Baspinar, Emre
  
(2018)
Minimal Surfaces in Sub-Riemannian Structures and Functional Geometry of the Visual Cortex, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. 
 Dottorato di ricerca in 
Matematica, 30 Ciclo. DOI 10.6092/unibo/amsdottorato/8661.
  
 
  
  
        
        
        
  
  
  
  
  
  
  
    
  
    
      Documenti full-text disponibili:
      
        
          
            | ![thesis_baspinar_for_submission.pdf [thumbnail of thesis_baspinar_for_submission.pdf]](https://amsdottorato.unibo.it/8661/7.hassmallThumbnailVersion/thesis_baspinar_for_submission.pdf)  Anteprima | Documento PDF (English)
 - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
 Download (7MB)
              
			  
			  | Anteprima
 | 
        
      
    
  
  
    
      Abstract
      We develop geometrical models of vision consistent with the characteristics of the visual cortex and study geometric flows in the relevant model geometries. We provide a novel sub-Riemannian model of the primary visual cortex, which models orientation-frequency selective phase shifted cortex cell behavior and the associated horizontal connectivity. We develop an image enhancement algorithm using sub-Riemannian diffusion
and Laplace-Beltrami flow in the model framework. We provide two geometric models for multi-scale orientation map and orientation-frequency preference map construction which employ Bargmann transform in high dimensional cortical spaces. We prove the uniqueness of the solution to sub-Riemannian mean curvature flow equation in the Heisenberg group geometry. An iterative diffusion process followed by a maximum selection mechanism was proposed by Citti and Sarti in the sub-Riemannian setting of the roto-translation group. They conjectured that this two-fold procedure is equivalent to a mean curvature flow. However a complete proof was missing, even in the Euclidean setting. We prove in the Euclidean
setting that this two fold procedure is equivalent to mean curvature flow.
     
    
      Abstract
      We develop geometrical models of vision consistent with the characteristics of the visual cortex and study geometric flows in the relevant model geometries. We provide a novel sub-Riemannian model of the primary visual cortex, which models orientation-frequency selective phase shifted cortex cell behavior and the associated horizontal connectivity. We develop an image enhancement algorithm using sub-Riemannian diffusion
and Laplace-Beltrami flow in the model framework. We provide two geometric models for multi-scale orientation map and orientation-frequency preference map construction which employ Bargmann transform in high dimensional cortical spaces. We prove the uniqueness of the solution to sub-Riemannian mean curvature flow equation in the Heisenberg group geometry. An iterative diffusion process followed by a maximum selection mechanism was proposed by Citti and Sarti in the sub-Riemannian setting of the roto-translation group. They conjectured that this two-fold procedure is equivalent to a mean curvature flow. However a complete proof was missing, even in the Euclidean setting. We prove in the Euclidean
setting that this two fold procedure is equivalent to mean curvature flow.
     
  
  
    
    
      Tipologia del documento
      Tesi di dottorato
      
      
      
      
        
      
        
          Autore
          Baspinar, Emre
          
        
      
        
          Supervisore
          
          
        
      
        
          Co-supervisore
          
          
        
      
        
          Dottorato di ricerca
          
          
        
      
        
      
        
          Ciclo
          30
          
        
      
        
          Coordinatore
          
          
        
      
        
          Settore disciplinare
          
          
        
      
        
          Settore concorsuale
          
          
        
      
        
          Parole chiave
          Visual cortex, uniqueness, mean curvature, sub-Riemannian geometry, Laplace-Beltrami, diffusion, orientation map, frequency map
          
        
      
        
          URN:NBN
          
          
        
      
        
          DOI
          10.6092/unibo/amsdottorato/8661
          
        
      
        
          Data di discussione
          14 Maggio 2018
          
        
      
      URI
      
      
     
   
  
    Altri metadati
    
      Tipologia del documento
      Tesi di dottorato
      
      
      
      
        
      
        
          Autore
          Baspinar, Emre
          
        
      
        
          Supervisore
          
          
        
      
        
          Co-supervisore
          
          
        
      
        
          Dottorato di ricerca
          
          
        
      
        
      
        
          Ciclo
          30
          
        
      
        
          Coordinatore
          
          
        
      
        
          Settore disciplinare
          
          
        
      
        
          Settore concorsuale
          
          
        
      
        
          Parole chiave
          Visual cortex, uniqueness, mean curvature, sub-Riemannian geometry, Laplace-Beltrami, diffusion, orientation map, frequency map
          
        
      
        
          URN:NBN
          
          
        
      
        
          DOI
          10.6092/unibo/amsdottorato/8661
          
        
      
        
          Data di discussione
          14 Maggio 2018
          
        
      
      URI
      
      
     
   
  
  
  
  
  
    
    Statistica sui download
    
    
  
  
    
      Gestione del documento: 
      
        