Robust Nonlinear Output Regulation by Identification Tools

Forte, Francesco (2015) Robust Nonlinear Output Regulation by Identification Tools, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Automatica e ricerca operativa, 27 Ciclo. DOI 10.6092/unibo/amsdottorato/6873.
Documenti full-text disponibili:
[img]
Anteprima
Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Download (795kB) | Anteprima

Abstract

The present thesis focuses on the problem of robust output regulation for minimum phase nonlinear systems by means of identification techniques. Given a controlled plant and an exosystem (an autonomous system that generates eventual references or disturbances), the control goal is to design a proper regulator able to process the only measure available, i.e the error/output variable, in order to make it asymptotically vanishing. In this context, such a regulator can be designed following the well known “internal model principle” that states how it is possible to achieve the regulation objective by embedding a replica of the exosystem model in the controller structure. The main problem shows up when the exosystem model is affected by parametric or structural uncertainties, in this case, it is not possible to reproduce the exact behavior of the exogenous system in the regulator and then, it is not possible to achieve the control goal. In this work, the idea is to find a solution to the problem trying to develop a general framework in which coexist both a standard regulator and an estimator able to guarantee (when possible) the best estimate of all uncertainties present in the exosystem in order to give “robustness” to the overall control loop.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Forte, Francesco
Supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze e ingegneria dell'informazione
Ciclo
27
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Adaptive Regulation, Robust Regulation, Output regulation, Nonlinear Internal Models
URN:NBN
DOI
10.6092/unibo/amsdottorato/6873
Data di discussione
10 Aprile 2015
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^