
Alma Mater Studiorum Alma Mater Studiorum ––   Università di BolognaUniversità di Bologna   
 
 

DOTTORATO DI RICERCA IN 
 

AUTOMATICA E RICERCA OPERATIVA 
 

Ciclo XXVII 
 

Settore Concorsuale di afferenza: 09 / G1 – AUTOMATICA 
 
Settore Scientifico disciplinare: ING-INF / 04 - AUTOMATICA 

 
 

ROBUST NONLINEAR OUTPUT REGULATION BY IDENTIFICATION 
TOOLS 

 
 

 
 

Presentata da: Francesco Forte 
 
 
 
 
Coordinatore Dottorato     Relatore 
 
 
Prof. Daniele Vigo                      Prof. Lorenzo Marconi 
 
 

 
 
 

Esame finale anno 2015 
 
 
 





Declaration of Authorship

I, Francesco Forte, declare that this thesis titled, ‘Robust Nonlinear Output Regulation

by Identification Tools’ and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

iii





“The most exciting phrase to hear in science, the one that heralds new discoveries, is

not ‘Eureka!’ but ‘That’s funny...’”

Isaac Asimov





Abstract

The present thesis focuses on the problem of robust output regulation for minimum phase

nonlinear systems by means of identification techniques. Given a controlled plant and an

exosystem (an autonomous system that generates eventual references or disturbances),

the control goal is to design a proper regulator able to process the only measure available,

i.e the error/output variable, in order to make it asymptotically vanishing. In this

context, such a regulator can be designed following the well known “internal model

principle” that states how it is possible to achieve the regulation objective by embedding

a replica of the exosystem model in the controller structure. The main problem shows up

when the exosystem model is affected by parametric or structural uncertainties, in this

case, it is not possible to reproduce the exact behavior of the exogenous system in the

regulator and then, it is not possible to achieve the control goal. In this work, the idea is

to find a solution to the problem trying to develop a general framework in which coexist

both a standard regulator and an estimator able to guarantee (when possible) the best

estimate of all uncertainties present in the exosystem in order to give “robustness” to

the overall control loop. It is important to underline that the design procedure presented

is valid when the steady state control law and its time derivatives up to a certain order

are assumed to satisfy a regression formula with known regression vector. Speaking of

structure, from one side, it is possible to design continuous internal model regulators

by means of high-gain methods; this can be useful to cast everything in a semiglobal

setting and to get really good performance also in presence of unsatisfying identification

performances (the high gain keeps the regulation error bounded and small in any case).

On the other side, the proposed control structure combines continuous time dynamics

and “hybrid identifiers”; the fact of considering hybrid systems is essentially motivated

by the goal of setting up a general framework where many design strategies can be used.

The identifier can model classical continuous adaptive laws developed so far in literature

and also a particular case, typical of the identification field, in which the designer deals

with a sample data set and discrete prediction models. The final idea underlined in the

thesis is the joined work done by the regulator and the identifier to achieve the control

goal; in other words the main interest is the investigation of the interplay between control

and identification in order to develop an overall control structure able to guarantee the

best performances of the loop, estimating the steady state control law by minimizing

the asymptotic regulation error.
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Chapter 1

Introduction

In this chapter the reader can find two main sections: the first is a general introduction

about the work developed in the present thesis, in particular, the state of the art, some

relevant references in the regulation field and the general idea of the problem faced and

solved in the next chapters; the second part describes the structure of the thesis and the

organization.

1.1 General Introduction

Although the nonlinear regulation theory has reached a maturity stage, there are some

crucial aspects still open as far as the design of robust regulators are concerned. In

particular, a systematic design of robust regulators having the so-called internal model

property in presence of steady state laws affected by parametric or structural uncer-

tainties is definitely an open research field. So far, many researchers dealt with this

problem using adaptive techniques as in [1] and [2], while others faced the problem

using techniques typically adopted in the context of adaptive observers design, achiev-

ing interesting results both in the linear and in the nonlinear case and in global and

semi-global context, see [3], [4] and [5]. More recently, some authors have proposed

regression-like methods by developing adaptive and learning algorithms for nonlinear

internal models to deal with uncertainties in the steady state control law, see among

others [6]. Relying on the same philosophy, in [7], the authors have shown how to de-

sign regression-based internal model regulators using static adaptation laws, instead of

standard dynamical estimation schemes, to offset parametric uncertainties in the steady

state control law. Something inherent to the field of hybrid systems has been developed

in [8], in which the interconnection of a feed-forward model of the exosystem with a hy-

brid adaptive law is presented. In this thesis can be found a different perspective to the

1



Chapter 1. Introduction 2

problem of adaptive regulation in which prediction error identification methods, which

are routinely used in robust control contexts ([9], [10]), can be adopted to design robust

nonlinear regulators. The point of departure is the design procedure presented in [11]

in which the steady state control law and its time-derivatives up to a certain order are

assumed to satisfy a regression formula (with known regression vector) by which internal

model regulators can be designed by means of high-gain tools. The regression formula

in this context is thought of as a prediction model relating the “next” time derivative of

the steady state control law to the “previous” derivatives through a unknown regression

vector. The proposed control structure combines continuous-time dynamics and “hybrid

identifiers”, the latter specifically designed to estimate the actual regression vector. The

fact of considering hybrid systems as identifiers is essentially motivated by the goal of

setting up a general framework where many design strategies can be cast. In fact, on

one hand, the proposed approach aims to capture continuous-time adaptive regulator

design procedures, proposed so far in literature, as particular cases. On the other hand,

the aim is to open the doors to identification tools that typically rely on sampling the

available data set and to update the prediction model in a discrete-time fashion. In

this context the kind of result claimed is practical output regulation with an asymptotic

error that depends on the prediction error.

The theory presented in this work is clearly linked to the literature of identification in

connection to robust control design ([9], [10]), and specifically to the issue of interplay

between identification and control (see [12]) according to which identification methods

must be synergistically used with control design methods to optimize closed-loop perfor-

mances. In the actual framework the transient performances of the closed-loop system

are not taken in count. Rather the main interest is to optimize the steady state error

by “synergistically” designing the internal model and the identifier in order to estimate

the steady state control law by minimizing, in some sense, the asymptotic regulation

error. The controller has essentially an high-gain structure with an high-gain observer

estimating the “dirty derivatives” of the ideal steady state control law. The latter are

then processed by an identifier adaptively tuning the internal model.

1.2 Thesis Organization

The thesis is organized as follows:

• In Chapter 2 the basics about nonlinear output regulation are given. Furthermore,

the problem of robustness is analyzed and the main idea is presented;
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• Chapter 3 shows all the mathematical details of the new framework that solves

the problem of robust output regulation;

• In Chapter 4 there are two particular cases of study: the first is the identification of

the uncertain parameters in case of linear parametric model, by means of the well-

known Least Squares method, while the second case deals with a linear parametric

model for what the identification procedure is nested in the regulator structure

allowing a static adaptation;

• In Chapter 5 some simulations on simple examples are reported. The idea is to

validate numerically the theory presented in the previous chapters of the thesis.

• In Chapter 6 there are the conclusions about the work done and eventual future

developments concerning the remaining still open problems of the actual approach.

In the two Appendices there are auxiliary results useful to understand some parts of the

work. In particular these results regard hybrid systems and hybrid input to state stable

Lyapunov functions for that kind of systems and also the small-gain theorem governing

the interconnections of hybrid systems in presence of average dwell-time.





Chapter 2

Nonlinear Output Regulation

Theory

In this chapter, the basics of nonlinear output regulation are shown. In the first section

the emphasis goes on the high-gain tools used to generalize the structure of the regulator,

while the second part deals with the problem of the robustness, giving the idea at the basis

of the overall thesis.

2.1 Nonlinear Output Regulation Background

In this section we briefly recall some basic concepts regarding the nonlinear output

regulation with high gain methods ([13], [11]) that are instrumental for the main result

of the overall work. It is possible to start by considering the following nonlinear system

modeled by equations of the form

ẇ = s(w) (2.1a)

ż = f(z, w, e1) (2.1b)

ėi = ei+1 i = 1, . . . , r − 1 (2.1c)

ėr = q(z, w, e) + b(z, w, e)u. (2.1d)

In the previous system one can recognize two main subsystems: the first, described by

(2.1a), is the so-called exosystem with state w ∈W ⊂ R
s generating possible references

signals to be tracked and/or possible disturbances that must be rejected. The set W

is a compact set that is assumed to be invariant for the exosystem dynamics (2.1a).

The second subsystem is the controlled plant given in (2.1b), (2.1c), (2.1d) in which

5



Chapter 2. Nonlinear Output Regulation Theory 6

(z, e1, . . . , er) ∈ R
n × R

r is the state, u ∈ R is the control input, and e is the regulation

error. All functions in the overall system, i.e. s(·), f(·, ·, ·), q(·, ·, ·) and b(·, ·, ·) are smooth

in their arguments, with the function b(·, ·, ·), the so-called “high-frequency gain” of the

system, that is assumed to be bounded from below by a positive number b, i.e

b(z, w, e) ≥ b > 0 ∀(z, w, e) ∈ R
n ×W × R

r .

The main results presented in the thesis do not rely on perfect knowledge of the functions

s(·), f(·, ·, ·), q(·, ·, ·) and b(·, ·, ·) but rather on certain structural properties that will be

detailed next.

In this framework, the problem of semiglobal asymptotic output regulation can be for-

mulated as follows: given the sets W ⊂ R
s, Z ⊂ R

n and E ⊂ R
r of initial conditions

for the system (2.1a)–(2.1d), design an error-feedback controller with state ξ ∈ R
d, for

some positive d, and initial condition in a compact set Ξ ⊂ R
d such that all trajectories

of the closed-loop system starting from W × Z × E × Ξ are bounded and

lim
t→∞

e(t) = 0

uniformly in the initial conditions.

We shall approach the previous problem under assumptions that are customary in the

literature of output regulation. In particular we assume the existence of a smooth

function π : Rs → R
n that solves the so called “regulator equations”

Ls(w)π(w) =
∂π(w)

∂w
s(w) = f(π(w), w, 0), (2.2)

for all w ∈W . This implies the existence of a compact set

A := {(w, z) ∈W ×R
n : z = π(w)}

that is invariant for the dynamics

ẇ = s(w), ż = f(z, w, 0) . (2.3)

The previous system is the zero dynamics of system (2.1a)-(2.1d) relative to the input

u and to the output e. As in most of the literature about output regulation, we make a

minimum-phase assumption on system (2.3) that is formalized as follows.
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Assumption. (Minimum Phase)

The set A is globally asymptotically and locally exponentially stable1 for (2.3) with a

domain of attraction of the form W × R
n. ⊳

In the design of the regulator a crucial role is played by the function c : W × R
n → R

defined as

c(w, z) = −q(w, z, 0)/b(w, z, 0) . (2.4)

This function is the so-called “friend” associated to the zero dynamics of system (2.1a)–

(2.1d) (see [14]). In the context of output regulation, the output signals generated by

system (2.3) with output (2.4) with initial conditions ranging in A are the steady state

control inputs that must be generated by the controller in order to keep the regulation

error identically to zero. It is thus apparent that system (2.3) restricted to the set A
with output (2.4) plays a crucial role in the design of the regulator.

All the considerations done so far, address the problem of output regulation in the

case of any relative degree for the controlled system. In what follows, without loss of

generality, the problem will be considered for the simpler case of r = 1, the reason this

can be done, follows from classical results about output feedback stabilization briefly

summarized here just for sake of completeness.

First of all, consider the following change of variable for the system (2.1a)-(2.1d)

ei 7→ yi := k−(i−1)
c ei, i = 1, . . . , r − 1,

er 7→ θc := er + kr−1
c a0e1 + kr−2

c a1e2 + · · ·+ kcar−2er−1,

where kc > 1 is a design parameter and the all the other parameters ai, i = 0, . . . , r− 2,

are such that all roots of the polynomial

λr−1 + ar−2λ
r−1 + · · ·+ a1λ+ a0 = 0

have negative real part. After this change of variable, system (2.1a)-(2.1d) becomes a

system of the form

ẇ = s(w)

ż = f(z, w, y1)

ẏ = kcAHy +Bθc

θ̇c = q̃(w, z, y, θc, kc) + b̃(w, z, y, θc, kc)u

(2.5)

1The forthcoming result can be extended to cover the case in which the set A is only locally asymp-
totically stable with a domain of attraction of the form W × D with D an open set of Rn such that
Z ⊂ D.
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where y = (y1, . . . , yr−1), AH is a Hurwitz matrix and q̃, b̃ are smooth functions with

b̃(w, z, y, θc, kc) ≥ b > 0 ∀(z, w, y, θc) ∈ R
n ×W × R

r−1 × R

and for all kc > 0. Note that, by definition, y1 = e1. Let Ẽ ∈ R
r−1 be a compact set

such that e ∈ E → y ∈ Ẽ and note that, if kc > 1, the set Ẽ can be taken independent

on kc. System (2.5), regarded as a system with input u and output θc, has relative

degree one and zero dynamics

ẇ = s(w)

ż = f(z, w, y1)

ẏ = kcAHy.

(2.6)

For such a system, under the minimum phase assumption, can be used classical results

([15]) to show the existence of a k⋆c > 1 such that for all kc ≥ k⋆c , the set A × {0} is

locally asymptotically stable for (2.6), with a domain of attraction of the form W × D̃,

with D̃ ⊃ Z × Ẽ. Suppose now that a controller, function of θc, solves the problem

of output regulation for the system (2.5). This controller is driven by the regulated

variable θc and not by the actual regulated output y1. However, by construction, θc is a

fixed linear combination of the components y, . . . , yr of the partial state e of the original

system (2.1a)-(2.1d). In this case, ei coincides with the (i−1)−th time derivative of the

actual regulated output e1. In order to secure asymptotic convergence to the desired

target set, e1, . . . , er can be replaced by appropriate estimates ê1, . . . , êr provided by a

high gain observer driven only by e1. Using these estimates to replace the expression

of θc in the controller, yields a final regulator able to solve the problem for the original

plant (2.1a)-(2.1d).

On the basis of these arguments, in what follows, it is possible to restrict the discussion

to the case of systems having relative degree r = 1, which, for notational convenience,

are rewritten in the following normal form

ẇ = s(w) (2.7)

ż = f(z, w, e) (2.8)

ė = q(z, w, e) + b(z, w, e)u . (2.9)

As a matter of fact it is a well-known fact ([16]) that the output regulation problem is

solved by a continuous-time regulator if one is able to design smooth functionsM : Rd →
R
d, G : Rd → R

d×1, and γ : Rd → R, such that, for some smooth function τ : Rs → R
d
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and with T the compact set defined as

T := {(w, ξ) ∈W × R
d : ξ = τ(w)} ,

the set A× T is locally asymptotically stable for the system

ẇ = s(w), ż = f(w, z, 0), ξ̇ =M(ξ) +G(ξ)c(w, z) (2.10)

with a domain of attraction W ×R
n×C with C an open set of Rd satisfying C ⊃ Ξ, and,

in addition,

γ(τ(w)) = c(w, π(w)) ∀w ∈W . (2.11)

In this context, in fact, the continuous-time controller that solves the problem at hand

is a system of the form

ξ̇ =M(ξ) +G(γ(ξ) + v)

u = γ(ξ) + v , v = −κ(e)
(2.12)

where κ(·) is a properly defined class-K function. As a matter of fact, the closed loop

system given by (2.7)–(2.9) and (2.12) is a system that has relative degree one relative to

the input v and output e and has a zero dynamics precisely given by (2.10). Furthermore,

due to (2.11), the set A×T ×{0} is an invariant set for the closed loop system with v = 0.

Under these circumstances, standard high-gain arguments can be used to show that an

“high-gain” function2 κ(·) succeeds in making the set A×T ×{0} locally asymptotically

stable with a domain of attraction containing the compact set of initial conditions.

As shown in [17], functions M(·), G(·) and γ(·) with the desired properties can be

always constructed by following a design procedure that, however, is not, in general,

constructive. A relevant context where a constructive design procedure can be given is

the one originally presented in [11] in which, by letting u⋆ : W → R the restriction of

(2.4) to the set A defined as

u⋆(w) = c(w, π(w)) , (2.13)

it is asked that the following regression formula

Ld
s(w)u

⋆(w) = ϕ(u⋆(w), Ls(w)u
⋆(w), . . . , Ld−1

s(w)u
⋆(w)), ∀w ∈W (2.14)

is fulfilled for some positive d and some known locally Lipschitz function ϕ : Rd → R.

In this case, in fact, the theory of high-gain observers ([18]) can be used to show that

2The κ(e) can be indeed taken as a linear function ke with k a sufficiently large gain if the set A×T

is also locally exponentially stable for (2.10).
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the above properties are fulfilled with

G(ξ) = G := col(λ1g, λ2g
2, . . . , λdg

d) , (2.15)

where g is a design parameter and the λi’s that are coefficients of an Hurwitz polynomial,

M(ξ) := col(ξ2, . . . , , ξd, , ϕs(ξ))−Gξ1 , (2.16)

where ϕs(·) is a uniformly bounded and locally Lipschitz function, and γ(ξ) = ξ1. By

choosing M(·), G, and γ(·) in this way, by letting

τ(w) = col(u⋆(w), . . . , Ld−1
s(w)u

⋆(w)) , (2.17)

and by choosing ϕs(·) so that it agrees with ϕ(·) for all ξ = τ(w), w ∈ W , it turns out

that there exists a g⋆ > 1 (depended on the Lipschitz constant and on the bound of

ϕs(·)) such that the set A × T is locally asymptotically stable for (2.10) and (2.11) is

fulfilled.

The previous high-gain design methodology can be also proved to be robust to possible

residual bias in the relation (2.14). Specifically, in [7] it has been shown that if there

exists a known locally Lipschitz function ϕ : Rd → R such that, instead of (2.14),

Ld
su

⋆(w) = ϕ(u⋆(w), Lsu
⋆(w), . . . , Ld−1

s u⋆(w)) + ν(w), ∀w ∈W (2.18)

for some continuous function ν : W → R, then there exists g⋆ > 1, only dependent on

the Lipschitz constant of ϕ(·), such that for all g ≥ g⋆ the same regulator presented

above guarantees that the closed-loop trajectories originating from the given compact

sets are bounded and the regulation error fulfils

lim
t→∞

sup ‖e(t)‖ ≤ c

gd+1
max
w∈W

‖ν(w)‖ (2.19)

where c is a positive constant. Practical, instead of asymptotic, regulation is thus

achieved with a residual error that depends on the entity of the residual bias ν(w).

2.2 The Issue of Robustness and Main Idea

The previous high-gain framework and relation (2.14) are at the basis of the robust

regulator design. The main idea developed in the thesis is to regard the function ϕ(·)
in (2.14) as unknown and to estimate it on line by adopting prediction error identi-

fication methods, [9]. In particular, relation (2.14) is regarded as a prediction model
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of the d-th time derivative of the signal u⋆(w(t)) at time t using the regression vector

(u⋆(w(t)), Lsu
⋆(w(t)), . . . , Ld−1

s u⋆(w(t))), with the identification objective that is to es-

timate the function ϕ(·) “best fitting” the data associated to the actual u⋆(w(t)). The

goal is to design a practical regulator in which the asymptotic bound on the closed-loop

regulation error is a function of the asymptotic value of the prediction error between the

actual value of the d-th time derivative of the signal u⋆(w(t)) and its estimated value

obtained by processing the regression vector.

If the signal u⋆(w(t)) and its derivative up to the order d were known, the problem could

be addressed by running identification algorithms to compute the best fitting function

from the data set. Since u⋆(w(t)), . . . , Ld
su

⋆(w(t)) are not measurable in our output

regulation context, the idea that is pursued in the thesis is to estimate their value by

employing the “dirty derivative” (using the terminology in [19]) features of the internal

model of the form indicated in the previous section. Namely, the ability of the ξ-system in

(2.10), with M(·) and G given in (2.16) and (2.15) to roughly estimate asymptotically

the function u⋆(t) and its time derivative up to the order d − 1, with an estimation

error that can be arbitrarily decreased by increasing g, regardless the specific form of

ϕs(·) in (2.16) (provided that a bound on the Lipschitz constant is fixed). Since the

identification problem potentially requires the knowledge also of Ld
su

⋆(w), the regulator

that is presented later has dimension d + 1, namely one more with respect to the one

presented above. The extra state variable ξd+1, that is redundant as far as the internal

model property is concerned, has precisely the role of providing a “dirty estimate” of

Ld
su

⋆(w) that is used in the identification algorithm.

In the present approach, the dynamical system providing the estimation of the d-th

derivative according to the regression vector is an hybrid system combining continuous

and discrete-time dynamics, [20]. The fact of considering hybrid systems as identifiers is

essentially motivated by the goal of setting up a general framework where many design

strategies can be cast. In fact, on one hand, the proposed approach aims to capture

continuous-time adaptive regulator design procedures, proposed so far in literature, as

particular cases. On the other hand, the aim is to open the doors to identification tools

that typically rely on sampling the available data set and to update the prediction model

in a discrete-time fashion. The jump times and flow intervals of the hybrid identifier

will be triggered by a clock variable that will be required to fulfill average dwell time

and reverse average dwell time constraints (see [21]) in order to enforce appropriate

asymptotic properties to the closed-loop system. From a formal view point the clock

hybrid dynamics will be described by differential and algebraic inclusions able to model

a number clock dynamics that are not necessarily uniform in time. From a practical

view point the clock will be triggered by a “supervisor” selecting the appropriate flow

and jump rule for the identifier according to real-time information. Fast or slow clock
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timing can be dynamically selected according to the available data (such as the actual

value of regulation error) and the a priori knowledge of the exogenous dynamics. The

requirement behind the hybrid identifiers will be given in a quite general setting as

presented in the next chapters. A schematic of the control structure is shown in Figure

2.1. The final observation is that in the proposed framework the dimension d of the

regulator can be regarded as an independent design parameter to be chosen also in

relation to real-time and implementation constraints (which, very often, prevent one to

choose large value of d). The choice of d, in general, entails a trade off between the

minimization of the asymptotic error bound (typically asking for large values of d) and

the computational burden that typically limits the maximum value of d.

Plant

Internal Model

Identifier

Supervisor

u e

ϕ̂ ξe clock

Figure 2.1: Schematic of the control structure.



Chapter 3

Robust Nonlinear Output

Regulation

In the actual chapter the idea is to present all the mathematical details of the main idea

shown in Section 2.2 for achieving robust regulation. The first section gives the tools

for the construction of the overall regulator; the second section proposes the fundamental

requirements for the identifier (used for the best estimation of all the uncertainties in

the regulation scheme), while the third section analyzes the asymptotic properties of the

overall control loop, i.e the interconnection between the controlled plant, the regulator

and the identifier (Figure 2.1).

3.1 The Regulator Structure

In this paragraph it is shown the structure of the overall controller able to guarantee the

regulation to zero of the considered plant. In details, first of all, consider the identifier

as an hybrid dynamical system whose flow dynamics and jump map are described by

η̇c ∈ Fc(ηc)

η̇e = Fe(ηe, uη)

}

(ηc, ηe, uη) ∈ Cc × R
m × R

d+1

η+c ∈ Jc(ηc)

η+e = Je(ηe, uη)

}

(ηc, ηe, uη) ∈ Dc × R
m × R

d+1

(3.1)

with output

ϕ̂ = Γη(ηe, uη1) (3.2)

13
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where (ηc, ηe) ∈ R×R
m, m > 0, Fc : Cc ⇒ R and Jc : Dc ⇒ R are outer semicontinuous

and locally bounded set-valued functions, Cc and Dc are closed intervals of R, uη =

col(uη1, uη2), with uη1 ∈ R
d and uη2 ∈ R, is a vector of inputs, and Fe : R

m×R
d+1 → R

m,

Je : Rm × R
d+1 → R

m and Γη : Rm × R
d → R are smooth functions, with Je(·) and

Γη(·) that are globally Lipschitz. The scalar variable ηc plays the role of clock governing

the length of the flow intervals and the jump times according to the definition of the

flow and jump sets Cc and Dc. Both discrete-time and continuous-time dynamics can

be captured by the previous description.

With τ(w) defined as in (2.17), the hybrid identifier (3.1) should be ideally driven by

the inputs uη1 = τ(w), representing the regression vector in the interpretation given in

Section 2.2, and uη2 = Ld
su

⋆(w), representing the “next” derivative, yielding an estimate

ϕ̂(t) = Γη(η(t), τ(w(t))) able to best predict Ld
su

⋆(w(t)) on the basis of the values of the

regression vector. Since τ(w) and Ld
su

⋆(w) are not accessible, the hybrid identifier (3.1)

is fed with the state ξe = col(ξ, ξd+1), ξ ∈ R
d, ξd+1 ∈ R, of an “extended” internal model

unit1, namely

uη1 = ξ , uη2 = ξd+1 , (3.3)

governed by the hybrid system

ξ̇e =

(

ξ̇

ξ̇d+1

)

=

(

Sξ +Bξd+1 +Gv

Γ′
ηs(η, ξe) + λd+1g

d+1v

)

(ξe, η, v) ∈ R
d+1 × (Cc ×R

m)× R

ξ+e =

(

ξ+

ξ+d+1

)

=

(

ξ

Γη(Je(ηe, ξe), ξ)

)

(ξe, η, v) ∈ R
d+1 × (Dc × R

m)×R

u = Cξ + v

(3.4)

where (S,B,C) ∈ R
d×d×R

d×1×R
1×d is a triplet in prime form2, G is defined in (2.15),

g is a design parameter, the λi i = 1, . . . , d+1, are coefficients of an Hurwitz polynomial,

v is a residual input and Γ′
ηs : Rm × R

d → R is a locally Lipschitz bounded function

obtained by appropriately saturating the function

Γ′
η(ηe, ξe) =

∂Γη(ηe, ξ)

∂η
Fη(ηe, ξe) +

d∑

i=1

∂Γη(ηe, ξ)

∂ξi
ξi+1 . (3.5)

1The adjective “extended” has to be interpreted with respect to the internal model considered in
Section 2.1 of dimension d.

2That is S is a shift matrix (all 1’s on the upper diagonal and all 0’s elsewhere), BT = (0 · · · 0 1)
and C = (1 0 · · · 0).
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Details on how the saturation level of Γ′
ηs(·) has to be chosen are presented later. The

regulator is thus (3.1), (3.3), (3.4) where v is the residual input that will be chosen as

v = −κe

with κ a design parameter.

The flow time intervals and the times at which jumps occur are uniquely determined

by the clock dynamics. The fact of modeling the latters as differential and algebraic

inclusions allows one for considering a number of clock timing not necessarily “uniform”

in time. Fast and slow clocks might be dynamically triggered according to real time

information. The only constraint that will be imposed by the forthcoming analysis to

the clock dynamics is to fulfill average and reverse average dwell-time conditions. In

particular, to make sure that continuous-time dynamics present in the loop exhibit their

asymptotic properties, the forthcoming stability analysis will rely upon a condition ask-

ing that flow intervals are “persistently” present and last “in the average” a guaranteed

amount of time. From a formal viewpoint the notion of average dwell-time ([22]) is

used to rigorously fix the required property. I would like to recall ([22]) that the clock

subsystem satisfies an average dwell-time if there exist N0 > 1 and δ > 0 such that of

all (t, j) and (s, i) belonging to the hybrid time domain of the clock with t + j > s + i

the following holds

j − i ≤ δ(t− s) +N0 . (3.6)

In the previous relation 1/δ denotes the average dwell-time, while N0 denotes the max-

imum number of consecutive jumps that might occur not separated by flow intervals.

The average-dwell time condition expressed above might be eventually completed with

a “reverse” condition asking that clocks are also “persistently” enforced. This condition

might be crucial in order to design the hybrid identifier with the desired asymptotic

properties detailed in the next Section 3.2 in certain discrete-time identification settings

(as, for instance, in the case presented in Section 4.1). From a formal viewpoint the no-

tion of reverse average dwell-time ([21]) is used to rigorously fix the required property. I

would like to recall ([21]) that the clock subsystem satisfies a reverse average dwell-time

if there exist N0 > 1 and δ > 0 such that of all (t, j) and (s, i) belonging to the hybrid

time domain of the clock with t+ j > s+ i the following holds

t− s ≤ δ(j − i) +N0δ . (3.7)
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3.2 Identifier Design Requirements

A crucial role in achieving small (possibly zero) asymptotic regulation error will be

clearly played by the design of the hybrid identifier (3.1), namely by the design of the

functions Fe(·), Je(·) and Γη(·), and of the sets Fc, Jc, Cc and Dc. According to the

identification literature ([9]), the design of the identifier entails the choice of a certain

model structure for the function ϕ(·) and to choose an estimation method to select

the “best” member in the family defined by the model structure. In the selection of

the model structure, different approaches can be followed in relation to the amount

of knowledge about the steady state input (and, specifically, about the fulfillment of a

relation of the form (2.14)) one has a priori, and to the value of d governing the dimension

of the regulator. Gray box models, in which the candidate model for ϕ(·) is properly

parametrized by using, for instance, linear regression laws, as well as black-box models

are possible alternatives ([9]). About the estimation method, minimization of estimation

functional of some function of the prediction error, such as least squares methods, are

routinely adopted. The methods are typically “trajectory based”, namely optimization

is performed with respect to a specific data set. In our context the specific data set with

respect to which optimization is performed is given by the steady state input u⋆(w(t))

associated to the specific exosystem trajectory w(t).

The requirements assumed for the design of this system are precisely presented below.

The first requirement is existence of an exponentially stable “steady-state” for (3.1)

driven by the “ideal” input uη = col(τ(w), Ld
su

⋆(w)) (denoted by ηe = σ(ηc, w) in the

following). As (3.1) is not driven by the ideal input (τ(w), Ld
su

⋆(w)) but, rather, by the

available dirty derivatives state col(ξ, ξd+1), a robustness property of such a steady state

is required. It is given in terms of input-to-state stability with respect to a disturbance,

referred to as de in the following, additive to the ideal input (τ(w), Ld
su

⋆(w)). The

previous properties are the ones playing a role in the asymptotic stability analysis. In

addition, it is assumed that the output Γη(·) of (3.1) evaluated along the steady state

trajectory of the identifier is the “best guess” of the “next” time derivatives Ld
su

⋆(w),

namely the function able to minimize the prediction error (which will be denoted by ε).

In the following we refer to J(ε) the functional that is behind the selection of the best

guess. The expression of J(ε) is deliberately left unspecified at this level of the analysis

since it does not affect the stability analysis. A possible choice is then presented in

Section 4.1 when a specific hybrid identifier is designed.

From sake of compactness, we rewrite system (3.1) as

η̇ ∈ Fη(η, uη) (η, uη) ∈ Cη ×R
d+1

η+ ∈ Jη(η, uη) (η, uη) ∈ Dη × R
d+1
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where η = col(ηc, ηe), and where the set-valued functions Fη(·), Jη(·), and the flow and

jump sets Cη, Dη are suitably defined. Furthermore, we let τe : Rs → R
d+1 be the

smooth function defined as

τe(w) = col(τ(w), Ld
su

⋆(w)) .

Identifier Design Requirement.

The hybrid system (3.1) with output (3.2) is said to satisfy an “Identifier Design Re-

quirement” if the following properties hold:

(a) there exists a smooth function σ : R× R
s → R

m such that the hybrid system

ẇ = s(w)

η̇ ∈ Fη(η, τe(w) + de)

}

(w, η, τe(w) + de) ∈W × Cη × R
d+1

w+ = w

η+ ∈ Jη(η, τe(w) + de)

}

(w, η, τe(w) + de) ∈W ×Dη × R
d+1

(3.8)

is pre-ISS (Input-to-State Stable) with respect to the input de relative to the set

B = {(w, η) ∈W × (Cη ∪Dη) : ηe = σ(ηc, w)}

without restrictions on the initial state and non-zero restriction on the input, and

with linear asymptotic gain. That is (see [23]), there exists a locally Lipschitz

function Vη :W × R
m+1 → R≥0, such that the following holds:

– there exist locally linear K∞ functions αη, ᾱη such that for all (w, η) ∈ W ×
R
m+1

αη(‖(w, η)‖B) ≤ Vη(w, η) ≤ ᾱη(‖(w, η)‖B) ;

– there exist positive r, χη and cη , such that for all (w, η) ∈W ×Cη and for all

de fulfilling ‖de‖ ≤ r we have

Vη(w, η) ≥ χη‖de‖ ⇒ V o
η ((w, η), v) ≤ −cη(Vη(w, η))

∀ v ∈
(

s(w)

Fη(η, τe(w) + de)

)

;

– there exists a positive constant λη < 1 such that for all (w, η) ∈W ×Dη and

for all de fulfilling ‖de‖ ≤ r we have, with the same χη as in the previous
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item,

Vη(v) ≤ max{ληVη(w, η) , χη‖de‖}

∀ v ∈
(

s(w)

Jη(η, τe(w) + de)

)

.

(b) Let ε : Rs × R → R be the smooth prediction error function defined as

ε(ηc, w) = Ld
su

⋆(w)− Γη(σ(ηc, w), τ(w)) . (3.9)

Then, for all ηc(t, j) ∈ Cc ∪Dc solution of the clock subsystem in (3.1) and for all

w(t, j) ∈W solution of the exosystem, the hybrid identifier is optimal with respect

to some estimation functional J(ε(ηc(t, j), w(t, j))).

With the function σ(·) introduced in the item (a) above, the tuning of the regulator

(3.1), (3.3), (3.4) can be then completed by specifying Γ′
ηs(ηe, ξe) as any locally Lipschitz

bounded function that agrees with Γ′
η(ηe, ξe) for all (η, ξe) ∈ (Cη ∪Dη)×R

d+1 such that

‖(w, η)‖B ≤ c, ‖(w, ξe)‖grτe ≤ c for some positive c, where

gr τe = {(w, ξe) ∈W × R
d+1 : ξe = τe(w)} .

3.3 Asymptotic Properties of the Closed-Loop System

In this section we are going to study the asymptotic properties of the closed-loop system.

We will show how, for an appropriate tuning of the regulator, the resulting closed-loop

hybrid system is pre-ISS relative to a compact set, whose projection on the error space is

the origin, with respect to a “disturbance” input given by the prediction error ε(ηc, w).

The overall closed-loop system is a hybrid system flowing according to

ẇ = s(w)

ż = f(z, w, e)

ξ̇e =

(

ξ̇

ξ̇d+1

)

=

(

Sξ +Bξd+1 +Gv

Γ′
ηs(ηe, ξe) + λd+1g

d+1v

)

η̇ ∈ Fη(η, ξe)

ė = q(z, w, e) + b(z, w, e)(Cξ − κe) .

when (w, z, ξe, η, e) ∈W × R
n × R

d+1 × Cη × R, and jumping according to

w+ = w z+ = z

ξ+ = ξ ξ+d+1 = Γη(Je(ηe, ξe), ξ)

η+ ∈ Jη(η, ξe) e+ = e
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when (w, z, ξe, η, e) ∈ W × R
n × R

d+1 ×Dη × R. By letting x = col(w, z, ξe, ηe, e) such

a system is rewritten in compact form as

η̇c ∈ Fc(ηc)

ẋ = Fx(x)

}

(ηc,x) ∈ Cc × Cx ,

η+c ∈ Jc(ηc)

x+ = Jx(x)

}

(ηc,x) ∈ Dc ×Dx (3.10)

where the functions Fx(·), Jx(·) and the sets Cx, Dx are appropriately defined. The main

result is presented in the next theorem claiming that the regulation error is asymptot-

ically bounded by a (linear) function of the prediction error provided that the clock

subsystem satisfies an average dwell-time.

Theorem 3.1. Consider the closed-loop system (3.10) with the zero dynamics of the

regulated plant fulfilling the minimum-phase assumption and with system (3.1) fulfilling

the identifier design requirement. Furthermore, for all (t, j) and (s, i) belonging to the

hybrid time domain of (3.10) such that t + j > s + i, assume that the average dwell

time condition (3.6) is fulfilled for some δ ≥ 0 and N0 ≥ 1. Then, for any compact set

X ⊂ W × R
n × R

d+1 × R
m × R, there exist δ⋆ > 0, g⋆ > 0 and κ⋆(g) > 0 such that for

all δ ∈ (0, δ⋆), g ≥ g⋆, κ ≥ κ⋆(g), and for all (t, j) belonging to the hybrid time domain

of (3.10) with flow and jump sets restricted to Cc × (Cx ∩ X) and Dc × (Dx ∩X) the

following holds

lim
t+j→∞

sup |e(t, j)| ≤ ρ lim
t+j→∞

sup |ε(ηc(t, j), w(t, j))| (3.11)

with ρ a positive constant. ⊳

It is worth noting that the asymptotic estimate (3.11) holds as long as the state of

the closed-loop system remains in a fixed (arbitrarily large) compact set X, with the

latter that affects the value of δ, g and κ. Namely, the result is semiglobal in the state.

Forward invariance of the set X by the closed-loop system is not claimed in the theorem.

In case the trajectories exit from the restricted flow and jump set, the solution stop to

exist according to the result above. However, arguments similar to the ones that are

used below show that the same control structure can force the state of the closed-loop

system, with initial value in any arbitrary compact set, to be bounded for sufficiently

high value of δ, g and κ.

The proof of Theorem 3.1 is presented in the rest of the section.
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The closed-loop system has unitary relative degree between the input v and the output

e and zero dynamics described by the hybrid system flowing according to

ẇ = s(w)

ż = f(z, w, 0)

ξ̇ = Sξ +G(c(z, w) − Cξ)

ξ̇d+1 = Γ′
ηs(ηe, ξe) + λd+1g

d+1(c(z, w) − Cξ)

η̇ ∈ Fη(η, ξe)

when (w, z, ξe, η) ∈W × R
n × R

d+1 × Cη, and jumping according to

w+ = w

z+ = z

ξ+ = ξ

ξ+d+1 = Γη(Je(ηe, ξe), ξ)

η+ ∈ Jη(η, ξe)

when (w, z, ξe, η) ∈W×R
n×R

d+1×Dη. In the following we study the asymptotic prop-

erties of the zero dynamics. It is worth regarding such a system as the interconnection

of three subsystems. The first is the hybrid system

η̇c ∈ Fc(ηc)

ẇ = s(w)

ξ̇ = Sξ +G(c(z, w) − Cξ)

ξ̇d+1 = Γ′
ηs(ηe, ξe) + λd+1g

d+1(c(z, w) − Cξ)







(η,w, z, ξe) ∈ Cη ×W × R
n × R

d+1

η+c ∈ Jc(ηc)

w+ = w

ξ+ = ξ

ξ+d+1 = Γη(Je(ηe, ξe), ξ)







(η,w, z, ξe) ∈ Dη ×W × R
n × R

d+1

(3.12)

regarded as a system with state (ηc, w, ξe) and exogenous inputs (w, z, ηe), interconnected

to a second hybrid system that is the system (3.8) with state η and input de taken as

de := ξe − τe(w). The previous interconnection is then in cascade with the continuous-

time system given by (2.3), see Figure 3.1. We will show that such a interconnection is

pre-ISS relative to a certain compact set with respect to an exogenous input represented

by the prediction error (3.9). To this purpose we start by studying system (3.12) that,
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by letting ς = col(w, ξe), is compactly rewritten as

η̇c ∈ Fc(ηc) , ς̇ = Fς(ς, (w, ηe, z))

η+c ∈ Jc(ηc) , ς+ = Jς(ς, (w, ηe, z))
(3.13)

with flow and jump conditions respectively given by (η, ς, z) ∈ Cη×Cς×R
n and (η, ς, z) ∈

Dη×Dς×R
n, where the functions Fς(·), Jς(·) and the sets Cς andDς are properly defined.

The next result shows that if g is taken large and if an average dwell-time constraint is

fulfilled between consecutive jumps of the clock, then the system is pre-ISS relative to

a compact set with respect to inputs given by the prediction error ε(ηc, w) and by the

functions ℓ1(w, z), ℓ2(η,w) defined as

ℓ1(w, z) = c(w, z) − u⋆(w) , ℓ2(η,w) = ηe − σ(ηc, w) .

ε(ηc, w)

ℓ1(w, z)

ℓ2(η, w)
de = ξe − τe(w)(w, z) (ηc, w, ξe)

(w, η)

Figure 3.1: A graphical sketch of the zero dynamics hybrid interconnection.

Proposition 3.2. With τ̄e : (Cc ∪Dc)×W → R
d+1 the locally Lipschitz function

τ̄e(ηc, w) = col(τ(w) , Γη(σ(ηc, w), τ(w))) ,

let C be the compact set defined as

C = {(ηc, w, ξe) ∈ (Cc ∪Dc)×W × R
d+1 : ξe = τ̄e(ηc, w)} .

Furthermore, for all (t, j) and (s, i) belonging to the hybrid time domain of (3.10) such

that t+ j > s+ i, assume that the average dwell time condition (3.6) is fulfilled for some

δ ≥ 0 and N0 ≥ 1.

Then, there exist δ⋆1 > 0 and g⋆1 > 0 such that for all positive δ ≤ δ⋆1 and g ≥ g⋆1, system

(3.12) is pre-ISS relative to the set C with respect to the inputs ε(·), ℓ1(·) and ℓ2(·) with
linear asymptotic gains. Furthermore, for all compact set Z ⊂ R

n and positive constants
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T and ǫ, there exists a g⋆2 > 0 such that for all g ≥ g⋆2 the following holds

‖ξe(t, j)− τe(w(t, j))‖ ≤ ǫ

for all t ≥ T and (t, j) belonging to the hybrid time domain of (3.13) with flow and jump

sets respectively given by Cη ×Cς × Z and Dη ×Dς × Z. ⊳

The proof of the proposition is presented in Appendix A. For the following developments

it is worth noting that the property of pre-ISS with respect to the set C claimed in

the proposition is equivalent (see [21]) to the existence of a locally Lipschitz function

Vς : (Cc ∪Dc)× (Cς ∪Dς) → R≥0, such that the following holds:

• there exist positive constants ας , ᾱς such that for all (ηc, ς) ∈ (Cc∪Dc)×(Cς ∪Dς)

ας ‖(ηc, ς)‖C ≤ Vς(ηc, ς) ≤ gd ᾱς ‖(ηc, ς)‖C ; (3.14)

• there exist positive χς and cς , such that for all (η, ς, z) ∈ Cη × Cς × R
n we have

Vς(ηc, ς) ≥ χς max{gd|ℓ1(w, z)| ,
1

g
‖ℓ2(η,w)‖ , |ε(ηc , w)|}

⇒ V o
ς ((ηc, ς), v) ≤ −cςVς(ηc, ς) ;

for all v ∈ col(Fc(ηc), Fς(ς, (w, ηe, z)));

• there exists a positive λς with λς < 1, such that for all (η, ς, z) ∈ Dη ×Dς ×R
n we

have, with the same χς as in the previous item,

Vς(v) ≤ max{λςVς(ηc, ς) , χς |ℓ1(w, z)| , χς‖ℓ2(η,w)‖ , χς |ε(ηc, w)|}

for all v ∈ col(Jc(ηc), Jς(ς, (w, ηe, z))).

We now consider the interconnection of system (3.12) and system (3.8) that, denoting

by χ = col(ς, w, ηe) the combined state, is compactly rewritten as

η̇c ∈ Fc(ηc) , χ̇ = Fχ(χ, (w, z)) (ηc, χ, w, z) ∈ Cc × Cχ ×W × R
n

η+c ∈ Jc(ηc) , χ+ = Jχ(χ, (w, z)) (ηc, χ, w, z) ∈ Dc ×Dχ ×W × R
n

(3.15)

where the functions Fχ(·), Jχ(·) and the sets Cχ, Dχ ara properly defined. This system

is studied by restricting the state χ to an arbitrary compact set denoted by Kχ, namely

we restrict the flow and jump sets of (3.15) respectively to Cc × (Cχ ∩Kχ) ×W × R
n

and Dc × (Dχ ∩Kχ)×W ×R
n.
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As far as system (3.8) is concerned, let (ηcp, wp) ∈ (Cc ∪Dc)×W be such that

‖(ηc, w, ξe)‖C = ‖(ηc, w, ξe)− (ηcp, wp, ξe,p)‖

with ξe,p = τ̄e(ηcp, wp) and note that the input de can be bounded as (using the fact

that τ̄e(·) is locally Lipschitz and that Cc, Dc and W are compact)

‖de‖ = ‖ξe − τe(ηc, w)‖ = ‖ξe − τ̄e(ηc, w) + τ̄e(ηc, w) − τe(ηc, w)‖
≤ ‖ξe − τ̄e(ηc, w)‖ + ‖τ̄e(ηc, w) − τe(ηc, w)‖
= ‖ξe − τ̄e(ηc, w)‖ + |ε(ηc, w)|
= ‖ξe − ξep + ξep − τ̄e(ηc, w)‖ + |ε(ηc, w)| ≤

‖ξe − ξep‖+ ‖ξep − τ̄e(ηc, w)‖ + |ε(ηc, w)|
≤ ‖(ηc, ς)‖C + ‖τ̄e(ηcp, wp)− τ̄e(ηc, w)‖ + |ε(ηc, w)|
≤ ‖(ηc, ς)‖C + τ̄‖(ηcp, wp)− (ηc, w)‖ + |ε(ηc, w)|

≤ (1 + τ̄)‖(ηc, ς)‖C + |ε(ηc, w)| ≤
(1 + τ̄)

ας

Vς(ηc, ς) + |ε(ηc, w)| .

Using the previous bound and the conditions fulfilled by Vη(w, η) according to the hybrid

identifier requirements, it turns out that for all (ηc, χ) ∈ Cc × (Cχ ∩Kχ) we have that

if ‖de‖ ≤ r

Vη(w, η) ≥ χ′
η max{Vς(ηc, ς) , |ε(ηc, w)|} ⇒ V o

η ((w, η), v) ≤ −cηVη(w, η) (3.16)

for all v ∈ col(s(w) , Fη(η, τe(w) + de)), where χ
′
η is a positive constant. Furthermore,

for all (ηc, χ) ∈ Dc × (Dχ ∩Kχ) we have that if ‖de‖ ≤ r then

Vη(v) ≤ max{ληVη(w, η) , χ′
ηVς(ηc, ς) , χ

′
η|ε(ηc, w)|} (3.17)

for all v ∈ col(s(w) , Jη(η, τe(w) + de)), where, without loss of generality, the constant

χ′
η has been taken the same as the one considered during flows.

We consider now the ς-subsystem. By using the same arguments used above to bound

de, using this time the fact that σ(·) is locally Lipschitz and that αη(·) is locally linear,

it possible to claim the existence of constants cℓ > 0 and aℓ such that

‖ℓ2(w, η)‖ ≤ cℓ‖(w, η)‖B ≤ cℓα
−1
η (Vη(w, η)) ≤ aℓVη(w, η)

for all (ηc, χ) ∈ Cc× ((Cχ ∪Dχ)∩Kχ). Using this bound and Proposition 3.2, it follows

that for all (ηc, χ, (w, z)) ∈ Cc × (Cχ ∩Kχ)× (W × R
n)

Vς(ηc, ς) ≥ χ′
ς max{gd |ℓ1(w, z)| ,

1

g
Vη(w, η) , |ε(ηc , w)|}

⇒ V o
ς ((ηc, ς), v) ≤ −cςVς(ηc, ς)

(3.18)
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for all v ∈ col(Fc(ηc), Fς(ς, (w, η, z))), where χ
′
ς is a positive constant. Furthermore, for

all (ηc, χ, (w, z)) ∈ Dc × (Dχ ∩Kχ)× (W ×R
n)

Vς(v) ≥ max{λςVς(ηc, ς) , χ′
ς |ℓ1(w, z)| , χ′

ςVη(w, η) , χ
′
ς |ε(ηc, w)|} (3.19)

for all v ∈ col(Jc(ηc), Jς(ς, (w, η, z))), where χ
′
ς is a positive constant taken, without loss

of generality, equal to the one used during flows. Now let g⋆3 be such that

g⋆3 > χ′
ς χ

′
η .

Using (3.16), (3.17), (3.18), (3.19), and the fact that the hybrid system under study

satisfies an average dwell-time between two consecutive jumps, it turns out that for all

g ≥ g⋆3 the interconnection of system (3.12) is pre-ISS relative to the set B × C. As a

matter of fact, by following [24], it turns out that a hybrid time domain of the clock

subsystem that satisfies (3.6) necessarily coincides with the domain of some solution of

the hybrid system flowing according to η̇c ∈ [0, δ] if ηc ∈ [0, N0], and jumping according

η+c = ηc−1 if ηc ∈ [1, N0]. This implies that system (3.15), given by the interconnection

of system (3.12) with system (3.8), fits in the framework of Theorem B.2 in Appendix

B. In particular, there exist a3 δ⋆2 > 0 and a locally Lipschitz function Vχ : (Cc ∪
Dc)× ((Cχ ∪Dχ) ∩Kχ) → R≥0 such that for all positive dwell-time δ ≤ δ⋆2 and for all

g ≥ max{g⋆1 , g⋆3} the following holds

• the exist locally linear class-K∞ functions αχ(·) and ᾱχ(·) such that for all (ηc, χ, (w, z)) ∈
(Cc ∪Dc)× (Cχ ∪Dχ) ∩Kχ)× (W × R

n)

αχ(‖(ηc, χ)‖B×C) ≤ Vχ(ηc, χ) ≤ ᾱχ(‖(ηc, χ)‖B×C) ;

• for all (ηc, χ, (w, z)) ∈ Cc × (Cχ ∩Kχ)× (W × R
n) we have that if ‖de‖ ≤ r then

Vχ(ηc, χ) ≥ χχ max{gd |ℓ1(w, z)| , |ε(ηc, w)|} ⇒ V o
χ ((ηc, χ), v) ≤ −cχVχ(ηc, χ)

for all v ∈ col(Fc(ηc), Fχ(χ, (w, z))), for some positive constants χχ and cχ;

• for all (ηc, χ, (w, z)) ∈ Dc × (Dχ ∩Kχ)× (W × R
n) we have that if ‖de‖ ≤ r then

Vχ(v) ≤ max{λχVχ(ηc, χ) , χχ|ℓ1(w, η)| , χχ|ε(ηc, w)|}
3Since χ′

ς depends on the compact set Kχ, the value of δ⋆2 depends in general on the latter (see the
poof of the result in the appendix). This is the first point motivating why the average dwell time δ⋆

mentioned in the statement of the main theorem depends, in general, on the compact set X. Note that
such a dependence disappears if αη(·) is linear.
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for all v ∈ col(Jc(ηc), Jχ(χ, (w, z))), for some positive λχ < 1, with χχ the same

positive constant specified in the previous item.

We consider now the cascade connection of χ and (w, z) subsystems, namely the zero

dynamics of the closed-loop system. In the following we construct a locally Lipschitz ISS

Lyapunov function for the cascade. In this study we restrict the state z to an arbitrary

compact set Z ⊂ R
n. Furthermore, with ǫ and T fixed so that ǫ ∈ (0, r) and T any

possible positive constant, we let g⋆2 the positive constant introduced in the second part

of Proposition 3.2 and we fix once for all the constant g ≥ g⋆ := max{g⋆1 , g⋆2 , g⋆3}.

By letting x = col(χ,w, z), the zero dynamics is compactly rewritten as

η̇c ∈ Fc(ηc) , ẋ = Fx(x)(ηc, x) ∈ Cc × Cx

η+c ∈ Jc(ηc) , x+ = Jx(x)(ηc, x) ∈ Dc ×Dx

(3.20)

where the set valued functions Fx(·), Jx(·) are properly defined and the flow and jumps

sets are respectively given by Cx = (Cχ ∩Kχ)×W × Z, Dx = (Dχ ∩Kχ)×W × Z.

By the minimum-phase assumption and by converse Lyapunov results (see Theorem 4

in [16] ), there exists a locally Lipschitz function Vz : W × R
n → R such that

αz(‖(w, z)‖A) ≤ Vz(w, z) ≤ ᾱz(‖(w, z)‖A)

and

V o((w, z), Fz(w, z)) ≤ −czVz(w, z)

for all (w, z) ∈ W × R
n, where αz(·) and ᾱz(·) are locally linear class-K∞ functions, cz

is a positive constant, and Fz(w, z) = col(s(w), f(w, z, 0)). For (w, z) ∈ W × R
n, let

wp ∈ A be such that ‖(w, z)‖A = ‖(w, z) − (wp, π(wp))‖. By the fact that c(·, ·) and

π(·) are locally Lipschitz functions and that W is a compact set, there exist a locally

Lipschitz function ρc : R≥0 → R≥0 and a positive constant π̄, such that the following

holds

|ℓ1(w, z)| = |c(w, z) − c(w, π(w))| ≤ ρc(‖z − π(w)‖)
= ρc(‖z − π(wp) + π(wp)− π(w)‖)
≤ ρc(‖z − π(wp)‖+ ‖π(wp)− π(w)‖)
≤ ρc(‖(w, z)‖A + π̄‖w − wp‖)
≤ ρc(‖(w, z)‖A + π̄‖(w, z)‖A)
:= ρc((1 + π̄)‖(w, z)‖A)
≤ ρc((1 + π̄)α−1

z (Vz(w, z)))

for all (w, z) ∈ W × R
n. Using the previous estimate of Vχ, the fact that αz(·) is

linearly bounded and the compactness of Z, the bound on |ℓ1(·)| implies that for all
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(ηc, x) ∈ Cc ×Cx we have that if ‖de‖ ≤ r then

Vχ(ηc, χ) ≥ χχ max{gd c̄ Vz(w, z) , |ε(ηc, w)|} ⇒ V o
χ ((ηc, χ), v) ≤ −cχVχ(ηc, χ)

for all v ∈ col(Fc(ηc), Fχ(χ, (w, z))), for some positive constants c̄. Similarly, for all

(ηc, x) ∈ Dc ×Dx we have that if ‖de‖ ≤ r then

Vχ(v) ≤ max{λχVχ(ηc, χ) , χχ c̄ Vz(w, z) , χχ|ε(ηc, w)|}

for all v ∈ col(Jc(ηc), Jχ(χ, (w, z))).

Now let Wx : (Cc ∪Dc)× (Cx ∪Dx) → R≥0 be the locally Lipschitz function defined as

Wx(ηc, x) = max{Vχ(ηc, χ) , gd ρVz(w, z)}

where ρ is a constant such that ρ ≥ χχc̄. Simple arguments, show that there exist locally

linear class-K∞ functions α′
x(·) and ᾱ′

x(·) such that

α′
x(‖(ηc, x)‖A×B×C) ≤Wx(ηc, x) ≤ ᾱ′

x(‖(ηc, x)‖A×B×C)

for all (ηc, x) ∈ (Cc ∪ Dc) × (Cx ∪ Dx). We now study Wx(·) during flows. For all

(ηc, x) ∈ Cc × Cx such that Vχ(ηc, χ) > gdρVz(w, z) (namely Wx(ηc, x) = Vχ(ηc, χ)), we

have that if Wx(ηc, x) ≥ χχ|ε(ηc, w)| then

Vχ(ηc, χ) ≥ max{χχ|ε(ηc, w)| , gdρVz(w, z)} ≥ max{χχ|ε(ηc, w)| , gd χχ c̄ Vz(w, z)}

and hence, if ‖de‖ ≤ r, W o
x ((ηc, x), v) ≤ −cχVχ(ηc, χ) = −cχWx(ηc, x) for all v ∈

col(Fc(ηc), Fx(x)). On the other hand, for all (ηc, x) ∈ Cc × Cx such that Vχ(ηc, χ) <

gdρVz(w, z) (namely Wx(ηc, x) = gdρVz(w, z)) then

W o
x ((ηc, x), v) = gdρV o((w, z), Fz(w, z)) ≤ −gdρczVz(w, z) = −czWx(ηc, x)

for all v ∈ col(Fc(ηc), Fx(x)). Finally, using the fact that, for all (ηc, x) ∈ Cc × Cx such

that Vχ(ηc, χ) = gdρVz(w, z),W
o
x ((ηc, x), v) ≤ max{V o

χ ((ηc, χ), vχ), g
dρV o

z ((w, z), Fz(w, z))}
for all v = col(vχ, Fz(w, z)) ∈ col(Fc(ηc), Fx(x)) (see [25]), we conclude that for all

(ηc, x) ∈ Cc ×Cx if ‖de‖ ≤ r then

Wx(ηc, x) ≥ χχ|ε(ηc, w)| ⇒W o
x ((ηc, x), v) ≤ −c′xWx(ηc, x)

for all v ∈ col(Fc(ηc), Fx(x)), where c
′
x = min{cχ, cz}. Consider now Wx(ηc, x) during

jumps. By bearing in mind the definition of Wx, the jump rule of Vχ(ηc, χ), and the fact

that Vz(w, z) doesn’t jump, we have that if ‖de‖ ≤ r
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Wx(v) ≤ max{λχVχ(ηc, χ) , χχc̄Vz(w, z) , χχ|ε(ηc, w)| gd̺Vz(w, z)}

≤ max{λχWx(ηc, x) , χχc̄Vz(w, z) , χχ|ε(ηc, w)|Wx(ηc, x)}

≤ max{λχWx(ηc, x) ,
χχc̄

ρgd
Wx(ηc, x) , χχ|ε(ηc, w)|Wx(ηc, x)}

= max{Wx(ηc, x) , χχ|ε(ηc, w)|}

for all v ∈ col(Jc(ηc), Jx(x)). When ε(ηc, w) = 0 the function Wx(·) is decreasing

during flows but not necessarily during jumps. As above we can use Proposition B.1 in

Appendix B to construct an ISS-Lyapunov function. As a matter of fact the fulfillment

of the average dwell-time condition (3.6) guarantees that the clock subsystem in system

(3.20) can be thought of as flowing according to η̇c ∈ [0, δ] if ηc ∈ [0, N0], and jumping

according η+c = ηc−1 if ηc ∈ [1, N0]. This implies that system (3.20) fits in the framework

of Proposition B.1 in Appendix B that guarantees that for all δ > 0 then the locally

Lipschitz function Vx = exp(Lηc)Wx(ηc, x) with L ∈ (0 , c′x/δ) satisfies the following:

• the exist locally linear class-K∞ functions αx(·) and ᾱx(·) such that for all (ηc, x) ∈
(Cc ∪Dc)× (Cx ∪Dx)

αx(‖(ηc, x)‖A×B×C) ≤ Vx(ηc, x) ≤ ᾱx(‖(ηc, x)‖A×B×C) ;

• for all (ηc, x) ∈ Cc × Cx we have that if ‖de‖ ≤ r then

Vx(ηc, x) ≥ χx |ε(ηc, w)| ⇒ V o
x ((ηc, x), v) ≤ −cxVx(ηc, x)

for all v ∈ col(Fc(ηc), Fx(x)), for some positive constants χx and cx;

• for all (ηc, x) ∈ Dc ×Dx we have that if ‖de‖ ≤ r then

Vx(v) ≤ max{λxVx(ηc, x) , χx|ε(ηc, w)|}

for all v ∈ col(Jc(ηc), Jx(x)), for some positive λx < 1, with χx the same positive

constant specified in the previous item.

The final part of the proof addresses the interconnection of the zero dynamics with the

error dynamics. We start by putting the flow dynamics of the closed-loop system in

normal form ([14]) by considering the change of variables

ξ → ξ̄ = ξ −G

∫ e

0

1

b(z, w, ζ)
dζ, ξd+1 → ξ̄d+1 = ξd+1 − λd+1g

d+1

∫ e

0

1

b(z, w, ζ)
dζ .
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Denoting by x̄ the state variable that coincides with x except the ξe entry that is substi-

tuted with (ξ̄, ξ̄d+1), simple computation shows that the closed-loop system in the new

coordinates reads as

η̇c ∈ Fc(ηc)

˙̄x = Fx(x̄) + ∆F (x̄, e)e

ė = q0(x̄) + q1(x̄, e)e + b(x̄, e)v

v = −κe







(ηc, x, e) ∈ Cc × Cx × R

η+c ∈ Jc(ηc)

x̄+ = Jx(x̄) + ∆J(x̄, e)e

e+ = e







(ηc, x, e) ∈ Dc ×Dx × R

(3.21)

where ∆F (·), ∆J(·) and q0(·) are properly defined functions, Fx(·) and Jx(·) are the

same of (3.20), q0(x̄) = c(w, z) − Cξ̄ and where, with a mild abuse of notation, we

let b(x, e) = b(z, w, e). Note that q0(x̄) = 0 for all x̄ ∈ A × B × C. We study the

interconnection by restricting the error e to some compact set E ⊂ R. We start showing

that the (ηc, x̄) subsystem is ISS relative to the set A×B×C with respect to the inputs

(ε, e). To this purpose we observe that, for all (ηc, x̄, e) ∈ Cc × Cx × E and for all

v ∈ col(Fc(ηc), Fx(x̄) + ∆F (x̄, e)e), if Vx(ηc, x̄) ≥ χx|ε(ηc, w)| and ‖de‖ ≤ r then

V o
x ((ηc, x̄), v) =

lim
(η′c,x̄

′)→(ηc,x̄),
sup
h→0+

Vx(col(η
′
c, x̄

′) + hv)− Vx(η
′
c, x̄

′)

h

= lim
(η′c,x̄

′)→(ηc,x̄),
sup
h→0+

Vx((η
′
c, x̄

′) + hv1 + hv2)− Vx(η
′
c, x̄

′)

h

= lim
(η′c,x̄

′)→(ηc,x̄),
sup
h→0+

1

h
(Vx((η

′
c, x̄

′) + hv1 + hv2)−

Vx((η
′
c, x̄

′) + hv1) + Vx((η
′
c, x̄

′) + hv1)− Vx(η
′
c, x̄

′))

≤ ρV ‖v2‖ − cxVx(η
′
c, x̄)

where v1 ∈ col(Fc(ηc), Fx(x̄)) and v2 ∈ col(0,∆F (x̄, e)e) are such that v = v1 + v2, and

ρV is the Lipschitz constant of Vx(·) on Cc × Cx × E. Using the fact that ‖v2‖ ≤ ν∆e

for all (x̄, e) ∈ Cx×E with ν∆ a positive constant, the previous expression immediately

yields that for all (ηc, x̄, e) ∈ Cc × Cx × E if ‖de‖ ≤ r then

Vx(ηc, x̄) ≥ max{χx|ε(ηc, w)| ,
2 ν∆ ρV
cx

|e|} ⇒ V o
x ((ηc, x̄), v) ≤ −cx

2
Vx(ηc, x̄)



Chapter 3. Robust Nonlinear Output Regulation 29

and for all v ∈ col(Fc(ηc), Fx(x̄) + ∆F (x̄, e)e). We now study Vx(·) during jumps. For

all (ηc, x̄, e) ∈ Dc ×Dx × E and for all v ∈ col(Jc(ηc), Jx(x̄) + ∆J(x̄, e)e), if ‖de‖ ≤ r

Vx(v) = Vx(v1 + v2) = Vx(v1) + Vx(v1 + v2)− Vx(v1)

≤ max{λxVx(ηc, x̄) , χx|ε(ηc, w)|} + ρV ‖v2‖
≤ max{2λxVx(ηc, x̄) , 2χx|ε(ηc, w)| , 2ρV ν∆|e|}

with v1 and v2 defined as above.

Consider now the e system endowed with the clock subsystem4. Let Ve(ηc, e) = |e| and
note that, by simple computations, there exist positive constants κ⋆1, χe, ce such that

for all κ ≥ κ⋆1 and for all (ηc, x̄, e) ∈ Cc ×Cx ×E we have

Ve(ηc, e) ≤
χe

κ
|q0(x̄)| ⇒ V o((ηc, e), v) ≤ −ceVe(ηc, e)

for all v ∈ col(Fc(ηc), q0(·) + q1(·)e + b(·)v) Furthermore, during jumps, V +
e (ηc, e) =

Ve(ηc, e).

With the previous computations at hand, it is simple to cast the study of closed-loop

system (3.21) in the framework of Theorem B.2 in Appendix B. Specifically, note that,

by the fact that q0(·) is locally Lipschitz and vanishing on the set A× B × C, and the

fact that αx(·) is locally linear there exist positive constants q̄′ and q̄ such that for all

(ηc, x̄) ∈ (Cc ∪Dc)× (Cx ∪Dx) we have

|q0(x̄)| ≤ q̄′‖(ηc, x̄)‖A×B×C ≤ q̄′α−1
x (Vx(ηc, x̄)) ≤ q̄Vx(ηc, x̄) .

Furthermore, note that (see [24]) the fact that the hybrid time domain of the clock-

subsystem fulfills (3.6) implies that the ηc dynamics can be thought of as flowing ac-

cording to η̇c ∈ [0, δ] if ηc ∈ [0, N0], and jumping according η+c = ηc − 1 if ηc ∈ [1, N0].

By letting k⋆2 = (2ν∆ρV χeq̄)/cx, it is then immediately seen that for all k ≥ max{κ⋆1, κ⋆2}
system (3.21) fits in the framework of Theorem B.2 in Appendix B. In particular, there

exists5 a δ⋆4 > 0 such that for all δ ∈ (0, δ⋆4) there exists a locally Lipschitz function

Vx : (Cc ∪Dc)× (Cx ∪Dx)× E → R≥0 such that the following holds:

• the exist locally linear class-K∞ functions α
x
(·) and ᾱx(·) such that for all (ηc, x̄, e) ∈

(Cc ∪Dc)× (Cx ∪Dx)× E

α
x
(‖(ηc, x̄, e)‖L) ≤ Vx(ηc, x̄, e) ≤ ᾱx(‖(ηc, x̄, e)‖L)

4Formally the study of the interconnection (3.21) involves the study of the interconnection of the two
subsystems with state (ηc, x̄) and (ηc, e), namely both the x̄ and e subsystems are endowed with the
clock dynamics.

5Since ρV and ν∆ depend, in general, on E, by following the proof of the results in Appendix, it turns
out that δ⋆4 depends, in the general, on E. This is the second point motivating why the average dwell
time δ⋆ introduced in the statement of the main theorem depends, in general, on the compact set X.
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with L = A× B × C × {0}

• for all (ηc, x, e) ∈ Cc × Cx × E we have that if ‖de‖ ≤ r then

Vx(ηc, x̄, e) ≥ χx |ε(ηc, w)| ⇒ V o
x
((ηc, x̄, e), v) ≤ −cxVx(ηc, x̄, e)

for all v ∈ col(Fc(ηc), Fx(x), q0(·) + q1(·)e + b(·)v), for some positive constants χx

and cx;

• for all (ηc, x̄, e) ∈ Dc ×Dx × E we have that if ‖de‖ ≤ r then

Vx(v) ≤ max{λxVx(ηc, x̄, e) , χx|ε(ηc, w)|}

for all v ∈ col(Jc(ηc), Jx(x̄), e), for some positive λx < 1, with χx the same positive

constant specified in the previous item.

Now note that, by the second part of Proposition 3.2 and by the tuning of the parameter

g⋆, it turns out that for all (t, j) in the hybrid time domain of system (3.21) such that

t ≥ T we have ‖de(t, j)‖ ≤ r. Thus, in finite time, as long as trajectories of (3.21)

stay in (Cc ∪Dc) × (Cx ∪Dx) × E, a Lyapunov function Vx with the properties above

exists. From this the claim of Proposition 3.1 follows with the asymptotic bound (3.11)

resulting from the arguments in [26, Proposition 2.7].



Chapter 4

Identification Tools for Robust

Regulation

In this chapter we are going to study the particular case of linear parametric models for

what concerns the regression law used for the adaptive part of the regulation framework.

In details, the firs part shows how it is possible to design a discrete identifier based on

the common Least Squares algorithm used in classical identification. The second part

analyzes the case of nonlinear regression law affine in parameters using an alternative

method, i.e. the estimation of the uncertainties is nested in the regulator structure.

4.1 The case of Linear Regression Law and Least Squares

Method

In this section we develop the case in which the model structure relating Ld
su

⋆(w(t)) and

the regression vector is assumed to be a linearly parametrized function of the form

Ld
su

⋆(w(t)) = ΨT (τ(w))θ (4.1)

in which Ψ : Rd → R
p, p > 0, is a locally Lipschitz known function, and θ ∈ Θ ⊂ R

p is a

vector of uncertain parameters with Θ a known compact set. We are interested to design

a hybrid identifier of the form (3.1) fulfilling the basic requirements specified in Section

3.2, in which the estimation method used to select the best θ ∈ Θ is a discrete-time

least squares criterion. Specifically, let us consider a hybrid clock subsystem such that

for all initial conditions ηc0 = ηc(0, 0) ∈ Cc ∪ Dc the associated hybrid time domain

Eηc0 ⊂ R≥0 × N fulfills an average dwell-time condition of the form (3.6) (required by

the analysis in Section 3.3) and a reverse average dwell-time condition of the form (3.7)

31
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for some N0 ≥ 1 and δ > 0. The reverse condition is imposed in order to have persistent

jumps required by the discrete-time nature of the estimator we are going to develop.

With N > 1, let Iηc0 = {(tj1 , j1), . . . , (tjN , jN )} be an arbitrary set of N distinct hybrid

times such that (tji , ji) ∈ Eηc0 , and jumps occur at (tji , ji), i = 1, . . . N . Our goal is to

develop an hybrid identifier of the form (3.1) such that the basic hybrid requirement in

Section 3.2 are fulfilled with estimation functional given by

J(ε(ηc(t, j), w(t, j))) =
1

2N

∑

(tj ,j)∈Iηc0

ε(ηc(tj , j), w(tj , j))
2

by using (4.1) as prediction model structure. As usual in the context of least squares

identification methods we make a persistence of excitation assumption formulated as

follows.

Assumption. (Persistence of excitation)

There exists a ῡ > 0 such that for all ηc0 ∈ Cc ∪Dc, for all sequence of N distinct jump

hybrid times Iηc0 , and for all exosystem trajectories w(t, j) ∈ W with (t, j) ∈ Eηc0 , the

following holds

det
∑

(tj ,j)∈Iηc0

Ψ(τ(w(tj , j)))Ψ(τ(w(tj , j)))
T ≥ ῡ . ⊳

Our identifier (3.1) has state (ηc, ηe), with ηc ∈ R the clock and ηe = col(η1, η2, η3),

η1 ∈ R
N , η2 = col(η21, . . . , η2N ) ∈ R

pN , η2i ∈ R
p, i = 1, . . . , N , η3 ∈ R

p the state of the

identifier. The system flows according to

η̇c ∈ Fc(ηc)

η̇1 = 0

η̇2 = 0

η̇3 = 0

(4.2)

with flow conditions (ηc, η1, η2, η3) ∈ Cc × R
N × R

pN × R
p, and jumps according to

η+c ∈ Jc(ηc)

η+1 = Sη1 +Bξd+1

η+2 = (S ⊗ Ip)η2 + (B ⊗ Ip)Ψ(ξ)

η+3 = L(η+1 , η
+
2 )

(4.3)

with jump conditions (ηc, η1, η2, η3) ∈ Dc × R
N × R

pN × R
p, Dc = [0, N0δ], and output

Γη(η, ξ) = Ψ(ξ)T η3
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where

S =

(

0 IN−1

0 0

)

, B =

(

0

1

)

,

L(η1, η2) = Rsat(η2)
−1

N∑

i=1

η2i η1i

and L(·, ·) is any globally Lipschitz function fulfilling

det(

N∑

i=1

η2iη
T
2i) ≥ 2ῡ ⇒ L(η1, η2) =

(
N∑

i=1

η2iη
T
2i

)−1 N∑

i=1

η2i η1i .

System (4.2)-(4.2) implements a classical discrete-time least squares algorithm for the

estimation of the parameters θ. Specifically, the η1 and η2 dynamics describe two shift

registers, the former storing the last N samples of the “next” derivatives ξd+1, and the

latter storing the last N samples of the regressors Ψ(ξ). The variable η3, then, represents

an estimate of the uncertain vector Θ obtained by properly processing the value of η1

and η2.

Since the hybrid clock time domain fulfills a reverse average dwell time condition, ac-

cording to [21], the clock dynamics can be thought of as flowing according to η̇c = 1

and jumping according to η+c = max{0 , ηc − δ} with flow and jump sets coincident and

equal to Cc = Dc = [0, N0δ].

In the remaining part of the section we prove that the previous system fulfills the hybrid

identifier requirements specified in Section 3.2. Partitioning the exogenous disturbance

de as de = col(d,dd+1), d ∈ R
d, dd+1 ∈ R, the η-subsystem of (3.8) reads as ẇ = s(w),

η̇c = 1, η̇1 = 0, η̇2 = 0 and η̇3 = 0 during flows, and

η+1 = Sη1 +B(τd+1(w) + dd+1)

η+2 = (S ⊗ Ip)η2 + (B ⊗ Ip)ψ(τ(w) + d)

η+3 = L(η+1 , η
+
2 )

during jumps. We start analyzing the η1 subsystem. For all ηc ∈ Cc∪Dc let ηc0 ∈ Cc∪Dc

be such that ηc = ηc(t,N − 1) for some t ∈ R≥0 such that (t,N − 1) ∈ Eηc0 and let

ϕw(t, w) be the value of the trajectory of ẇ = s(w) at time t with initial condition w at

t = 0. Furthermore, with (ti, i) ∈ Eηc0 , i = 0, . . . , N − 1, the hybrid jump times, let

T1(ηc, w) = col(T11(ηc, w) , . . . , T1N (ηc, w))
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with T1i : (Cc ∪Dc)×W → R, i = 1, . . . , N defined as (using the fact that η̇c = 1)

T1i(ηc, w) = τd+1(ϕw(t− ti−1, w)) =

τd+1(ϕw(−ηc + ηc(tN−1, N − 1) + (tN−i−1 − tN−1), w)) .

Note that, by definition of ϕw(·, ·), Ṫ1(ηc, w) = 0. Furthermore , T1i(η
+
c , w

+) = T1i+1(ηc, w),

i = 1, . . . , N − 1, and T1N (η+c , w
+) = τd+1(w).

Consider W1(ηc, w, η1) =
∑N

i=1 ci|η1i − T1i(ηc, w)| where the constants ci are such that

ci = 8ci−1, i = 2, . . . , N , and c1 > 0. During flow, using the fact that η̇1 = 0 and that

Ṫ1(ηc, w) = 0, we have Ẇ1 = 0. During jumps, bearing in mind the jumps rule for η1,

W1(ηc, w, η1)
+ =

N∑

i=1

ci|η+1i − T1i(η
+
c , w

+)|

=

N∑

i=2

ci−1|η1i − T1i−1(η
+
c , w)| + cN |τd+1(w) + dd+1 − T1N (η+c , w)|

=
N∑

i=2

ci−1

ci
ci|η1i − T1i(ηc, w)| + cN |τd+1(w) + dd+1 − τd+1(w)|

=
1

8
W1(ηc, w, η1)−

1

8
c1|η11 − T11(ηc, w)| + cN |dd+1|

≤ 1

8
W1(ηc, w, η1) + cN |dd+1| .

Furthermore note that c1‖η1 − T1(ηc, w)‖ ≤ c1‖η1 − T1(ηc, w)‖1 ≤ W1(ηc, w, η1) ≤
cN‖η1 − T1(ηc, w)‖1 ≤ cN

√
N‖η1 − T1(ηc, w)‖. The W1(·) decreases during jumps (if

dd+1 = 0) but not during flows. In order to obtain an ISS hybrid Lyapunov function

we follow [23] and we take V1(ηc, w, η1) = exp(−Lηc)W1(ηc, w, η1) with L > 0 such

that exp(Lδ) < 2. During flow, using the fact that η̇c = 1, we have V̇1(ηc, w, η1) =

−LV1(ηc, w, η1). During jumps, using the fact that η+c ≤ max{0, ηc − δ} and that

ηc ≤ N0δ, we have (using ηc −max{0, ηc − δ} ≤ δ)

V1(ηc, w, η1)
+ = exp(−Lη+c )W1(ηc, w, η1)

+

≤ 1

8
exp(−Lmax{0, ηc − δ})W1(ηc, w, η1) + exp(−Lmax{0, ηc − δ})cN |dd+1|

≤ 1

8
exp(−Lmax{0, ηc − δ})exp(Lηc)V1(ηc, w, η1) + cN |dd+1|

≤ 1

8
exp(Lδ)V1(ηc, w, η1) + cN |dd+1|

= λV1(ηc, w, η1) + cN |dd+1|

where λ =
1

8
exp(Lδ) <

1

4
. Note that there exist α > 0 and ᾱ > 0 such that

α‖η1 − T1(ηc, w)‖ ≤ V1(ηc, w, η1) ≤ ᾱ‖η1 − T1(ηc, w)‖.
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We consider now the η2 subsystem. With the definition above of hybrid time domain

Eηc0 , of (t,N − 1) ∈ Eηc0 , and of (ti, i) ∈ Eηc0 , i = 0, . . . , N − 1, in mind, we let

T2(ηc, w) = col(T21(ηc, w) , . . . , T2N (ηc, w))

where T2i : (Cc ∪Dc)×W → R
p, i = 1, . . . , N are defined as

T2i(ηc, w) = Ψ(τ(ϕw(t− ti−1, w)))

= Ψ(τ(ϕw(−ηc + ηc(tN−1, N − 1) + (tN−i−1 − tN−1), w)) .

As above, we observe that, during flows, Ṫ2(ηc, w) = 0, and, during jumps, T2i(η
+
c , w

+) =

T2i+1(ηc, w), i = 1, . . . , N − 1, and T2N (η+c , w
+) = Ψ(τ(w)).

Moreover, having defined δ(w,d) = Ψ(τ(w) + d) − Ψ(τ(w)), we note that Ψ(τ(w) +

d) = Ψ(τ(w)) + δ(w,d) and, for any r > 0, there exists a constant δ̄ > 0 such that

‖δ(w,d)‖ ≤ δ̄‖d‖ for all w ∈W and d ∈ R
d such that ‖d‖ ≤ r. Consider now

W2(ηc, w, η2) =

N∑

i=1

ci|η2i − T2i(ηc, w)|

where the constants ci are defined as above. The same steps presented above for W1

lead to conclude that Ẇ2(ηc, w, η2) = 0 during flows and, by using the bound on δ(·),
that

W2(ηc, w, η2)
+ ≤ 1

8
W2(ηc, w, η2) + cN δ̄‖d‖

during jumps. As above, by letting

V2(ηc, w, η2) = exp(−Lηc)W2(ηc, w, η2)

with the same L defined before, we obtain that

V̇2(ηc, w, η2) = −LV2(ηc, w, η2)

during flows and

V2(ηc, w, η2)
+ ≤ λV2(ηc, w, η2) + cN δ̄‖d‖

during jumps (with the same λ introduced before). Similarly to the analysis above,

moreover, it turns out that

α‖η2 − T2(ηc, w)‖ ≤ V2(ηc, w, η2) ≤ ᾱ‖η2 − T2(ηc, w)‖.

Finally we consider the η3 subsystem. Let T3(ηc, w) = L(T1(ηc, w), T2(ηc, w)), and let

W3(ηc, w, η3) = c‖η3 − T3(ηc, w)‖1 with c a positive constant yet to be fixed. During
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flows we have Ẇ3 = 0. During jumps, by letting ℓ the Lipschitz constant of L(·, ·) and
bearing in mind the definition of δ̄ above,

W+
3 (ηc, w, η3) = c‖η+3 − T3(ηc, w)

+‖1
= c‖L(η+1 , η+2 )− L(T1(ηc, w)

+, T2(ηc, w)
+)‖1

≤ cℓ̄‖(η+1 , η+2 )− (T1(ηc, w)
+, T2(ηc, w)

+)‖1

≤ cℓ̄(

N∑

i=2

|η1i − T1i−1(η
+
c , w)| +

N∑

i=2

‖η2i − T2i−1(η
+
c , w)‖1

+|τd+1(w) + dd+1 − T1N (η+c , w)|
+‖Ψ(τ(w) + d)− T2N (η+c , w)‖1)

≤ cℓ̄(

N∑

i=2

|η1i − T1i(ηc, w)|+
N∑

i=2

‖η2i − T2i(ηc, w)‖1+

|τd+1(w) + dd+1 − τd+1(w)|+ ‖Ψ(τ(w) + d)−Ψ(τ(w))‖1)
≤ cℓ̄(‖η1 − T1(ηc, w)‖1 + ‖η2 − T2(ηc, w)‖1 + δ̄‖d‖1)

≤ c
ℓ̄
√
N

α
(V1(ηc, w, η1) + V2(ηc, w, η2)) + cℓ̄

√
Nδ̄‖de‖

We now rescale W3 in order to obtain a Lyapunov function for the η3-subsystem that

is decreasing during flow (and without any special property during jumps). In partic-

ular, by letting V3(ηc, w, η3) = exp(−Lηc)W3(ηc, w, η3), we have that V̇3(ηc, w, η3) =

−LV3(ηc, w, η3) during flows and, during jumps,

V3(ηc, w, η3)
+ = c

ℓ̄
√
N

α
exp(−Lmax{0, ηc − δ})

(V1(ηc, w, η1) + V2(ηc, w, η2) + δ̄α‖de‖)

≤ c
ℓ̄
√
N

α
(V1(ηc, w, η1) + V2(ηc, w, η2) + δα‖de‖)

Finally, we construct a Lyapunov function for the whole η system as V (η,w) = V1(ηc, w, η1)+

V2(ηc, w, η2) + V3(ηc, w, η3). First note that there exist positive αη and ᾱη such that

αη‖(w, η)‖B ≤ V (η,w) ≤ ᾱη‖(w, η)‖B with B defined as in Section 3.2 with

σ(ηc, w) = col(T1(ηc, w), T2(ηc, w), T3(ηc, w)) .

Furthermore, during flows, V̇ (η,w) ≤ −LV (η,w), while, during jumps,

V (η,w)+ = (λ+ c
ℓ̄
√
N

α
)(V1(ηc, w, η1) + V2(ηc, w, η2))

+cN |dd+1|+ cN δ̄‖d‖+ cℓ̄
√
Nδ̄‖de‖

≤ λ′ηV (η,w) + c̄‖de‖

≤ max{2λ′ηV (η,w), 2c̄‖de‖}
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where c̄ is a positive constant and λ′η = (λ + c
ℓ̄
√
N

α
). The ISS property behind the

identifier design requirement is thus fulfilled by taking c so that c
ℓ̄
√
N

α
< 1/4 with

λη = 2λ′η < 1.

The fact that proposed identifier is optimal with respect to the least squares functional

specified above immediately comes from the definition of Γη(·) by using the persistence

of excitation assumption and the definition of σ(·).

4.2 The case of Linear Regression Law and Implicit Adap-

tation

The starting point in this alternative design methodology, is the existence of a regression

formula that governs the k-th time derivative of the desired steady state input u⋆(w(t)).

The formula is specified in the next Assumption. For ease of notation, here and in the

following we let u⋆[a,b] := (u⋆(a), . . . , u⋆(b))T , with 0 ≤ a < b, the vector of time derivatives

of u⋆.

Assumption 1.

There exist k > 0, p > 0, locally Lipschitz functions h : Rk → R and L : Rk → R
p such

that

u⋆(k)(w) = h(u⋆[0,k−1](w)) + L(u⋆[0,k−1](w)) θ
⋆ ∀w ∈W. (4.4)

where θ⋆ ∈ R
p is a vector of uncertainties. ⊳

In the second part of this section we show how the previous assumption is fulfilled in a

number of relevant cases.

By differentiating i ≥ 0 times relation (4.4) and collecting the resulting equations, we

obtain the following set of equations

u⋆[k,k+i](w) = Hi(u
⋆
[0,k+i−1](w)) +Ai(u

⋆
[0,k+i−1](w)) θ

⋆ (4.5)

where
Ai(u

⋆
[0,k+i−1]) = col

[

L0(u
⋆
[0,k−1]) · · · Li(u

⋆
[0,k+i−1])

]

Hi(u
⋆
[0,k+i−1]) = col

[

h0(u
⋆
[0,k−1]) · · · hi(u

⋆
[0,k+i−1])

] (4.6)

where L0(·) = L(·), h0(·) = h(·), Lj+1(·) = L̇j(·), hj+1(·) = ḣj(·), j = 0, . . . , i − 1, and

where for compactness we have omitted the argument w of u⋆.

The proposed methodology relies upon the following crucial assumption.
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Assumption 2.

There exists a m ≥ p and ǫ > 0 such that

det(AT
m(u⋆[0,k+m−1](w))Am(u⋆[0,k+m−1](w))) ≥ ǫ

for all w ∈W . ⊳

The previous assumption implies that

rank(Am(u⋆[0,k+m−1](w))) = p ∀w ∈W

and, in turn, that the uncertain vector θ⋆ can be obtained from (4.5) as a function of

u⋆ and its first (k +m)-th time derivatives. In particular, taking the (m + 1)-th time

derivative of (4.4) and replacing θ⋆ with the estimation (θ̂) obtained by left-inverting

(4.5) for i = m, one obtains

u⋆(m+k+1) = hm+1(u
⋆
[0,k+m]) + Lm+1(u

⋆
[0,k+m])·

A†
m(u⋆[0,k+m−1])[u

⋆
[k,k+m] − hm(u⋆[0,k+m−1])]

where A†
m represents a pseudoinverse of Am given by

A†
m(·) = [AT

m(·)Am(·)]−1Am(·) .

This relation, in turn, is equivalent to (2.14) for an appropriately defined ϕ(·) with

d = m+ k + 1.

In the remaining part of the section we show how the previous assumptions are fulfilled

in a number of relevant cases in which u⋆ is generated by nonlinear oscillators. The

three cases of Van der Pol, Duffing, and Lorentz uncertain oscillators are considered and

are dealt with in the following subsections.

4.2.1 Van der Pol Oscillator

As exosystem, we consider the Van der Pol oscillator described by

ẇ1 = w2

ẇ2 = −ω2w1 + ǫ(1−w2
1)w2

(4.7)

in which ω and ǫ are uncertain parameters, and consider the case in which the desired

steady state input u⋆(w) = w1. the set W is the omega limit set where the steady state
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trajectories of the Van der Pol take place. It turns out that

ü⋆(w) = −u⋆(w)ω2 + (1− u⋆2(w))u̇⋆(w)ǫ (4.8)

and thus Assumption 1 is fulfilled with κ = 2, h(·) = 0, L(·) =
(
−u⋆(w) , (1− u⋆2(w))u̇⋆(w)

)

and θ⋆ =
(
ω2 , ǫ

)T
. We start now to take time derivatives of (4.8) to identify an m ≥ 2

for which Assumption 2 is fulfilled. By differentiating once, we obtain

u⋆[2,3](w) = A1(u[0,2])θ
⋆ (4.9)

where

A1(u
⋆
[0,2]) =

[

−u⋆ (1− u⋆2)u̇⋆

−u̇⋆ ü⋆ − 2u⋆u̇⋆2 − u⋆2ü⋆

]

. (4.10)

It turns out that there are points of W where A1 is singular (see Fig. 4.1). By thus

taking a further derivative we obtain

u⋆[2,4](w) = A2(u
⋆
[0,3](w)) θ

⋆ (4.11)

with

A2(u
⋆
[0,3]) =







−u⋆ (1− u⋆2)u̇⋆

−u̇⋆ ü⋆ − 2u⋆u̇⋆2 − u⋆2ü⋆

−ü⋆ u⋆(3) − 2u̇⋆3 − 6u⋆u̇⋆ü⋆ − u⋆2u⋆(3) .







(4.12)

A numerical analysis of the minors of A2 (see Fig. 4.2) reveals that the matrix has rank

2 for all w ∈W and thus Assumption 2 is fulfilled.
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Figure 4.1: Determinant of A1(u
⋆

[0,2]) on the limit cycle (ω2 = 1 and ǫ = 1).
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Figure 4.2: Limit cycle for the VdP oscillator with ω2 = 1, ǫ = 1 and singularity
points for each minors of matrix A2(u

⋆

[0,3]). The red points are the singularity points

for the minor A1 := A12 having selected the first two rows of the starting matrix; the
magenta points for the minor A2 := A13 (first and third rows) and the cyan points for

the minor A3 := A23 (second and third rows).

4.2.2 Duffing Oscillator

We consider now the case in which u⋆(w) is generated by the Duffing oscillator modeled

by

ẇ1 = w2

ẇ2 = −w3
1α− w1β

(4.13)

where α and β are uncertain parameters and u⋆(w) = w1. the set W is the limit cycle

of the oscillator. It turns out that

ü⋆(w) = −u⋆3(w)α − u⋆(w)β , (4.14)

namely Assumption 1 is fulfilled with k = 2, h(·) = 0, L(·) =
(
−u⋆3(w), −u⋆(w)

)
and

θ⋆ = (α , β)T . By differentiating once relation (4.14) we obtain

u⋆[2,3] = A1(u
⋆
[0,1])θ

⋆

with

A1(u
⋆
[0,1]) =

[

−u⋆3 −u⋆

−3u⋆2u̇⋆ −u̇⋆

]

(4.15)
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that is singular in some point of the limit cycle. Taking a further derivative we get

u⋆[2,4] = A2(u[0,2])θ
⋆

with

A2(u
⋆
[0,2]) =







−u⋆3 −u⋆

−3u⋆2u̇⋆ −u̇⋆

−3ü⋆u⋆2 − 6u⋆u̇⋆2 −ü⋆







(4.16)

that is still rank-deficient. By thus taking a further derivative we get

u⋆[2,5] = A3(u
⋆
[0,3])θ

⋆

with

A3(u
⋆
[0,3]) =










−u⋆3 −u⋆

−3u⋆2u̇⋆ −u̇⋆

−3ü⋆u⋆2 − 6u⋆u̇⋆2 −ü⋆

−3u⋆(3)u⋆2 − 18u⋆u̇⋆ü⋆ − 6u̇⋆3 −u⋆(3)










(4.17)

which, finally, has rank 2 (see Figures 4.3-4.4).
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Figure 4.3: Limit cycle for the Duffing oscillator with α = 1, β = −2. In the red
points at least one minor out of six (of matrix A3(u

⋆

[0,3])) is not singular.
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Figure 4.4: The plot shows two of four singularity points of Fig. 4.3 in which is visible
that five out of six determinants pass always through zero but, in the same points, the

remaining one is always different from zero.

4.2.3 Lorentz Oscillator

As a third example we consider the case in which u⋆ coincides with the w1 component

of the Lorentz oscillator described by

ẇ1 = σ(w2 − w1)

ẇ2 = w1(ρ− w3)− w2

ẇ3 = w1w2 − βw3

(4.18)

where (σ, ρ, β) are positive uncertain parameters. We let the set W coincide with the

Lorentz attractor by assuming a persistence of excitation condition of the oscillator.

Specifically we assume there exists a ǫ > 0 such that

w2
1 + ẇ2

1 = ‖u⋆[0,1]‖2 ≥ ǫ ∀w ∈W .

We start differentiating u⋆ in order to obtain the regression formula (4.4) and to fulfill

Assumption 1. We have w1 = u⋆(w) and u̇⋆(w) = σ(w2 − u⋆(w)) from which w2 =

u⋆(w) + u̇⋆(w)/σ. By differentiating further u̇⋆ we get

ü⋆ = σ[u⋆(ρ− w3)− w2 − u⋆]

= −u̇⋆ + c1u
⋆ + c2u̇

⋆ + c2u
⋆w3

(4.19)

with c1 := σ(ρ− 1), c2 := −σ . Furthermore,
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ẇ3 = u⋆2(w) +
u⋆(w)u̇⋆(w)

σ
− βw3 .

By differentiating once more (4.19) and using the previous expression of ẇ3, we obtain

u⋆(3) = −u⋆2u̇⋆ − ü⋆ + c1u̇
⋆ + c2ü

⋆ + c2u
⋆3 + (c2u̇

⋆ − c2βu
⋆)w3 . (4.20)

Relations (4.19) and (4.20) can be compactly rewritten as

u⋆[2,3] = ρ(u⋆[0,2]) + C(ρ, σ)ϕ(u⋆[0,2]) +M(σ, β)u⋆[0,1] w3

where

ϕ =

(

u⋆[0,2]

u⋆3

)

, ρ =

(

−u̇⋆

−ü⋆ − u⋆2u̇⋆

)

(4.21)

and

C :=

[

c1 c2 0 0

0 c1 c2 c2

]

, M :=

[

c2 0

−c2β c2

]

. (4.22)

By taking advantage from the persistence of excitation condition, the previous relation

can be used to express w3 as a function of u⋆[0,3], namely

w3 =
1

‖u⋆[0,1]‖2
u⋆[0,1]

TM−1
(

ρ(u⋆[0,2]) + C ϕ(u⋆[0,2])
)

or, equivalently,

w3 =
u⋆[0,1]

T ⊗ ρ(u⋆[0,2])
T

‖u⋆
[0,1]

‖2 vect(M(σ, β)−1)+

u⋆[0,1]
T ⊗ ϕ(u⋆[0,2])

T

‖u⋆[0,1]‖2
vect(M(σ, β)−1C(ρ, σ))

where ⊗ denotes the Kronecker product and vect(T ) is the column vector obtained by

taking row-wise the elements of the matrix T .

Furthermore, by taking another derivative of (4.20) we get

u⋆(4) = −3u⋆u̇⋆2 − u⋆2ü⋆ − u⋆(3)+

c1ü
⋆ + c2(u

⋆(3) + 4u⋆2u̇⋆)− c2βu
⋆3 + βu⋆2u̇⋆

c2(ü
⋆ − 2βu̇⋆ + β2u⋆)w3

(4.23)

by which, using the expression of w3 above and compacting the terms, we obtain

u⋆(4) = h(u⋆[0,3]) + L(u⋆[0,3])θ
⋆ (4.24)
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with θ⋆ ∈ R
10 defined as

θ :=
(
σ, βσρ, β2σρ, β3σρ, βσ, β2σ, β3σ, β, β2, β3

)T

and where h(·) and L(·) are appropriately defined functions. This proves that Assump-

tion 1 is fulfilled. To check if there exists a value of m such that Assumption 2 is

fulfilled, we go further by simplifying a bit the analysis by assuming that the parameter

β is known. This implies, by rearranging a bit the terms in (4.24), that the following

relation

u⋆(4) = h̃(u⋆[0,3]) + L̃(u⋆[0,3])θ̃
⋆ (4.25)

holds, where h̃ and L̃ are known functions (dependent on β) and θ̃⋆ ∈ R
2 is defined as

θ̃⋆ = (σ, ρσ)T .

By differentiating once the equation (4.25) we get the following compact form

u⋆[4,5] = H̃1(u
⋆
[0,4]) + Ã1(u

⋆
[0,4])θ̃

⋆

with

H̃1(u
⋆
[0,4]) :=

[

h̃(u⋆[0,3])

h̃1(u
⋆
[0,4])

]

and Ã1(u
⋆
[0,4]) :=

[

L̃(u⋆[0,3])

L̃1(u
⋆
[0,4])

]

To check whether the 2 × 2 matrix Ã1(u
⋆
[0,4]) fulfills Assumption 2, we ran simulations

with different values of the parameters and of initial conditions and we found that the

matrix is singular in certain points of the Lorentz attractor. A further time derivative

is thus taken by obtaining

u⋆[4,6] = H̃2(u
⋆
[0,5]) + Ã2(u

⋆
[0,5])θ̃

⋆

in which

H̃2(u
⋆
[0,5]) :=







h̃(u⋆[0,3])

h̃1(u
⋆
[0,4])

h̃2(u
⋆
[0,5])






and Ã2(u

⋆
[0,5]) :=







L̃(u⋆[0,3])

L̃1(u
⋆
[0,4])

L̃2(u
⋆
[0,5])







with Ã2(u
⋆
[0,5]) that is a 3× 2 matrix. Numerical tests obtained with different values of

the parameters and of the initial conditions showed that the three determinants of each

minor of the matrix are never simultaneously zero, namely that the matrix has rank 2

on the Lorentz attractor for the numerical values used in the simulation. Assumption 2

is thus numerically verified and we obtain that relation (2.14) is fulfilled with a Ψ(·) of
the form

u⋆(7) = h̃3(u
⋆
[0,6]) + L̃3(u

⋆
[0,6])Ã

†
2(u

⋆
[0,5])(u

⋆
[4,6] − H̃2(u

⋆
[0,5])).

where Ã†
2 is the left inverse of Ã2.



Chapter 5

Examples and Simulations

This chapter is completely dedicated to some examples in order to give a numerical

validation to the presented theory. For the case of a hybrid identifier it is possible to

distinguish the two sub-cases of asymptotic and practical regulation, while for the case

of implicit identification is just given an example about the asymptotic scenario.

5.1 Output Regulation with Least Squares Method

In the actual section we show how it is possible to achieve both asymptotic and practical

regulation by means of the theoretical concepts presented so far. In details, we are going

to carry out some simulations by employing a simple but really effective example in

which, first case, we know exactly the exosystem we are having to do with (there is no

residual bias ν(w)) and second case, under the minumum phase assumption, we suppose

not a perfect knowledge of the map π(w) solution of the regulator equation (2.2) (this

leads to a defective regression law as in (2.18)).

We consider a controlled plant described by the following nonlinear system

ẋ1(t) = −x31(t)− w2
1(t) + x32(t) x1(0) = x10

ẋ2(t) = µx1(t) + u(t)− w1(t) x2(0) = x20

in which the parameter µ ∈ {0, 1} is just used to turn on/off the contribute of the term

x1(t), that represents the presence of the map π(w) in the steady state control law.

The exosystem, i.e. the system that generates the exogenous signal we want to track or

reject, is the following well known Van Der Pol nonlinear oscillator with dynamics given
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by

ẇ1(t) = w2(t) w1(0) = w10

ẇ2(t) = −θ⋆1w1(t) + θ⋆2(1− w2
1(t))w2(t) w2(0) = w20

where θ⋆ := [θ⋆1, θ
⋆
2]

⊤ is a vector composed by two unknown parameters (for the Van

Der Pol system they correspond to the natural frequency of oscillation and the nonlinear

damping coefficient, respectively). By choosing the regulated variable as e(t) := x2(t)

and z(t) := x1(t), we notice that the system is still in the normal form described by the

equations (2.8)-(2.9), and in particular we can rewrite the plant as follows

ż(t) = −z3(t)− w2
1(t) + e3(t) z(0) = x10

ė(t) = µz(t) + u(t)− w1(t) e(0) = x20.

5.1.1 Asymptotic Regulation

In this specific case (µ = 0) it is quite simple to compute the steady state control law

able to guarantee the zero regulation error, i. e. u⋆(w(t)) = w1(t). Furthermore, we

note that the system is trivially minimum phase (π(w) = 0) and with d = 2, we have

that u⋆(w(t)) satisfies exactly the regression formula stated in (2.14) (this fact implies

a third order internal model controller as seen in Section 2.2). Our goal is to achieve

asymptotic regulation by means of the internal model structure given in (3.4) and the

identification unit given in (4.2)-(4.3). For sake of compactness, in Table 5.1 we list all

the simulation parameters used to implement the overall regulation scheme.

(θ⋆1, θ
⋆
2) = (1, 1) (w10, w20) = (1, 1)

(x10, x20) = (1, 1) (g, k, ηc) = (10, 100, 1)

(ξ10, ξ20, ξ30) = (0, 0, 0) (ηc0, η10, η20, η30) = (0, 0, 0, 0)

Table 5.1: Output regulation with Least Squares method: list of parameters used in
the simulation.

In Figure 5.1 it is possible to see the error signals that approach zero asymptotically.

In particular, the regulated error e (t) (saturated only for visualization purposes) goes

to zero very fast and becomes different from zero just during the parametric adaptation

(from 0 to 15 s). In the remaining pictures it is possible to notice the satisfying behavior

of the two estimation errors while the identification structure is performing the adapta-

tion (for ease of notation the two estimation are represented by the variables θ̂1 (t) and

θ̂2 (t)).
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Figure 5.1: The pictures above show the behavior of the three main signals of the
simulation scheme, i.e. the regulated error e (t), the estimation error of the natural

frequency of the Van Der Pol oscillator θ⋆1 − θ̂1 (t) and finally the nonlinear damping

estimation error θ⋆2 − θ̂2 (t) .

5.1.2 Practical regulation

Now, we want to show how it is possible to achieve at least practical regulation also when

a perfect knowledge of the regression formula (2.14) is not possible. For this purpose,

consider the same controlled plant as before but with a different value of the parameter

µ, namely µ = 1. In this case the steady state control law becomes

u⋆(w(t)) = w1(t)− π(w(t))

that fulfills the regression formula listed in (2.18).

In Figure 5.2 we have reported the regulation error e(t) and the estimation errors θ⋆1 −
θ̂1(t), θ

⋆
2 − θ̂2(t) in presence of the uncertain map π(w); obviously the values of the two

unknown parameters do not approach zero asymptotically, because of the presence of an

error on the model used for estimation, and also the regulated variable is different from

zero but still small thanks to the effect of the high gain g in the internal model unit.
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Figure 5.2: The picture shows the regulation error e(t) and the estimation errors

θ⋆1 − θ̂1(t), θ
⋆

2 − θ̂2(t) during practical regulation.

As final remark we want to focus the attention on the equation (2.19) showing some

comparison between three different practical regulation scenarios where we increase the

dimension d of the internal model regulator. With an eye to Figure 5.3, one can notice

that increasing the parameter d the error assumes very small values, this means that

also in presence of uncertain structure of the exosystem or in presence of uncertain

map π(w) it is possible to achieve good performance of regulation just adjusting the

dimension of the controller. All parameters for the simulation are the same listed in

Table 5.1, with the difference of the structure of the controller, that is, for d = 2 → Ψ =

[−ξ2; ξ3 − ξ3ξ
2
1 − 2ξ1ξ

2
2 ], for d = 3 → Ψ = [−ξ3; ξ4 − 2ξ32 − 6ξ1ξ2ξ3 − ξ21ξ4] and finally for

d = 4 → Ψ = [−ξ4; ξ5 − 12ξ22ξ3 − 8ξ1ξ2ξ4 − ξ21ξ5 − 6ξ1ξ
2
3 ].

5.2 Output Regulation with Implicit Adaptation Method

In the actual paragraph, the simulation shows the effective performance in case of robust

regulation with the alternative method presented in Section 4.2, i.e. the method in
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Figure 5.3: Note the behavior of the three error signals during practical regulation
when the dimension of the internal model regulator is increased.

which the estimation of all uncertainties is nested in the structure of the internal model

regulator.

In the example we consider as controlled plant a linear oscillator (for simplicity, it is

possible to run simulation considering more complex nonlinear systems) described by

the following equations

ẋ1(t) = x2(t) x1(0) = x10

ẋ2(t) = −x1(t) + u(t)− w1(t) x2(0) = x20

forced by the control variable u(t) and by a matched exogenous disturbance w1(t) gener-

ated by a Van der Pol exosystem modeled (as in the previous example) by the equations

ẇ1(t) = w2(t) w1(0) = w10

ẇ2(t) = −θ⋆1w1(t) + θ⋆2(1− w2
1(t))w2(t) w2(0) = w20

with the same two uncertain constant parameters collected in the vector θ⋆ := [θ⋆1, θ
⋆
2]
⊤.

The control goal is to regulate x1 to zero by means of a state feedback control law.
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Output feedback solutions can be easily obtained by the state feedback solution derived

below by means of standard arguments that are here omitted. In this case we can define

the error e = x1 + x2 and the variable z = x1; with the the previous choice at hand we

are able to write the system in the new coordinates

ż(t) = −z(t) + e(t) z(0) = x10

ė(t) = e(t) + u(t)− w1(t)− 2z(t) e(0) = x10 + x20

For this specific case, all the parameter used for running the simulation are listed in

Table 5.2.

(θ⋆1, θ
⋆
2) = (1, 1) (w10, w20) = (2.5, 0)

(x10, x20) = (1, 0) (g, k) = (10, 40)

(ξ10, ξ20, ξ30, ξ40, ξ50) = (0, 0, 0, 0, 0) (λ1, . . . , λ5) = (4, 16, 25, 19, 7)

Table 5.2: Asymptotic output regulation with Implicit Adaptation method: list of
parameters used in the simulation.
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Figure 5.4: The picture shows the regulated error e (t) and the two errors θ⋆1 − θ̂1(t)

and θ⋆2 − θ̂2(t). The estimation is hidden in the regulator structure.
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By following the theory in Section 4.2 the function ϕ(·) in (2.14) is of the form

ϕ(ξ) =
[

ξ4, ξ5 − ξ21ξ5 − 12ξ22ξ3 − 6ξ1ξ
2
3 − 8ξ1ξ2ξ4

]

θ̂

with θ̂ the vector of estimated parameters given by

θ̂ = A†
2(u

⋆
[0,3])[ξ3, ξ4, ξ5]

⊤

where A†
2 is the left inverse of A2. This function has been properly saturated outside

τ(w) to avoid peaking phenomena. As shown in Figure 5.4, the harmonic oscillator

starts from an initial condition with x1 = 1 and asymptotically converges to zero, and

also the “nested” estimation method exhibits really good performance as one can see

from the picture of the two estimation errors θ⋆1 − θ̂1(t) and θ
⋆
2 − θ̂2(t).





Chapter 6

Conclusions

In this chapter, final considerations and observations about the overall work are reported.

After the first section that describes briefly the work done so far, there is a second section

with all the main conclusions and eventual future developments regarding the robust

regulation topic.

6.1 Summary of the Thesis

The present thesis deals with the problem of robust output regulation for a particular

class of nonlinear systems, namely, such a systems in normal form, single-input single-

output, continuous and such that they satisfy the minimum phase assumption (that is

a restrictive hypothesis but really important in order to use high-gain techniques). The

work is based on the usage of such high-gain techniques introduced by Byrnes and Isidori

in 2004, that solved the nonlinear output regulation problem; in details, they developed

a constructive way to design a controller with the so called internal model property (a

controller that satisfies the internal model principle). In that work, the two authors

carried out an analysis of the asymptotic properties of the closed loop system with

the above-mentioned regulator, in which is possible to note that just in case of perfect

knowledge of the model of the exosystem, it is possible to obtain a regulator with the

internal model property, basically, in case of parametric or structural uncertainties of

the exosystem is possible solely to achieve practical regulation. In the new framework

proposed in this thesis, the problem of robust regulation in case of uncertainties (so

we deal with uncertain or completely unknown exosystems) has been studied, trying to

construct and analyze, from an asymptotic point of view, a general setup that allow

the designer to integrate an adaptive part able to help the existing controller; what we

have done is to work on the synergistic union and cooperation of the two main parts
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of the overall control system: the proper regulation part and the identification part,

modifying them, when possible, in order to generate an interplay between the two, able

to guarantee the best possible final regulation result (minimizing the regulation error).

In details, we have analyzed the interconnections between all the systems in the loop

namely, the controlled plant, the exosystem, the regulator and the identifier, developing

theorems to prove the good asymptotic properties of the closed loop system. Everything

has been supported by several simulations carried out on simple benchmark examples

and they have led to the validation of the presented theory also from a numerical point

of view.

6.2 Conclusions and Future Works

As conclusions of the overall work done, it is possible to say that the developed framework

is quite robust because is strongly based on high-gain techniques that intrinsically allow

a sort of robustness, but obviously, the main drawbacks are exactly those related to

that world: first of all, the poor robustness to the measurement noises (very significant

in the reality, they could affect the overall control system) and the classical peaking

phenomenon (the peak in the transient during the estimation of the time derivatives of

a signal using an high-gain/dirty derivative observer); both these situations should be

taken into account, in fact, they render the propose approach valid just from a theoretical

point of view but weakly applicable from a practical one. Just from these considerations

one could think about some new interesting ideas, among them, trying to develop and

use techniques able to avoid the peaking problems and at the same time techniques

able to decrease the sensitivity to noises related to the measures of signals that could

be dangerous during an eventual implementation phase of the control algorithm. As

underlined by the main idea of this work, the parameter “d” (the regulator dimension)

can be choose, in theory, to bypass the problem linked to the asymptotic amplitude

of the regulation error, in fact, we have proved that both the prediction error and the

regulation error are inversely proportional to the gain of the controller, but also to its

proper dimension; however, this is a drawback if one think to the fact that the dimension

of the state of the regulator must be huge in order to ensure the smallest regulation

error; this fact leads to an excessive computational weight because of the calculus of

a big number of derivatives that implies, also, the worst case of peaking phenomenon.

A possible solution could be to choose a small parameter “d” and to work instead, on

the identifier side. In fact, thanks to the approximation theory, would be possible to

estimate any regression law (linear or not) thanks to a surely linear model but with a

“selected” number of parameters; the word “selected” means that the designer could

choose the number of parameters for estimation such that the prediction error is as
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small as possible and, as direct consequence, the regulation error would be small; the

conclusion is that we do not create other problems for the regulator side but we just

increase the number of parameter for the identification side. The same kind of problems,

obviously, exist for the approach with implicit adaptation, nested in the regulator, with

the further applicative drawback of the necessary big dimension of the regulator; in fact

that dimension is fixed one for all, first, by the number of derivatives we have to calculate

in order to get the suitable regression law and second, by the number of derivatives we

have to take into account to satisfy the hypothesis on the rank of the matrix we want to

use for the estimation of all parameters. As happens in the case of the Lorentz oscillator,

this approach can be used just with more than 20 states for the regulator (difficult to

implement). For this kind of method, it is not so clear how to overcome the obstacle

and this is the reason why it could be an interesting starting point for further research

on the subject.





Appendix A

Proof of Proposition 3.2

Consider the change of variables

ξe 7→ ξ̃e := Dg(ξe − τ̄e(ηc, w))

with Dg = diag(gd , gd−1 , . . . , 1). We first compute the flow dynamics of ξ̃e component-

wise. The components ξ̃i, i = . . . d − 1, are described by (adding and subtracting the

term u⋆(w) defined in (2.13))

˙̃ξi = gd+1−i(ξi+1 + λig
i(u⋆(w) − ξ1)− τi+1(w) + λig

i(c(w, z) − u⋆(w)))

= g(ξ̃i+1 − λiξ̃1) + λig
d+1ℓ1(w, z) .

As far as ξ̃d is concerned, the following dynamics can be computed

˙̃
ξd = g(ξd+1 + λdg

d(u⋆(w) − ξ1)− τd+1(w) + λdg
dℓ1(w, z))

= g(ξd+1 − Γη(σ(ηc, w), τ(w)) − λdξ̃1

+Γη(σ(ηc, w), τ(w)) − τd+1(w)) + λdg
d+1ℓ1(w, z)

= g(ξ̃d+1 − λdξ̃1) + g(Γη(σ(ηc, w), τ(w)) − τd+1(w)) + λdg
d+1ℓ1(w, z)

= g(ξ̃d+1 − λdξ̃1)− gε(ηc, w) + λdg
d+1ℓ1(w, z) .

Finally, using the fact that σ̇(ηc, w) = Fe(σ(ηc, w), τe(w)) for all (ηc, w) ∈ Cc ×W , ˙̃ξd+1

reads as

˙̃ξd+1 = Γ′
ηs(ηe, ξe)− λd+1gξ̃1 − Γ′

η(σ(ηc, w), τe(w)) + λd+1g
d+1ℓ1(w, z)
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with the term Γ′
ηs(ηe, ξe)− Γ′

η(σ(ηc, w), τe(w)) that can be elaborated as

Γ′
ηs(ηe, ξe)− Γ′

η(σ(ηc, w), τe(w)) =

Γ′
ηs(ηe, ξe)− Γ′

ηs(ηe, τ̄e(ηc, w))
︸ ︷︷ ︸

:= ̺1(η, ξe, w)

+

Γ′
ηs(ηe, τ̄e(ηc, w)) − Γ′

ηs(ηe, τe(w))
︸ ︷︷ ︸

:= ̺2(η,w)

+

Γ′
ηs(ηe, τe(w)) − Γ′

η(σ(ηc, w), τe(w))
︸ ︷︷ ︸

:= ̺3(η,w)

.

Note that, by the definition of Γ′
ηs(·), there exist positive constants c1, c2 and c3 such

that

|̺1(η, ξe, w)| ≤ c1‖D−1
g ξ̃e‖

|̺2(η,w)| ≤ c2|ε(ηc, w)|

|̺3(η,w)| ≤ c3‖ℓ2(η,w)‖

for all (η,w, ξe) ∈ (Cη ∪ Dη) × W × R
d+1. Putting together the expressions of ξ̃i,

i = 1, . . . , d+ 1, it turns out that the ξ̃e dynamics during flows can be written as

˙̃ξe = gHξ̃e +












0

· · ·
0

−gε(ηc, w)
̺1(η, ξe, w) + ̺2(η,w) + ̺3(η,w)












(A.1)

+gd+1










λ1

· · ·
λd

λd+1










ℓ1(w, z)

where H is an Hurwitz matrix. Consider the positive definite function Wς(ηc, ς) =
√

ξ̃Te P ξ̃e with P = P T > 0 such that PH + HTP = −I, and note that λP‖ξ̃e‖ ≤
Wς(ηc, ς) ≤ λ̄P ‖ξ̃e‖ where λP and λ̄P are, respectively, the square root of the lowest

and the largest eigenvalues of P . Note that, by assuming without loss of generality

that g > 1, Wς(ηc, ς) ≥ λP ‖ξ̃e‖ ≥ λP ‖ξe − τ̄e(ηc, w)‖ ≥ λP ‖(ηc, ς)‖C . Moreover, let

(ηcp, wp) ∈ (Cc ∪ Dc) ×W be such that ‖(ηc, ς)‖C = ‖(ηc, w, ξe) − (ηcp, wp, ξep)‖ with

ξep = τ̄e(ηcp, wp). Then, using the fact that τ̄e(·) is locally Lipschitz and Cc, Dc, W are
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compact,

Wς(ηc, ς) ≤ λ̄P ‖ξ̃e‖ ≤ gdλ̄P ‖ξe − τ̄e(ηc, w)‖
= gdλ̄P ‖ξe − ξep + τ̄e(ηcp, wp)− τ̄e(ηc, w)‖
≤ gdλ̄P (‖ξe − ξep‖+ ‖τ̄e(ηcp, wp)− τ̄e(ηc, w)‖)
≤ gdλ̄P (‖(ηc, ς)‖C + τ̄‖(ηcp, wp)− (ηc, w)‖)
≤ gdλ̄P (1 + τ̄)‖(ηc, ς)‖C ,

where τ̄ is positive constant. Namely, α′
ς‖(ηc, ς)‖C ≤ Wς(ηc, ς) ≤ gdᾱ′

ς‖(ηc, ς)‖C with

α′
ς = λP and ᾱ′

ς = λ̄P (1+ τ̄ ). We now considerWς during flows. By taking the derivative

of Wς along the solutions of the previous system, by using the previous bounds on ̺1(·),
̺2(·) and ̺3(·) and using Wς(ηc, ς) ≤ λ̄P ‖ξ̃e‖, one obtains that there exists a g⋆1 > 0

(dependent on the constant c1) such that for all g ≥ g⋆1 the following holds

Wς(ηc, ς) ≥ χ′
ς max{ |ε(ηc, w)| , gd|ℓ1(w, z)| ,

1

g
‖ℓ2(η,w)‖ }

⇒ 〈∇Wς(ηc, ς), F̄ξ(ξ̃e, η, w, z)〉 ≤ −c′ςWς(ηc, ς)
(A.2)

for some positive constant c′ς and χ
′
ς , for all (ηc, ς) ∈ Cc×Cς and (η,w, z) ∈ Cη×W×R

n,

where F̄ξ(·) is the right-hand side of (A.1).

We now consider the Wς(ηc, ς) during jumps. By bearing in mind the jump rules for ξ,

ξd+1, η and w in (3.12), and the fact that σ(ηc, w)
+ = Je(σ(ηc, w), τe(w)), it follows that

Wς(v) =
√

ζ(η,w, ξe)TPζ(η,w, ξe) for all v ∈ col(Jc(ηc), Jς (ς, (w, ηe, z))) where

ζ =

(

diag(gd, . . . , g) (ξ − τ(w))

Γη(Je(ηe, ξe), ξ) − Γη(Je(σ(ηc, w), τe(w)), τ(w))

)

.

By using the fact that Γη(·) and Je(·) are locally Lipschitz and bounded, the last element

of ζ(η,w, ξ) can be bounded as

|Γη(Je(ηe, ξe), ξ)− Γη(Je(σ(ηc, w), τe(w)), τ(w))| ≤
ν1‖ℓ2(η,w)‖ + ν2‖ξe − τe(w)‖+ ν3‖ξ − τ(w)‖ ≤
ν1‖ℓ2(η,w)‖ + (ν2 + ν3)‖ξe − τe(w)‖ ≤
ν1‖ℓ2(η,w)‖ + (ν2 + ν3)‖ξe − τ̄e(w)‖

+(ν2 + ν3)‖τ̄e(w)− τe(w)‖ ≤
ν1‖ℓ2(η,w)‖ + (ν2 + ν3)‖ξe − τ̄e(w)‖ + (ν2 + ν3)|ε(ηc, w)|
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for some positive νi, i = 1, 2, 3. Using (a+ b+ c)2 ≤ 3a2 +3b2 +3c2 for all positive a, b,

c, one easily obtains (by assuming, without loss of generality, that g > 1)

‖ζ(η,w, ξe)‖2 ≤
d∑

i=1

gd−i+1|ξi − τi(w)|2 + ν ′1‖ℓ2(η,w)‖2

+ν ′2‖ξe − τ̄e(w)‖2 + ν ′2|ε(ηc, w)|2

=

d∑

i=1

(gd−i+1 + ν ′2)|ξi − τi(w)|2 + ν ′2|ξd+1

−Γη(σ(ηc, w), τ(w))|2 + ν ′1‖ℓ2(η,w)‖2 + ν ′2|ε(ηc, w)|2

≤ (1 + ν ′2)
d∑

i=1

gd−i+1|ξi − τi(w)|2 + (1 + ν ′2)‖ξd+1

−Γη(σ(ηc, w), τ(w))‖2 + ν ′1‖ℓ2(η,w)‖2 + ν ′2|ε(ηc, w)|2

= (1 + ν ′2)‖ξ̃e‖2 + ν ′1‖ℓ2(η,w)‖2 + ν ′2|ε(ηc, w)|2 ,

namely, using the fact that Wς(ηc, ς) ≥ λP ‖ξ̃e‖ and Wς(v) ≤ λ̄P ‖ζ(η,w, ξe)‖ for all

v ∈ col(Jc(ηc), Jς(ς, (w, ηe, z))),

Wς(v) ≤ χ′
ς max{Wς(ηc, ς) , ‖ℓ2(η,w)‖ , |ε(ηc, w)|} (A.3)

where χ′
ς is a constant taken, without loss of generality, equal to the one in (A.2). Rela-

tions (A.2), (A.3) do not prove yet the desired result as Wς is not necessarily decreasing

during jumps when ℓi(·) = 0, i = 1, 2, and ε(·) = 0 (namely χ′
ς > 1). The presence of

an average dwell-time plays a role to complete the proof. As a matter of fact, following

[24], it turns out that a hybrid time domain of the clock subsystem that satisfies (3.6)

necessarily coincides with the domain of some solution to the hybrid system flowing

according to η̇c ∈ [0, δ] if ηc ∈ [0, N0], and jumping according η+c = ηc − 1 if ηc ∈ [1, N0].

This implies that the existence of a ISS Lyapunov function Vς(ηc, ς) with the properties

specified just after the statement of Proposition 3.2 directly follows from Proposition

B.1 in Appendix B applied to the system flowing according to η̇c ∈ [0, δ],
˙̃
ξe = F̄e(·) and

jumping according to η+c = ηc − 1, ξ̃+e = ζ(·) by taking Vς(ηc, ς) = exp(Lηc)Wς(ηc, ς),

with L ∈ (ln(χ′
ς) , c

′
ς/δ) and δ

⋆ = c′ς/ ln(χ
′
ς).

For the proof of the second part, note that there exists a ℓ̄ > 0 such that |ℓ1(w, z)| ≤ ℓ̄

for all (w, z) ∈ W × Z. The result then follows by standard continuous-time high-gain

arguments by using now the change of coordinates ξ̃e = Dg(ξe − τe(w)) and using the

fact that Γ′
ηs(·) and ℓ1(w, z) are bounded for all (w, η, ξe, z) ∈W×(Cη∪Dη)×R

d+1×Z.
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Auxiliary Results

B.1 Hybrid ISS Lyapunov Functions in Presence of Aver-

age Dwell-Time

Let H be the hybrid system

η̇c ∈ [0, δ]

ẋ ∈ F (ηc, x, d)

}

(ηc, x, d) ∈ [0, N0]× Cx × Cd

η+c = ηc − 1

x+ ∈ J(ηc, x, d)

}

(ηc, x, d) ∈ [1, N0]×Dx ×Dd

for some δ > 0 and N0 ≥ 1. Assume that there exists a locally Lipschitz function

W : ([0, N0]× Cx) ∪ ([1, N0]×Dx) → R≥0 satisfying the following properties:

• there exist class-K∞ functions α′(·), ᾱ′(·) such that for all x in the domain of W

the following holds

α′(‖(ηc, x)‖S) ≤W (ηc, x) ≤ ᾱ′(‖(ηc, x)‖S)

where S is a compact set;

• there exist a class-K∞ function χ′
1(·) and a positive c1 such that for all (ηc, x, d) ∈

[0, N0]× Cx × Cd

W (ηc, x) ≥ χ′
1(|d|) ⇒ W o((ηc, x), v) ≤ −c1W (ηc, x)

for all v ∈ col([0, δ], F (ηc , x, d));
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• there exist a class-K∞ function χ′
2(·) and a positive constant c2 and such that for

all (ηc, x, d) ∈ [1, N0]×Dx ×Dd

W (v) ≤ max{exp(c2)W (ηc, x) , χ
′
2(|d|)}

for all v ∈ col({ηc − 1}, J(ηc, x, d)).

Proposition B.1. Consider the hybrid system H and assume the existence of the lo-

cally Lipschitz function W with the properties specified before. If δ ≤ c1/c2 then H
is pre-ISS relative to the set S. In particular the locally Lipschitz function V (ηc, x) =

exp(Lηc)W (ηc, x) with L ∈ (c2 , c1/δ) satisfies the following:

• for all (ηc, x) in the domain of V the following holds

α(‖(ηc, x)‖S) ≤ V (ηc, x) ≤ ᾱ(‖(ηc, x)‖S)

with class-K∞ functions α(·) = α′(·) and ᾱ(·) = exp(LN0)ᾱ
′(·).

• for all (ηc, x, d) ∈ [0, N0]× Cx × Cd the following holds

V (ηc, x) ≥ χ1(|d|) ⇒ V o((ηc, x), v) ≤ −cV (ηc, x)

for all v ∈ col([0, δ], F (ηc , x, d)), with positive c = c1 − Lδ and class-K∞ function

χ1(·) = χ′
1(·);

• for all (ηc, x, d) ∈ [1, N0]×Dx ×Dd the following holds

V (v) ≤ max{λV (ηc, x) , χ2(|d|)}

for all v ∈ col({ηc−1}, J(ηc, x, d)), with positive λ = exp(c2−L) < 1 and class-K∞

function χ2(·) = exp(L(N0 − 1))χ′
2(·).

The proof of this proposition is in [24] (see Proposition IV.1).



Appendix A. Auxiliary Results 63

B.2 Small-Gain Theorem for Hybrid Interconnections with

Average Dwell-Time

Consider the hybrid interconnection

η̇c ∈ [0, δ]

ẋi ∈ Fi(ηc, x1, x2, d)

}

(ηc, x1, x2, d) ∈ [0, N0]× C1 × C2 × Cd

η+c = ηc − 1

ξ+i ∈ Ji(x1, x2, d)

}

(ηc, x1, x2, d) ∈ [1, N0]×D1 ×D2 ×Dd

where i = 1, 2, for some δ > 0 and N0 ≥ 1, and assume that there exist two locally

Lipschitz functions Vi : [0, N0]× Ci ∪Di → R≥0 such that the following holds

• there exists class-K∞ functions αi(·), ᾱi(·) such that for all (ηc, xi) ∈ [0, N0]×Ci∪
Di

αi(‖(ηc, xi)‖Si
) ≤ Vi(ηc, xi) ≤ ᾱi(‖(ηc, xi)‖Si

)

where Si are compact sets, i = 1, 2;

• there exist positive constants χ1i, ci and class-K∞ functions σ1i(·) such that for

all (ηc, x1, x2, d) ∈ [0, N0]× C1 × C2 × Cd

Vi(ηc, xi) ≥ max{χ1iVj(ηc, xj) , σ1i(|d|)} ⇒ V o
i ((ηc, xi), v) ≤ −ciVi(ηc, xi)

∀ v ∈ col([0, δ], Fi(ηc, x1, x2, d)), with i, j = 1, 2, i 6= j;

• there exist positive constants χ2i, χ3i, and class-K∞ functions σ2i(·) such that for

all (ηc, x1, x2, d) ∈ [1, N0]×D1 ×D2 ×Dd

Vi(v) ≤ max{χ2iVi(ηc, xi) , χ3iVj(ηc, xj) , σi2(|d|)}

for all v ∈ col({ηc − 1}, Ji(ηc, x1, x2, d)), with i, j = 1, 2, i 6= j;

• the following holds: χ11χ12 < 1.

In this framework the following result holds.

Theorem B.2. There exists a δ⋆ > 0 such that if δ ≤ δ⋆ the interconnection is pre-ISS

relative to the set S = S1×S2 with respect to d. In particular, by letting x = col(x1, x2),

C = C1 × C2, D = D1 × D2, F (ηc, x, d) = col(F1(ηc, x1, x2, d), F2(ηc, x1, x2, d)), and

J(ηc, x, d) = col(J1(ηc, x1, x2, d), J2(ηc, x1, x2, d)) , there exists a locally Lipschitz func-

tion V : [0, N0]× (C ∪D) → R≥0 such that the following holds
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• for all (ηc, x) in the domain of V the following holds

α(‖(ηc, x)‖S) ≤ V (ηc, x) ≤ ᾱ(‖(ηc, x)‖S)

• there exists a positive c and a class-K∞ function σ(·) such that for all (ηc, x, d) ∈
[0, N0]× C × Cd

V (ηc, x) ≥ σ(|d|) ⇒ V o((ηc, x), v) ≤ −cV (ηc, x)

for all v ∈ col([0, δ], F (ηc , x, d));

• there exists a positive λ < 1 such that for all (ηc, x, d) ∈ [1, N0] × D × Dd the

following holds with the same σ(·) of the previous item

V (v) ≤ max{λV (ηc, x) , σ(|d|)} ∀ v ∈ col({ηc − 1}, J(ηc, x, d)) .

Proof. Let ρ > 0 be such that χ11 < ρ < 1/χ12. Let W : [0, N0] × (C ∪D) → R≥0 be

the locally Lipschitz function

W (ηc, x) = max{V1(ηc, x) , ρV2(ηc, x)} .

Simple arguments can be used to prove the existence of class-K∞ functions α′(·) and ᾱ′(·)
fulfilling α′(|(ηc, x)|S) ≤W (ηc, x) ≤ ᾱ′(|(ηc, x)|S) for all (ηc, x) ∈ [0, N0]×(C∪D) (details

are omitted). Following the small-gain Theorem III.1 of [23], it turns out that there exists

a positive c′ and a class-K∞ function σ′1(·) such that for all (ηc, x, d) ∈ [0, N0]×C ×Cd

W (ηc, x) ≥ σ′1(|d|) ⇒ W o((ηc, x), v) ≤ −c′W (ηc, x)

for all v ∈ F (ηc, x, d). On the other hand, for all (ηc, x, d) ∈ [1, N0]×D×Dd and for all

v ∈ J(ηc, x, d)

W (v) ≤ max{χ21V1(ηc, x) , χ31V2(ηc, x) , σ21(|d|) ,
ρχ22V2(ηc, x) , ρχ32V1(ηc, x) , σ22(|d|)}

≤ max{χ′W (ηc, x) , σ
′
2(|d|)}

where χ′ = max{χ21 , χ22 , ρχ32 , χ31/ρ}, and σ′2(·) is the class-K∞ function defined

as σ′2(s) = max{σ21(s) , σ22(s)}. The result then follows by Proposition B.1 taking

V (ηc, x) = exp(Lηc)W (ηc, x), with L ∈ (ln(χ′) , c′/δ) and δ⋆ = c′/ ln(χ′).



Bibliography

[1] A. Serrani, A. Isidori, and L. Marconi. Semiglobal nonlinear output regulation with

adaptive internal model. IEEE Trans. Automatic Control, AC-46:1178–1194, 2001.

[2] J. Huang. Asymptotic tracking and disturbance rejection in uncertain nonlinear

systems. IEEE Trans. Automatic Control, 40:1118–1122, 1995.

[3] A. Ding. Global stabilization and disturbance suppression of a class of nonlinear

systems with uncertain internal model. Automatica, 39(3):471–479, 2003.

[4] F. Delli Priscoli, L. Marconi, and A. Isidori. A new approach to adaptive nonlinear

regulation. SIAM Journal on Control and Optimization, 45(3):829–855, 2006.

[5] R. Marino and P. Tomei. Adaptive nonlinear regulation for uncertain minimum

phase systems with unknown exosystem. Proceedings of the 47th IEEE conference

on decision and control, Cancun, Mexico, 2008.

[6] R. Marino and P. Tomei. An adaptive learning regulator for uncertain minimum

phase systems with undermodeled unknown exosystems. Automatica, 47:739–747,

2011.

[7] A. Isidori, L. Marconi, and L. Praly. Robust design of nonlinear internal models

without adaptation. Automatica, 48:2409–2419, July 2012.

[8] A. Serrani. Rejection of harmonic disturbances at the controller input via hybrid

adaptive external model. Automatica, 42:1977–1985, 2006.

[9] L. Ljung. System identification - theory for the user. PTR Prentice Hall, 2nd ed,

Upper Saddle River, N.J. 1999.

[10] T. S. Soderstrom and P. Stoica. System identification. Prentice Hall International

1989.

[11] C.I. Byrnes and A. Isidori. Nonlinear internal models for output regulation. IEEE

Trans. Automatic Control, 49(12), Dec. 2004.

65



Bibliography 66

[12] M. Gevers. Towards a joint design of identification and control? In Essays on

Control: Perspectives in the Theory and its Applications, H. L. Trentelman and J.

C. Willems Editors, Springer Science+Business Media, LLC, 1993.

[13] C.I. Byrnes and A. Isidori. Limit sets, zero dynamics, and internal models in the

problem of nonlinear output regulation. IEEE Trans. Automatic Control, 48:1712–

1723, 2003.

[14] A. Isidori. Nonlinear control systems 3rd ed. Springer-Verlag, New York, 1995.

[15] C. I. Byrnes and A. Isidori. Asymptotic stabilization of minimum phase nonlinear

systems. IEEE Transactions on Automatic Control, 36(10):1122–1137, June 1991.

[16] L. Marconi, L. Praly, and A. Isidori. Output stabilization via nonlinear luenberger

observers. SIAM Journal on Control and Optimization, 45(6):2277–2298, 2007.

[17] L. Marconi and L. Praly. Uniform practical output regulation. IEEE Trans. Auto-

matic Control, 53(5):1184–1202, 2008.

[18] J.P. Gauthier and I. Kupka. Deterministic observation theory and applications.

Cambridge University Press, Cambridge, UK, 2001.

[19] A.R. Teel and L. Praly. Tools for semiglobal stabilization by partial state and

output feedback. SIAM Journal on Control and Optimization, 33:1443–1488, 1995.

[20] R. Goebel, R.G. Sanfelice, and A.R. Teel. Hybrid dynamical systems: modeling,

stability and robustness. Princeton University Press 2012.

[21] J. P. Hespanha, D. Liberzon, and A. R. Teel. Lyapunov conditions for input-to-state

stability of impulsive systems. Automatica, 44:2735–2744, 2008.

[22] J. P. Hespanha and A. S. Morse. Stability of switched systems with average dwell-

time. In proc. 38th IEEE Conf. on Decision and Control, pages 2655–2660, 1999.
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