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Abstract

This work revolves around potential theory in metric spaces, focusing on applications of
dyadic potential theory to general problems associated to functional analysis and harmonic
analysis. In the first part of this work we consider the weighted dual dyadic Hardy’s inequality
over dyadic trees and we use the Bellman function method to characterize the weights for which
the inequality holds, and find the optimal constant for which our statement holds. We also show
that our Bellman function is the solution to a stochastic optimal control problem. In the second
part of this work we consider the problem of quasi-additivity formulas for the Riesz capacity
in metric spaces and we prove formulas of quasi-additivity in the setting of the tree boundaries
and in the setting of Ahlfors-regular spaces. We also consider a proper Harmonic extension to
one additional variable of Riesz potentials of functions on a compact Ahlfors-regular space and
we use our quasi-additivity formula to prove a result of tangential convergence of the harmonic

extension of the Riesz potential up to an exceptional set of null measure.
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Introduction

Potential theory was born out of the theory of electrostatic potential, from the work of C.F.
Gauss. The first notion of capacity dates back to the 1830’s and it is the notion of electrostatic
capacitance of a compact set K C R3. We consider a distribution of charge p over R3, which
is a positive measure on R3. The amount of charge on a conductor K C R? is equal to u(K).

Given a distribution of charge j, the electrostatic potential associated to u at the point y € R3

is defined by
du(z)
Vi(y 22/ ; 1
ﬂ( ) RS |.%' _y| ( )

and the energy associated to u is defined by

E() = / 3 / o duw)duy). (2)

|z —

A charge distribution i is called an equilibrium charge distribution for a compact set K C R3
if /i is supported on K and if the potential Vj(y) is equal to a constant value Vj for all y € K,
except for a ”small” set of exceptional points. An equilibrium charge distribution i minimizes
the value of the energy £(u) for charge distributions p such that u(K) = fa(K). Using these
notions we define the electrostatic capacitance of a compact set K C R? to be ratio between the
amount of charge in K and the value of the electrostatic potential associated to an equilibrium
charge distribution, i.e. .
Crs.(K):= /ig{) (3)
i
Potential theory has always been strictly connected to the theory of Hilbert spaces and
harmonic analysis. In the 1830’s Gauss proved the existence of equilibrium potentials by min-
imizing a quadratic integral, the energy (see [15]). The same result was proved with modern
mathematical rigor by O. Frostman in the 1930’s (see [14]). This theme kept on growing during
the 1940’s, and it was made expecially clear in the work of H. Cartan (see [12]).
In the following decades a mathematical concept of potential theory, disconnected from the
theory of the electrostatics, was developed. G. Choquet (see [13]), introduced a definition of
capacity and capacitability in 1950, and in the 1970’s Frostman developed the first rigorous

7
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mathematical definition of potential theory. In the early 1960’s Maz’ya developed a non linear
potential theory which is connected to the theory of function spaces.

In 1990 D.R. Adams and L.I. Hedberg developed an axiomatic definition of potential theory
for metric measure spaces (see [4]) which allows to prove many results in a very general setting.
In this work, we refer to [4] for the definitions and main theorems about potential theory. In
the 1990’s J. Heinonen and P. Koskela developed a potential theory on metric spaces based on

the notions of rectifiable curves and of "weak gradients” (see [1§]).

General problems in potential theory

This work analyzes two problems in the field of potential theory: the weighted dual dyadic
Hardy’s inequality on trees and the quasi-additivity of the capacity in the setting of Ahlfors-
regular spaces, with applications to the boundary behaviour of harmonic extensions of Riesz

potentials.

Hardy’s inequality states that

/0+°° (i« /OW> f(y)dy>pdw < <pz>p/0+oo f(z)Pdx (4)

for every positive measurable function f, for every p > 1. The constant (p/(p—1))? is optimal.

In 1920 G. H. Hardy was interested in the study of the discrete version of the previous inequality

= ap+---+aj b D p+oop
> () < () o ®
where a; are positive real numbers, motivated by the goal of giving a simpler proof of ”Hilbert’s
inequality for double series” (see [16]). For p = 2 the inequality was proved by Hardy in his
earlier paper [17].

In the following years it became clear that Hardy’s inequality and its extensions played a central
role in the studies in the broad area of Harmonic analysis. A reason for the relevance of Hardy’s
inequality in harmonic analysis is that it is ”the prototype of a (weighted) norm inequality for
an integration (averaging) operator between LP spaces”, and averaging operators are among
the pillars of harmonic analysis. This interpretation allows to view a vast number of theorems
as Hardy’s type inequalities, and lead to the construction of many inequalities of the Hardy
type.

The inequality we will be considering in this work is a weighted inequality of the Hardy type
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over the dyadic tree. A formulation of such inequality can be the following: given the real

interval [0, 1] we may consider the family of dyadic subintervals
7 ={I=1[a2"",(a+1)27" C[0,1] | n=0,1,2,... ,a=0,1,...,27" = 1}.
We want to find a characterization of the weights

251 aIERJr,
251 — M\ eRT,

such that the inequality

S ar( S ot ) < e Y sy ©)

€9 Jeg 1€9
JCI

holds for all non negative functions ¢ € IP(2), where C(p) is an appropriate constant, and

we want to find the optimal value of C(p) for which the inequality holds assuming that our
characterization of {a;} and {A;} holds.

A well-known result from potential theory (see [I]) is that the capacity Ck ,(E) of a set
E C X is a sub additive map

Ck,p : {Borel subsets of X} — [0, +00],

hence we have
Crp | UEi| €D Crn(E)) (7)
jeN jeN
for all £; C X.
In general the capacity is very far from superadditive, an example of this property coming from
the theory of electrostatic potential. Suppose B C R? is a compact ball. When we consider

the electrostatic capacitance Cgg.(B) we have
Crs.(B) = Crs.(B) = Crs.(9B), (8)
hence
Ces.(B) + Ces.(0B) =2- Crs.(BUOB), (9)

which is a counter example to the quasi-additivity of the electrostatic capacitance.
A common problem in harmonic analysis is to find notions of ”properly separated” families of

sets {E;}jen implying that

ZCK,I)(EJ’) <C-Ckp U Ejl, (10)

jeN JjEN
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for an appropriate constant C' > 1.

Results of this kind have been developed through the years, including results using a notion
separation of the sets E; based on Whitney decompositions (see [2], [4]).

In this work we consider the quasi-additivity formula in the article [3] from H.Aikawa and A.A.
Borichev, and we extend it to the setting of the theory of the potential on tree boundaries.
Then, we use the results from the theory of dyadic potential (see [8]) to extend the quasi-
additivity formula on the setting of tree boundaries to the setting of compact Ahlfors-regular
spaces. This results represents a starting point in the construction of a potential theory for the
setting of Ahlfors-regular spaces analoguos to the classical potential theory in R™. Using the
quasi-additivity formula for the compact Ahlfors-regular spaces we prove a theorem about the
convergence of the values of harmonic extensions of Riesz potentials which is analoguos to a
result by A. Nagel, W. Rudin and J.H. Shapiro (see [25]) in the classical setting of R™.

Chapter 1

The first chapter of this work will present notions of stochastic analysis needed for the
understanding of the theory behind the Bellman functions, and the theory of the Bellman
functions in stochastic control. The notations, definitions and theorems listed in this chapter
are all thoroughly explained in the text [24] by B. @ksendal, in chapters 1, 2, 3, 4, 5, 7 and
9. The theory of the Bellman functions requires the notions of stochastic analysis necessary to

define the It6 integral, which is used to define a Bellman function

7
v(x) = sup E* [/ F(r, X, u,)dr + K(T,Xf)xf<+oodBr )
S

{ut}i>o0

where X; is a stochastic process solution to the stochastic differential equation
h h
Xpn=Xi=x —i—/ b(r, Xr,ur)dr—i—/ o(r, Xy, up)dB,; h>s,
S S

where b and o are proper coefficients, { B;}>¢ is a Brownian motion, Tisa proper stopping time
and {u}+>0 is an admissible control process. Here F' is a profit density and K is a "bequest”
function (gain at the moment of retirement). So a Bellman function v is the solution to a
stochastic optimal control problem that consists of finding the maximum average gain over a
trajectory of a controlled process {X;}¢>o.

This chapter also includes the notions needed to prove the theorem about the Bellman func-
tion being a solution to the Hamilton-Jacobi-Bellman equation, and its converse: it contains

the definitions and theorems about the strong Markov property, infinitesimal generator of a
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stochastic process, Dynkin’s formula and the Dirichlet-Poisson problem.

Chapter 2

In the second chapter of this work we use the method of the Bellman function to character-
ize the measures for which the weighted dual Hardy’s inequality holds on dyadic trees. We also
give an explicit interpretation of the corresponding Bellman function in terms of the theory of

stochastic optimal control.

The weighted Hardy’s inequality on trees was initially studied for its applications to the
theory of holomorphic function spaces, but it is an interesting topic on its own. The weighted
dyadic Hardy’s inequality was studied (see [6] and [7]) to characterize Carleson measures for
analytic Besov spaces.

In this work we study the problem and solve it for the general case 1 < p < +oc and we prove
that the inequality holds with constant C(p) = (p/(p — 1))” = (p')". See Theorem m

But for the best constant, our characterization of the dual dyadic Hardy’s inequality is not
new, see [6] and [9]. The proof we give is new and it is inspired to the linear case given in [5].
The weighted dyadic Hardy’s inequality can be characterized by other equivalent, but different
conditions. For instance a capacitary characterization can be given, using the Maz’ya theory,
see [21].

In the past twenty years several results of this kind have been proved using the Bellman
function method. The ideas behind the Bellman function technique were inspired by [11], see
also [I0] . The expository article [23] investigates the connection between the Bellman function
technique in dyadic analysis and Bellman functions from the theory of stochastic control. The
seminal article [22] presents a thorough exposition about the Bellman function technique and
its applications. The article [5] solves the problem for the case p = 2, and the Bellman function
in our article is equal to the Bellman function used in [5] when we set p = 2. The Bellman
function we use in this article is very similar, but not completely, to the one used for the proof
of the dyadic Carleson embedding theorem, see [20], and for the Carleson embedding theorem

the same constant (p')” is sharp.

We are now going to present the results in the second chapter of this work.

Given the interval Iy = [0,1] we denote by Z(Iy) the standard dyadic tree structure of real
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intervals I C Iy. Let I € 2(1y), let
v:P(l)) — R.

We will denote the sum of the values p(J) for J € Z(I) by

Yo el =) el

Jea(I) JCI

We consider the maps

I— ar € RT,
I'—>/\[€R+,

I— ¢(I) € RY,

where we can read {as} as a choice of weights, {\;} as a measure and {¢(I)} as a function
over the dyadic tree.

The first main result of this work is the following one:

Theorem 0.0.1. Let Iy be a real interval. Let {a;} and {A\;} be a choice of weights and

measure. If
1 1 P 1
- R < —
|I| E aK<| ‘ E )\J) < |I| E A <400 VI € @(I()) (11)

KCI JCK KCI

is satisfied, then the dual weighted dyadic Hardy’s inequality holds for {ar} and {Ar}, i.e.

1 1 1\? 1 ) ;
e e ) <o ey pratser@m) a2

JCI ICIy

for any choice of {¢(I)}. Here C(p) is the constant
_ p P (g
C(p) = (p—l) = (P )p-

The constant C(p) in the inequality (@ is sharp.
Moreover, if the inequality (@ holds with constant C(p) = 1 then the inequality holds for
1

any I € 9(1y) by choosing ¢(I) = )\IE and by rescaling Iy over I.

_1
By setting n(I) = ¢(I)A\; © and w}_p = ﬁ—'fp we rewrite the inequality in the form

> w%”(Zn(J)AJ)p <C(p) Y nIPAr

ICI, JCI ICI,
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which, by duality, is equivalent to the weighted dyadic Hardy’s inequality

p/
> AI(ZM) <Cp) S BV w(l) for all v € P (7(Ty)).
ICIy J2I ICIy

To prove the results in this chapter we found and used the function

B(F, f,A,v) = (p—l) F- p—1(A+(p—1vrt

defined over the domain
D={(F,f,Av)eR | F>0,f>0,A>00v>0,v>A,fP <FoP~ '}

The properties of B we use are stated in subsection 2.1.2.

The function B can be interpreted as the solution to a Hamilton-Jacobi-Bellman equation

associated to a stochastic problem of optimal control, which we will state in the work.

Chapter 3

In the third chapter of this work we prove formulas of quasi-additivity for the capacity
associated to kernels of radial type in the setting of the boundary of a tree structure and in
the setting of compact Ahlfors-regular spaces. We also define a notion of harmonic extension,
to one additional variable, of a function defined over a compact Ahlfors-regular space, and we

prove a result of tangential convergence of the harmonic extension to the values at the boundary.

Let 1 < p < 400, let %—1— 1% =1, let ]% <s< 1. Let f € LP(R™). Let us consider the Bessel
potential of f

Box f() =5 ((L+47°k)755(0)(9) (@), (13)

where §(f) denotes the Fourier transform of f, and let us consider the harmonic extension of
the Bessel potential of f

PI(Bg# f) : R" x (0,400) — R (14)
defined by
(ntl
PI(Bs * f)(x0,90) ::/ (LJZFI) Yo — B, * f(x)dx.
noog 2

(y% + |z — $’2)T



14 CONTENTS

A classical result by Nagel, Rudin and Shapiro (see [25]) states that PI(Bs* f)(x,y) converges
to B * f(z¢) non tangentially as (x,y) — (x0,0) for all zyp € R™\E, where the exceptional set
E is a set of Bessel capacity Cp, ,(E) = 0, where the Bessel capacity of a set is defined by

C,p(E) := inf{||g\|7£p(Rn) | Bs % g(x) > 1 for z € E}. (15)

Moreover, PI(B;s * f)(x,y) converges to Bs * f(x¢) as (z,y) — (20,0) in a region of tangential

order of contact, for all zy € R™\ A, where the exceptional set A is a set of null measure.

Aikawa and Borichev (see [3]) generalized this result by Nagel, Rudin and Shapiro to a
wider family of kernels, and gave a proof based on formulas of quasi-additivity of the capacity
associated to kernels of radial type. In our work we generalize the theorems proved by Aikawa
and Borichev to the setting of compact Ahlfors-regular spaces, and we prove a result for the
tangential convergence of properly defined harmonic extensions (see section 3.3) of Riesz po-

tentials of functions f : X — R defined on an Ahlfors-regular space X.

From the theory of the potential it is well known that the LP capacity Ck p(E) of a set E

is subadditive, i.e. for all countable disjoint families {E}} of sets such that £ = (J; E; we have
> Crp(EBy) < CrcplE). (16)
J

In general, the capacity is very far from superadditive. Aikawa and Borichev gave a notion of
"separation” for the sets E; that guarantees that the capacity of the sets F; is quasi-additive,

i.e. there exists a universal constant A such that

Crp(E) <) Crp(Ej) < A-Cp(E), (17)
J
for any family {F;} that satisfies a proper condition (see [3, Theorem 5]).

We are now going to present the results in the third chapter of this work.
We proved the following two theorems that generalize the previous result to the setting of the

boundaries of tree structures and to the compact Ahlfors-regular spaces.

Theorem 0.0.2 (Quasi-additivity of the capacity for tree boundaries). Let X = 9T be the
boundary of a tree T of root o, let p: X x X — R be the distance defined by p(z,y) = §—d(@Ay.0)
for a parameter 0 < § < 1, let m be a o-finite Borel measure on X. Suppose K : X x X — R
is a proper radial Kernel (see section 1, Theorem .
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Let 1 < p < 4o00. Let Ckp(E) denote the LP capacity of E C X associated to the kernel K.
Let x € X, r > 0. Consider the radius

np(x,r) := inf {5_’”% €R

n €N, m(B,(z,0 "2)) > Cxp(B,(x, 7“))}. (18)

and define
Ny (x, 1) = max{r,n,(z,r)}. (19)

Let J be a countable (or finite) set of indices. Let {B,(xj,7j)}jes be a family of metric
balls in X such that n,(xj,r;) exists for all j € J. Suppose E C X is a compact subset of
Ujes Bo(wj,rj). Suppose {By(xj,my(xj,75))}jes is disjoint.
Then
Ciep(B) < 37 Cip(E 0 Blay, 1)) < A+ Cicy(B), (20)
Jj€J

where A = A(X, K,p), 1 < A < +0o0, is a constant depending only on X, K and p.

Theorem 0.0.3 (Quasi-additivity for Riesz capacity on compact Ahlfors-regular spaces). Let
(X,d,m) be a compact Q-regular Ahlfors space. Let 1 < p < +oo and % + z% = 1. Let
:r% < s < 1. Let Oy, p(FE) denote the LP Riesz capacity of E C X. For every v € X and

r > 0 consider the radius
nxp(x, ) = inf {R>0[m(By(z, R)) > Cky,p(Baz,7))} (21)

and define
nx p(; ) = max{r, nxp(z,7)}. (22)

We observe that the radius n}’p(w, r) depends on the parameter s. Then there exists a constant
Q=Q(X,p,s) > 1 such that for all M > 1 there exists a constant 1 < A < 400 such that, for
any countable family { By(zk, k) }ker of balls in X such that the family { Bg(xy, Q-n}‘hp(xk, M-
k) bkeF is disjoint, for any compact set E C X such that E = J,, By, and E, C By(zy, i) Yk,

we have

Z CKX,.s:p(Ek) S A ' CKX,.s:p(E)' (23)
keF
The constant A depend only on the choice of the space X and the of the parameters p, s and
M.

The quasi-additivity formula for compact Ahlfors-regular spaces is used to prove the fol-
lowing two theorems about the convergence of a ”"harmonic extension” of the Riesz potential

of a function f defined on a compact Ahlfors-regular space X.
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Theorem 0.0.4 (Non tangential convergence for the Riesz potential). Let (X, d,m) be a com-
pact Ahlfors-reqular space. Let M > 1. Let f € LP(X). Let Kx s denote the Riesz kernel over
X. Let PI(g) denote the Poisson Integral of g over X x (0,+00) (see definition[3.3.1). Then
3E C X x (0,+00) such that E is M-Ck  p-thin at X x {0} (see deﬁm'tion and
lim PI(Kxs* f)(P) = Kx,s* f(z0) (24)
(z,y)=P—(x0,0)

z€Bg(z0,y)
(=) ¢E

for Cr ., p-almost everywhere xo € X, i.e. 3F C X such that Cr  »(F) =0 and holds
Vao € X\F

Theorem 0.0.5 (Tangential convergence for the Riesz potential). Let (X,d,m) be a compact
Q-reqular Ahlfors space. Let p > 1, let ; < s < 1. Let Q > 1 be the constant defined by
Theorem [3.2.4. Let M > 1.

For every x € X and r > 0 consider the radius
nxp(x,r) = inf {R > 0| m(Bg(z, R)) > CKX,S,p(Bd(ﬂfﬂ“))} , (25)
and define
nx p(@,7) = max{r, nxp(z,r)}. (26)
Consider the region
Quo Kx o p M = {(ac,y) | x € By(zg, - n}yp(azo,My))} C X x (0,400). (27)
Let f € LP(X). Then

lim PI(KX7S x f)(P) = Kx g% f(xo) (28)
(z,y)=P—(20,0)
PEQIO,KX’s,p,Q,]M

for m-almost all xo € X. The region Qg iy, po,m is tangential to the boundary X x {0}.

These theorems generalize the results by Nagel, Rudin and Shapiro to the setting of compact
Ahlfors-regular spaces, and constitute a starting point for a potential theory on Ahlfors-regular
spaces analogous to the classical potential theory on R™. We think that Theorems and

0.0.5] can be generalized to the setting of non compact Ahlfors-regular spaces.

This part of our work is heavily inspired by [3]. We reference [4] and [I] for the general
notions and facts about the theory of the potential. We reference [§] for the theory of the

potential on tree boundaries.



Chapter 1

Bellman functions in stochastic

control

1.1 Notations and definitions

We will need the definitions of random variable and stochastic process, and we will use in
most cases the same notations used in [24]. We recommend to check a text of probability and

measure theory for the basic notions of probability needed in this work.

Definition 1.1.1 (Random variable). We denote with %(R%) the o-algebra over the set R?
generated by the Borel subsets of RY.
Given a probability space (2, .%, P), where 2 is a set, .Z is a o-algebra over Q and P : # — R

is a probability measure over (2, a random variable
Z:(Q,7,P) — (R, B(R?))

is an application
Z:Q-—R?

measurable with respect to the o-algebras .# and Z(RY).
Given two measurable spaces (21,.%1), (22,.%#2) an application

Z:Ql—>92

is measurable if, for all A € F», Z71(A) € F1.

17



18 CHAPTER 1. BELLMAN FUNCTIONS IN STOCHASTIC CONTROL

Definition 1.1.2 (Stochastic process). Given a probability space (£2,.#, P), given a set of

times I, given for each t € I a random variable
X :(Q,Z,P) — (RY, BRY) (1.1)

we denote by stochastic process in R™ over the probability space (€2,.%#, P) the collection of

random variables {X;}er.

Notation 1.1. Given a probability space (€2,.%, P) and a set of times I, given a stochastic

process {X;}ier
Xt : (vaup) — (RdW@(Rd))u

we will use the following notations to refer to {X;}er:

1. {Xi}ier is the application X that maps each time ¢ € I into the random variable X, i.e.
X:I— (RH® (1.2)
X(t)(w) = Xi(w) Vtel, Vwe Q.
2. {Xi}ier is the application X that maps each w €  into the trajectory t — X;(w), i.e.
X:0— (RYH (1.3)
X(w)(t) = Xy(w) YweQ, Vtel.
3. {Xi}ier is the application X defined by
X:IxQ—R? (1.4)
X(t,w) =X (w) V(t,w)elxQ.

The notations in (|1.1)), (1.2), (1.3)) and (1.4) are equivalent to each other, so we will use each

one of them indiscriminately.
We will also denote a value X;(w) € R? by

Xi(w)=X(w)(t) = X(t,w) = X(t)(w) YweQ, Vtel.

We are going to enunciate the notions needed to define a Brownian motion. We recommend
to check [24], chapter 2| for a more detailed exposition.
The definition of finite-dimensional distributions is the core part in the construction of many

stochastic processes, one example being the Brownian motion.
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Definition 1.1.3 (Finite-dimensional distributions). Given a stochastic process X={X;}er
in R"

X, (Q,.%7,P) — (RY, B(RY)),

where T' = [0, 400), we denote by finite-dimensional distributions of the proccess X the mea-
sures i, ¢, defined over the Borel g-algebra Z(R™), for k = 1,2,..., by

,uth__’tk(Fl X F2 X e X Fk) = P[th S Fl,...,th S Fk]; t; € T.

We recall the definition of expected value and conditional expectation from the basics of

the theory of probability.

Definition 1.1.4 (Expectation, conditional expectation). Given a random variable
X :(Q,Z,P) — (R%, B(RY))
we denote by expected value of X with respect to P the real number
B(X) = /Q X (w)dP(w).

Let ¢ be a o-algebra, 4 C .#. Suppose that F(|X]|) < +oo. We denote by realization of the

conditional expectation of X given ¢ (with respect to P) a random variable
Z:(Q,.7,P) — (R, B(R"))
such that:

1. Z is Y-measurable,

/ Z(w)dP(w) = / X(W)dP(w) forall G,
G G

We will write Z = E[X|¥] to denote that Z is a realization of the conditional expectation of
X given ¢. For all Zy, Z, realizations of the conditional expectation of X given ¢4 we have
Z1 = Zy almost surely with respect to P, so we will sometimes just write E[X|¥] in expressions
to denote a realization Z of the conditional expectation when the expression is true for every
possible realization of the conditional expectation. We recommend to check [24, appendix B]

or a text of probability for an exposition over the conditional expectation.

The definition of filtration is needed for the theory of stochastic processes, and it represents
the amount of ”information” we know at each time ¢ about the configuration of the stochastic
process. The concept or martingale is a key element in the theory of stochastic processes, and
it is also needed for the definition of the It6 integral. It represents a stochastic process {X;}+>0

such that X; can be estimated at a time ¢ > s by considering Xj.
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Definition 1.1.5 (Filtration). Given a measurable space (2,.%#), a filtration of said space is
a family M = {M,};>¢ of o-algebras M; C .7 such that

A n-dimensional stochastic process {M;}+>0 on a probability space (£2,.%, P) is called a mar-

tingale with respect to a filtration {M;}+>¢ (and with respect to P) if
(i) M; is My-measurable for all ¢,
(i) E[|M;]] < 4o0 for all ¢,
(iil) E[M, | My] = M, for all s > ¢.

Stopping times are a key element in the theory of stochastic processes. They are random
times with appropriate properties that make them a usable replacement to deterministic times

in most of the theorems about stochastic analysis.

Definition 1.1.6 (Stopping time, adapted process). Let (€2,.%, P) be a probability space, let
{N:}i>0 be a filtration. A function

7: 0 — [0, +00]
is called a (strict) stopping time with respect to {N;}i>o if
{we|r(w)<tteN, forallt>0.

Let Ny be the smallest o-algebra containing N; for all ¢ > 0. Then we define by N, the
o-algebra of all sets N € N, such that

Nn{r<t}eN; forallt<O0.

A stochastic process

X (Q, #,P) — (R", B(R"))
is called adapted to the fitration {N;}i>¢ if X; is My-measurable for all ¢ > 0.
We denote by X, the random variable

XT : (Q7NT7P) — (Rnﬂ@(Rn))

Xr(w if < +0o0,
Xo(w) = 4 (@) 1 T(w) <400
0 if 7(w) = +o0.

It can be proved that X, defined in this way is measurable with respect to N and ZB(R").
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The Brownian motion is the starting point for the theory of It6 processes. It is the most
important stochastic process for this work, we recommend to check a textbook about stochastic
processes to get a thorough explanation of this topic, @ksendal explains this topic in [24, chapter
2].

Definition 1.1.7 (Brownian motion). Let x € R™ and s € R be a fixed point and a fixed time.
Define

— ly2 — w[?

p tl? 17t27 2) ‘= 2 t? _tl 2 - exXp <_

(11,91, t2,10) = (27(t2 — 11)) S

For k=1,2,..., for 0 <t; <ty <--- <t define a measure 4, 4 on B(R™) by

> for y e R", ¢t > 0.

th,...,tk(Fl X - X Fk) = (]_5)

= / p(s, x, t1, z1)p(t1, v1, ta, x2) . . . p(tg—1, Th—1, tg, Tg)dxq . . . dxg,
F1 XX Fy,
where we use the convention that p(t,y,t, 2)dz = dd,(z), the Dirac delta measure centered at
y and computed at z.
We define a (version of) n-dimensional Brownian motion starting from z at the time s to be a

stochastic process B = {B;};>s on a probability space (2, .7, P")
B, : (Q, #,P") — (R", B(R"))
such that the finite-dimensional distributions of B are given by ((1.5)), i.e.

Px(Btl c Fl,...,Btk c Fk) =

= / p(s,z,t1, 1)p(t1, 1, t2,22) . .. p(tp—1, T1, tp, T )d1 . . . dy,
F1 XX Fy,
for all k € N, t1,...,t; € [s,+00), for all Fi,..., F}, Borel subsets of R™.

The existence of a process with such properties is guaranteed by Kolmogorov’s extension the-

orem (see Theorem [1.2.1]).

The concept of modification of a stochastic process is needed to understand Kolmogorov’s
continuity theorem that proves that the Brownian motion can be considered a continuous

process.

Definition 1.1.8 (Modification of a stochastic process). Let X = {X;}er, Y = {Yi}ier be
stochastic processes on the same probability space (€2,.%, P). We say that X is a version (or
a modification) of YV if, for all t € I

P({w € 2] Xi(w) = Yi(w)}) = 1.
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A Brownian motion B = {B;};>( satisfies the condition (1.13)) in Kolmogorov’s continuity
theorem (see Theorem [1.2.2)) with « =4, 8 =1, D = n(n+2), so the theorem guarantees that

there exists a continuous modification of B.

We need a notation for the o-algebra generated by a Brownian motion at a time ¢ for many

propositions, expecially for the important Markov property.

Definition 1.1.9 (Filtration induced by a Brownian motion). Let {B;}+>0 be a n-dimensional
Brownian motion. Let ¢ > 0. We define F;, = .Ft(") to be the o-algebra generated by the
collection of random variables

{Bs|0<s <t}

i.e. the smallest o-algebra % such that the random variable B; is measurable with respect to

Fforall0<s<t.

We are going to enunciate the definitions and theorems needed to define the It6 integral.
We refer the reader to check a textbook about stochastic analysis for a thorough explanation
of the topic. The notations and definitions are taken from the textbook by Oksendal, see [24]
chapter 3].

The construction of the It6 integral begins with the construction of the It6 integral over ele-
mentary processes as a Riemann-Stieltjes integral, and then it extends the definition to a bigger

class V of processes. We begin with the 1-dimensional case for the It6 integral.

Definition 1.1.10 (Ito integrable process). Let (€2,.%, P) be a probability space, let 0 < .S <
T. Let V =V(S,T) be the class of functions f € V,

f:[0,400) x 2 =R
such that:
(i) (t,w)— f(t,w) is A([0,400)) X .#-measurable,
(ii)) (t,w) — f(t,w) is Fr-adapted,
(iii) fs f(t,w)?dt] < +oo.

Definition 1.1.11 (Elementary process). A function ¢ € V is called elementary if it has the

form

St.w) = D ei(w) - Xty (1): (1.6)
J

here e; are functions

ej:Q—>R.
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The functions e; must be F;;-measurable since ¢ € V.
Let B = {B:}+>0 be a 1-dimensional Brownian motion over 2. We define the It6 integral (with
respect to B) for an elementary function ¢, with the form written in (1.6)), by

T
/S ot w)dBi(w) == 3 es(@)IBy,,, — B |w), (1.7)

320
where #; are the points
tj if S<t;<T,
tj=<8 if t; <S8,
T it t;>T.
Definition 1.1.12. (It6 integral) Let (£2,.%#, P) be a probability space. Let 0 < S < T'. Let

f e V(S,T). Let B = {Bi}+>0 be a 1-dimensional Brownian motion over . Then the It6
integral of f from S to T' (with respect to B) is defined by

T T
/ f(t,w)dB(w) := lim / bn(t,w)dBy(w) (limit in L*(P)), (1.8)
S t——4o0 S
where {¢, }nen is a sequence of elementary functions such that
T
E[/ (f(t,w) — ¢n(t,w))2dt] —0 asn — +oo. (1.9)
S

Here the right hand side of (1.8) is defined by (1.7]).
A sequence {¢y, }nen as such exists because of Lemma (1.2.4)).

We are going to enunciate the definitions needed to define the Ito6 integral in the n-

dimensional case.

Definition 1.1.13 (n-dimensional Ito integral). Let (€,.%, P) be a probability space, let

{B/}4>0 = B= (B, B?,..., B") be a n-dimensional Brownian motion of components
BF:(Q,#,P) — (R,B(R)) fork=1,2,...,n.

Then we denote by V;7*"(S,T) the set of matrices v = [v; ;(t,w)]; j=1....n Where each entry
H 7-] ’J ) K

Vij [0,+OO) xQ— R

(t,w) — v (t,w)
satisfies conditions (i) and (iii) in definition (1.1.10]), and it also satisfies the condition

(ii)" There exists an increasing family of o-algebras {H;}+>0 such that:
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a) {B:} is a martingale with respect to {H;},
b) {wi;ti>0 is {H:}-adapted.

It is possible to construct the It6 integral for the functions f € V37" (S, T) in the same way as

it is done in ((1.1.12)).

If v € VJJ*"(S,T) we define, using matrix notation,
T T ’l}171 oo
/ vdB = / :
S S
’l}m71 o oe.
to be the m x 1 matrix whose ¢-th component is the following sum:

n_ .7
Z/ v;j(s,w)dBj(s,w).
j=i 79

Definition 1.1.14. Under the same notations as the previous definition, Wy(S,T) denotes

vl,n ClBl

Um,n B,

the class of processes
f:]0,+00) — R

satisfying the conditions (i), (ii)’ and the condition
T

(iii)” P| [f(s,w)’ds < 40| = 1.
S

We also define Wy, = (| Wy (0,T).
>0

The It6 process is the basic example of solution to a stochastic differential equation and is

the key element in the definition of the Bellman function.

Definition 1.1.15 (It6 process). Let B; be a m-dimensional Brownian motion on (2, .%#, P).

An It6 process (or stochastic integral) is a stochastic process {X¢}>0 on (£2,.%, P) of the form

t ¢
Xy :X0+/ u(s,w)ds+/ v(s,w)dBs. (1.10)
0 0
Here the coefficients
w:[0,4+00) x Q@ — R™; v :[0,400) x Q — R™™

satisfy proper conditions to guarantee that the object (1.10]) is well defined, i.e. v € Wy, so
that

t
P[/ v(s,w)?ds < +oo forallt > 0| = 1.
0



1.1. NOTATIONS AND DEFINITIONS 25
We also assume that u is Hi-adapted and
t
P[/ lu(s,w)|ds < 400 forallt>0| =1.
0

If {Xi}i>0 is an Ito process of the form (1.10), the equation (1.10) can be denoted by the
differential expression
dX; = udt + vdB;y.

The It6 diffusion is an example of It6 process where the coefficients of the associated stochas-
tic differential equation do not depend on the time variable. These processes are very important

for the proofs in this work, because for a process of this kind the Markov property holds.

Definition 1.1.16 (It6 diffusion). A (time-homogeneous) It6 diffusion is a stochastic process

X :[0,400) x @ — R"
(t,w) — Xy(w)

satisfying a stochastic differential equation of the form
dX; =b(Xy)dt + o(Xy)dB:, t>s; Xs =z, (1.11)
where {B;}+>0 is a m-dimensional Brownian motion and the coefficients
b:R" — R";, o:R" — R™™
satisfy the conditions in Theorem , which in this case simplify to
|b(x) — b(y)| + |o(x) —o(y)] < D|x —y| for some D € R, Vz,y € R™.
We denote the unique solution to by X; = XP% t > 5. If s = 0 we write X7 for X{"*,

We need a notation to denote the expected value of an Ito diffusion {X;}ic; at the time ¢

for the theorems about It6 diffusions, like the Markov property.

Definition 1.1.17 (Expectation of an It6 diffusion). Given an It6 diffusion {X;}+>0 = { X} }+>0,
for y € R™, over the probability space (£, .%#, P), solution to the equation

dX; = b(Xt)dt + O'(Xt)dBt; Xo =y,

we denote by M, the o-algebra (of subsets of Q) generated by the collection of random
variables
{w—= X/ (w)|t>0, yeR"}.
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For each x € R" we define a measure Q)% over the elements of M, by
QZ[th € El,...,th S Ek] = P[Xtml € El,...,X{:Ek S Ek],

where F; C R"™ are Borel sets; k € N.

Q" is the probability law of { X[ }+>¢ for x € R™. Q* gives the distribution of { X} };>¢ assuming
that Xy = z.

We denote by E®[X;] the ”expected value of X; with respect to the measure Q*”, i.e. the
expected value of the random variable w +— X[ (w) with respect to the measure P, similarly we
denote by E*[X; | ¢] the conditional expectation of w — X (w) with respect to the measure
P given a o-algebra 4 C M.

The infinitesimal generator is a key element to connect the theory of stochastic analysis
with the theory of differential problems, allowing for example to solve problems like Dirichlet’s

problem using the tools from stochastic analysis.

Definition 1.1.18 (Infinitesimal generator). Let X = {X;}+>0 be an It6 diffusion in R™. We
denote by D(z) the set of functions f : R™ — R such that it exists the limit

L B — f(@)
tl0 t

(1.12)

We define the infinitesimal generator of {X;}+>¢ in x as the operator
A:Dyp(z) =R

_ iy EOLA(XH)] - f ()
Af(x) = ltlfél " .

We denote by D4 the set of functions for which the limit (1.12)) exists for all x € R™.

The exit time of a process { X; }+cs from a Borel set U is one of the most important examples
of exit times, and it is used in important theorems about solving differential problems like the

Dirichlet problem using the theory of stochastic analysis.

Definition 1.1.19 (First exit time). Let U € R™ be a Borel set, let X = {X;}:>0 be an Ito
diffusion
X, (.7, P) — (R", B[R")), t>0.

We denote by first exit time for X from the set U the random variable
T, — R
T, (w) =1inf{t > 0 | Xy(w) € U}.

We observe that 7, is a random variable because U is a Borel set.
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The definition of regular point of the boundary of a domain D is a very important definition
in the theory about the Dirichlet problem, and there is the analogous version for the theory

about stochastic solutions to Dirichlet problems.

Definition 1.1.20. Under the same hypotheses as the previous definition, the point y € oU

is called regular for X if

Otherwise, the point y is called irregular.

The boundary set U is called regular for X if all the points y € 9D are regular for X.

The Dirichlet-Poisson problem is used to prove the important theorem about the Bellman

function being the solution to the Hamilton-Jacobi-Bellman equation.

Definition 1.1.21. Let D C R" be a domain, let L denote a semi-elliptic partial differential
operator on C?(R™) of the form

= 0 = 0?
I = b .
2N+ 2 g
=1 2,7=1
where the functions b; and a; ; = a;; are continuous functions.
Let ¢ € C(OD) and g € C(D) be given functions. A function w € C?(D) is called a solution
to the Dirichlet-Poisson problem (over D, associated to L, ¢, g) if

(I) Lw=—g in D,

(IT) limw(z) = ¢(y) for all y € OD.

(L'—}y
zeD

1.2 Theorems

The proofs of the theorems mentioned in this section can be found in the textbook [24]
from @ksendal, in chapters 1,2,3,4,5,7 and 9. We will enunciate the theorems needed for the
construction of the Bellman function and to prove the theorem about the Hamilton-Jacobi-

Bellman equation.

Kolmogorov’s extension theorem is one of the fundamental results in the theory of stochastic
processes, and it allows to prove the existence of stochastic processes having given finite-

dimensional distributions, like the Brownian motion.



28 CHAPTER 1. BELLMAN FUNCTIONS IN STOCHASTIC CONTROL

Theorem 1.2.1 (Kolmogorov’s extension theorem). Let T' be a set of times. For all k € N,
t1,...,t, €T, let Uty
subsets of R™,

t, be probability measures on R™ such that, for all Fy,...,F) Borel

.....

V1)t (F1 X X Fi) = vy (Fma(ay X oo X Fpoary)
for all permutations o on {1,2,...,k}, and

Uyt (F1 X X F) =1y Fy x -+ x Fi, x R").

te,tk+1 (

Then there exists a complete probability space (2, %, P) and a stochastic process { Xy hier
Xy (Q,Q,P) — (]Rna'%(Rn))

such that
th,..~7tk(F17 X,Fk) = P[th S Fl, S ,th S Fk]
forallt; € T, k € N, and for all F; Borel subsets of R™.

Kolmogorov’s continuity theorem is another fondamental result in the theory of stochastic
processes, and it is used to prove that the Brownian motion can be considered a continuous

process.

Theorem 1.2.2 (Kolmogorov’s continuity theorem). Let X = {X;}s>0 be a stochastic process
such that for all T > 0 there exist positive constants o, 3, D such that

E[|X; — X, <D-|t—s'"?;, for0<st<T. (1.13)
Then there exists a continuous version of X.

The It6 isometry is one of the most important results in the theory of stochastic differential
equations, and it is one of the key elements used in the construction of the It6 integral. The
[t6 isometry for elementary functions is used to define the It6 integral, and then using the It6

integral we can extend the It6 isometry to all the It6 integrable processes.

Lemma 1.2.3 (It6 isometry for elementary functions). Let (Q2,.%, P) be a probability space. If
¢ :[0,+00) x Q2 — R"

P(t,w) = Z ej(w) - X[t ,¢,41) (1)

1s a bounded elementary function, then

E[(/gT¢(t,w)dBt(w)>2] :E[/Squ(t,w)?dt], (1.14)
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where

T
/S ot w)dBi(w) = 3 (@) [Byy.., — By](w).

Jj=0
This lemma proves the three statements needed in the construction of the It6 integral.

Lemma 1.2.4. The following three statements hold true:

1. Let g € V be a bounded and such that t — g(t,w) is continuous for each w € Q. Then

there exist a sequence of elementary functions ¢, € V such that

T
EU (g—gi)n)th] — 0 forn — +oo.
S

2. Let h €V be bounded. Then there exist a sequence of bounded functions g, € V such that

t — gn(t,w) is continuous for all w € Q and for all n, and

T
E[/ (h—gn)2dt] —0 forn — 4o0.
S

3. Let f € V. Then there exist a sequence of functions h, € V such that h, is bounded for

each n and .
E[/ (f—hn)2dt] —0 forn — 4o0.
S

Theorem 1.2.5 (It6 isometry).

EK/STf(t,w)dBt(w)>2] = EUSTf(t,w)?dt] for all f € V(S,T). (1.15)

The following theorem allows us to prove the existence and uniqueness of solutions to
stochastic differential equations, which is needed to guarantee that the Bellman function is
well defined.

Theorem 1.2.6 (Existence and uniqueness of solutions to stochastic differential equations).
Given T > 0, let

b:[0,T] x R — R"
o:[0,T] x R" — R™™

be measurable functions. Suppose that there exists a constant C > 0 such that

lb(t,2)| + |o(t,z)| < C(1+ |z]); Vo€ R™ Vtel[0,T).



30 CHAPTER 1. BELLMAN FUNCTIONS IN STOCHASTIC CONTROL

Suppose that there exists a constant D > 0 such that
Let {Bi}1>0 be a m-dimensional Brownian motion, let Z be a random variable which is inde-
pendent of the o-algebra ]-'0(21) generated by the collection of random wvariables {Bs | s > 0},
and such that
E[|Z)?] < +oo.

Then the stochastic differential equation

dX; = b(t,Xt)dt -+ O'(t,Xt)dBt, 0<t<T, Xo=27 (116)
has a unique t-continuous solution {X;}o<i<r such that:

1. {Xt}o<i<r is adapted to the filtration {FZ }o<i<r, where FZ is the o-algebra generated
by the collection of random variables {Z,Bs | 0 < s < t}.

T
E[/ |Xt|2dt] < +oo.
0

The strong Markov property is the most important result for the theory of the Bellman
functions, and it allows to prove important propositions like the Bellman principle and the
theorem about the Hamilton-Bellman-Jacobi equation. The Markov property basically states
that what happens to an It6 diffusion {X;}4c; after a time ¢ only depends on X; and does not
depend on X, for s < t.

Theorem 1.2.7 (Strong Markov property for It6 diffusions). Let {X;}i>0 be a Ité diffusion in
R™. Let f be a bounded Borel function f : R™ — R, let {B;}+>0 be a m-dimensional Brownian
motion, let T be a stopping time with respect to the o-algebra Fém) generated by {Bi}i>0,

suppose T < +00 almost surely. Then
E*[f(Xoin) | FI™M) = EX[f(X))] VA > 0.
The following theorem is very important for this work and for the general theory. It char-
acterizes the infinitesimal generator of an It6 diffusion.

Theorem 1.2.8 (Characterization of the infinitesimal generator of an It6 diffusion). Let {X;}
be the Ito diffusion
dXt = b(Xt)dt + O'(Xt)dBt.

If f € C3(R") then f € D4, and the inﬁnitesz’mal generator associated to {X;} is

Zb 8f 82f
8:1: 8;10]

(1.17)
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The following lemma is used to prove Dynkin’s formula, a result which is very important
to understand the behaviour of the composition between a smooth function and a stochastic

process.

Lemma 1.2.9. Let {X;}i>0 = { X} >0 be an Ité diffusion in R™ of the form

X/ (w) =2+ /Otu(s,w)ds + /Otv(s,w)st(w),

where { B}i>o is a m-dimentional Brownian motion. Let f € C3(R"), let T be a stopping time
with respect to the filtration {]-"t(m)}, and assume that E*[1] < 400. Assume that u(t,w) and
v(t,w) are bounded on the set of (t,w) such that X (t,w) belongs to the support of f.Then

T

o) 1 0?
B 0) = 160)+ | [ ( S o g (00 + 5 S s (060
0 i 1,
Theorem 1.2.10 (Dynkin’s formula). Under the same assumptions of Lemma it follows
that
E*[f(X.)] = f(z) + E* [ / Af(Xs)ds] | (1.18)

here A is the infinitesimal generator of the process X.

The following lemma is used in the proof of the theorem about the Hamilton-Jacobi-Bellman
equation and it allows to calculate the time shift of a process stopped on an exit time from a

Borel set.

Lemma 1.2.11. Let H C R" be measurable, let X = {X;}>0 be a It diffusion in R"
X : (Q, 7, P) — (R", B(R")).

Let 7, be the first exit time from H for X. Let o be another stopping time, let g be a bounded
continuous function on R™. Let H be the family of all My -measurable functions. Let 6; be the
shift operator

0, : H—H

defined in the following way: given v = g1(Xy,) ... gx(Xy,), where the functions g; are Borel
measurable, the shift operator is defined by

Oiv = g1(Xt14¢) - - 96(Xtp41),

and the definition is extended over all functions in H by taking limits of sums of such functions.

Consider

n=9(Xr,) X{r, <+oc}>
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To(w) =inf{t > o | Xy(w) € H}, we .
Then
Oan - X{a<+oo} = g(XTIC:{) : X{T?I <+oo}s
where

(Oan)(w) = (0:m)(w) if T(w) = t.

The Dirichlet-Poisson problem is used to prove that the Bellman function is a solution to
the Hamilton-Jacobi-Bellman equation with boundary values equal to the values of the bequest

function.

Theorem 1.2.12. Let D C R" be a domain. Let X = {X;}1>0 be a Ito diffusion in R™. Let
A be the infinitesimal generator of X. Let Q% be the probability law of X starting at Xo = x,
for x € R". Let 7, be the stopping time

T:Q—R
T(w) =inf{t > 0 | X¢(w) € D}.

Suppose that T, < +oo almost surely with respect to Q* for all x € D. Let ¢ € C(0D) be
bounded and let g € C(D) satisfy

D
E* [/ |g(X8)\ds} < 400  forallxz € D. (1.19)
0
Define
w(z) = E*[¢p(X, )] + B [/ ? g(XS)ds}, reD. (1.20)
0
Then the following two statements hold true
a)
Aw=—g inD (1.21)
and

tlTigl) w(Xy) = ¢(X7,) (1.22)

almost surely with respect to Q%, for all x € D.

b) If there exists a function wy € C?(D) and a constant C such that
i (z)] < c<1 +E® U i |g(XS)|dsD forz €D, (1.23)
0

and wy satisfies and (1.29), then wy = w.
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1.3 Bellman functions
Let {X:}+>0 be an It6 process described by the stochastic differential equation
dX; = dX; = b(t, Xy, u)dt + o(t, Xy, ue)dBy, (1.24)
where X;(w) € R", and the coefficients b and o are
b:RxR"xU —-R", o:RxR"xU — R"™™,

and By is an m-dimensional Brownian motion. Here U is a given Borel set U C R* and {u;};>0
is the control, i.e. a stochastic process such that w(w) € U, and {u}+>0 is adapted to the
filtration {.Ft(m)}tzg, i.e. for all ¢ > 0 the random variable wu; is measurable with respect to the

. (m)
o-algebra F; .
Let {X;"}5>s the solution to (1.24)) such that X" =z, i.e.

h h
Xyt = 3;'—}—/ b(r, Xf’x,ur)dr—l—/ o(r, X* uy)dBy; h>s. (1.25)
S S

Let the probability law of X; starting at x for ¢ = s be denoted by Q*%, i.e.

Q*[Xy € F,..., Xy € Byl = PIX;" € F1,..., X" € Fy] (1.26)

for all s <t;, F; measurable subset of R™; forall 1 <i<k, k=1,2,... .

Let F' and K be two continuos functions
F:RxR"xU—R, K:RxR"—R

Here F' is the "utility rate” function, and K is the "bequest” function.
Let G be a fixed domain in R x R” and let 7 be the first exit time after s from G for the
process { X, }r>s, i.e.

~

T =T*"(w) = inf{r > s | (r, X>*(w)) € G} < 400 (1.27)

Let F“(r,z) = F(r,z,u). Suppose that

T
E5® [/ |[Fr (r, X )|dr + [ K (T, X3)| X(Fetooy| < 00 foralls,z,u. (1.28)

We define the performance function J%(s,z) by

T
Ju(s’_jp) = 5T |:/ FUT(’I", XT)dT + K(T,X,j—,\) . X{’j"\<+oo} . (129)
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In order to get a simpler notation we define
Vi=(s+t,X55) e R™ fort >0, Yy = (s, ),
and we substitute Y; in to get the equation
dY; = dY}" = b(Yeuy)dt + o (Y, up)dBy.

We denote by Q%% = @Y the probability of Y; starting at y = (s,z) for t = 0.
We observe that

T f*S T
/ F* (r, X, )dr = / F“S“<S+t7Xs+t>dt:/ S
S 0 5

where
T:=inf{t>0|Y,¢G} =T —s
We also observe that

K(T,Xz) = K(Yz

T—s) = K(YT)

so the performance function may be written in terms of Y as follows:
T
J4(y) = Y [/ FU(Yy)dt + K(YT) - X{T<400} |
0

here y := (s, z), and u; is a time shift of the u; in (1.31]).

(1.30)

(1.31)

(1.32)

(1.33)

Definition 1.3.1 (Stochastic Bellman function). Given a Borel set U C R"! given two

continuous functions

F:RxR"xU—R, K:RxR'—R,
and given the stochastic differential equation

dX; = dX} =b(t, Xy, up)dt + o(t, Xy, uy)dBy
associated to the coefficients

b:RxR"xU —-R", oc:RxR"xU—R"™™,

we denote by Bellman function associated to the equation (1.24)), to the functions F' and K,

over a set of admissible controls C, a function

B:G—R
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B(y)= sup J“(y).
{ut}s>0€C

Here J* is the performance function defined in ([1.33]), and the supremum is taken over the set
C of admissible controls. Here C is a set of controls {u;}+>o that are .7-"t(m)
u(w) € U.

If a control {u; };>0 such that

-adapted, with values

B(y)= sup Jy)=J"(y)
{ut}s>0€C

exists, then {uy }4>¢ is called optimal control.

We may take into consideration different types of control functions. The set of control
functions that we will look into is the set of Markov controls, which is the set C of stochastic

processes defined by

C:= {u(t,w) = ug(t, X¢(w)) | for ug: R"™ = U, g measurable}. (1.34)

1.4 The Hamilton-Jacobi-Bellman Equation

Following the definitions in the previous section, we consider the set C of Markov controls
u(ta OJ) = uo(t7 Xt(w))

defined in (1.34), and, after introducing Y; = (s + ¢, Xs4+) as explained in (1.30]), the system
equation becomes
dY; = b(Yy, uo(Yy))dt + o(Yi, up(Y:))dBy. (1.35)

For every v € U and f € C3(R x R™) we define the operator

v o ; 0*f n
(L°f)(y) = +§jb% oI Ejgy, won W) YWERXR", - (130)
7 _ J

here a;; = %(O’O’T)Z‘J', y = (s,z) and © = (x1,...,2y,). Then, by Theorem 1| for each
choice of the function ug (that defines the control u), the solution Y; = Y;* is an It6 diffusion

with infinitesimal generator A given by
(AN)(y) = (LW f)(y) for f e CFR*R"), y €C.

For every v € U we define F(y) = F(y,v). The first fundamental result in stochastic control
theory is the following:
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Theorem 1.4.1 (The Hamilton-Jacobi-Bellman (HJB) equation (I)). Under the notations of

the previous section, consider the Bellman function
B(y) = sup{J“(y) | u = uo(Y') Markov control }.

Suppose that B satisfies
EY [|B(Ya)\ +/ \L”B(Ytﬂdt} < 400
0

for all bounded stopping times o < T, for all y € G and for all v € U. Suppose that the
stopping time T is T < 400 almost surely with respect to QY for all y € G, and suppose that a
optimal Markov control u* = ui(Y') exists. Suppose OG is regular for Y*'. Then
sup{F’(y) + (L*B)(y)} =0 forally € G, (1.37)
vel
and
B(y) = K(y) for ally € 0G. (1.38)

The supremum in is obtained if v = uf(y), where u* = u(Y:) is an optimal control. In
other words
Fy,ul(y) + (LYWB)(y) =0 forally € G. (1.39)

A converse of the previous theorem holds as well.

Theorem 1.4.2 (A converse of the HJB equation (I)). Let ¢ be a function in C*(G) N C(G)
such that, for all v € U,

Foy) + (L°¢)(y) <0; y €@, (1.40)
with boundary values
lim 6(¥i) = K (V7) - x(reso (1.41)

almost surely with respect to QY, and such that
{6(Y7)}r<r  is uniformly QY-integrable (1.42)
for all Markov controls w and all y € G. Then
o(y) > J(y) for all Markov controls w and all y € G. (1.43)
Moreover, if for each y € G we have found uj(y) such that
F5W (y) + (L5W ) (y) = 0, (1.44)
then ug = uj(Y') is a Markov control such that

o(y) = J*(y),

and hence ug must be a optimal control and ¢(y) = B(y).
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The last result that we are going to mention is that, under suitable conditions on b, o, F, 0G
and assuming that the set of control values is compact, it is possible to show that there exists

a smooth function ¢ such that
sup{F"(y) + (L*¢)(y)} =0 fory € G,

and

d(y) = K(y) y€IG.

Moreover, by a measurable selection theorem one can find a measurable function ug that defines
a Markov control v} (w) = ug(X;(w)) such that

P (y) + (LW 9)(y) =0

for almost all y € G with respect to Lebesgue measure in R"*!, and that the solution X; = X*°
exists. For details see Oksendal [24], p. 241].

Moreover, it is always possible to get as good as a performance with Markov controls as it is
with arbitrary ]:t(m)—adapted controls, as long as some extra conditions are satisfied, as stated

in the next theorem.

Theorem 1.4.3. Let
Dy (y) = sup{J“(y) | u=uo(Y) Markov control},

and
D, (y) = sup{J“(y) | u = u(t,w) .ﬂ(m)—adapted control}.

Suppose there exists an optimal Markov control u* = u§(Y') for the Markov control problem
Our(y) = J*(y) forallyeG

such that all the boundary points of G are reqular with respect to Yt“* and suppose that @y is
a function in C*(G) N C(G) satisfying

B foas vl + [ 1Ll < +oc

for all bounded stopping times o < T, all adapted controls u and all y € G. Then

Pr(y) = Pu(y) forally € G.

For the proof of the last three theorems see QDksendal [24, chapter 11].
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Chapter 2

Hardy’s inequality

Introduction

In this chapter we use the method of the Bellman function to characterize the measures
for which the weighted dual Hardy’s inequality holds on dyadic trees. We also give an explicit
interpretation of the corresponding Bellman function in terms of the theory of stochastic opti-

mal control.

This chapter is structured as follows.
In section 2.1 we prove Theorem for the optimal setting. We characterize the measures for
which the weighted dyadic Hardy’s inequality holds in the subsection 2.1.1, we enunciate the
Bellman function B associated to this problem and prove its key properties in the subsection
2.1.2, and we prove the weighted dyadic Hardy’s inequality using the Bellman function method

in subsection 2.1.3.

In section 2.2 we prove the sharpness of the constant C'(p) in Theorem We define
a function B that satisfies the main inequality and prove the optimality of the domain D in
the subsection 2.2.1, we improve the previous result and define a function B that satisfies the
main inequality and a supplementary property in the subsection 2.2.2, and we prove that the

constant C(p) is sharp for dyadic Hardy’s inequality in the subsection 2.2.3.

In section 2.3 we state a stochastic optimal control problem whose solution is given by the
Bellman function used throughout the paper. This gives a direct probabilistic interpretation
to our function. We show a natural way to transition from a dyadic inequality to a Hamilton-

Jacobi-Bellman inequality in the subsection 2.3.1, we define a stochastic optimal control prob-

39
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lem whose solution is a Bellman function that satisfies the required Hamilton-Jacobi-Bellman
inequality in the subsection 2.3.2, and we prove that the Bellman function associated to the

stochastic optimal control problem we defined is equal to the function B in subsection 2.3.3.

2.1 Hardy’s inequality

2.1.1 Inequality over the dyadic tree

Let 2(1y) be the dyadic tree over Iy = [0,1]. Let I € 2(Ip), let

We denote the sum of the values ¢(J) for J € Z(I) by
> el = plJ).
Jea(I) JCI

Let A be a positively valued measure over the dyadic tree defined as follows: for each node
Ie .@(Io)
PD(Io) > 1+ A\ € R,

We define the following objects as follows:

KCI
(A); = |}| POPTE ,}|A<I>,
[oan=3 s0n,
I KCI
(pA)r = |}| KZC:Iqb(K)AK = “1” /I¢ dA.

Now we are going to prove Theorem (1.3) in the article [5]. in the general case p # 2.

Theorem 2.1.1 (Dual weighted Hardy’s inequality for dyadic trees). Let 2(Iy) be the dyadic
tree originating at Iy, let {ar}icy, be a sequence of positive numbers. Let A : D(Iy) — RT be
a positive measure over the dyadic tree. Let ¢ : 2(Iy) — RT be a positive function such that
¢ €1P(PD(1y)). Let p be a real number such that 1 < p < +oo. If the inequality

|}| 3" ak (A < (A)r < 400 VI € 2(Iy) (2.1)
KCI
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1s satisfied, then
= > ar(@A)] < C(p)(¢°)n- (2.2)

We will prove this theorem using the Bellman function method.

2.1.2 Bellman function for Hardy’s inequality

Let p e R, 1 < p < 400. We consider the function

r \’ o bl
s s = (355) 7 - e %)

defined over the domain

D;:{(F,f,A,v)eR4\F>o,f>o,A>o,v>o,va, fngvpl}.

Let us name C(p) = (p/(p — 1))p. The function B has the following properties:
1) Bis a concave function defined over a convex domain.
2) C(p)F > B(F, f,A,v) > 0.

A proof of these properties can be found in the appendix.

The next lemma is about the main inequality, which will be the key to prove the dyadic

Hardy’s inequality.

Lemma 2.1.2. The function B satisfies

1 P
i > .
B(F>f7A7U) 2|:B(F,f,A,U)+B(F+,f+,A+,U+):| _pp(A+U(p—1))PC’ (24)
which, by using the fact that v > A, entails
1 P
B(F7f7A7U)_2|:B(FafaA7U)+B(F+vf+>A+7U+):| 2{;76 (25)

where the inequality holds for all

F=F+10P, f=Ff+ab,
v="04ad", A=A+e,
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and

F:%GL+H% f=%Uf+ﬁ%

|
0= 5(v-+vq), A= §(A,+A+),

for every choice of a >0, b >0, ¢ > 0. Herep' is the real number such that % + Z% =1.

Proof. We start by considering the telescopic sum

B(Faf7A7U)_B(F7JZaA_C>7~)) = B(F,f,A,U)—B(F,f,A—C,’U)—F (26)
B(F, f,A—c,v)—B(F,f,A—c0).

Since the function B is concave and differentiable over a convex domain, we recall that a concave
differentiable function’s values are lower or equal to the values of any of its tangent hyperplanes.
This entails that, for every g concave and differentiable, for every choice of x, x* in the domain

of the function g

~ dg(a*)
g(z) —g(@") < 7(%*@) (2.7)
i=1 ¢
By changing the sign of (2.7) we get
4
g(@*) —g(z) =) d(m )(:cl- — ;). (2.8)

So, when g = B, x = (F, f, A,v), 2* = (F, f, A,v) = (F, f, A—c,v), the inequality (2.8) becomes

B(F, f,Av)—B(F, f,A—c,v) > pp(A n (f_ 1)1})1”0' (2.9)

By combining (2.9)) with (2.6 we get

fP .
(A+(p—1v)p
(2.10)

Now we consider g = B, © = (F,f,A —¢,0), ¥ = (F, f,A — c,v), so the inequality (2.8)

becomes

B(F,f,A,’U)—B(F,f,A—C,@) Z B(FafaA_CaU)_B(FafaA_Caf})—i_(p_l)pp

- N p \', p! f r
B(F,f,A—C,U)—B(F,f,A—C,’U) 2 <p_1> bp_p—l(A—C+(p—1)U> o

(p - 1)pp(A — c—l—f(p - 1)v>p“p/‘
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Now let
/

A—c+(p—-1v
We observe that y > 0 because f > 0, v > 0, A — ¢ > 0 by definition of the domain of B. So

y:

the last inequality can be rewritten in the form

~ o~ p +1 ,
B A=)~ B A=) = (20) 0= Py tans (- e’ = o).

Now we are going to prove that ¢(y) > 0 for all y > 0.
We observe that ¢(y) = C(p)b? > 0 when a = 0.

Now we assume a > 0 and we compute the derivative of the function ¢:
o) =+ (0= Dy~ ).

So the derivative ¢'(y) is such that ¢'(y) < 0 for 0 < y < and ¢'(y) > 0 for

b
(p—1)a?' =17

y > (pil)#, SO § = M# is a point of absolute minimum for ¢, so as long as ¢(g) > 0

the inequality holds for all y > 0. So we compute

$5) = W —pi b+ (p— 1) =
p +1 p—1 p
P pP b b /
—— ) WP — ; b -1 —_— P =
(p—l) p—1(<p—1>ap1> b+ )pp<<p—1>apl) !
P +1
L bp - pp /1 7 + pp /1 7.
p—1 p—1 qrP'—pP—p (p — 1)p71 app' —p—p
Now we recall that .
STy =0 ' =p+p.

So we get

o » ', p PP _
o) = <p—1>bp_p—1bp+(p—1)p1bp_

w(z&)p[l‘pﬂo—l] 0.

So the inequality ¢(y) > 0 holds for all y > 0, for every choice a > 0, b > 0, so the inequality

(2.10) becomes

fP
(A+ (- Dop”
Now we observe that (Fa f,A*C,’E) = (Fv fv"ia’a) = %((F+vf+vA+7v+)+(F*af*aAfva*))a SO

for the last step we use the fact that B is concave and we get

B(F, f,A,v) —B(F,f,A—¢c,0) > pP (2.11)

fP .
(A+@-1vp

B(F, f,A,0) — 3 [B(Fy fo Ayvg) + BF_f A v)| 27
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Finally, using the fact that A < v, we get the weaker version of the previous inequality

1 P
B(FafaAaU) - 5 B(F+>f+>A+7U+) —|—B(F_,f_,A_,’U_) > %C.

2.1.3 Proof of the inequality

Now we will prove Theorem [2.1.1| using the Bellman function method.

Proof. Let I € 9(1y), we denote by I € P(1y) and Iy € P(Iy) the two children of the node
1.
For every I € 2(ly) we define

I— vy €RT,
I+— Fr e RT,
I'—)f]€R+,

Ib—}A[E]RJr,

as follows:

vr = (A)g,

Fr = (¢")1,

fro= (oA,

A = é‘zw(/\)g’{.
KCI

Now we define

by = =,

cr = 5
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SO we get
1 1 P
vy = m>\1+§(V1_ + Vi) =a; + 7y,
1 1 ~
Fr = T (I)p+§(F1,+FI+)=b1}+FI,
1
A7 1 -
f1 = qb(&‘ L +§(f1, + fr.) = arbr + fr,
ar(AM)? 1 _
A = I|(I|)I + 5(141_ + A ) =cr+Ar

We observe that the hypothesis (2.1)) entails A; < vy, and we also observe that, by applying
Hoélder’s inequality to f7, we get

1 o
fr = mva <

KCI

1 rp 1
() (5 -
[I[» \ kcr NERYRS!

1 1

1 1
=@ N)] =Flor

So, for all choices of ¢ : Z(Iy) = RT, a: D(Iy) = R, A: 2(1y) — R*, I € 9(I)), the points

=
'U\‘,_.

vy = (Fr, f1, Ar,vr), @ = (Fr_, fr_,Ar_,vr.), = = (Fr,, fr,,Ar,,vr,)

are elements of the domain of the function B defined in (2.3). So we can compute the value of
the function B at x7, x7_ and xr,, for all I € 2(1y). We observe that

B(EL, f1, A1, vr) :B(Fl+b§’f1+a1blﬂi]+Claﬁl+a§1)a

where

F:%(F——i_F-F)a f:%(f—_‘_f—l-)a

~ 1
0=g(v-+uvy), A J(A-+44),

so we can apply lemma to get

ﬁc B(x 1 B(x B(x

e < 101|858l )+ 8 )|
£ o,

AL < 118 ~ 118G ) - LB,

N

arff < H|B(xr) = I-|B(xr_) — [+ |B(xr, ).
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Summing over all I € Z(Ip) and using the telescopic nature of the sum we get

Z O‘If;7 < ‘IOIB(FfoaroaAfoavfo) < ‘IOIC(p)FIO (212)
ICIy

1
7

Now we recall that Fi, = (¢P)1, and fr = (¢A?" ), so we get

which is the thesis (2.2]), ending the proof. O

2.2 Sharpness of the constant

In this section we prove that the constant

is sharp for Theorem [2.1.1]

2.2.1 From dyadic inequality to real function
In this subsection we define a new function
B:D—R

such that B satisfies the main inequality (2.5). The tecnique used to define B is a standard

technique often used in the theory of the Bellman function method.

Let I € 2(1y). We consider the function

1
7

B f,A,v) = QSUP{ZaJ% > ¢<K>Af<>p

JCI KCJ

a, 6, A satisty (i), (i), (iii);, (2.13)

(@) n (F.£.4,0)
(2.14)
where the notation «, ¢, A satisfy (i);, (ii),, (iii);, (iv); in (F, f, A, v) means that
a: I+ ar €RT,
A:I+—— A\ €RT,
¢: I ¢(I) € RT,

and
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(i), 1
F=3 6(J)
1]
(if) 1
f= ST e,
1] &=
(iii)

A= 1ZQJ<1 Z )\K>P’
1] \J’Kg

JCI

1
’UZWZ)\J.

JCI

We observe that the function B does not depend on the choice of the interval I, and it can be

proved by rescaling the weights «, the function ¢ and the measure A.

Lemma 2.2.1. The function B is well defined over the domain D, and it satisfies the main

inequality .
Proof. Given any fixed choice of &, 6, Aand I € 2 (Ip), we consider the points
F = b Sy
JQI~ N
f= S HA
JEl C\» (2.15)
A:ﬁz@QﬂZA@
JCI KCJ
UV = ﬁ Z S\J
JCI
_ 1 x
Fy = mJCer)(J)p
B 1
fo= i X DA
=t 5 p (216)
A=t 5 2o (2 )
=44+ =
. \
e =PI
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Fo=m 3 o)y

JCI_

1

fo= 4 X e

Tl o\ (2.17)
A= £ a(h )

TJCI- KCJ

- = A

JCI_

We observe that these points satisfy the following equations:

1
5 1 AT
SU f:2u;+ﬂJ+W&f,

By setting

p
~ 1 N
~ ar 72)\] ~i/
7 <|I| ) 57
p= & l), c= ‘]Ig R (2.18)
1|7 o 7]7

we get the following equations for the previous points:

F=4(F- +F)+b,  f=35(f +f1)+ab,
(2.19)

which gives us

Now we observe that
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so the previous inequality becomes

1P (1 IR A _ (1 I A
BE Az Der L S a5 T ao) s 1 T a5 X s )

’ ’Je@(br) ‘ ’Kg

<

(2.20)

By construction, &, ¢ and A satisfy the conditions (1), (i), (il);, and (iv),, in (Fy, f4, A4, v4),
and satisfy the conditions (i), , (ii); , (iii); and (iv), in (F_, f-,A_,v_).
Moreover, for any choice of «, ¢ and A such that

e «, ¢ and A satisfy the conditions (i),, (ii);, (ili); and (iv); in (F, f, 4, v),

* a, ¢ and A satisfy the conditions (i), , (i), , (ili);, and (iv);, in (Fy, f4, A4, v4),

e o, ¢ and A satisfy the conditions (i); , (ii); , (iii); and (iv), in (F_, f_,A_,v_),

the following inequality holds:

AN\P
B(F,f,A,v)z"jc+’11| > aJ<‘1ﬂZ¢(K)A;’(’> +|1| Y o (, |Z¢ ,\p) :
v JED(I4) Jea(I-) KCJ
(2.21)

So, by taking the supremum over all «, ¢ and A for both the second and the third addend on

the right hand side (using the fact that a, ¢ and A can be ”independently” defined over (1),
2(1_) and I) in the inequality (2.21]), we get

fP
B(F, f,Av) > e

1
7

s 3 (S o0y )

JCI4 KCJ

o, ¢, A satisty (i), , (i), , (i),

(iv)p, in (F4, f4, A, U+)}

«, ¢)A SatiSfy (1)177 (ii)]‘,7 (111)177

N =
\_/

+|}|S‘”p{ 2 O”(!JI 2 00

KCJ
(iv); in (F,f,A,v)}.
Using the definition of the function B and the fact that |I| = 2|I;| = 2|I_| we get
B(F,f7A,’U)prC+ |: (F+,f+,A+,U+)+B(F_,f_ — U ):|

The proof is completed by showing that, for any choice of (F, f, A,v), (Fy, f+, A+,v4) and
(F_, f-,A_,v_) in the domain of the main inequality ([2.5]), there exists a choice of «, ¢ and
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A such that the points (F, f, A,v), (Fy, f+, A4,vy) and (F_, f_, A_,v_) satisfy the equations

ET). @10 and @10,

Let (F, f,A,v), (Fy, f+,Ay,vy) and (F_, f—, A_,v_) be points in D such that they satisfy

2.19).

If we show that, for any point (F, f,fl,f}) € D and for any interval I € Z(1), there exists a

choice of a, ¢ and A such that

then the proof is complete.

F = o),
] JCI i
f=m X (AT,
e » (2.22)
A:|]1|ZO‘J(|1 Z )‘K> )
JCI KCJ
b= ﬁ ST,
JCI

This is true because, in that case, given I € 2(Iy) we can choose at, ¢+, At such that

and a—, ¢—, A~ such that

We can now define

> T (I,

MY ifJ e 9(1L),
Ay ifJ e 9(1-),

Ay = /
I|a? ifJ =1,

1 otherwise,
\
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¢t (J) if J € D(1y),
o= (J) if J e (1),

o(J) = 1
|[I|*b if J =1,
1 otherwise,
(o it J € D(1y),
a; fJegl-),
=N e =1,

(o)

JCI

1 otherwise.

The maps «, ¢, A defined in this way are such that the points (F, f, A,v), (Fy, f+, Ay, v4) and
(F_, f_,A_,v_) satisfy the equations ([2.15)), (2.16) and (2.17), which is the claim.

So, to finish the proof, all that is left to do is to prove that, for any point (F, f, A, 0) € D and
for any interval I € Z(1y), there exists a choice of a, ¢ and A such that holds.

Let (F, f, A,v) € D be arbitrary. We are now going to show that there exist

I+— ay e RT,
I— A\ eRT,

I+— ¢(I) €RT,

such that the hypothesis

1 1 P 1
KCI JCK KCI
holds, and such that
Fo= =S ey, (2.24)
|IO’ICIO
1 5
f= 75 oAr,
o]
0l rct,
4= Ly a(lya ’
R AN
ICIo KCI
1
vo= — AL
|10|I%,:0
Let us define the parameters
A
P1 = lf 1 P2 = ; (225)
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By the definition of D we have v > A, fP < FvP~!, so we get
0<P <1, 0<Ph<LI1. (226)

Let ¢g > 0, A\g > 0, z1 € (0, %), o € (0, 2,,) to be chosen later. We define

A= g 1] (2.27)
o(1) = ¢o- 1],
Let us compute the following expressions:
p10g1 x2)
= = 2.28
ol Z¢ ol Z% (2.28)
ICIy ICIp
plog%(ﬂcz)
urz<'°’2n> =
+o00o log 1 (z2P)
plogi (z2)—1 1
doP | Lo o2 Z<W> 2 LM =
n=0
) (2227) 400
O, X
¢0 ’1—0‘ gl 2 Z(2$2p)n —
n=0
log1 (2z2P) 1
I _
907 | Lol T
1 log1 x1)
— A = A = 2.29
T2 |fo|ICZI > (229)
=10

10g%($1)
Lon
|10| Z (| o) 2n)

+oo log1 (z1)

1 —1 1) 8%

Ao | Dol 8% (@) E <2n> ? L2 =
n=0

) (221) 400

Ogl r1

Ao [o| > @n)" =
n=0

log1 (2z1) 1

1—2331.

Ao 1ol
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L 7 log 1 (z1)+og (x2)
T AN - |I\Z¢°A°”' T

ICIy ]CIO

1 1
To| o

n=0

1 5
log 1 (z1?x2)_1 +00 1 log 1 (xlp m2>
s02¥ [Iy S (1))

omn
n=0
1

log 1 (211Fx2) = 1 L
¢0)\0p [ Lo Z (331”/ 962) 20 =
n=0
=4
log 1 (29311’ 902) 1
<f>0)\0” | o] R
1-— 2£1 » X9

We observe that, since we have Iy > 0, z1 € (0, %), T9 € (O, 2%), we get

log 1 (2z2P) 1 log1 (2z1) 1
0 < |1 2 — < 400, 0<|] < 400.
| ol 1 — 2a9P ’ [ ol 1— 21
Now we choose .
P
o F
¢O = 10g1 2127’) ) )
|I ’ 1—2xoP
v
AO = I log1 (2z1) 1
| To| 1—2z1

From (2.28]) and (2.32)) we get

|[0‘ Z¢ I =F

ICIy

from (2.29) and (2.33]) we get

Ly

[To] O‘ICI

Now we are going to choose 1 € (0, %) 9 € (O, 2p) such that

] PN

IClIy

The last equation is equivalent to

|[0| Z ¢( )

ICI, f

1 1 1 :Pla
FPUP' Fryv

o3

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)
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S0, since we have (D and 1 , we are going find x; € (O, ) To € (O —p) such that

LS ey

IClIy

(10| > o(I)p )p <|10 > )\I>
ICIo ICIy

for any arbitrary value 0 < P1 <1

We compute ([2.36]) using and ( - ) to get

=P, (2.36)

1
1 log 1 (2:(31 P’ xz)
doXo? |lo| 2 L

P = L2017 o = (2.37)

1
o

1
logl(ngp P log1 (2z1)
(607 110 )" (Mo lKo] )
1

lo 2967'
qsoxo% | Io| ey (20077 52) (1—220)7 (1= 207 Py
og1(2x1)

10g1 (2z2P) 1 -

|[0‘ 3 1—233‘117 To

¢0)\0p |To|?

1
1 2z, P
11| <‘“ ”) (1—221)7 (1—23:2 )7

1
3

1,1 1 =
(p+p’>xlp/x2> 1—2.’E1P'.7:2

1
1 —2x17 29

g: (0,;) X (0, ;p) — R, (2.38)

(1= 221)7 (1 — 2297 )%‘

Let us define the function

(2.39)

g(w1,m2) = T
1-— 2.21?11’/.1‘2

To prove that for any arbitrary 0 < P; < 1 there exist x1 € (O, %), To € (0, 2p) such that l’

is satisfied, we are going to prove that
1 1
(0, 1] - {g(xl,xg) T € <0, 2) , Lo € <O, 2p> } (2.40)

1
Let z1 € (O, %), take x9 = x17. Then

1
1 1—2x 1—2x)r
o) — o, ety = =207 A =200)0 (2.41)

1— 27 o
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To finish the proof we are going to show that

liminf = g(z1,22) = 0. (2.42)
(@1.22)(5038)

To prove this let us consider

e:=1-2x1; &6:=1-—2ab, (2.43)
which gives us
1
1—e¢ 1—0\r
r] = .1‘1(6) = 9 N o = $2(€) = <2> . (2.44)
So we have € € (0,1), 6 € (0,1), and (2.42) is equivalent to
1 1
er )P
liminf  g(z1,22) = liminf : - =0. (2.45)
(z1.22)— (3,55 ) (€0)=00) 1 — (1 —¢€)#" (1 —0)>

Now, using big O notation, we consider the Taylor polynomial of degree 1 of the function
1
z— (1—x)r, ie.

1 T 9
(1—xz)p =1——40(z"). (2.46)
p x—0
So we get
3 sh
er or
g(x1,x2) = = (2.47)
- (1 _ o) (1 iy 0(52)>
P P
e—0 6—0
11
er r
€429 2 (1—5+0 52 ) —0(s? (1—s+062>
poopop eio) P 5(—>0) 6(—>0> P eio)
(2.48)
Let ¢t > 0. Let us choose
5 = 6(e) := T, (2.49)
Then we get
R
g($1’$2) - 14t 1+%+l 14t '
€ € € t 2 € €
F + T — T — O(E ) <1 — T + O(€2+2t)> — O(€2+2t) (1 — 17 + 0(62)>
e—0 e—0 e—0 e—0

(2.50)
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Finally, we multiply numerator and denominator by €, and we use big O notation properties,

to get
%
9(w1,2) = 1t bt (1t \ 242 142 € )
y =t -0 (1= 5 v ) ot (1- 5+ o)

(2.51)
The denominator converges to ]% as € — 0, while the numerator converges to 0 as ¢ — 0,

which proves that, under the previous choices, we have
g(z1(€),z2(€)) =0 ase— 0. (2.52)
Since g(x1,x2) > 0 by construction, this entails that

liminf = g(z1,22) = 0. (2.53)

(@1.22)>(3:30)

The function ¢ is a continuous function defined over the connected set {(z1,z2) | =1 €
(0, %) , X2 € (O, 2%)}, so, since we also proved 1 , it follows that

1 1
T € <0, 2) , T2 € <O, 2}7) }, (254)
which is the equation we wanted to prove.

The last equation entails that (2.36)) is satisfied for any 0 < P; < 1, so we proved that for all
F >0, f >0, v >0 such that f7 < FvP~! then there exist A\g > 0, ¢g > 0, 0 < z1 < %,
0<zy < 2% such that the maps

(0.1 € {g<x1,m2>

logy (#1)
2

A= X | : (2.55)
lo T
o) = oo 1]
satisfy the equations

1

F = Tqu(I)P, (2.56)
ol /=5
1 L

fo= ey,
ol /=5
1

v o= T )\[.
\IOIIQZIO

Now it is only left to prove that there exist

a:P(Iy) — RT (2.57)
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such that we have

A= ;O|ZOCI<|}|Z)\K>;D-

KCI

Given the previous definitions of A\; and ¢y, let us consider

a: 9 — Rt (2.58)
1 -p
I +— Oé]::PQ')\[<IZ)\K> ,
1l 7=

where P, is the parameter defined in (2.25)). This expression is well defined because, by con-

struction of Ay, we have

1
KCI

From this definition, for all I € 2(Ij), we get
1 1 P 1 1
JCI KCJ JCI JCI
which means that the hypothesis (2.23)) is satisfied. Moreover, for I = I, we get

1 1 P 1
wza1<|l|2)\[{> :leZ)\I:Pl'U:A, (261)

KCI ICI,

which is the required inequality. So we proved that for all (F, f, A,v) € D there exist

I— a; € RT,
I'—))\IER+,
I+— ¢(I) €RT,

such that ) ) » )
— A < = A VI 1
n 2 ex(gg TN < T A< e i o)
KCI
holds, and such that

IClo
1 L
Fo= LS ey
|IO|ICI
=10
4 1 Z (1 Z)\ >
= (0% — 5
|IO|ICI ! |I|KCI *
=10 =
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ending the proof of the optimality of the domain D. O

Since the function B satisfies the main inequality (2.5)) it can be proved that the function

B also satisfies the following infinitesimal inequalities:

3. d®>B <0,
0B fP
3//. 87 > UT

Inequalities 3’ and 3" use the notion of derivative from the theory of distributions. However,
we will skip the technical details about the optimal regularity of the functions, and, during the

remaining part of the work, we will assume that the function B has C? regularity.

2.2.2 Improvement of the ”Bellman” type function

In this subsection we use the function B defined in 1D to define a new function B which
satisfies the same properties, and it also satisfies an additional property which allows us to

prove the sharpness of the constant C(p).

In the following lemmas we are going to show that the characterization of the dual dyadic
Hardy’s inequality holds for a constant K (p) if and only if there exists a ”Bellman” type

function B with the previous properties, and such that B can be written in the form

. B P
B(F,f,A,'U) _K(p)F_Wa

where ¢ is a linear function.

Lemma 2.2.2. Let 1 < p < 400 and K(p) € R. The following statements are equivalent:

e The characterization of the dual dyadic Hardy’s inequality holds for constant K (p),
i.e. if the inequality

1 1 p 1
i > ay (IJI > )\K> < i > A< +oo VI € 2(Iy) (2.62)

JCI

. ! AN v
\IO]ZOQI<|I|Z¢(J))\J> SK(p)uO’ Zqﬁ(]). (2.63)
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e There exists a function
B:D—R

where
D={(F,f,Av)eR F>0,f>0,A>0,0>0,A4A<uv, ff <FoP~ !}
such that

1. Bis defined over the domain D,

2. K(p)F > B(F, f,A,v) >0 for all (F, f, A,v) € D,
3. d’B(F, f, A,v) <0,
3. B(F, f,A,v) > L.

Moreover, the function B may be written in the form
B(F, f, Av) = B"(F, f,A,v) = K(p)F + [Ph(A,v). (2.64)

Proof. Suppose there exists a function B that satisfies the properties 1, 2, 3 and 3”.

By integration it follows that a function B that satisfies 3’ and 3" also satisfies the main in-
equality , so the previous proof for the characterization dual dyadic Hardy’s inequality
holds using the Bellman function method and the function B.

It is left to prove that, if the Theorem holds for a constant K (p), then a function B with

the previous properties exists.

Let us assume that the characterization for the dual dyadic Hardy’s inequality holds for
constant a K(p). Consider the function B defined in (2.13). The definition of B does not
depend on the choice of the interval I, so we choose I = Iy. We observe that, by definition of
the function B, we have B(F, f, A,v) > 0. We assumed that the characterization for the dual
dyadic Hardy’s inequality holds for the constant K (p), so, since B(F, f, A, V) is defined as the
supremum of the left hand side of the thesis , where

1 %
F =03 o(J), f=57) o)A},
1= m; J
Lo Ak ) 5
A= aJ( /\K> , v= 0y Ay,
iz \M e, 114

we get B(F, f, A,v) < K(p)F. We also observed earlier that B satisfies 3’ and 3”. So we proved
that B satisfies 1, 2, 3’ and 3”. We are now going to define the function

u(f, A,v) = Sl;p {B(F, f,A,v) — K(p)F}.
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Lemma 2.2.3. Let ¢(x,y) be a concave function, and let ®(x) = sup, ¢(z,y). Then ® is

concave.

The function B is concave because it satisfies 3’, so the function u is concave. By homo-
geneity of B we get
B(a’F,af,A,v) = ad’B(F, f,A,v) Ya >0,

which entails
u(af, A,v) = d’u(f, A,v) Va > 0.

So u can be written in the form
u(f, A,v) = fPh(A,v).
We are now going to consider the function
B(F, f,Av) = K(p)F 4+ u(f, A,v),
which can be written in the form
B(F, f,A,v) = B"(F, f, A,v) = K(p)F + fPh(A,v).

By construction 0 < B(F7 fiAv) < K(p)F, B is concave and g—E(F, fiAv) > % So the
function B satisfies the properties 1, 2, 3’ and 3” and it is written in the form (2.64)), finishing
the proof. O

Lemma 2.2.4. Let 1 < p < +oo and K(p) € R. The following statements are equivalent:

e The characterization of the dual dyadic Hardy’s inequality holds for constant K (p),
i.e. if the inequality

() S e

JCI KCJ JCI

1s satisfied, then

S e

X ar( o] ) < Ko S e (2.66)

ICIy JCI
e There exists a function
ng(F,f,A,’U) :K(p)F_ (267)

such that
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1. B@ 1s defined over the domain
D={(F f,Av)eR| F>0,f>0,A>0,0>0,A<uv, P <FoP 1}

3. S < K(p),
5. 28(A) > ohme(A v,
4. o(A,v) >0,
5. @ s linear.

Proof. Let K(p) be a constant. By Lemma the characterization of the dual dyadic Hardy’s
inequality (2.1.1)) holds for the constant K (p) if and only if there exists a function

BM"(F, f,A,v) = K(p)F + fPh(A,v) (2.68)
such that

1. B" is defined over the domain

D={(F,f,Av)eR | F>0,f>0,A>0,0>0,A4A<v, fP<FoP 1}

2. K(p)F > B"(F, f, A,v) > 0 for all (F, f, A,v) € D
3. d2BM"(F, f,A,v) <0

3". 9BL(F, f,A,v) > L

The properties 3 and 3” hold for the function (2.68) if and only if
3*. d2(fPh(A,v)) <0

3. h(Av) > L

VP

We are going to rewrite the condition 3* in a better way.
Let us compute the charateristic polynomial of the Hessian matrix H(fPh(A,v)), i.e. the

polynomial
PN (f, A, V) =det(H(fPh(A,v)) — \I).

We are going to skip writing down the variables f, A and v in the following computations, to
simplify the notation.

By computation, the charateristic polynomial is

P()\) = 0,3)\3 + CLQ)\2 + CL1/\ + ag,
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where

az = —1,
_ 0*h  O%h
as = fP 2[f2[W+W] +p(p—1)h],

B 02h \%  9%h 02h
ay = f2p Q[fQ[p@—l)(aAav) _8A28v2]

2 % 2+ % ’ _ ( _1) @_’_@ h
P\ 94 o P a4z " 92 |"|
_ 9%h 9%h 9%h \2
aw = f7 2[17@‘”[8,4128@2“(@,4%) h]*

2[,0h Oh Oh [ (OhN*0%h  (Oh\*O%h
P 1%594 00 0400 v ) 04z " \aa) a2 |||

The condition 3* holds if and only if all the roots of the polynomial P()\) are non-positive.

Since ag < 0, a necessary condition for 3* is

as S 0, al S O, aq S 0, (2.69)

for all the points (f, A, V) such that f > 0,0 < A < wv.
Since f > 0 it follows that the condition (2.69) is equivalent to

4. f? [ng; + giﬁ] +p(p—1)h <0,

5 P (3a) s +*|(a) + (51) -
p(p—l)[gi];—i-g;]hﬁoa

6. p(p—1) [gil’;gz’;h_ (;jgy)%

22%%82h_ @2@_’_ %2@ <0
P 1%84 00 040w o) 042 " \aa) a2|| =

We observe that the conditions 4, 5 and 6 hold for all f > 0, so, by letting f — 0, it follows
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that the conditions

4'. h<0,
oh\>  [(On\? ?h  9%h
/
, - ) l=-p-1D|=—+==|h<
| p[<6A> +<8v> ] » ”[a@*aﬂ}h—o’
8?h 0%h h \?
6 plp—1) [wavzh‘ <8A8v> h}*
o[ Oh Oh &%h On\?0%h [ Oh\?82h
PI2———F—-||l=— ) =+ =|| L0
0A Ov 0AOv ov ) 0A? 0A) ov?|| —
are necessary for 4, 5 and 6.
The function B" defined in 1’ is concave, so it follows that A is concave. Moreover, the the

function h satisfies the condition 3**, and h < 0, so h(A,v) < 0 for all 0 < A < v. So it follows
that the conditions

4" h(A,v) <0, for0< A<w,

oh\ 2 oh\? 92h  0%h
2 pKu) *(%H*p‘”[w*w]““’

9%h 8%h 9%h \2
6. plp—1) [wavzh‘ <8A(%> h}*

o[ Oh Oh 9%h On\%0%h [ Oh\*82h
pPlos St 2 () 20 (22) 2 <.
OA dv DAdv v ) 0A2 0A) ov?|| —
are necessary for 4, 5" and 6.

Since 4” holds, we define

1

1 p—1
Av)=| — ——— fi A 2.
P(A,v) [ h(A,U):| , for0< A<, (2.70)
So we get
1
h(A,'U) = —W, for 0 < A <. (271)

By computation (see the Appendix), using the equation (2.71)), we rewrite the conditions 4",
5" and 6 in the following way:

o

Y(Av) >0, for0< A<,
. Ay <0,

0%\ 0% Y
6. — <0,
0AOv 0A2 Ov? —

(&) 53




64 CHAPTER 2. HARDY’S INEQUALITY

and we rewrite the condition 3** in the following way:

oY 1

3. == (A,v) > W@Z)(A,v)p.

0A

Conditions 5 and 6 entail that the Hessian matrix of 1 is negative semi-definite.
So we proved that, if the characterization of the dual dyadic Hardy’s inequality holds for

a constant K (p), then there exists a function
. A fP
By (F =K{pt—-— ——

such that:

1. Bw is defined over the domain

D={(F,f,Av)eRF>0,f>0,A>0,0>0,A4<0, fP <FoP~ 1},
2. d)(fi;);,l < K(p) for all (F, f,A,v) €D,

3. %(A,v) > Ww(/lﬂ/)p ,

4. Y(A,v) >0 for 0 < A <,

5. 1) is concave.

Now we are going to prove that Theorem holds for the constant K (p) if and only if there

exists a linear function ¢(A,v) such that the function

fp

B@(Fuvaav):K(p)F_W

satisfies 1, 2, 3 and 4.

If a function ¢ with such properties exists, then the function B(p satisfies 1, 2, 3’ and 3", so, by
the previous lemma, Theorem holds for the constant K (p).

Suppose that Theorem holds for the constant K (p). By the previous point there exists a

concave function v satisfying 1, 2, 3 and 4. Let us define the function

t:(0,400) — R
v — (0, v).

The function v satisfies 2, 3 and 4, so it follows that

Sup (t()) = (6 >> =2, (vex >> <K@ 27
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Moreover, the function t satisfies

() =3 () 21

By combining ([2.72)) and (2.73)) we get

lim (”)p_l < K(p). (2.74)

v—+00 t(v)

The function ¢ is concave and non-negative, so

lim #(v) >0,

v—400

otherwise the function ¢t would be negative as v — +o00. Moreover,

lim #'(v) > 0.

V—+00

Indeed, let us suppose that ¢'(v) — 0 for v — +o0. If ¢ is bounded by above then

lim (t”)pl — oo £ K(p),

V—+00

in contradiction with (2.74)).

If t(v) — +o0 as t — +o0, then

. v\ . 1 \*"!
o (t(v)) = o (ﬂ(@) = +oo £ K(p),

in contradiction with (2.74)).

Let us define a linear function

p(A,v) =C1A+ Cov for 0 < A<, (2.75)
and let us choose
Cy >0, Cy= Ilim t'(v), (2.76)
v—4-00

we will fix the value of Cy later.

By construction, Cs > 0, so the function ¢ is positive. Moreover, since C; > 0, it follows that

v p—1 v p—1 1 p—1 1 p—1
su — = sup| =———— = | = = lim (—— =
O<A2v (‘P(Aa U)) 0<§ (Cl -0+ C2U> (02> V=400 <t’(v))

= lim <U>p_1SK(p),

v—+00 t(v)
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so we proved that
vP1

It is left to prove that ¢ satisfies 3.
We observe that the following statements are equivalent:
I)

mgﬁ(A, U)p for 0< A S V.

IT) There exists v > 0 such that

_r > p
814 (lU?U) - (p _ 1)Up<10(v7v) 9
where 5 5
ad — lim 2%

Indeed, I) trivially implies 7). On the other hand, if ¢ satisfies IT), then

Cr > m(cw + Cav)P.
However, we observe that C7 > 0, and
gi’:(A, v) = gﬁ(v,v) =y,
so it follows that
W40 L (ot Ol s (AT Ol = (A,
9A (p — oP (p — 1)oP (p — 1)vP

so we proved that I) holds.
We are now going to prove that the function ¢ satisfies I7).
Consider a fixed © > 0. Let us define the function
Ty (0, 17] — R
Avr— (A, D).

By construction, the function r3 is concave, strictly increasing.

Moreover, we observe that ¢(0,v) < (0, v) for all v > 0. Indeed, by construction, we have

lim ¢(0,z) =0 < lim ¢(0, z),
z—0 z—0
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and, by concavity of 1,

0 0 0
o (07 y) Cy xBI-Poo 8U¢(O’ x) = 81)1/}(0’ y) for all y>0
So, by integration, it follows that
r5(0) = 1(0,0) > ¢(0,0). (2.78)

Now we set (1 to be the value

O = _ - . (2.79)

The following pictures show the construction we just defined.

7)ot
1 {
ry(A)
0.5
I
il FL A -
0 | | (____ﬂ___,f-f;fr
1 | e
A e //;,-f‘“:[v 0)
Ve
,’——“"—/ I
0.5 -—_—_:_:_:::d__,..f’ |
< l\ N\ i Ry
N N HY A N
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121

0.8 -

By construction, C7 > 0, and

1/}(177 f)) j 90(07 'f))

By concavity of rg, since ¢(0,7) < r5(0), we get

(3) < 75(0) - r5(0) < 75(9, D) - 0(0,9) _ .

[S2i

r

However, the function r; satisfies equation 3, i.e.

, 1
5(A) > 1w

so, by letting A — 0, since r5(0) = ¢(0,0), we get

T rs(A)P for 0 < A <0,

1 1 0
AW / _
oD = e

04+ C1 -0+ Caot =9(0,0) — ¢(0,0) + ¢(0,0) =

(2.80)

(2.81)

(2.82)

(2.83)
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proving that IT) holds.
So, by the previous remark, I') holds, i.e.

e 1

7(14, 'U) Z mg@(/l,v)p for 0 < A S v, (284)

so we proved that ¢ satisfies 3, finishing the proof. O

2.2.3 Optimality of the constant
In this section we prove the optimality of the constant C'(p) for Theorem m

Theorem 2.2.5. The constant C(p) = (p/(p —1))" in Theorem is sharp.

Proof. By Lemma [2.2.4] Theorem holds for a constant K (p) if and only if there exists a
function

By(F, f,A,v) = K(p)F — 5 /! (2.85)

(A,v)p=t”
such that

1. Beo is defined over the domain

D={(F,f,Av)eR|F>0,f>0,A>0,0>0,4<uv, P <FvP 1}

o -1
2 Gtaap < K@),

5 O

3. diﬁ(Avv) Z W@(A,”U)p,
4. o(A,v) >0,

5.  is linear.

We set )
©(A,v) = C, "1 (A+ Cov), (2.86)

for C1 = Cl(p) >0,Cy = Cg(p) > 0, getting

fp

B@(F» fiAv) =K(p)F — ClW.

(2.87)

This parametrization is sufficient to define all functions ¢ with the required properties.
By construction, 4 and 5 are satisfied.
Without loss of generality, we may suppose that the inequality 2 is sharp, i.e.

p—1
sup v = K(p). (2.88)

0<A<w P(A,v)P71
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Indeed, if a function ¢ satisfies 1, f’), fl, 5, and it satisfies

pP—1 -

sup = K(p) —e=K(p) < K(p), (2.89)

0<A<v P(A,v)P!
then it also satisfies the condition (2.88) for a more optimal constant K (p) < K(p).
By computation, since C; > 0, the condition (2.88) is equivalent to

pp1

sup ————— = K(p),
v>18 (10(0¢ U)pil (p)
ie. ) o
VP~ 1
C = = K(p).
O G g
So we are going to set
C, = K(p)ch . (2.90)
So, by combining (2.90) and (2.86]), we get
p(A,0) = K(p) 71Cy (A + Cav). (2.91)

By construction, the function ¢ satisfies 1, 2, 4 and 5. Now we observe that the following

statements are equivalent:

I) o satisfies 3, i.e.
0y 1

7(14,?}) 2 m(p(A, ’U)p for 0 < A S V.

0A

IT) There exists v > 0 such that

where

II1)
Cy € S(K(p)) == {:p >0

CHJV—@—UK@W”SO}

We already proved in the previous lemma that I) and IT) are equivalent.

To prove that I7) is equivalent to I1I) we compute the condition I7) for v > 0, getting

1

WK(P)_FCQP(U + Cov)P. (2.92)

K(p) 710y " >
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By computation, (2.92)) is equivalent to
(C2+1) = (p— DK ()L <0, (2.93)

which is equivalent to Cy € S(K(p)).
So we proved that the Theorem holds for a constant K (p) if and only if the set S(K(p))
is not empty.
To finish the proof that the constant
/ p P
C(p) = (p )P = <p—1>
is optimal for the Theorem [2.1.1] we only need to prove that

S(K(p)) =0 for K(p) < C(p). (2.94)
Consider the following function:
®(K(p)):(0,400) — R
z— (2 +1)P — (p - DK (p)a? .

The set S(K (p)) is the set of points x > 0 such that ®(K(p)) < 0.
If we consider K (p) = C(p) then, by computation, we get

(p pf)’”1 o
It is easy to prove that the function ®(C(p)) has a unique global minimum point at x = p—1, and
the minimum is ®(C(p))(p—1) = 0, which entails that S(C(p)) = {p—1}, and ®(C(p))(x) >0
for x > 0.

S(C(p)(x) = (z+1)F - (2.95)

If we consider, for any fixed € > 0, the constant
K(p) = C(p) —e < Clp),

then the function ®(K(p)) is the function

(K(p)(z) = (2+1)P—(p—1)(C(p) —e)a?' =

= @+ 1= (p-1)Cp)* "+ (p— Ve’ =

= ®(C(p))(z) + P(e)(),
where P(e)(z) = (p — 1)exP~ 1.
However, P(€)(x) > 0 for x > 0, and ®(C(p))(x) > 0 for = > 0, so it follows that ®(K (p))(x) >
0 for # > 0, which entails that the set S(K(p)) is empty for all K(p) < C(p).
So Theorem does not hold for any constant K (p) smaller than C(p).
Moreover, we proved in section 1 that it holds for the constant C(p) = (p’ )p , so the constant

C(p) is the optimal constant for the theorem, finishing the proof. O
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2.3 Stochastic approach to the problem

We will now analyze this problem from the point of view of the theory of stochastic opti-
mal control, and we will show that the function B can be interpreted as the Bellman function
associated to a stochastic optimal control problem naturally related to the dyadic problem. In
this section we use the same notations used in [24], chapter 11. See [19] for more details about

the topic.

We are going to show that
Theorem 2.3.1. The functions B and g are identical.

Here g is the Bellman function solution to the following stochastic optimal control problem
associated to the inequality (2.4)).
Consider © € D, u = (u1,us, . ..,us) € R® such that us > 0. Let us define the payoff density

n“(z) == ﬂ(M)pw.

Let z € D. We define the bequest function

K(z) = li;nﬁiilf B(y).
yeD

We remark that, for the definition of the stochastic Bellman function, we only need to define
the bequest function K on the boundary of the domain D, however we follow the definition
used in [24].
Let us define the coefficients

b(u,z) := (0,0, —us,0),

o(u,x) = (u1,ug,us, uq).
Let {u¢}+>0 be a control such that us(w) € {u € R® | us > 0}. We consider the stochastic
process {X;} = {(F%, fi, A¢,v)} solution to the following stochastic differential equation

t t
X, = 20+ / b, XJ)ds + / o (s, X2)dB,, (2.96)
0 0

where x¢ € D is the starting point, { B };>0 is a 1-dimensional Brownian motion and the domain
of values of X; is the set D. Let 7p be the first exit time for {X;};>¢ from D, i.e.

inf{s > 0| Xs(w) €D} if {s>0| X,(w) & D} £0,

+o00 otherwise.

™ (w) =
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The Bellman function associated to the problem is

™ ¥ P
g(x —supEx[/ pp<s> us ds + K(X.,)x ,
( ) () 0 A, + (p_ 1)'05 ( ’D) {rp<+o0}
where the supremum is taken over the set of controls {u;}+>¢ satisfying proper measurability

conditions and whose values range in the set {(u1,uz,u3, u4,us) € R? | us > 0}.

We observe that, for this result, we used the stronger version of the main inequality
instead of the weaker version . By using a stronger main inequality we still get a Bellman
function that can be used in the proof of Theorem with the Bellman function method,
however finding the solution to the problem associated to the weaker inequality would

require more work.

We are now going to show in the following subsections how we got to the stochastic optimal

control problem and how we solved it.

2.3.1 From the dyadic to the stochastic problem

In this subsection we will show that the main inequality satisfied by the function B can be
used to prove that B satisfies a differential inequality that will be the starting point from which
we enunciate the stochastic optimal control problem having B as a solution.

We are going to recall the problem we are considering. Let p € R, 1 < p < +00. We consider

B(F, f,4,v) = (p—l> F i -

the function

defined over the domain

D;:{(F,f,A,v)eR4\F>o,f>o,A>o,v>o,va, fngvpl}.

We proved in section 1 that B satisfies the inequality . We are now going to show how the
inequality entails a differential inequality for the function B.

Let us consider a fixed point (F LA, 0) in the set of the interior points of D. Let us consider
a>0,b>0,c>0. Let us consider ¢t > 0. We now define

d(t) = (F + (tb)?, f + t2ab, A + tc, + (ta)?) € R,

Y(t) = (F +uit, f + ugt, A+ ust, d + ugt) € R™.
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As long as we choose £ € RT small enough, we have that ¢(¢) € D and ¥(t) € Dforall 0 < ¢ < t.
So we may now compute the main inequality (2.4)) in the following way

B(F + (£20)P, f + (t*)%ab, A + t3c, 0 + (tza)p’> — B(F, f, A, 17) +
B(F,f,fl,f;) - ;[B(F—i—ult,f—i—ugt,fl—i—ugt,ﬁ +U4t>—l—

i t2c
(A+(p—1Dvp 7

B(F — ult,f— ust, A — ust, v — uﬂ)} > pP
which is equivalent to

B(O(t%) ~ Bo(0) + B(u(0) - 5 [Bw(-0) + B(0)] >

(f + (t*)ab)? 2
(A+t2c+ (p—1)(B + (L2a)))P

We are allowed to compute this inequality because, by setting X = ¢(t2), X = ¢(0) = ¥(0)
and Xy =¥(t), X_ = ¥(—t), we have

X = X4 (07, (Pa)- (20, () )
= 1
X ==

2 (

and X, X, Xy, X_ are in the domain D, so the hypotheses of the main inequality are satisfied.

X+ +X—)7

Dividing by ¢? and taking the limit as ¢ — 0 we get

B(O(£) — Bo(0) + B(0) — } [ Bw(—1) + Bw(1)]

I > pP 7’
=0 2 A -
By a change of variable we get
_1 _ -
o Bl B PO ot + 60 N
5—0 S t—0 t2 - (;1 + (p — 1)@)? ’
so we get _
0 102 fP
5B~ 5B 2 e (2:97)
By computing the derivative we get
(TB(6(0)).6/0) = 5 | (HE)W(O)0).0/0) + (TB@0). 0 0)] = 7 e
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Now we observe that
#'(0) = (0,0,¢,0), ¥'(0) = (ug,usz,us,uqs) =:u, "(0)=(0,0,0,0).

So we get

cc— —(H(B) - u,u) > pP— c (2.98)

for any ¢ > 0.
We may verify that the function

p P
B A0 = (2 ) - P

satisfies the inequality (2.98)). We compute

0B - . -
T AV F

and B is concave so it satisfies —3(H(B) - u,u) > 0, showing that ([2.98) is satisfied.
It follows that the function B satisfies the inequality

OB(r) 1~ 9°B() z ;
_ ,}: ; <0 VzeD,VuelR’ u; >0.
o u5—+—2”1a 6]uuj+pp Tt (= Dzs us < T € u € us

So the function B satisfies the following inequality

88 628 xT9 p
E wiug + . <0, 2.99
félu%{ Y pp<$3+(p1)934> U5} (2.99)
ug5>0

so we will read the function B as a supersolution to a Hamilton-Jacobi-Bellman equation.
Moreover, B is actually a solution to the Hamilton-Jacobi-Bellman equation by taking u; =
U2 = U3 = Uqg = 0.

So B satisfies the Hamilton-Jacobi-Bellman equation

sup

ueR5
ug >0

OB(z) 1 0%B(x) 2 P
{ " o us + 2 2 (%Uiaxjuzu] +p w5t (=1 usp =0 VYaxeD. (2.100)

So we naturally got a Hamilton-Jacobi-Bellman equation that can be interpreted as the equa-

tion associated to a stochastic optimal control problem.
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2.3.2 Stochastic optimal control problem

We are now going to enunciate a stochastic optimal control which defines a Bellman function
g such that g = B.

Let us consider the following extension of the function B to the closure D of its domain:

B:D—R
defined in the following way:
_ B(z) ifxeD,
B(x) = _
lini)inf B(y) ifx € D\D.
y—x

Observation 2.3.1. For all points € D\D such that (z3,74) # (0,0) the function B extends

continuously to the value

zoP
xr3 + a:4(p — 1))10—1 '

5 p

The remaining points x € D\D are the points # = (F, f,0,0), however by definition of D we
have fP < FvP~! so f = 0. For the points z = (F,0,0,0) such that F' > 0 we have

B(z) = liminf B(y) = 0.

Yy—x

Proof. We are going to show this fact by recalling that B > 0, so liminf B(y) > 0, and by
Yy—x

considering a proper sequence of points. Let v > A > 0, let 0 < ¢t < 1. Let us first assume that

F > 0. We are going to consider the points

2(t) = (F, (F(tv)P~1) 7, 124, tv).

By construction z(t) € D, %in% z(t) = (F,0,0,0), and
—>
P -1
. L P PP F(tv)P
fmBa(t) = lim K ) E e 1A (p= Doy 1
P\ p v
F - lim -
t%0[<p1> pl(tA+(p1)v)p1}

Let us assume F = 0. Let F > 0. We consider the sequence

0.

2(t) = (tF, (tF (to)P~ 1) v 124, tv),

and the proof holds with the same argument.
So 0 < liminf B(y) < lim B(z(t)) = 0, which ends the proof. O
Yy—x t—0
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Let € D, t >0, u = (u,us,...,us) € R® such that us > 0. We will now define a payoff
density and a bequest function to get the stochastic optimal control problem we are looking for.
These functions will not depend on the time variable, so in the notation we will skip writing

it. Let us define the payoff density

) = ) = (e )
Let = € D. We define the bequest function
K(x1, x2, 23,24, 1) = K (z) := B(x),
i.e. K is the function

<pl> i v i)u) — ifzeD,

f ) if z € D\D.

K(x1, 20,23, 24,t) = K

To finish the formulation of the stochastic optimal control problem we define the coefficients
b(u,z,t) = b(u,z) := (0,0, —us,0),

o(u,z,t) = o(u,x) = (u1, ue, ug, uq).

Let {ut}+>0 be a control such that u;(w) € {u € R® | us > 0}. We consider the stochastic
process {X;} = {(Fi, f, As,v)} solution to the stochastic differential equation (2.96). The

Bellman function associated to the problem is

™D f p
= E* . d K(X- T oo} |
o) ?BE [/0 pp(As +(p— 1)115) s ds + KXo Xirp o

where the supremum is taken over the set of controls {u¢}+>0 such that {u;} is measurable with
respect to Fy, where {F;}¢>0 is the filtration generated by the variables {B, | 0 < s < t}, and
such that the values u;(w) belong to the set {(u1, uz, us,uq,us) € R® | us > 0}.

So by Theorem the function g satisfies the equation . We will also write the

equation (2.100)) in the following way

u 3 "l
5;1]155 {(E 9)(x) +pp<x3 . 1)3;4) u5} =0 VzeD. (2.101)

We recall that the operator

u _ 9% Z s
(LY%)(z) = . us + 2 22 Ou01, UU;j (2.102)
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is the infinitesimal generator of the process {X;} solution to the equation (2.96)) for the choice
of the control {u;} such that u; = v € {y € R® | y5 > 0}. Indeed, by Theorem the

infinitesimal generator A of such process can be characterized by

. dg 1 7 829
(Ag)(@) = D2 bilws )5 (@) + 5 D (00 iy () 55— (@) = (£9)(x).
i=1 ¢ ij=1 Lt

2.3.3 The dyadic Bellman function is a stochastic Bellman function

We are now going to give the proof of Theorem [2.3.1]
Proof. We are going to prove the stronger statement
g(z) = B(z) Yz eD. (2.103)
By definition of B equation entails
g(x) = B(z) = B(z) Yz €D, (2.104)

which is the required statement. First we are going to prove that g(F, f, A,v) > B(F, f, A,v).

We are going to compute

TD
g(F, f,Av) > E*° |:/0 n" (Xs)ds + K(XTD)X{TD<+00}

for the choice
up = (0,0,0,0,1), z0 = (F, f, A,v).

Let us first suppose v > 0. By computation we get Fx = F, fs = f, vs = v, As = A — s, and

Tp = A, so, since the control is deterministic, we get

A f »
g(F, f,Av) > /Opp<A_s+(p_1)v> ds+ K(F, f,A—Av) =
pp fp s=A _ -
|:p_1(A—S—|—(p—1),U)p—1:|S_O+B(F,f,07’[))_
p \" f? PP J

B liminf B(y) =
vl p—1(A+ (p—1)w)r! +y%1(%}%,v) )
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On the other hand, if v = 0 then A = 0 and f = 0 by definition of the domain D, so in this
case the stopping time 7p is equal to 0, so the profit gain over the trajectory is 0, and we are

left with the bequest gain. So the inequality becomes
g(F. f, A,0) = 0+ K(F,0,0,0) = B(F,0,0,0) = 0,

which ends the proof that g > B.

To prove that g < B we are going to first enunciate a heuristic argument to show it, using
Jensen’s inequality.
Let us consider a control u = {u; }+>0 such that us = (u1(t),...,u4(t),0) for 0 < ¢ < s and then
ug = (0,0,0,0,1) for t > s. Let {X;} be the solution to for this choice of the control
{u;}. The control {u;} lets the process { X;} behave like a martingale diffusion (the process has
no drift) up to the time s, and on this part of the trajectory there is no profit gain (because
the profit density is equal to 0 when us = 0). Moreover, the control {u;} lets the process {X;}
drift towards the boundary of the domain from the time s onwards.
Let t — X (w)(t) := X¢(w) be a trajectory of the process {X;}.
If 7p(w) < s then, by continuity of the process {X;}, the trajectory X (w) lands on the point
Xrp(w)(w) € 9D for almost all the w with such properties. So almost all trajectories X (w) such
that 7p(w) < s gain an amount of profit equal to K (X)) = B(X;,w)) = B(Xsarp(w))-
If 7p(w) > s, the trajectory ¢ — X;(w) of the process {X;} lands on a point x in the interior of
the domain D at the time s, without exiting the domain D before the time s. We observe that,
in the first part of the proof, we proved that a control {4} such that @, = (0,0, 0,0, 1) generates
a process {Xt} that gains an amount of average profit equal to the value of the function B in
the starting point. So, by this observation, it follows that the trajectory X (w) gains no profit
during the time 0 < t < s, and gains an amount of profit equal to [;’(XS) = B(XTD(W)AS) during
the times s <t < 7p(w).
Based on these observations the average amount of profit gained by {X;}, given a control {u;}
of this kind, is

J4(x) = E* [0 + B(XWD)] ;

where the first addent stands for the null gain on the trajectory up to the time s A 7p, while
the second addend is equal to the gain from that moment onwards (the profit gain from the
bequest function at the end of times is included in the second addend).

Following this notation the Bellman function g is

g(x) = sup J"(x).
u={ut}



80 CHAPTER 2. HARDY’S INEQUALITY
However, B is concave, so by Jensen’s inequality we have
E* [B(XWD)] <B (E [XWD])
Moreover, {X;} is a martingale up to the time s by definition, so we get
() = B* {B(xsm,)} < B(Ew[xw) ~ B(w),

and the heuristic idea is that there is ”independence” between letting the process drift in the
third variable (which gives a non-negative gain) and letting the process be a diffusion (which
gains nothing), so we can let the process be a combination of the two and the argument will

still hold. So by taking the supremum over all controls {u;} we get

g(x) = sup J“(x) < B(x).
u={u¢}

We are now going to give a proof that ¢ < B using Dynkin’s formula
We will skip some technical details in the following proof.
Let {ut}+>0 be a given control. Let {X;};>¢ be the process solution to for this choice of
the control {u;}+>0. Let 7p be the first exit time for {X;} from D. We will first assume that

Tp < 400 almost surely. We are now going to apply Dynkin’s formula

E®[B(X,,)] = B(z) + E® [ /0 "’ (L“SB)(XS)dx} (2.105)

to the function B and the process {X¢}i>0. We get

B(z) = Ex[B(XTD)] - B /OTD(ﬁusé)(Xs)ds'

Now, since 7p < +oo almost surely, the event x(,, <1} has a probability of 1, so

B(&) = BB )Xo~ B [ (£B)(X.)ds
The equation entails that — (L% B)(y) > 1" (y), so we get

Be) > B [ (s + BB (X))
However, B(X,,) = K(X,,), so we get

B(z) > B /0 s (Xa)ds 4 B (K (Xop) Xgrmerooy] = 9().
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If 7p is not almost surely finite, we are going to show an idea of the proof. We may consider
the stopping time 7(T") = 7p AT = min{rp, T} for T > 0. This procedure is equivalent to
considering the processes Y; = (¢, X;) in the domain [0,7] x D, and then defining the Bellman
function By associated to those processes, which is a standard way to define the Bellman
functions (see [24], chapter 11).

Since 7(T') < 400 almost surely, we may apply Dynkin’s formula to that stopping time and,

with the same argument we used before, we get

7(T)
Br(z) > B /0 7 (Xo)ds + B (K (X2 X (1) <-oc]
JT — +o0 JT — +o0

- ™D
B(x) > B /0 7 (X2)ds + B K (Xop)Xrpetooy )

So, by taking the supremum over all controls {u;}, we get

)
B(m)Z?ur;Ex[ |7 s 4 K irpesom | = 960)
Ut

which ends the proof that B = v, so B is the Bellman function solution to the stochastic optimal

control problem. O

2.4 Appendix

We are going to prove that the domain

D := {(F,f,A,v)eIR{4\F>O, f>0,A>0,v>0,v>A4, fngvpl}
is convex.
Proof. We write the domain D in the form
D={v>A}NA,
here A is the set
A={(F, f,Av)eR | F>0,f>0,0>0,f° < FoP~'}.

To prove that the domain is convex we just need to prove that it is an intersection of convex

sets.
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The set {v > A} is trivially convex because it is a half-plane. Since % + 1% =1 and pp%l = 1%’

the set A can be written in the form
A=8Sn{f >0},
here {f > 0} is another half-plane (a convex set), while S is the set
S={(Ff,Av) R F>0,0>0, f < Frvi},
The set S is the subgraph of the function
h:RTxRxRT — RY
(F, A v) — Fro¥.

To prove that S is convex, all we need to do is to prove that h is a concave function (since h
is defined over a convex domain).
Since h does not depend on the variable A, we will treat it as a function over the other two
variables only:

h:RY xRt — R*

1
(F,v) — Fro?.

We compute the Hessian matrix of the function h: for all F > 0, v >0

oh 1 1 4 1 L
ﬁ(F’U):EF; l'Upla %(F,U):]%F;UP’ 1_
O°h l-ppioa & 14 1
@(F,u):prFp 207, Pl (Fv) = L F e
0h 1 1., 1 L
AT G T = VR~ AT
So the Hessian matrix is
= T ﬁF%’lmTl’*
H)(F) = : (2.106)
L ' 1
LFy Ty ! 1};5 Fror 2

If the Hessian matrix of h has non-positive eigenvalues then the function h is concave.
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Now we compute the eigenvalues of the Hessian matrix (2.106|):

1 1
%F%_QUV - A %F%_lvg_l
det(H(h)(F,v) — M) = det =

1 1 1 1
13 1L NSV S R
%F? v? 1p,§pr’ -

WF%+%_2vﬁ+i_2_ 1 2o 2-1) _

(pp')? (pp')?
_ _ /

A 1-p P a2y + 1=p Fror 2 + A2
p2 p/2

Now we recall that pp’ =p+p/,s0 (1—p)(1—p)=1—p—p' +pp'=1—-p—p +p+p' =1,
so we get

1-— 1501 1—9 1 1_
det(H(h)(F,v)—m:v-A[pF; N ey 2}_

p2 p/2

The eigenvalues of H(h)(F,v) are the solutions to the following equation equation of variable
A
det(H(h)(F,v) — XI) =0.

The solutions are the two values

1-— 1.9 1 1—p 1 1_
P Zpv + 2p Fryr 2,
p/

Now we observe that 1 —p < 0, 1 —p' < 0and F > 0, v > 0, so the second eigenvalue is
A2 < 0, so the Hessian matrix H(h)(F,v) is negative semi-definite for all F' > 0 and v > 0,
so this entails that A is concave, and the subgraph & is a convex set. So the domain D of the

function B in (2.3]) is a convex set since it is an intersection of convex sets. O

We are going to prove that the function

B(F, f,A,v) = <p_1> F- p—1(A+ (p—1)v)r!

is concave.

Proof. We will compute the eigenvalues of the Hessian Matrix H(B). We will compute the
actual 4 x 4 Hessian matrix (without reducing it to a 2 x 2 matrix), because the computation
can be useful to compute the eigenvectors, which may be useful to study the properties of some

of the stochastic processes associated to the problem.
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In the following equations we are going to omit writing the dependence of the derivatives from

the variables (F, f, A,v) to simplify the notations. The first order derivatives are

p
oB _ [ p
F | p—1 ’

oB 4
84 = P" o

OB _ pp+1 fp—l
of  p—1(A+(p— 1P
B fP
R (p = 1)pp(A+ (p—1)v)P"

The second order derivatives make up the rows of the Hessian matrix HB.

The first row is

5 _, s
oF2 7 oOFof 7
0’B _0 0’B ~0
OFOA OFoV
The second row is
?5 BB
OfoF of? (A+(p— oyt
0’B p—1 0’B p—1
O0f0A (A4 (p—1)v)P ofov (A+ (p—1)v)P
The third row is
0’B _0 0’B ! Pt
QAOF 7 0AOf (A+ (p—1v)r’
0’B 1 1P 0’B fP
- — -1 +1 )
A2 P (A+ (p—1)v)ptl’ 0AJV (p=1)p (A+ (p—1)v)ptl
The fourth row is
0’B 0’B p—1
=0, — -1t :
OVOF ovVof (A4 (p—1)v)P
B 1 f? B 2 pt1 fP
gvoa ~ wo Y (A+(p— Doyt vz ~ =D (A+ (p— )P+t
So the Hessian matrix of B at a point (F, f, A, v) is
0 0 0

_optl [P
P G-t
e
A

0

0

s = |,
p—1

0 (= VP otop

_pp+lwfl)v}z+l
—(p— 1)pp+1W

+1_ frt
pr (AT

p—1
(0= 10" e

—(p - 1)PP+IW
P
—(p— 1)2pp+1m(,,fw
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Let us compute the eigenvalues:

0 = det(H(B) — Ay) =

p—2 p—1 p—1
e R +1<A+pr—1>v>p (b = VP Gy
_ 1 P~ 1 p 1 P
Aetl P ompemr P e — A 0 DY g
0 (p—1)A -

R N Cvptl
e [(p — 1) det ( - (Al Dor AP PR ) +
e =y —( = VP e

41 fr2 A 41 Jiak
det( s A+<pf1>v>p T P A+f [CEr=ynD )] _
1 P 1 P
i v P e A

» fr2 fP
g [AZ AL LA o T s R o7 gy e 1>v>p+1]A+
Iz B
a ><A+<p—1>v>p+”] N

d [A o [(A T (z{p_i)v)z“ e 1>v>p+1H |

2p+2 (

p

So the eigenvalues of the Hessian matrix H(B) are 0 of algebraic multiplicity 3 and

p—2

A= [<A+<§: T o s

] of algebraic multiplicity 1. However, since f > 0,

v>0and A >0, then A > 0, so all the eigenvalues are lower than or equal to 0. This entails

that the Hessian matrix is negative semi-definite, so the function B is concave. 0

We are going to prove that the function

B(F, f,Av) = <p_1> F- p—1(A+(p—1)v)pt

satisfies 0 < B(F, f, A,v) < (p/(p— 1))"F for all (F, f,A,v) € D

Proof. The thesis follows from the definition of the domain of the function. Since p > 1, F' > 0,
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>0,A>0,v>A4and f’ < FoP~! we get
f g

P
p PP fr
B(F, f, A, = |—| F— >
A v) (p—1> p—1(A+(p— 1)t
( P )p P fr
p—1 p—1(0+(p— 1ot
P P -1
P\ p P FoP S
p—1 p—1) wp71 =
» \?
G-
p—1
and
P P
p PP fr p
_ _ < .
B S A v) (p— 1) AT - = <p— 1> "
O
We are going to prove that, by substitution of
h(A,v) =— ! for 0 < A <, (2.107)

(A v)p=t

in the equations
4" h(A,v) <0, for0<A<w,
On\?  [on\? 9%h  0%h
/ = —) | -p-1|55+25|h<
g p[(am) +(8v> ] (p ){81424_81)2}]1_0’

9%h 82h 9%h \*
6'p@__n[8A20ﬂh__<8Aav>}4+

o[ Oh Oh 8h On\?0%h [ Oh\?0%h
Pl ([ Z) =+ (= ] 25| <0,
A v DAY ) 042 " \0A) o2

we get the conditions

4. (A, 0) >0, for0<A<w,

5. Ay <0,

. %\ 0%

. - ——<0.
0 <8A8v> 9A2 gp2 =V

Proof. Equation 4 trivially follows from substition of (2.107)) in 4”.

For the other equations we compute the following derivatives:
oY Ohp-—1

oh_ovp-1 oy
A OA yP ' v v yYr
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d?h Y p—1 oYpp—1)

OAGv — OAQv P 0A dv  yprtl

*h  Pyp—1 [0\ plp—1)
0AZ QA2 o 0A 1l 7

*h  Pyp-1 (W)%(p—l)_

O v P v Yptl

Now we compute the following products of derivatives:

ov +

o\ (9N p(p — 1)?
(1) (50) "

OhOh Ph 9 9 (p— 1)} (%)2(81/z>2p(p—1)3
v

OA v DAdv ¢ ov ) 3t

Phoh? P o*y (p—1)* 9% (00 plp—1)* Y (9v\ plp— 1)
Ov2 0A2  Ov? Ov? 2P 0A2 2l ov? \ 0A 2+l

OA Ov OAdv ~ OA v DAY

Oh\>*h  (O\* 0% (p—1)>  [Op\* (9% plp —1)°
(5) o= (55) o (5) (a)
On\? *h _ (0p\? 0% (p—1)*  (09\* (9’ plp — 1)°
(5) = (o) - (3) (50)

Pho*h PP PP (p—1)° Py [\ plp—1)°
DA2 v QA2 Jv? 2P 942 \ v h2p+l

<81/1>2821bp(p— )2+<1/1>2<8¢>2p2(p—1)2
0A) ov2 il 9A) \ov) ~—ywtz

o*h 2_(3% )2(1)—1) o 0% 0¥ g p(p— 1)
(8A6v> - \94dv Y2 9A0v A Qv il

o0 \* (90\* P*(p —1)?
(31) () s
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We substitute the previous computations in equation 5’ and we get

0>p

@2_’_ @2 _( _1) @_’_@ h_
DA v P Az "oz | T

<5¢>2P(P—1)2+ <8w>2w—(p—1){821ﬁp—1 _ <W>2p(p—1)

94) g av) o 047 gp \9A) ger1 T
Pop—1  (00\?pp-1)] -1
o2 gp (81}) el ]w(A, v)P—1
N plp—1)* (00N pp -1 U (-1 (00\ plp—1?°
0A 1)2p ov 2P A2 21 OA 2P
Py (p—172 ((’M)%(p— %
Hv? ¢2p—1 Ov zﬁ2p -
(p—1)?2[0% 8%
21 L}A2 + 81}2] :

2
However, we have (15}”21,1,)1 > 0, so we proved that equation 5 is equivalent to
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Now we substitute the previous computations in equation 6 and we get
O?h 9*h h \?
> —_ iy
02plp—1) [&42 02" (8A8v) h] *
L[p0h O P [(On\} O | (on*on]]
" 20a0v0400 ~ |\a0) o2 " \aa) 22| =

2 0* (p—1)% 9%y <8w)2 plp—1)*
3

—rlp—1) [&42 av2 -1 9A2 \ o

() e () () 2t
p<p—1>[( 8%) (p—1? , &% 9y dplp—1)*

— 2
940v) o1 “0AdvoAdv o

N2 (9N pP(p —1)?

(m) (m) Ty F
L, 00 0p p2(p—1)32< w) ( ¢> PP(p—1)°
OA Ov OAOv 3P 0A v 3p+1

00N U= 1P, (00N (96N P — 1)
0A ) 02 P3P 9A En Eas!

<6w> oM p(p— 1) _

ov ) 9A2 ¢3P
plp—1)° | (0% " Py
w1 (\odov) ~ oAz a2 |
p(p—1)3

However, we have > 0, so we proved that equation 6 is equivalent to

wSp—l

; (a?w) ) % _

oA0v) oAz gz =

finishing the proof.
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Chapter 3

Potential theory on Ahlfors-regular

spaces

Introduction

In this chapter we prove formulas of quasi-additivity for the capacity associated to kernels
of radial type in the setting of the boundary of a tree structure and in the setting of com-
pact Ahlfors-regular spaces. We also define a notion of harmonic extension, to one additional
variable, of a function defined over a compact Ahlfors-regular space, and we prove a result of

tangential convergence of the harmonic extension to the values at the boundary.

This chapter is structured as follows.
In section 3.1 we define the capacity associated to a radial kernel on the boundary of a tree

and we prove a quasi-additivity formula for the capacity.

In section 3.2 we define the capacity associated to the Riesz kernel on an Ahlfors-regular

space and we prove a quasi-additivity formula for the capacity.

In section 3.3 we define the harmonic extension of a function defined over an Ahlfors-regular

space and we enunciate and prove several properties of the Harmonic extension.

In section 3.4 we prove several technical lemmas and propositions and then we prove the two
main results in this chapter: the non tangential convergence at the boundary of the harmonic
extension of a Riesz potential up to an exceptional set of zero capacity and the tangential con-

vergence at the boundary of the harmonic extension of a Riesz potential up to an exceptional

91
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set of null measure.

Notations

Let a,b € R. We write a < b (respectively a 2 b) if and only if there exists a constant
0 < C < +o0o such that a < C'-b (respectively a > C'-b). Here the constant C' does not depend
on any of the parameters of the problem.
We write a S, p,...pn) 0 (respectively a 2, po...p,) b) if and only if there exists a constant
C = C(p1,p2,---,0n), 0 < C < 400, such that a < C - b (respectively a > C - b). Here the
constant C' depends on the paramenters pi,p2, ..., Pn-
We write a = b if and only if both a < b and a 2 b hold.
We write a =y, p,,...pn) b if and only if both a S . pn) p1.p2spn) 0 hOl.
Let (X,d) be a metric space. Let z € X, r > 0. We denote by By(z,r) the metric ball of

radius r and center z, i.e.

band a 2

Bi(z,r) :={y e X | d(z,y) <r}. (3.1)

3.1 Quasi-additivity on tree boundaries

In this section we prove a quasi-additivity formula for capacities associated to radial kernels

in the setting of the tree boundaries.

3.1.1 Setting of the problem

Let T be a tree. Suppose every node in T has at least 2 children. In this section X := 0T

will denote the boundary of T. X is a metric space, where the metric on X is given by
pla,y) = 5 H@hve)

where 0 > 1 is a fixed constant.
Let m be a o-finite Borel measure on X.
Let D denote the set
D:={0}u{d ™| neN}L (3.2)

Let K : D — RT be a function. Suppose K is lower semi-continuos in 0, i.e.

liminf K (67 ") > K(0). (3.3)

n—-+o0o
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We define, with a small abuse of notation, the kernel K(z,y) := K(p(z,y)) for z,y € X. It

follows that the function

r— K(z,90)

is lower semi-continuous, for every choice of yy € X.

Suppose the kernel K satisfies the following conditions:

sup/ K(z,y)dm(y) < +oo, sup/ K(x,y)dm(z) < +o0. (3.4)
zeX JX yeX JX
Let us denote
K1 = max{ Sup/ K(z,y)dm(y), sup/ K(x,y)dm(x)} < +o00. (3.5)
rzeX JX yeX JX

Definition 3.1.1. Let 1 < p < +00. The capacity of a compact set £ C X is

Ckp(FE) := inf {||f||’£p(X’m) ‘ Kxf(x)>1 Vaxe E}, (3.6)

where

K+ f(z) = /X K(2.y)f(y)dm(y).

Definition 3.1.2. Let x € X, r > 0. We define, when it exists, the radius

np(x,r) := inf {5_"+§ eR

n €N, m(B,(z,0 ")) > Cxp(B,(x, r))}. (3.7)

We also define
n,(x, 1) = max{r, n,(z,7)}. (3.8)
It follows that B,(x,r) C By(z,n,(z,7)).

Observation 3.1.1. The radius n,(x,r) does not exist when X is compact for x € X and r > 0
such that

Crp(By(z,7)) > m(X). (3.9)

However, all the propositions and theorems using 7, can be proved by separating the cases
where 7, is not defined, using other properties, like the compactness of X. This follows from
the properties of the Riesz capacity of a ball in an Ahlfors-regular space (see Proposition |3.2.2]).

We will always assume that the radius n, exists in the following proofs.

We enunciate Young’s inequality for the setting of tree boundaries.
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Lemma 3.1.1 (Young’s inequality for tree boundaries). Let K = K(x,y) be a kernel on a

metric measure space (X, p,m), and 1 < p < oo. Then,

I Sl = | [ ([ K(x,wf(y)dm(y))pdm(x)}; < K1 ooy

where

!K||12=max{sup/ K (z,y)dm(y SUp/ K (2, y)dm( )}
zeX yeX

Proof. We prove this result by interpolation. For p = oo and f > 0, we have

/ K(z,y)f(y)dm(y) < / K (2, y)dm(y) | £l e e <
X X
<§g§/ K(z,y)dm(y >||f”L°°(Xm)

1K =l < (sup / K(a:,y>dm<y>) TP
zeX JX

For p =1 we have

/X/XK(x,y)f(y)dm(y)dm(x) = /XK(a:,y)dm(a:)/ fy)dm(y) <

IN

hence

< (sup/nydm >/f Ydm/(y
yeX
hence
1K+ fllprx,m) < (Sup /K(m,y)dm(m)) £l 22 (xm)-
yeX
The result follows from Riesz-Thorin interpolation theorem. O

3.1.2 Quasi additivity for tree boundaries

We are now going to prove the first result in this chapter.

Theorem 3.1.2 (Quasi-additivity for tree boundaries). Let J be a countable (or finite) set of
indices. Let {B,(x;,75)}jcs be a family of metric balls in X such that n,(xj,7;) exists for all
j e J. Suppose E C X is a compact subset of U]eJ o(xj,75). Suppose { By(xj,my(x5,75))}jes
1s disjoint.
Then

Crp(E) <Y Crp(EN By(xj,rj)) < A-Cip(E), (3.10)

JjeJ

where A = A(X, K,p), 1 < A< 400, is a constant depending only on X, K and p.
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For the proof of Theorem we recall the dual definition of capacity (see [1]).

Theorem 3.1.3 (Dual definition of capacity). Let % + % = 1. Then

Crp(E) =sup {HM‘P p is concentrated on E; || K x pi|lpa(x,m) < 1}, (3.11)

where

il := /X du(a); K *uly) = /X K (z,y)du(z)

Proof of Theorem [3.1.3. 1f Ck ,(E) = 0 the proof is trivial by the monotonicity of the capacity.
Suppose Cxp(E) > 0. Let E; := EN By(x;,7;). Without loss of generality, we may assume
Ckp(Ej) > 0 for all j. Indeed, let Jy := {j € J | Ckp(E;) > 0}. It follows that Ck ,(E;) =0
for all j € J\Jo, so

> Crp(ENBy(xj,r) = Y Crp(EN By(wj,ry)),
jeJ j€Jdo

hence we will assume Ck ,(E;) > 0 for all j € J.

To prove the thesis (3.10]) it is sufficient to prove that

> Ckp(ENBy(z),15) < A- Ck p(E). (3.12)
JjeJ
For simplicity we will assume J C N. Let E; := E N By(xj,7;) for j € J, let 0 < € <
Zj Ckp(E;) be arbitrary. Let % + % = 1. By the dual definition of capacity for every j € J

there exists a measure p; such that

f4; is concentrated on Ej,
|1 K * pjll a(x,my = 1, (3.13)
Crp(Ej) =277 < ||u||P < Crp(E)).
Let pi5 := Cip(Bj) o ptj and p* = 3, i3
We get
1517 = Cp(Ey) I - (3.14)

From (3.13]) we get

CK,p(Ej)H

P o P P
" — Cp(Ej)1 - 277 < Cip(By) o | P < Crp(B) s (3.15)

From (3.14)) and (3.15)) we get

2
q

P . . p
Crp(Ej)' 0 = Cxp(Ej)s - 279 < ||ph||P < Crp(Ey)' s (3.16)
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If 277¢ > O ,(E;) then, from (3.16)), we get
Crp(Ej) =277 <0 < ||| < Chp(Ey), (3.17)

so we proved that
Crep(Ey) —279¢ < 3] < Crp(E). (3.18)

We are going to prove that (3.18)) also holds when 277¢ < Ck ,(F;). To prove it we claim the

following;:

1
Crp(Ej) —277e < [CK,Z,(E]-)HZ — Crp(By)a-277¢| " (3.19)
Indeed, let j € J, suppose 27 7¢ < Ck »(E;). From (3.16) we get
1+2 2 o-j|” *
Crp(Ej) "1 = Crp(Ej)e - 277€| < |ljll < Crp(E). (3.20)

Let
Yj 1[0, Crp(Ej)] — R,

() = [ck,p<Ej>1+ ~ Crp(By) x] "

The function ); is concave, and
$j(0) = Crp(Ej);  ¥i(Crp(Ej)) = 0.
Consider the following function:
¢j + [0, Ck p(Ej)] — R,
¢j(x) = Ck p(Ej) — .
The function 1), is linear, and
$;i(0) = Crp(Ej);  ¢i(Crp(Ej)) = 0.

By concavity we get ¢;(z) < () for all x € [0, Ck ,(Ej)].
We observe that, by hypothesis, 0 < 277¢ < Cf ,(E;), so, using (3.20), we get

. . . P £ 5 p *
Crp(Ej)—277€ = ¢;(277€) < 0 (277¢) = |Cr p(Bj) T 1=Chep(E;)1-277¢| " < 131l < Crp(Ej),

proving the claim (3.19)), and thus proving that (3.18)) holds for any choice of j € J and for

any e.
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Now we are going to prove that

1K 11 s emy < C - S Cre ), (3.21)
jeJ

where C'= C(X, K, p) is a constant depending only on X, K and p.
Let j € J. We define the measure

Ay (y) = m Bp(xyf%”(xj’Tj)))xBﬂ(xj,n;(xj,rj»(y)dm(y); p= j;u;- (3:22)
By construction ||u}|| = [|u}][, so, using , we get
11511 < Ok p(E;)- (3.23)
By the definition of the function 7, we have
m(By (), 1p(25,75))) 2 Crep(By(25:75)) = Cr p(Bp(j,75) N E) = Ck p(Ej), (3.24)

so, using (3.22) and (3.24)), we get

5]
du- = J o am <
M (B (g, my g ry))) NP =
CKP(Ej)
_CK:p(Ej)XBp(xJ’nP(xﬂvrj)) m =

<XB,(xj.n;(x; 7)) dm.

By construction dy’ has a density with respect to dm, so we may write du’ = f - dm, where

f <D XByayng ) (3.25)
JjEJ
and we get
1= 111 L1 m)- (3.26)

By hypothesis the sets B,(xz;,n,(x;,7;)) are disjoint, so we have

F<1. (3.27)
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Using (3.4), (3.23), (3.26), (3.27) and Lemma we get

I s = [ ] [ K(p(m,y»dw(y)] dm(z) =

/[/K Pz, y))f (y)dm(y )} dm(z) <

AU o oy < I N oy I 2 (2 <
IS - 1770 Ll omy = BT = KN Y Il <

1K1Y Crp(Ej)
j

So we proved the following estimate for the g-norm of the potential of the measure y':

1 5 110y S KN Crep(E), (3.28)
where ||K|{ is a constant depending only on X, K and p, and, by (3.4), [|[K||{ < +oc.

We are now going to prove an estimate for K * u*(z), for z € X.
Let j € J. Let # € X be a point such that & ¢ B,(z;,n,(zj,75)). The measure y is

concentrated on the set B,(z;,n;(z;,7;)), so we get

K+ (@ / K (&, )it (y) = / K(%,y)di(y) =
Bp(x]'m;(xjv'rj))

min K(z, "(By(zi,ni(xi, 7)) =
(yeBp(:vj,n;(xj,r]-)) ( y>>“ﬂ( o,y (25,75)))
m(Bp (@5, 1p(25,75))) _

min K :Z',y) s =
(yEBP(Ijmz(Ijﬂ)) @) )| ]Hm(Bp(xj’nf;(xbrj)))

min K j7y> 1.
(yGBp(ivj,n;(wj,r]-)) ( ) )i JH

Moreover, yi is concentrated on Ej C By(xj,n,(x4,7;)), so we get

K@) = [ K@) - [ K (&, y)du; (y) <
By (aj,m55(z4,75))

(yeBp(maX K(i,y)>ﬂ§(Bp(a:j,n;(a;j,rj))) -

x5 (T5,75))

(L KGw) Il

yGBp(IjW;(ffj:Tj))
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So we proved that

K % pl (7 2< min Kf,y)u’f; K« pi(x §< max Ki‘,y)u’f_
0= (L, i K )l K@) < () meK () )]
(3.29)

However, K(Z,y) = K(p(Z,y)), and T € B,(x;,n,(x;,75)), so, by definition of p, if follows that
p(%,y1) = p(Z,y2) for all y1,y2 € By(wj,m,(w5,75))- (3.30)

So the function
y = p(Z,y)

is constant when y € B,(z;,n;,(7;,7;)), which proves that

min K(z,y) = max K(z,y). 3.31
YEBp (z5,m; (25,75)) ) yEBp(xj,m;(x5,75)) ) (3:31)

So, using (3.29)) and (3.31)) , we get

Ko pj(T) < K * ,u;(fc) for & & By(xj,m(x5,75))- (3.32)

Ifz¢g Uj By(xj,m,(x5,75)) then, by applying 1j for all j € J, we get
K * p*(z) < K x i/ (%). (3.33)

If & € By(xj,, 1y (750,7j,)) for some jo € J, then, by the disjointness of {B,(z;, 1, (z;,7;))}jes,
we have
T ¢ U Bﬂ(xjvn;(xjvrj))a
J#jo
so we get
Ko () =K s g5, (8) + Y Ko (&) <
J#Jjo
Koxpy(5) + 3 K gl (3) <
J#Jjo
K oxply (8) + 30K x4 (3) =
J

Ko pf (3) + K * /().
So we proved that, if & € By(zj,, 15 (j,,7j,)) for some jo € J, then

K p* (&) < K * i} (&) + K * i/ (). (3.34)
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Now we are going to prove that

1K % [y < C - D Crn(E)), (3.35)

where C'= C'(X, K, p) is a constant depending only on X, K and p.
We use (3.33), (3.34) and the disjointness of the sets { B,(x;,n,(x;,7;))}; to estimate

K % 1 T x m) (K p* () dm(z) +

/X\ U; Bo(zj.my(x5,75))

| (K » (@) dm(z) <
U; Bo(zj.my(x5,r5))

/ (K » 4 () dm(x) +
X\U; Bp(zj.my(xj,r5))

K u*(2))dm(zx
Z /B o @) () <
I+ 3 / (K 5 (@) + K () dm(z).

Bp(xj,n5(x5,75))

We are going to apply Jensen’s inequality for finite sums to the last inequality. Let n > 2 be a

natural number, let ¢ > 1, let a; > 0 for 1 < i < n. By Jensen’s inequality we have
n q n
(Za> <n® ') af. (3.36)
i=1 i=1

For each fixed j € J we apply (3.36)) to the last estimate for the g-norm of K % u*, where n = 2,
= K * pi(r) and ag = K * i/(), and we get

1K # 1 % my < I 5 1y 27 IZ / (K # 13 (2)7 + K 4 () ) dm(a).

Bp(z; My (z5,75))
(3.37)

So we get the estimate

HK*M*H%q(Xm < HK*/JHLq X,m) + 297 1ZHK*N3HU1 X,m) + 297 1”K*N‘|Lq X,m) (3.38)
J

We observe that, by definition of u*, we have

1
K 151y = I (Crep () ) | T x ) = Crep(EDIE * 151 T (x (3.39)
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but | K # 1| o my = 1 by (B3, 50 we get

1 1151 gy = Crcp(B)- (3.40)

So we use (3.28)) and (3.40|) and the estimate (3.38) to get

1K 1 g < IENTD - Crcp(By) + 29 12% + 2K Crp(Ey). (3.41)
J J

So we proved that

1 % 17 sy < {(2“ LK +2q1] S CrenlE)). (3.42)
J

where C' = [(2971 + 1)||K||Y 4+ 2971] < +00 is a constant depending only on X, K and p.

Now we are going to finish the proof by defining a proper normalized measure.
We define the measure

1
q

= [C.ZCK,p(Ej)} e (3.43)

From (3.42)) we get

. 7
| K * ™| La(x,m) < |C - ZCK,p(Ej) : (3.44)
J

By construction i is concentrated on E, and, using (3.44)), we get

_1 "
VK * illagem) :HK [[O-ZOK,p<Ej>] P ]
La(X,m)

J

_1 .
[C'ZCK,p(EJ)] K 1] paxm) <
J
1
(€3 Crp(E)] H[C ZCK,,, 6 =
J
So we proved that the measure [i is a test measure for the dual definition of capacity, so we get

Cre(B) = [l (3.45)
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By computation, using (3.18]), we get
_1

o [ 1 g *
il =|C > Crp(ED| Il =

C- S Crep(B)| Y il >
- 7 - 7

Y O8] " Y (Crp(By) ~2790) >

J
_ -1
q
C-Y Crp(E)) [ZCK,p(Ej) - e]
- J - J
So, using the last inequality and (3.45)), we get

Caea(B) 2075 | 32 Coeyl )+ [ D CatEn ]|

for any arbitrary € > 0. We let ¢ — 0 and, since 1 — % = %, we get
ZCKP ) < C1C p(E). (3.46)
So, since % = qfll, we proved that
1
q—1
Z Crcp(E [ @ DI+ 27" Cxp(E), (3.47)

1
where the constant A = [(2471 + 1)||K||? 4 297!]aT < 400 is a constant depending only on X,
K and p, ending the proof. ]

Remark 3.1.1. The previous theorem also holds (up to modifying the constant A) for a generic
non-radial kernel K = K(x,y) > 0 such that:

e The function z — K(x,yp) is lower semi-continuous for any yo € X.
e The function y — K (z0,y) is measurable for any zy € X.

e The kernel is globally integrable, i.e.

HKHl::maX{sup/nydm sup/Kacydm )}<+oo.
yeX



3.1. QUASI-ADDITIVITY ON TREE BOUNDARIES 103

e There exists a constant C' = C'(X, K, p) such that at least one of the following conditions
holds:

K+ pf(z) < C- K = (uF) (@),

for all x € B,(z;,m,(xj,75)), for all j € J, where ,uJE is the equilibrium measure for

!/
the set Ej; := E'N By(xj,n,(z;,7;)), and <MJE> is the measure defined by

uf|
m(By(zj,ny(x5,7;

d (M]E)/ (y) = )))XBp(xj,n;(a:j,rj)) (y)dm(y)

sup K(z,y) < C- inf K(z,y),

yEBp(zj,mp(25,75)) YyEBp(z;,my(25,75))
for all & B,(x;,n,(xj,75)), for any j € J.
We observe that the condition 2 entails the condition 1.

The following corollary allows to reformulate the previous theorem for different values of
the constant A.

Corollary 3.1.4. Let J be a countable (or finite) set of indices, and o > 0 a real number.
Consider the kernels K and oK and the associated capacities Cp, and Cog . Denote by

Nak p(xj,7j) the radius

Nak p(x,r) := inf {(5—’”% eR

n €N, m(B,(x,5 ")) > caK,p(Bp(x,r»}, (3.48)

and define
n;K,p(x7 T) = max{r, naK,p(xv T)} (349)

Let {B,(z;,7j)}jcs be a family of metric balls in X such that noi p(xj,7;) exists for all j € J.
Suppose E C X is a compact subset of UjeJ By(xj,rj). Suppose {Bp(xj,n;Kp(acj,rj))}jEJ 18
disjoint.

Then

Crp(E) < ZCK,p<E N By(xj,15)) < AX, K, a,p) - Crp(E), (3.50)
jedJ

here A(X, K, a,p) = [(2971 + 1)a?|| K ||{ + 2q*1]q%1 is a constant depending on X, K, a and p.
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3.2 Ahlfors-regular spaces

In this section we prove a quasi-additivity formula for the Riesz capacity in the setting of

the Ahlfors-regular spaces.

3.2.1 Setting of the problem

Definition 3.2.1. Let (X, d, m) be a compact metric measure space. Let Q > 0. We say that
X is a Q-regular Ahlfors space if there exist constants 0 < C7 < C5 such that

C1r@ < m(B(x, 7)) < Cor® (3.51)

for all z € X, for all 0 < r < diam(X).
We will say that X is an Ahlfors-regular space without mentioning the dimension ) when that

paremeter is not relevant to the discussion.

Our work focuses on Q-regular Ahlfors spaces such that the measure m is the Hausdorft
measure of dimensional parameter (). Hausdorff measures are known to be regular measures,
so we will assume regularity of the measure m in the following part of this work.

The following theorem and definitions allow us construct a tree structure starting from an

Ahlfors-regular space (see [§] for more details).

Theorem 3.2.1 (Christ decomposition). Let (X,d,m) be a compact Q-regular Ahlfors space.
There exists a collection of qubes {Qg C X | «a€ Iy, ke N}, where Iy, is a set of indices, and
there exist constants 0 < § < 1, C3 > 0 and Cy > 0 such that:

i) m (X\ User, Qg) =0 for all k € N.
ii) If 1 > k then Vo € Iy, VB € I} we have either Qlﬂ CQF or Q/ZB nQEkE =1.
iit) For alll € N, for all p € I} and for all k < I there exists a unique o € Iy, such that
Q4 C Qk.
w) diam(QF) < Cy - 5*.

v) For all k € N, for all o € Iy, there exist 25X € QF such that B(zE,C5 - 6%) C QF.

Moreover, we may assume that Iy = {1}, and Q) = X .

Definition 3.2.2. Let (X,d,m) be an Ahlfors Q-regular space as above. Consider a Christ
decomposition
{QF C X |ael, keN}, (3.52)
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like the one in Theorem such that Iy = {1}, and QY = X.
We define a tree structure T'= (V(T'), E(T)), where the set of the vertices of T is

V(T):={Q* C X |ac I} ke N}, (3.53)

and we define the set of edges E(T) in the following way: for all Q¥ € V(T) and for all
Q% € V(T) then (QF, Qlﬁ) € E(T) if and only if k =1 — 1 and « is the unique index in I} such
that Qfg C Qﬁ defined by property iii) in Theorem

The structure T = (V(T), E(T)) is a tree structure such that o := Q) = X is the root of the
tree T'.

Definition 3.2.3. (X,d, m) be a Q-regular Ahlfors space, and let T'= (V(T'), E(T)) be the
tree previously defined. We define the boundary 9T of the tree T as the set of half infinite

geodesics starting at the origin o, i.e.

o7 = { (@2 @by Q1 0 @A) | @ = o0 (@4, QK € BT Vi e v
(3.54)
We define the map
A:0T — X (3.55)
A((0,Q4,,Qays-- ) = [ (@2,)-
neN
The map A identifies X and 97T (see [§] for more details).
Let z = (0,Q4,,Q2%,,...) € 0T and y = (O’Q}h’Q%’z"”) € 0T. We define z Ay € V(T)U 0T
in the following way: if z = y then z Ay := z = y, if * # y then x Ay = QY, where
j=max{k e N| oy =0 foralll <k}, and v = oy = fy.
Let us define the distance
p:0T x0T — R (3.56)

p(l‘, y) — 5count(a:/\y,o)’

where 0 < § < 1 is the constant defined in Theorem and count(x A y,0) is the distance
that counts how many edges of the geodesic that connects z A y and o are in between o and
xAy. In particular, if tAy = QF € V(T) then count(zAy,0) = k, otherwise zAy = x =y € OT
and count(z A y,0) = +oo and p(x,y) = 0. We have diam(97T) = 1 < +oo.

Let ’H? denote the @Q-dimensional Hausdorff measure on 0T with respect to the distance
p. The space 9T endowed with the distance p and the measure ’H,C}? is a compact @)-regular
Ahlfors space, so there exist constants 0 < K7 < Ky such that

K -9 < ’Hf? (By(x,7)) < Ky - 19 (3.57)
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for all x € 9T, for all 0 < r < diam,(97T). Here (B,(z,r)) denotes the metric ball of center x
and radius 7 in 97 with respect to the metric p, and diam, denotes the diameter with respect

to the metric p.

3.2.2 Riesz potential

In this subsection we define the Riesz capacity in our setting and we enunciate some prop-

erties we will use later in this work.
Definition 3.2.4 (Riesz potential on X). Let (X, d, m) be a compact Q-regular Ahlfors space.
Let 1 < p < +00 and % + 1% =1. Let 1% < s < 1. We define the Riesz Kernel

Kys: XxX—R (3.58)

O e

Let £ C X be a compact set. We define the L? capacity of E associated to the kernel Kx :
Crxo(B) i= i {If 1y | £ € LP(X,m), Gf(w) 2 1V € B}, (3.59)

where G f denotes the potential of f, and it is defined by
Gfa) = [ Kala,n)f)dm(y). (3.60)

Definition 3.2.5 (Riesz potential on 0T"). Let (X, d, m) be a compact Q-regular Ahlfors space.
Let 0T be the boundary of the tree T' associated to X. Let 9T be endowed with the distance
p defined in and with the Hausdorff measure Hg. Let 1 < p < +o0 and % + 1% = 1. Let
ﬁ < s < 1. We define the Riesz Kernel

Kor,s : OT x 0T — R (3.61)
1

p(z,y)@s
Let E C 0T be a compact set. We define the L? capacity of E associated to the kernel Ky g:

(z,y) —

CKaT,sJD(E) ;= inf {HfH]ip(aTW) ‘ feLP(T,p), If(z) >1Vr e E} ) (3.62)

where I f denotes the potential of f, and it is defined by
1f@):= | Kors(e,p)f a7 (). (3.63)

The following estimate for the capacity of a ball in an Ahlfors-regular space is a known

result from the general theory of potential on Ahlfors-regular spaces (see [§]).
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Proposition 3.2.2 (Estimate for the capacity of a ball in an Ahlfors-regular space). Let
(X,d,m) be a Q-regular Ahlfors space, let p > 1, % + z% =1, let 1% < s < 1. Then there exist
constants 0 < C1; < C9, 0 < K1 < Ko, r9 > 0 which depend only on X, Q, p and s such that
for all x € X, for all r < rq the following formulas hold:

o case}%<s<1:

~ s— L ~ s— L

Cl . TQP( p/> < CKX,S,p(Bd(xﬂ")) < C(Cy- er( P/), (364)

1
® case S = .
p
- 1 ~ 1
.t <C Bylz,7) < Ko - — . 3.65
1 log (%) — KX,szp( d(x T)) — 2 ]og (%) ( )

The following theorem is a known result from the theory of capacity on trees and Ahlfors-
regular spaces (see [§]), and it will be used in the proof of the second main result of this

work.

Theorem 3.2.3 (Comparing the capacities on X and 97T'). Let (X,d, m) be a Q-reqular Ahlfors
space, let (0T, p,?—[?) be the Q-reqular Ahlfors boundary of the associated tree T'. Then there
exist constants Ay, Ay such that 0 < A1 < As, and such that for every closed set F C 0T and
for every closed set G C X we have

1.
Al ’ CK@T,Svp(F) S CKX,syp(A(F)) S A2 ’ CK@T,&P(F)'

Ay Cry p(G) < Cryp p(AHG)) < Az - Ok, p(G).

3.2.3 Quasi-additivity on compact Ahlfors-regular spaces

The following theorem is the second result in this chapter, and it will be used later in the

proof of the main results in this chapter.

Theorem 3.2.4 (Quasi-additivity for Riesz capacity on compact Ahlfors-regular spaces). Let

(X,d,m) be a compact Q-reqular Ahlfors space. Let 1 < p < +oo and % + 1% = 1. Let

]% <s < 1. For every x € X and r > 0 let us define (when it exists) the radius
nxp(x,r) := inf {R > 0| m(Bg(z,R)) > Ckx.,p(Ba(w, r))} , (3.66)

and let us define
n;(,p('r7 T) = max{r, 77X,p(37> T)} (367)
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Then there exists a constant Q = Q(X,p,s) > 1 such that for all M > 1 there exists a constant
1 < A < 400 such that, for any countable family {Bgy(xy, i)} ker of balls in X such that
the family {Bg(zg, 2 - U},p(ka,M 1)) Yker is disjoint, for any compact set E C X such that
E =, Ex and Ey, C By(xg, 1) VE, we have

> Cryop(Er) < A-Crey, p(E). (3.68)
keF

The constant A depend only on the choice of the space X and the of the parameters p, s and
M.

Proof. We begin the proof with the case M > 1. Let M > 1 be arbitrary. We can write M in
the following way
M=14¢>1, wheree>D0. (3.69)

Let {Ba(zk, k) }rer be a family of balls in X. Let E = [, Ex be a compact set such that
Ej, is a compact subset of By(xy, 7)) for all k € F. Consider a Christ decomposition

{Q*Cc X |ael, keN} (3.70)

like the one defined in Theorem [3.2.1} Counsider le associated tree structure 7" and the boundary
of the tree (9T, p, ’H?) defined in definition .
Without loss of generality we may assume 1, < C5 for all k € F. Consider a fixed k € F. We
define

§(k) :=max{j € N| C3-& >r}, (3.71)

where 0 < 6 < 1 and C3 > 0 are the constants defined in Theorem [3.2.1

By the statement v) in Theorem we have that for every k € F for every a € I, there
exists zg[(k) € Qg{(k) such that B(23",C3 - 5j(k)) - Qg{(k).

Moreover, by the statement ii) in Theorem we have

Qg}f) N Q{jj) =0 forall a;,a9 € Iy such that a1 # as. (3.72)
Let us consider the family G(k) C I} of indices such that the family of qubes
{@iP acgm} (3.73)
is the minimal covering of qubes at the level j(k) of the set F, i.e.

B | @ and BnQ® £0vaedk). (3.74)
aeg (k)
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Consider an arbitrary a € G(k). Let w(k) € sz(k) be arbitrary. By (3.74) there exists y(k) €

E. N Qﬁt(k). By construction Ey C By(xg, k), so d(xg,y(k)) < rr. Moreover, by statement iv)
in Theorem |3.2.1| we have diam(Qﬂ(k)) < Cy - 67%) | By definition [3.71| we have 6/%) < §=1.py,

SO we get

diam(QXFy < ¢y - 67 1y (3.75)
So, by triangle inequality, we get
Q%) C By(wp,ri(1+Cy - 671)). (3.76)

We are now going to repeat the previous steps, but instead of qubes at the level j(k) we will
use qubes at the level j(k) + n, where n € N will be fixed later.
We define the family #H(k,n) C I+, such that

E.c |J @M and  EinQIMT #£0va e Hk,n). (3.77)
a€H(k,n)

For all o € H(k,n) we have that there exists AR Qg}an such that
B(zW)+n g . g7k Fmy C Qitk)+n, (3.78)
and such that
QIR N QI = ¢ for all ar, a2 € Iy, such that g # ao. (3.79)

We still have §7) < =1 ... and we also have diam(Qﬁ(an) < Cy - 6 g0 we get

diam(QXFT™y < ¢y - 677y (3.80)
By triangle inequality we get
QA" C B(a, ri(1+ Cy - 6"71)). (3.81)
So, by taking
n:=inf{n € N|Cy- 6"t < ¢} (3.82)
and using (3.69), we have
QX C By(ay, M - rp). (3.83)

We observe that the definition (3.82]) does not depend on the choice of k € F.
Equation (3.83]) holds for all k € F and for all « € H(k,n), and we get

Bd($k77dk) - U Q]a(k)—i_n - Bd(ZEk, M - Tk) Vk € F. (3.84)
acH(k,n)
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We observe that there exists N € N such that
|H(k,n)| <N VkeF. (3.85)

Indeed, for any k € F, using (3.78) and (3.79)), we get that the set

Sk):==|J Ba(zW*" Cy- 570 (3.86)
ac€H(k,n)

is a disjoint intersection of metric balls, and

Skyc |J Q" C Balwr, M -mp). (3.87)
ac€H(k,n)

However, the space X is a Q-regular Ahlfors space, so, using (3.51)) and (3.71]), we get

m(Sk) = > m(By(MF, C5-67H) . 5m)) > (3.88)
acH(k,n)

> m(Ba(Br k) >
acH(k,n)

SO =
a€H(k,n)

|H(k,n)|-Cy - r,? "9,
On the other hand, applying the estimate to By(xg, M - 1)) gives us
m(Ba(xp, M -13,)) < Cy - MQ - 7. (3.89)
However, S(k) C By(zk, M - i), so m(S(k)) < m(Bg(xg, M - 1)) and we get
Co

Mk n)| < 5 - M@ .59 Vke F, (3.90)
1

proving the claim (3.85]).

Consider k € F and a € I. By definition we have
XDQF — A HQF) cor. (3.91)

Let S C X be a closed set. Let us define (with a slight abuse of notation)

AN QENS) = {x = (Q%, @b, Q% ---) € 0T | A() €eQknS, B = a}, (3.92)
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and we also define A~1(Q%) := A~1(Q% N X).
We have
HQENS) CATHQRENS), and AAHQENS)) =QkNS. (3.93)

Let k € F. Let us denote N (k) := |H(k,n)| < N. To simplify the notation let us denote the
family of indices H(k,n) by

H(E,n) = {01 (), aa(k), ..., oy ()} (3.94)
For every k € F, for every i = 1,2,..., N(k) we define, when they exist,
n*(k,i) e N and f(k,i) € =1y (3.95)

so that the qube Q ﬁ(k %) is the smallest qube such that Qg ](Ck)z Qi (118;;71 and such that

g (3 (R)) = Croro <ﬁ-1 (@) .

Statements ii) and iii) in Theorem [3.2.1| prove that Q B( k ) is uniquely determined.

The following picture shows the construction we made, where €2 > 1 is the constant mentioned

in the statement of this theorem, we will fix the value of Q2 later.

The blue sets are E;

The red balls are By(x,, M - r;)
The black bordered balls are

Ba(xk, - nx (%, M - 1))

The green qubes are Q{-l(k)—"

The purple qubes are QZ:;((I:)’)

We claim that there exists a universal constant €; > 0 such that for all £ € F, for all ¢ =
1,2,...,N(k) we have

diamy (QB ) <O Cripr ([\—1( s ”))é. (3.97)
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Indeed, by the Ahlfors Q-regularity of X and 0T we can prove that there exist universal
constants 0 < Q9 < Q3 such that

Qm (QR)) <HG (A (@) < 0s-m (QBi))- (3.98)

Moreover, using the definition (3.95) and using the Ahlfors Q-regular property (3.57)) we can

also prove that

s (4 (0287)) <78 (5 (F17) = K250 (5 (0))-

(3.99)
By combining (3.98]) and (3.99) we get
k K 1 KZ — - j(k)+n
(@) < 50 0 (0 (@) 0
However, by statements iv) and v) in Theorem we have that there exists a ball
By ( (lili))7rkl> such that
7 (ki) ~ 7 (ki Ca -
By (Zg(li,{))’rk:i) C Qg(li’i’)) and diamgy (Qn(k 1))> < érk,l (3.101)
By the Ahlfors Q-regularity condition (3.51]) we get
_ 1 7 (ki) ~ ] 1 ki) @
Tri < —1 - (Bd< : kz)) < — 'm<Q ; ) - (3.102)
: z B(k,i) 3 B(k,1)
¢ &
Finally, by combining (3.100]), (3.101f) and (3.102)), we get
1
(ki) Cy 1 Kp\@ R 1 (k)0 @
diamg (Qﬁl“ ) Cs (C'1QQ K1> O Ckoren (A (Qo‘i(k) )) ' (3.103)
By choosing
1
Cy 1 Ko\e
N=— === 0 3.104
e (0192 K1> ( )

we prove the claim (3.97). The constant €; is universal and does not depend on the choice of
ke Fandi=1,2,...,N(k).

Now we are going to define the value of the constant 2 defined in the hypotheses of this

theorem.
Let kK € F. We define
BZ = Bd(xk, 77;(7;0(-%]@7 M - T'k)) (3.105)
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By (3.83) we have Bd(ﬁk,ﬁ}p(ﬂ%’M ‘rE)) 2 Qé(ian for all i = 1,2,...,N(k). So, by the
definition (3.67) we get

m(B}) >Cry, p (Ba(wr, nx p(xe, M - 1)) > (3.106)

CKxop <Qﬁé’§,j”> Vi=1,2,...,N(k).

However, by construction, we have

AR (Q0m)) = @ (3.107)

and the set A1 (Qja (18:)”7’) C 9T is a closed set, so we can apply Theorem |3.2.3[to get

m(B}) > Ar- Creyrp (A1 (QI0)) Wi=1,2, N (). (3.108)

Since B; is a metric ball in X we can use the Ahlfors Q-regularity condition (3.51)) to get

1
. 1 oL A\ @ < B\ \ O
Wi M 1) > 1~m<Bk>Qz(C;> Ok (A (QUS )T vi= 12, N ().

(3.109)

Now we observe that Q B(k 'n E; # () because Qn D Q] an and because of (3.77), and

we also recall that Fy C By(xg,ri) by construction, so, by trlangle inequality and by using the

estimate (3.97)), we get that for all y € QZ ,(Ckzz we have

— _ e\ \ &
d(y, zi) < i, + diamg (Qg(l(sz;» <rk+ Q1 Cryr.p <A*1 (Q]a(j?)r )) ¢, (3.110)
Finally, we are going to define the constant {2 > 0 mentioned in the thesis of this theorem by
1
Q
Q:=1+Q;- <> : (3.111)

For all k € F consider the ball By(xg, (2 - n}*(’p(xk, M -rg)).
By construction n’kp(ack, M -ry)) > M -ri > 1, and we proved the estimate (3.109)), so we get

1
* C Q *
Q'nX,p(wk’M.rk)) <1+Ql <A?> ) 'nX,p(x’M'Tk)) > (3112)

e () (B s (3 (257)) 2

Pt O Cregr o (A7 (Q197))
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However, we proved (3.110]), so we get that

5(2 5 € Balww, Q- p(wn, M 7)) (3.113)

for every k € F, for every i =1,2,..., N(k).

Now we finish the proof by proving (3.68)).
Let {Ba(zk,7r)}tker be a family of balls in X such that {Bg(zy, Q- nx ,(zk, M - k) }rer is
disjoint, Let E C X be a compact set such that £ = J, B} and Ej, C By(xy, 1) VE.

By construction
N(k)

By C U Qs (3.114)

and there exists a universal N € N such that N(k) < N for all k € F.
We are going to define for all kK € F and for all ¢ = 1,2, ..., N
BN Jk)*” if i < N(k),
Ek,i = Q o ( ) (3115)

otherwise.

It follows that

N
Ey=|JEw: VkeF. (3.116)
i=1

Using (3.93) we get
B, =4 (At (Ben Q™)) it < Nk, st
0 otherwise.
To simplify the notation let us denote
Jj(k)4+n -1 J(k)+n\ | _

whenever i > N (k).
So we apply the subadditivity of the capacity to (3.116) to get

N
> Cryn(Br) =Y Oy | UBri | <D0 Crxp (EBri). (3.119)
keF keF i=1 i=1 keF

Let i < N be a fixed index. Let k € F.
If i > N(k) then, by definition

Coyraw (A (BN QU0T)) = Cokaran(0) = 0. (3.120)
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Otherwise, we have Ej ; = A (]\*1 (Ek N Qi (12;)%)), so we can apply the estimate in Theorem
323 to get
N
(k
> o (B) S A2 D03 Cryr i (A (BN Q™)) - (3.121)

keF i=1 keF

We observe that, for any fixed i < N, the sum

> Chiorn (A7 (B0 Q™)) (3.122)

keF

can be estimated using Theorem [3.1.2

Indeed, we have

— j(k)+n j(k)+n
AL (Ek n Qi(g ) _ {x = (Q%,Qb,,...) €T ‘ A(z) € Ex N Qiji(}; , Bjkyen = ai(k:)},
(3.123)
so it follows that, for any choice of wy; € At (Ek N Qi (Jz;:;n), we have

— i(k)+n i n
A (Ek N ) C B,(wy;, &®) C a7, (3.124)
Moreover, we have

AT ( j(k)+n> = By(wy;, Pty CHT and AT (Qn o ) = B, (w4, 6" *) C OT.

(3.125)
Using 1D we get that B, (wy, 67 (k1) is the smallest possible ball such that
Bp(wk,ia 6F(kﬂ)) 2 Bp(wk,iv 6J(k)+n)7 (3126)
and
H/C? <Bp(wk,i= 5n*(k’i))> > CKor o (Bp(wk,iafsj(an)) - (3.127)
So, using definition (3.8)), we have
(g, G100 F7) = 5T ), (3.128)
In (3.113)) we proved
QN ,(f/ C By(wg, Q- 1k (., M -73,)) Wk € F, Vi < N, (3.129)

but the family {Bg(zy, Q2 - n}vp(x, M - 11)) }ker is disjoint by hypothesis, so it follows that the

(17 (@) o - {0, b3

family
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is disjoint for every fixed i < N.
So the hypotheses of Theorem are satisfied, and we may apply (3.10) to (3.121) to get

3 Ok (Bi) S A- Ay - ZCKaT p<U A (Eka{jj}g”)) (3.131)

keF keF

We recall the following quasi-additivity formula for the capacity of a finite union of sets:
3 N
Z Ckorow (51) SN - Ckor o p U (3.132)

Applying this formula to (3.131) we get

N
> Ok (Br) S A-As- N - Cripr U U HEan@lm) ) (3.133)
keF i=1keF
Now, to finish the proof, we observe that
. (k) Y (k)
A-—1 j(k)+n j(k)+n
UUA (B | =U U En@ = U Be=E (3.134)
i=1keF i=1keF keF
So we may apply Theorem to (3.133)) to get
> Cryup(Br) <A -A3-N-Cky,p(E). (3.135)
keF

The constant A := A - A3 N only depends on X, s, p, M and on the chosen Christ decompo-
sition, finishing the proof for the case M > 1.

The case M =1 follows as a corollary from the case M > 1.
Indeed, choose an arbitrary M > 1. Let {Ba(zk, ) }rer be a countable family of balls
in X such that the family {By(zy, - 0% p(Tk,Tk)) tkeF is disjoint. Here the constant Q=
Q(X,p,s, M) > Q will be fixed later. Then there exists N = N(X,s,p, M) € N such that, up
to a proper choice of the indexes of the family {By(zk, %) }ker, we have

() Balw, - nk (. M - 11,)) = 0. (3.136)
k=N

This property holds if we choose Q such that

Qi p(@r, ) > Qi (e, M- ry) (3.137)
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for all k> N.
We claim that such N exists because of the properties of the Riesz capacity (see Proposition
. Indeed, there exists C' > 1 and # > 0 universal constants such that, for all z € X, for

all 0 < r <7 we have
C'+ Ctx o (Balw,7)) = Crcyp (Balw, M 7)) (3.138)
which entails

Mxp(@h ) Zx o pit O mx p(@h, M- 1), (3.139)

for all rj, < #. The claim follows from the compactness of X, because there exists N € N such
that r, < 7 for all k > N. If such N did not exist then we would have

m(X)>m (U Bd(xk,rk)> =Y m(Ba(wx,mt)) = +00, (3.140)
keN keN

which contradicts the compactness of X.

So we proved that (3.136]) holds as long as we choose
Q:=C-Q. (3.141)

Now we consider an arbitrary compact set £ C X such that F' = |J,, Ej, and Ej, C By(xy, r) VK.
We apply the quasi-additivity formula (3.135) to the family {Ejy}ren and we get

+0o0 +o0
D Crynp(B) <A-Crye p | U B |- (3.142)
k=N k=N

Finally, we apply the finite quasi-additivity formula and we get

N-1 +00
Z CKX,svp (Ek) = Z CKX,.s:p (Ekf) + Z CKX,svp (Ek) S (3143)
keF k=1 k=N
N-1 _ +o0
CKX,svp (Ek) + A ' CKX,sap U Ek S
k=1 k=N
_ N-1 +0o0
A Z CKX,svp (Ek) + OKX,S7p U Ek S
k=1 k=N
_ N-1 +o0
A-N- CKX,svp U

E,U U E; |,
k=1 k=N
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so we get

Z OKXYS,p (Ek:) rs(X,s,p) CKXVS,]) (E) ) (3144)
keF

s0, up to choosing the new values of the constants 2 and A for the case M = 1, the theorem

is proved. ]

3.3 Harmonic extension

In this section we define the harmonic extension of a function defined over an Ahlfors-

regular space and we enunciate and prove several properties of the Harmonic extension.

3.3.1 Dyadic Poisson Integral and Riesz kernel

Let (X,d,m) be an Ahlfors Q-regular space. In the following part of this work we will be
considering the space X x (0, 4o00) with the metric

p ((z1,51), (w2, y2)) := max{d(z1, x2), [y1 — y2l}. (3.145)
We are now going to define the harmonic extension on X x (0, 4+00).

Definition 3.3.1 (Poisson Integral in X x (0,+00)). Let f € LP(X). We define the Poisson
Integral

XBg(x,2
(x,y) / C(z,y) el Z d(QHy f(z)dm(z). (3.146)

Here C(z,y) is the constant that normalizes the Poisson Kernel, i.e.

-1

Clx,y) : [ / yQZXBg(Zi dm(z)| . (3.147)

Remark 3.3.1. There exist constants 0 < C7 < Cy < 400 depending only on the choice of X
and @ such that
C, <C(z,y) <Cy VzelX, Yy>0, (3.148)

l.e.

C’(xl,yl) ~(X,Q) C(J}Q,yg) for all (a:l,yl), (:L’Q,yg) c X X (0, —I-OO). (3.149)

We will use a dyadicization of the Riesz kernel to prove a property of the Poisson Integral.
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Lemma 3.3.1 (Discretization of the Riesz kernel). Let g € LP(X). Then

XBgy(x,21
Bxarole) %@ [, Z X)) o) (3.150)

for every x € X.

Proof. Let x € X. For every z # x we have

“+o00

XBd(a:,zf)(Z) . 1
P D DR xS (3.151)
j=—00 j such that

j>loga(d(z,2))

and we have

5 Ly L1 1 ! 1
7 such that Q(QS)j N 7 such that Q(QS)j 1l QQS 2(Qs)(10g2(d(a:,z))) a 1- 2QS d((]?, Z)QS,
j>logg (d(z,z)) j=[loga(d(w,2))]
(3.152)
5 Ly L1 1 1 1
i PICOI i 2(Qs)j = 1 — 2Qs 2(Qs)(logy(d(w,2))+1) — 2@s — 22Qs ((z, 2)@s”
J suc a 7 suc! a
Jj>logg (d(z,2)) j=[loga(d(,2))]
(3.153)
But Kx s(7,2) = 1/d(z, 2)%, so we get
+oo
XBy(z,21) (%)
j=—o00
for all z # x. Since m({z}) = 0 we get
K% g(2) ~gu) / Z XBd(” 2” (z)dm(z) (3.155)
for all g € LP(X), for all z € X, and the lemma is proved. O

3.3.2 Commutative convolution-like property

Now we will prove that the order of the Poisson Integral and the Riesz potential can be
exchanged up to a universal multiplicative constant. The proof of this property in R**! trivially
follows from the commutative property of the convolution. In the setting of compact Ahlfors-
regular spaces this proof is based on a geometrical property of the dyadicization of the Riesz

kernel, and on the dyadic nature of the Poisson Integral we defined.
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Lemma 3.3.2 (Exchanging the order of the Poisson Integral and of the Riesz potential). Let
feLr(X),lety>0. Then

Kxs* (PI(f)(9)(2) =x,g.s) PI(Kxs * f)(2,y) (3.156)

forallx € X.

Proof. By Lemma we know that
XBg(2,29)
Ko (PI()(9))() %0 / Z Xue 1) p () e i), (3.157)

and

PI(Kxs* [)(z,y) ~q,s) PI (/ Z XBdQS)j()f(z)dm(z)) (2, 1), (3.158)

j_—OO

so we will prove the statement by proving

/ Z Xse 1) p () e y)im() ~ v PI ( [ Wﬂz)dm(z)) (@)

]_—OO

(3.159)
for all f € LP(X), for all z,z € X, for all y > 0.
Let L.H.S. and R.H.S. denote the left hand side and the right hand side of (3.159)) respectively.

We compute

d(x,27) C ) = a(z,2%
L.H.S. = / Z 2ot 2] / (yZQy)kz_oXBzi@if))xfw)f(w)dm(w)dm(z) = (3.160)

T

Remark entails C'(z,y) ~(x) C(x,y), and we have

+oo o0

> ZXBMJQHﬁ?gS)z; 0 ¢ uydm(z)dm().

j=—o00 k=

XBy(2,2ky) (W) = X B, (w,2k) (2),

so we get
+oo 400
XBg(z,29 XBg(w,2k (2)
LS~ S [ {/ > Y eI )| plagam). 3161
Jj=—00 k=0



3.3. HARMONIC EXTENSION 121

Now we compute

R.H.S. =PI (/ Z de )dm(z)) (,y) = (3.162)

j=—00
C(2,y) N~ Xpatoaty) XBa(w,29)(2) _
/X yQ kz—o 9 Q—l—l)k / Z Qs)j ( )dm(Z)dm(w) _
+o00 +oo
XBa(z,29) (W)X Baw20) (2) _
/ 2[(Q+1 k+(Qs)j] f(z)dm(z)dm(w) =
j=—0o0k
+o0o +o0
X Bgy(z,2%y) XB (zQJ)( w)
J——oo

We rename the bound variables in the last equation to get

+oo 400 ky .27
RS = C&Y) / { / Z ZXBd(” 2 ;ﬁéi)jf )z )dm(z)] f(w)dm(w).  (3.163)

So, to prove that L.H.S. ~x g R.H.S. for all f € LP(X), for all z € X, for all y > 0, it is

sufficient to prove that

400 +oco 400 +oo
XBgy(x,29) XBd(w 2k )( z) X Bg(z,2ky) XBd(w 23)( z)
Z kZ 2[(Q+1)k+(Qs)]] dm(z) =« 4., Z Z ol Q—l—l)k—i—(Qs)]] dm(z)
X J=—ook= X J=—ook

for all x,w € X, for all y > 0.

We will prove the stronger statement

XX m(By(x,29) N By(w, 2%y)) <X X m(By(w, 29) N By(x, 2%y)) 5165
Z kzo 21(Q+1)k+(Qs)J] FXQ9) Z I;) 21(Q+1)k+(Qs)J] (3.165)
j=—00 Jj=—00

for all x,w € X, for all y > 0.
The claim is trivial when z = w. Let us consider z # w. So we have d(x,w) > 0, and we may
define

gz, w) = [logy(d(z,w))], (3.166)
which is the first index j such that w € By(x,27).
Let us consider the following equation
+oo  +oo

) Z 511255531 29 _ (1) + (11) + (111), (3.167)

j=—o0k
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where
T2 0 1 (Ba(, 27) N Ba(w, 2%)) 4 168
Z Z 21Q+1)k+(Qs)5] ’ (3.168)
Jj=—0o0 k=
j(xw)  +oo ; k
_ m(Ba(z,27) N Ba(w,2"y))
= > > SIQF DR (@3] ’ (3.169)
=i (=, w)—lk 0
B = m(Bg(z,27) N Byg(w, 28y))
(Irn =Y ST TRr @] : (3.170)
§=5ww)+1 k=0
Now we are going to give estimates of the values of (I), (II) and (III).
We start from estimating (I). Consider j < j(z,w) — 2. We define
_ d — 2/
k() :max{ {10g2 (u?)J +1,0}, (3.171)
which is the smallest index k > 0 such that Bg(z,27) N By(w, 2%y) # 0.
We write
J(@w)=2 ck(5)—1 k
m(Bg(x,27) N Byg(w, 2Fy))
(D= Z { 2) DM@ DT Qo7 (3:.172)

flm Ba(x,27) N By(w, 25y))

20(Q+1)k+(Qs)j]

k=k(j)

*f m(Bg(z,27) N By(w, 2ky>>]

£ 21(Q+1)k+(Qs)J]
k=k(j)+2

with the convention S0 _ (k) := 0 if b < a.
By definition of k(j) we have By(x,27) N Byg(w, 2Fy) = 0 if k& < k(j).
Now we consider k > k(j) + 2. We have

k>k(j)+2= max{ {logg <W>J + 1,0} +2 > log, (W) +2, (3.173)

hence we get
y=4(d(z,w)—27). (3.174)
Now we consider an arbitrary point v € By(z,27). By triangle inequality we have

d(v,w) < d(v,z) + d(z,w) < 27 + d(z,w). (3.175)
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However, we set j < j(z,w) — 2, so we get
j <, w) =2 = [logy(d(z,w))] — 2 < logy(d(z, w)) — 1, (3.176)

hence
97 < loea(dl@w))—1 < %d(w,w). (3.177)

So from ([3.174)) and (3.177) we get

2ky > 2d(z, w) > 27 + gd(x,w). (3.178)

From (3.175) and (3.178) we get d(v,w) < 2y, so we proved that By(z,27) C By(w,2y) for
all z,w € X, for all j < j(x,w) — 2, for all k > k(j) + 2
So we proved that

J(@,w)—2 |:k(])_1 m(@)

(=2 2) @R @ (3.179)
Jj=—00 =
k(j)+1

m(Bg(z,27) N Byg(w, 2Fy))
Z 2UQ+1)k+(Qs)5] *

= m(Bd(l',QJ))
Q+DE+(Qs)1] |

k=k(j)+2
Now we use the equations
m(0) =0, (3.180)
0 < m(By(x,27)) < m(Bg(z,27) N By(w, 2%y)), (3.181)
m(Ba(z,7)) =(x) r? Vze X, for 0 <r < diam(X), (3.182)
to get the following equation:
m(By(z,27))
Z Z 2[(Q+1 k+(Qs)J] 2(X) (3.183)
J=—00 k=k(j
2iQ
Z Z 2[(Q+1 k+(Qs)i]
J=—00 k=k(j
](xzw)72 1 1 2]Q
2 1 — 5oy 2@ +D(R()+2) 2(@Q)5

j:—oo 2Q+1 2
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We remark that we may use the estimate (3.182)) because for all j < i(m,w) — 1 we have
w & By(z,27), hence 27 < diam(X) for all j < j(z,w) — 2.

Now we estimate the value of k(j). Consider j = j(z,w) — 2. We have

(5 o, w) — 20 (@w) =2 ) — i (@w)—2
k(j(x,w>—2>=max“1og2 (d( )2 )J +1,o}>10g2<d< 1) = 2 )

Y Y
(3.184)
So we get
kU @w)=2)y > d(z, w) — 2 @W)2, (3.185)
However we use equation (3.166]) to get
G2y >z, w) — OB UEIN = L, w). (3.186)
Now let j < j(z,w) — 2). From (3.186) we get
oh(Ew) =2y > d(z,w), (3.187)
hence
By(w, 2P0@w)=2+1y A Bi(2,27) £ 0 for all j < j(z,w) — 2. (3.188)

However, from the definition of k(j), it follows that k(j) is the smallest index k such that
Bg(w, 2%y) N By(z,27) # 0, so we proved

k() <k((z,w) —2)+1 forall j < j(z,w) — 2. (3.189)

So we use equations (3.183)) and (3.189) to get

j(zw)—2

1 1 i@
2 - >
) ~E T 2(Q+1) (k(j(z,w)—2)+3) Z 9(Qs)j ~(X.Q) (3.190)
2QFT 6
+o00
1 1
2(Q+1) (k(j(z,w)—~2)) Z 2Q(I—s)i (3.191)
k(j = ~ 3.192
2@ HEGw)-2) 1 — L 90(-9)@j@w) ~ (@) (3.192)
1 -
_ Q(1=s)j(zw) 1
Q@G w)-2) (3.193)

So we proved the lower estimate

1 e
A 1 2Q(1—s)j(a:,w)‘ 194
(1) Z(x.Qp) 2(Q+1)(k(j(z,w)—2)) R
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Now we prove an upper estimate for (). We compute

j@w) foo m(Baw,?)) _
<X Z 2[(@+1>k+(@s )il ~(X)
J=—00 = k

-2 —+o0

Z > QL@ TDE+Qs)]] Q+1 ket @s)]

J==00 k=Fk(j)

](I’zw%z 1 1 2iQ
1-— 2(Q+1)k(j) 2(@s)5

j:—oo 2Q+1

By monotonicity in the definition of k(j) we deduce

k(j) = k(j(x,w) —2) for all j < j(x,w) -

S0 we get

7 (zw)—2 2jQ

1 1
< ~
o) L 2(Q+Dk(i(z,w)-2) Z 2(Qs)j

2Q+T j=—o0
2(Q+1)k(j(2,w)—2) Z 2(Qs)j ~(Q,s)

j=—o0

1

1 9Q(1-5)j(ww)_
2(Q+ DR (xw)-2)

So we proved

() < 1 9QU-)j(@w).

~XQ9) o QrDRGEw)-2)
which, alongside ([3.194)), proves

(1) ~ !

(X,Q,S) 2(Q+1)E(3($7w)_2)

9Q(1—s)j(aw)

125

(3.195)

(3.196)

(3.197)

(3.198)

(3.199)

Now we are going to estimate the value of (I1]) and we are going to compare (II) and

(IIT).
Let us define
jdiam = Uog2(dlam(X))J + 1.

By computation we get

2jdia7n — 2L10g2(dlam(X))J+l > 210g2(d1am(X)) — dlam(X)’

(3.200)

(3.201)
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so we proved
X = By(x,27) for all §j > jaiam-

Moreover we get

2jdiam71 — 2L10g2(dla’m(X))J S 210g2(dlam(x)) = d]am(X)

We may write

]dzam
m(Bg(x,27) N Bg(w, 2Fy))
(I11) = Z Z 2[(Q+1)k+(Qs)5] *

j=j(z,w)+1 k=0
400 +00 Bd w, ok y
Z Z 2(Q+1)k+(Qs)5]
] szam k=0

Consider j(z,w) +1 < j < jgiam — 1. We define

k(j) = max{ Llogg (W)J +1, 0} ,

which is the smallest index k& > 0 such that Bg(w,2%y) € Ba(z,2%).
Suppose k > k(j) 4 2, suppose v € By(x,27). By triangle inequality we get

d(v,w) < d(v,z) + d(z.w) < d(z,w) + 27

However, from ((3.205)) we get

~ 29 —d
k> k(j) +2 > log, (y(“”)) +2,

hence
2ky > 4(27 — d(x, w)).
But from we have
j > j(z,w) + 1 > logy(d(z,w)) + 1,
hence

29 > 2d(z, w).
Now from (|3.208]) and (3.210)) we get

2ky > 29 4+ (3.2 —dd(z,w)) > 2 + 2d(x, w).

(3.202)

(3.203)

(3.204)

(3.205)

(3.206)

(3.207)

(3.208)

(3.209)

(3.210)

(3.211)
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Combining ([3.207)) and (3.211]) we get

2ky > d(v, w), (3.212)

so we proved that

By(w,27) C By(w,2"y) (3.213)

for every z,w € X, for every j(z,w) +1 < j < jgiam — 1, for every k > k(j) + 2.
Now we use (3.213) and the definition of k() to write

jdiam_l (]) 1 m w 2 y))
= > [ m+ (3.214)
j=7(z,w)+1 k=0
k(j)+1

m(Bg(x,27) N Bg(w, 2Fy))
> 9@+ DR+ (@Qs)]]

k=k(j)

X m(B x,20
3 (Ba( ))]

21(Q+1)k+(Qs)J]

k=k(j)+2
2[ Q+1)k+ Qs)y] ’
]_jdzam k=0

with the convention Zzza o(k):=0if b < a.

Let us define
Kaiam = {logg (dlmz(X))J + 1. (3.215)

By the same argument used for jg;qm we get
okdiamy > diam(X) and 2Fdem~—ly < diam(X), (3.216)

and we prove

X = By(x,2%y) for all k > kgiam. (3.217)
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So we can write

Jdiam—1 ;:(.7)71

2MQFR+Qs)]] (3.218)

m(Bqg(z,27) N Bg(w, 2%y))
Z 2L(Q+1)k+(Qs)j] *

f m(Bd(x? 2J)) +
2. MQrDR+@s)]
k=k(j )+2

kduzm Bd 'l,U 2 y))
Z Z m*

j .]dzam
*i m(X)
2[Q+1DE+(Qs)d] |

k=kdiam

Now we are going to prove that (I1) $q,s) (I11).
Suppose j(x,w) > jaiam — 2.
Then, the expression (3.218)) reformulates to

kdzam
(w, 2%y))
(II1) Z Z 2[ ST (3.219)

.] szam
+o00 m(X)
Z 2 @+1)k+(Qs)J] |

=Kkdiam

Let us denote by @ the first addend of the first sum in (3.219)) with respect to the index j, i.e

kdiam—1 k 400
_ m(Bg(w,2%y)) m(X)
= D @R @] T 2 @R @] (3:220)
= =Rdiam
Now we consider the equation
) m(By(z,27) N By(w, 2%y))
— d d\Ww, 7Y
(II) - Z Z Q+1 k+(Qs)4]
j=j(z,w)—1 k=0
and we use monotonicity of the measure m to get
J(@,w)
m(Ba(w, 2Fy))
(< >, Z S QTE+(@5)j] ° (3.221)

J=j(zw)—
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which reformulates to

j(sz) kdiam_l k +00
m(Ba(w, 2"y)) m(X)
(I1) < Z Z 2l(Q+1)k+(Qs)j] + Z 2(Q+1)k+(Qs)s] | - (3.222)
j=j(x,w)—1 k=0 k=kdiam

By definition we get j(z,w) < jgiam, 0 we have two cases:

1. Case j(z,w) = jdiam — 1: We get

(IT) < 2295 + 290, (3.223)

2. Case j(z,w) = jgiam: we get
(IT) <290 4 @, (3.224)

So from ([3.223]) and (3.224]) we get
(I1) Sig.s) (II) (3.225)

whenever j(x, W) > Jdiam — 2, and the constant associated to equation (3.225)) does not depend

on x and w.

Now suppose j(z,w) < jgiam — 2 Let us denote by ® first addend of the first sum in (3.218)

with respect to the index j, i.e.

kG r,aw)+1)—1
Ve o (By(w, 24y)

o= 2
kzzo 20(Q+1)k+(Qs) (4 (z,w)+1)]

k(G (z,w)+1)+1

(3.226)

m(Ba(z, 2" H) 0 By(w, 2"y))

20(Q+1)k+(Qs) (4 (z,w)+1)]

k=k((z,w)+1)

*f m(Bg(w, 23 (@w) 1Y)

. 2UQ+1)k+(Qs) (j (w,w)+1)] |
k=k(G(zw)+1)+2
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We may write

j(sz) +o00 . X
= m(Ba(z,2') N By(w,2%)) _
= 20(Q+1)k+(Qs)5] = (3.227)

O D (Ba(e, 20) N Ba(w, 2¢y)) 3.228
Z 2[(Q+1)k+(Qs)5] + (3:225)

Il
=~
8
g
N
—

k=0

m(By(x,27)) N By(w, 2*y))
) Q@ +)R+(Qs)]]

3 mBa.2) 0 Ba(w, 2y))]

2l(Q+1)k+(Qs)J] (3.229)

Now we use the following facts:

1. m(Bg(z,27) N Byg(w, 2Fy)) < m(Bqg(z,27)), m(Bg(x,27) N By(w, 2%y)) < m(Bg(w, 2%y)),

by the monotonicity of m.

2. m(Ba(z,27)) < m(Bg(z, 2@+ for j = j(z,w) — 1 and j = j(z,w), because
Bd(x7 2]) C Bd('rv 2j(m,w)+1).

So we get
j:3($,w)—1 k=0

k(j(:ci):-i-l)'*‘l m(Ba(z, 2@+ A By(w, 2'y))

2[(Q+1)k+(Qs)]

k=k(j(z,w)+1)

400 ~
m(By(z, 2](5'?77»0)-&-1))

. Z 2[(Q+1)k+(Qs)]] (3.231)
k=k(j(z,w)+1)+2

So, by computation and using the definition of ®, we get

(IT) < 22P5p 4+ 295, (3.232)

Combining ([3.225)) and ([3.232]) we get

(I1) S(q.s) (LII), (3.233)
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for all z,w € X, and the constant associated to (3.233)) does not depend on z,w € X. Now we
go back to estimating equation (I17).

We consider equation (|3.218)):

]dzam 1 k(] Bd w 2 y))
(= [Z 2[<Q+1)k+<Qs>y}+

j=j(zw)+1
MO (Bale, 27) N By(w, 2y))
Z QT DR (Q3)]]
k=k(j)
+o00 i
m(Bd(fE, 2j))
Z SQ@ TR @9 | T
k=k(j)+2

[ mBuw.2y)

.~ (Q+1)k+(Qs)5]
J=Jdiam k=0

+oo m(X)
Z 2Q+1)k+(Qs)J] |’

k:kdiam
and we claim that
RSy m(Ba(z,2) N By(w,2%y)) X m(Ba(z,2)) <X m(Bqlz,29))
Z 2[(Q+1)k+(Qs)]] + Z 2l(Q+1)k+(Qs)j] ~ (@) Z 2[(Q+1k+(Qs)j]”
k= k=k(j)+2 k=k(j)+2
(3.234)
Indeed, we can trivially get one part of equation (3.234)) because
400 J k +00
m(By(x, 23 m(Bg(z,27) N By(w, 2%y)) m(Bg(z,27))
Z SQ+DIH(@ Z SQ+Dk+(Qs)]] + Z Si@ k@) (3:235)
=k(j)+2 k=k(j k=k(j)+2
For the other part we compute
*Z“ m(B(z,2)) _ m(Ba(z, ) ZOO m(Ba(z,27)) 1
£ 21(Q+1)k+(Qs)j] 2(Qs)j £ Q+1 2[(Qs)j+(Q+1)( ()+2)] 1 — 2—(Q+1)
k=k(j)+2 =k(j
(3.236)
and
(Bl ) 0 Ba(w,2%) " m(Balr, 27) s 937
Z 21(Q+1)k+(Qs)] = Lo 9lQ+Dk+(Qs)j] (3.237)
k=k(j) k=k(j)

m(By(x, 2~j)) 9Q+1 | 92(Q+1)
2l(Qs)j+(Q+1)(k(j)+2)] '




132 CHAPTER 3. POTENTIAL THEORY ON AHLFORS-REGULAR SPACES

From (3.236) and (3.237)) we get

R m(Balx, 2) 0 Ba(w, 2'y)) _ 1 *f m(By(,27))
g 2l(Q+DE+(Q)]] = (2041 1 22@Q+D)(1 — 2-@+D)) £~ 2MQ+DE+@s)]
h=k(j) k=k(j)+2
(3.238)
so we proved
E(j)+1 , . ,
% m(Ba(x,29) N By(w, 2%y)) _ +Z m(Ba(z,27)) (3.239)
@Q+1)k+(Qs);] ~(@) QF1E+(Qs)i]” '

k=k(j) k=k(j)+2

and the claim (3.234]) follows.

Finally, from (3.218)) and (3.234) we get

jdiam—1 ]; j)—1
R miBatw. 29)
2[(Q+1)k+(Qs)j]

j:j(x’w)+1 k=0

400 i
m(Bg(z,27))
> gier '}]Jr

£ Q+1)E+(Qs)j
k=k(j)+2

kiam_l
3OS mBaw2y)
. 21Q+1)k+(Qs)J]

J=Jdiam k=

- m(X)
Z [(Q+1)k+(Qs)5] |
k:kdiam

By construction we have 2¥y < diam(X) for all j(z,w) + 1 < j < jgiam — 1, for all 0 < k <
k(j)—1, 27 < diam(X) for all j(z,w)+1<j < ]dwm —1, 2%y < diam(X) for all k& < kgiam — 1,
so we may apply the Ahlfors-regularity estimate ) to get

Jdiam—1 k()1 2Qk Q

(I11) ~(x.q) Z Z o (3.240)
=j(@w)+
+oo 2j
Z 2[(Q+1)k+(628)j]]Jr
k=k(j)+2

k: ram 1
i 2Qk,Q

Z { Z @+ R+@97
] ]dzam

= m(X)

> Ol Q+Dk+(Qs)i] |

=Rdiam
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Now we recall what we proved up this point and finish the proof of the statement.
We proved (3.199)), (3.233]) and (3.240)), i.e.

1

1 9Q(1—5)](w)
(@)K (a.w)—2) ’

(I) R’J(X,Q,S) cpl(x,w,y) =

0 < (1) S (1),

]dzam 1 k(] 2QkyQ
(IIT) =(x,q) P2l w,y) = Z Z QT Dk (@] T
j=j(zw)+1
—+o0 9J
Z 2[(@+1)k+<@sm}+
k=k(j)+2
+00  kdiam—1 9QkyQ
2 @@ T
J=Jdiam k=0
+0oo m(X)
Z 2[(Q+1D)k+(Qs)s] |
k:kdiam
We recall that, by definition, we have
+oo  +oo
m(By(x,27) N Bg(w, 2%y))
> kzo Dy = (I) + (II) + (IIT), (3.241)
j=—00

S0 we get

+oo +oo

Bd x, 2J N Bg(w, 2k
Z Z 2[(Q+1) k+(Q§)]] )) ~(Q,s) (I) + (III) ~(X,Q,8) s01(w,w,y) + 902(1")w>y)'
j=—00 k=0

(3.242)
However, ¢1(z,w,y) = ¢1(w, x,y), p2(x,w,y) = p2(w, z,y) for all z,w € X, for all y > 0.
Indeed, we have

J(z,w) = [logy(d(z, w))] = [logy(d(w, x))] = j(w, z), (3.243)

k() = max{ {logQ <W>J + 1,0} = Inax{ {mg2 ( — 2j>J +1,0%,
l%(j):maxﬂlog2 <W)J +1,0} :maxﬂlo&( >J +1,0%,
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and all the other terms in the definitions of ¢; and ¢s do not depend on x and w, so we get
that 1,9 are symmetrical with respect to exchanging the roles of x and w.
We finish the proof by exchanging the roles of x and w in (3.242)) and we get

+§ —gf m(Bg(w,27) N By(x, 2ky))

2[(Q+1)k+(Qs)J] ’QJ’(X,Q,S)SOI (’IU, xz, y) + @2(“77 xz, y) = (3246)
j=—00 k=0

1(z, w,y) + a(T, W, Y) F(x,Q,)

f +§ m(Bg(x,27) N Bg(w, 2Fy))

2[(Q+1)k+(Qs)] ’
j=—00 k=0

which is the statement (3.165) we needed to prove, so the proof is finished. O

3.3.3 Other properties of the Poisson Integral

Now we will prove two more properties of the Poisson Integral which are analogous to the

properties of the classical Poisson Integral in R?+1.

Definition 3.3.2. Let f be a non negative function in L% (X), let M > 1, ¢ > 0. We define

E(f.€) = {(2,y) € X x (0,400) | PI(Kxs* f)(z,y) > €}, (3.247)
EM*(f,e):= | J  Balz,My) C X, (3.248)
(z.y)€E(f€)
M(fe)i= |J  Balz,My)x {y} € X x (0, +00). (3.249)
(z.y)EE(f€)

Lemma 3.3.3. [Harnack-type inequality] We have

PI(Kxs* f)(x,9) Zxoumy ¢ V(wy) € M (fe). (3.250)

Proof. Let (z,y) € EM'(f,€). By definition of EM’ there exist (Z,y) € E(f,¢) such that
x € By(Z, My). By (3.148]) the constant C' in the Poisson integral

PI(Kxs* f)(z,y) :== /X el Z XBd(gily) Kx s * f(2)dm(z) (3.251)

is bounded, so we have C(z,y) ~(x,q) C(7,y), and we get

~ XB x
PI(Kx.* D) Zoxay [ Clany yQZ Wute2@ e L pean(). 25
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The function f is non negative, so Kx s * f is also non negative, so we have

- 1 Sy 1 XBy(z2* )(Z)
PI(KX,S * f)(fL‘, y) 2(X,Q) /X C(SL‘, y) ’ y7Q Z 2(Q+1) 2((3+1)(Z71) KX,S * f(z)dm(z)
k=|logy(M)]+1
(3.253)

Now we change the index k of summation and put 1/(2(@+D(log2(M)I+1)y i, the leading constant

to get

B X By(z,2k+ log2 (M)]+1 ( )
PIKx.+ Nw.9) Zoxcan [ Clany yQZ o2 Koo F(2)m(2).

(3.254)
Now let k € {0,1,2,...} be a fixed index. We have d(z,Z) < My by definition of Z, so, for all
z € By(#,2%y), we apply the triangle inequality to get

d(z, 2) < d(Z,2) + d(&, 2) < My + 28y < (2F + M)y < 2F+lloe2(M)] 41, (3.255)

So we proved that By(#,2Fy) C By(x, 28+Ues2(M)I+1) for all k € N, hence

—+o0 +o0
X B (e 20+ Lowa () 141y (2) XB,(#.24y) (2)
kzo SO > kzo SCTE (3.256)

We combine (3.254]) and ([3.256)) to get
- XBy(&,2F
PI(Kxs % f)(,) Z(x.on /X O 3 Z : QH” Kxo f(z)dm(z).  (3.257)

However, by the definition of Poisson Integral and of Z and of E(f,¢€) we get

PI(Kxs + [)(#,9) Zxomn PIKxs )@ y) > (3.258)
which is the required inequality. O

Observation 3.3.1. The previous Harnack-type inequality still holds if we replace Kx ¢ * f in

the previous definition and lemma with a generic function g € L'(X) such that g > 0.

Lemma 3.3.4 (Uniform continuity at the boundary of the Poisson Integral). Let g € C'(X).
Then for every € > 0 there exists § > 0 such that

sup ( sup |PI(g)(P)— g(a:o)|> <e (3.259)
20€X \ PEB,((20,0).6)
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Proof. Let g € Cp(X). Then g € C(x). The space X is compact, so by Heine-Cantor theorem
we have that for all €; > 0 there exists 1 = d1(€1) > 0 such that for every x1,z9 € X such that
d(x1,m9) < 61 we have |g(z1) — g(x2)| < €1.

Let ¢ > 0 be a number to be fixed later. Let d1(e1) > 0 be the number defined by the
Heine-Cantor theorem. We claim that for every 0 < ea < 1 there exist § = g(ea,d1) such that

XBy(zx Zky)

I(z,y,01) == /}(\Bd(m,521) z,y) el Z XIS dm(z) < e (3.260)

for all z € X, for all y < g.
Indeed, let eo > 0. For all k£ < Llogz <2—1>J we have By(x,28y) C By(z, % 5 ), so we can estimate

+oo +oo
1 XBy(2,2ky) (%) m(Bgy(z, 2"
/ C(z,y) - 0 E Mdm(z) <y E %» (3.261)
X\By(x,%) v ; y<2
e 1

here C9 is the uniform upper estimate of C'(z,y) given in (3.148]).
By Ahlfors-regularity of X we get the estimate

+o00 QQkQ 9
I(.CU, y751) S(X) C2 Z szy (Q+1)k — 02 = CP((Sby) (3262)
iy P O

We observe that ¢(d1,y) — 0 as y — 0, so there exists § = §(d1, €2) such that

I(l‘a yvél) S(X) 90(615 Z/) < é€ (3263)

for all x € X, for all 0 < y < ¢. Up to multiplying €5 by a constant which depends only on X
we get
I(z,y,01) < € (3.264)

for all x € X, for all 0 < y < g, proving the claim (3.260)).
Now we are going to prove the statement. Let ¢ > 0. Fix

€1 = e1(€) == 7 (3.265)
Let 61 = 01(€1) be the number defined by Heine-Cantor theorem. Let
osc(g) :=sup(g) — inf(g) (3.266)

be the oscillation of the function g. If osc(g) = 0 then the functions g and PI(g) are constant,
so the claim is trivial. Suppose osc(g) > 0.
The function g is continuous over a compact set X, so osc(g) < +oo. Fix

€2 = eg(€) := #c(g) (3.267)
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Let § = g(ea,61) be the number previously defined.
Let zp € X, let P = (x,y) € X x (0,+00) such that y < g and d(z, z¢) < 2 We compute

—+o00 Py
PI(g)(P) — g(o) :/x C(yxéy) 3 XB;Egif;L( ) g(2)dm(z)  g(ao) — (3.268)
k=0

00 z
[, Gl 522228 0 - sty ante

Now we write

+00 Py
[PI(g)(P) = g(x0)| < / C(;éy) ZXB;Egif;L( )\g(z) — g(x0)| dm(z)+ (3.269)
0

Bd(x,%l> B
C(z,y) = X By (x,2ky) (%)
| % > e l9t2) —stoo)ldm(z)
an(ng)

If z € By (ac, %1) then, by triangle inequality, we have

d(w0,2) < dlwo, x) +d(z,2) < -+ L = 4y, (3.270)

so by the definition of 6; we have |g(2) — g(x0)| < €1, so we get the estimate

PIGP) - gl < [ Claw) QZXB;(gi’;)k adm(z)r (321
Bd<z —)
XBd x,2k y)
/ QZ S(Q+1)F osc(g)dm(z).
R

However, y < g, so we get
|PI(g)(P) — g(zo)] <1-€1 4 0sc(g) - ea. (3.272)
So we substitute the values of €; and €2 and we get
[PI(g)(P) — g(x0)| < € (3.273)

for all P = (z,y) € X x (0,400) such that y < g, d(z,z9) < %1. By defining

no | S

§=06(e) := min{ y} (3.274)
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we have that if p((z,y), (z0,0)) < § then
1 _
d(x,z9) <9 < 5 and |y| <d <7g. (3.275)
So we proved that for all € > 0 there exists § = () such that
[PI(g)(P) = g(xo0)| <€ (3.276)

for all zg € X, for all P € B,((x0,0),0).
Taking the supremum over all xg and P gives us (3.259)), ending the proof. ]

3.4 Convergence at the boundary

In this section we prove several technical lemmas and propositions, and then we prove the
two main results of this work: the non tangential convergence at the boundary of the harmonic
extension of a Riesz potential up to an exceptional set of zero capacity and the tangential con-
vergence at the boundary of the harmonic extension of a Riesz potential up to an exceptional

set of null measure.

3.4.1 (¥, p-thinness at the boundary

Let (X, d, m) be an Ahlfors Q-regular space. The following definitions generalize the concept
of zero capacity to the space X x (0,+00), and allow us to formulate the main result of this

work.

Definition 3.4.1. Let M > 1. Let E C X x (0,4+00). We define

Ei:={(z,y) € E|0<y<t}, (3.277)

EM*:= | Ba(z,My) C X, (3.278)
(z,y)EE

B = | Ba(z,My) C X. (3.279)
(z,y)EE
o<y<t

Definition 3.4.2. Let M > 1. Let £ C X x (0,+00). E is M-Ck,  p-thin at X x {0} if

lim Oy, »(EM) = 0. (3.280)
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Remark 3.4.1. If E is M-Ck, , p-thin at X x {0} then the essential projection of E
{r e X |Vt>03y <t such that (z,y) € E}

is of Uk , p-capacity 0, and hence of measure 0.

For every z € X and r > 0 let us define (when it exists) the radius
nxp(z,r) :=inf {R >0 | m(By(z,R)) > Cr, p(Ba(z,r))}, (3.281)

and let us define

n}’p(x,r) := max{r,nxp(z,r)}. (3.282)
Let C>1, M > 1. Let E C X. We define

Expon = | Ba(z,C - nx,(x, M- 5g(2))), (3.283)
zeE

where

op(x) :=d(x, EC) = d(z, X\E). (3.284)
The following lemmas and propositions will be used to prove the main results of this work.

Proposition 3.4.1. Let E C X be a Borel set. Under the previous notations we have

m(Ex pou) S(x.0sp00) Ckyx p(E), (3.285)
for all constants C > ), where Q) is the constant defined by Theorem [3.2.4).

Proof. Let Q > 1 be the constant defined in the proof of Theorem Let C > Q. Let F be
an arbitrary compact subset of EK,p,C, M- We claim that we can find a finite family of points
x; € F such that

F | JBa(w;,5C - nx p(wj, M - 15)),
J

{B(xj, - n}p(:vj,M -rj))} is disjoint,
Ty = (5E(33])
Indeed, we consider the open covering
U Bala.C - ni (. M - 65(2))) = Excprcan 2 F, (3.286)
zel
and by compactness of F' we find a finite covering

N
U Ba(;,C - p(a, M 7)) 2 F. (3.287)
j=1
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It is not restrictive to assume that

T >T9 > e > TN (3.288)
We can find a finite covering
N
U Ba(z;,.5C - n (2, M -75,)) 2 F, (3.289)
k=1
such that i
{Balwj,, C-mixp(x, M 7))} is disjoint. (3.290)
Indeed, consider ri, which is the greatest radius r; for j = 1,2,...,N. Suppose there are

exactly N(1) indexes jg,, ... s Jkny 7 1 such that
Ba(wj, C - 1l M - 15,)) 0 Ba(r, C - i, M - 1)) £ 0, (3.291)

for some 0 < N(1) < N — 1. Then we have r;, < 7 for h = 1,2,...,N(1). By triangle

inequality we get

By(wj,, C - nx p(x, M - 15,)) € Ba(w1,5C - nx ,(x, M - 11)) (3.292)
forall h =1,2,...,N(1). So, from (3.287)) and ([3.292]), we get
F C By(%1,5C - 0k (2, M - 1)) U U By(zj,C i p(z, M 1)), (3.293)
§=2,..,N

and we have

By(x1,C - nx p(x, M - 1)) N By(x;,C - nx p(x, M -15)) =0 (3.294)

fOI‘ a‘u .] ¢ {1)jk1 9 jk27 e 7jk(N1) }
So we iterate this procedure a finite amout of times, considering each time r; the greatest radius

in the family {r;,,...,7;,,}, and we prove that there exists a family of indexes {1, .. JN} such
that
Fc |J Bala;,5C nk,(z, M- r;)), (3.295)
k=1,..,N
and
{Bd(%, C - p(w, M - rj))}k:hw is disjoint. (3.296)

The claim follows because C' > (.
Let E' = J; Ba(x;,7;). By definition of dp this is a subset of £. We apply Theorem for
B(zj,r;) and E' and we get

D Cryop(Ba(z,7)) Sx.0.50) Ckxan(E) < Ciyp(E). (3.297)
i
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We observe that we apply Theorem [3.2.4] instead of the finite quasi-additivity formula because
the number of sets in the family {Bg(x;,7;)}; depends on the choice of the sets F' and E, and
it can be arbitrarily large.

Now we observe that

m(F) <> m(Bq(w;,5C -k (x5, M -15))) R(x.Quspcan O m(Balxj,nk p(@5,75))). (3.298)
J J

By definition of N p» Using properties of the Riesz capacity (see Proposition ) and the

compactness of X, it follows that
m(Ba(wj,nx p(25,75))) =(x,Q.s) M Ba(zj, nx p(5,75))), (3.299)
and by definition of 7x , and Ahlfors-regularity we have
m(Ba(;,1xp(25,75))) ®(x,Q,5) Ckx.op(Balj,75))- (3.300)

Hence we get
m(F) S(x,Q.s.p.0M) Ckx o p(E)- (3.301)

A measure m on an Ahlfors-regular space (X,d, m) is regular, so, since F' is an arbitrary

compact subset of E K.p,C,M, the required inequality follows and the theorem is proved. ]

Lemma 3.4.2. Let f € LP(X), f > 0. Let e > 0, let M > 1. Consider

E(f,€) ={(z,y) € X x (0,+00) | PI(Kx, * f)(z,y) > €}, (3.302)
EM(f.=J  Balw, My). (3.303)
(z,y)€E(f,€)
fhen TS
C’KX,Svp(EM7*(f7 6)) S(X,Q,s,p,M) <[€m> . (3304)
Proof. Let
EM'(f.0=  |J  Bale,My) x {y} C X x (0, +00). (3.305)

(z.y)€E(f€)

Since f > 0 we have PI(Kx s * f) > 0, so we may apply Lemma to get
PI(KX,S * f)(-T,y) z(X,Q,M) € V(ﬂf,y) € E/(fa 6)‘ (3306)
Let us consider the maximal function

F(z) :=sup PI(f)(z,y). (3.307)

y>0
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By the maximal inequality (see [26, Theorem 3.7]) we get

1 Fll o x) Sxp) 1 lLe(x)s (3.308)

so F' e LP(X).

Now we compute the potential of F' and we get that, for every y > 0, we have
Ko # Fla / Kx.o(x, 2)F(2)dm(z) = (3.309)

/ Kx s(z,z)sup PI(f)(z,9)dm(z) >
y>0

[ Koxala ) PIG) o z) =
KX,S * (PI(f)(v y))(x)
Now we apply Lemma and we get

Kxs* F(r) 2x,0,sPI(Kxs* f)(2,y), (3.310)

for every y > 0.
By construction EM*(f, €) is the projection on the space X of the set EM'(f,¢) C X x (0, +00),
so Vo € EM*(f €) y(x) > 0 such that (z,y(x)) € EM'(f,¢).

We use (3.306]) to get
Kxsx F(x) Z(x,0.5 PIEx s * f)(@,y(@) Zx.om & Vo€ EM*(f,e). (3.311)

However, F' € LP(X), so from the definition of capacity we get that

€

M < [F )l o x)\*
Crx (B (f,6) Sx@uspdny | — | - (3.312)

Using the maximal inequality (|3.308]) we get

p
(B (7:0) Zexgemany (L220) (3319)

€

ending the proof. O

Lemma 3.4.3. Let E C X x (0,+00). Let M > 1. Let
£ X x[0,400) —> [0, +00) (3.314)

such that
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1)
f(xvyl) Sf(xayZ) fOT all Y1 §y2;

2) There ezists a constant a > 1 such that for all x1,x2 € X, for all y > 0 we have
flz1,y) < af(xa,y).

Let(}ﬁxo:::{(x>y)| d(xz,z0) < f(zo,y)}. Then

{eX Q. NE#0}C | QapeMépu-(x)), (3.315)

rEEM*
where Qg 4, (y) ' ={z € X | (x,y) € Qs }, and dpm(x) =d (x, (EM7*)C).

Proof. Let zg € {x € X |Qs, NE # 0}. Since Q5 N E # O there exist (Z,9) € Qpq NE. We

have
o T € Q¢ (7), hence property 2) entails xg € Qq (7).
e (&,7) € E, hence By(&, Mj) C EM* by definition of EM*, s0 6 g (Z) > M.

The monotonicity of f entails the monotonicity of the regions €, ,, so we have Qq5,(r1) C

Qafz(re) Vri < ro, for all x € X, so we get

1

o € Qaf,_fg(g) - Qaf’g (M(SEM,* (f)) - Qaﬁj(M(;EM,*(i‘)), (3316)

which entails the required inequality. O

Proposition 3.4.4. Let C > 1, let M > 1. Let p > 1. Let Z% < s < 1. Consider the function

f(z,y) = C-nx ,(x, My). (3.317)
It can be proved that the function f satisfies the following two properties:

1)

f(mvyl) Sf(x,yz) fOT all Y1 < Y2,

2) There exists a constant & = &(X,s,p) > 1 such that for all x1,x9 € X, for all y > 0 we

have
f(x1,y) < af(xe,y).

The proof of the previous proposition follows from Proposition [3.2.2]
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Definition 3.4.3. Let & = &(X, s, p) denote the constant defined by property 2) in the previous

proposition.
The following proposition will be used to prove the main result of this chapter.

Proposition 3.4.5. Let p > 1, 1% < s < 1. Let Q > 1 be the constant defined by Theorem
3.2.4, Let M > 1. If E C X x (0,4+00) is M-C , p-thin at X x {0} then, given

QCCO,KX,sJLQvM = {(l’,y) ’ T e Bd(x()v Q- n;(,p(xoﬂ My))} ) (3'318)

for xg € X, we have

m (ﬂ {o € X | Qoo iy pomNEy # 0}) =0. (3.319)

t>0

Proof. By Proposition [3.4.4] the function

f(xv y) =Q- n;(,p(xa My) (3320)

satisfies the hypotheses of Lemma [3.4.3] So we apply Lemma [3.4.3] to the region

Qg kot = g = {(,9) | d(,20) < Q- 1k (20, My)) (3.321)
and we get
{z€X | iy pounNE=0 € | Qaraldpu-(2)) = (3.322)
e EM*
U szKX,szp’anM(dENI’* (x))'
zeEM*

So by Proposition with C' = af), we get
m({z € X | Qo iy, pomt VE #0}) S(x@uspaarr) Crxop(EMF). (3.323)
Now we apply equation to E = FE; and we get
m({z € X | Qoo pon N B #0}) S(xupaonn Cryop(BET) =0 ast—0  (3.324)

because E is M-Ck , p-thin at X x {0}, so the theorem follows. O
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3.4.2 Convergence at the boundary

We will now prove one more lemma and then we will prove the main results of this chapter.

Lemma 3.4.6. Let f € LP(X). Let M > 1 and 6 > 0. Then there exist E C X x (0, +00) and
F C X such that

1. CKX’SJ)(EM’*) <é and CKX,S7p(F) < 4.

2. Ye > 0 there exists r > 0 such that

sup sup |PI(Kxs* f)(P)— Kxs* f(z)| | <e. (3.325)
z€X\F \ PeB,((x,0),r)\E
Proof. Let 6 > 0. Let € > 0. Let A= A(X,Q,s,p, M) > 0 be the constant defined by Lemma
[B.4.2 such that ,

Crxop(EM*(fi6) < A- (HgHLP(X)> (3.326)

€

for all g € L% (X), for all € > 0. Let f € LP(x). Consider
fTi=max{f,0}, [ :=max{—f,0}. (3.327)

Let €1 = €1(j) > 0 arbitrary to be fixed later. By Lusin’s theorem and Urysohn’s lemma for all
€1 > 0, for all j € N there exist gj-', g; € LP(X)NCo(X) and there exist sets S;r, S; € X such
that m(S;r) < e, m(S;) < e, such that gj = ftin X\Sj, g; =/ in X\S; and such that
0<g; <frand0<g; <f~.

Indeed, let 5 € N. We apply Lusin’s theorem to the function f* and we get that there exist an
open set Sffj such that m(SIj) < ¢ and f* is continuous in X\S’ffj.
closed set such that S;j C X\?JFJ and m ((X\?‘FJ) \S;j) < 5. Such set exists because X is

an Ahlfors-regular space, so the measure m is regular. We apply Urysohn’s lemma and we get

Let S’; ; be an arbitrary

that there exists a function
hj: X —[0,1] (3.328)

such that h; is continuous, h; =1 on S;j, hj =0 on Sfrj. We define

g;" = f* . hy, (3.329)
and Sj = X\S;fj.

By construction g;' € LP(X)NCy(X) (because X is compact), and we have g]‘f = ftin X\S;-“,

and 0 < g;-r < f*. Moreover, by construction we have

m(S7) = m(X\S$,) <m ((X\?*j) \S;j) +m(S7;) < e, (3.330)
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proving the claim for the function f*. We repeat the same argument for f~ and the claim is
proved.
We have

hSA

1T =95 lleix) = (/S+ |fT - gj\f’drn) —0 ase —0. (3.331)
J

Now we repeat the same argument for f~ and choose €; = €1(d, A, 7, p) small enough such that

) 1
o [2798\ P
1f* =g lrix) <277 <2A> : (3.332)
. 1
o o [2795\ ®
1~ =95 lzexy <277 (2,4) : (3.333)

We define
Eyj:=E(f*—g},277) = {(x,y) € X x(0,+00) | PI(Kxs*(f"—g]))(z,y) > 277}, (3.334)

E_j:=E(f"~g;,277) = {(z,y) € X x(0,+00) | PI(Kx,s*(f~—g;))(z,y) >277}. (3.335)

Following definition we consider

BV = |  Balz,My) CX, (3.336)
({L’,y)EE+,]'

M= |J Balz,My) CX. (3.337)
(z.y)EE_;

By construction we may apply Lemma and we get

M £ = gf ey 273 (27i5\¥\ 4
CKX,S7p(E+,j ) <A 9—J <A 2? < oA ) =2 5, (3.338)
_ - P . LI\ P
M 1~ =95 llr(x) 27 (27ig\»\ .8
Cry p(EZ7) <A ( 57 <Al 5551 =275, (3.339)
Let us define
+o0 +o0
E:=|JE ;ulJE,,; (3.340)
j=1 j=1
By construction
400 +o0
* M, M,
EM* = | Bylx,My)=JEM Ul EL. (3.341)
(zy)eE Jj=1 j=1
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By the subadditivity of the capacity and by equations (3.338]) and (3.339)) we get

Cry,p(BM7) <22 J‘S+Z2 05,

Now we define
Frj={zeX|Kxs(fT—g)>27},

Foj={reX|Kxs*(f"—gf)=27}

For all x € I ; we have

so by the definition of capacity we get

; 277§
EF, . + +\ 1P
CKX,mp( +,j) < ||2J(f gj )HLI(?X) < 72 L

Up to multiplying § by the constant A we can reformulate the last equation to get

J

CKX,s:p(FJF,]) < 2- J2

By the same argument we also get

oy <232

Let us define
+o0 +o0
F=JF ;ulJF,
j=1 j=1

By the subadditivity of the capacity and by equations (3.347)) and (3.348]) we get

We define

By linearity we get

PI(Kxs* f)(@,y)=PI(Kx,s * g;)(2,y) = PI(Kx,s * (f — g;))(z,y) =
PI(Kxs* (f" =~ =g +9;)(z,y) =

PI(Kxs* (f* =g ))(x,y) = PI(Kx,s % (f~ — g7 ))(x,y),

147

(3.342)

(3.343)
(3.344)

(3.345)

(3.346)

(3.347)

(3.348)

(3.349)

(3.350)

(3.351)

(3.352)
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so by triangle inequality we get

[PI(Kxs % f)(,y) = PI(Kx s % g;)(@,9)| <IPI(Kxs# (F7 = g)) (@ y)l+ (3-353)
|PI(KX,3 * (f_ - g;))(I,y)’

Let j > 1. Suppose (z,y) € X x (0,400)\E. Then (z,y) ¢ E4+; U E_;, so by definition of
Ey ; and E_; we get

PI(Kxs (FF — )@yl <277, and |PI(Kxs+ (f~ —g7)(m,y)| <279 (3354)
From equations and we get
[PI(Kx.s # )(2,y) — PI(Kx,,  g;)(z,y)| < 277! (3.355)
for all (x,y) € X x (0,400)\E. So we proved that
PI(Kx 4 *g;)° 25° PI(Kx , + f) uniformly on X x (0, +00)\E. (3.356)
Suppose x € X\ F. By additivity of the potential and by triangle inequality we get that
|Kx o f ()= Kx %95 ()] < |[Kx o5 fT(2) = Kx sxg] ()| +Kx o[~ (2) = Kx s%g; (). (3.357)
However, by the definition of Fl ; and F_ j, it follows that
|Kx o f(x) — Kx*gj(z)] <2791 (3.358)
for all z € X\ F. So we proved that

Kx s % g;j Uary Kxs* f uniformly on X\F. (3.359)

So from ([3.356|) and ([3.359)) we get that there exists jo € N such that

sup |Kx s * f(x) = Kxs % gjo (2)] <
zeX\F

: (3.360)

Wl m

sup  |PI(Kx * f)(P) = PI(Kx.s % g;o)(P)] < g (3.361)
PEX % (0,400)\E

By construction g;, € Co(X), so Kx s * gj, € C(X) so we apply Lemma to the function
Kx s * gj, and we get that there exists > 0 such that

(3.362)

[GUN NG

sSup ( sup ‘PI(KX7S *® gjo)(P) - KX,S * gjo(x)’> <
z€X \ PeB,((x,0),r)

The statement follows from (|3.360)), (3.361)) and (3.362) by triangle inequality. O
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We are now going to prove the main results of this chapter.

Theorem 3.4.7 (Non tangential convergence for the Riesz potential). Let (X,d, m) be a com-
pact Ahlfors-reqular space. Let f € LP(X). Let M > 1. Then 3E C X x (0,400) such that E
is M-Cky , p-thin at X x {0} and
lim  PI(Kx.* f)(P) = Ky * f(20) (3.363)
(I,y):P%(Io,O)

xz€Bg(zg,My)
(z,y)¢E

for Cry, p-almost everywhere xo € X, di.e. IF C X such that Ck  p(F) = 0 and
holds Vxg € X\F.

Proof. Let f € LP(X). Let €; > 0 be a sequence such that €; | 0 as j — +o00. By Lemmam
there exist E; C X x (0,+00), F; C X and r; | 0 such that

ZCKX,S,p(EJM’*> < 400, and Z Crx.,p(F)) < +o0, (3.364)
J J
sup < sup |PI(Kx s f)(P) — Kx* f(x)) < €j. (3.365)
xEX\Fj PEBP((m,O),Tj)\Ej

Let us choose t; | 0 such that
tj < Tjt1, (3.366)

“+oo
{(z,y) | © € Ba(xo, My)} N By((x0,0),7) C U B,((20,0),75) N {(=,y) |y > t;}.  (3.367)

A sequence t; with such properties exists thanks to the definition of the distance p.
Let us define
E; = Ein{(z,y) |y > t;}, (3-368)

and
E=JE; (3.369)
j

Let ¢ € N be a fixed index. By construction ¢; > t; for all j > 7, and

y<t1} :U{(:U,y) €E;

j=1

+o0
Eti={(fc,y)€E|y<ti}={(x,y)e U B y<tz}. (3.370)

j=1

However from (3.368) we have

{(x,y) €L

y < ti} =0 Vj<i, (3.371)
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so we get
+00 Foo
E;, = U {(w,y) €k |y< tl} C U E;. (3.372)
j=i j=i
From (3.278)), (3.372) and by subadditivity of the capacity we get
+oo +oo
Cxan B < Crtn [ U B | <30 Cren (B)7) (3.373)
j=i j=i

Equation (3.364|) entails

+o0 .
Crtxan B <3 Cre o (B)7) 25°0, (3.374)
Jj=t

so, using the monotonocity of the capacity, we get

Crex (BT =30, (3.375)
ie. Eisa M-Ck,  p-thin set at X x {0}.
Now we define
+00 +00
F=NUB&. (3.376)
i=1 j=i
By (3.364)) we have
+o00 +00
CKX,s’p(F) S CKX,svp U FJ S Z CKX,svp(Fj) — 0 as -] — “I’OO, (3377)
j=i j=i

so we have Crcy , p(F) = 0.
Let g € X\ F. By definition 3jo = jo(zo) such that zg € F}, Vj > jo. From (3.365) we get

sup |PI(Kxs* f)(P) — Kx,s* f(z0)] <€ Vj> jo. (3.378)
PeB((w0,0),m5)\E;

Let ¢ > jo. Using (3.367)) and the definition of E we get

sup |PI(Kx;s* f)(P) — Kx,s * f(z0)| < (3.379)
({P=(2.9) | € Ba(xo,My)}NB,((x0,0)ri))\ E
sup ( sup PI(K 0 % f)(P) — Ky f(:ro)!> <
321 \ P&(B,((20,0)r)N{(2.) | y>t;\E

sup < sup \PI(KX,S*f)(P)—vas*f(x0)|> <
3zt \ Pe(By((20,0),r)N{(z,y) | y>t; D\ E;

supe; = ¢ — 0 as i — +oo,
Jj2i

which entails the thesis, finishing the proof. O
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Theorem 3.4.8 (Tangential convergence for the Riesz potential). Let (X,d, m) be a compact
Abhlfors-regular space. Let p > 1, let z% <s< 1. Let Q> 1 be the constant defined by Theorem

[53.27]] Consider the region
Qay,kex e p2mr = {(2,9) | © € Balwo, Q- nx (w0, My))} - (3.380)
Let f € LP(X). Then

lim PI(Kxs* f)(P) = Kxs * f(x0) (3.381)
(.T,y):Pﬁ(Z‘(),O)
PEQ:EO,nys,p,Q,M

for m-almost all xg € X.

Proof. The proof is similar to the one of Theorem Let f € LP(X). Let ¢ > 0 be a
sequence such that ¢; | 0 as j — +00. By Lemma there exist £; C X x (0,400), F; € X
and 7; | 0 such that

D Cryp(EN) <400, and > Crky,p(F)) < +oo, (3.382)
J J
sup < sup |PI(Kx 5% f)(P) — Kx * f(x)) < €j. (3.383)
ZEEX\FJ' PEBP((x,O),Tj)\Ej

Let us choose t; | 0 such that
t]‘ < Tjt1, (3384)

+o0o
{(x,y) | & € Ba(wo, Q- 0k (0, My)))} N By((20,0),7:) € | Bp((20,0),75) N {(z,9) | y > t;}.
j=i

(3.385)
A sequence t; with such properties exists thanks to the definition of the distance p.
Let us define
E;=E;n{(z,y) |y = t;}, (3.386)
and
E=|]JE] (3.387)
J
By the same argument used in the proof of Theorem [3.4.7] we get
Crex (B 230, (3.388)
ie. Eisa M-Cg,  p-thin set at X x {0}.
Now we define
“+00 +00

F=NU#r, (3.389)
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and

S:=Fu (ﬂ {JI eX ‘ Q%KX,S,P,Q,M NE; # @}) . (3390)

>0
By the same argument in the proof of Theorem we have Cf  ,(F) = 0, and hence
m(F') = 0. By Proposition we have

m (ﬂ {z € X | Qurx,pomNE # VJ}) =0, (3.391)

t>0
so we proved
m(S) = 0. (3.392)
Let zp € X\S. By definition of S there exists jo = jo(xo) such that zy € F}, Vj > jo, and such
that
Qo kxapnt N By =0 for all ¢ < t,. (3.393)

From ([3.383)) we get

sup |PI(Kxs* f)(P) — Kx,s* f(z0)] <€ Vj> jo. (3.394)
PeB,((20,0),75)\E;

Let i > jo. Using (3.385]), (3.393) and the definition of E we get

wp PI(Exax )(P) — Ky x flxo)] < (3.395)
P:(*Tvy)EQzO,KX’S,p,Q,M
y<tj0

sup |PI(Kxs* f)(P) — Kx.s * f(z0)] < (3.396)
P=(2,y)€%q K x ,.p.0.M\E

y<tj0
sup sup P (P) — Ko flao)]) =
J2% N\ Pe(By((20,0),r5){(z,9) | y=t; H\E

sup < sup |PI(Kxs* f)(P) — Kx s * f(xo)|> <
J2i \ PE€(Bp((0,0),r5)N{(z,y) | y=t; H\E;

supe; = ¢ — 0 as i — +00,
Jj=i

which entails the thesis, finishing the proof. O
Observation 3.4.1. The region {2 K . pa,m has the following properties:

e case i < s < 1. There exist constants 0 < C; < Cs, yo > 0 that depend only on X, s, p,
M such that

U

- 1
QIO7KX,S7P797M N {(way) ’ y < Z/O} {(x’y) | Yy <Yo, TE€ Bd(an Cr - yp<s_1)+1}7

~ 1
Qoo kxopam N{(@,y) [y <yo} € {(z,9) |y <wo, € Ba(wo, Ca - yrE-DH },

N
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® case s = 1%' There exist constants 0 < f(l < f(g, 0 < Dy < Do, yo > 0 that depend only
on X, s, p, M such that

1)

{(337y) ‘ Yy < Yo, T S Bd(‘,r())Kl : exp(Dl : y)}7
Quoixop N y) [y <y} € {(2,9) |y <wo, © € Ba(wo, K2 - exp(D2 - y)}.

Q$07Kx,s,p,Q,M N{(z,y) |y <yo}

N

The proof of this observation follows from Proposition
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