= −
∫
Rd

∂xi
φ(t, u(t, x))σi(t)ui(t, x)∂xi

(
e−|x|2/2h

(2πh)d/2

)
dx

=

∫
Rd

σi(t)∂xi
(∂xi

φ(t, u(t, x))ui(t, x))
e−|x|2/2h

(2πh)d/2
dx

=
d∑

j=1

∫
Rd

σi(t)∂xj
∂xi

φ(t, u(t, x))∂xi
uj(t, x)ui(t, x)

e−|x|2/2h

(2πh)d/2
dx

+

∫
Rd

σi(t)∂xi
φ(t, u(t, x))∂xi

ui(t, x)
e−|x|2/2h

(2πh)d/2
dx

= E

[
d∑

j=1

σi(t)∂xj
∂xi

φ(t, u(t, Z(k)))∂xi
uj(t, Z(k))ui(t, Z(k))

∣∣∣FB
tk−1

]
+ E

[
σi(t)∂xi

φ(t, u(t, Z(k)))∂xi
ui(t, Z(k))

∣∣∣FB
tk−1

]
;
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in the third equality we performed an integration by parts. Inserting the last ex-
pression in (3.36) gives

E[C] =
N∑
k=1

d∑
i=1

∫ tk

tk−1

E
[
E
[
∂xi

φ(t, u(t, Z(k)))σi(t)
Zi(k)

h
ui(t, Z(k))

∣∣∣FB
tk−1

]]
dt

=
N∑
k=1

d∑
i=1

∫ tk

tk−1

E

[
d∑

j=1

σi(t)∂xj
∂xi

φ(t, u(t, Z(k)))∂xi
uj(t, Z(k))ui(t, Z(k))

]
dt

+
N∑
k=1

d∑
i=1

∫ tk

tk−1

E [σi(t)∂xi
φ(t, u(t, Z(k)))∂xi

ui(t, Z(k))] dt.

Note that last term above coincides with E[B] which appear with a negative sign in
(3.35); hence,

− E[B] + E[C]

=
N∑
k=1

d∑
i,j=1

∫ tk

tk−1

E
[
σi(t)∂xj

∂xi
φ(t, u(t, Z(k)))∂xi

uj(t, Z(k))ui(t, Z(k))
]
dt.

Before recollecting all the parts of our computation, we make a further step; if we
denote by G(k)

i,t the sigma algebra generated by the random variable ui(t, Z(k)), for
t ∈ [tk−1, tk], k = 1, ..., N and i = 1, ..., d, we can rewrite the expectation inside the
integral above as

E
[
σi(t)∂xj

∂xi
φ(t, u(t, Z(k)))∂xi

uj(t, Z(k))ui(t, Z(k))
]

= E
[
E
[
σi(t)∂xj

∂xi
φ(t, u(t, Z(k)))∂xi

uj(t, Z(k))ui(t, Z(k))
∣∣∣G(k)

i,t

]]
= E

[
σi(t)∂xj

∂xi
φ(t, u(t, Z(k)))ui(t, Z(k))E

[
∂xi

uj(t, Z(k))
∣∣∣G(k)

i,t

]]
= E

[
σi(t)∂xj

∂xi
φ(t, u(t, Z(k)))ui(t, Z(k))g

(k)
ij (t, ui(t, Z(k)))

]
,

where g(k)ij : [tk−1, tk]×R → R is a measurable function, whose existence is guaranteed
by Doob’s Lemma, chosen to satisfy

g
(k)
ij (t, ui(t, Z(k))) = E

[
∂xi

uj(t, Z(k))
∣∣∣G(k)

i,t

]
. (3.37)
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Now, starting from (3.35) and using the last two identities we obtain

0 =E[A]− E[B] + E[C] + E[D]

=
N∑
k=1

∫ tk

tk−1

E[∂tφ(t, u(t, Z(k)))]dt

+
N∑
k=1

d∑
i,j=1

∫ tk

tk−1

E
[
σi(t)∂xj

∂xi
φ(t, u(t, Z(k)))ui(t, Z(k))g

(k)
ij (t, ui(t, Z(k)))

]
dt

+
N∑
k=1

d∑
i=1

∫ tk

tk−1

E[∂xi
φ(t, u(t, Z(k)))bi(t, u(t, Z(k)))]dt

=

∫ T

0

E[∂tφ(t,Xπ(t))]dt

+
N∑
k=1

d∑
i,j=1

∫ tk

tk−1

E
[
σi(t)∂xj

∂xi
φ(t,Xπ(t))Xπ

i (t)g
(k)
ij (t,Xπ

i (t))
]
dt

+

∫ T

0

d∑
i=1

E[∂xi
φ(t,Xπ(t))bi(t,X

π(t))]dt

=

∫ T

0

E[∂tφ(t,Xπ(t))]dt

+
d∑

i,j=1

∫ T

0

E
[
σi(t)∂xj

∂xi
φ(t,Xπ(t))Xπ

i (t)gij(t,X
π
i (t))

]
dt

+

∫ T

0

d∑
i=1

E[∂xi
φ(t,Xπ(t))bi(t,X

π(t))]dt,

where gij : [0, T ]× R → R is defined by

gij(t, y) := g
(k)
ij (t, y), if t ∈ [tk−1, tk]. (3.38)

Observe that the last member above contains expectations of functions of the random
vector Xπ(t), for t ∈ [0, T ]; therefore, writing the law of this random vector as

µπ(t, A) := P (Xπ(t) ∈ A), A ∈ B(Rd),



84

we can write

0 =

∫ T

0

∫
Rd

∂tφ(t, x)dµ
π(t, x)dt+

d∑
i,j=1

∫ T

0

∫
Rd

σi(t)∂xj
∂xi

φ(t, x)xigij(t, xi)dµ
π(t, x)dt

+
d∑

i=1

∫ T

0

∫
Rd

∂xi
φ(t, x)bi(t, x)dµ

π(t, x)dt

=

∫ T

0

∫
Rd

[
∂tφ(t, x) +

d∑
i,j=1

σi(t)∂
2
xixj

φ(t, x)xigij(t, xi) + ⟨b(t, x),∇φ(t, x)⟩

]
dµπ(t, x)dt.

The last equalities hold for any test function φ ∈ C2
0([0, T ]×Rd) and this completes

the proof of Theorem 108.

3.5 Proof of Theorem 109
The aim of this section is to prove that the mild solution of

dXπ
i (t)

dt
= bi(t,X

π(t)) + σi(t)X
π
i (t) ⋄

dBπ
i (t)

dt
,

for t ∈]0, T ] and i = 1, ..., d;

Xπ
i (0) = ci ∈ R, for i = 1, ..., d,

(3.39)

as defined in (3.31), converges in L1(Ω) to the unique strong solution of the Itô
SDE 

dXi(t) = bi(t,X(t))dt+ σi(t)Xi(t)dBi(t),

for t ∈]0, T ] and i = 1, ..., d;

Xi(0) = ci ∈ R, for i = 1, ..., d.

(3.40)

First of all, by means of the Itô formula we rewrite equation (3.40) in a form that
resembles identity (3.24). In fact, setting

Ei(s, t) := e−
∫ t
s σi(r)dBi(r)− 1

2

∫ t
s σi(r)

2dr, 0 ≤ s ≤ t ≤ T,

and

Ei(s, t) := e
∫ t
s σi(r)dBi(r)− 1

2

∫ t
s σi(r)

2dr, 0 ≤ s ≤ t ≤ T,

we write

d (Xi(t) ⋄ Ei(0, t)) =d(Tσi
Xi(t) · Ei(0, t))

=Ei(0, t) · dTσi
Xi(t) + Tσi

Xi(t) · dEi(0, t)
+ dTσi

Xi(t) · dEi(0, t).
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Now,

dTσi
Xi(t) = [bi(t, Tσi

X(t)) + σi(t)
2Tσi

Xi(t)]dt+ σi(t)Tσi
Xi(t)dBi(t),

dEi(0, t) = −σi(t)Ei(0, t)dBi(t),

and hence

d (Xi(t) ⋄ Ei(0, t))
= [bi(t, Tσi

X(t))Ei(0, t) + σi(t)
2Tσi

Xi(t)Ei(0, t)]dt+ σi(t)Tσi
Xi(t)Ei(0, t)dBi(t)

− σi(t)Tσi
Xi(t)Ei(0, t)dBi(t)− σi(t)

2Tσi
Xi(t)Ei(0, t)dt

= bi(t, Tσi
X(t))Ei(0, t)dt

= bi(t,X(t)) ⋄ Ei(0, t)dt.

This is equivalent to

Xi(t) ⋄ Ei(0, t) = ci +

∫ t

0

bi(s,X(s)) ⋄ Ei(0, s)ds,

or

Xi(t) = ciEi(0, t) +
∫ t

0

bi(s,X(s)) ⋄ Ei(0, s) ⋄ Ei(0, t)ds

= ciEi(0, t) +
∫ t

0

bi(s,X(s)) ⋄ Ei(s, t)ds.

Here, we utilized the equality

Ei(0, t) ⋄ Ei(0, t) = 1, for all t ∈ [0, T ].

Therefore, the solution of the Itô SDE (3.40) verifies the integral identity

Xi(t) = ciEi(0, t) +
∫ t

0

bi(s,X(s)) ⋄ Ei(s, t)ds, (3.41)
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for all t ∈ [0, T ] and i = 1, ..., d. We are now ready to prove the convergence:

|Xπ
i (t)−Xi(t)|

=

∣∣∣∣ci (Eπ
i (t, 0)− Ei(0, t)) +

∫ t

0

bi(s,X
π(s)) ⋄ Eπ

i (s, t)− bi (s,X(s)) ⋄ Ei(s, t)ds
∣∣∣∣

≤ |ci| |Eπ
i (0, t)− Ei(0, t)|+

∫ t

0

|bi(s,Xπ(s)) ⋄ Eπ
i (s, t)− bi (s,X(s)) ⋄ Ei(s, t)| ds

≤ |ci| |Eπ
i (0, t)− Ei(0, t)|+

∫ t

0

|bi(s,Xπ(s)) ⋄ Eπ
i (s, t)− bi(s,X(s)) ⋄ Eπ

i (s, t)| ds

+

∫ t

0

|bi(s,X(s)) ⋄ Eπ
i (s, t)− bi (s,X(s)) ⋄ Ei(s, t)| ds

≤ |ci| |Eπ
i (0, t)− Ei(0, t)|+

∫ t

0

|bi(s,Xπ(s))− bi(s,X(s))| ⋄ Eπ
i (s, t)ds

+

∫ t

0

|bi(s,X(s)) ⋄ Eπ
i (s, t)− bi (s,X(s)) ⋄ Ei(s, t)| ds

≤ |ci| |Eπ
i (0, t)− Ei(0, t)|+ L

∫ t

0

d∑
j=1

∣∣Xπ
j (s)−Xj(s)

∣∣ ⋄ Eπ
i (s, t)ds

+

∫ t

0

|bi(s,X(s)) ⋄ (Eπ
i (s, t)− Ei(s, t))| ds;

In the last two estimates we utilized inequality (3.23) together with the Lipschitz
continuity of b, which is implied by Assumption 2. We now take the expectation of
the first and last members above to get

E[|Xπ
i (t)−Xi(t)|]

≤ |ci|E [|Eπ
i (0, t)− Ei(0, t)|] + L

∫ t

0

d∑
j=1

E
[∣∣Xπ

j (s)−Xj(s)
∣∣] ds

+

∫ t

0

E [|bi(s,X(s)) ⋄ (Eπ
i (s, t)− Ei(s, t))|] ds.

The previous inequality is valid for all i = 1, ..., d and t ∈ [0, T ]; therefore, summing
over i and setting

Xπ(t) :=
d∑

i=1

E [|Xπ
i (s)−Xi(s)|] ,
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we obtain

Xπ(t) ≤
d∑

i=1

|ci|E [|Eπ
i (0, t)− Ei(0, t)|] + Ld

∫ t

0

Xπ(s)ds

+
d∑

i=1

∫ t

0

E [|bi(s,X(s)) ⋄ (Eπ
i (s, t)− Ei(s, t))|] ds

=Mπ(t) + Ld

∫ t

0

Xπ(s)ds,

with

Mπ(t) :=
d∑

i=1

|ci|E [|Eπ
i (0, t)− Ei(0, t)|]

+
d∑

i=1

∫ t

0

E [|bi(s,X(s)) ⋄ (Eπ
i (s, t)− Ei(s, t))|] ds.

According to Gronwall’s inequality the previous estimate yields

Xπ(t) ≤ Mπ(t) + Ld

∫ t

0

Mπ(s)eLd(t−s)ds; (3.42)

the proof will be complete if we show that Mπ(t) is bounded for all t ∈ [0, T ] and
any finite partition π and that

lim
∥π∥→0

Mπ(t) = 0, for all t ∈ [0, T ];

this will allow us to use dominated convergence for the Lebesgue integral appearing
in (3.42) and conclude that

lim
∥π∥→0

Xπ(t) = lim
∥π∥→0

d∑
i=1

E [|Xπ
i (s)−Xi(s)|] = 0.
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We start with the boundedness:

Mπ(t) ≤
d∑

i=1

|ci| (E [|Eπ
i (0, t)|] + E [|Ei(0, t)|])

+
d∑

i=1

∫ t

0

E [|bi(s,X(s)) ⋄ Eπ
i (s, t)− bi(s,X(s)) ⋄ Ei(s, t)|] ds

≤2
d∑

i=1

|ci|+
d∑

i=1

∫ t

0

E [|bi(s,X(s)) ⋄ Eπ
i (s, t)|] + E [|bi(s,X(s)) ⋄ Ei(s, t)|] ds

≤2
d∑

i=1

|ci|+
d∑

i=1

∫ t

0

E [|bi(s,X(s))| ⋄ Eπ
i (s, t)] + E [|bi(s,X(s))| ⋄ Ei(s, t)] ds

≤2
d∑

i=1

|ci|+ 2dMt.

We now check the convergence:

lim
∥π∥→0

Mπ(t) = lim
∥π∥→0

d∑
i=1

|ci|E [|Eπ
i (0, t)− Ei(0, t)|]

+ lim
∥π∥→0

d∑
i=1

∫ t

0

E [|bi(s,X(s)) ⋄ (Eπ
i (s, t)− Ei(s, t))|] ds

=
d∑

i=1

lim
∥π∥→0

∫ t

0

E [|bi(s,X(s)) ⋄ (Eπ
i (s, t)− Ei(s, t))|] ds.

We now prove that we can take the last limit inside the integral; first of all, note
that the integrand is bounded: in fact,

E [|bi(s,X(s)) ⋄ (Eπ
i (s, t)− Ei(s, t))|] =E [|bi(s,X(s)) ⋄ Eπ

i (s, t)− bi(s,X(s)) ⋄ Ei(s, t)|]
≤E [|bi(s,X(s)) ⋄ Eπ

i (s, t)|] + E [|bi(s,X(s)) ⋄ Ei(s, t)|]
≤E [|bi(s,X(s))| ⋄ Eπ

i (s, t)] + E [|bi(s,X(s))| ⋄ Ei(s, t)]
=E [|bi(s,X(s))|] + E [|bi(s,X(s))|]
≤2M.

We proceed by proving that

lim
∥π∥→0

E [|bi(s,X(s)) ⋄ (Eπ
i (s, t)− Ei(s, t))|] = 0.
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Let us rewrite the expected value as follows:

E [|bi(s,X(s)) ⋄ (Eπ
i (s, t)− Ei(s, t))|]

= E [|bi(s,X(s)) ⋄ Eπ
i (s, t)− bi(s,X(s)) ⋄ Ei(s, t)|]

= E [|Tσi,πbi(s,X(s))Eπ
i (s, t)− Tσi

bi(s,X(s))Ei(s, t)|]
≤ E [|Tσi,πbi(s,X(s))Eπ

i (s, t)− Tσi
bi(s,X(s))Eπ

i (s, t)|]
+ E [|Tσi

bi(s,X(s))Eπ
i (s, t)− Tσi

bi(s,X(s))Ei(s, t)|]
= E [|bi(s, Tσi,πX(s))− bi(s, Tσi

X(s))|Eπ
i (s, t)]

+ E [|bi(s, Tσi
X(s))||Eπ

i (s, t)− Ei(s, t)|]
≤ LE [|Tσi,πX(s)− Tσi

X(s)|Eπ
i (s, t)]

+ME [|Eπ
i (s, t)− Ei(s, t)|] .

Hence,

lim
∥π∥→0

E [|bi(s,X(s)) ⋄ (Eπ
i (s, t)− Ei(s, t))|]

≤ lim
∥π∥→0

LE [|Tσi,πX(s)− Tσi
X(s)|Eπ

i (s, t)]

+ lim
∥π∥→0

ME [|Eπ
i (s, t)− Ei(s, t)|] .

By the properties of the translation operator,

lim
∥π∥→0

Tσi,πX(s) = Tσi
X(s), in Lp(Ω) for all p ≥ 1;

on the other hand

lim
∥π∥→0

Eπ
i (s, t) = Ei(s, t), in Lp(Ω) for all p ≥ 1.

These two facts imply

lim
∥π∥→0

LE [|Tσi,πX(s)− Tσi
X(s)|Eπ

i (s, t)] = 0,

completing the proof.
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Chapter 4

Wong-Zakai approximations for
quasilinear systems of Itô’s type
fractional stochastic differential
equations driven by fBm

Based on : Scorolli, R. (2021). Wong-Zakai approximations for quasi-
linear systems of Itô’s type stochastic differential equations driven by
fBm with H > 1/2. To appear in Infinite Dimensional Analysis, Quantum
Probability and Related Topics.

Abstract

In a recent article Lanconelli and Scorolli (2021) extended to the multidimensional
case a Wong-Zakai-type approximation for Itô stochastic differential equations pro-
posed by Øksendal and Hu (1996). The aim of the current paper is to extend the latter
result to system of stochastic differential equations of Itô type driven by fractional
Brownian (fBm) motion like those considered by Hu (2018). This extension is not
trivial since the covariance structure of the fBm precludes us from using the same
approach as that used by Lanconelli and Scorolli. Instead we employ a truncated
Cameron-Martin expansion as the approximation for the fBm. We are naturally
led to the investigation of a semilinear hyperbolic system of evolution equations in
several space variables that we utilize for constructing a solution of the Wong–Zakai
approximated systems. We show that the law of each element of the approximating
sequence solves in the sense of distribution a Fokker-Planck equation and that the
sequence converges to the solution of the Itô equation, as the number of terms in the
expansion goes to infinite.
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4.1 Introduction and statements of the main re-
sults.

Our aim is to extend the results introduced in the last chapter to the case in which
the equations are driven by a fractional Brownian motion (fBm for short) with
Hurst paramenter H > 1/2 as those considered by [51]. We stress the fact that the
approach proposed in the previous chapter is not entirely suitable for this particular
situation; in specific the independence of the Brownian increments was a key part
in the proof we proposed, and it’s well known that the fBm does not posses this
desirable property.

To overcome this difficulty we introduce the following Cauchy problem{
dXK

i (t)

dt
= bi(t,X

K(t)) + σi(t)X
K
i (t) ⋄ dBH,K

i (t)

dt
, t ∈]0, T ]

Xi(0) = ci ∈ R, for i ∈ {1, ..., d},
(4.1)

where {BH,K(t)}t∈[0,T ] stands for the truncated (up to the K-th term) Cameron-
Martin expansion of the d-dimensional fractional Brownian motion {BH(t)}t∈[0,T ](see
equation (4.6) for the definition), the coefficients b : [0, T ] × Rd → Rd, σ : [0, T ] →
Rd satisfy certain condition which will be specified later on, while c ∈ Rd is a
deterministic initial condition.

We must interpret (4.1) as Wong-Zakai approximation of the stochastic Cauchy
problem of the Itô type:{

dXi(t) = bi(t,X(t))dt+ σi(t)Xi(t)dB
H
i (t), t ∈]0, T ]

Xi(0) = ci ∈ R, for i ∈ {1, ..., d}.
(4.2)

It’s important to stress the fact that (4.1) is not a system of random ordinary differ-
ential equations, but rather an evolution equation involving an infinite dimensional
gradient (see for instance [51, equation 1.5]).

Throughout this chapter we will assume that the coefficients b and σ posses enough
regularity to ensure that the Cauchy problem (4.2) has a unique strong solution (e.g.
[51]). This conditions could be summarized as

Assumption 3.

• The functions b(t, x), ∂x1b(t, x),..., ∂xd
b(t, x) are bounded and continuous;

• the functions σ1(t), ..., σd(t) are bounded and continuous.

We are now ready to state our main results; the first of which ensures the existence
of a solution for the approximating equation.

Theorem 115 (Existence). Let Assumption 3 be in force. Then (4.1) has a mild
solution in the sense of definition 118.
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Our second theorem states that the law of the approximation solves in a distribu-
tional sense a Fokker-Planck-like equation.

Theorem 116 (Fokker-Planck equation). The law

µK(t, A) := P({ω ∈ Ω : XK(t, ω) ∈ A}), t ∈ [0, T ], A ∈ B(Rd)

of the random vector XK(t) solves in the sense of distributions the Fokker-Planck
equation(
∂t +

d∑
i,j=1

K∑
k=1

σi(t)ζk(t)xig
(j)
ik (t, x)∂2

xixj
+
∑
i=1

bi(t, x)∂xi

)∗

u(t, x) = 0, (t, x) ∈ [0, T ]× Rd

(4.3)

where g
(j)
ik : [0, T ] × Rd → R is a measurable function defined in (4.23) and ζk :

[0, T ] → R is introduced in (4.7)

The third and last theorem states that the approximation indeed converges to the
strong solution of the Itô SDE;

Theorem 117 (Convergence). The mild solution {XK(t)}t∈[0,T ] converges as K
tends to infinite, to the unique strong solution {X(t)}∈[0,T ] of the Itô SDE (4.2).
More precisely,

lim
K→∞

d∑
i=1

E
[∣∣XK

i (t)−Xi(t)
∣∣] = 0, for all t ∈ [0, T ].

4.2 Preliminaries

4.2.1 Elements on fractional Brownian motion.

In this section we will introduce the basic concepts that will be needed in order to
prove our results. For further details the interested reader is referred to the excellent
references [15][54][55].

Start by fixing H ∈
(
1
2
, 1
)
, and let Ω := C0([0, T ],Rd) be the space of Rd-valued

continuous functions endowed with the topology of uniform convergence. There is
a probability measure PH on (Ω,B(Ω)), such that on (Ω,B(Ω), PH) the coordinate
process BH : Ω → Rd defined as

BH(t, ω) = ω(t), ω ∈ Ω

is a d-dimensional fBm (c.f. section 2.1.2), i.e. a d-dimensional centered Gaussian
stochastic process in which for each i ∈ {1, ..., d} it holds that

E
[
BH

i (t)BH
i (s)

]
=

1

2

(
t2H + s2H − |t− s|2H

)
, s, t ∈ [0, T ],
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where from now on E denotes the expectation in the aforementioned probability
space.

Let

ϕ(s, t) := H(2H − 1)|s− t|2H−2, s, t ∈ [0, T ], (4.4)

and define

Hϕ :=

{
f : [0, T ] → R : |f |2ϕ :=

∫ T

0

∫ T

0

f(s)f(t)ϕ(s, t)dsdt < ∞
}
.

If Hϕ is equipped with the inner product

(f, g)ϕ =

∫ T

0

∫ T

0

f(s)g(t)ϕ(s, t)dsdt,

then it becomes a separable Hilbert space, moreover we can see that Hϕ equals the
closure of L2([0, T ]) with respect to the inner product (·, ·)ϕ. For f ∈ Hϕ we denote
with Φ[f ] : [0, T ] → R the following continuous map

[0, T ] ∋ t → R,

t 7→
∫ T

0

f(s)ϕ(t, s)ds.

For a deterministic function f ∈ Hϕ we can define in the usual manner a fractional
Wiener integral satisfying the following isometry property

E

[(∫ T

0

f(s)dBH
i (s)

)2
]
= |f |2ϕ. (4.5)

For f ∈ Hϕ and i ∈ {1, ..., d} define the (fractional) stochastic exponential of f
by

Ei(f) := exp

{∫ T

0

f(s)BH
i (s)− 1

2
|f |2ϕ

}
.

It can be shown that the linear span of E :=
{
Ei(f); f ∈ Hϕ, i ∈ {1, ..., d}

}
is dense

in Lp(Ω) for any p ∈ (1,∞) (e.g. [55]).

4.2.2 Approximating equation.

The first step when constructing a Wong-Zakai approximation is to choose a sequence
of smooth stochastic processes converging to the Brownian motion that drives the
original equation.
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The key feature that the approximation must have in order to employ the approach
proposed in the previous chapter is that of separating the random coefficient from
the time parameter. In the previous chapter we have employed the polygonal ap-
proximation however the independence of the Brownian increments was a key feature
when proving the result (see for instance the discussion following) and this precludes
from using the same approach.

Instead let’s assume that {ek}k≥1 is a complete orthonormal system (CONS) of
the Hilbert space Hϕ, then (e.g. [56, equation 3.21] ) the d-dimensional fractional
Brownian motion has the following Cameron-Martin expansion

BH
i (t) =

∞∑
k=1

[∫ t

0

(∫ T

0

ek(r)ϕ(v, r)dr

)
dv

] ∫ T

0

ek(s)dB
H
i (s), t ∈ [0, T ], for i ∈ {1, ..., d}.

From this expression it’s then straightforward to see that a natural approximation
for the fractional white noise is given by

dBH,K
i (t)

dt
:=

K∑
k=1

(∫ T

0

ek(r)ϕ(t, r)dr

)∫ T

0

ek(s)dB
H
i (s), t ∈ [0, T ], for i ∈ {1, ..., d};

(4.6)

i.e. the time derivative of the truncated Karuhnen-Loève expansion. The conver-
gence of this object to the “singular fractional white noise” as K goes to infinity
must be understood in a space of generalized random variables (see [56] for further
details).

Notice that due to (4.5) and the orthonormality of {ek}k≥1 if we let Z(i)
k :=

∫ T

0
ek(s)dB

H
i (s),

then
(
Z

(i)
k

)
(k,i)∈{1,...,K}×{1,...,d}

is a family of i.i.d. standard Gaussian random vari-

ables.

For the ease of notation let

ζk(·) = Φ[ek](·), for all k ∈ {1, ..., K (4.7)

and hence our approximation for the fractional white noise can be written as

dBH,K
i (t)

dt
=

K∑
k=1

ζk(t)Z
(i)
k , t ∈ [0, T ], for i ∈ {1, ..., d}. (4.8)

Just as in the previous chapter we remind some properties of the Wick product that
will be used latter on:

• if X ∈ Lp(Ω) for some p > 1 and f ∈ Hϕ we set

X ⋄ Ei(f) := T−Φ[f ]iX · Ei(f) (4.9)
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where T−Φ[f ]i stands for the translation operator

(T−Φ[f ]iX)(ω) := X

(
ω − ϵi

∫ ·

0

Φ[f ](r)dr

)
. (4.10)

Here {ϵ1, ..., ϵd} denotes the canonical basis of Rd. This is the fractional analog
of the Gjessing’s formula (theorem 100) From the latter we are able to see that
the Wick product with a stochastic exponential preserves the monotonicity, i.e.

if X ≤ Y then X ⋄ Ei(f) ≤ Y ⋄ Ei(f).

• A consequence of the latter and the density of the linear span of E is that if
g ∈ Hϕ, F ∈ Lp(Ω) and

(
D

(i)
ϕ F , g

)
L2(R)

∈ Lp(Ω) for some p > 1 then

F ⋄
∫ T

0

g(s)dBH
i (s) = F

∫ T

0

g(s)dBH
i (s)−

(
D

(i)
ϕ F , g

)
L2([0,T ])

(4.11)

where D
(i)
ϕ denotes the ϕ-derivative (e.g. [56][55]) with respect to the i-th fBm

(c.f. proposition 101).

With all this in hand we are able to provide a solution concept for (4.1):

Definition 118. A d-dimensional stochastic process {XK(t)}t∈[0,T ] is said to be a
mild solution of equation (4.1) if:

1. the function t 7→ XK(t) is almost surely continuous;

2. for all i ∈ {1, ..., d} and t ∈ [0, T ], the random variable XK
i (t) belongs to Lp(Ω)

for some p > 1;

3. for all i ∈ {1, ..., d}, the identity

XK
i (t) = ciEK

i (0, t) +

∫ t

0

bi(s,X
K(s)) ⋄ EK

i (s, t)ds, t ∈ [0, T ], (4.12)

holds almost surely, where for any t, r ∈ [0, T ], r ≤ t, EK
i (r, t) is a shorthand

for Ei(σK
i (r, t)) where σK

i (r, t; ·) denotes the orthogonal projection of χ[r,t]σi(·)
on span{e1, ..., eK} ⊂ Hϕ.

4.3 Proof of theorem 115

In order to prove the existence of a mild solution for (4.1) we will introduce a system
of partial differential equations which is related to (4.1) by the following heuristic
considerations.
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Remark 119. Using (4.8) and formally applying identity (4.11) we can rewrite (4.1)
as

dXK
i (t)

d
= bi(t,X

K(t)) + σi(t)Xi(t) ·
(∑K

k=1 ζk(t)Z
(i)
k

)
−
∑K

k=1 σi(t)ζk(t)
(
D

(i)
ϕ Xi(t), ek

)
L2([0,T ])

,

t ∈]0, T ]
Xi(0) = ci ∈ R, for i ∈ {1, ..., d}.

If we now search for a solution of the form

XK
i (t, ω) = ui(t, z(ω)),

for ui : [0, T ] × RK×d → R where we identify RK×d with the space of (K × d)

matrices and zki(ω) = Z
(i)
k (ω) then by a simple application of the chain rule for

the ϕ-derivative we see that u = (u1, ..., ud) has to solve the following semilinear
hyperbolic system of partial differential equations

∂tui = bi(t, u) + σi(t)
∑K

k=1 ζk(t) [xkiui − ∂xki
ui] ,

(t,x) ∈]0, T ]× RK×d,

ui(0,x) = ci ∈ R, for i ∈ {1, ..., d}.
(4.13)

Unfortunately to the best of our knowledge the latter does not satisfy the basic
assumption of the main existence-uniqueness theorems present in the literature. For
that reason we will introduce the following auxiliary Cauchy problem

∂tvi = bi
(
t, v(t) exp

{
1
2
∥x∥2F}

)
exp

{
− 1

2
∥x∥2F} − σi(t)

∑K
k=1 ζk(t)∂xki

vi,

(t,x) ∈]0, T ]× RK×d,

vi(0,x) = ci exp
{
− 1

2
∥x∥2F}, for i ∈ {1, ..., d},

(4.14)

where ∥ · ∥F denotes the Frobenious norm, i.e. ∥x∥2F :=
∑d

i=1

∑K
k=1 |xki|2. Our

motivation for doing so will be clear in a moment.

A closer inspection would allow the reader to see that the latter is a d-dimensional
semilinear symmetric hyperbolic system of evolution equations in (K × d) spatial
variables.

Remark 120. Just as in the previous chapter using the properties of the Wick product
we are led to consider a system of evolution equations. The difference relies in the
fact that in the latter we were able to partition the problem and we considered
multiple Cauchy problems with a single spatial variable. The difficulty in that case
was that of “glueing” the pieces together. In current setting we must study a single
Cauchy problem with multiple space variables.

The validity of assumption 3 implies the existence of a unique classical solution of
(4.14) for any arbitrary time interval [0, T ] (see for instance [53],[52] and [57]).
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If we let

Σi,k(r, t) :=

∫ t

r

σi(s)ζk(s)ds =
(
χ[r,t]σi , ek

)
ϕ
, (4.15)

then we can write down a mild solution for (4.14) as
vi(t,x) = ci exp

{
− 1

2
∥x−Σ(i)(t)∥2F

}
+
∫ t

0
bi
(
s, v(s,x−Σ(i)(s, t)) exp

{
1
2
∥x−Σ(i)(s, t)∥2F

})
exp

{
− 1

2
∥x−Σ(i)(s, t)∥2F

}
ds,

for t ∈ [0, T ],x ∈ RK×d, i ∈ {1, ..., d}
(4.16)

where for any pair r, t ∈ [0, T ], t ≥ r, we denote with Σ(i)(r, t) the (K × d)-matrix
where the i-th column is given by [Σi,1(r, t), ...,Σi,K(r, t)]

T and all the remaining
components are equal 0.

Now if we let ui(t,x) := vi(t,x) exp
{

1
2
∥x∥2F

}
for all i ∈ {1, ..., d} a simple application

of the chain rule shows that u solves (4.13), furthermore using (4.16) we have that
the following mild representation holds

ui(t,x) = ci exp

{∑K
k=1

[
xikΣi,k(0, t)− 1

2
|Σi,k(0, t)|2

]}
+
∫ t

0
bi
(
s, u(s,x−Σ(i)(s, t))

)
exp

{∑K
k=1

[
xikΣi,k(s, t)− 1

2
|Σi,k(s, t)|2

]}
ds,

for t ∈ [0, T ],x ∈ RK×d, i ∈ {1, ..., d}.
(4.17)

Remark 121. This equation is the analog of [58, equation 3.4], where instead of
shifting the i-th component of the vector of spatial variables we shift the i-th column
of the matrix of spatial variables.

At this point we define the candidate solution {XK(t)}t∈[0,T ] as

XK
i (t, ω) = ui(t, z(ω)), t ∈ [0, T ], ω ∈ Ω, for i ∈ {1, ..., d} (4.18)

where again z(ω) is the K × d-matrix in which the (k, i)-th component is given by
Z

(i)
k (ω).

Next we must verify that {XK(t)}t∈[0,T ] is indeed a mild solution of the system (4.1),
i.e. that satisfies the conditions imposed by definition 118.

The almost surely continuity of the path is given by the continuity of [0, T ] ∋
t 7→ u(t,x) := v(t,x)e

∥x∥2F
2 for all x ∈ RK×d (remember that v is a classical solu-

tion).
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Noticing that

exp

{ K∑
k=1

[
xikΣi,k(r, t)−

1

2
|Σi,k(r, t)|2

]}∣∣∣∣
xki=Z

(i)
k (ω)

= exp

{∫ T

0

K∑
k=1

(∫ t

r

σi(s)ζk(s)ds

)
ek(q)dB

H
i (q)− 1

2

K∑
k=1

(∫ t

r

σi(s)ζk(s)ds

)2}

= exp

{∫ T

0

K∑
k=1

(
χ[r,t]σi, ek

)
ϕ
ek(q)dB

H
i (q)− 1

2

K∑
k=1

(
χ[r,t]σi, ek

)2
ϕ

}
= exp

{∫ T

0

σK
i (r, t; q)dBH

i (q)− 1

2
|σK

i (r, t; ·)|2ϕ
}

=: EK
i (r, t), (4.19)

and using assumption 3 we have that

|XK
i (t)| ≤ |ci| exp

{∫ T

0

σK
i (0, t; q)dBH

i (q)

}
+M

∫ t

0

exp

{∫ T

0

σK
i (s, t; q)dBH

i (q)

}
ds,

where M > 0 is a constant such that |b(t,x)| ≤ M . Taking the Lp(Ω)-norm on both
sides above and using the triangular inequality we obtain

∥XK
i (t)∥Lp(Ω) ≤ |ci|

∥∥∥∥exp{∫ T

0

σK
i (0, t; q)dBH

i (q)

}∥∥∥∥
Lp(Ω)

+M

∫ t

0

∥∥∥∥exp{∫ T

0

σK
i (s, t; q)dBH

i (q)

}∥∥∥∥
Lp(Ω)

ds

≤ |ci| exp
{
p

2
|σK

i (0, t; ·)|2ϕ
}
+M

∫ t

0

exp

{
p

2
|σK

i (s, t; ·)|2ϕ
}
ds

≤ |ci| exp
{
p

2
|σK

i (0, t; ·)|2ϕ
}
+Mt sup

s∈[0,t]
exp

{
p

2
|σK

i (s, t; ·)|2ϕ
}

< ∞,

where we used the fact that the fractional Wiener integral of σK
i (r, t; ·) is a Gaussian

random variable. This proves the membership of XK
i (t) to Lp(Ω), p ≥ 1 for all

i ∈ {1, 2, ..., d} and t ∈ [0, T ]

Last thing we need to do is to prove that the process XK(t) satisfies the represen-
tation (4.12). First we notice that for any l ∈ {1, ..., K} and i ∈ {1, ..., d}

Z
(i)
l − Σi,l(s, t) = Z

(i)
l −

K∑
k=1

(
χ[s,t]σi, ek

)
ϕ

∫ T

0

∫ T

0

ek(r)el(q)ϕ(r, q)drdq,= T−Φ[σK
i (s,t)]Z

(i)
l

where = T−Φ[σK
i (s,t)] is a shorthand for = T−Φ[σK

i (s,t)]i . Then it follows from (4.17)
and (4.19) that

XK
i (t) = ciEK

i (0, t) +

∫ t

0

T−Φ[σK
i (s,t)]bi

(
s,XK(s)

)
· EK

i (s, t) ds.



100

Using identity (4.9) we have that for all t ∈ [0, T ] and i ∈ {1, ..., d} the following
holds a.s.

XK
i (t) = ciEK

i (0, t) +

∫ t

0

bi
(
s,XK(s)

)
⋄ EK

i (s, t) ds;

completing the proof.

4.4 Proof of theorem 117
The aim of this section is to show that the mild solution of{

dXK
i (t)

dt
= bi(t,X

K(t)) + σi(t)X
K
i (t) ⋄ dBH,K

i (t)

dt
, t ∈]0, T ]

Xi(0) = ci ∈ R, for i ∈ {1, ..., d};

converges in L1(Ω) to the unique strong solution of{
dXi(t) = bi(t,X(t))dt+ σi(t)Xi(t)dB

H
i (t), t ∈]0, T ]

Xi(0) = ci ∈ R, for i ∈ {1, ..., d}.

Let

Ei(0, t) := exp

{
−
∫ t

0

σi(s)dB
H
i (s)− 1

2
|χ[0,t]σi|2ϕ

}
,

and

Ei(0, t) := exp

{∫ t

0

σi(s)dB
H
i (s)− 1

2
|χ[0,t]σi|2ϕ

}
.

Using equation (3.41) of we can formally write (4.2) as{
dXi(t)

dt
= bi(t,X(t)) + σi(t)Xi(t) ⋄ dBH

i (t)

dt
, t ∈]0, T ]

Xi(0) = ci, for i ∈ {1, ..., d},

where we must bare in mind that the time derivative of the fBm is not well defined
as a random variable, so in order to make sense of the expression above we must
interpret it as a differential equation in some space of generalized random variables
(like the fractional Hida space e.g. [54][56]). Then we can Wick-multiply both sides
of the equality above by Ei(0, t) which gives, after rearranging

dXi(t)

dt
⋄ Ei(0, t)− σi(t)Xi(t) ⋄

dBH
i (t)

dt
⋄ Ei(0, t) = bi(t,X(t)) ⋄ Ei(0, t).
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By means of the identity

dEi(0, t)

dt
= σi(t)Ei(0, t) ⋄

dBH
i (t)

dt
.

and the Leibniz rule for the Wick product we obtain

dXi(t)

dt
= bi(t,X(t)) ⋄ Ei(0, t), (4.20)

where

Xi(t) := Xi(t) ⋄ Ei(0, t).

It follows that

Xi(t) = Xi(t) ⋄ Ei(0, t) = ci +

∫ t

0

bi(s,X(s)) ⋄ Ei(0, s)ds

or which is equivalent

Xi(t) = ciEi(0, t) +
∫ t

0

bi(s,X(s)) ⋄ Ei(s, t)ds

where we used the identity

Ei(0, t) ⋄ Ei(0, t) = 1, a.s. for all t ∈ [0, T ].

We conclude that the unique strong solution of (4.2) satisfies the following integral
equation

Xi(t) = ciEi(0, t) +
∫ t

0

bi(s,X(s)) ⋄ Ei(s, t)ds (4.21)

for all t ∈ [0, T ] and i ∈ {1, ..., d}.

Remark 122. Under assumption 3 it follows that for any t ∈ [0, T ] the strong solution
of (4.2) belongs to Lp(Ω) for any p ≥ 1.



102

Now we are ready to prove the convergence;

|Xi(t)−XK
i (t)| ≤ |ci||Ei(0, t)− EK

i (0, t)|

+

∫ t

0

|bi(s,X(s)) ⋄ Ei(s, t)− bi(s,X
K(s)) ⋄ EK

i (s, t)|ds

= |ci||Ei(0, t)− EK
i (0, t)|

+

∫ t

0

∣∣bi(s,X(s)) ⋄ Ei(s, t)− bi(s,X(s)) ⋄ EK
i (s, t)

+ bi(s,X(s)) ⋄ EK
i (s, t)− bi(s,X

K(s)) ⋄ EK
i (s, t)

∣∣ds
≤ |ci||Ei(0, t)− EK

i (0, t)|

+

∫ t

0

∣∣bi(s,X(s)) ⋄
(
Ei(s, t)− EK

i (s, t)
)∣∣ ds

+

∫ t

0

∣∣bi(s,X(s))− bi(s,X
K(s))

∣∣ ⋄ EK
i (s, t)ds.

Using the Lipschitz continuity of bi and the fact that the Wick product with a
stochastic exponential preserves the monotonicity we have that

|Xi(t)−XK
i (t)| ≤ |ci||Ei(0, t)− EK

i (0, t)|+
∫ t

0

∣∣bi(s,X(s)) ⋄
(
Ei(s, t)− EK

i (s, t)
)∣∣ ds

+ L

∫ t

0

d∑
j=1

|Xj(s)−XK
j (s)| ⋄ EK

i (s, t)ds

where L is a positive constant such that for all t ∈ [0, T ] it holds |bi(t,X)−bi(t, Y )| ≤
L|X − Y |1; here | · |1 denotes the ℓ1 norm. Now we take expectation yielding

E
[
|Xi(t)−XK

i (t)|
]
≤ |ci|E

[
|Ei(0, t)− EK

i (0, t)|
]
+

∫ t

0

E
[∣∣bi(s,X(s)) ⋄

(
Ei(s, t)− EK

i (s, t)
)∣∣] ds

+ L

∫ t

0

d∑
j=1

E
[
|Xj(s)−XK

j (s)|
]
ds.

The previous inequality is valid for all i = 1, ..., d and t ∈ [0, T ]; therefore, summing
over i and setting

XK(t) :=
d∑

i=1

E
[
|Xj(t)−XK

j (t)|
]
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we obtain

XK(t) ≤
d∑

i=1

|ci|E
[
|Ei(0, t)− EK

i (0, t)|
]
+

d∑
i=1

∫ t

0

E
[∣∣bi(s,X(s)) ⋄

(
Ei(s, t)− EK

i (s, t)
)∣∣] ds

+ Ld

∫ t

0

XK(s)ds

= MK(t) + Ld

∫ t

0

XK(s)ds,

where

MK(t) :=
d∑

i=1

|ci|E
[
|Ei(0, t)− EK

i (0, t)|
]
+

d∑
i=1

∫ t

0

E
[∣∣bi(s,X(s)) ⋄

(
Ei(s, t)− EK

i (s, t)
)∣∣] ds.

According to Gronwall’s inequality the previous estimate yields

XK(t) ≤ MK(t) + Ld

∫ t

0

MK(s)eLd(t−s)ds; (4.22)

and hence the proof will be complete if we show that MK(t) is bounded for all
t ∈ [0, T ] and it holds that

lim
K→∞

MK(t) = 0, for all t ∈ [0, T ];

this will allow us to use dominated convergence for the Lebesgue integral appearing
in (4.22) and conclude that

lim
K→∞

XK(t) = 0.

In order to prove the boundedness we write

MK(t) ≤
d∑

i=1

|ci|
(
E [|Ei(0, t)] + E

[
EK
i (0, t)|

])
+

∫ t

0

E
[∣∣bi(s,X(s)) ⋄ Ei(s, t)− bi(s,X(s)) ⋄ EK

i (s, t)
∣∣] ds

≤ 2
d∑

i=1

|ci|+
d∑

i=1

∫ t

0

E [|bi(s,X(s)) ⋄ Ei(s, t)|] + E
[∣∣bi(s,X(s)) ⋄ EK

i (s, t)
∣∣] ds

≤ 2
d∑

i=1

|ci|+ 2dMt;

the boundedness also follows from the continuity of t 7→ MK(t) and the compactness
of [0, T ].
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Thus it suffices to prove that

lim
K→∞

MK(t) = 0, for all t ∈ [0, T ].

Using the fact that EK
i (0, t) converges in Lp(Ω), p ≥ 1 to Ei(0, t) (see Appendix A)

it follows that

lim
K→∞

MK(t) = lim
K→∞

d∑
i=1

|ci|E
[∣∣EK

i (0, t)− Ei(0, t)
∣∣]

+ lim
K→∞

d∑
i=1

∫ t

0

E
[∣∣bi(s,X(s)) ⋄

(
EK
i (s, t)− Ei(s, t)

)∣∣] ds
=

d∑
i=1

lim
K→∞

∫ t

0

E
[∣∣bi(s,X(s)) ⋄

(
EK
i (s, t)− Ei(s, t)

)∣∣] ds.
We now prove that we can take the last limit inside the integral; first of all, note
that the integrand is bounded: in fact,

E
[∣∣bi(s,X(s)) ⋄

(
EK
i (s, t)− Ei(s, t)

)∣∣] =E
[∣∣bi(s,X(s)) ⋄ EK

i (s, t)− bi(s,X(s)) ⋄ Ei(s, t)
∣∣]

≤E
[∣∣bi(s,X(s)) ⋄ EK

i (s, t)
∣∣]+ E [|bi(s,X(s)) ⋄ Ei(s, t)|]

≤E
[
|bi(s,X(s))| ⋄ EK

i (s, t)
]
+ E [|bi(s,X(s))| ⋄ Ei(s, t)]

=E [|bi(s,X(s))|] + E [|bi(s,X(s))|]
≤2M.

We proceed by proving that

lim
K→∞

E
[∣∣bi(s,X(s)) ⋄

(
EK
i (s, t)− Ei(s, t)

)∣∣] = 0.

Let us rewrite the expected value as follows:

E
[∣∣bi(s,X(s)) ⋄

(
EK
i (s, t)− Ei(s, t)

)∣∣] = E
[∣∣bi(s,X(s)) ⋄ EK

i (s, t)− bi(s,X(s)) ⋄ Ei(s, t)
∣∣]

Using (4.9) we get rid of the Wick product and write

= E
[∣∣T−Φ[σK(s,t)]bi(s,X(s))EK

i (s, t)− T−Φ[σi(s,t)]bi(s,X(s))Ei(s, t)
∣∣] .

Adding and subtracting T−Φ[σi(s,t)]bi(s,X(s))EK
i (s, t) inside the absolute value and

then using the triangular inequality yields

≤ E
[∣∣T−Φ[σK(s,t)]bi(s,X(s))EK

i (s, t)− T−Φ[σi(s,t)]bi(s,X(s))EK
i (s, t)

∣∣]
+ E

[∣∣T−Φ[σi(s,t)]bi(s,X(s))EK
i (s, t)− T−Φ[σi(s,t)]bi(s,X(s))Ei(s, t)

∣∣]
= E

[
|bi(s, T−Φ[σK

i (s,t)]X(s))− bi(s, T−Φ[σi(s,t)]X(s))|EK
i (s, t)

]
+ E

[
|bi(s, T−Φ[σi(s,t)]X(s))||EK

i (s, t)− Ei(s, t)|
]

≤ LE
[
|T−Φ[σK

i (s,t)]X(s)− T−Φ[σi(s,t)]X(s)|EK
i (s, t)

]
+ME

[
|EK

i (s, t)− Ei(s, t)|
]
.
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Hence,

lim
K→∞

E
[∣∣bi(s,X(s)) ⋄

(
EK
i (s, t)− Ei(s, t)

)∣∣] ≤ lim
K→∞

LE
[
|T−Φ[σK

i (s,t)]X(s)− T−Φ[σi(s,t)]X(s)|EK
i (s, t)

]
+ lim

K→∞
ME

[
|EK

i (s, t)− Ei(s, t)|
]
.

The second term above converges to zero by the discussion on Appendix A.

At this point we will need the following lemma;

Lemma 123. Let Y ∈ Lq(Ω) for some q ∈ (0,∞) and let {fn}n≥1 be a sequence
converging to f in Hϕ, then it holds that

lim
n→∞

TΦfnY = TΦfY, in Lp(Ω) for all 0 < p < q < ∞

Proof. For simplicity we will consider the case of random variable Y depending
only on a one dimensional fBm that can be seen as one of the components of our
d-dimensional fBm, the general case does not present further difficulties. Notice
that

TΦfnB
H(t) = BH(t) +

∫ t

0

∫ T

0

fn(s)ϕ(s, r)dsdr

= BH(t) +

∫ T

0

∫ T

0

χ[0,t](r)fn(s)ϕ(s, r)dsdr

= BH(t) +
(
fn, χ[0,t]

)
ϕ
,

at this point we use the fact that convergence in norm implies the weak convergence,
and hence if fn converges in Hϕ to f as n → ∞ we have that

(
fn, χ[0,t]

)
ϕ

converges
to
(
f, χ[0,t]

)
ϕ
.

This implies that

E[|TΦfB
H(t)− TΦfB

H(t)|p] = |
(
fn, χ[0,t]

)
ϕ
−
(
f, χ[0,t]

)
ϕ
|p → 0, as n → ∞.

Furthermore notice that this holds for any random variable in the Gaussian Hilbert
space

G(Hϕ) :=

{∫ T

0

g(s)dBH(s); g ∈ Hϕ

}
.

At this point if Y ∈ Lq(Ω) we have that for any ϵ > 0 there’s a polynomial random
variable P (which is a polynomial in some random variables in G(Hϕ)) such that
∥Y − P∥Lq(Ω) < ϵ (the existence of such a random variable is guaranteed by [56,
Theorem 3.2] together with [16, Theorem 2.11]). By the triangle inequality we have
that for 0 < p < q

∥TΦfnX − TΦfX∥Lp(Ω) ≤ ∥TΦfnX − TΦfnP∥Lp(Ω) + ∥TΦfnP − TΦfP∥Lp(Ω) + ∥TΦfP − TΦfY ∥Lp(Ω)
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Now using the fractional Girsanov’s theorem we have

∥TΦfP − TΦfY ∥Lp(Ω) = E [|P − Y |pE(f)]1/p

≤ E [|P − Y |pp1 ]1/(pp1) E
[
E(f)p2/p

]1/(pp2)
= ∥P − Y ∥Lq(Ω)∥∥E(f)1/p

2∥Lr(Ω)

where q := p1p, r := p2p and 1
p1
+ 1

p2
= 1. Same happens with ∥TΦfnP −TΦfnY ∥Lp(Ω).

At this point we notice that

∥E(fn)1/p
2∥Lr(Ω) ≤ E

[
exp

{
r/p2

∫ T

0

fn(s)dB
H
s

}]1/r
≤ sup

n
exp

{
r

2p4
|fn|2ϕ

}
=: C.

It follows that

∥TΦfnX − TΦfX∥Lp(Ω) ≤ 2C∥P − Y ∥Lq(Ω) + ∥TfnP − TΦfP∥Lp(Ω)

≤ (2C + 1)ϵ

provided n is large enough; since ϵ was arbitrary the proof is complete.

From remark 122, lemma 128 and the fact that

lim
K→∞

EK
i (s, t) = Ei(s, t), in Lp(Ω) for all p ≥ 1

it follows that

lim
K→∞

LE
[
|T−ΦσK

i (s,t)X(s)− T−Φσi(s,t)X(s)|EK
i (s, t)

]
= 0,

completing the proof.

4.5 Proof theorem 116

Let φ ∈ C2
0([0, T ] × Rd), i.e. a two times continuously differentiable function on

[0, T ] × Rd with compact support, and in order to ease the notation we set z :=
x|

xki=Z
(i)
k

.
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Then by 4.18 we have

0 = φ(T,XK(T ))− φ(0, c)

=

∫ T

0

[
∂tφ(r, u(r, z)) +

d∑
i=1

∂iφ(r, u(r, z))∂tui(r, z)

]
dr

=

∫ T

0

∂tφ(r, u(r, z))dr

+
d∑

i=1

∫ T

0

∂iφ(r, u(r, z))

(
bi(t, u(r, z)) + σi(t)

K∑
k=1

ζk(t) [xkiui(r, z)− ∂xki
ui(r, z)]

)
dr

= A+ B + C +D,

where

A =

∫ T

0

∂tφ(r, u(r, z))dr,

B =

∫ T

0

∇φ(r, u(r, z)) ∗ b(s, u(r, z))dr,

C =
d∑

i=1

K∑
k=1

∫ T

0

∂iφ(r, u(r, z))σi(r)ζk(r)[xkiui(r, z)]dr,

D = −
d∑

i=1

K∑
k=1

∫ T

0

∂iφ(r, u(r, z))σi(r)ζk(r)∂ikui(r, z)dr,

where ∗ denotes the inner product in Rd. Taking expectation to the first and last
term above we obtain

0 = E[A] + E[B] + E[C] + E[D].

Now using the fact that z is a standard Gaussian matrix where the components are
mutually independent, we have

E[C] =
d∑

i=1

K∑
k=1

∫ T

0

σi(r)ζk(r)

∫
RK×d

∂iφ(r, u(r,x))ui(r,x)xki(2π)
−K×d/2e−

1
2
∥x∥2F dxdr,
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integration by parts yields

=
d∑

i=1

K∑
k=1

∫ T

0

σi(r)ζk(r)

∫
RK×d

∂iφ(r, u(r,x))ui(r,x)(2π)
−K×d/2∂xki

e−
1
2
∥x∥2F dxdr

=
d∑

i,j=1

K∑
k=1

∫ T

0

σi(r)ζk(r)

∫
RK×d

∂j∂iφ(r, u(r,x))∂xki
uj(r,x)ui(r,x)(2π)

−K×d/2∂xki
e−

1
2
∥x∥2F dxdr

+
d∑

i=1

K∑
k=1

∫ T

0

σi(r)ζk(r)

∫
RK×d

∂iφ(r, u(r,x))∂xki
ui(r,x)(2π)

−K×d/2∂xki
e−

1
2
∥x∥2F dxdr

= E

[
d∑

i,j=1

K∑
k=1

∫ T

0

σi(r)ζk(r)∂j∂iφ(r, u(r, z))∂xki
uj(r, z)ui(r, z)dr

]

+ E

[
d∑

i=1

K∑
k=1

∫ T

0

∂iφ(r, u(r, z))σi(r)ζk(r)∂xki
ui(r, z)dr

]
and now notice that the last term above equals −E [D].

At this point we have that

0 = E[A] + E[B] + E

[
d∑

i,j=1

K∑
k=1

∫ T

0

σi(r)ζk(r)∂j∂iφ(r, u(r, z))∂xki
uj(r, z)ui(r, z)dr

]
.

Using Tower’s property yields

0 = E[A] + E[B] + E

[
d∑

i,j=1

K∑
k=1

∫ T

0

σi(r)ζk(r)∂j∂iφ(r, u(r, z))ui(r, z)E[∂xki
uj(r, z)|Gi(r)]dr

]

= E[A] + E[B] + E

[
d∑

i,j=1

K∑
k=1

∫ T

0

σi(r)ζk(r)∂j∂iφ(r, u(r, z))ui(r, z)g
(j)
ki (r, ui(r, z))dr

]

where Gi(r) is the sigma algebra generated by the random variable ui(r, z), and the
function g

(j)
ki : [0, T ]×RK×d is a measurable function, whose existence is guaranteed

by the Doob’s lemma chosen to satisfy

g
(j)
ki (r, ui(r, z)) = E[∂xki

uj(r, z)|Gi(r)]. (4.23)

Putting everything together and using (4.18) we obtain

0 = E
[ ∫ T

0

∂tφ(r,X
K(r))dr +

∫ T

0

∇φ(r,XK(r)) ∗ b(s,XK(r))dr

+
d∑

i,j=1

K∑
k=1

∫ T

0

σi(r)ζk(r)∂j∂iφ(r,X
K(r))Xk

i (r)g
(j)
ki (r,X

K
i (r))dr

]
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Observe that the last member above contains expectations of functions of the random
vector XK(r), for r ∈ [0, T ]; therefore, writing the law of this random vector as

µK(r, A) := P({ω ∈ Ω : XK(r, ω) ∈ A}), r ∈ [0, T ], A ∈ B(Rd)

0 =

∫ T

0

∫
Rd

[
∂tφ(r, x) +∇φ(r, x) ∗ b(s, x)

+
d∑

i,j=1

K∑
k=1

∫ T

0

σi(r)ζk(r)∂j∂iφ(r, x)xig
(j)
ki (r, xi)dr

]
dµK(r, x)dr.

The last equalities hold for any test function φ ∈ C2
0([0, T ]×Rd) and this completes

the proof.

Appendix A

Fix s, t ∈ [0, T ] and without loss of generality assume that t ≥ s, then using the
basic inequality |eX − eY | ≤ |eX + eY | · |X − Y | it holds that

|EK
i (s, t)− Ei(s, t)| ≤ |EK

i (s, t) + Ei(s, t)|

×
∣∣∣∣∫ T

0

σK
i (t, s; q)dBH

i (q)− 1

2
|σK

i (t, s; ·)|2ϕ −
∫ t

0

σi(s)dB
H
i (s) +

1

2
|χ[0,t]σi|2ϕ

∣∣∣∣
≤ |EK

i (s, t) + Ei(s, t)|

×
(∣∣∣∣∫ T

0

[σK
i (t, s; q)− σi(q)]dB

H
i (q)

∣∣∣∣+ 1

2

∣∣|σK
i (t, s; ·)|2ϕ − |χ[s,t]σi|2ϕ

∣∣) .

Now let’s write∣∣|σK
i (t, s; ·)|2ϕ − |χ[s,t]σi|2ϕ

∣∣ ≤ ∣∣(|σK
i (t, s; ·)|ϕ + |χ[s,t]σi|ϕ)(|σK

i (t, s; ·)|ϕ − |χ[s,t]σi|ϕ)
∣∣

≤ 2S2T 2H |σK
i (t, s)− χ[s,t]σi|ϕ

where we used the triangular inequality and S is a constant such that |σi(t)| ≤ S
for all t ∈ [0, T ].

At this point we raise both sides to the p ≥ 1 and take expectation yielding

E
[
|EK

i (s, t)− Ei(s, t)|p
]
≤ 2p−1E

[
|EK

i (s, t) + Ei(s, t)|p
(
|I(σK

i (t, s)− χ[s,t]σi)|p

+ S2pT 2Hp|σK
i (t, s)− χ[s,t]σi|pϕ

)]
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where I(·) denotes the fractional Wiener integral. Using Hölder’s inequality where
1
p1

+ 1
p2

= 1
p

we have

≤ 2p−1

{
∥EK

i (s, t) + Ei(s, t)∥pp1∥I(σ
K
i (t, s)− χ[s,t]σi)∥pp2

+ S2pT 2Hp∥EK
i (s, t) + Ei(s, t)∥pp|σK

i (t, s)− χ[s,t]σi|pϕ
}

≤ 2p−1

{(
2pep(p1−1)/2|χ[s,t]σi|2ϕ

)
2p/2Γ(p2 + 1)p/p2/

√
π|σK

i (t, s)− χ[s,t]σi|pϕ

+ S2pT 2Hp
(
2pep(p−1)/2|χ[s,t]σi|2ϕ

)
|σK

i (t, s)− χ[s,t]σi|pϕ
}

and hence

E
[
|EK

i (s, t)− Ei(s, t)|p
]
≤ C|σK

i (t, s)− χ[s,t]σi|pϕ → 0,

as K → ∞ where

C = 23p/2−1ep(p1−1)/2|χ[s,t]σi|2ϕΓ(p2 + 1)p/p2/
√
π + 22p−1S2pT 2Hpep(p−1)/2|χ[s,t]σi|2ϕ .
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Chapter 5

A small time approximation for the
solution to the Zakai Equation

Based on: Lanconelli, A., & Scorolli, R. (2021). A small time approxima-
tion for the solution to the Zakai Equation. Potential Analysis, 1-11.

Abstract
We propose a novel small time approximation for the solution to the Zakai equation
from nonlinear filtering theory. We prove that the unnormalized filtering density is
well described over short time intervals by the solution of a deterministic partial dif-
ferential equation of Kolmogorov type; the observation process appears in a pathwise
manner through the degenerate component of the Kolmogorov’s type operator. The
rate of convergence of the approximation is of order one in the lenght of the interval.
Our approach combines ideas from Wong-Zakai-type results and Wiener chaos ap-
proximations for the solution to the Zakai equation. The proof of our main theorem
relies on the well-known Feynman-Kac representation for the unnormalized filtering
density and careful estimates which lead to completely explicit bounds.

5.1 Introduction and statement of the main result
In this chapter we derive an original small time approximation for the solution to
the so called Zakai equation

u(t, x) = u0(x) +

∫ t

0

L ⋆(x)u(s, x)ds+

∫ t

0

h(x)u(s, x)dY (s), (t, x) ∈ [0, 1]× Rd

(5.1)

Here:
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• L ⋆(x) is the formal adjoint of L (x), infinitesimal generator of the d-dimensional
signal process {X(t)}t∈[0,1] which is assumed to solve the stochastic differential
equation

X(t) = X0 +

∫ t

0

b(X(s))ds+

∫ t

0

σ(X(s))dB(s), t ∈ [0, 1]; (5.2)

the process {B(t)}t∈[0,1] is a standard d-dimensional Brownian motion defined
on a complete probability space (Ω,F ,P);

• {Y (t)}t∈[0,1] is the one-dimensional observation process described by

Y (t) = y0 +

∫ t

0

h(X(s))ds+W (t), t ∈ [0, 1], (5.3)

with {W (t)}t∈[0,1] being a standard one-dimensional Brownian motion defined
on (Ω,F ,P) and independent of {B(t)}t∈[0,1].

The solution {u(t, x)}t∈[0,1],x∈Rd to the Zakai equation (5.1), usually called unnor-
malized filtering density, plays a crucial role in the nonlinear filtering problem since
it identifies uniquely the conditional distribution of X(t) given FY (t) := σ(Y (s), 0 ≤
s ≤ t). The reader is referred to the original paper [59] and the references quoted
there; for an exhaustive treatment of the subject we suggest the excellent review
[60], as well as the books [61] and [62].
Existence, uniqueness and regularity properties for the solution to (5.1) can be found
for instance, under different sets of assumptions and solution concepts, in the classic
works [63],[64],[65],[66] and the more recent paper [67]. We also mention a useful
Feynman-Kac representation for the solution {u(t, x)}t∈[0,1],x∈Rd obtained in [65] and,
in a slightly different form, in [67]. This representation will play a crucial role in
our investigation.
From the applications point of view, closed form expressions for the solution to the
Zakai equation are certainly desirable; however, as pointed in [68] only few partic-
ular cases of (5.1) allow for explicit computations. The important issue of deriving
simple approximation schemes for the solution to (5.1) have been considered in [69]
and [70] which employ splitting up methods and time discretization, respectively;
Wong-Zakai-type results were investigated in [71] and [72] while [63] and [73] pro-
posed a Wiener chaos approach. We also mention the so called pathwise filtering
that steams from the problem of having a robust, with respect to the observation
process, filter; this has been discussed in [74] and [75].
The approach proposed in the current paper combines ideas from the Wong-Zakai
approximation proposed in[72], where the signal process is smoothed through a
polygonal approximation, and the Wiener chaos approach presented in [63] and
[73], where one relates equation (5.1) to a system of nested deterministic partial
differential equations solved by the kernels of the Cameron-Martin decomposition
of the solution {u(t, x)}t∈[0,1],x∈Rd . We refer the reader to Remark 126 below for the
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heuristic idea supporting our analysis and its link to the aforementioned approaches.
The main novelty of our result is the connection between equation (5.1) and a deter-
ministic partial differential equation of Kolmogorov type (see e.g. [76]), where the
observation process enters as a degenerate component of the second order differential
operator L ⋆(x). We prove that the solution {u(t, x)}t∈[0,1],x∈Rd to the Zakai equa-
tion (5.1) can be approximated over small intervals of time by the solution of the
aforementioned degenerate partial differential equation, with the observation pro-
cess having a pathwise role. This approximation has the same rate of convergence
of one obtained in [73] and is described by completely explicit constants.
To be more specific, we now introduce some notation and state our main result. In
the sequel the following regularity conditions will be in force.

Assumption 4.

1. For 1 ≤ i, j ≤ d, the functions bi : Rd → Rd and aij : Rd → Rd, where

aij(x) :=
d∑

k=1

σik(x)σjk(x), x ∈ Rd, (5.4)

are bounded with bounded partial derivatives up to the third order. Moreover,
the matrix {aij(x)}1≤i,j≤d is uniformly elliptic, i.e. there exists two positive
constants µ1 < µ2 such that

µ1|z|2 ≤
d∑

i,j=1

aij(x)zizj ≤ µ2|z|2, for all z ∈ Rd,

with |z|2 := z21 + · · ·+ z2d.

2. The initial data X0 in (5.2) is random, independent of {B(t)}t∈[0,1] and its
distribution is absolutely continuous with respect to the d-dimensional Lebesgue
measure; its density u0 : Rd → R is bounded and acts as initial data in (5.1).

3. The function h : Rd → R is bounded and globally Lipschitz continuous.

Remark 124. We observe that, according to Assumption 4, there exists a positive
constant L such that

|h(x1)− h(x2)| ≤ L|x1 − x2|, for all x1, x2 ∈ Rd. (5.5)

Moreover, there exists a positive constant M such that

max{|a(x)|2, |b⋆(x)|} ≤ M, for all x ∈ Rd, (5.6)

where b⋆i (x) :=
∑d

j=1 ∂xj
aij(x)−bi(x), i = 1, ..., d,. We will need these two constants

in the statement of our main theorem.
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According to the Girsanov theorem and thanks to the assumption of boundedness
on h, the prescription

P̃(A) :=
∫
A

e−
∫ 1
0 h(X(s)(ω))dWs(ω)− 1

2

∫ 1
0 h(X(s)(ω))2dsdP(ω), A ∈ F ,

defines a probability measure on (Ω,F); moreover, the stochastic process {Y (t) −
y0}t∈[0,1] in (5.3) becomes on the probability space (Ω,F , P̃) a one dimensional Brow-
nian motion independent of {B(t)}t≥0. In the sequel we will write Ẽ to denote the
expectation under the probability measure P̃.

We are now ready to state our main result.

Theorem 125. Let Assumption 4 be in force and, for 0 < T < 1, let

[0, T ]× Rd × R ∋ (t, x, y) 7→ v(t, x, y)

be a classical solution of the Cauchy problem{
∂tv(t, x, y) = L ⋆(x)v(t, x, y)− h(x)∂yv(t, x, y), (t, x, y) ∈]0, T ]× Rd × R;
v(0, x, y) = u0(x)e

− y2

2T , (x, y) ∈ Rd × R.
(5.7)

Then, for any q ≥ 1 and K > 0, we have

sup
|x|≤K

Ẽ
[∣∣∣∣u(T, x)− e

(YT−y0)
2

2T v(T, x, YT − y0)

∣∣∣∣q]1/q ≤ CT,

with

C :=
2√
3
∥u0∥∞eT(∥c∥∞+

q1−1
2

∥h∥2∞+
√
M+M/2)

(
κ(q2) +

√
T∥h∥∞

)
L
√

2(1 +K2)(1 + T ).

Here L and M are defined in (5.5) and (5.6), respectively; the constants q1, q2 ≥ 1

verify the identity 1
q1

+ 1
q2

= 1
q
; κ(q2) is given by

√
2
(
Γ( q2+1

2
)/
√
π
)1/q2; ∥u0∥∞ and

∥h∥∞ denotes the L∞(Rd)-norms of u0 and h, respectively.

Remark 126. The heuristic idea that links equation (5.1) to equation (5.7) is as
follows. Write (5.1) in the differential form

∂tu(t, x) = L ⋆(x)u(t, x) + h(x)u(t, x) ⋄ dY (t)

dt
, u(0, x) = u0(x), (5.8)

where ⋄ denotes the Wick product associated to the Brownian motion {Y (t) −
y0}t∈[0,1] on the probability space (Ω,F , P̃). The use of the Wick product is dictated
by the Itô’s interpretation of (5.1) (see [38], [16] or section 2.3.7 for a discussion on
this issue and detailed analysis of the Wick product). If equation (5.8) is considered
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on a small time interval [0, T ], one may replace dY (t)
dt

with Y (T )−y0
T

(this amounts at
considering a Wong-Zakai approximation with the rudest possible partition of the
interval [0, T ]); this gives

∂tu(t, x) = L ⋆(x)u(t, x) +
h(x)

T
u(t, x) ⋄ (Y (T )− y0), u(0, x) = u0(x). (5.9)

Since, Y (T ) − y0 =
∫ 1

0
χ[0,T ](s)dY (s) is an element in the first Wiener chaos asso-

ciated with the Brownian motion {Y (t)− y0}t∈[0,1] and probability space (Ω,F , P̃),
we can formally apply proposition 101 to transform equation (5.9) into

∂tu(t, x) = L ⋆(x)u(t, x) +
h(x)

T

[
u(t, x) · (Y (T )− y0)−Dχ[0,T ]

u(t, x)
]
. (5.10)

We now search for a solution u(t, x) to equation (5.10) of the form

u(t, x, ω) = ũ(t, x, Y (T )(ω)− y0), (5.11)

for some ũ : [0, T ]×Rd×R → R to be determined. A substitution of (5.11) in (5.10)
yields, together with the chain rule for the Malliavin derivative,

∂tũ(t, x, Y (T )− y0) =L ⋆(x)ũ(t, x, Y (T )− y0) +
h(x)

T
ũ(t, x, Y (T )− y0)(Y (T )− y0)

− h(x)∂yũ(t, x, Y (T )− y0);

note that here the term Y (T ) − y0 can be tackled at a path-wise level. Equation
(5.7) is now obtained via the simple transformation

v(t, x, y) := ũ(t, x, y)e−
y2

2T , t ∈ [0, T ], x ∈ Rd, y ∈ R.

It is not difficult to see, using Theorem 4.12 in [16] and the Feynman-Kac represen-
tation for {u(t, x)}t∈[0,1],x∈Rd in [67], that we also have

Ẽ[u(T, x)|YT − y0] = e
(YT−y0)

2

2T v(T, x, YT − y0);

this spots the analogy between our approach and the one in [73] where projections
of u(T, x) on suitable families of elements from the Wiener chaos were utilized to
propose approximation schemes for the solution to (5.1).

Remark 127. The existence of a classical solution for the Cauchy problem (5.7) is
actually not needed for the validity of Theorem 125 (the statement is presented this
way for easiness of exposition). In fact, in the proof of our main result we deal with
the Feynman-Kac representation for the solution to (5.7) (see formula (5.13) below)
without using its differentiability properties with respect to t and x. The right hand
side of (5.13) is well defined under mild conditions on the coefficients of equation
(5.7) (largely covered by Assumption 4) and this makes our proof consistent. It is
worth mentioning that the right hand side of (5.13) becomes a classical solution if
suitable regularity assumptions on the coefficients of (5.12) are in force. For more
details on this issue we refer the reader to [77] and [11, page 122] .
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5.2 Proof of Theorem 125
We start with some notation. The infinitesimal generator L (x) of the signal process
{X(t)}t∈[0,1] in (5.2) is

L (x)f(x) =
1

2

d∑
i,j=1

aij(x)∂
2
xixj

f(x) +
d∑

i=1

bi(x)∂xi
f(x),

where the aij(x)’s are defined in (5.4). The adjoint operator L ⋆(x) is given by

L ⋆(x)f(x) =
1

2

d∑
i,j=1

aij(x)∂
2
xixj

f(x) +
d∑

i=1

b⋆i (x)∂xi
f(x) + c(x)f(x),

with

b⋆i (x) :=
d∑

j=1

∂xj
aij(x)− bi(x), i = 1, ..., d,

(see Remark 124) and

c(x) :=
d∑

i=1

(
1

2

d∑
j,k=1

∂2
xjxk

aij(x)− ∂xk
bi(x)

)
.

It is convenient to split the operator L ⋆(x) as

L ⋆(x)f(x) = L⋆(x)f(x) + c(x)f(x)

where we set

L⋆(x)f(x) :=
1

2

d∑
i,j=1

aij(x)∂
2
xixj

f(x) +
d∑

i=1

b⋆i (x)∂xi
f(x).

With this notation at hand, the Cauchy problem (5.7) takes the form
∂tv(t, x, y) = L⋆(x)v(t, x, y) + c(x)v(t, x, y)− h(x)∂yv(t, x, y)

(t, x, y) ∈]0, T ]× Rd × R;
v(0, x, y) = u0(x)e

− y2

2T .

(5.12)

Now, assume

[0, T ]× Rd × R ∋ (t, x, y) 7→ v(t, x, y)
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to be a classical solution of (3.26). According to the Feynman-Kac formula (see, for
instance, Theorem 1.1, page 120 in [11]) we can write

v(T, x, y) = Ê

[
u0(ξ̂

x
T )e

−
(y−

∫T
0 h(ξ̂xs )ds)

2

2T e
∫ T
0 c(ξ̂xs )ds

]
(5.13)

= e−
y2

2T Ê

[
u0(ξ̂

x
T )e

∫ T
0 c(ξ̂xs )dse

y
∫T
0 h(ξ̂xs )ds

T
−
(
∫T
0 h(ξ̂xs )ds)

2

2T

]
,

where {ξ̂xs }s∈[0,1] solves the SDE

dξ̂xs = b⋆(ξ̂xs ) + σ(ξ̂xs )dB̂(s), ξ̂x0 = x, (5.14)

on the auxiliary probability space (Ω̂, F̂ , P̂) with d-dimensional Brownian motion
{B̂(s)}s∈[0,1] and where Ê denotes the expectation on that space. This gives

e
(Y (T )−y0)

2

2T v(T, x, Y (T )− y0) = Ê

[
u0(ξ̂

x
T )e

∫ T
0 c(ξ̂xs )dse

(Y (T )−y0)
∫T
0 h(ξ̂xs )ds

T
−
(
∫T
0 h(ξ̂xs )ds)

2

2T

]
.

(5.15)

It is well known that the solution u(t, x) to the Zakai equation (5.1) also possesses
a Feynman-Kac representation: see formula (1.4) page 132 in [65]. Here, we use
instead an equivalent formulation due to [67] (see formula (2.9) there), namely

u(T, x) = Ê
[
u0(ξ̂

x
T )e

∫ T
0 c(ξ̂xs )dse

∫ T
0 h(ξ̂xT−s)dY (s)− 1

2

∫ T
0 h2(ξ̂xs )ds

]
, (5.16)

where {ξ̂xs }s∈[0,1] is defined in (5.14). A comparison between (5.15)and (5.16)gives

u(T, x)− e
(Y (T )−y0)

2

2T v(T, x, Y (T )− y0)

= Ê
[
u0(ξ̂

x
T )e

∫ T
0 c(ξ̂xs )dse

∫ T
0 h(ξ̂xT−s)dY (s)− 1

2

∫ T
0 h2(ξ̂xs )ds

]
− Ê

[
u0(ξ̂

x
T )e

∫ T
0 c(ξ̂xs )dse

(Y (T )−y0)
∫T
0 h(ξ̂xs )ds

T
−
(
∫T
0 h(ξ̂xs )ds)

2

2T

]

= Ê

[
u0(ξ̂

x
T )e

∫ T
0 c(ξ̂xs )ds

(
e
∫ T
0 h(ξ̂xT−s)dY (s)− 1

2

∫ T
0 h2(ξ̂xs )ds − e

(Y (T )−y0)
∫T
0 h(ξ̂xs )ds

T
−
(
∫T
0 h(ξ̂xs )ds)

2

2T

)]
,

and hence∣∣∣∣u(T, x)− e
(Y (T )−y0)

2

2T v(T, x, Y (T )− y0)

∣∣∣∣
≤ Ê

[
|u0(ξ̂

x
T )|e

∫ T
0 c(ξ̂xs )ds

∣∣∣∣∣e∫ T
0 h(ξ̂xT−s)dY (s)− 1

2

∫ T
0 h2(ξ̂xs )ds − e

(Y (T )−y0)
∫T
0 h(ξ̂xs )ds

T
−
(
∫T
0 h(ξ̂xs )ds)

2

2T

∣∣∣∣∣
]

≤ ∥u0∥∞eT∥c∥∞Ê

[∣∣∣∣∣e∫ T
0 h(ξ̂xT−s)dY (s)− 1

2

∫ T
0 h2(ξ̂xs )ds − e

(Y (T )−y0)
∫T
0 h(ξ̂xs )ds

T
−
(
∫T
0 h(ξ̂xs )ds)

2

2T

∣∣∣∣∣
]
.
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We now take q ≥ 1 and compute the Lq(P̃)-norm of the first and last members
above; an application of Minkowsky’s inequality gives∥∥∥∥u(T, x)− e

(Y (T )−y0)
2

2T v(T, x, Y (T )− y0)

∥∥∥∥
Lq(P̃)

≤ ∥u0∥∞eT∥c∥∞Ê

∥∥∥∥∥e∫ T
0 h(ξ̂xT−s)dY (s)− 1

2

∫ T
0 h2(ξ̂xs )ds − e

(Y (T )−y0)
∫T
0 h(ξ̂xs )ds

T
−
(
∫T
0 h(ξ̂xs )ds)

2

2T

∥∥∥∥∥
Lq(P̃)

 .

(5.17)

We need the following result.

Lemma 128. Let f, g : [0, T ] → R be bounded measurable deterministic functions.
Then, for any q ≥ 1 we have

Ẽ
[∣∣∣e∫ T

0 f(s)dY (s)− 1
2
|f |22 − e

∫ T
0 g(s)dY (s)− 1

2
|g|22
∣∣∣q] 1

q

≤
(
e

q1−1
2

T∥f∥2∞ + e
q1−1

2
T∥g∥2∞

)(
κ(q2) +

√
T

2
(∥f∥∞ + ∥g∥∞)

)
|f − g|2,

where q1, q2 ≥ 1 satisfy 1/q1 + 1/q2 = 1/q while κ(q2) :=
√
2
(
Γ( q2+1

2
)/
√
π
)1/q2.

Moreover, | • |2 and ∥•∥∞ stand for the L2([0, T ]) and L∞([0, T ]) norms respectively
(not to be confused with the p-seminorm defined in section 2.3.1)

Proof. By means of the elementary inequality |ea − eb| ≤ (ea + eb)|a − b| we can
write ∣∣∣e∫ T

0 f(s)dY (s)− 1
2
|f |22 − e

∫ T
0 g(s)dY (s)− 1

2
|g|22
∣∣∣

≤
(
e
∫ T
0 f(s)dY (s)− 1

2
|f |22 + e

∫ T
0 g(s)dY (s)− 1

2
|g|22
)

· · · ×
∣∣∣∣∫ T

0

[f(s)− g(s)]dY (s)− 1

2

(
|f |22 − |g|22

)∣∣∣∣
≤
(
e
∫ T
0 f(s)dY (s)− 1

2
|f |22 + e

∫ T
0 g(s)dY (s)− 1

2
|g|22
)

· · · ×
(∣∣∣∣∫ T

0

[f(s)− g(s)]dY (s)

∣∣∣∣+ 1

2

∣∣|f |22 − |g|22
∣∣) .

Now, for q ≥ 1 we take the Lq(P̃)-norm of the first and last members above and
apply Hölder’s inequality with exponents q1, q2 ≥ 1 satisfying 1/q1 + 1/q2 = 1/q.



119

This gives∥∥∥e∫ T
0 f(s)dY (s)− 1

2
|f |22 − e

∫ T
0 g(s)dY (s)− 1

2
|g|22
∥∥∥
Lq(P̃)

≤
∥∥∥e∫ T

0 f(s)dY (s)− 1
2
|f |22 + e

∫ T
0 g(s)dY (s)− 1

2
|g|22
∥∥∥
Lq1 (P̃)

· · · ×

(∥∥∥∥∫ T

0

[f(s)− g(s)]dY (s)

∥∥∥∥
Lq2 (P̃)

+
1

2

∣∣|f |22 − |g|22
∣∣) . (5.18)

Under the measure P̃, the random variables
∫ T

0
f(s)dY (s) and

∫ T

0
g(s)dY (s) are

Gaussian with mean zero and variances |f |22 and |g|22, respectively. Hence,∥∥∥e∫ T
0 f(s)dY (s)− 1

2
|f |22 + e

∫ T
0 g(s)dY (s)− 1

2
|g|22
∥∥∥
Lq1 (P̃)

≤
∥∥∥e∫ T

0 f(s)dY (s)− 1
2
|f |22
∥∥∥
Lq1 (P̃)

+
∥∥∥e∫ T

0 g(s)dY (s)− 1
2
|g|22
∥∥∥
Lq1 (P̃)

= e
q1−1

2
|f |22 + e

q1−1
2

|g|22

≤ e
q1−1

2
T∥f∥2∞ + e

q1−1
2

T∥g∥2∞ . (5.19)

Moreover, using once more the normality, under the measure P̃, of the random
variable

∫ T

0
[f(s)− g(s)]dY (s) we get∥∥∥∥∫ T

0

[f(s)− g(s)]dY (s)

∥∥∥∥
Lq2 (P̃)

= κ(q2)|f − g|2, (5.20)

where κ(q2) :=
√
2
(
Γ( q2+1

2
)/
√
π
)1/q2 (see, for instance, Formula (1.1) in [16]). Fur-

thermore, ∣∣|f |22 − |g|22
∣∣ = (|f |2 + |g|2) ||f |2 − |g|2|
≤ (|f |2 + |g|2) |f − g|2
≤

√
T (∥f∥∞ + ∥g∥∞)|f − g|2. (5.21)

Therefore, combining (5.18) with (5.19),(5.20) and (5.21) we get∥∥∥e∫ T
0 f(s)dY (s)− 1

2
|f |22 − e

∫ T
0 g(s)dY (s)− 1

2
|g|22
∥∥∥
Lq(P̃)

≤
(
e

q1−1
2

T∥f∥2∞ + e
q1−1

2
T∥g∥2∞

)(
κ(q2) +

√
T

2
(∥f∥∞ + ∥g∥∞)

)
|f − g|2.

The proof is complete.

Thanks to the identities

(Y (T )− y0)
∫ T

0
h(ξ̂xs )ds

T
=

∫ T

0

(
1

T

∫ T

0

h(ξ̂xr )dr

)
dY (s),
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and ∫ T

0

(
1

T

∫ T

0

h(ξ̂xr )dr

)2

ds =

(∫ T

0
h(ξ̂xr )dr

)2
T

,

we are in a position to apply Lemma 128 to the last term in (5.17)with

f(s) := h(ξ̂xT−s) and g(s) :=
1

T

∫ T

0

h(ξ̂xr )dr;

note that such choices imply ∥f∥∞ ≤ ∥h∥∞ and ∥g∥∞ ≤ ∥h∥∞ (here, the norms are
on the corresponding domains). Therefore,∥∥∥∥u(T, x)− e

(Y (T )−y0)
2

2T v(T, x, Y (T )− y0)

∥∥∥∥
Lq(P̃)

≤ 2∥u0∥∞eT(∥c∥∞+
q1−1

2
∥h∥2∞)

(
κ(q2) +

√
T∥h∥∞

)
· · · × Ê

(∫ T

0

∣∣∣∣h(ξ̂xT−s)−
1

T

∫ T

0

h(ξ̂xr )dr

∣∣∣∣2 ds
)1/2

 .

We now focus on the last expectation; using a combination of Jensen’s inequalities
and Tonelli’s theorem we get

Ê

(∫ T

0

∣∣∣∣h(ξ̂xT−s)−
1

T

∫ T

0

h(ξ̂xr )dr

∣∣∣∣2 ds
)1/2


≤

(
Ê

[∫ T

0

∣∣∣∣h(ξ̂xT−s)−
1

T

∫ T

0

h(ξ̂xr )dr

∣∣∣∣2 ds
])1/2

=

(∫ T

0

Ê

[∣∣∣∣h(ξ̂xT−s)−
1

T

∫ T

0

h(ξ̂xr )dr

∣∣∣∣2
]
ds

)1/2

=

(∫ T

0

Ê

[∣∣∣∣ 1T
∫ T

0

(h(ξ̂xT−s)− h(ξ̂xr ))dr

∣∣∣∣2
]
ds

)1/2

≤
(∫ T

0

Ê
[
1

T

∫ T

0

|h(ξ̂xT−s)− h(ξ̂xr )|2dr
]
ds

)1/2

=

(∫ T

0

(
1

T

∫ T

0

Ê
[
|h(ξ̂xT−s)− h(ξ̂xr )|2

]
dr

)
ds

)1/2

.

The Lipschitz continuity of h and Theorem 4.3, Chapter 2 in [78] yield

Ê
[
|h(ξ̂xT−s)− h(ξ̂xr )|2

]
≤ L2Ê

[
|ξ̂xT−s − ξ̂xr |2

]
≤ 2L2(1 + |x|2)(1 + T )e2(

√
M+M/2)T |T − s− r|,
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where L and M come from (5.5) and (5.6). Moreover,(∫ T

0

(
1

T

∫ T

0

|T − s− r|dr
)
ds

)1/2

=
T√
3
.

Combining all our estimates we obtain∥∥∥∥u(T, x)− e
(Y (T )−y0)

2

2T v(T, x, Y (T )− y0)

∥∥∥∥
Lq(P̃)

≤ 2√
3
∥u0∥∞eT(∥c∥∞+

q1−1
2

∥h∥2∞+
√
M+M/2)

(
κ(q2) +

√
T∥h∥∞

)
· · · × L

√
2(1 + |x|2)(1 + T )T,

as desired.
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Chapter 6

An alternative derivation of the
Feynman-Kac formula for the heat
equation driven by spatial white
noise potential

Abstract

We present an alternative derivation of the Feynman-Kac formula for the 1-dimensional
stochastic heat equation (SHE) driven by a space-only Gaussian white noise poten-
tial, where the noise is interpreted in the Wick-Itô-Skorokhod sense. Our approach
consists in constructing a Wong-Zakai-type approximation for the SHE from which
we are able to obtain an “approximating Feynman-Kac” representation via the reduc-
tion of the approximated SHE to a deterministic partial differential equation (PDE).
Then we will show that those “approximating Feynman-Kac” converge to a well de-
fined object we will call “formal Feynman-Kac” representation which happens to co-
incide with the unique solution of the SHE.

6.1 Introduction.

In this work we will deal with the 1-dimensional stochastic heat equation{
∂tu(t, x) =

1
2
∂2
xxu(t, x) + u(t, x) ⋄ Ẇ (x), (t, x) ∈]0, T ]× R

u(0, x) = u0(x),
(6.1)

driven by the (distributional) derivative of the Brownian motion {W (x)}x∈R aka a
(spatial) spatial white noise process.
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The initial condition u0 : R → R is assumed to be a bounded, deterministic Borel-
measurable function. In light of what we discussed in section 2.3.7 the use of the
Wick product in equation (6.1) implies that the noise should be interpreted in the
Itô-Skorohod sense.

In the case of space-time white noise potential, equation (6.1) has been extensively
studied (e.g. [79],[80],[81],[82] and references therein). On the other hand if the
noise is assumed to be only time-dependent equation (6.1) is just a particular case
of the well known Zakai equation that we treated in chapter 5.

Nevertheless the case of spatial white noise hasn’t received the same attention.
In [83] the author has showed that in this one-dimensional setting, equation (6.1)
admits a unique mild solution which is square integrable for any (t, x) ∈ [0, T ]×R;
such a solution is constructed employing the Wiener Chaos expansion (see also
Theorem 3.9 of [84] ).

In [85] and [86] the author treated the SHE with spatial noise in the d-dimensional
case, showing existence, and providing numerous estimations of the Lyapunov ex-
ponent of the solutions. The former treats the case of fractional Brownian motion,
while in the latter the solution is showed to exist in a flat Hilbert space similar to
those introduced by Kondratiev (see for instance [38]).

In [84] the authors studied, among other things, the existence and regularity of
the multidimensional version of (6.1) when the covariance structure of {W (x)}x∈Rd

satisfies certain conditions. They also propose some formal Feynman-Kac represen-
tations for the solutions of the SHE in various settings. Although they hinted a way
for constructing the Feynman-Kac representation for the solution of equation (6.1)
the details were omitted.

In [87] the authors studied the SHE with space-only white noise potential in a
bounded interval using the concept of Wiener chaos solution and propagator intro-
duced in [88] (see also [73]). They obtain original estimates of the Hölder regularity
of the solutions (in particular in space).

The aim of this chapter is to construct a Feynman-Kac representation for the unique
mild solution of (6.1), using an alternative approach to that in [84], the main differ-
ence between the two being the way in which the noise is regularized.

As in the previous chapters we introduce an “approximating equation” which is re-
duced to a deterministic partial differential equation by means of the connection
between the Wick product and the Malliavin derivative. Applying the classical
Feynman-Kac formula to the latter we are able to derive a probabilistic represen-
tation for the Wong-Zakai approximation of the SHE. Then we show that as the
regularization of the noise vanishes this representation converges to a well-defined
random variable (for fixed t and x) and that this limit-object coincides with the
unique mild solution of (6.1) present in the literature. It’s worth noticing that
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due to the structure of the approximated noise the sequence of “approximated so-
lutions” converges not only in the Lp(Ω) norm for any p ∈ [1,∞), but also almost
surely.

Thus our achievement is two-fold, first we propose an alternative and original deriva-
tion of the Feynman-Kac formula for the solution of the SHE with purely spatial
noise, and on the other hand it spots an interesting interconnection between the
SHE and an approximating deterministic PDE.

6.2 Construction of the approximating equation.
For technical and notational convenience we will denote with (Ω,F ,P) the White
noise probability space which was defined in section 2.3.3. Furthermore let {W (x)}x∈R
denote the Brownian motion defined in 2.31 and let E be the expectation operator
in this space.

The aim of this section is that of introducing a Wong-Zakai-type approximation for
(6.1), and thus the first thing to do is to construct an opportune smooth approxima-
tion of the singular White noise process {Ẇ (x)}x∈R. As we already mentioned (see
section 2.3.3) the point evaluation of singular white noise at x ∈ R could formally
be seen as

Ẇ (x) = “

∫
R
δx(y)dW (y)”,

i.e. the stochastic integral of a Dirac delta function with mass at x ∈ R.

One possible approximation could be obtained by truncating the Hermite expansion
of δx (see section 2.3.1) up to a certain finite value K yielding:

ẆK(x) :=
K∑
j=1

ej(x)

∫
R
ej(y)dW (y), (6.2)

(notice that the latter is nothing more than the derivative of a truncated Karuhnen-
Loève expansion of the Brownian motion W ) clearly ẆK converges to Ẇ in (S)∗

(e.g. [38]). We can also write

ẆK(x) = Γ(PK)Ẇ (x),

where PK is the projection operator on span(e1, ..., eK) (see definition 139) and
Γ(PK) denotes its second quantization.

If we substitute the singular white noise in (6.1) with (6.2) we obtain the following
“ala Wong-Zakai approximating equation”:{

∂tu
K
t,x = 1

2
∂2
xxu

K
t,x + uK

t,x ⋄ ẆK
x , (t, x) ∈ ]0, T ]× R

u(0, x) = u0(x),
(6.3)
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where in order to simplify the notation we write WK
x for WK(x).

Since the equation above involves non-trivial operations, such as taking the Wick
product between the solution and a random potential we should state what a “solu-
tion” of the latter actually is. Following [80] we have:

Definition 129. Let K be any arbitrary positive integer, then random field uK :
[0, T ] × R × Ω → R is said to be a mild solution of (6.3) if for any fixed (t, x) ∈
[0, T ]× R we have that uK

t,x ∈ L2(P) and for any random variable F ∈ D1,2 it holds
that:

E
[
uK
t,xF

]
= (Ptu0)(x)E[F ]

+ E

(∫ t

0

∫
R
pt−s(x− y)

(
K∑
j=1

ej(y)ej(•)

)
uK
s,ydy ds , D(•)F

)
L2(R)

 ,

(6.4)

where D denotes the Malliavin derivative and D1,2 the Malliavin-Sobolev space.

Remark 130. This definition is essentially equivalent to the concept of soft solution
(e.g. [89][90]).

6.3 Reduction method
From now on we will write Zj :=

∫
R ej(y)dW (y), j ∈ {1, ..., K}, then using the

linearity of the Wick product we can rewrite equation (6.3) as{
∂tu

K
t,x = 1

2
∂2
xxu

K
t,x +

∑K
j=1 ej(x)u

K
t,x ⋄ Zj, (t, x) ∈ ]0, T ]× R

u(0, x) = u0(x).

We can formally use proposition 101 and write

uK
t,x ⋄ Zj = uK

t,x · Zj −
(
DuK

t,x, ej
)
L2(R) .

Thus replacing this into the equation above yields{
∂tu

K
t,x = 1

2
∂2
xxu

K
t,x +

∑K
j=1

[
uK
t,x · Zj −

(
DuK

t,x, ej
)
L2(R)

]
, (t, x) ∈ ]0, T ]× R

u(0, x) = u0(x).

If we assume that the solution of this equation is of the form

uK
t,x(ω) = uK(t, x, z1, ..., zK)

∣∣
zk=Zk(ω), k=1,...,K
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for some (well behaved) function uK : [0, T ]×R×RK → R that must be determined
then an application of the chain rule implies that

(
DuK

t,x, ej
)
L2(R) =

K∑
i=1

∂ziu
K
t,x,z (DZi, ej)L2(R) = ∂zju

K(t, x, z1, ..., zK)
∣∣
zk=Zk(ω), k=1,...,K

.

It follows that uK(t, x, z) must solve the deterministic Cauchy problem
∂tu

K
t,x,z =

1
2
∂2
xxu

K
t,x,z +

∑K
j=1 ej(x)[u

K
t,x,z · zj − ∂zju

K
t,x,z],

(t, x, z) ∈]0, T ]× R× RK

uK(0, x) = u0(x).

(6.5)

Notice that by doing so we’ve managed to reduce the approximating Wong-Zakai
equation (6.3) to a deterministic partial differential equation. This in turn implies
that we can obtain an approximation for the solution of (6.1) by solving a determin-
istic PDE. This by itself is an interesting result since it’s generally true that dealing
with PDEs is considerably easier than solving SPDEs.

Upon multiplying both sides of the equation by exp
(
−1

2

∑K
j=1 z

2
j

)
and defining

vKt,x,z := uKt,x,z exp

(
−1

2

K∑
j=1

z2j

)
,

we are able to get rid of the zero-order term and obtain the following:{
∂tv

K = 1
2
∂2
xxv

K −
∑K

j=1 ej(x)∂zjv
K ,

vK(0, x) = u0(x)× exp
(
−1

2

∑K
j=1 z

2
j

)
.

(6.6)

Proposition 131. Straightforward computations show that the differential operator

L =
1

2
∂2
xx −

K∑
j=1

ej(x)∂zj

is the infinitesimal generator of a (K + 1)-dimensional stochastic process given by(
Bx(t), z1 −

∫ t

0

e1(B
x(s))ds, ..., zK −

∫ t

0

eK(B
x(s))ds

)
t∈[0,T ]

,

where {Bx(t)}t∈[0,T ] is a 1-dimensional Brownian motion defined on the auxiliary
probability space (Ω̃, F̃ , P̃) starting at x ∈ R.
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Proof. Let

dX(t) = b(X(t))dt+ σ(X(t))dB(t), t ∈]0, T ], X(0) = (x, z1, ..., zK)

where b = (0,−e1(X1(t)), ...,−eK(X1(t)))
T and σ = (1, 0, ..., 0)T . Then by [14,

theorem 7.3.3] the infinitesimal generator of X is given by L .

The last proposition and a formal application of the classical Feynman-Kac formula
yields

vK(t, x, z) = Ẽ

[
u0(B

x(t)) exp

{
− 1

2

K∑
j=1

(
zj −

∫ t

0

ej(B
x(s))ds

)2}]
, (6.7)

where Ẽ denotes the expectation with respect to P̃.

The expression given by (6.7) is sometimes referred to as a “generalized solution” of
(6.6). It is worth mentioning that the latter becomes a classical solution if suitable
regularity assumptions on the coefficients of (6.6) are in force. For more details see
the discussion on [11, page 122] . By definition the latter implies that

uK(t, x, z) = Ẽ

[
u0(B

x(t)) exp

{ K∑
j=1

zj

(∫ t

0

ej(B
x(s))ds

)
− 1

2

K∑
j=1

(∫ t

0

ej(B
x(s))ds

)2}]
.

(6.8)

Letting uK
t,x(ω) := uK(t, x, Z1(ω), ..., ZK(ω)) we obtain the formula in theorem 133.

6.3.1 Wong-Zakai and propagator.

There exists an interesting connection between our approach and the concept of
Chaos solution (e.g. [88][73]). For fixed (t, x), it is easy to shown that the gen-
eralized solution (6.8) belongs to L2

(
RK , γ⊗K

)
where γ⊗K stands for the standard

K-dimensional Gaussian measure where the matrix of covariance equals the identity.
Then, uK(t, x, z) can be written as a series involving the Hermite polynomials. Thus

formally replacing uK(t, x, z) by
∑

α∈JK

uα(t, x)

(
∞∏
j=1

Hαj
(zj)√
αj!

)
=:

∑
α∈JK

uα(t, x)Hα(z),

where J K := {α ∈ J : αi = 0,∀i > K} and Hα(z) :=

(∏∞
j=1

Hαj (zj)√
αj !

)
, we obtain

after reordering the terms and formally bringing the differential operators inside the
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series:

(∑
α∈JK ∂tuα(t, x)Hα(z)

)
=

( ∑
α∈JK

1

2
∂2
xxuα(t, x)Hα(z)

)
+
∑

α∈JK

∑K
j=1 ej(x)uα(t, x)

[
Hα(z)zj − ∂zjHα(z)

]
,

(t, x, z) ∈]0, T ]× R× RK∑
α∈JK uα(0, x)Hα(z) = u0(x).

Note that the term inside the square brackets above is equal to

Hα(z)zj − ∂zjHα(z) =
1√
α!

 ∞∏
k=1
k ̸=j

Hαk
(zk)

[Hαj
(zj)zj −H ′

αj
(zj)

]

=
1√
α!

 ∞∏
k=1
k ̸=j

Hαk
(zk)

Hαj+1(zj) =
√
αj + 1Hα+

(j)
(z),

where α+
(j) := α + ϵj (c.f. ...) and thus we can rewrite the system of equations

as 

(∑
α∈JK ∂tuα(t, x)Hα(z)

)
=

( ∑
α∈JK

1

2
∂2
xxuα(t, x)Hα(z)

)
+
∑

α∈JK

∑K
j=1 ej(x)uα(t, x)

√
αj + 1Hα+

(j)
(z),

(t, x, z) ∈]0, T ]× R× RK∑
α∈JK uα(0, x)Hα(z) = u0(x).

By comparing the coefficients of Hα, we can obtain the following triangular system
of equations which is equivalent to the propagator presented in [87]

∂tu(0)(t, x) =
1

2
∂2
xxu(0)(t, x), u(0)(0, x) = u0(x),

∂tuα(t, x) =
1

2
∂2
xxuα(t, x) +

K∑
j=1

ej(x)uα−
(j)
(t, x)

√
αj, uα(0, x) = 0, α ∈ J K ,

(6.9)

where α−
(j) = α− ϵj := (α1, α2, ...,max{αj − 1, 0}, ...).

Then, solving this propagator (6.9) gives us uK(t, x, z) and by evaluating it at
(t, x, Z1, . . . , ZK), we can obtain the solution of (6.3).

Remark 132. This same technique should work for any linear equation in which the
noise enters in a multiplicative fashion like this one.
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6.4 Statements of the theorems.
Theorem 133. The random field uK : [0, T ]× R× Ω → R defined by:

uK
t,x = Ẽ

[
u0(B

x(t))× exp

{∫
R

K∑
j=1

(∫ t

0

ej(B
x(s))ds

)
ej(y)dW (y)− 1

2

K∑
j=1

(∫ t

0

ej(B
x(s))ds

)2}]
,

(6.10)

is a mild solution of (6.3) (in the sense of definition 129 )

Theorem 134. The family of random variables {ΨK
t,x; K ∈ N} given by:

ΨK
t,x :=

∫
R

K∑
j=1

(∫ t

0

ej(B
x(s))ds

)
ej(y)dW (y)− 1

2

K∑
j=1

(∫ t

0

ej(B
x(s))ds

)2

,

converges in L2(P⊗ P̃) to a well defined random variable given by

Ψt,x =

∫
R
Lx
y(t) dW (y) − 1

2

∫
R
La(t)

2da,

where {Lx
y(t)} denotes the local time of the auxiliary Brownian motion {Bx(t)}t∈[0,T ]

defined on (Ω̃, F̃ , P̃).

Furthermore, conditional on F̃B
T it holds that Ψt,x ∼ N

(
−1

2

∫
R |La(t)|2da,

∫
R |La(t)|2da

)
,

where {La(t); (t, a) ∈ [0, T ]× R} is the local time of {B(t)}t∈[0,T ].

Theorem 135. For fixed (x, t) ∈ [0, T ]×R, p ∈ [1,∞), let uK
t,x := Ẽ

[
u0(B

x(t)) exp{ΨK
t,x}
]

and denote ut,x := Ẽ [u0(B
x(t)) exp{Ψt,x}], then it holds that:

lim
K→∞

∥uK
t,x − ut,x∥Lp(P) = 0, (6.11)

and

lim
K→∞

uK
t,x = ut,x, P− a.s. (6.12)

Furthermore we have that

[0, T ]× R× Ω ∋ (t, x, ω) 7→ ut,x(ω)

is the unique solution for (6.1) (in the sense of theorem 3.1 of [83]).

Using our Feynman-Kac representation we are able to derive the following formulae
for the moments of the solution (this formula has also been obtained in [84] but the
proof was ommited).
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Theorem 136. Let q ≥ 2 then the q-th moment of the unique solution of (6.1) is
given by

E [(ut,x)
q] = Ẽ

[(
q∏

i=1

u0(B(t)(i) + x)

)
exp

{ q∑
i<j

∫ t

0

∫ t

0

δ0(B(s)(i) −B(r)(j))dsdr

}]
,

(6.13)

(B(1), ..., B(q)) are q independent 1-dimensional Brownian motions defined on (Ω̃, F̃ , P̃)
and

∫ t

0

∫ t

0
δ0(B(s) − B(r)′)dsdr denotes the intersection local time of the Brownian

motions B and B′(e.g. [91]).

6.5 Proof of theorem 133
We will only consider the case in which F = E(h), h ∈ L2(R) (which amounts to
deal with the S-transform ) because the general case could be obtained by a density
argument. We then have

E
[
uK
t,xE(h)

]
= E

[
Ẽ
[
u0(B

x(t))× exp{ΨK
t,x}
]
× E(h)

]
= Ẽ

[
u0(B

x(t))E
[
exp{ΨK

t,x} × E(h)
]]

= Ẽ

[
u0(B

x(t)) exp

{∫ t

0

K∑
j=1

ej(B
x(s))

∫
R
ej(y)h(y)dy ds

}]
,

hence by the classical Feynman-Kac formula we can see that the latter is the solution
of{
∂tS

(
uK
t,x

)
(h) = 1

2
∂2
xxS

(
uK
t,x

)
(h) + S

(
uK
t,x

)
(h) ·

(∑K
j=1 ej(x)

∫
R ej(y)h(y)dy

)
, (t, x) ∈]0, T ]× R

S0,x(h) = u0(x),

for any h ∈ L2(R), where as usual S
(
uK
t,x

)
(h) = E

[
uK
t,xF

]
for any fixed K.

The solution of this equation can be written in mild form as

S
(
uK
t,x

)
(h) = (Ptu0)(x) +

∫ t

0

∫
R
pt−s(x− y)S

(
uK
s,x

)
(h)

K∑
j=1

ej(y)

∫
R
ej(z)h(z)dz dy,

= (Ptu0)(x) +

∫ t

0

∫
R
pt−s(x− y)E

[
uK
s,xE(h)

] K∑
j=1

ej(y)

∫
R
ej(z)h(z)dz dy,

or which is equivalent,

E
[
uK
t,xE(h)

]
= (Ptu0)(x) + E

(∫ t

0

∫
R
pt−s(x− y)

(
K∑
j=1

ej(y)ej(•)

)
uK
s,ydyds , h(•)E(h)

)
L2(R)

 ,

which implies (6.4) since E[E(h)] = 1 and DE(h) = hE(h) and the fact that the
stochastic exponentials are a dense family in D1,2.
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6.6 Proof of theorem 134
We start by showing that {ΨK

t,x}K∈N is a Cauchy sequence in L2(P⊗ P̃). .

Without lost of generality assume that N > M + 1 and let ~ • ~p := EẼ [| • |p]1/p
for any p ≥ 1, then

~ΨN
t,x −ΨM

t,x~
2
2 =

‌

‌

‌

‌

‌

N∑
j=M+1

Zj ×
(∫ t

0

ej(B
x(s))ds

)
− 1

2

N∑
j=M+1

(∫ t

0

ej(B
x(s))ds

)2
‌

‌

‌

‌

‌

2

2

= ẼE

∣∣∣∣∣
N∑

j=M+1

Zj ×
(∫ t

0

ej(B
x(s))ds

)
− 1

2

N∑
j=M+1

(∫ t

0

ej(B
x(s))ds

)2
∣∣∣∣∣
2


= ẼE

[(
N∑

j=M+1

Zj ×
(∫ t

0

ej(B
x(s))ds

))2

−

(
N∑

j=M+1

Zj ×
(∫ t

0

ej(B
x(s))ds

))( N∑
j=M+1

(∫ t

0

ej(B
x(s))ds

)2
)

+
1

4

(
N∑

j=M+1

(∫ t

0

ej(B
x(s))ds

)2
)2 ]

= Ẽ

 N∑
j=M+1

(∫ t

0

ej(B
x(s))ds

)2

+
1

4

(
N∑

j=M+1

(∫ t

0

ej(B
x(s))ds

)2
)2
 .

It would suffice to show that

lim
N,M→∞

Ẽ

 N∑
j=M+1

(∫ t

0

ej(B
x(s))ds

)2

+
1

4

(
N∑

j=M+1

(∫ t

0

ej(B
x(s))ds

)2
)2
 = 0.

Using (6.21) we have that
N∑

j=M+1

(∫ t

0

ej(B
x(s))ds

)2

≤
∫
R
|La(t)|2da =: αt,

for any positive integers N > M . This together with the fact that the random
variable αt is exponentially integrable (e.g. [91, page 178] ) allows us to use the
Dominated Convergence Theorem to bring the limit inside the expectation.

Finally from (6.21) we know that the sequence

Sn =
n∑

j=1

(∫ t

0

ej(B
x(s))ds

)2

,
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is P̃-a.s. convergent and thus we have that

|SN − SM | =
N∑

j=M+1

(∫ t

0

ej(B
x(s))ds

)2

→ 0, P̃− a.s.

when N,M → ∞.

This implies that

lim
N,M→∞

~ΨN
t,x −ΨM

t,x~
2
2 = 0

which shows that {ΨK
t,x}K∈N is a Cauchy sequence.

Furthermore notice that
‌

‌

‌

‌

‌

‌

∫
R

K∑
j=1

(∫ t

0
ej(B

x(s))ds

)
ej(y)dW (y)− 1

2

K∑
j=1

(∫ t

0
ej(B

x(s))ds

)2

−
∫
R
Lx
y(t) dW (y) +

1

2

∫
R
La(t)

2da

‌

‌

‌

‌

‌

‌

2

2

≤ 2

‌

‌

‌

‌

‌

‌

∫
R

K∑
j=1

(∫ t

0
ej(B

x(s))ds

)
ej(y)dW (y)−

∫
R
Lx
y(t) dW (y)

‌

‌

‌

‌

‌

‌

2

2

+

‌

‌

‌

‌

‌

‌

K∑
j=1

(∫ t

0
ej(B

x(s))ds

)2

−
∫
R
La(t)

2da

‌

‌

‌

‌

‌

‌

2

2

= 2Ẽ

∫
R

∣∣∣∣∣∣
K∑
j=1

(∫ t

0
ej(B

x(s))ds

)
ej(y)− Lx

y(t)

∣∣∣∣∣∣
2

dy


+ Ẽ

∣∣∣∣∣∣
K∑
j=1

(∫ t

0
ej(B

x(s))ds

)2

−
∫
R
La(t)

2da

∣∣∣∣∣∣
2 −→ 0,

where in the last equality we’ve employed fact that conditional on F̃B
T the stochastic

integrals are Wiener integrals and the convergence to 0 follows from an application
of Dominated Convergence Theorem.

6.7 Proof of theorem 135
The proof of our main theorem will be done in several steps:

1. Show that the “approximated Feynman-Kac” formula converges in L2(P) to the
“formal Feynman-Kac”.

2. Obtain the Wiener Chaos expansion of the “approximated Feynman-Kac”.

3. Show that the latter converges in L2(P) (as K → ∞) to the solution of (6.1)
represented by the formal series given in [83] and [86].
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Then since the limit in L2(P) is P-a.s. unique, we conclude that the solution given by
the formal Wiener chaos series in [83] and [86] coincides with the “formal Feynman-
Kac” formula.

The previous can be summarized by the following diagram,

Ẽ
[
u0(B

x(t)) exp
{
ΨK

t,x

}]
Ẽ
[
u0(B

x(t)) exp
{
Ψt,x

}]

∑∞
n=0 In(f

K
n (t, x))

∑∞
n=0 In(fn(t, x))

Step 1
K → ∞

Step 3
K → ∞

Step 2 = = (by uniqueness of the limit)

Step 1:

We start by showing the convergence of the “approximated Feynman-Kac” for-
mula:

E
[
|uK

t,x − ut,x|p
]
= E

[∣∣Ẽ [u0(B
x(t))

(
exp{ΨK

t,x} − exp{Ψt,x}
)] ∣∣p] ‘

≤ ∥u0∥p∞EẼ
[∣∣ exp{ΨK

t,x} − exp{Ψt,x}
∣∣p] .

Since ΨK
t,x → Ψt,x in L2(P ⊗ P̃), then exp{ΨK

t,x} → exp{Ψt,x} in probability, and
in order to show the desired result we just need to prove that ~ exp{ΨK

t,x}~p →
~ exp{Ψt,x}~p.

Using the Tower rule and the fact that conditional on F̃B
T the random variables Ψt,x

and ΨK
t,x are Gaussian we have that

~ exp{Ψt,x}~
p
p = EẼ| exp{pΨt,x}|

= Ẽ
[
E
[
exp{pΨt,x}|F̃B

T

]]
= Ẽ

[
exp

{
p(p− 1)

2

∫
R
|La(t)|2da

}]
< ∞,

and

~ exp{ΨK
t,x}~

p
p = EẼ| exp{pΨK

t,x}|
= Ẽ

[
E
[
exp{pΨt,x}|FB

T

]]
= Ẽ

[
exp

{
p(p− 1)

2

K∑
j=1

(∫ t

0

ej(B
x(s))ds

)2}]
.

At this point we can use Monotone convergence theorem to bring the limit inside
the expectation, the continuity of the exponential function and (6.21) implies the
desired result.
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Step 2:

Now we need to obtain the Wiener chaos decomposition of (6.10) and start by
noticing that conditional on F̃B

T we can write (e.g. lemma 59)

exp{ΨK
t,x} =

∞∑
n=0

1

n!
In
(
gKn (t, x, •)

)
, convergence in L2(P)

where the n-th kernel is given by the following element of L2
sym(Rn):

gKn (t, x, •) =
K∑

i1=1

· · ·
K∑

in=1

1

n!

(∫
[0,t]n

ei1(B
x(s1))× · · · × ein(B

x(sn))ds

)
(ei1 ⊗ · · · ⊗ ein)(•),

and where ds = ds1...dsn. From the latter it follows that

uKt,x =
∞∑
n=0

In

(
K∑

i1=1

· · ·
K∑

in=1

1

n!
Ẽ

[
u0(B

x(t))

∫
[0,t]n

ei1 (B
x(s1))× · · · × ein (B

x(sn)) ds

]
ei1 ⊗ · · · ⊗ ein

)
;

then the n-th kernel of the Chaos decomposition of uKt,x is given by

K∑
i1=1

· · ·
K∑

in=1

1

n!
Ẽ

[
u0(B

x(t))

∫
[0,t]n

ei1 (B
x(s1))× · · · × ein (B

x(sn)) ds

]
ei1 ⊗ · · · ⊗ ein .

Using the multi-index notation we can rewrite the series above as

1

n!

∑
α∈JK

n

1

α!

∑
σ∈Pn

Ẽ

[
u0(B

x(t))

∫
[0,t]n

ekσ(1)
(Bx(s1))× · · · × ekσ(n)

(Bx(sn)) ds

]
ekσ(1)

⊗ · · · ⊗ ekσ(1)

where for any α ∈ Jn we denote its characteristic vector by kα = (k1, . . . , kn) (e.g. [87,
Section 2]).

Using the symmetry of the term inside the expectation we see that this equals

1

n!

∑
α∈JK

n

Ẽ

[
u0(B

x(t))

∫
[0,t]n

ek1 (B
x(s1))× · · · × ekn (B

x(sn)) ds

]
1

α!

∑
σ∈Pn

ekσ(1)
⊗ · · · ⊗ ekσ(1)

Definition 137. Let α ∈ J and as usual let α! =
∏∞

j=1 αj !. We define

eα :=

√
n!

α!

∞⊙
j=1

e
⊙αj

j . (6.14)

Then {eα : α ∈ Jn} is an orthonormal basis for L2sym(Rn) (e.g. [23, proposition 2.3.7])



136

Using the basis we’ve introduced above we can rewrite the latter expression as

1

n!

∑
α∈JK

n

√
n!

α!
Ẽ

[
u0(B

x(t))

∫
[0,t]n

ek1 (B
x(s1))× · · · × ekn (B

x(sn)) ds

]
eα

=
1

n!

∑
α∈JK

n

√
n!

α!
Ẽ
[
u0(B

x(t))
(
Lx(t)⊗n, ek1 ⊗ · · · ⊗ ekn

)
L2(Rn)

]
eα

=
1

n!

∑
α∈JK

n

√
n!

α!
Ẽ

u0(Bx(t))

(
Lx(t)⊗n,

1

n!

∑
σ∈Pn

ekσ(1)
⊗ · · · ⊗ ekσ(n)

)
L2(Rn)

 eα

=
1

n!

∑
α∈JK

n

Ẽ
[
u0(B

x(t))
(
Lx(t)⊗n, eα

)
L2(Rn)

]
eα.

Using the time occupation formula again we obtain

1

n!

∑
α∈JK

n

Ẽ

[∫
[0,t]n

u0(B
x(t))eα(B

x(s1), ..., B
x(sn))ds

]
eα.

Now let σ ∈ Pn be the permutation of {1, ..., n} such that 0 < sσ(1) < · · · < sσ(n) then by
the symmetry of eα we can rewrite the last expression as

1

n!

∑
α∈JK

n

Ẽ

[∫
[0,t]n

u0(B
x(t))eα

(
Bx

sσ(1)
, ..., Bx

sσ(n)

)
ds

]
eα,

at this point we can simply compute the expectation and obtain the following

Proposition 138. Let uKt,x be given by (6.10) then it holds that:

uKt,x =
∞∑
n=0

In(f
K
n (t, x)), (6.15)

where
fK
0 (t, x) = u(0)(t, x),

fK
n (t, x, •) =

∑
α∈JK

n
eα(•)

1
n!

∫
[0,t]n

∫
Rn u(0)(t− sσ(n), xσ(n))psσ(n)−sσ(n)(xσ(n) − xσ(n−1))

· · · × psσ(1)
(xσ(1) − x)eα(xσ(1), ..., xσ(n))dx ds

(6.16)

where dx := dx1 · · · dxn, and σ denotes the permutation of {1, ..., n} such that 0 < sσ(1) <
· · · < sσ(n) < t.

In [84] the authors have shown that if the initial condition is deterministic and bounded,
then equation (6.1) has a unique mild solution given by the Wiener Chaos expansion:

u(t, x) =

∞∑
n=0

In(fn(t, x)), (6.17)
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where
f0(t, x) = u(0)(t, x) := (Ptu0)(x),

fn(t, x;x1, ..., xn) = 1
n!

∫
[0,t]n pt−sσ(n)

(x− xσ(n))

· · · × psσ(2)−sσ(1)
(xσ(2) − xσ(1))u(0)(xσ(1), sσ(1))ds,

(6.18)

where σ denotes the permutation of {1, 2, ..., n} such that 0 < sσ(1) < · · · < sσ(n) < t ( see
also equations (4.2) and (4.3) of [86]).

Now the idea is to show that (6.15) converges in L2(P) to (6.17) as K → ∞. Comparing
(6.16) and (6.18) it is evident, after a simple reordering of the terms, that fK

n equals the
orthogonal projection of fn on the span of {eα : α ∈ JK

n }, i.e. the symmetric part of
span{ei1 ⊗ · · · ⊗ ein}Ki1,...,in=1.

Definition 139. Let K be some fixed positive integer. Then PK : L2(R) → L2(R) is a
self-adjoint projection operator defined by the action

PKf = PK

 ∞∑
j=1

(f, ej)L2(R) ej

 =

K∑
j=1

(f, ej)L2(R) ej , (6.19)

for any f ∈ L2(R), i.e. the orthogonal projection on span{e1, ..., eK}.

Straightforward calculations, similar to those in Appendix B show that the following
holds

Proposition 140. Let u(t, x), (t, x) ∈ [0, T ]×R denote the mild solution of (6.1) given by
(6.17) . Then for any (t, x) ∈ [0, T ]× R it holds that:

uKt,x = Γ(PK)u(t, x), (6.20)

where Γ(PK) stands for the second quantization of the projection operator PK .

Step 3:
It’s straightforward to see that∥∥∥∥∥

∞∑
n=0

In(f
K
n (t, x))−

∞∑
n=0

In(fn(t, x))

∥∥∥∥∥
2

L2(P)

=

∥∥∥∥∥
∞∑
n=0

In(fn(t, x)− P⊗n
K fn(t, x))

∥∥∥∥∥
2

L2(P)

=
∞∑
n=0

n!∥fn(t, x)− P⊗n
K fn(t, x)∥2L2(Rn) → 0

as K → ∞. This together with the results obtained in Step 1 and the unicity of the L2(P)
limit we conclude that

Ẽ
[
u0(B

x(t)) exp
{
Ψt,x

}]
=

∞∑
n=0

In(fn(t, x)), P− a.s.
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On the other hand from the propositions 140 and 141 we see that

uKt,x = E [u(t, x)|K] , K := σ(Z1, ..., ZK)

and we also notice that K ↑ F = σ(H(W )). Then the martingale convergence theorem
(e.g. theorem 35.6 of [92]) gives us the P-a.s. convergence

6.8 Proof of theorem 136
The convergence in Lp(P), p ∈ [1,∞) of uKt,x to the solution of ut,x implies that for any
q ∈ N the q-th moment of uKt,x converges to that of the solution.

E
[(
uKt,x
)q]

= E

[
q∏

i=1

Ẽ
[
u0(B(t)(i) + x) exp

{
Ψ

K,(i)
t,x

}]]

= Ẽ

[(
q∏

i=1

u0(B(t)(i) + x)

)
E

[
exp

{ q∑
i=1

Ψ
K,(i)
t,x

}∣∣∣∣FB
T

]]

= Ẽ

{(
q∏

i=1

u0(B(t)(i) + x)

)

× E

[
exp

{∫
R

q∑
i=1

K∑
k=1

(∫ t

0
ek(B(s)(i) + x)ds

)
ek(y)dW (y)

}∣∣∣∣FB
T

]

× exp

{
− 1

2

q∑
i=1

(∫ t

0
ek(B(s)(i) + x)ds

)2}}
,

using the fact that conditional on F̃B
T the stochastic integral appearing in the exponential

is a centered Gaussian random variable we can see that the latter equals

= Ẽ
[( q∏

i=1

u0(B(t)(i) + x)

)
exp

{∥∥∥∥∥
q∑

i=1

K∑
k=1

(∫ t

0
ek(B(s)(i) + x)ds

)
ek(•)

∥∥∥∥∥
2

L2(R)

}

× exp

{
− 1

2

q∑
i=1

(∫ t

0
ek(B(s)(i) + x)ds

)2}]

= Ẽ

( q∏
i=1

u0(B(t)(i) + x)

)
exp

{ q∑
i<j

K∑
k=1

(∫ t

0
ek(B(s)(i) + x)ds

)(∫ t

0
ek(B(r)(j) + x)dr

)} .

Now we must take the limit for K → ∞ (we can see that the exponential function is
dominated by exp{qmax1≤i≤q

∫
R |L(i)

a (t)|2da} which is integrable) yielding
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E [(ut,x)
q] = lim

K→∞
E
[(
uKt,x
)q]

= Ẽ

( q∏
i=1

u0(B(t)(i) + x)

)
exp

{ q∑
i<j

∫ t

0

∫ t

0
δ0(B(s)(i) −B(r)(j))dsdr

} .

6.9 Appendix A: Local time
Consider the Brownian local time of a one dimensional Brownian motion {Bx(t)}t∈[0,T ]

starting at x ∈ R, at level a ∈ R and time t ∈ [0, T ]:

Lx
a(t) =

∫ t

0
δa(B

x(s))ds,

and notice that the latter can be seen as the usual Brownian local time La−x(t).

It’s known (e.g. the proof of proposition XIII-2.1. of [93]) that for a fixed t the map
R ∋ a 7→ La(t) is a.s. continuous and has compact support, hence it follows that

αt :=

∫
R
|La(t)|2da < ∞, a.s.,

this together with the invariance of Lebesgue measure implies that a 7→ Lx
a(t) belongs to

L2(R) almost surely.

Then the following Fourier-like series expansion holds a.s.

Lx
a(t) =

∞∑
j=1

(∫
R
Lx
y(t)ej(y)dy

)
ej(a)

=
∞∑
j=1

(∫ t

0
ej(B

x(s))ds

)
ej(a),

where in the last equality we’ve used the occupation time formula.

By the Parseval’s identity we have:

∞∑
j=1

(∫ t

0
ej(B

x(s))ds

)2

=

∫ ∞

−∞
|Lx

a(t)|2da =

∫ ∞

−∞
|La(t)|2da < ∞ a.s. (6.21)

6.10 Appendix B: Second quantization and Condi-
tional expectation

Let (Ω,A, P ) be a probability space. Then it’s well know that if X ∈ L2(Ω,A, P ) and
B ⊂ A is a sub-sigma-algebra, the conditional expectation E [X|B] can be seen as the
orthogonal projection of X on L2(Ω,B, P ). In this appendix we will show an analogous
property of the second quantization operator.
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Proposition 141. Let PK be the projection operator of definition 139. Then the second
quantization operator Γ(PK) coincides with the conditional expectation E[•|K]1 on L2(P).

Proof. We consider again the complete probability space (Ω,B, P ) treated in the intro-
duction. Let X ∈ L2(P) then by theorem 33 X has a series expansion of the form

X =
∑
α∈J

xαHα, convergence in L2(P).

Now let us take the conditional expectation of X given the sigma algebra K. It’s well
known that we are allowed to interchange conditional expectation with an L2 convergent
series, yielding

E [X|K] =
∑
α∈J

xαE [Hα|K] =
∑
α∈J

xαE

 ∞∏
j=1

Hαj (Zj)√
αj !

∣∣∣∣∣K
 ,

and at this point we notice that the terms of the product involving Zj for j ∈ {1, 2, ..., N}
are K-measurable and hence can be pulled outside the conditional expectation, furthermore
the mutual independence of the Z’s yield

E[X|K] =
∑
α∈J

xα

K∏
j=1

Hαj (Zj)√
αj !

∞∏
j=K+1

E

[
Hαj (Zj)√

αj !

]
.

Furthermore since the Hermite polynomials of a standard Gaussian random variables can be
seen as its Wick power i.e. Hn(Zj) = Z⋄n

j (proposition 38), and since E(Z⋄n
j ) = E(Zj)

n = 0
we see that the only non-vanishing terms are those corresponding to the α’s containing
only positive values in the first K entries (remember that H0(·) ≡ 1). This allows us to
conclude that

E[X|K] =
∑

α∈JK

xαHα (6.22)

where JK := {α ∈ J : αi = 0, ∀i > K}.

On the other hand we could write the Chaos decomposition in terms of multiple Wiener
integrals, i.e.

X =

∞∑
n=0

In(fn),

where the kernel fn is a symmetric function in L2(Rn). Then by definition of the second
quantization operator we have

Γ(PK)X =
∞∑
n=0

In((PK)⊗nfn)

=
∞∑
n=0

In

(
K∑

i1=1

· · ·
K∑

in=1

(fn, ei1 ⊗ · · · ⊗ ein)L2(Rn) ei1 ⊗ · · · ⊗ ein

)
,

1Remember that K := σ(Z1, ..., ZK)
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using the multi-index notation this could be written as

=
∞∑
n=0

In

 ∑
α∈JK

n

1

α!

∑
σ∈Pn

(
fn, ekσ(1)

⊗ · · · ⊗ ekσ(n)

)
L2(Rn)

ekσ(1)
⊗ · · · ⊗ ekσ(n)

 .

where as usual kα = (k1, ..., kn) denotes the characteristic vector for α ∈ Jn. Since fn is
symmetric then it follows that the latter equals

∞∑
n=0

∑
α∈JK

n

n!

α!
(fn, ek1 ⊗ · · · ⊗ ekn)L2(Rn) In

(
1

n!

∑
σ∈Pn

ekσ(1)
⊗ · · · ⊗ ekσ(n)

)

=

∞∑
n=0

∑
α∈JK

n

√
n!

(
fn,

1√
α!n!

∑
σ∈Pn

ekσ(1)
⊗ · · · ⊗ ekσ(n)

)
L2(Rn)

1√
α!

In

(
1

n!

∑
σ∈Pn

ekσ(1)
⊗ · · · ⊗ ekσ(n)

)
.

Using the identity presented in equation (2.17)

Hα =
1√
α!

In

 ∞⊙
j=1

e
⊙αj

j

 , for α ∈ Jn

and letting (c.f.(2.18))

xα =
√
n (fn, eα)L2(Rn) ,

we can write the latter as
∞∑
n=0

∑
α∈JK

n

xαHα =
∑

α∈JK

xαHα = E[X|K],

and this completes the proof.
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Chapter 7

A Feynman-Kac approach for the
spatial derivative of the SHE driven
by spatial white noise potential.

Based on: Kim, H. J., & Scorolli, R. (2021). A Feynman-Kac approach for the
spatial derivative of the solution to the Wick stochastic heat equation driven
by time homogeneous white noise. To appear in Infinite Dimensional Analysis,
Quantum Probability and Related Topics.

Abstract
We consider the (unique) mild solution u(t, x) of a 1-dimensional stochastic heat equation
on [0, T ] × R driven by time-homogeneous white noise in the Wick-Skorokhod sense. The
main result of this paper is the computation of the spatial derivative of u(t, x), denoted
by ∂xu(t, x), and its representation as a Feynman-Kac type closed form. The chaos ex-
pansion of ∂xu(t, x) makes it possible to find its (optimal) Hölder regularity especially in
space.

7.1 Introduction
As an extension of the results obtained in the previous chapter, we will further investigate
the (unique) mild solution of the 1-dimensional stochastic heat equation (SHE):∂tu(t, x) =

1

2
∂2
xxu(t, x) + u(t, x) ⋄ Ẇ (x), (t, x) ∈ (0, T ]× R,

u(0, x) = u0(x)
(7.1)

where T > 0, u0 is a function satisfying certain conditions, {Ẇ (x)}x∈R is a spatial Gaussian
white noise i.e. the distributional derivative of the Brownian motion {W (x)}x∈R defined
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on the white noise probability space1 (S ′(R),B, µ), and ⋄ stands for the Wick product
which by proposition 101 implies that the stochastic integration must be understood in
the Itô-Skorohod sense.

Definition 142. We say u : [0, T ]×R×Ω → R is said to be a mild solution of (7.1) if for
any fixed (t, x) ∈ [0, T ]× R, u(t, x) ∈ (L2) and it satisfies

u(t, x) =

∫
R
p(t, x− y)u0(y)dy +

∫ t

0

∫
R
p(t− s, x− y)u(s, y) ⋄ Ẇ (y)dyds, µ-almost surely,

(7.2)

where as usual p(t, x) := 1√
2πt

e−
x2

2t is the Gaussian heat kernel.

Notice that from the discussion in section 2.3.7 we can rewrite equation (142) using the
Skorohod integral as

u(t, x) =

∫
R
p(t, x− y)u0(y)dy +

∫ t

0

∫
R
p(t− s, x− y)u(s, y)δW (y)ds, µ-almost surely.

(7.3)

Let {u(t, x)}(t,x)∈[0,T ]×R be a mild solution of (7.1). Then for any fixed (t, x), the random
variable u(t, x) admits the following multiple Wiener chaos expansion (e.g. [86], [84] or
[83]):

u(t, x) =
∞∑
n=0

In
(
F MW
n (t, x)

)
, (7.4)

where In(•) is the n-th multiple Wiener integral with respect to the Brownian motion
{W (x)}x∈R,

F MW
0 (t, x) =

∫
R
p(t, x− y)u0(y) dy;

F MW
n (t, x; y1, . . . , yn)

= 1
n!

∑
σ∈Pn

∫
[0,t]n p

(
t− rρ(n), x− yρ(n)

)
· · · × p

(
rρ(2) − rρ(1), yρ(2) − yρ(1)

)
F MW
0 (rρ(1), xρ(1)) dr, n ≥ 1,

and ρ denotes the permutation of {1, . . . , n} such that 0 < rρ(1) < · · · < rρ(n) < t. For
simplicity, we have denoted dr := dr1dr2 · · · drn.

To distinguish among different representations of the mild solution, let us call (7.4) the
multiple Wiener solution uMW(t, x) of (7.1). There are a few papers considering this
representation:

1Even though the choice of the underlying probability space is immaterial, we will employ this
in order to ease the presentation of the results
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(i) The paper [83, Theorem 3.1] shows that uMW is the unique mild solution in C
(
[0, T ];L2(R); (L2)

)
if u0 ∈ L2(R) by showing,

sup
t∈[0,T ]

∞∑
n=0

n!

∫
R

∥∥F MW
n (t, x; •)

∥∥2
L2(Rn)

dx ≤ C∥u0∥2L2(R) < ∞.

Note that u0 ∈ L2(R) does not cover u0 ≡ 1.

(ii) When u0 ∈ L∞(R), [86, Section 4] shows that

sup
(t,x)∈[0,T ]×R

∞∑
n=0

n!
∥∥F MW

n (t, x; •)
∥∥2
L2(Rn)

≤ C∥u0∥2L∞(R) < ∞.

Hence, we can say that uMW is the unique mild solution in C
(
[0, T ]× R; (L2)

)
if

u0 ∈ L∞(R).

There is an alternative chaos expansion of the mild solution u (e.g. [94, Theorem 3.11]):

u(t, x) =
∑
α∈J

uCSα (t, x)Hα. (7.5)

As usual we denote with Tn
[0,t] the simplex {0 ≤ s1 ≤ · · · ≤ sn ≤ t}, and then we can write

uCS(0)(t, x) =

∫
R
p(t, x− y)u0(y)dy, and for |α| = n ≥ 1,

uCSα (t, x) =
√
n!

∫
Tn
[0,t]

∫
Rn

p(t− sn, x− yn)× · · · × p(s2 − s1, y2 − y1)u
CS
(0)(s1, y1) eα(y1, . . . , yn) dsdy,

for α ∈ Jn := {α ∈ J : |α| = n}, and
{
eα :=

√
n!
α!

⊙∞
j=1 e

⊙αj

j , α ∈ Jn

}
forms an or-

thonormal basis of L2sym(Rn). We will call (7.5) the chaos solution uCS(t, x) of (7.1).
The existence and uniqueness of this representation can be proved by showing the follow-
ing:

(i’) We can prove that uCS is the unique mild solution in C
(
[0, T ];L2(R); (L2)

)
when

u0 ∈ L2(R) by showing (c.f. [87, Theorem 4.1])

sup
t∈[0,T ]

∞∑
n=0

∑
α∈Jn

∥∥uCSα (t, •)
∥∥2
L2(R) ≤ C∥u0∥2L2(R) < ∞. (7.6)

(ii’) We can also show that uCS is the unique mild solution in C
(
[0, T ]× R; (L2)

)
if

u0 ∈ L∞(R) (c.f. [87, Theorem 4.3]) by achieving

sup
(t,x)∈[0,T ]×R

∞∑
n=0

∑
α∈Jn

∣∣uCSα (t, x)
∣∣2 ≤ C∥u0∥2L∞(R) < ∞. (7.7)
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Indeed, (7.6) and (7.7) can be easily obtained as follows:

(7.6) To use the same argument as [87, Theorem 4.1], it is enough to show

U0 :=

∫
R

(∫
R
p(s, y − z1)u0(z1)dz1

)
·
(∫

R
p(s, y − z2)u0(z2)dz2

)
dy ≤ ∥u0∥2L2(R),

and it is clear by semigroup property and Hölder inequality,

U0 =

∫
R

∫
R
p(s+ r, z1 − z2)u0(z1)u0(z2)dz1dz2

=

∫
R
p(s+ r, z1)

∫
R
u0(z1 + z2)u0(z2)dz2dz1 ≤ ∥u0∥2L2(R).

(7.7) To use the same argument as [87, Theorem 4.3], it is enough to show∣∣∫
R p(t, x− y)u0(y)dy

∣∣ ≤ ∥u0∥L∞(R), and it automatically follows from the fact∫
R p(t, x)dx = 1.

Then, it is not surprising that uMW = uCS if u0 ∈ L∞(R) since the mild solution is unique
in C

(
[0, T ]× R; (L2)

)
.

We now discuss one more possible representation of the mild solution. In fact, the condition
(7.2) is equivalent to definition 129 In the previous chapter we obtained a Feynman-Kac
representation of the unique mild solution of (7.1) when u0 ∈ L∞(R). This is given
by

u(t, x) = Ẽ [u0(B
x(t)) exp{Ψt,x}] ,

where {Bx(t)}t≥0 is a one-dimensional Brownian motion starting at x, and for fixed (t, x) ∈
[0, T ]× R, the random variable Ψt,x is given by

Ψt,x :=

∫
R
Lx
y(t)dW (y)− 1

2

∫
R
|Lx

y(t)|2dy. (7.8)

Here Lx
a(t) denotes the local time of {Bx(s)}s≥0 at level a and time t. Let us call the

Feynman-Kac representation the Feynman-Kac solution uFK(t, x) of (7.1).

Combining all, as long as u0 ∈ L∞(R), we can say

u := uFK = uMW = uCS ∈ C
(
[0, T ]× R; (L2)

)
. (7.9)

In this paper, we will provide an alternative proof for the equivalence (7.9) using a more
direct approach.

The main motivation for the current article is as follows: As we stated above, the equation
(7.1) may have three possible representations for the unique mild solution u, namely (I)
Feynman-Kac solution uFK, (II) multiple Wiener-Itô integral solution uMW, and (III) chaos
solution uCS. Unfortunately, there is no enough discussion on Hölder regularity of the mild
solution. In particular,
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(I) There is no Hölder regularity result for uFK in the existing literature.

(II) For uMW, [83, Theorem 4.1] proves that uMW ∈ C1/2−ε,1/2−ε([0, T ],R) for any small
ε > 0 if u0 ∈ C1

b (R) ∩ L2(R). Here, C1
b (R) (for the definition of this space see the

next section) denotes the space of all bounded differentiable functions on R with
bounded continuous derivatives.

(III) On the one hand, no one discusses the regularity of uCS on the whole line. On the
other hand, the paper [87] discuss the same equation as (7.1), but on a bounded
domain, say [0, π]; the authors show that there exists a unique mild solution (using
chaos expansion) uCSb ∈ C([0, T ];L2([0, π]); (L2)) if u0 ∈ L2([0, π]), and moreover
uCSb ∈ C3/4−ε,3/2−ε([0, T ]× [0, π]) for any small ε > 0 if u0 ∈ C3/2([0, π]).

Since Hölder continuity is a local property, it is natural to expect that uCS ∈ C3/4−ε,3/2−ε([0, T ]×
R) for any small ε > 0 (under a suitable initial condition on u0) like the bounded case uCSb .
Furthermore, it is impossible that the other representations uFK and uMW have a different
regularity from the one of uCS (by uniqueness). In this sense, we would say that the existing
Hölder regularity results of the mild solution on R should be improved, and in this paper,
we will suggest an idea of how to get the desired result. We emphasize that the regularity
almost 3/4 in time and almost 3/2 in space is optimal in the classical PDE sense, since Ẇ
is understood to have regularity −1/2−ε for any small ε > 0 (c.f. [95, Lemma 1.1]).

The main aim of this chapter is to find the optimal spatial regularity of the unique mild
solution u. The first task is to find ∂xu and check if it is well-defined. One could formally
compute ∂xu from uCS using the same argument as in [87], but we will focus on the
Feynman-Kac representation and compute the spatial derivative of u using uFK instead.
This approach allows us to obtain a Feynman-Kac-type closed formula for ∂xu. We remark
that we can also derive the chaos decomposition of ∂xu using the Taylor-Strook formula,
and it is exactly the same as the one obtained after formally differentiating uCS with respect
to x directly. With this in hand, we can achieve the optimal Hölder regularity of ∂xu that
is almost 1/4 in time and almost 1/2 in space.

7.1.1 Hölder spaces and classical Hölder regularity results
In this subsection, we first give a definition of Hölder spaces on T ⊆ R. For 0 < γ < 1, we
let

]f [γ := sup
z1 ̸=z2∈T

|f(z1)− f(z2)|
|z1 − z2|γ

.

We say that f is Hölder continuous with Hölder exponent γ (or Hölder γ continuous) on
T if

sup
z∈T

|f(z)|+]f [γ< ∞.

The collection of Hölder γ continuous functions on T is denoted by Cγ (T ) with the
norm

]]f [[γ := sup
z∈T

|f(z)|+]f [γ .
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For k ∈ N, we say that f is a k times continuously differentiable function on T if the m-th
derivative of f , denoted by ∂mf , exists and is continuous for all m ≤ k. The collection of
k times continuously differentiable functions on T such that ∂kf ∈ Cγ(T ) with 0 < γ < 1,
is denoted by Ck+γ(G) with the norm

]]f [[k+γ :=
∑

1≤m≤k

sup
z∈T

|∂mf(z)|+]∂kf [γ< ∞.

In a similar manner, we can define the Hölder spaces on [0, T ] × R for T > 0 as follows.
For 0 < γ1, γ2 < 1, we define

]f [γ1,γ2 := sup
(t,x) ̸=(s,x)∈[0,T ]×R

|f(t, x)− f(s, x)|
|t− s|γ1

+ sup
(t,x)̸=(t,y)∈[0,T ]×R

|f(t, x)− f(t, y)|
|x− y|γ2

.

Then, f is said to be Hölder (γ1, γ2) continuous on [0, T ]× R if

sup
(t,x)∈[0,T ]×R

|f(t, x)|+]f [γ1,γ2< ∞,

and the collection of Hölder (γ1, γ2) continuous functions on [0, T ] × R is denoted by
Cγ1,γ2 ([0, T ]× R) with the norm

]]f [[γ1,γ2 := sup
(t,x)∈[0,T ]×R

|f(t, x)|+]f [γ1,γ2 .

Let k1, k2 ∈ N and 0 < γ1, γ2 < 1. The Hölder space, denoted by Ck1+γ1,k2+γ2([0, T ]×R), is
defined by the collection of all functions on ([0, T ]×R) such that f is k1 times continuously
differentiable in t and k2 times continuously differentiable in x and the norm

]]f [[k1+γ1,k2+γ2 :=
∑

0≤i≤k1, 0≤j≤k2

sup
(t,x)∈[0,T ]×R

∣∣∂i
t∂

j
xf(t, x)

∣∣+ ]∂k1
t ∂k2

x f
[
γ1,γ2

< ∞.

Here, ∂t :=
∂

∂t

(
∂x :=

∂

∂x

)
represents the differentiation operator with respect to t (resp.

x).

7.2 Basic regularity of u
We again assume that u0 ∈ L∞(R) so that u = uFK = uMW = uCS and we will denote
∥ • ∥∞ := ∥ • ∥L∞(R) In this section, we will provide a few basic regularity of u using the
Feynman-Kac representation.

Definition 143. [96] For any λ ∈ R, let Gλ be the closure of (L2) with respect to the
norm

∥∥Γ(eλI) •∥∥
2
, where I stands for the identity operator. More explicitly,

Gλ :=

{
F =

∞∑
n=0

In(fn) ∈ (L2) :
∞∑
n=0

n!e2λn∥fn∥2L2(Rn) < ∞
}
,
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and now we set

G :=
⋂
λ∈R

Gλ.

In particular, it is not hard to see the following inclusions:

(S) ⊂ G ⊂ (L2)

We note that if F ∈ (L2) can be written as
∑
α∈J

FαHα, then one can show that F ∈ Gλ

if
∞∑
n=0

e2λn
∑
α∈Jn

|Fα|2 < ∞.

Theorem 144. For every (t, x) ∈ [0, T ]× R,

u(t, x) ∈ G.

Proof. We have for ϕ ∈ S (R),

S(u(t, x))(ϕ) := E [u(t, x)E(ϕ)] = EẼ [u0(B
x(t))E(Lx(t))E(ϕ)]

= EB

[
u0(B

x(t)) exp

{∫
R
Lx
y(t)ϕ(y)dy

}]
, (7.10)

where the last equality comes from Fubini Lemma and [33, Theorem 5.13].

Let Pm : S ′(R) → S (R) be the orthogonal projection of S ′(R) on span{e1, . . . , em},
m ≥ 1. Then for η ∈ S ′

C(R) := S ′(R)⊕ iS ′(R) and λ ∈ R, we have

S(u(t, x))(λPmη) = EB

[
u0(B

x(t)) exp

{∫
R
λPmη(y)Lx

y(t)dy

}]
.

Using the fact that for ϕ, η ∈ S ′
C(R) it holds that ⟨η, Pmϕ⟩ = ⟨ϕ, Pmη⟩, we can write

S(u(t, x))(λPmη) = EB

[
u0(B

x(t)) exp

{
λ

∫
R
η(y)(PmLx(t))(y)dy

}]
and

|S(u(t, x))(λPmη)|2 =
∣∣∣∣EB

[
u0(B

x(t)) exp

{
λ

∫
R
(η1(y) + iη2(y))(PmLx(t))(y)dy

}]∣∣∣∣2 .
By Jensen’s inequality, we have

|S(u(t, x))(λPmη)|2 ≤ ∥u0∥2∞EB

[∣∣∣∣exp{λ ∫
R
(η1(y) + iη2(y))(PmLx(t))(y)dy

}∣∣∣∣2
]
.
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Since |z1 · z2| = |z1| · |z2| for any z1, z2 ∈ C,

|S(u(t, x))(λPmη)|2

≤ ∥u0∥2∞EB

[∣∣∣∣exp{λ ∫
R
η1(y)(PmLx(t))(y)dy

}∣∣∣∣2 ∣∣∣∣exp{iλ ∫
R
η2(y)(PmLx(t))(y)dy

}∣∣∣∣2
]

= ∥u0∥2∞Ẽ
[
exp

{
2λ (η1 , PmLx(t))L2(R)

}]
.

Thus,∫
S ′

C(R)
|S(u(t, x))(λPmη)|2ν(dη) ≤ ∥u0∥2∞EB

[∫
S ′

C(R)
exp

{
2λ (η1 , PmLx(t))L2(R)

}
ν(dη)

]
,

where the measure ν is given by the product measure µ 1
2
⊗ µ 1

2
, where µ 1

2
is the measure

on (S ′(R),B) with the characteristic function given by:∫
S ′(R)

ei⟨ω,φ⟩dµ 1
2
(ω) = e

− 1
4
∥φ∥2

L2(R) , φ ∈ S (R).

It is clear that for any φ ∈ S (R), µ 1
2
◦
〈
•, φ

∥φ∥L2(R)

〉−1

is a centered Gaussian measure

with variance 1/2 as in [38, Lemma 2.1.2]. Therefore,∫
S ′

C(R)
|S(u(t, x))(λPmη)|2ν(dη) ≤ ∥u0∥2∞Ẽ

[
1√
π

∫
R
e
2λy∥PmLx(t)∥L2(R)e−y2dy

]
= ∥u0∥2∞Ẽ

[
e
λ2∥PmLx(t)∥2

L2(R)
]
.

Finally, we obtain

lim
m→∞

∫
S ′

C(R)
|S(u(t, x))(λPmη)|2ν(dη) ≤ ∥u0∥2∞Ẽ

[
eλ

2
∫
R |Lx

y(t)|2dy
]
< ∞, ∀λ ∈ R,

which implies by [97, Corollary 5.1], u(t, x) belongs to G.

Next, we state the basic Hölder regularity of u both in time and space.

Theorem 145. Let 0 < ε < 1/2 be arbitrary and C be a constant.

(i) Assume that u0 ≡ C. Then,

u ∈ C3/4−ε,1/2−ε([0, T ]× R).

(ii) Assume that u0 ̸≡ C and u0 ∈ L∞(R) is (globally) Lipschitz continuous on R. Then,

u ∈ C1/2−ε,1/2−ε([0, T ]× R).
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Proof. Let ~ • ~p :=
(
EẼ| • |p

)1/p
be the norm on the Banach space Lp(µ⊗ P̃) for p ≥ 1.

From the calculations we’ve presented in the last chapter, we have

sup
(t,x)∈[0,T ]×R

~ exp {Ψt,x}~p < ∞. (7.11)

Also, (7.8) conditional on B, becomes

Ψt,x ∼ N
(
−1

2

∫
R
|La(t)|2da,

∫
R
|La(t)|2da

)
, (7.12)

where N
(
µ, σ2

)
denotes the Gaussian random variable with mean µ and variance σ2.

(i) Let u0 be a constant. Then, using the fact |ex − ey| ≤ (ex + ey)|x− y| for all x, y ∈ R,
Cauchy-Schwarz inequality, Minkowski inequality, (7.11), and (7.12), we can obtain for
p ≥ 2.

E [|u(t, x)− u(s, y)|p] ≤ cp

{
ẼE
[
|Ψt,x −Ψs,y|2

]1/2}p

= cp~Ψt,x −Ψs,y~
p
2,

for some cp > 0. Also, the triangular inequality implies

E [|u(t, x)− u(s, y)|p] ≤ cp

{
~Ψt,x −Ψt,y~2 + ~Ψt,y −Ψs,y~2

}p

=: cp

(
A

1/2
1 +A

1/2
2

)p
.

Let us now work with

A1 = ~Ψt,x −Ψt,y~2
2 = ẼE

[
Ψ2

t,x − 2Ψt,xΨt,y +Ψ2
t,y

]
.

By (7.12), we have

A1 = Ẽ

[
2

∫
R
|La(t)|2da+

1

2

(∫
R
|La(t)|2da

)2

− 2E[Ψt,xΨt,y]

]
.

Recall the Dirac-delta function δx(y) = lim
ε→0

(πε)−1/2e−|x−y|2/ε, x, y ∈ R. Since

ẼE [Ψt,xΨt,y] = Ẽ

[∫ t

0

∫ t

0
δ0(Bu −B(r)− (x− y))dudr +

1

4

(∫
R
|La(t)|2da

)2
]
,

we get

A1 = Ẽ
[
2

∫
R
|La(t)|2da− 2

∫ t

0

∫ t

0
δ0(Bu −B(r)− (x− y))dudr

]
.

The next step is done rigorously (See [15] for instance) by the translation invariant property
of the Lebesgue measure:

A1 = Ẽ
[∫

R
|La−x(t)|2da− 2

∫ t

0

∫ t

0
δ0(Bu −B(r)− (x− y))dudr +

∫
R
|La−y(t)|2da

]
,
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and this yields, by [15, Proposition 9.2],

A1 = Ẽ
[∫

R
|La−x(t)− La−y(t)|2 da

]
= 4t|x− y|+O(|x− y|2),

which implies u(t, •) is almost Hölder 1/2 continuous uniformly for all t ∈ [0, T ].

On the other hand, let us compute, for 0 ≤ s ≤ t ≤ T ,

A2 = ẼE
[
Ψ2

t,y − 2Ψt,yΨs,y +Ψ2
s,y

]
= Ẽ

[ ∫
R
|La(t)|2da+

1

4

(∫
R
|La(t)|2da

)2

+

∫
R
|La(s)|2da+

1

4

(∫
R
|La(s)|2da

)2

− 2E [Ψt,yΨs,y]

]
.

Since

ẼE [Ψt,yΨs,y] = Ẽ
[∫ t

0

∫ s

0
δ0(Bu −B(r))dudr +

1

4

(∫
R
|La(t)|2da

)(∫
R
|La(s)|2da

)]
,

we have

A2 = Ẽ
[∫

R
|La(t)|2da− 2

∫ t

0

∫ s

0
δ0(B(r)−B(z))drdz +

∫
R
|La(s)|2da

]
+

1

4
Ẽ

[(∫
R
|La(t)|2da

)2

− 2

(∫
R
|La(t)|2da

)(∫
R
|La(s)|2da

)
+

(∫
R
|La(s)|2da

)2
]

= Ẽ
[∫

R
|La(t)|2da− 2

∫ t

0

∫ s

0
δ0(B(r)−B(z))drdz +

∫
R
|La(s)|2da

]
+

1

4
Ẽ

[(∫
R

(
|La(t)|2 − |La(s)|2

)
da

)2
]
.

We note that

Ẽ
[∫

R
|La(t)|2da

]
= Ẽ

[∫ t

0

∫ t

0
δ0(B(r)−B(z))drdz

]
,

which implies

A2 = Ẽ
[∫ t

0

∫ t

0
δ0(B(r)−B(z))drdz − 2

∫ t

0

∫ s

0
δ0(B(r)−B(z))drdz +

∫ s

0

∫ s

0
δ0(B(r)−B(z))drdz

]
+

1

4
Ẽ

[(∫ t

0

∫ t

0
δ0(B(r)−B(z))drdz −

∫ s

0

∫ s

0
δ0(B(r)−B(z))drdz

)2
]

= Ẽ
[∫ t

s

∫ t

s
δ0(B(r)−B(z))drdz

]
+

1

4
Ẽ

[(∫ t

0

∫ t

0
δ0(B(r)−B(z))drdz −

∫ s

0

∫ s

0
δ0(B(r)−B(z))drdz

)2
]

=: A3 +A4.
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We can easily compute A3:

A3 =

∫ t

s

∫ t

s

(2π|r − z|)−1/2drdz = C(t− s)3/2 for some C > 0 independent of x.

For A4, we have

4A4 =

∫ t

s

∫ t

s

∫ t

s

∫ t

s

Ẽ [δ0(B(z)−B(r))δ0(B(q)−B(p))] dpdqdrdz

symmetry
= 4!

∫ t

s

∫ z

s

∫ r

s

∫ q

s

Ẽ [δ0(B(z)−B(r))] Ẽ [δ0(B(q)−B(p))] dpdqdrdz

= 4!

∫ t

s

∫ z

s

∫ r

s

∫ q

s

1√
2π(z − r)

1√
2π(q − p)

dpdqdrdz

≤ 4!

∫ t

s

∫ z

s

1√
2π(z − r)

(∫ t

s

∫ q

s

1√
2π(q − p)

)
dpdqdrdz

= C(t− s)3 for some C > 0 independent of x.

Combining all together, we obtain

A2 ≤ C|t− s|3/2,

which implies u(•, x) is almost Hölder 3/4 continuous uniformly for all x ∈ R.

(ii) If u0 is not a constant function on R, then we have

E [|u(t, x)− u(s, y)|p] = E
[∣∣∣Ẽ (u0(x+B(t)) exp{Ψt,x})− Ẽ (u0 (y +B(s)) exp(Ψs,y))

∣∣∣p]
= E

[∣∣∣Ẽ ((u0(x+B(t))− u0(y +B(s))) exp{Ψt,x})

+ Ẽ (u0(y +B(s)) (exp{Ψt,x} − exp(Ψs,y)))
∣∣∣p].

Since |f + g|p ≤ 2p−1 (|f |p + |g|p) for p ≥ 1,

E [|u(t, x)− u(s, y)|p] ≤ 2p−1

(
E
[∣∣∣Ẽ ((u0 (x+B(t))− u0 (y +B(s))) exp{Ψt,x})

∣∣∣p]
+ E

[∣∣∣Ẽ (u0 (y +B(s)) (exp{Ψt,x} − exp(Ψs,y)))
∣∣∣p] )

=: 2p−1
(
Ā1 + Ā2

)
.

For A1, by Cauchy-Schwarz inequality,

Ā1 ≤
(
Ẽ
[
|u0(x+B(t))− u0(y +B(s))|2

])p/2
· E
(
Ẽ [exp{2Ψt,x}]

)p/2
.
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Since u0 is Lipschitz continuous on R, we have

Ā1 ≤
(
|t− s|+ (x− y)2

)p/2 · E(Ẽ [exp{2Ψt,x}]
)p/2

≤
(
|t− s|1/2 + |x− y|

)p · E(Ẽ [exp{2Ψt,x}]
)p/2

.

By Minkowski inequality, Hölder inequality for p ≥ 2, and (7.11), we also have

Ā1 ≤
(
|t− s|1/2 + |x− y|

)p · EẼ [exp{pΨt,x}] < ∞.

For Ā2, since u0 ∈ L∞(R), we can apply the same argument in (i). As a result, we
can say that u is Hölder continuous almost 1/2 both in time and space.

As we argued in the introduction, one expects that we can still improve the spatial regu-
larity of u. We will derive our desired result in Section 7.3.

7.3 The spatial derivative of u
As we anticipated in the introduction, we expect that u(t, •) ∈ C3/2−ε(R) for any small
ε > 0. To verify this assertion, we first compute the spatial derivative of u using the
Feynman-Kac representation and then find its chaos expansion to see if it is well-defined
and to get the optimal spatial regularity of u.

Let us start with a useful Lemma. The following result will serve as a key idea for finding
∂xu(t, x).

Lemma 146. For fixed (t, x) the map ω̃ ∋ Ω̃ 7→ Φ̃t,x(ω̃) ∈ (S)∗ given by

Φ̃t,x(ω̃) = E(Lx(t; ω̃)) ⋄
[
u′0(B

x(t)(ω̃)) + u0(B
x(t))I (∂xL

x(t; ω̃))
]
,

is Bochner integrable in (S)∗. Here, ∂xLx(t; ω̃) ∈ S ′(R), ω̃ ∈ Ω̃ denotes the distributional
derivative of Lx(t, ω̃).

Proof. This immediately follows from [32, Theorem 4.51] and the facts

1. S
(
Φ̃t,x(•)

)
(ϕ) =

(∫ t
0 ϕ(B

x(s)(•))ds
)
×
[
u′0(B

x(t)(•)) + u0(B
x(t))

∫ t
0 ϕ

′(Bx(s)(•))ds
]

is measurable for any ϕ ∈ S (R).

2.
∣∣∣S (Φ̃t,x(ω̃)

)
(ϕ)
∣∣∣ ≤ (∥u′0∥∞ + t∥u0∥∞∥ϕ′∥∞) et∥ϕ∥∞ ≤ e∥u

′
0∥∞+t(∥u0∥∞∥ϕ′∥∞+∥ϕ∥∞) ≤

K1e
K2|ϕ|2p for some p, K1, K2 ≥ 0. The last inequality comes from the equivalence

between standard seminorms in the Schwartz space and the system of p-seminorms.
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Recall the Feynman-Kac representation of u:

u(t, x) = Ẽ [u0(B
x(t)) exp{Ψt,x}] = Ẽ [u0(B

x(t))E(Lx(t))]

and recall C1
b (R) is the space of all bounded differentiable functions on R with bounded

continuous derivative.

Theorem 147. Assume that u0 ∈ C1
b (R). Then, for each t > 0, u(t, •) is weakly continu-

ously differentiable in (S)∗, and

∂xu(t, x) = Ẽ
[
E(Lx(t)) ⋄

{
u′0(B

x(t)) + u0(B
x(t))I (∂xL

x(t))

}]
,

where ∂xL
x(t; ω̃) ∈ S ′(R), ω̃ ∈ Ω̃ is the distributional derivative of Lx(t; ω̃), and Ẽ must

be understood as a Bochner integral in (S)∗.

Proof. To find ∂xu(t, x), we start by computing the S-transform of u. From (7.10), for
ϕ ∈ S (R), we have

S (u(t, x)) (ϕ) = EB

[
u0(B

x(t)) exp

{∫
R
Lx
y(t)ϕ(y)dy

}]
= Ẽ

[
u0(B

x(t)) exp

{∫ t

0
ϕ(Bx(s))ds

}]
,

(7.13)

where the last equality follows by the occupation time formula.

It is clear that x ∈ R 7→ S(u(t, x))(ϕ) is continuous for all ϕ ∈ S (R), and |S (u(t, x)) (ϕ)| ≤
K1e

K2|ϕ|2p for some K1, K2, p > 0. Then, by [98, Lemma A.1.2], we can see that u(t, x) =
S−1(S(u(t, x))) is weakly continuous in (S)∗ (with respect to the x variable).

In order to prove that u(t, •) is weakly continuously differentiable in (S)∗ we must first
take the spatial derivative on both sides of (7.13). Using the fact ϕ, ϕ′ ∈ S (R) ⊂ L∞(R),
by dominated convergence theorem (DCT), we obtain

∂xS(u(t, x))(ϕ) = Ẽ
[
u′0(B

x(t)) exp

{∫ t

0
ϕ(Bx(s))ds

}
+ u0(B

x(t)) exp

{∫ t

0
ϕ(Bx(s))ds

}
×
∫ t

0
ϕ′(Bx(s))ds

]
,

and it is clear that the map x 7→ ∂xS(u(t, x))(ϕ) is continuous for all ϕ ∈ S (R).

We also need to show ∂xS (u(t, x)) is a U-functional (see Definition 80). By direct compu-
tation, we can verify that, as in the proof of Lemma 146,

|∂xS (u(t, x)) (ϕ)| ≤ K1e
K2|ϕ|2p ,

where K1,K2, p are positive real constants. Also, it is clear that the map z 7→ ∂xS(u)(zϕ+η)
is entire for any ϕ, η ∈ S (R) and z ∈ C. Hence, ∂xS (u(t, x)) is indeed a U-functional,
and thus there exists a unique Φ ∈ (S)∗ such that ∂xS(u(t, x)) = S(Φ); then from [98,
Lemma A.3], we can conclude that u(t, •) is weakly continuously differentiable in the Hida
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distribution space (S)∗. Following the aforementioned reference, the weak spatial derivative
∂xu of u is defined as the unique element in (S)∗ such that

S(∂xu(t, x))(ϕ) = ∂xS(u(t, x))(ϕ).

Using Lemma 146, we can see that ∂xS (u(t, x)) = Ẽ
(
S
(
Φ̃t,x

))
, and furthermore we have

that Ẽ
(
S
(
Φ̃t,x

))
= S

(
Ẽ
(
Φ̃t,x

))
since the Bochner integral Ẽ and the S-transform can

be interchanged (e.g. [32, Theorem 4.51]). Finally, by definition 82, we can conclude

∂xu(t, x) = Ẽ
[
E(Lx(t)) ⋄

{
u′0(B

x(t)) + u0(B
x(t))I (∂xL

x(t))

}]
,

where Ẽ must be understood as a Bochner integral in (S)∗.

From this result, we can only say that ∂xu(t, x) ∈ (S)∗ for each (t, x) ∈ [0, T ] × R. But,
in the following subsection, we will show that ∂xu(t, x) ∈ G using its chaos decomposition,
and furthermore, we will investigate its Hölder regularity.

7.3.1 Chaos decomposition for ∂xu

Let us find the chaos expansion of

∂xu(t, x) = Ẽ
[
E(Lx(t)) ⋄

{
I0(u

′
0(B

x(t))) + u0(B
x(t))I (∂xL

x(t))

}]
,

and notice that as usual the Wiener integral of order 0 equals the identity operator, but
nonetheless we explicitly write I0 for notational convenience.

By Lemma 59, we have

E(Lx(t)) =
∞∑
n=0

1

n!
In
(
Lx(t)⊗n

)
, convergent in (L2),

and by the definition of Wick product, we see that

E(Lx(t)) ⋄
{
I0(u

′
0(B

x(t))) + u0(B
x(t))I (∂xL

x(t))
}
=

∞∑
n=0

In(hn(t, x)), convergent in (S)∗,

where h0(t, x) = u′0 (B
x(t)), and

S ′(Rn) ∋ hn(t, x; •) =u0(B
x(t)) Sym

[(
Lx(t)⊗(n−1)

(n− 1)!

)
⊗ ∂xL

x(t)

]
(•)

+ u′0(B
x(t))

(
Lx(t)⊗n

n!

)
(•), n ≥ 1.
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It is known that (e.g. [33, Chapter 13.3]) if Ψ(u) =
∑∞

n=0 In(Fn(u)) is Bochner integrable
on the measure space (M,σ(M),m), then for any n ∈ N0, Fn is Bochner integrable on
(M,σ(M),m), and it holds that∫

M
Ψ(u)m(du) =

∞∑
n=0

In

(∫
M

Fn(u)m(du)

)
.

In our case, letting (M,σ(M),m) =
(
Ω̃, F̃ , P̃

)
, this would imply that

∂xu(t, x) =
∞∑
n=0

In

(
Ẽ [hn(t, x)]

)
,

where Ẽ should be understood as a Bochner integral in S ′(Rn).

We can easily check that the first term of ∂xu(t, x) is Ẽ [u′0 (B
x(t))] = ∂xu(0)(t, x). Let’s

check the general n-th terms of ∂xu(t, x) for n ≥ 1. Since hn(t, x; •) is a symmetric element
of S ′(Rn), we can expand it with respect to {eα : α ∈ Jn} as

hn(t, x; •) =
∑
α∈Jn

⟨hn(t, x), eα⟩ eα(•), convergence in S ′(Rn), (7.14)

where ⟨•, •⟩ is the bilinear product between S ′(Rn) and S (Rn), and

eα(y1, ..., yn) =
1√
n!α!

∑
σ∈Pn

ekσ(1)
(y1)× · · · × ekσ(n)

(yn).

It is clear by direct calculations that ⟨Sym f,Sym g⟩ = ⟨f,Sym2 g⟩ = ⟨f,Sym g⟩. Then, we
have

⟨hn(t, x), eα⟩ =
u0(B

x(t))√
n!α!(n− 1)!

〈[
Lx(t)⊗(n−1) ⊗ ∂xL

x(t)
]
,
∑
σ∈Pn

[
ekσ(1)

⊗ · · ·⊗ekσ(n)

] 〉

+
u′0(B

x(t))√
n!α!n!

∫
Rn

Lx(t)⊗(n)(y1, ..., yn)×
∑
σ∈Pn

[
ekσ(1)

⊗ · · ·⊗ekσ(n)

]
(y1, ..., yn)dy

=
u0(B

x(t))√
n!α!(n− 1)!

∑
σ∈Pn

∫
[0,t]n

ekσ(1)
⊗ · · ·⊗e′kσ(n)

(Bx(s1), . . . , B
x(sn)) ds

+
u′0(B

x(t))√
n!α!n!

∑
σ∈Pn

∫
[0,t]n

ekσ(1)
⊗ · · ·⊗ekσ(n)

(Bx(s1), . . . , B
x(sn)) ds, (7.15)

where in the last expression we used the occupation time formula and the fact that −∂xL
x

equals distributional derivative of the Brownian local time.

Also, taking Ẽ on both sides of (7.14), we have

Ẽ[hn(t, x; •)] = Ẽ

[∑
α∈Jn

⟨hn(t, x), eα⟩ eα(•)

]
. (7.16)

At this point, we need the following Lemma to compute (7.16).
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Lemma 148. [42, Lemma 11.45] Let f : M → X be Bochner integrable on (M,σ(M),m)
in X and let Y be a Banach space. If T : X → Y is a bounded operator, then Tf : M → Y
is Bochner integrable on (M,σ(M),m) in Y and it holds that∫

M
Tfdm = T

(∫
M

fdm

)
.

In our case, we set S ′sym(Rn) := the symmetric part of S ′(Rn) and T : S ′(Rn) →
S ′sym(Rn) equals the orthogonal projection on S ′sym(Rn), which is clearly a bounded
linear operator. Even though if it is well-known that the space of tempered distributions
is not a Banach space, we can think of S ′(R) as the inductive limit of a family of Hilbert
spaces (e.g [33, Section 3.2] or [99]), and an analogous reasoning extends to the multi-
dimensional case; thus the lemma above holds true by letting Y be some of those Hilbert
spaces.

Then, (7.16) becomes

Ẽ[hn(t, x; •)] = Ẽ

[∑
α∈Jn

⟨hn(t, x), eα⟩eα(•)

]
=
∑
α∈Jn

〈
Ẽ [hn(t, x)] , eα

〉
eα(•).

It is known that if a function is Bochner integrable, then its Pettis and Bochner integrals
coincide (see for instance the discussion on page 80 of [43]). Therefore, by definition of the
Pettis integral, we have 〈

Ẽ [hn(t, x)] , eα

〉
= Ẽ [⟨hn(t, x), eα⟩] .

Hence, we have

Ẽ[hn(t, x; •)] =
∑
α∈Jn

Ẽ [⟨hn(t, x), eα⟩] eα(•).

Next we compute Ẽ [⟨hn(t, x), eα⟩], and so far from (7.15), we have

Ẽ [⟨hn(t, x), eα⟩] = Ẽ
[

u0(B
x(t))√

n!α!(n− 1)!

∫
[0,t]n

∑
σ∈Pn

ekσ(1)
⊗ · · ·⊗e′kσ(n)

(Bx(s1), . . . , B
x(sn)) ds

+
u′0(B

x(t))√
n!α!n!

∑
σ∈Pn

∫
[0,t]n

ekσ(1)
⊗ · · ·⊗ekσ(n)

(Bx(s1), . . . , B
x(sn)) ds

]
.

(7.17)

To simplify the expression in (7.17), we first observe

∂x [ek1(B
x(s1)) · · · ekn(Bx(sn))] =

[
e′k1(B

x(s1))× · · · × ekn(B
x(sn))

]
· · ·+

[
ek1(B

x(s1))× · · · × e′kn(B
x(sn))

]
.
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Since the Lebesgue measure is invariant under rotations, we see that for any f :
[0, t]n → R, it holds that∫

[0,t]n
f(s1, . . . , sn) ds =

∫
[0,t]n

Sym f(s1, . . . , sn) ds.

Thus, for any permutation σ of {1, . . . , n}, we have∫
[0,t]n

u0(B
x(t))

(n− 1)!

∑
σ∈Pn

ekσ(1)
⊗ · · ·⊗e′kσ(n)

(Bx(s1), . . . , B
x(sn)) ds

=

∫
[0,t]n

u0(B
x(t))∂x [ek1(B

x(s1))× · · · × ekn(B
x(sn))] ds,

and ∫
[0,t]n

u′
0(B

x(t))

n!

∑
σ∈Pn

ekσ(1)
⊗ · · ·⊗ekσ(n)

(Bx(s1), . . . , B
x(sn)) ds

=

∫
[0,t]n

u′
0(B

x(t))ek1(B
x(s1))× · · · × ekn(B

x(sn)) ds,

which implies

Ẽ [⟨hn(t, x), eα⟩] =
1√
n!α!

Ẽ

[∫
Tn
[0,t]

∂x [u0(B
x(t))ek1(B

x(s1))× · · · × ekn(B
x(sn))] ds

]
,

(7.18)

where again Tn
[0,t] denotes the simplex {0 ≤ s1 ≤ · · · ≤ sn ≤ t}.

Furthermore, we notice that∫
[0,t]n

[ek1(B
x(s1))× · · · × ekn(B

x(sn))] ds =

∫
[0,t]n

Sym [ek1(B
x(s1))× · · · × ekn(B

x(sn))] ds

=

∫
[0,t]n

1

n!

∑
σ∈Pp

[
ek1(B

x
sσ(1)

)× · · · × ekp(B
x
sσ(n)

)
]
ds =

√
α!

n!

∫
[0,t]n

∂xeα(B
x(s1), . . . , B

x(sn)) ds

=
√
α!n!

∫
Tn
[0,t]

∂xeα(B
x(s1), . . . , B

x(sn)) ds,

and similarly,∫
[0,t]n

∂x [ek1(B
x(s1))× · · · × ekn(B

x(sn))] ds =
√
α!n!

∫
Tn
[0,t]

∂xeα(B
x(s1), . . . , B

x(sn)) ds.
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Therefore, (7.18) becomes

Ẽ [⟨hn(t, x), eα⟩] = Ẽ

[∫
Tn
[0,t]

∂x [u0(B
x(t))eα(B

x(s1), . . . , B
x(sn))] ds

]

=

∫
Tn
[0,t]

Ẽ [∂x [u0(B
x(t))eα(B

x(s1), . . . , B
x(sn))]] ds, (7.19)

where the second equality holds true by Fubini lemma.

By conditioning iteratively on the filtration of B at the sites sn, sn−1, . . . , s1, we can
rewrite (7.19) as

Ẽ [⟨hn(t, x), eα⟩] =
∫
Tn
[0,t]

∫
Rn

∂xeα(y1 + x, y2, . . . , yn)p(sn − sn−1, yn − yn−1)

· · · × p(s1, y1)u(0)(t− sn, yn)dy ds

=

∫
Tn
[0,t]

∫
Rp

∂y1eα(y1 + x, y2, . . . , yn)p(sn − sn−1, yn − yn−1)

· · · × p(s1, y1)u(0)(t− sn, yn)dy ds

= −
∫
Tn
[0,t]

∫
Rn

eα(y1, y2, . . . , yn)p(sn − sn−1, yn − yn−1)

· · · × ∂y1p(s1, y1 − x)u(0)(t− sn, yn)dy ds. (7.20)

Noticing that −∂yp(s, y − x) = ∂xp(s, x − y) and letting ri = t − sn+1−i for i ∈
{1, . . . , n}, the equation (7.20) becomes∫
Tn
[0,t]

∫
Rn

eα(y1, y2, . . . , yn)p(r2 − r1, yn − yn−1)× · · · × ∂xp(t− rn, x− y1)u(0)(r1, yn)dy dr,

which yields, after relabeling the y’s,

Ẽ [⟨hn(t, x), eα⟩] =
∫
Tn
[0,t]

∫
Rn

∂xp(t− rn, x− yn)p(rn − rn−1, yn − yn−1)× · · · × p(r2 − r1, y2 − y1)

· · · × eα(y1, y2, . . . , yn)u(0)(r1, y1)dy dr.

Using the definition of eα, it equals

1√
α!

1√
n!

∑
σ∈Pn

∫
Tn
[0,t]

∫
Rn

∂xp(t− rn, x− yn)p(rn − rn−1, yn − yn−1)× · · · × p(r2 − r1, y2 − y1)

· · · × ekσ(1)
(y1)× · · · × ekσ(n)

(yn)u(0)(r1, y1)dy dr =:
1√
n!
Kα(t, x), |α| = n ≥ 1.
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Putting all together, we obtain

Ẽ [hn(t, x; •)] =
∑
α∈Jn

1√
n!
Kα(t, x)eα(•)

and

In

(
Ẽ [hn(t, x)]

)
=
∑
α∈Jn

Kα(t, x)In

(
eα√
n!

)
=
∑
α∈Jn

Kα(t, x)Hα by (??).

Finally, we have the chaos expansion of ∂xu(t, x) as follows:

∂xu(t, x) =
∞∑
n=0

In

(
Ẽ [hn(t, x)]

)
=

∞∑
n=0

∑
α∈Jn

Kα(t, x)Hα =
∑
α∈J

Kα(t, x)Hα, (7.21)

where K(0)(t, x) = ∂xu(0)(t, x), and for |α| = n ≥ 1,

Kα(t, x) =
1√
α!

∑
σ∈Pn

∫
Tn
[0,t]

∫
Rn

∂xp(t− rn, x− yn)p(rn − rn−1, yn − yn−1)× · · · × p(r2 − r1, y2 − y1)

· · · × ekσ(1)
(y1)× · · · × ekσ(n)

(yn)u(0)(r1, y1)dy dr.

Remark 149. Using the Feynman-Kac representation of u(t, x), it was possible to
compute the weak derivative of u(t, x) with respect to x in (S)∗ as follows:

∂xu(t, x) =
∑
α∈J

Kα(t, x)Hα,

where K(0)(t, x) = ∂xu(0)(t, x), and for |α| = n ≥ 1,

Kα(t, x) =
1√
α!

∑
σ∈Pn

∫
Tn
[0,t]

∫
Rn

∂xp(t− rn, x− yn)p(rn − rn−1, yn − yn−1)× · · · × p(r2 − r1, y2 − y1)

· · · × ekσ(1)
(y1)× · · · × ekσ(n)

(yn)u(0)(r1, y1)dy dr.

In fact, the weak spatial derivative is the usual spatial derivative in (L2) sense (and
hence P almost sure sense). One can verify this assertion by (formally) computing
∂xu(t, x) using the chaos expansion of u(t, x) directly and by the uniqueness of mild
solution.

Before we show ∂xu(t, x) ∈ G for each t > 0 and x ∈ R, we first need the following
lemma:

Lemma 150. Assume that u0 ∈ C1
b (R). Then, for each α ∈ J , t > 0 and x ∈ R,

Kα(t, x) is well-defined, and moreover, for |α| ≥ 1,

lim
ε→0+

Kϵ
α(t, x) = Kα(t, x),
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where

Kϵ
α(t, x) :=

1√
α!

∑
σ∈Pn

∫
Tn
[0,t−ϵ]

∫
Rn

∂xp(t− rn, x− yn)p(rn − rn−1, yn − yn−1)× · · · × p(r2 − r1, y2 − y1)

· · · × ekσ(1)
(y1)× · · · × ekσ(n)

(yn)u(0)(r1, y1)dy dr for ϵ > 0,

with Tn
[0,t−ϵ] := {0 ≤ s1 ≤ · · · ≤ sn ≤ t− ϵ}.

Proof. We will decompose Kα(t, x) as a finite sum of well-defined terms. Without
loss of generality, we let |α| = n ≥ 1. Notice that

Kα(t, x) =
1√
α!

∑
σ∈Pn

∫
Tn
[0,t]

∫
Rn

∂xp(t− rn, x− yn)p(rn − rn−1, yn − yn−1)× · · · × p(r2 − r1, y2 − y1)

· · · × ekσ(1)
(y1)× · · · × ekσ(n)

(yn)u(0)(r1, y1)dy dr

= − 1√
α!

∑
σ∈Pn

∫
Tn
[0,t]

∫
Rn

∂ynp(t− rn, x− yn)p(rn − rn−1, yn − yn−1)× · · · × p(r2 − r1, y2 − y1)

· · · × ekσ(1)
(y1)× · · · × ekσ(n)

(yn)u(0)(r1, y1)dy dr

=
1√
α!

∑
σ∈Pn

∫
Tn
[0,t]

∫
Rn

p(t− rn, x− yn)∂yn

(
p(rn − rn−1, yn − yn−1)ekσ(n)

(yn)
)

· · · × p(r2 − r1, y2 − y1)ekσ(1)
(y1)× · · · × ekσ(n−1)

(yn−1)u(0)(r1, y1)dy dr

=
1√
α!

∑
σ∈Pn

∫
Tn
[0,t]

∫
Rn

p(t− rn, x− yn)∂ynp(rn − rn−1, yn − yn−1)ekσ(n)
(yn)

· · · × p(r2 − r1, y2 − y1)ekσ(1)
(y1)× · · · × ekσ(n−1)

(yn−1)u(0)(r1, y1)dy dr

+
1√
α!

∑
σ∈Pn

∫
Tn
[0,t]

∫
Rn

p(t− rn, x− yn)p(rn − rn−1, yn − yn−1)e
′
kσ(n)

(yn)

· · · × p(r2 − r1, y2 − y1)ekσ(1)
(y1)× · · · × ekσ(n−1)

(yn−1)u(0)(r1, y1)dy dr

=: a1 + b1.

We note that b1 is well-defined since u0 ∈ L∞(R), and for a1, we do a similar step
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as above:

a1 = − 1√
α!

∑
σ∈Pn

∫
Tn
[0,t]

∫
Rn

p(t− rn, x− yn)∂yn−1p(rn − rn−1, yn − yn−1)ekσ(n)
(yn)

· · · × p(r2 − r1, y2 − y1)ekσ(1)
(y1)× · · · × ekσ(n−1)

(yn−1)u(0)(r1, y1)dy dr

=
1√
α!

∑
σ∈Pn

∫
Tn
[0,t]

∫
Rn

p(t− rn, x− yn)p(rn − rn−1, yn − yn−1)ekσ(n)
(yn)

· · · × ∂yn−1

(
p(rn−1 − rn−2, yn−1 − yn−2)ekσ(n−1)

(yn−1)
)

· · · × p(r2 − r1, y2 − y1)ekσ(1)
(y1)× · · · × ekσ(n−2)

(yn−2)u(0)(r1, y1)dy dr

=
1√
α!

∑
σ∈Pn

∫
Tn
[0,t]

∫
Rn

p(t− rn, x− yn)p(rn − rn−1, yn − yn−1)ekσ(n)
(yn)

· · · × ∂yn−1p(rn−1 − rn−2, yn−1 − yn−2)ekσ(n−1)
(yn−1)

· · · × p(r2 − r1, y2 − y1)ekσ(1)
(y1)× · · · × ekσ(n−2)

(yn−2)u(0)(r1, y1)dy dr

+
1√
α!

∑
σ∈Pn

∫
Tn
[0,t]

∫
Rn

p(t− rn, x− yn)p(rn − rn−1, yn − yn−1)ekσ(n)
(yn)

· · · × p(rn−1 − rn−2, yn−1 − yn−2)e
′
kσ(n−1)

(yn−1)

· · · × p(r2 − r1, y2 − y1)ekσ(1)
(y1)× · · · × ekσ(n−2)

(yn−2)u(0)(r1, y1)dy dr

=: a2 + b2.

Again, b2 is well-defined. By iterating this process, we can get

Kα(t, x) = an−1 +
n−1∑
i=1

bi,

where
n−1∑
i=1

bi is well-defined and

an−1 =
1√
α!

∑
σ∈Pn

∫
Tn
[0,t]

∫
Rn

p(t− rn, x− yn)p(rn − rn−1, yn − yn−1)× · · · × p(r2 − r1, y2 − y1)

· · · × ekσ(1)
(y1)× · · · × ekσ(n)

(yn)∂y1u(0)(r1, y1)dy dr.

Since u(0)(r1, y1)dy =

∫
R
p(r1, y1 − y0)u0(y0)dy0, an−1 becomes

an−1 =
1√
α!

∑
σ∈Pn

∫
Tn
[0,t]

∫
Rn+1

p(t− rn, x− yn)p(rn − rn−1, yn − yn−1)× · · · × p(r2 − r1, y2 − y1)

· · · × ekσ(1)
(y1)× · · · × ekσ(n)

(yn)p(r1, y1 − y0)u
′
0(y0)dy0dy dr,

which is clearly well-defined since u′
0 ∈ L∞(R).
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Moreover, one can show that lim
ε→0+

Kϵ
α(t, x) = Kα(t, x) easily by considering the same

argument as Kα(t, x) for Kϵ
α(t, x).

Theorem 151. If u0 ∈ C1
b (R), for each t > 0 and x ∈ R,

∂xu(t, x) ∈ G.

Proof. From (7.21), we have

E|∂xu(t, x)|2 = |K(0)(t, x)|2 +
∞∑
n=1

∑
α∈Jn

|Kα(t, x)|2.

We note that K(0)(t, x) = ∂xu(0)(t, x) < ∞ for each (t, x) ∈ [0, T ] × R. For |α| =
n ≥ 1, we use Kϵ

α: For ϵ > 0, we notice that (by Fubini lemma)

Kϵ
α(t, x) =

√
n!

∫
Rn

∫
Tn
[0,t−ϵ]

∂xp(t− rn, x− yn)p(rn − rn−1, yn − yn−1)× · · · × p(r2 − r1, y2 − y1)

· · · × eα(y1, . . . , yn)u(0)(r1, y1) drdy.

Using Bessel’s inequality, we have that∑
α∈Jn

|Kϵ
α(t, x)|2 ≤ n!

∫
Rn

(∫
Tn
[0,t−ϵ]

∂xp(t− rn, x− yn)p(rn − rn−1, yn − yn−1)

· · · × p(r2 − r1, y2 − y1)u(0)(r1, y1)dr

)2

dy

≤ n!∥u0∥2∞
∫
Rn

∫
Tn
[0,t−ϵ]

∫
Tn
[0,t−ϵ]

∂xp(t− rn, x− yn)∂xp(t− sn, x− yn)p(rn − rn−1, yn − yn−1)

· · · × p(sn − sn−1, yn − yn−1) · · · p(r2 − r1, y2 − y1)p(s2 − s1, y2 − y1) drdsdy.

Again using Fubini lemma and the semigroup property of p, we can write the last
expression as

n!∥u0∥2∞(2π)−(n−1)/2

∫
Tn
[0,t−ϵ]

∫
Tn
[0,t−ϵ]

n−1∏
k=1

(sk+1 + rk+1 − sk − rk)
−1/2

· · · ×
∫
R
∂xp(t− rn, x− yn)∂xp(t− sn, x− yn)dyn drds.

Since∫
R
∂xp(t− rn, x− yn)∂xp(t− sn, x− yn)dyn = (2π)−1/2(2t− sn − rn)

−3/2,
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and (a+ b)−1/2 ≤ 2−1/2a−1/4b−1/4 for a, b > 0, we can finally see that

∑
α∈Jn

|Kϵ
α(t, x)|2 ≤ n!∥u0∥2∞(2π)−n/2

(∫
Tn
[0,t−ϵ]

(t− sn)
−3/4

n−1∏
k=1

(sk+1 − sk)
−1/4ds

)2

≤ n!∥u0∥2∞(2π)−n/2

(∫
Tn
[0,t]

(t− sn)
−3/4

n−1∏
k=1

(sk+1 − sk)
−1/4ds

)2

≤ ∥u0∥2∞Cnt3n−4n−n/2 for some C > 0,

where the last inequality follows from [87, equation (4.10)].

For each t > 0 and x ∈ R, the convergence is uniform in ϵ and Kϵ
α(t, x) → Kα(t, x)

as ϵ → 0 by Lemma 150,∑
α∈Jn

|Kα(t, x)|2 ≤ ∥u0∥2∞Cnt
3n
4
−1n−n/2 for some constant C > 0.

Since Cnt
3n
4
−1n−n/2e2λn is summable in n for any λ ∈ R, the conclusion follows from

Definition 143.

Remark 152. We have the following Feynman-Kac type formula for the spatial
derivative of u:

∂xu(t, x) = Ẽ
[
E(Lx(t)) ⋄

{
u′
0(B

x(t)) + u0(B
x(t))I (∂xL

x(t))

}]
,

where Ẽ must be understood as a Bochner integral in (S)∗. Notice that the integrand
of Ẽ on the right-hand side is in fact a Hida distribution. However, after taking the
expectation Ẽ, which is interpreted as a Bochner integral in (S)∗, we end up with
a regular random variable in G. This means that the white noise integral (or the
Bochner integral in (S)∗) has a regularizing effect.

Theorem 153. Let 0 < ε < 1/2 be arbitrary and assume that u0 ∈ C3/2(R). Then,
for each t > 0,

∂xu(t, •) ∈ C1/2−ε(R).

Proof. Let p > 1, t > 0 and x ∈ R. By [87, Proposition 2.1], we have

(E |∂xu(t, x+ h)− ∂xu(t, x)|p)1/p =
∞∑
n=0

(p− 1)n/2

(∑
α∈Jn

|Kα(t, x+ h)− Kα(t, x)|2
)1/2

.

(7.22)

For |α| = 0, we have

K(0)(t, •) = ∂xu(0)(t, •) ∈ C1/2(R).
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For |α| = n ≥ 1, similarly to the proof of Theorem 151, we can get∑
α∈Jn

|Kϵ
α(t, x+ h)− Kϵ

α(t, x)|
2

≤ n!

∫
Rn

(∫
Tn
[0,t−ϵ]

(∂xp(t− rn, x+ h− yn)− ∂xp(t− rn, x− yn)) p(rn − rn−1, yn − yn−1)

· · · × p(r2 − r1, y2 − y1)u(0)(r1, y1)dr

)2

dy

≤ n!∥u0∥2∞(2π)−(n−1)/2

∫
Tn
[0,t−ϵ]

∫
Tn
[0,t−ϵ]

n−1∏
k=1

(sk+1 + rk+1 − sk − rk)
−1/2

· · · ×
∫
R
(∂xp(t− rn, x+ h− yn)− ∂xp(t− rn, x− yn))

· · · × (∂xp(t− sn, x+ h− yn)− ∂xp(t− sn, x− yn)) dyn drds.

We next compute∫
R
∂xp(t1, x1 − z)∂xp(t2, x1 − z)dz =

1

2πt
3/2
1 t

3/2
2

∫
R
(x1 − z)(x2 − z)e

− (x1−z)2

2t1
− (x2−z)2

2t2 dz

=
1

2πt
3/2
1 t

3/2
2

∫
R
z (z − (x1 − x2)) e

− z2

2t1
− (z−(x1−x2))

2

2t2 dz

=
e
− (x1−x2)

2

2(t1+t2)

2πt
3/2
1 t

3/2
2

∫
R
(z2 − (x1 − x2)z)e

− (t1+t2)
2t1t2

(
z− (x1−x2)t1

t1+t2

)2

dz

=
1√
2π

e
− (x1−x2)

2

2(t1+t2) (t1 + t2)
−3/2

(
1− (x1 − x2)

2

(t1 + t2)

)
.

The last equality can be verified using the mean and variance of a normal distribution
N
(

(x−y)t1
t1+t2

, t1t2
t1+t2

)
. Then, we can easily check, using the fact 1 − e−z ≤ zγ for any

z ≥ 0 and 0 < γ ≤ 1,∫
R
(∂xp(t− rn, x+ h− yn)− ∂xp(t− rn, x− yn))

· · · × (∂xp(t− sn, x+ h− yn)− ∂xp(t− sn, x− yn)) dyn

=

√
2

π
(2t− s− r)−3/2

1− e−
h2

2(2t−s−r) +
h2e−

h2

2(2t−s−r)

2t− s− r

 ≤ Ch2γ(2t− s− r)−3/2−γ.

(7.23)

At this point, we restrict 0 < γ < 1/2 so that (7.23) is integrable both in s and r
variables near t.
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This leads to∑
α∈Jn

|Kϵ
α(t, x+ h)− Kϵ

α(t, x)|
2 ≤ h2γ∥u0∥2∞Cn(γ)t

3n
4
−1− γ

2n−n/2,

with 0 < γ < 1/2 for some constant C(γ) > 0 depending only on γ.

After taking ϵ → 0, the desired result follows from (7.22) and the Kolmogorov
continuity theorem.

Remark 154. Under the same initial condition in Theorem 153, we can achieve the
optimal temporal regularity of ∂xu in a similar manner, i.e., ∂xu(•, x) ∈ C1/4−ε ([ε0, T ])
for every x ∈ R, 0 < ε0 < T , and 0 < ε < 1/4.
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Chapter 8

Upper and lower bounds for the
solution of a stochastic prey-predator
system with foraging arena scheme

Based on: Lanconelli, A., & Scorolli, R. (2020). Upper and lower bounds
for the solution of a stochastic prey-predator system with foraging arena
scheme. arXiv preprint arXiv:2009.14516.

Abstract
In this chapter we investigate some probabilistic aspects of the unique global strong
solution of a two dimensional system of stochastic differential equations describing
a preypredator model perturbed by Gaussian noise. We first establish, for any fixed
t > 0, almost sure upper and lower bounds for the components X(t) and Y (t) of the
solution vector: these explicit estimates emphasize the interplay between the various
parameters of the model and agree with the asymptotic results found in the literature.
Then, standing on the aforementioned bounds, we derive upper and lower estimates
for the joint moments and distribution function of (X(t);Y (t)). Our analysis is
based on a careful use of comparison theorems for stochastic differential equations
and exploits several peculiar features of the noise driving the equation.

8.1 Introduction
In theoretical ecology the system of equations{

dx(t)
dt

= x(t)(a1 − b1x(t))− c1h(x(t), y(t))y(t), x(0) = x;
dy(t)
dt

= y(t)(−a2 − b2y(t)) + c2h(x(t), y(t))y(t), y(0) = y,
(8.1)
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constitutes a fundamental class of models for predator-prey interaction. Here, x(t)
and y(t) represent the population densities of prey and predator at time t ≥ 0,
respectively; a1 the prey intrinsic growth rate; a2 the predator intrinsic death rate;
a1/b1 the carrying capacity of the ecosystem; b2 the predator intraspecies competi-
tion; h(x(t), y(t)) the intake rate of predator; c2/c1 the trophic efficiency. We observe
that equation (8.1) encompasses the classic Lotka-Volterra model [100][101] which
is obtained setting b1 = b2 = 0 and h(x, y) = x.
To catch the different features of specific environments, several choices for the so-
called functional response h(x, y) have been suggested in the literature; we mention,
among others,

• Holling II function [102]: h(x, y) = x
β+x

;

• ratio dependent functional responses [103],[104]: h(x, y) = h̃(x/y);

• foraging arena models [105],[106]: h(x, y) = x
β+α2y

;

• Beddington-DeAngelis model [107],[108]: h(x, y) = x
β+α1x+α2y

;

• Crowley-Martin model [109]: h(x, y) = x
β+α1x+α2y+α3xy

;

• Hassell-Varley model [110]: h(x, y) = x
α1x+α2ym

.

(β, α1, α2, α3, are positive real numbers, m ∈ N and h̃ : R → R a suitable regular
function). What distinguishes the Holling II function from other models is the ab-
sence of y; on this issue the paper [111] presents statistical evidence from 19 predator-
prey systems that the Beddington-DeAngelis, Crowley-Martin and Hassell-Varley
models (whose functional responses depend on both prey and predator abundances)
can provide better descriptions compared to those with Holling-type functions (see
also [112]). Moreover, as remarked in [113], models based on ratio-dependent func-
tional responses exhibit singular behaviours.

With the aim of introducing environmental noise in the model, different types of
stochastic perturbation for the system (8.1) have been considered and studied.
Among the most common, we find the Itô-type stochastic differential equation{
dX(t) = [X(t)(a1 − b1X(t))− c1h(X(t), Y (t))Y (t)] dt+ σ1X(t)dB1(t), X(0) = x;

dY (t) = [Y (t)(−a2 − b2Y (t)) + c2h(X(t), Y (t))Y (t)] dt+ σ2Y (t)dB2(t), Y (0) = y,

(8.2)

where {(B1(t), B2(t))}t≥0 is a standard two dimensional Brownian motion and σ1, σ2

positive real numbers. System (8.2) tries to catch random fluctuations in the growth
rate a1 and death rate a2. Some references in this stream of research are [114], in the
case of foraging arena schemes, [115], [116], [117] treating the case of Beddington-
DeAngelis functional response, and [118] dealing with Hassell-Varley model. It is
worth mentioning that all these papers are devoted to the study of global existence,
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uniqueness, positivity and asymptotic properties for the specific model of type (8.2)
considered.

Our investigation is focused on the systemdX(t) =
[
X(t)(a1 − b1X(t))− c1

X(t)Y (t)
β+Y (t)

]
dt+ σ1X(t)dB1(t), X(0) = x;

dY (t) =
[
Y (t)(−a2 − b2Y (t)) + c2

X(t)Y (t)
β+Y (t)

]
dt+ σ2Y (t)dB2(t), Y (0) = y,

(8.3)

which is proposed and analysed in [114]. It corresponds to equation (8.2) with a
foraging arena functional response. It is proved in [114] that system (8.3) possesses
a unique global strong solution {(X(t), Y (t))}t≥0 fulfilling the condition

P(X(t) > 0 and Y (t) > 0, for all t ≥ 0) = 1.

Moreover, the authors investigate the asymptotic behaviours of X(t) and Y (t), as t
tends to infinity, and identify three different regimes:

• if a1 <
σ2
1

2
, then

lim
t→+∞

X(t) = lim
t→+∞

Y (t) = 0, (8.4)

almost surely and exponentially fast;

• if σ2
1

2
< a1 <

σ2
1

2
+ b1βa2

c2
+

b1βσ2
2

2c2
=: ϕ, then almost surely

lim
t→+∞

Y (t) = 0, exponentially fast, (8.5)

and

lim
t→+∞

1

t

∫ t

0

X(r)dr =
a1 − σ2

1/2

b1
; (8.6)

• if a1 > ϕ
1−σ2

2/2c2−a2/c2
and a2+

σ2
2

2
< c2, then system (8.3) has a unique stationary

distribution.

The case

ϕ < a1 <
ϕ

1− σ2
2/2c2 − a2/c2

,

with a2 +
σ2
2

2
< c2, is not investigated but the authors mention that computer

simulations indicate the existence of stationary distributions for both X(t) and Y (t)
also in that regime (see for this case the general results proved in [119]).

The goal of our work is to present a novel analysis for systems of the type (8.2),
which in the current study take the form (8.3). We derive explicit upper and lower
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bounds for the components X(t) and Y (t) of the solution of equation (8.3) at any
fixed time t ≥ 0. Such almost sure estimates depend solely on the parameters de-
scribing the model under investigation and the noise driving the equation. Their
derivation is based on a careful use of comparison theorems for stochastic differential
equations and standard stochastic calculus’ tools. The estimates we obtain reflect
the intrinsic interplay between the parameters of the model and enlighten the prob-
abilistic dependence structure of X(t) and Y (t). We also remark that our bounds,
which are valid for any fixed time t ≥ 0, agree in the limit as t tends to infinity with
the asymptotic results proven in [114] and summarized above. We then utilize the
previously mentioned bounds to get upper and lower estimates for the joint moments
and distribution function of (X(t), Y (t)). We propose closed form expressions which
rely on new estimates for a logistic-type stochastic differential equation.
It is important to remark that, while systems of the type (8.2) with Beddington-
DeAngelis or Crowley-Martin or Hassell-Varley functional responses can be treated,
as far as finite time analysis is concerned, with a change of measure approach, the
unboundedness of h(x, y) = x

β+α2y
, as a function of x, prevents from the use of a

similar approach for (8.3). We will in fact prove in Section 3.1 below the failure of
the Novikov condition for the corresponding change of measure.

The paper is organized as follows: Section 2 collects some auxiliary results on the
solution of a logistic stochastic differential equation that plays a major role in our
analysis; in Section 3 we state and prove our first main theorem: almost sure upper
and lower bounds for X(t) and Y (t), for any t ≥ 0. Here, we also comment on the
impossibility of a change of measure approach and compare our findings with the
asymptotic results from [114]; Section 4 contains our second main result, which pro-
poses upper and lower estimates for the joint moments of (X(t), Y (t)); in Section 5
upper and lower bounds for the joint probability function of (X(t), Y (t)) constitutes
our third and last main theorem; the last section contains a discussion of the result
obtained in the paper and some numerical simulations of the proposed bounds.

8.2 Preliminary results
In this section we will prove some auxiliary results concerning the solution of the
logistic stochastic differential equation

dL(t) = L(t)(a− bL(t))dt+ σL(t)dB(t), L(0) = λ. (8.7)

Here a, b, σ and λ are positive real numbers and {B(t)}t≥0 is a standard one dimen-
sional Brownian motion. It is well known (see for instance formula (4.51) in [120] or
formula (2.1) in [121] for the case of time-dependent parameters) that equation (8.7)
possesses a unique global positive strong solution which can be represented as

L(t) =
λe(a−σ2/2)t+σB(t)

1 + b
∫ t

0
λe(a−σ2/2)r+σB(r)dr

, t ≥ 0. (8.8)
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We start focusing on the asymptotic behaviour of the solution of equation (8.7). We
also refer the reader to the paper [122] for a small time analysis of {L(t)}t≥0.

Proposition 155. Let {L(t)}t≥0 be the unique global strong solution of (8.7). Then,

• if a < σ2/2,

lim
t→+∞

L(t) = 0 almost surely; (8.9)

• if a ≥ σ2/2, then L(t) is recurrent on ]0,+∞[;

• if a > σ2/2, then L(t) converges in distribution, as t tends to infinity, to the
unique stationary distribution Gamma( 2a

σ2 − 1, 2b
σ2 ).

Proof. See Proposition 3.3 in [123].

From formula (8.8) we see that, for any t > 0, the random variable L(t) is a function
of the Geometric Brownian motion e(a−σ2/2)t+σB(t) and its integral

∫ t

0
e(a−σ2/2)r+σB(r)dr.

Using the joint probability density function of the random vector(
e(a−σ2/2)t+σB(t),

∫ t

0

e(a−σ2/2)r+σB(r)dr

)
,

which can be found in [124], the authors of [125] write down an expression for the
probability density function of L(t): see formula (40) there. However, the authors
mention that, due to the presence of oscillating integrals, the numerical treatment
of such expression is rather tricky.
In the next two results, instead of insisting with exact formulas, we propose upper
and lower estimates for the moments E[L(t)p] and distribution function P(L(t) ≤
z); the bounds we obtain involve integrals whose numerical approximations do not
present the aforementioned difficulties. We also mention the paper [126] which uses
an approach based on power series to approximate the moments of L(t).
In the sequel, we will write for t > 0

N0,t(r) :=
1√
2t
e−

r2

2t , r ∈ R,

and

N ′
0,t(r) :=

d

dr
N0,t(r) = −r

t

1√
2t
e−

r2

2t , r ∈ R.

For notational convenience we also set

m(t) := inf
r∈[0,t]

B(r) and M(t) := sup
r∈[0,t]

B(r). (8.10)
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Proposition 156. Let {L(t)}t≥0 be the unique global strong solution of (8.7). Then,
for any p ≥ 0, we have

E[L(t)p] ≤ 2kp(t)

∫ +∞

0

(
1 + bλe−σzKp(t)

)−p N0,t(z)dz, (8.11)

and

E[L(t)p] ≥ 2kp(t)

∫ +∞

0

(1 + bλeσzKp(t))
−pN0,t(z)dz, (8.12)

where

kp(t) := λpep(a−σ2/2)t+p2σ2t/2 and Kp(t) := λ
e(a−σ2/2+pσ2)t − 1

a− σ2/2 + pσ2
.

Proof. Fix p ≥ 0; then,

E[L(t)p] = E

 λpep(a−σ2/2)t+pσB(t)(
1 + b

∫ t

0
λe(a−σ2/2)r+σB(r)dr

)p


= E

λpep(a−σ2/2)t+p2σ2t/2epσB(t)−p2σ2t/2(
1 + b

∫ t

0
λe(a−σ2/2)r+σB(r)dr

)p


= λpep(a−σ2/2)t+p2σ2t/2E

 epσB(t)−p2σ2t/2(
1 + b

∫ t

0
λe(a−σ2/2)r+σB(r)dr

)p


= kp(t)E

 epσB(t)−p2σ2t/2(
1 + b

∫ t

0
λe(a−σ2/2)r+σB(r)dr

)p
 .

We now observe that, according to the Girsanov’s theorem, for any T > 0 the law
of {B(t)}t∈[0,T ] under the equivalent probability measure

dQ := epσB(t)−p2σ2t/2dP on FB
T

coincides with the one of {B(t) + pσt}t∈[0,T ] under the measure P. Therefore,

E[L(t)p] = kp(t)E

 epσB(t)−p2σ2t/2(
1 + b

∫ t

0
λe(a−σ2/2)r+σB(r)dr

)p


= kp(t)E

 1(
1 + b

∫ t

0
λe(a−σ2/2)r+σ(B(r)+pσr)dr

)p


= kp(t)E

[(
1 + b

∫ t

0

λe(a−σ2/2)r+σ(B(r)+pσr)dr

)−p
]
.
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Now, adopting the notation (8.10), we can estimate as

E[L(t)p] = kp(t)E

[(
1 + b

∫ t

0

λe(a−σ2/2)r+σ(B(r)+pσr)dr

)−p
]

≥ kp(t)E

[(
1 + beσM(t)

∫ t

0

λe(a−σ2/2+pσ2)rdr

)−p
]

= kp(t)E
[(
1 + beσM(t)Kp(t)

)−p
]
,

and similarly

E[L(t)p] = kp(t)E

[(
1 + b

∫ t

0

λe(a−σ2/2)r+σ(B(r)+pσr)dr

)−p
]

≤ kp(t)E

[(
1 + beσm(t)

∫ t

0

λe(a−σ2/2+pσ2)rdr

)−p
]

= kp(t)E
[(
1 + beσm(t)Kp(t)

)−p
]
.

Moreover, recalling that, for A ∈ B(R) and t > 0, we have

P(m(t) ∈ A) = 2

∫
A

N0,t(z)1]−∞,0](z)dz and P(M(t) ∈ A) = 2

∫
A

N0,t(z)1[0,+∞[(z)dz,

(see formula (8.2) in Chapter 2 from [2]) we can conclude that

E[L(t)p] ≥ kp(t)E
[(
1 + beσM(t)Kp(t)

)−p
]

= 2kp(t)

∫ +∞

0

(1 + beσzKp(t))
−pN0,t(z)dz,

and

E[L(t)p] ≤ kp(t)E
[(
1 + beσm(t)Kp(t)

)−p
]

= 2kp(t)

∫ +∞

0

(
1 + be−σzKp(t)

)−pN0,t(z)dz.

Proposition 157. Let {L(t)}t≥0 be the unique global strong solution of (8.7). Then,
for any z > 0 and t > 0, we have the bounds

P(L(t) ≤ z) ≤ −2

∫
{ k(t)eσu

1+bK(t)eσv ≤z}∩{v>0}∩{u<v}
N ′

0,t(2v − u)dudv, (8.13)
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and

P(L(t) ≤ z) ≥ −2

∫
{ k(t)eσu

1+bK(t)eσv ≤z}∩{v<0}∩{u>v}
N ′

0,t(u− 2v)dudv, (8.14)

with

k(t) := λe(a−σ2/2)t and K(t) := λ
e(a−σ2/2)t − 1

a− σ2/2
.

Proof. We first prove (8.14): from (8.8) we have

L(t) ≥ λe(a−σ2/2)t+σB(t)

1 + beσM(t)
∫ t

0
λe(a−σ2/2)rdr

=
k(t)eσB(t)

1 + bK(t)eσM(t)
.

The last member above is a function of the two dimensional random vector (B(t),M(t)),
whose joint probability density function is given by the expression

fB(t),M(t)(u, v) =

{
−2N ′

0,t(2v − u), if v > 0 and u < v,

0, otherwise

(see formula (8.2) in Chapter 2 from [2]) Therefore, for any z > 0, we obtain

P(L(t) ≤ z) ≤ P
(

k(t)eσB(t)

1 + bK(t)eσM(t)
≤ z

)
= −2

∫
{ k(t)eσu

1+bK(t)eσv ≤z}∩{v>0}∩{u<v}
N ′

0,t(2v − u)dudv,

completing the proof of (8.14). Similarly,

L(t) ≤ λe(a−σ2/2)t+σB(t)

1 + beσm(t)
∫ t

0
λe(a−σ2/2)rdr

=
k(t)eσB(t)

1 + bK(t)eσm(t)
.

The last member above is a function of the two dimensional random vector (B(t),m(t)),
whose joint probability density function is given by the expression

fB(t),m(t)(u, v) =

{
−2N ′

0,t(u− 2v), if v < 0 and u > v,

0, otherwise.

Therefore, for any z > 0, we obtain

P(L(t) ≤ z) ≥ P
(

k(t)eσB(t)

1 + bK(t)eσm(t)
≤ z

)
= −2

∫
{ k(t)eσu

1+bK(t)eσv ≤z}∩{v<0}∩{u>v}
N ′

0,t(u− 2v)dudv.

The proof is complete.



177

Remark 158. We observe that the inequality u < v implies

k(t)eσu

1 + bK(t)eσv
≤ k(t)eσv

1 + bK(t)eσv
≤ k(t)

bK(t)
.

Therefore, the upper bound (8.13) becomes trivial for z ≥ k(t)
bK(t)

; in fact, in that case

{u < v} ⇒
{

k(t)eσu

1 + bK(t)eσv
≤ k(t)

bK(t)

}
⇒
{

k(t)eσu

1 + bK(t)eσv
≤ z

}
which yields ∫

{ k(t)eσu

1+bK(t)eσv ≤z}∩{u>0}∩{u<v}
−2N ′

0,t(2v − u)dudv

=

∫
{v>0}∩{u<v}

−2N ′
0,t(2v − u)dudv = 1.

8.3 First main theorem: almost sure bounds
Our first main theorem provides explicit almost sure upper and lower bounds for the
solution of (8.3) at any given time t. It is useful to introduce the following notation:
let

L1(t) :=
G1(t)

1 + b1
∫ t

0
G1(r)dr

, t ≥ 0, (8.15)

and

L2(t) :=
G2(t)

1 + b2
∫ t

0
G2(r)dr

, t ≥ 0, (8.16)

where for t ≥ 0 we set

G1(t) := xe(a1−σ2
1/2)t+σ1B1(t) and G2(t) := ye−(a2+σ2

2/2)t+σ2B2(t);

the parameters a1, a2, b1, b2, σ1, σ2, x, y are those appearing in equation (8.3). Ac-
cording to the previous section, the stochastic processes {L1(t)}t≥0 and {L2(t)}t≥0

satisfy the equations

dL1(t) = L1(t)(a1 − b1L1(t))dt+ σ1L1(t)dB1(t), L1(0) = x, (8.17)

and

dL2(t) = L2(t)(−a2 − b2L2(t))dt+ σ2L2(t)dB2(t), L2(0) = y, (8.18)

respectively. Therefore, the two dimensional process {(L1(t), L2(t))}t≥0 is the unique
strong solution of system (8.3) when c1 = c2 = 0, i.e. when the interaction term
X(t)Y (t)
β+Y (t)

is not present.
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8.3.1 Comments on the use of Girsanov theorem

We have just mentioned that, by removing the ratio X(t)Y (t)
β+Y (t)

from its drift, equation
(8.3) reduces to the uncoupled system{

dL1(t) = L1(t)(a1 − b1L1(t))dt+ σ1L1(t)dB1(t), L1(0) = x;

dL2(t) = L2(t)(−a2 − b2L2(t))dt+ σ2L2(t)dB2(t), L2(0) = y,
(8.19)

whose solution is explicitly represented via formulas (8.15) and (8.16). Since drift
removals can in general be performed with the use of Girsanov theorem, one may
wonder whether the almost sure properties of (8.3) can be deduced from those of
(8.19) under a suitable equivalent probability measure. Aim of the present subsection
is to show that this not case: we are in fact going to prove that the Novikov condition
corresponding to the just mentioned drift removal is not fulfilled.

First of all, we notice that system (8.19) can be rewritten as
dL1(t) = L1(t)(a1 − b1L1(t))dt+ σ1L1(t)

(
dB1(t) +

c1L2(t)
σ1(β+L2(t))

dt− c1L2(t)
σ1(β+L2(t))

dt
)
;

L1(0) = x;

dL2(t) = L2(t)(−a2 − b2L2(t))dt+ σ2L2(t)
(
dB2(t)− c2L1(t)

σ2(β+L2(t))
dt+ c2L1(t)

σ2(β+L2(t))
dt
)
;

L2(0) = y,

or equivalently{
dL1(t) = L1(t)(a1 − b1L1(t))dt− c1

L1(t)L2(t)
β+L2(t)

dt+ σ1L1(t)dB̃1(t), L1(0) = x;

dL2(t) = L2(t)(−a2 − b2L2(t))dt+ c2
L1(t)L2(t)
β+L2(t)

dt+ σ2L2(t)dB̃2(t), L2(0) = y,

(8.20)

where we set

B̃1(t) := B1(t) +

∫ t

0

c1L2(r)

σ1(β + L2(r))
dr, t ≥ 0,

and

B̃2(t) := B2(t)−
∫ t

0

c2L1(r)

σ2(β + L2(r))
dr, t ≥ 0.

Now, if the Novikov condition

E

[
exp

{
1

2

∫ T

0

(
c1L2(r)

σ1(β + L2(r))

)2

+

(
c2L1(r)

σ2(β + L2(r))

)2

dr

}]
< +∞ (8.21)

is satisfied for some T > 0, then the stochastic process {(B̃1(t), B̃1(t))}t∈[0,T ] is
according to the Girsanov theorem a standard two dimensional Brownian motion
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on the probability space (Ω,FT ,Q) (here {Ft}t≥0 denotes the augmented Brownian
filtration) with

dQ := exp

{
−
∫ T

0

c1L2(r)

σ1(β + L2(r))
dB1(r)−

1

2

∫ T

0

(
c1L2(r)

σ1(β + L2(r))

)2

dr

}

× exp

{∫ T

0

c2L1(r)

σ2(β + L2(r))
dB2(r)−

1

2

∫ T

0

(
c2L1(r)

σ2(β + L2(r))

)2

dr

}
dP.

Moreover, in this case equation (8.20) implies that the two dimensional process
{(L1(t), L2(t))}t∈[0,T ] is a weak solution of (8.3) with respect to (Ω, {Ft}t∈[0,T ],Q, {(B̃1(t), B̃1(t))}t∈[0,T ]).
We now prove that condition (8.21) cannot be true without additional assumptions
on the parameters of our model. In fact,

E

[
exp

{
1

2

∫ T

0

(
c1L2(r)

σ1(β + L2(r))

)2

+

(
c2L1(r)

σ2(β + L2(r))

)2

dr

}]

≥ E

[
exp

{
1

2

∫ T

0

(
c2L1(r)

σ2(β + L2(r))

)2

dr

}]

= E
[
exp

{
c22
2σ2

2

∫ T

0

L2
1(r)

(β + L2(r))2
dr

}]
≥ E

[
exp

{
c22

2σ2
2M2

∫ T

0

L2
1(r)dr

}]

where we introduced the notation

M2 := sup
r∈[0,T ]

(β + L2(r))
2.

We now apply Jensen’s inequality to the Lebesgue integral and use the identity

∫ T

0

L1(r)dr =
1

b1
ln

(
1 + b1

∫ T

0

G1(r)dr

)
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to get

E

[
exp

{
1

2

∫ T

0

(
c1L2(r)

σ1(β + L2(r))

)2

+

(
c2L1(r)

σ2(β + L2(r))

)2

dr

}]

≥ E
[
exp

{
c22

2σ2
2M2

∫ T

0

L2
1(r)dr

}]
= E

[
exp

{
c22T

2σ2
2M2T

∫ T

0

L2
1(r)dr

}]
≥ E

[
exp

{
c22

2σ2
2M2T

(∫ T

0

L1(r)dr

)2
}]

= E

[
exp

{
c22

2σ2
2M2Tb21

(
ln

(
1 + b1

∫ T

0

G1(r)dr

))2
}]

≥ E
[
exp

{
c22

2σ2
2M2Tb21

(
ln
(
1 + b1K1(T )e

σ1m1(T )
))2}]

≥ E
[
exp

{
c22

2σ2
2M2Tb21

(
ln
(
b1K1(T )e

σ1m1(T )
))2}]

= E
[
exp

{
c22

2σ2
2M2Tb21

(σ1m1(T ) + ln(b1K1(T )))
2

}]
.

Here, we set

K1(T ) =
e(a1−σ2

1/2)T − 1

a1 − σ2
1/2

and m1(T ) := min
t∈[0,T ]

B1(t).

Using the independence between B1 and B2, we can write the last expectation
as

E
[
exp

{
c22

2σ2
2M2Tb21

(σ1m1(T ) + ln(b1K1(T )))
2

}]
=

∫ +∞

β2

(∫ 0

−∞
e

C
2Tz

(σ1u+D)2 2√
2πT

e−
u2

2T du

)
dµ(z),

where µ stands for the law of M2, C :=
c22

σ2
2b

2
1

and D := ln(b1K1(T )). It is now clear
that the inner integral above is finite if and only if z ≥ Cσ2

1. Since z ranges in the
interval ]β2,∞[, we deduce that the last condition is verified for all z ∈]β2,+∞[
only when β2 ≥ Cσ2

1, which in our notation means

β ≥ c2σ1

b1σ2

. (8.22)
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Therefore, if the parameters describing system (8.3) do not respect the bound (8.22),
then inequality

E

[
exp

{
1

2

∫ T

0

(
c1L2(r)

σ1(β + L2(r))

)2

+

(
c2L1(r)

σ2(β + L2(r))

)2

dr

}]

≥ 2

∫ +∞

β2

(∫ 0

−∞
e

C
2Tz

(σ1u+D)2 1√
2πT

e−
u2

2T du

)
dµ(z) = +∞,

which is valid for all T > 0, implies the failure of Novikov condition (8.21). From this
point of view the almost sure properties of the solution of (8.3) cannot be deduced
from those of the uncoupled system (8.19).

Remark 159. The functional response in the foraging arena model formally ap-
pears to be a particular case of the one that characterizes the Beddington-DeAngelis
model (take α1 = 0). However, referring to the change of measure technique men-
tioned above, we see that the Novikov condition corresponding to the Beddington-
DeAngelis model would amount at the finiteness of

E

[
exp

{
1

2

∫ T

0

(
c1L2(r)

σ1(β + α1L1(r) + α2L2(r))

)2

+

(
c2L1(r)

σ2(β + α1L1(r) + α2L2(r))

)2

dr

}]
.

Since the two ratios in the Lebesgue integral are upper bounded almost surely by
c1

σ1α2
and c2

σ2α1
, respectively, we get immediately the finiteness, for all T > 0, of the

expectation above. Therefore, in the Beddington-DeAngelis model one may utilize
the change of measure approach to study almost sure properties of the solution on
any finite interval of time [0, T ]. The same reasoning applies also to the Crowley-
Martin and Hassell-Varley functional responses.

8.3.2 Statement and proof of the first main theorem

Recall that, according to the discussion in Section 1, the quantity

ϕ :=
σ2
1

2
+

b1βa2
c2

+
b1βσ

2
2

2c2

is a threshold determining the asymptotic behaviour of X(t) and Y (t).

Theorem 160. Let {(X(t), Y (t))}t≥0 be the unique global strong solution of (8.3).
Then, for all t ≥ 0 the following bounds hold almost surely:

L2(t) ≤ Y (t) ≤ L2(t)

(
1 + b1

∫ t

0

G1(r)dr

) c2
βb1

; (8.23)

if a1 < ϕ, then

L1(t)e
− c1

βb2
(1+b1

∫ t
0 G1(r)dr)

c2
βb1 ln(1+b2

∫ t
0 G2(r)dr) ≤ X(t) ≤ L1(t); (8.24)
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if a1 > ϕ, then

L1(t)e
−c1t ≤ X(t) ≤ L1(t). (8.25)

Remark 161. We assumed at the beginning of this manuscript that the Brownian
motions {B1(t)}t≥0 and {B2(t)}t≥0, driving the two dimensional system (8.3), are
independent. However, this assumption is not needed in the derivation of the almost
sure bounds stated above, as long as system (8.3) possesses a positive global strong
solution. Therefore, the estimates (8.23), (8.24) and (8.25) remain true in the case
of correlated Brownian motions as well.

Remark 162. The bounds in Theorem 160 are consistent with the asymptotic results
obtained in [114]. In fact:

• a1 <
σ2
1

2
: taking the limit as t tends to infinity in the second inequality of

(8.24) we get

0 ≤ lim
t→+∞

X(t) ≤ lim
t→+∞

L1(t),

which, in combination with (8.9) for L1, gives

lim
t→+∞

X(t) = 0.

On the other hand, if we take the limit in (8.23) we obtain

0 ≤ lim
t→+∞

Y (t) ≤ lim
t→+∞

L2(t)

(
1 + b1

∫ t

0

G1(r)dr

) c2
βb1

.

According to formula 1.8.4 page 612 in [127] the random variable
∫ +∞
0

G1(r)dr
is finite almost surely; this fact and (8.9) for L2 yield

lim
t→+∞

Y (t) = 0,

completing the proof of (8.4);

• σ2
1

2
< a1 < ϕ =

σ2
1

2
+ b1βa2

c2
+

b1βσ2
2

2c2
: first of all, we write

L2(t) ≤ G2(t) = e−(a2+σ2
2/2)t+σ2B2(t);

moreover, since ∫ t

0

G1(r)ds ≤ eσ1M1(t)K1(t),
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where M1(t) := maxt∈[0,t] B1(r) and

K1(t) := x
e(a1−σ2

1/2)t − 1

a1 − σ2
1/2

,

we get (
1 + b1

∫ t

0

G1(r)dr

) c2
βb1

≤
(
1 + b1e

σ1M1(t)K1(t)
) c2

βb1

≤
(
1 + Ceσ1M1(t)e(a1−σ2

1/2)t
) c2

βb1 ,

for a suitable positive constant C. Therefore,

L2(t)

(
1 + b1

∫ t

0

G1(r)dr

) c2
βb1

≤ e−(a2+σ2
2/2)t+σ2B2(t)

(
1 + Ceσ1M1(t)e(a1−σ2

1/2)t
) c2

βb1

=

(
e
− (a2+σ2

2/2)βb1
c2

t+
σ2βb1

c2
B2(t) + Ce

− (a2+σ2
2/2)βb1
c2

t+
σ2βb1

c2
B2(t)eσ1M1(t)e(a1−σ2

1/2)t

) c2
βb1

=

(
e
− (a2+σ2

2/2)βb1
c2

t+
σ2βb1

c2
B2(t) + Ce

(
a1−σ2

1/2−
(a2+σ2

2/2)βb1
c2

)
t+

σ2βb1
c2

B2(t)
eσ1M1(t)

) c2
βb1

.

(8.26)

Recalling that

P
(

lim
t→+∞

B(t)

t
= 0

)
= P

(
lim

t→+∞

M1(t)

t
= 0

)
= 1,

(see for instance [78]), we can say that both terms inside the parenthesis in
(8.26) will tend to zero as t tends to infinity if the constants multiplying t in
the exponentials are negative. While this is obvious for the first exponential,
the negativity of the constant

a1 − σ2
1/2−

(a2 + σ2
2/2)βb1
c2

is equivalent to the condition a1 < ϕ, i.e. the regime under consideration.
Hence, passing to the limit in (8.23), we conclude that

lim
t→+∞

Y (t) = 0;

this corresponds to (8.5). In addition, from (8.24) we obtain

lim
t→+∞

1

t

∫ t

0

X(r)dr ≤ lim
t→+∞

1

t

∫ t

0

L1(r)dr =
a1 − σ2

1/2

b1
.
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Here, we utilized Proposition 155 for L1 with a1 > σ2
1/2, in particular the

ergodic property

lim
t→+∞

1

t

∫ t

0

L1(r)dr = E[L∞],

with E[L∞] being the expectation of the unique stationary distribution. This
partially proves (8.6).

Proof. We start finding the Itô’s differential of the stochastic process 1
L1(t)

:

d
1

L1(t)
= − 1

L2
1(t)

dL1(t) +
1

L3
1(t)

d⟨L1⟩t

= −a1 − b1L1(t)

L1(t)
dt− σ1

L1(t)
dB1(t) +

σ2
1

L1(t)
dt

=
σ2
1 − a1 + b1L1(t)

L1(t)
dt− σ1

L1(t)
dB1(t).

Combining this expression with the first equation in (8.3) we get

d
X(t)

L1(t)
=X(t)d

1

L1(t)
+

1

L1(t)
dX(t) + d ⟨X, 1/L1⟩ (t)

=X(t)

(
σ2
1 − a1 + b1L1(t)

L1(t)
dt− σ1

L1(t)
dB1(t)

)
+

1

L1(t)

[
X(t)

(
a1 − b1X(t)− c1Y (t)

β + Y (t)

)
dt+ σ1X(t)dB1(t)

]
− σ2

1

X(t)

L1(t)
dt

=
X(t)

L1(t)

[
σ2
1 − a1 + b1L1(t) + a1 − b1X(t)− c1Y (t)

β + Y (t)
− σ2

1

]
dt

=
X(t)

L1(t)

[
b1(L1(t)−X(t))− c1Y (t)

β + Y (t)

]
dt.

Since X(0)
L1(0)

= 1, the last chain of equalities implies

X(t)

L1(t)
= exp

{
b1

∫ t

0

(L1(r)−X(r))dr − c1

∫ t

0

Y (r)

β + Y (r)
dr

}
. (8.27)

Following the previous reasoning we also find that

d
1

L2(t)
= − 1

L2
2(t)

dL2(t) +
1

L3
2(t)

d⟨L2⟩t

= −−a2 − b2L2(t)

L2(t)
dt− σ2

L2(t)
dB2(t) +

σ2
2

L2(t)
dt

=
σ2
2 + a2 + b2L2(t)

L2(t)
dt− σ2

L2(t)
dB2(t).
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Combining this expression with the second equation in (8.3) we get

d
Y (t)

L2(t)
=Y (t)d

1

L2(t)
+

1

L2(t)
dY (t) + d ⟨Y, 1/L2⟩ (t)

=Y (t)

(
σ2
2 + a2 + b2L2(t)

L2(t)
dt− σ2

L2(t)
dB2(t)

)
+

1

L2(t)

[
Y (t)

(
−a2 − b2X(t) +

c2X(t)

β + Y (t)

)
dt+ σ2Y (t)dB2(t)

]
− σ2

2

Y (t)

L2(t)
dt

=
Y (t)

L2(t)

[
σ2
2 + a2 + b2L2(t)− a2 − b2Y (t) +

c2X(t)

β + Y (t)
− σ2

2

]
dt

=
Y (t)

L2(t)

[
b2(L2(t)− Y (t)) +

c2X(t)

β + Y (t)

]
dt.

Since Y (0)
L2(0)

= 1, the last chain of equalities implies

Y (t)

L2(t)
= exp

{
b2

∫ t

0

(L2(r)− Y (r))dr + c2

∫ t

0

X(r)

β + Y (r)
dr

}
. (8.28)

We now observe that

P
(
X(t)Y (t)

β + Y (t)
> 0

)
= 1, for any t ≥ 0

(remember that X(t) and Y (t) are positive for all t ≥ 0); therefore, by means of
standard comparison theorems for SDEs (see for instance Theorem 1.1 in Chapter
VI from [9]) applied to (8.3) we deduce that

X(t) ≤ L1(t), for all t ≥ 0, (8.29)

and

Y (t) ≥ L2(t), for all t ≥ 0, (8.30)

where {L1(t)}t≥0 and {L2(t)}t≥0 solve (8.17) and (8.18), respectively. Therefore,
equation (8.27) leads to

exp

{
−c1

∫ t

0

Y (r)

β + Y (r)
dr

}
≤ X(t)

L1(t)
≤ 1,

or equivalently,

L1(t) exp

{
−c1

∫ t

0

Y (r)

β + Y (r)
dr

}
≤ X(t) ≤ L1(t), (8.31)
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while equation (8.28) leads to

1 ≤ Y (t)

L2(t)
≤ exp

{
c2

∫ t

0

X(r)

β + Y (r)
dr

}
,

or equivalently,

L2(t) ≤ Y (t) ≤ L2(t) exp

{
c2

∫ t

0

X(r)

β + Y (r)
dr

}
. (8.32)

The lower bound in (8.31) and upper bound in (8.32) are not explicit yet since they
depend on the solution itself. To solve this problem we first recall that the process
{L2(t)}t≥0 is positive and converges almost surely to zero exponentially fast, as t
tends to infinity. Now, by virtue of (8.29), (8.30) and the infinitesimal behaviour of
L2, we can upper bound the right hand side in (8.32) as

L2(t) exp

{
c2

∫ t

0

X(r)

β + Y (r)
dr

}
≤ L2(t) exp

{
c2

∫ t

0

L1(r)

β + L2(r)
dr

}
≤ L2(t) exp

{
c2
β

∫ t

0

L1(r)dr

}
,

In addition, since

L1(t) =
1

b1

d

dt
ln

(
1 + b1

∫ t

0

G1(r)dr

)
,

the last member above can be rewritten as

L2(t) exp

{
c2
β

∫ t

0

L1(r)dr

}
= L2(t) exp

{
c2
βb1

ln

(
1 + b1

∫ t

0

G1(r)dr

)}
= L2(t)

(
1 + b1

∫ t

0

G1(r)dr

) c2
βb1

.

Combining this estimate with (8.32) we obtain (8.23).

For the lower bound in (8.31), we observe that the function y 7→ y
β+y

, for y > 0, can
be sharply upper bounded by affine functions in two different ways: the upper bound
y 7→ 1 is sharp at infinity but not accurate at zero while the upper bound y 7→ y

β
is

sharp at zero but very bad at infinity. Therefore, according to the asymptotic results
proved in [114] and mentioned in the Introduction, we now proceed distinguishing
two different regimes:

• when a1 < ϕ, the process {Yt}t≥0 tends to zero exponentially fast and hence
we utilize the process Yr

β
to upper bound Yr

β+Yr
. The left hand side of (8.31) is
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Figure 8.1: Upper bounds for the function y 7→ y
2+y

(blue line) with the function
y 7→ y

2
(yellow line) and the function y 7→ 1 (red line).

then simplified to

L1(t) exp

{
−c1

∫ t

0

Y (r)

β + Y (r)
dr

}
≥ L1(t) exp

{
−c1
β

∫ t

0

Y (r)dr

}
≥ L1(t) exp

{
−c1
β

∫ t

0

L2(r)

(
1 + b1

∫ r

0

G1(u)du

) c2
βb1

dr

}

≥ L1(t) exp

{
−c1
β

(
1 + b1

∫ t

0

G1(r)dr

) c2
βb1
∫ t

0

L2(r)dr

}

= L1(t) exp

{
− c1
βb2

(
1 + b1

∫ t

0

G1(r)dr

) c2
βb1

ln

(
1 + b2

∫ t

0

G2(r)dr

)}
.

(8.33)

Here, in the second inequality we utilized the upper bound in (8.23) while in
the last equality we employed the identity

L2(t) =
1

b2

d

dt
ln

(
1 + b2

∫ t

0

G2(r)dr

)
.

Inserting (8.33) in the left hand side of (8.31), one gets (8.24);

• when a1 > ϕ, the process {Yt}t≥0 has a more oscillatory behaviour; therefore,
we prefer to upper bound the ratio Yr

β+Yr
with one. This gives

L1(t) exp

{
−c1

∫ t

0

Y (r)

β + Y (r)
dr

}
≥ L1(t)e

−c1t,
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and (8.31) reduces to (8.25).

Remark 163. It is important to emphasize that both the lower bounds in (8.24) and
(8.25) remain valid without restrictions on the parameters: this is clear from the
proof of Theorem 160 and in particular from the use of the comparison principle we
made. In fact, one may combine the two lower estimates as

L1(t)max

{
e
− c1

βb2
(1+b1

∫ t
0 G1(r)dr)

c2
βb1 ln(1+b2

∫ t
0 G2(r)dr), e−c1t

}
≤ X(t) ≤ L1(t),

and argue on the different values attained by the maximum above. However, such
analysis would necessarily involve the non directly observable quantities

∫ t

0
G1(r)dr,∫ t

0
G2(r)dr and their probabilities. That is why we preferred to suggest which lower

bound is better suited for the given set of parameters.

8.4 Second main theorem: bounds for the moments
The next theorem presents upper and lower estimates for the joint moments of X(t)
and Y (t) at any given time t. These bounds, which rely on the almost sure in-
equalities (8.23), (8.24) and (8.25) are represented through closed form expressions
involving Lebesgue integrals; such integrals can be evaluated via numerical approx-
imations or Monte Carlo simulations.
We also mention that in [114] the authors prove an asymptotic upper bound for the
moments E

[
(X(t)2 + Y (t)2)θ/2

]
with θ being a positive real number.

Theorem 164. Let {(X(t), Y (t))}t≥0 be the unique global strong solution of (8.3).
For all t ≥ 0 we have the following estimates:

1. if p, q ≥ 0 with qc2
βb1

− p ≥ 1, then

E [X(t)pY (t)q] ≤2k1,p(t)k2,q(t)

1 + b1x
e

(
a1+

(
qc2
βb1

+p−1
)

σ2
1
2

)
t
− 1

a1 +
(

qc2
βb1

+ p− 1
)

σ2
1

2


qc2
βb1

−p

×
∫ +∞

0

(
1 + b2ye

−σ2zK2,q(t)
)−q N0,t(z)dz. (8.34)

2. if p, q ≥ 0 and a1 > ϕ, then

E [X(t)pY (t)q] ≥4e−pc1tk1,p(t)k2,q(t)

∫ +∞

0

(1 + b1xe
σ1zK1,p(t))

−pN0,t(z)dz

×
∫ +∞

0

(1 + b2ye
σ2zK2,q(t))

−q N0,t(z)dz. (8.35)
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3. if p, q ≥ 0 and a1 < ϕ, then

E[X(t)p] ≥ −4k1(t)
p

∫
A

e
pσ1u1− pc1

βb2
(1+b1K1(t)eσ1v1 )

c2
βb1 ln(1+b2K2(t)eσ2v2 )

(1 + b1K1(t)eσ1v1)p

×N ′
0,t(2v1 − u1)N0,t(v2)du1dv1dv2, (8.36)

where

A := {(u1, v1, v2) ∈ R3 : v1 > 0, u1 < v1, v2 > 0},

while

E[Y (t)q] ≥ 2k2,q(t)

∫ +∞

0

(1 + b2ye
σ2zK2,q(t))

−q N0,t(z)dz. (8.37)

Here,

k1(t) := xe(a1−σ2
1/2)t, K1(t) := x

e(a1−σ2
1/2)t − 1

a1 − σ2
1/2

, K2(t) := y
e(a2−σ2

2/2)t − 1

a2 − σ2
2/2

,

k1,p(t) := xpep(a1−σ2
1/2)t+p2σ2

1t/2, K1,p(t) := x
e(a1−σ2

1/2+pσ2
1)t − 1

a1 − σ2
1/2 + pσ2

1

,

k2,p(t) := ypep(a2−σ2
2/2)t+p2σ2

2t/2 K2,p(t) := y
e(a2−σ2

2/2+pσ2
2)t − 1

a2 − σ2
2/2 + pσ2

2

.

Proof. 1. Using (8.23) and (8.24) (or (8.25)), we can write

E [X(t)pY (t)q] ≤E

[
L1(t)

pL2(t)
q

(
1 + b1

∫ t

0

G1(r)dr

) qc2
βb1

]

=E

[
L1(t)

p

(
1 + b1

∫ t

0

G1(r)dr

) qc2
βb1

]
E [L2(t)

q]

=E

 G1(t)
p(

1 + b1
∫ t

0
G1(r)dr

)p (1 + b1

∫ t

0

G1(r)dr

) qc2
βb1

E [L2(t)
q]

=E

[
G1(t)

p

(
1 + b1

∫ t

0

G1(r)dr

) qc2
βb1

−p
]
E [L2(t)

q]

=I1I2,

where we set

I1 := E

[
G1(t)

p

(
1 + b1

∫ t

0

G1(r)dr

) qc2
βb1

−p
]

and I2 := E [L2(t)
q] .
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From (8.11) we get immediately that

I2 ≤ 2k2,q(t)

∫ +∞

0

(
1 + b2ye

−σ2zK2,q(t)
)−q N0,t(z)dz.

Now, mimicking the proof of Proposition 156 we can write

I1 = k1,p(t)E

[
epσ1B1(t)−p2σ2

1t/2

(
1 + b1

∫ t

0

G1(r)dr

) qc2
βb1

−p
]

= k1,p(t)E

[(
1 + b1

∫ t

0

G1(r)e
pσ2

1rdr

) qc2
βb1

−p
]

= k1,p(t)

∥∥∥∥1 + b1

∫ t

0

G1(r)e
pσ2

1rdr

∥∥∥∥
qc2
βb1

−p

L
qc2
βb1

−p
(Ω)

.

Observe that the condition qc2
βb1

− p ≥ 1 allows for the use of triangle and

Minkowski’s inequalities for the norm of the space L
qc2
βb1

−p
(Ω); therefore, we

obtain

I1 = k1,p(t)

∥∥∥∥1 + b1

∫ t

0

G1(r)e
pσ2

1rdr

∥∥∥∥
qc2
βb1

−p

L
qc2
βb1

−p
(Ω)

≤ k1,p(t)

(
1 + b1

∥∥∥∥∫ t

0

G1(r)e
pσ2

1rdr

∥∥∥∥
L

qc2
βb1

−p
(Ω)

) qc2
βb1

−p

≤ k1,p(t)

(
1 + b1

∫ t

0

∥G1(r)∥
L

qc2
βb1

−p
(Ω)

epσ
2
1rdr

) qc2
βb1

−p

= k1,p(t)

1 + b1x
e

(
a1+

(
qc2
βb1

+p−1
)

σ2
1
2

)
t
− 1

a1 +
(

qc2
βb1

+ p− 1
)

σ2
1

2


qc2
βb1

−p

.

Combining the estimates for I1 and I2 we obtain

E [X(t)pY (t)q] ≤2k1,p(t)k2,q(t)

1 + b1x
e

(
a1+

(
qc2
βb1

+p−1
)

σ2
1
2

)
t
− 1

a1 +
(

qc2
βb1

+ p− 1
)

σ2
1

2


qc2
βb1

−p

×
∫ +∞

0

(
1 + b2ye

−σ2zK2,q(t)
)−q N0,t(z)dz.

2. From (8.23) and (8.25) we can write

E [X(t)pY (t)q] ≥ e−pc1tE [L1(t)
pL2(t)

q]

= e−pc1tE [L1(t)
p]E [L2(t)

q] .

Inequality (8.12) completes the proof of (8.35).
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3. The lower bound (8.37) is obtained setting p = 0 in (8.35); to prove the lower
bound (8.36) we observe that

X(t) ≥ L1(t)e
− c1

βb2
(1+b1

∫ t
0 G1(v)dv)

c2
βb1 ln(1+b2

∫ t
0 G2(r)dr)

=
G1(t)e

− c1
βb2

(1+b1
∫ t
0 G1(v)dv)

c2
βb1 ln(1+b2

∫ t
0 G2(r)dr)

1 + b1
∫ t

0
G1(r)dr

≥ G1(t)e
− c1

βb2
(1+b1K1(t)eσ1M1(t))

c2
βb1 ln(1+b2K2(t)eσ2M2(t))

1 + b1K1(t)eσ1M1(t)

=
k1(t)e

σ1B1(t)− c1
βb2

(1+b1K1(t)eσ1M1(t))
c2
βb1 ln(1+b2K2(t)eσ2M2(t))

1 + b1K1(t)eσ1M1(t)
. (8.38)

The last member above is a function of the three dimensional random vector
(B1(t),M1(t),M2(t)) whose joint probability density function is given by

fB1(t),M1(t),M2(t)(u1, v1, v2)

=

{
−4N ′

0,t(2v1 − u1)N0,t(v2), if v1 > 0, u1 < v1 and v2 > 0,

0, otherwise.

Therefore, for any p ≥ 0 we get

E[X(t)p] ≥ E

∣∣∣∣∣∣k1(t)e
σ1B1(t)− c1

βb2
(1+b1K1(t)eσ1M1(t))

c2
βb1 ln(1+b2K2(t)eσ2M2(t))

1 + b1K1(t)eσ1M1(t)

∣∣∣∣∣∣
p

= −4k1(t)
p

∫
A

e
pσ1u1− pc1

βb2
(1+b1K1(t)eσ1v1 )

c2
βb1 ln(1+b2K2(t)eσ2v2 )

(1 + b1K1(t)eσ1v1)p

×N ′
0,t(2v1 − u1)N0,t(v2)du1dv1dv2,

where

A := {(u1, v1, v2) ∈ R3 : v1 > 0, u1 < v1, v2 > 0}.

This proves (8.36).

Remark 165. Due to the complexity of the left hand side in (8.24) we were not able
to obtain a lower bound for the joint moments E [X(t)pY (t)q] in the regime a1 < ϕ.
However, according to the argument of Remark 163, inequality (8.35) can be utilize
also in that regime.



192

8.5 Third main theorem: bounds for the distribu-
tion functions

The last main theorem of this paper concerns with upper and lower estimates for
the distribution functions of X(t) and Y (t).

Theorem 166. Let {(X(t), Y (t))}t≥0 be the unique global strong solution of (8.3).
Then, for all t ≥ 0 and z1, z2 > 0 we have the following bounds:

1.

P(X(t) ≤ z1) ≥ −2

∫
{

k1(t)e
σu

1+b1K1(t)e
σ1v ≤z1

}
∩{v>0}∩{u<v}

N ′
0,t(2v − u)dudv, (8.39)

and

P(Y (t) ≤ z2) ≥ −4βb1
σ1c2

∫ z2/(1+b1K1(t))
c2
βb1

0

(∫
{

k2(t)e
σ2u

1+b2K2(t)e
σ2v ≤ζ

}
∩{v<0}∩{u>v}

N ′
0,t(u− 2v)dudv

)

×N0,t

 1

σ1

ln


(

z
ζ

)βb1
c2 − 1

b1K1(t)




(
z
ζ

)βb1
c2

(
z
ζ

)βb1
c2 − 1

1

ζ
dζ; (8.40)

2. if a1 > ϕ, then

P (X(t) ≤ z1, Y (t) ≤ z2) ≤ 4

∫
{

k1(t)e
σ1u

1+b1K1(t)e
σ1v ≤z1ec1t

}
∩{v>0}∩{u<v}

N ′
0,t(2v − u)dudv

×
∫
{

k2(t)e
σ2u

1+b2K2(t)e
σ2v ≤z2

}
∩{v>0}∩{u<v}

N ′
0,t(2v − u)dudv;

(8.41)

3. if a1 < ϕ, then

P(X(t) ≤ z1) ≤ −4

∫
Az1∩{v1>0,u1<v1,v2>0}

N ′
0,t(2v1 − u1)N0,t(v2)du1dv1dv2,

(8.42)

where

Az1 :=

(u1, v1, v2) ∈ R3 :
k1(t)e

σ1u1− c1
βb2

(1+b1K1(t)eσ1v1 )
c2
βb1 ln(1+b2K2(t)eσ2v2 )

1 + b1K1(t)eσ1v1
≤ z1

 ,

and

P(Y (t) ≤ z2) ≤ −2

∫
{

k2(t)e
σu

1+b2K(t)eσ2v
≤z2

}
∩{v>0}∩{u<v}

N ′
0,t(2v − u)dudv. (8.43)
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Here,

k1(t) := xe(a1−σ2
1/2)t and K1(t) := x

e(a1−σ2
1/2)t − 1

a1 − σ2
1/2

,

while

k2(t) := ye(a2−σ2
2/2)t and K2(t) := y

e(a2−σ2
2/2)t − 1

a2 − σ2
2/2

.

Proof. 1. The upper bound in (8.24) (or (8.25)) yields

P(X(t) ≤ z1) ≥ P(L1(t) ≤ z1)

which in combination with (8.14) gives (8.39). We now prove (8.40); the
estimate ∫ t

0

G1(r)dr ≤ K1(t)e
σ1M1(t),

together with the upper estimate in (8.23), entails

P(Y (t) ≤ z2) ≥ P

(
L2(t)

(
1 + b1

∫ t

0

G1(r)dr

) c2
βb1

≤ z2

)

= E

[
P

(
L2(t)

(
1 + b1

∫ t

0

G1(r)dr

) c2
βb1

≤ z2

∣∣∣∣F2
t

)]

= E

[
P

((
1 + b1

∫ t

0

G1(r)dr

) c2
βb1

≤ z2
L2(t)

∣∣∣∣F2
t

)]

= E

[
P

(∫ t

0

G1(r)dr ≤

((
z2

L2(t)

)βb1
c2

− 1

)
/b1

∣∣∣∣F2
t

)]

≥ E

[
P

(
K1(t)e

σ1M1(t) ≤

((
z2

L2(t)

)βb1
c2

− 1

)
/b1

∣∣∣∣F2
t

)]

= E

P
M1(t) ≤

1

σ1

ln


(

z2
L2(t)

)βb1
c2 − 1

b1K1(t)

∣∣∣∣F2
t


 .

Here {F2
t }t≥0 denotes the natural augmented filtration of the Brownian motion

{B2(t)}t≥0. Note that the almost sure positivity of the random variable M1(t)
implies that the probability in the last member above is different from zero if
and only if (

z2
L2(t)

)βb1
c2 − 1

b1K1(t)
> 1
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which is equivalent to say that

L2(t) ≤
z2

(1 + b1K1(t))
c2
βb1

.

Therefore,

P(Y (t) ≤ z2) ≥ E

P
M1(t) ≤

1

σ1

ln


(

z2
L2(t)

)βb1
c2 − 1

b1K1(t)

∣∣∣∣F2
t




=

∫ z2/(1+b1K1(t))
c2
βb1

0

P

M1(t) ≤
1

σ1

ln


(

z
ζ

)βb1
c2 − 1

b1K1(t)


 dF2(ζ),

where F2 denotes the distribution function of the random variable L2(t). We

now integrate by parts and notice that P

(
M1(t) ≤ 1

σ1
ln

(
( z
ζ )

βb1
c2 −1

b1K1(t)

))
= 0 if

ζ = z2/(1 + b1K1(t))
c2
βb1 while F2(ζ) = 0 when ζ = 0. This gives

P(Y (t) ≤ z2) ≥
∫ z2/(1+b1K1(t))

c2
βb1

0

P

M1(t) ≤
1

σ1

ln


(

z
ζ

)βb1
c2 − 1

b1K1(t)


 dF2(ζ)

=
2βb1
σ1c2

∫ z2/(1+b1K1(t))
c2
βb1

0

F2(ζ)N0,t

 1

σ1

ln


(

z
ζ

)βb1
c2 − 1

b1K1(t)




(
z
ζ

)βb1
c2

(
z
ζ

)βb1
c2 − 1

1

ζ
dζ.

Moreover, since from (8.14) we know that

F2(ζ) = P(L2(t) ≤ ζ) ≥ −2

∫
{

k2(t)e
σ2u

1+b2K2(t)e
σ2v ≤ζ

}
∩{v<0}∩{u>v}

N ′
0,t(u− 2v)dudv,
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we can conclude that

P(Y (t) ≤ z2) ≥
2βb1
σ1c2

∫ z2/(1+b1K1(t))
c2
βb1

0

F2(ζ)N0,t

 1

σ1

ln


(

z
ζ

)βb1
c2 − 1

b1K1(t)




(
z
ζ

)βb1
c2

(
z
ζ

)βb1
c2 − 1

1

ζ
dζ

≥ −4βb1
σ1c2

∫ z2/(1+b1K1(t))
c2
βb1

0

(∫
{

k2(t)e
σ2u

1+b2K2(t)e
σ2v ≤ζ

}
∩{v<0}∩{u>v}

N ′
0,t(u− 2v)dudv

)

×N0,t

 1

σ1

ln


(

z
ζ

)βb1
c2 − 1

b1K1(t)




(
z
ζ

)βb1
c2

(
z
ζ

)βb1
c2 − 1

1

ζ
dζ.

2. Using the lower bounds in (8.23) and (8.25) we obtain

P (X(t) ≤ z1, Y (t) ≤ z2) ≤ P
(
L1(t)e

−c1t ≤ z1, L2(t) ≤ z2
)

= P
(
L1(t)e

−c1t ≤ z1
)
P (L2(t) ≤ z2)

= P
(
L1(t) ≤ z1e

c1t
)
P (L2(t) ≤ z2) .

With the help of (8.13) we conclude that

P (X(t) ≤ z1, Y (t) ≤ z2) ≤ 4

∫
{

k1(t)e
σ1u

1+b1K1(t)e
σ1v ≤z1ec1t

}
∩{v>0}∩{u<v}

N ′
0,t(2v − u)dudv

×
∫
{

k2(t)e
σ2u

1+b2K2(t)e
σ2v ≤z2

}
∩{v>0}∩{u<v}

N ′
0,t(2v − u)dudv

3. We now prove (8.42); we know from (8.24) and (8.38) that

X(t) ≥ L1(t)e
− c1

βb2
(1+b1

∫ t
0 G1(v)dv)

c2
βb1 ln(1+b2

∫ t
0 G2(r)dr)

≥ k1(t)e
σ1B1(t)− c1

βb2
(1+b1K1(t)eσ1M1(t))

c2
βb1 ln(1+b2K2(t)eσ2M2(t))

1 + b1K1(t)eσ1M1(t)
.

Hence, we can write

P(X(t) ≤ z1) ≤ P

k1(t)e
σ1B1(t)− c1

βb2
(1+b1K1(t)eσ1M1(t))

c2
βb1 ln(1+b2K2(t)eσ2M2(t))

1 + b1K1(t)eσ1M1(t)
≤ z1


= −4

∫
Az1∩{v1>0,u1<v1,v2>0}

N ′
0,t(2v1 − u1)N0,t(v2)du1dv1dv2,
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where

Az1 :=

(u1, v1, v2) ∈ R3 :
k1(t)e

σ1u1− c1
βb2

(1+b1K1(t)eσ1v1 )
c2
βb1 ln(1+b2K2(t)eσ2v2 )

1 + b1K1(t)eσ1v1
≤ z1

 .

This coincides with (8.42). Moreover, from the lower estimate in (8.23) we get

P(Y (t) ≤ z2) ≤ P(L2(t) ≤ z2);

inequality (8.13) completes the proof of (8.43).

8.6 Discussion

In this paper, we propose a finite-time analysis for the solution of the two dimen-
sional system (8.3) which describes a foraging arena model in presence of environ-
mental noise. We derive in Theorem 160 almost sure upper and lower bounds for
the components on the solution vector; these bounds emphasis the interplay between
the parameters describing the model and different sources of randomness involved
in the system. While such relationship is hardly visible in the description of the
asymptotic behaviour of the solution, our estimates agree, if let the time tend to in-
finity, with the classification in asymptotic regimes obtained by [114]: this is shown
in details in Remark 162. The accuracy of our bounds, which are obtained via a
careful use of comparison theorems for stochastic differential equations, is evident
in the simulations below (see Figures 2-6 below). There we plot for a given set of
parameters the solution of the deterministic version of (8.3), i.e. with σ1 = σ2 = 0,
a computer simulation of the solution of the stochastic equation (8.3) for different
noise intensities and the corresponding upper and lower bounds from Theorem 160.
Then, we utilize the bounds for the solution from Theorem 160 to derive two sided
estimates for some statistical aspects of the solution. More precisely, in Theorem
164 and Theorem 166 we propose upper and lower bounds for the joint moments and
distribution function of the components of the solution vector, respectively. These
estimates are expressed via integrals whose numerical approximation is pretty stan-
dard. Again, the roles of the parameters describing our model are explicitly de-
scribed in the proposed estimates. Figure 7 and Figure 8 below provide a numerical
implementation for the bounds obtained in Theorem 164 for p = q = 1 and a given
set of parameters.
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Figure 8.2: a1 = 1, a2 = 2, b1 = 0.1, b2 = 0.5, c1 = 6, c2 = 0.9, β = 4 σ1 = 0.5,σ2 =
0.3

Figure 8.3: a1 = 2, a2 = 1, b1 = 0.5, b2 = 0.9, c1 = 6, c2 = 4, β = 4 σ1 = 0.5,σ2 = 1.3



198

Figure 8.4: a1 = 2, a2 = 1, b1 = 0.1, b2 = 0.9, c1 = 2, c2 = 4, β = 5 σ1 = 2.5,σ2 = 2.5

Figure 8.5: a1 = 1, a2 = 1, b1 = 0.1, b2 = 0.9, c1 = 2, c2 = 4, β = 5 σ1 = 0.3,σ2 = 0.3
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Figure 8.6: a1 = 1, a2 = 1, b1 = 0.1, b2 = 2, c1 = 3, c2 = 2, β = 5 σ1 = 0.3,σ2 = 0.3

Figure 8.7: a1 = 1, a2 = 1, b1 = 0.1, b2 = 0.9, c1 = 2, c2 = 4, β = 5 σ1 = 0.3,σ2 = 0.3

Figure 8.8: a1 = 1, a2 = 1, b1 = 0.1, b2 = 0.9, c1 = 2, c2 = 4, β = 5 σ1 = 0.3,σ2 = 0.3
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