Cavina, Michelangelo
(2023)
Potential theory on metric spaces, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Matematica, 35 Ciclo. DOI 10.48676/unibo/amsdottorato/10963.
Documenti full-text disponibili:
|
Documento PDF (English)
- Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (1MB)
|
Abstract
This work revolves around potential theory in metric spaces, focusing on applications of dyadic potential theory to general problems associated to functional analysis and harmonic analysis. In the first part of this work we consider the weighted dual dyadic Hardy's inequality over dyadic trees and we use the Bellman function method to characterize the weights for which the inequality holds, and find the optimal constant for which our statement holds. We also show that our Bellman function is the solution to a stochastic optimal control problem. In the second part of this work we consider the problem of quasi-additivity formulas for the Riesz capacity in metric spaces and we prove formulas of quasi-additivity in the setting of the tree boundaries and in the setting of Ahlfors-regular spaces. We also consider a proper Harmonic extension to one additional variable of Riesz potentials of functions on a compact Ahlfors-regular space and we use our quasi-additivity formula to prove a result of tangential convergence of the harmonic extension of the Riesz potential up to an exceptional set of null measure
Abstract
This work revolves around potential theory in metric spaces, focusing on applications of dyadic potential theory to general problems associated to functional analysis and harmonic analysis. In the first part of this work we consider the weighted dual dyadic Hardy's inequality over dyadic trees and we use the Bellman function method to characterize the weights for which the inequality holds, and find the optimal constant for which our statement holds. We also show that our Bellman function is the solution to a stochastic optimal control problem. In the second part of this work we consider the problem of quasi-additivity formulas for the Riesz capacity in metric spaces and we prove formulas of quasi-additivity in the setting of the tree boundaries and in the setting of Ahlfors-regular spaces. We also consider a proper Harmonic extension to one additional variable of Riesz potentials of functions on a compact Ahlfors-regular space and we use our quasi-additivity formula to prove a result of tangential convergence of the harmonic extension of the Riesz potential up to an exceptional set of null measure
Tipologia del documento
Tesi di dottorato
Autore
Cavina, Michelangelo
Supervisore
Dottorato di ricerca
Ciclo
35
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Potential theory, Hardy's inequality, Bellman function, stochastic optimal control, quasi-additivity, harmonic funtions, boundary behaviour
URN:NBN
DOI
10.48676/unibo/amsdottorato/10963
Data di discussione
10 Luglio 2023
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Cavina, Michelangelo
Supervisore
Dottorato di ricerca
Ciclo
35
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Potential theory, Hardy's inequality, Bellman function, stochastic optimal control, quasi-additivity, harmonic funtions, boundary behaviour
URN:NBN
DOI
10.48676/unibo/amsdottorato/10963
Data di discussione
10 Luglio 2023
URI
Statistica sui download
Gestione del documento: