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Abstract

This work revolves around potential theory in metric spaces, focusing on applications of

dyadic potential theory to general problems associated to functional analysis and harmonic

analysis. In the first part of this work we consider the weighted dual dyadic Hardy’s inequality

over dyadic trees and we use the Bellman function method to characterize the weights for which

the inequality holds, and find the optimal constant for which our statement holds. We also show

that our Bellman function is the solution to a stochastic optimal control problem. In the second

part of this work we consider the problem of quasi-additivity formulas for the Riesz capacity

in metric spaces and we prove formulas of quasi-additivity in the setting of the tree boundaries

and in the setting of Ahlfors-regular spaces. We also consider a proper Harmonic extension to

one additional variable of Riesz potentials of functions on a compact Ahlfors-regular space and

we use our quasi-additivity formula to prove a result of tangential convergence of the harmonic

extension of the Riesz potential up to an exceptional set of null measure.
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Introduction

Potential theory was born out of the theory of electrostatic potential, from the work of C.F.

Gauss. The first notion of capacity dates back to the 1830’s and it is the notion of electrostatic

capacitance of a compact set K ⊆ R3. We consider a distribution of charge µ over R3, which

is a positive measure on R3. The amount of charge on a conductor K ⊆ R3 is equal to µ(K).

Given a distribution of charge µ, the electrostatic potential associated to µ at the point y ∈ R3

is defined by

Vµ(y) :=

∫
R3

dµ(x)

|x− y|
, (1)

and the energy associated to µ is defined by

E(µ) :=

∫
R3

∫
R3

1

|x− y|
dµ(x)dµ(y). (2)

A charge distribution µ̃ is called an equilibrium charge distribution for a compact set K ⊆ R3

if µ̃ is supported on K and if the potential Vµ̃(y) is equal to a constant value Vµ̃ for all y ∈ K,

except for a ”small” set of exceptional points. An equilibrium charge distribution µ̃ minimizes

the value of the energy E(µ) for charge distributions µ such that µ(K) = µ̃(K). Using these

notions we define the electrostatic capacitance of a compact set K ⊆ R3 to be ratio between the

amount of charge in K and the value of the electrostatic potential associated to an equilibrium

charge distribution, i.e.

CE.S.(K) :=
µ̃(K)

Vµ̃
. (3)

Potential theory has always been strictly connected to the theory of Hilbert spaces and

harmonic analysis. In the 1830’s Gauss proved the existence of equilibrium potentials by min-

imizing a quadratic integral, the energy (see [15]). The same result was proved with modern

mathematical rigor by O. Frostman in the 1930’s (see [14]). This theme kept on growing during

the 1940’s, and it was made expecially clear in the work of H. Cartan (see [12]).

In the following decades a mathematical concept of potential theory, disconnected from the

theory of the electrostatics, was developed. G. Choquet (see [13]), introduced a definition of

capacity and capacitability in 1950, and in the 1970’s Frostman developed the first rigorous

7
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mathematical definition of potential theory. In the early 1960’s Maz’ya developed a non linear

potential theory which is connected to the theory of function spaces.

In 1990 D.R. Adams and L.I. Hedberg developed an axiomatic definition of potential theory

for metric measure spaces (see [4]) which allows to prove many results in a very general setting.

In this work, we refer to [4] for the definitions and main theorems about potential theory. In

the 1990’s J. Heinonen and P. Koskela developed a potential theory on metric spaces based on

the notions of rectifiable curves and of ”weak gradients” (see [18]).

General problems in potential theory

This work analyzes two problems in the field of potential theory: the weighted dual dyadic

Hardy’s inequality on trees and the quasi-additivity of the capacity in the setting of Ahlfors-

regular spaces, with applications to the boundary behaviour of harmonic extensions of Riesz

potentials.

Hardy’s inequality states that∫ +∞

0

(
1

x

∫ +∞

0
f(y)dy

)p
dx ≤

(
p

p− 1

)p ∫ +∞

0
f(x)pdx (4)

for every positive measurable function f , for every p > 1. The constant (p/(p−1))p is optimal.

In 1920 G. H. Hardy was interested in the study of the discrete version of the previous inequality

+∞∑
j=1

(
a1 + · · ·+ aj

j

)p
≤
(

p

p− 1

)p +∞∑
j=1

apj , (5)

where aj are positive real numbers, motivated by the goal of giving a simpler proof of ”Hilbert’s

inequality for double series” (see [16]). For p = 2 the inequality was proved by Hardy in his

earlier paper [17].

In the following years it became clear that Hardy’s inequality and its extensions played a central

role in the studies in the broad area of Harmonic analysis. A reason for the relevance of Hardy’s

inequality in harmonic analysis is that it is ”the prototype of a (weighted) norm inequality for

an integration (averaging) operator between Lp spaces”, and averaging operators are among

the pillars of harmonic analysis. This interpretation allows to view a vast number of theorems

as Hardy’s type inequalities, and lead to the construction of many inequalities of the Hardy

type.

The inequality we will be considering in this work is a weighted inequality of the Hardy type
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over the dyadic tree. A formulation of such inequality can be the following: given the real

interval [0, 1] we may consider the family of dyadic subintervals

D := {I = [a2−n, (a+ 1)2−n] ⊆ [0, 1] | n = 0, 1, 2, . . . , a = 0, 1, . . . , 2−n − 1}.

We want to find a characterization of the weights

D 3 I 7−→ αI ∈ R+,

D 3 I 7−→ λI ∈ R+,

such that the inequality ∑
I∈D

αI

(
1

|I|
∑
J∈D
J⊆I

φ(J)λ
1
p′
J

)p
≤ C(p)

∑
I∈D

φ(I)p (6)

holds for all non negative functions φ ∈ lp(D), where C(p) is an appropriate constant, and

we want to find the optimal value of C(p) for which the inequality holds assuming that our

characterization of {αI} and {λI} holds.

A well-known result from potential theory (see [1]) is that the capacity CK,p(E) of a set

E ⊆ X is a sub additive map

CK,p : {Borel subsets of X} −→ [0,+∞],

hence we have

CK,p

⋃
j∈N

Ej

 ≤∑
j∈N

CK,p(Ej) (7)

for all Ej ⊆ X.

In general the capacity is very far from superadditive, an example of this property coming from

the theory of electrostatic potential. Suppose B ⊆ R3 is a compact ball. When we consider

the electrostatic capacitance CE.S.(B) we have

CE.S.(B) = CE.S.(B̊) = CE.S.(∂B), (8)

hence

CE.S.(B̊) + CE.S.(∂B) = 2 · CE.S.(B̊ ∪ ∂B), (9)

which is a counter example to the quasi-additivity of the electrostatic capacitance.

A common problem in harmonic analysis is to find notions of ”properly separated” families of

sets {Ej}j∈N implying that

∑
j∈N

CK,p(Ej) ≤ C · CK,p

⋃
j∈N

Ej

 , (10)
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for an appropriate constant C ≥ 1.

Results of this kind have been developed through the years, including results using a notion

separation of the sets Ej based on Whitney decompositions (see [2], [4]).

In this work we consider the quasi-additivity formula in the article [3] from H.Aikawa and A.A.

Borichev, and we extend it to the setting of the theory of the potential on tree boundaries.

Then, we use the results from the theory of dyadic potential (see [8]) to extend the quasi-

additivity formula on the setting of tree boundaries to the setting of compact Ahlfors-regular

spaces. This results represents a starting point in the construction of a potential theory for the

setting of Ahlfors-regular spaces analoguos to the classical potential theory in Rn. Using the

quasi-additivity formula for the compact Ahlfors-regular spaces we prove a theorem about the

convergence of the values of harmonic extensions of Riesz potentials which is analoguos to a

result by A. Nagel, W. Rudin and J.H. Shapiro (see [25]) in the classical setting of Rn.

Chapter 1

The first chapter of this work will present notions of stochastic analysis needed for the

understanding of the theory behind the Bellman functions, and the theory of the Bellman

functions in stochastic control. The notations, definitions and theorems listed in this chapter

are all thoroughly explained in the text [24] by B. Øksendal, in chapters 1, 2, 3, 4, 5, 7 and

9. The theory of the Bellman functions requires the notions of stochastic analysis necessary to

define the Itô integral, which is used to define a Bellman function

v(x) = sup
{ut}t≥0

Ex
[ ∫ T̂

s
F (r,Xr, ur)dr +K(T̂ ,X

T̂
)χ
T̂<+∞dBr

]
,

where Xt is a stochastic process solution to the stochastic differential equation

Xh = Xx
h = x+

∫ h

s
b(r,Xr, ur)dr +

∫ h

s
σ(r,Xr, ur)dBr; h ≥ s,

where b and σ are proper coefficients, {Bt}≥0 is a Brownian motion, T̂ is a proper stopping time

and {ut}t≥0 is an admissible control process. Here F is a profit density and K is a ”bequest”

function (gain at the moment of retirement). So a Bellman function v is the solution to a

stochastic optimal control problem that consists of finding the maximum average gain over a

trajectory of a controlled process {Xt}t≥0.

This chapter also includes the notions needed to prove the theorem about the Bellman func-

tion being a solution to the Hamilton-Jacobi-Bellman equation, and its converse: it contains

the definitions and theorems about the strong Markov property, infinitesimal generator of a
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stochastic process, Dynkin’s formula and the Dirichlet-Poisson problem.

Chapter 2

In the second chapter of this work we use the method of the Bellman function to character-

ize the measures for which the weighted dual Hardy’s inequality holds on dyadic trees. We also

give an explicit interpretation of the corresponding Bellman function in terms of the theory of

stochastic optimal control.

The weighted Hardy’s inequality on trees was initially studied for its applications to the

theory of holomorphic function spaces, but it is an interesting topic on its own. The weighted

dyadic Hardy’s inequality was studied (see [6] and [7]) to characterize Carleson measures for

analytic Besov spaces.

In this work we study the problem and solve it for the general case 1 < p < +∞ and we prove

that the inequality holds with constant C(p) =
(
p/(p− 1)

)p
=
(
p′
)p

. See Theorem 0.0.1.

But for the best constant, our characterization of the dual dyadic Hardy’s inequality is not

new, see [6] and [9]. The proof we give is new and it is inspired to the linear case given in [5].

The weighted dyadic Hardy’s inequality can be characterized by other equivalent, but different

conditions. For instance a capacitary characterization can be given, using the Maz’ya theory,

see [21].

In the past twenty years several results of this kind have been proved using the Bellman

function method. The ideas behind the Bellman function technique were inspired by [11], see

also [10] . The expository article [23] investigates the connection between the Bellman function

technique in dyadic analysis and Bellman functions from the theory of stochastic control. The

seminal article [22] presents a thorough exposition about the Bellman function technique and

its applications. The article [5] solves the problem for the case p = 2, and the Bellman function

in our article is equal to the Bellman function used in [5] when we set p = 2. The Bellman

function we use in this article is very similar, but not completely, to the one used for the proof

of the dyadic Carleson embedding theorem, see [20], and for the Carleson embedding theorem

the same constant
(
p′
)p

is sharp.

We are now going to present the results in the second chapter of this work.

Given the interval I0 = [0, 1] we denote by D(I0) the standard dyadic tree structure of real
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intervals I ⊆ I0. Let I ∈ D(I0), let

ϕ : D(I0) −→ R.

We will denote the sum of the values ϕ(J) for J ∈ D(I) by∑
J∈D(I)

ϕ(J) =:
∑
J⊆I

ϕ(J).

We consider the maps

I 7−→ αI ∈ R+,

I 7−→ λI ∈ R+,

I 7−→ φ(I) ∈ R+,

where we can read {αI} as a choice of weights, {λI} as a measure and {φ(I)} as a function

over the dyadic tree.

The first main result of this work is the following one:

Theorem 0.0.1. Let I0 be a real interval. Let {αI} and {λI} be a choice of weights and

measure. If
1

|I|
∑
K⊆I

αK

(
1

|K|
∑
J⊆K

λJ

)p
≤ 1

|I|
∑
K⊆I

λI < +∞ ∀I ∈ D(I0) (11)

is satisfied, then the dual weighted dyadic Hardy’s inequality holds for {αI} and {λI}, i.e.

1

|I0|
∑
I⊆I0

αI

(
1

|I|
∑
J⊆I

φ(J)λ
1
p′
J

)p
≤ C(p)

1

|I0|
∑
I⊆I0

φ(I)p for all φ ∈ lp(D(I0)) (12)

for any choice of {φ(I)}. Here C(p) is the constant

C(p) =

(
p

p− 1

)p
=
(
p′
)p
.

The constant C(p) in the inequality (12) is sharp.

Moreover, if the inequality (12) holds with constant C(p) = 1 then the inequality (11) holds for

any I ∈ D(I0) by choosing φ(I) = λ
1
p

I and by rescaling I0 over I.

By setting η(I) = φ(I)λ
− 1
p

I and ω1−p
I = αI

|I|p we rewrite the inequality (12) in the form

∑
I⊆I0

ω1−p
I

(∑
J⊆I

η(J)λJ

)p
≤ C(p)

∑
I⊆I0

η(I)pλI ,
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which, by duality, is equivalent to the weighted dyadic Hardy’s inequality

∑
I⊆I0

λI

(∑
J⊇I

ψ(J)

)p′
≤ C(p)

∑
I⊆I0

ψ(I)p
′
ω(I) for all ψ ∈ lp′(D(I0)).

To prove the results in this chapter we found and used the function

B(F, f,A, v) =

(
p

p− 1

)p
F − pp

p− 1

fp

(A+ (p− 1)v)p−1

defined over the domain

D = {(F, f,A, v) ∈ R4 | F > 0, f > 0, A > 0, v > 0, v ≥ A, fp ≤ Fvp−1}.

The properties of B we use are stated in subsection 2.1.2.

The function B can be interpreted as the solution to a Hamilton-Jacobi-Bellman equation

associated to a stochastic problem of optimal control, which we will state in the work.

Chapter 3

In the third chapter of this work we prove formulas of quasi-additivity for the capacity

associated to kernels of radial type in the setting of the boundary of a tree structure and in

the setting of compact Ahlfors-regular spaces. We also define a notion of harmonic extension,

to one additional variable, of a function defined over a compact Ahlfors-regular space, and we

prove a result of tangential convergence of the harmonic extension to the values at the boundary.

Let 1 < p < +∞, let 1
p + 1

p′ = 1, let 1
p′ ≤ s < 1. Let f ∈ Lp(Rn). Let us consider the Bessel

potential of f

Bs ∗ f(x) := F−1
(

(1 + 4π2|ξ|2)−
s
2F(f)(ξ)

)
(x), (13)

where F(f) denotes the Fourier transform of f , and let us consider the harmonic extension of

the Bessel potential of f

PI(Bs ∗ f) : Rn × (0,+∞) −→ R (14)

defined by

PI(Bs ∗ f)(x0, y0) :=

∫
Rn

Γ(n+1
2 )

π
n+1

2

y0(
y2

0 + |x0 − x|2
)n+1

2

Bs ∗ f(x)dx.
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A classical result by Nagel, Rudin and Shapiro (see [25]) states that PI(Bs ∗ f)(x, y) converges

to Bs ∗ f(x0) non tangentially as (x, y)→ (x0, 0) for all x0 ∈ Rn\E, where the exceptional set

E is a set of Bessel capacity CBs,p(E) = 0, where the Bessel capacity of a set is defined by

CBs,p(E) := inf{‖g‖pLp(Rn) | Bs ∗ g(x) ≥ 1 for x ∈ E}. (15)

Moreover, PI(Bs ∗ f)(x, y) converges to Bs ∗ f(x0) as (x, y)→ (x0, 0) in a region of tangential

order of contact, for all x0 ∈ Rn\A, where the exceptional set A is a set of null measure.

Aikawa and Borichev (see [3]) generalized this result by Nagel, Rudin and Shapiro to a

wider family of kernels, and gave a proof based on formulas of quasi-additivity of the capacity

associated to kernels of radial type. In our work we generalize the theorems proved by Aikawa

and Borichev to the setting of compact Ahlfors-regular spaces, and we prove a result for the

tangential convergence of properly defined harmonic extensions (see section 3.3) of Riesz po-

tentials of functions f : X −→ R defined on an Ahlfors-regular space X.

From the theory of the potential it is well known that the Lp capacity CK,p(E) of a set E

is subadditive, i.e. for all countable disjoint families {Ej} of sets such that E =
⋃
j Ej we have∑

j

CK,p(Ej) ≤ CK,p(E). (16)

In general, the capacity is very far from superadditive. Aikawa and Borichev gave a notion of

”separation” for the sets Ej that guarantees that the capacity of the sets Ej is quasi-additive,

i.e. there exists a universal constant A such that

CK,p(E) ≤
∑
j

CK,p(Ej) ≤ A · CK,p(E), (17)

for any family {Ej} that satisfies a proper condition (see [3, Theorem 5]).

We are now going to present the results in the third chapter of this work.

We proved the following two theorems that generalize the previous result to the setting of the

boundaries of tree structures and to the compact Ahlfors-regular spaces.

Theorem 0.0.2 (Quasi-additivity of the capacity for tree boundaries). Let X = ∂T be the

boundary of a tree T of root o, let ρ : X×X −→ R be the distance defined by ρ(x, y) = δ−d(x∧y,o)

for a parameter 0 < δ < 1, let m be a σ-finite Borel measure on X. Suppose K : X ×X −→ R
is a proper radial Kernel (see section 1, Theorem 3.1.2).
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Let 1 < p < +∞. Let CK,p(E) denote the Lp capacity of E ⊆ X associated to the kernel K.

Let x ∈ X, r > 0. Consider the radius

ηp(x, r) := inf

{
δ−n+ 1

2 ∈ R
∣∣∣∣ n ∈ N, m(Bρ(x, δ

−n+ 1
2 )) ≥ CK,p(Bρ(x, r))

}
. (18)

and define

η∗p(x, r) := max{r, ηp(x, r)}. (19)

Let J be a countable (or finite) set of indices. Let {Bρ(xj , rj)}j∈J be a family of metric

balls in X such that ηp(xj , rj) exists for all j ∈ J . Suppose E ⊆ X is a compact subset of⋃
j∈J Bρ(xj , rj). Suppose {Bρ(xj , η∗p(xj , rj))}j∈J is disjoint.

Then

CK,p(E) ≤
∑
j∈J

CK,p(E ∩B(xj , rj)) ≤ A · CK,p(E), (20)

where A = A(X,K, p), 1 < A < +∞, is a constant depending only on X, K and p.

Theorem 0.0.3 (Quasi-additivity for Riesz capacity on compact Ahlfors-regular spaces). Let

(X, d,m) be a compact Q-regular Ahlfors space. Let 1 < p < +∞ and 1
p + 1

p′ = 1. Let
1
p′ < s < 1. Let CKX,s,p(E) denote the Lp Riesz capacity of E ⊆ X. For every x ∈ X and

r > 0 consider the radius

ηX,p(x, r) := inf
{
R > 0 | m(Bd(x,R)) ≥ CKX,s,p(Bd(x, r))

}
, (21)

and define

η∗X,p(x, r) := max{r, ηX,p(x, r)}. (22)

We observe that the radius η∗X,p(x, r) depends on the parameter s. Then there exists a constant

Ω = Ω(X, p, s) ≥ 1 such that for all M ≥ 1 there exists a constant 1 < Ã < +∞ such that, for

any countable family {Bd(xk, rk)}k∈F of balls in X such that the family {Bd(xk,Ω ·η∗X,p(xk,M ·
rk))}k∈F is disjoint, for any compact set E ⊆ X such that E =

⋃
k Ek and Ek ⊆ Bd(xk, rk) ∀k,

we have ∑
k∈F

CKX,s,p(Ek) ≤ Ã · CKX,s,p(E). (23)

The constant Ã depend only on the choice of the space X and the of the parameters p, s and

M .

The quasi-additivity formula for compact Ahlfors-regular spaces is used to prove the fol-

lowing two theorems about the convergence of a ”harmonic extension” of the Riesz potential

of a function f defined on a compact Ahlfors-regular space X.
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Theorem 0.0.4 (Non tangential convergence for the Riesz potential). Let (X, d,m) be a com-

pact Ahlfors-regular space. Let M ≥ 1. Let f ∈ Lp(X). Let KX,s denote the Riesz kernel over

X. Let PI(g) denote the Poisson Integral of g over X × (0,+∞) (see definition 3.3.1). Then

∃E ⊆ X × (0,+∞) such that E is M -CKX,s,p-thin at X × {0} (see definition 3.4.2) and

lim
(x,y)=P→(x0,0)

x∈Bd(x0,y)

(x,y)6∈E

PI(KX,s ∗ f)(P ) = KX,s ∗ f(x0) (24)

for CKX,s,p-almost everywhere x0 ∈ X, i.e. ∃F ⊂ X such that CKX,s,p(F ) = 0 and (24) holds

∀x0 ∈ X\F .

Theorem 0.0.5 (Tangential convergence for the Riesz potential). Let (X, d,m) be a compact

Q-regular Ahlfors space. Let p > 1, let 1
p′ ≤ s < 1. Let Ω > 1 be the constant defined by

Theorem 3.2.4. Let M ≥ 1.

For every x ∈ X and r > 0 consider the radius

ηX,p(x, r) := inf
{
R > 0 | m(Bd(x,R)) ≥ CKX,s,p(Bd(x, r))

}
, (25)

and define

η∗X,p(x, r) := max{r, ηX,p(x, r)}. (26)

Consider the region

Ωx0,KX,s,p,Ω,M :=
{

(x, y) | x ∈ Bd(x0,Ω · η∗X,p(x0,My))
}
⊆ X × (0,+∞). (27)

Let f ∈ Lp(X). Then

lim
(x,y)=P→(x0,0)
P∈Ωx0,KX,s,p,Ω,M

PI(KX,s ∗ f)(P ) = KX,s ∗ f(x0) (28)

for m-almost all x0 ∈ X. The region Ωx0,KX,s,p,Ω,M is tangential to the boundary X × {0}.

These theorems generalize the results by Nagel, Rudin and Shapiro to the setting of compact

Ahlfors-regular spaces, and constitute a starting point for a potential theory on Ahlfors-regular

spaces analogous to the classical potential theory on Rn. We think that Theorems 0.0.4 and

0.0.5 can be generalized to the setting of non compact Ahlfors-regular spaces.

This part of our work is heavily inspired by [3]. We reference [4] and [1] for the general

notions and facts about the theory of the potential. We reference [8] for the theory of the

potential on tree boundaries.



Chapter 1

Bellman functions in stochastic

control

1.1 Notations and definitions

We will need the definitions of random variable and stochastic process, and we will use in

most cases the same notations used in [24]. We recommend to check a text of probability and

measure theory for the basic notions of probability needed in this work.

Definition 1.1.1 (Random variable). We denote with B(Rd) the σ-algebra over the set Rd

generated by the Borel subsets of Rd.
Given a probability space (Ω,F , P ), where Ω is a set, F is a σ-algebra over Ω and P : F → R
is a probability measure over Ω, a random variable

Z : (Ω,F , P ) −→ (Rd,B(Rd))

is an application

Z : Ω −→ Rd

measurable with respect to the σ-algebras F and B(Rd).
Given two measurable spaces (Ω1,F1), (Ω2,F2) an application

Z : Ω1 −→ Ω2

is measurable if, for all A ∈ F2, Z−1(A) ∈ F1.

17
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Definition 1.1.2 (Stochastic process). Given a probability space (Ω,F , P ), given a set of

times I, given for each t ∈ I a random variable

Xt : (Ω,F , P ) −→ (Rd,B(Rd)) (1.1)

we denote by stochastic process in Rn over the probability space (Ω,F , P ) the collection of

random variables {Xt}t∈I .

Notation 1.1. Given a probability space (Ω,F , P ) and a set of times I, given a stochastic

process {Xt}t∈I
Xt : (Ω,F , P ) −→ (Rd,B(Rd)),

we will use the following notations to refer to {Xt}t∈I :

1. {Xt}t∈I is the application X that maps each time t ∈ I into the random variable Xt, i.e.

X : I −→ (Rd)Ω (1.2)

X(t)(ω) := Xt(ω) ∀t ∈ I, ∀ω ∈ Ω.

2. {Xt}t∈I is the application X that maps each ω ∈ Ω into the trajectory t 7→ Xt(ω), i.e.

X : Ω −→ (Rd)I (1.3)

X(ω)(t) := Xt(ω) ∀ω ∈ Ω, ∀t ∈ I.

3. {Xt}t∈I is the application X defined by

X : I × Ω −→ Rd (1.4)

X(t, ω) := Xt(ω) ∀(t, ω) ∈ I × Ω.

The notations in (1.1), (1.2), (1.3) and (1.4) are equivalent to each other, so we will use each

one of them indiscriminately.

We will also denote a value Xt(ω) ∈ Rd by

Xt(ω) = X(ω)(t) = X(t, ω) = X(t)(ω) ∀ω ∈ Ω, ∀t ∈ I.

We are going to enunciate the notions needed to define a Brownian motion. We recommend

to check [24, chapter 2] for a more detailed exposition.

The definition of finite-dimensional distributions is the core part in the construction of many

stochastic processes, one example being the Brownian motion.
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Definition 1.1.3 (Finite-dimensional distributions). Given a stochastic process X={Xt}t∈T
in Rn

Xt : (Ω,F , P ) −→ (Rd,B(Rd)),

where T = [0,+∞), we denote by finite-dimensional distributions of the proccess X the mea-

sures µt1,...,tk defined over the Borel σ-algebra B(Rnk), for k = 1, 2, . . . , by

µt1,...,tk(F1 × F2 × · · · × Fk) = P [Xt1 ∈ F1, . . . , Xtk ∈ Fk]; ti ∈ T.

We recall the definition of expected value and conditional expectation from the basics of

the theory of probability.

Definition 1.1.4 (Expectation, conditional expectation). Given a random variable

X : (Ω,F , P ) −→ (Rd,B(Rd))

we denote by expected value of X with respect to P the real number

E(X) :=

∫
Ω
X(ω)dP (ω).

Let G be a σ-algebra, G ⊆ F . Suppose that E(|X|) < +∞. We denote by realization of the

conditional expectation of X given G (with respect to P ) a random variable

Z : (Ω,F , P ) −→ (Rd,B(Rd))

such that:

1. Z is G -measurable,

2. ∫
G
Z(ω)dP (ω) =

∫
G
X(ω)dP (ω) for all G ∈ G .

We will write Z = E[X|G ] to denote that Z is a realization of the conditional expectation of

X given G . For all Z1, Z2 realizations of the conditional expectation of X given G we have

Z1 = Z2 almost surely with respect to P , so we will sometimes just write E[X|G ] in expressions

to denote a realization Z of the conditional expectation when the expression is true for every

possible realization of the conditional expectation. We recommend to check [24, appendix B]

or a text of probability for an exposition over the conditional expectation.

The definition of filtration is needed for the theory of stochastic processes, and it represents

the amount of ”information” we know at each time t about the configuration of the stochastic

process. The concept or martingale is a key element in the theory of stochastic processes, and

it is also needed for the definition of the Itô integral. It represents a stochastic process {Xt}t≥0

such that Xt can be estimated at a time t > s by considering Xs.



20 CHAPTER 1. BELLMAN FUNCTIONS IN STOCHASTIC CONTROL

Definition 1.1.5 (Filtration). Given a measurable space (Ω,F ), a filtration of said space is

a family M = {Mt}t≥0 of σ-algebras Mt ⊆ F such that

0 ≤ s < t =⇒Ms ⊆Mt.

A n-dimensional stochastic process {Mt}t≥0 on a probability space (Ω,F , P ) is called a mar-

tingale with respect to a filtration {Mt}t≥0 (and with respect to P ) if

(i) Mt is Mt-measurable for all t,

(ii) E[|Mt|] < +∞ for all t,

(iii) E[Ms | Mt] = Mt for all s ≥ t.

Stopping times are a key element in the theory of stochastic processes. They are random

times with appropriate properties that make them a usable replacement to deterministic times

in most of the theorems about stochastic analysis.

Definition 1.1.6 (Stopping time, adapted process). Let (Ω,F , P ) be a probability space, let

{Nt}t≥0 be a filtration. A function

τ : Ω −→ [0,+∞]

is called a (strict) stopping time with respect to {Nt}t≥0 if

{ω ∈ Ω | τ(ω) ≤ t} ∈ Nt for all t ≥ 0.

Let N∞ be the smallest σ-algebra containing Nt for all t ≥ 0. Then we define by Nτ the

σ-algebra of all sets N ∈ N∞ such that

N ∩ {τ ≤ t} ∈ Nt for all t ≤ 0.

A stochastic process

Xt : (Ω,F , P ) −→ (Rn,B(Rn))

is called adapted to the fitration {Nt}t≥0 if Xt is Nt-measurable for all t ≥ 0.

We denote by Xτ the random variable

Xτ : (Ω,Nτ , P ) −→ (Rn,B(Rn))

Xτ (ω) =

Xτ(ω)(ω) if τ(ω) < +∞,

0 if τ(ω) = +∞.

It can be proved that Xτ defined in this way is measurable with respect to Nτ and B(Rn).
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The Brownian motion is the starting point for the theory of Itô processes. It is the most

important stochastic process for this work, we recommend to check a textbook about stochastic

processes to get a thorough explanation of this topic, Øksendal explains this topic in [24, chapter

2].

Definition 1.1.7 (Brownian motion). Let x ∈ Rn and s ∈ R be a fixed point and a fixed time.

Define

p(t1, y1, t2, y2) := (2π(t2 − t1))−
n
2 · exp

(
−|y2 − y1|2

2(t2 − t1)

)
for y ∈ Rn, t > 0.

For k = 1, 2, . . . , for 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk define a measure νt1,...,tk on B(Rnk) by

νt1,...,tk(F1 × · · · × Fk) := (1.5)

=

∫
F1×···×Fk

p(s, x, t1, x1)p(t1, x1, t2, x2) . . . p(tk−1, xk−1, tk, xk)dx1 . . . dxk,

where we use the convention that p(t, y, t, z)dz = dδy(z), the Dirac delta measure centered at

y and computed at z.

We define a (version of) n-dimensional Brownian motion starting from x at the time s to be a

stochastic process B = {Bt}t≥s on a probability space (Ω,F , P x)

Bt : (Ω,F , P x) −→ (Rn,B(Rn))

such that the finite-dimensional distributions of B are given by (1.5), i.e.

P x(Bt1 ∈ F1, . . . , Btk ∈ Fk) =

=

∫
F1×···×Fk

p(s, x, t1, x1)p(t1, x1, t2, x2) . . . p(tk−1, xk−1, tk, xk)dx1 . . . dxk

for all k ∈ N, t1, . . . , tk ∈ [s,+∞), for all F1, . . . , Fk Borel subsets of Rn.

The existence of a process with such properties is guaranteed by Kolmogorov’s extension the-

orem (see Theorem 1.2.1).

The concept of modification of a stochastic process is needed to understand Kolmogorov’s

continuity theorem that proves that the Brownian motion can be considered a continuous

process.

Definition 1.1.8 (Modification of a stochastic process). Let X = {Xt}t∈I , Y = {Yt}t∈I be

stochastic processes on the same probability space (Ω,F , P ). We say that X is a version (or

a modification) of Y if, for all t ∈ I

P ({ω ∈ Ω | Xt(ω) = Yt(ω)}) = 1.
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A Brownian motion B = {Bt}t≥0 satisfies the condition (1.13) in Kolmogorov’s continuity

theorem (see Theorem 1.2.2) with α = 4, β = 1, D = n(n+ 2), so the theorem guarantees that

there exists a continuous modification of B.

We need a notation for the σ-algebra generated by a Brownian motion at a time t for many

propositions, expecially for the important Markov property.

Definition 1.1.9 (Filtration induced by a Brownian motion). Let {Bt}t≥0 be a n-dimensional

Brownian motion. Let t > 0. We define Ft = F (n)
t to be the σ-algebra generated by the

collection of random variables

{Bs | 0 ≤ s ≤ t},

i.e. the smallest σ-algebra F such that the random variable Bs is measurable with respect to

F for all 0 ≤ s ≤ t.

We are going to enunciate the definitions and theorems needed to define the Itô integral.

We refer the reader to check a textbook about stochastic analysis for a thorough explanation

of the topic. The notations and definitions are taken from the textbook by Øksendal, see [24,

chapter 3].

The construction of the Itô integral begins with the construction of the Itô integral over ele-

mentary processes as a Riemann-Stieltjes integral, and then it extends the definition to a bigger

class V of processes. We begin with the 1-dimensional case for the Itô integral.

Definition 1.1.10 (Ito integrable process). Let (Ω,F , P ) be a probability space, let 0 ≤ S <
T . Let V = V(S, T ) be the class of functions f ∈ V,

f : [0,+∞)× Ω→ R

such that:

(i) (t, ω) 7→ f(t, ω) is B([0,+∞))×F -measurable,

(ii) (t, ω) 7→ f(t, ω) is Ft-adapted,

(iii) E[
∫ T
S f(t, ω)2dt] < +∞.

Definition 1.1.11 (Elementary process). A function φ ∈ V is called elementary if it has the

form

φ(t, ω) =
∑
j

ej(ω) · χ[tj ,tj+1)(t), (1.6)

here ej are functions

ej : Ω −→ R.
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The functions ej must be Ftj -measurable since φ ∈ V.

Let B = {Bt}t≥0 be a 1-dimensional Brownian motion over Ω. We define the Itô integral (with

respect to B) for an elementary function φ, with the form written in (1.6), by∫ T

S
φ(t, ω)dBt(ω) :=

∑
j≥0

ej(ω)[Bt̃j+1
−Bt̃j ](ω), (1.7)

where t̃j are the points

t̃j =


tj if S ≤ tj ≤ T,

S if tj < S,

T if tj > T.

Definition 1.1.12. (Itô integral) Let (Ω,F , P ) be a probability space. Let 0 ≤ S < T . Let

f ∈ V(S, T ). Let B = {Bt}t≥0 be a 1-dimensional Brownian motion over Ω. Then the Itô

integral of f from S to T (with respect to B) is defined by∫ T

S
f(t, ω)dBt(ω) := lim

t→+∞

∫ T

S
φn(t, ω)dBt(ω) (limit in L2(P )), (1.8)

where {φn}n∈N is a sequence of elementary functions such that

E

[ ∫ T

S
(f(t, ω)− φn(t, ω))2dt

]
→ 0 as n→ +∞. (1.9)

Here the right hand side of (1.8) is defined by (1.7).

A sequence {φn}n∈N as such exists because of Lemma (1.2.4).

We are going to enunciate the definitions needed to define the Itô integral in the n-

dimensional case.

Definition 1.1.13 (n-dimensional Itô integral). Let (Ω,F , P ) be a probability space, let

{Bt}t≥0 = B = (B1, B2, . . . , Bn) be a n-dimensional Brownian motion of components

Bk
t : (Ω,F , P ) −→ (R,B(R)) for k = 1, 2, . . . , n.

Then we denote by Vm×nH (S, T ) the set of matrices v = [vi,j(t, ω)]i,j=1,...,n where each entry

vi,j : [0,+∞)× Ω −→ R

(t, ω) 7−→ vi,j(t, ω)

satisfies conditions (i) and (iii) in definition (1.1.10), and it also satisfies the condition

(ii)’ There exists an increasing family of σ-algebras {Ht}t≥0 such that:
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a) {Bt} is a martingale with respect to {Ht},

b) {vi,j}t≥0 is {Ht}-adapted.

It is possible to construct the Itô integral for the functions f ∈ Vm×nH (S, T ) in the same way as

it is done in (1.1.12).

If v ∈ Vm×nH (S, T ) we define, using matrix notation,

∫ T

S
vdB :=

∫ T

S


v1,1 · · · v1,n

...
...

vm,1 · · · vm,n



dB1

...

dBn


to be the m× 1 matrix whose i-th component is the following sum:

n∑
j=i

∫ T

S
vi,j(s, ω)dBj(s, ω).

Definition 1.1.14. Under the same notations as the previous definition, WH(S, T ) denotes

the class of processes

f : [0,+∞) −→ R

satisfying the conditions (i), (ii)’ and the condition

(iii)’ P

[
T∫
S

f(s, ω)2ds < +∞
]

= 1.

We also define WH =
⋂
T>0

WH(0, T ).

The Itô process is the basic example of solution to a stochastic differential equation and is

the key element in the definition of the Bellman function.

Definition 1.1.15 (Itô process). Let Bt be a m-dimensional Brownian motion on (Ω,F , P ).

An Itô process (or stochastic integral) is a stochastic process {Xt}t≥0 on (Ω,F , P ) of the form

Xt = X0 +

∫ t

0
u(s, ω)ds+

∫ t

0
v(s, ω)dBs. (1.10)

Here the coefficients

u : [0,+∞)× Ω −→ Rn; v : [0,+∞)× Ω −→ Rn×m

satisfy proper conditions to guarantee that the object (1.10) is well defined, i.e. v ∈ WH, so

that

P

[ ∫ t

0
v(s, ω)2ds < +∞ for all t ≥ 0

]
= 1.
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We also assume that u is Ht-adapted and

P

[ ∫ t

0
|u(s, ω)|ds < +∞ for all t ≥ 0

]
= 1.

If {Xt}t≥0 is an Itô process of the form (1.10), the equation (1.10) can be denoted by the

differential expression

dXt = udt+ vdBt.

The Itô diffusion is an example of Itô process where the coefficients of the associated stochas-

tic differential equation do not depend on the time variable. These processes are very important

for the proofs in this work, because for a process of this kind the Markov property holds.

Definition 1.1.16 (Itô diffusion). A (time-homogeneous) Itô diffusion is a stochastic process

X : [0,+∞)× Ω −→ Rn

(t, ω) 7−→ Xt(ω)

satisfying a stochastic differential equation of the form

dXt = b(Xt)dt+ σ(Xt)dBt, t ≥ s; Xs = x, (1.11)

where {Bt}t≥0 is a m-dimensional Brownian motion and the coefficients

b : Rn −→ Rn; σ : Rn −→ Rn×m

satisfy the conditions in Theorem (1.2.6), which in this case simplify to

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ D|x− y| for some D ∈ R, ∀x, y ∈ Rn.

We denote the unique solution to (1.11) by Xt = Xs,x
t ; t ≥ s. If s = 0 we write Xx

t for X0,s
t .

We need a notation to denote the expected value of an Ito diffusion {Xt}t∈I at the time t

for the theorems about Itô diffusions, like the Markov property.

Definition 1.1.17 (Expectation of an Itô diffusion). Given an Itô diffusion {Xt}t≥0 = {Xy
t }t≥0,

for y ∈ Rn, over the probability space (Ω,F , P ), solution to the equation

dXt = b(Xt)dt+ σ(Xt)dBt; X0 = y,

we denote by M∞ the σ-algebra (of subsets of Ω) generated by the collection of random

variables

{ω 7→ Xy
t (ω) | t > 0, y ∈ Rn}.
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For each x ∈ Rn we define a measure Qx over the elements of M∞ by

Qx[Xt1 ∈ E1, . . . , Xtk ∈ Ek] = P [Xx
t1 ∈ E1, . . . , X

x
tk
∈ Ek],

where Ei ⊆ Rn are Borel sets; k ∈ N.

Qx is the probability law of {Xx
t }t≥0 for x ∈ Rn. Qx gives the distribution of {Xt}t≥0 assuming

that X0 = x.

We denote by Ex[Xt] the ”expected value of Xt with respect to the measure Qx”, i.e. the

expected value of the random variable ω 7→ Xx
t (ω) with respect to the measure P , similarly we

denote by Ex[Xt | G ] the conditional expectation of ω 7→ Xx
t (ω) with respect to the measure

P given a σ-algebra G ⊆M∞.

The infinitesimal generator is a key element to connect the theory of stochastic analysis

with the theory of differential problems, allowing for example to solve problems like Dirichlet’s

problem using the tools from stochastic analysis.

Definition 1.1.18 (Infinitesimal generator). Let X = {Xt}t≥0 be an Itô diffusion in Rn. We

denote by DA(x) the set of functions f : Rn → R such that it exists the limit

lim
t↓0

Ex[f(Xt)]− f(x)

t
. (1.12)

We define the infinitesimal generator of {Xt}t≥0 in x as the operator

A : DA(x)→ R

Af(x) = lim
t↓0

Ex[f(Xt)]− f(x)

t
.

We denote by DA the set of functions for which the limit (1.12) exists for all x ∈ Rn.

The exit time of a process {Xt}t∈I from a Borel set U is one of the most important examples

of exit times, and it is used in important theorems about solving differential problems like the

Dirichlet problem using the theory of stochastic analysis.

Definition 1.1.19 (First exit time). Let U ∈ Rn be a Borel set, let X = {Xt}t≥0 be an Itô

diffusion

Xt : (Ω,F , P ) −→ (Rn,B(Rn)), t ≥ 0.

We denote by first exit time for X from the set U the random variable

τU : Ω −→ R

τU (ω) = inf{t > 0 | Xt(ω) 6∈ U}.

We observe that τU is a random variable because U is a Borel set.
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The definition of regular point of the boundary of a domain D is a very important definition

in the theory about the Dirichlet problem, and there is the analogous version for the theory

about stochastic solutions to Dirichlet problems.

Definition 1.1.20. Under the same hypotheses as the previous definition, the point y ∈ ∂U
is called regular for X if

Qy[τU = 0] = 1.

Otherwise, the point y is called irregular.

The boundary set ∂U is called regular for X if all the points y ∈ ∂D are regular for X.

The Dirichlet-Poisson problem is used to prove the important theorem about the Bellman

function being the solution to the Hamilton-Jacobi-Bellman equation.

Definition 1.1.21. Let D ⊆ Rn be a domain, let L denote a semi-elliptic partial differential

operator on C2(Rn) of the form

L =
n∑
i=1

bi(x)
∂

∂xi
+

n∑
i,j=1

ai,j(x)
∂2

∂xi∂xj
,

where the functions bi and ai,j = aj,i are continuous functions.

Let φ ∈ C(∂D) and g ∈ C(D) be given functions. A function w ∈ C2(D) is called a solution

to the Dirichlet-Poisson problem (over D, associated to L, φ, g) if

(I) Lw = −g in D,

(II) lim
x→y
x∈D

w(x) = φ(y) for all y ∈ ∂D.

1.2 Theorems

The proofs of the theorems mentioned in this section can be found in the textbook [24]

from Øksendal, in chapters 1,2,3,4,5,7 and 9. We will enunciate the theorems needed for the

construction of the Bellman function and to prove the theorem about the Hamilton-Jacobi-

Bellman equation.

Kolmogorov’s extension theorem is one of the fundamental results in the theory of stochastic

processes, and it allows to prove the existence of stochastic processes having given finite-

dimensional distributions, like the Brownian motion.
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Theorem 1.2.1 (Kolmogorov’s extension theorem). Let T be a set of times. For all k ∈ N,

t1, . . . , tk ∈ T , let νt1,...,tk be probability measures on Rnk such that, for all F1, . . . , Fk Borel

subsets of Rn,

νtσ(1),...,tσ(k)
(F1 × · · · × Fk) = νt1,...,tk

(
Fσ−1(1) × · · · × Fσ−1(k)

)
for all permutations σ on {1, 2, . . . , k}, and

νt1,...,tk(F1 × · · · × Fk) = νt1,...,tk,tk+1
(F1 × · · · × Fk × Rn).

Then there exists a complete probability space (Ω,F , P ) and a stochastic process {Xt}t∈T

Xt : (Ω,F , P ) −→ (Rn,B(Rn))

such that

νt1,...,tk(F1,×, Fk) = P [Xt1 ∈ F1, . . . , Xtk ∈ Fk]

for all ti ∈ T , k ∈ N, and for all Fi Borel subsets of Rn.

Kolmogorov’s continuity theorem is another fondamental result in the theory of stochastic

processes, and it is used to prove that the Brownian motion can be considered a continuous

process.

Theorem 1.2.2 (Kolmogorov’s continuity theorem). Let X = {Xt}t≥0 be a stochastic process

such that for all T > 0 there exist positive constants α, β,D such that

E[|Xt −Xs|α] ≤ D · |t− s|1+β; for 0 ≤ s, t ≤ T. (1.13)

Then there exists a continuous version of X.

The Itô isometry is one of the most important results in the theory of stochastic differential

equations, and it is one of the key elements used in the construction of the Itô integral. The

Itô isometry for elementary functions is used to define the Itô integral, and then using the Itô

integral we can extend the Itô isometry to all the Itô integrable processes.

Lemma 1.2.3 (Itô isometry for elementary functions). Let (Ω,F , P ) be a probability space. If

φ : [0,+∞)× Ω→ Rn

φ(t, ω) =
∑
j

ej(ω) · χ[tj ,tj+1)(t)

is a bounded elementary function, then

E

[(∫ T

S
φ(t, ω)dBt(ω)

)2]
= E

[ ∫ T

S
φ(t, ω)2dt

]
, (1.14)
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where ∫ T

S
φ(t, ω)dBt(ω) =

∑
j≥0

ej(ω)[Btj+1 −Btj ](ω).

This lemma proves the three statements needed in the construction of the Itô integral.

Lemma 1.2.4. The following three statements hold true:

1. Let g ∈ V be a bounded and such that t 7→ g(t, ω) is continuous for each ω ∈ Ω. Then

there exist a sequence of elementary functions φn ∈ V such that

E

[ ∫ T

S
(g − φn)2dt

]
→ 0 for n→ +∞.

2. Let h ∈ V be bounded. Then there exist a sequence of bounded functions gn ∈ V such that

t 7→ gn(t, ω) is continuous for all ω ∈ Ω and for all n, and

E

[ ∫ T

S
(h− gn)2dt

]
→ 0 for n→ +∞.

3. Let f ∈ V. Then there exist a sequence of functions hn ∈ V such that hn is bounded for

each n and

E

[ ∫ T

S
(f − hn)2dt

]
→ 0 for n→ +∞.

Theorem 1.2.5 (Itô isometry).

E

[(∫ T

S
f(t, ω)dBt(ω)

)2]
= E

[ ∫ T

S
f(t, ω)2dt

]
for all f ∈ V(S, T ). (1.15)

The following theorem allows us to prove the existence and uniqueness of solutions to

stochastic differential equations, which is needed to guarantee that the Bellman function is

well defined.

Theorem 1.2.6 (Existence and uniqueness of solutions to stochastic differential equations).

Given T > 0, let

b : [0, T ]× Rn −→ Rn

σ : [0, T ]× Rn −→ Rn×m

be measurable functions. Suppose that there exists a constant C > 0 such that

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|); ∀x ∈ Rn, ∀t ∈ [0, T ].
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Suppose that there exists a constant D > 0 such that

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ D|x− y|; ∀x, y ∈ Rn, ∀t ∈ [0, T ].

Let {Bt}t≥0 be a m-dimensional Brownian motion, let Z be a random variable which is inde-

pendent of the σ-algebra F (m)
∞ generated by the collection of random variables {Bs | s ≥ 0},

and such that

E[|Z|2] < +∞.

Then the stochastic differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, 0 ≤ t ≤ T, X0 = Z (1.16)

has a unique t-continuous solution {Xt}0≤t≤T such that:

1. {Xt}0≤t≤T is adapted to the filtration {FZt }0≤t≤T , where FZt is the σ-algebra generated

by the collection of random variables {Z,Bs | 0 ≤ s ≤ t}.

2.

E

[ ∫ T

0
|Xt|2dt

]
< +∞.

The strong Markov property is the most important result for the theory of the Bellman

functions, and it allows to prove important propositions like the Bellman principle and the

theorem about the Hamilton-Bellman-Jacobi equation. The Markov property basically states

that what happens to an Itô diffusion {Xt}t∈I after a time t only depends on Xt and does not

depend on Xs for s < t.

Theorem 1.2.7 (Strong Markov property for Itô diffusions). Let {Xt}t≥0 be a Itô diffusion in

Rn. Let f be a bounded Borel function f : Rn → R, let {Bt}t≥0 be a m-dimensional Brownian

motion, let τ be a stopping time with respect to the σ-algebra F (m)
t generated by {Bt}t≥0,

suppose τ < +∞ almost surely. Then

Ex[f(Xτ+h) | F (m)
τ ] = EXτ [f(Xh)] ∀h ≥ 0.

The following theorem is very important for this work and for the general theory. It char-

acterizes the infinitesimal generator of an Itô diffusion.

Theorem 1.2.8 (Characterization of the infinitesimal generator of an Itô diffusion). Let {Xt}
be the Itô diffusion

dXt = b(Xt)dt+ σ(Xt)dBt.

If f ∈ C2
0 (Rn) then f ∈ DA, and the infinitesimal generator associated to {Xt} is

Af(x) =
∑
i

bi(x)
∂f

∂xi
+

1

2

∑
i,j

(σσT )i,j(x)
∂2f

∂xi∂xj
. (1.17)
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The following lemma is used to prove Dynkin’s formula, a result which is very important

to understand the behaviour of the composition between a smooth function and a stochastic

process.

Lemma 1.2.9. Let {Xt}t≥0 = {Xx
t }t≥0 be an Itô diffusion in Rn of the form

Xx
t (ω) = x+

∫ t

0
u(s, ω)ds+

∫ t

0
v(s, ω)dBs(ω),

where {B}t≥0 is a m-dimentional Brownian motion. Let f ∈ C2
0 (Rn), let τ be a stopping time

with respect to the filtration {F (m)
t }, and assume that Ex[τ ] < +∞. Assume that u(t, ω) and

v(t, ω) are bounded on the set of (t, ω) such that X(t, ω) belongs to the support of f .Then

E[f(Xt)] = f(x) + Ex
[ τ∫

0

(∑
i

ui(s, ω)
∂f

∂xi
(Xs) +

1

2

∑
i,j

(vvT )i,j(s, ω)
∂2f

∂xi∂xj
(Xs)

)
ds

]
.

Theorem 1.2.10 (Dynkin’s formula). Under the same assumptions of Lemma (1.2.9) it follows

that

Ex[f(Xτ )] = f(x) + Ex
[ ∫ τ

0
Af(Xs)ds

]
, (1.18)

here A is the infinitesimal generator of the process X.

The following lemma is used in the proof of the theorem about the Hamilton-Jacobi-Bellman

equation and it allows to calculate the time shift of a process stopped on an exit time from a

Borel set.

Lemma 1.2.11. Let H ⊆ Rn be measurable, let X = {Xt}t≥0 be a Itô diffusion in Rn

Xt : (Ω,F , P ) −→ (Rn,B(Rn)).

Let τH be the first exit time from H for X. Let α be another stopping time, let g be a bounded

continuous function on Rn. Let H be the family of all M∞-measurable functions. Let θt be the

shift operator

θt : H −→ H

defined in the following way: given ν = g1(Xt1) . . . gk(Xtk), where the functions gi are Borel

measurable, the shift operator is defined by

θtν := g1(Xt1+t) . . . gk(Xtk+t),

and the definition is extended over all functions in H by taking limits of sums of such functions.

Consider

η = g(Xτ
H

) · χ{τ
H
<+∞},
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τα
H

(ω) = inf{t > α | Xt(ω) 6∈ H}, ω ∈ Ω.

Then

θαη · χ{α<+∞} = g(Xτα
H

) · χ{τα
H
<+∞},

where

(θαη)(ω) = (θtη)(ω) if τ(ω) = t.

The Dirichlet-Poisson problem is used to prove that the Bellman function is a solution to

the Hamilton-Jacobi-Bellman equation with boundary values equal to the values of the bequest

function.

Theorem 1.2.12. Let D ⊆ Rn be a domain. Let X = {Xt}t≥0 be a Itô diffusion in Rn. Let

A be the infinitesimal generator of X. Let Qx be the probability law of X starting at X0 = x,

for x ∈ Rn. Let τD be the stopping time

τ : Ω −→ R

τ(ω) = inf{t > 0 | Xt(ω) 6∈ D}.

Suppose that τD < +∞ almost surely with respect to Qx for all x ∈ D. Let φ ∈ C(∂D) be

bounded and let g ∈ C(D) satisfy

Ex
[ ∫ τD

0
|g(Xs)|ds

]
< +∞ for all x ∈ D. (1.19)

Define

w(x) = Ex[φ(Xτ
D

)] + Ex
[ ∫ τ

D

0
g(Xs)ds

]
, x ∈ D. (1.20)

Then the following two statements hold true

a)

Aw = −g in D (1.21)

and

lim
t↑τ

D

w(Xt) = φ(Xτ
D

) (1.22)

almost surely with respect to Qx, for all x ∈ D.

b) If there exists a function w1 ∈ C2(D) and a constant C such that

|w1(x)| < C

(
1 + Ex

[ ∫ τ
D

0
|g(Xs)|ds

])
for x ∈ D, (1.23)

and w1 satisfies (1.21) and (1.22), then w1 = w.
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1.3 Bellman functions

Let {Xt}t≥0 be an Itô process described by the stochastic differential equation

dXt = dXu
t = b(t,Xt, ut)dt+ σ(t,Xt, ut)dBt, (1.24)

where Xt(ω) ∈ Rn, and the coefficients b and σ are

b : R× Rn × U → Rn, σ : R× Rn × U → Rn×m,

and Bt is an m-dimensional Brownian motion. Here U is a given Borel set U ⊆ Rk and {ut}t≥0

is the control, i.e. a stochastic process such that ut(ω) ∈ U , and {ut}t≥0 is adapted to the

filtration {F (m)
t }t≥0, i.e. for all t ≥ 0 the random variable ut is measurable with respect to the

σ-algebra F (m)
t .

Let {Xs,x
h }h≥s the solution to (1.24) such that Xs,x

s = x, i.e.

Xs,x
h = x+

∫ h

s
b(r,Xs,x

r , ur)dr +

∫ h

s
σ(r,Xs,x

r , ur)dBr; h ≥ s. (1.25)

Let the probability law of Xt starting at x for t = s be denoted by Qs,x, i.e.

Qs,x[Xt1 ∈ F1, . . . , Xtk ∈ Fk] = P [Xs,x
t1
∈ F1, . . . , X

s,x
tk
∈ Fk] (1.26)

for all s ≤ ti, Fi measurable subset of Rn; for all 1 ≤ i ≤ k, k = 1, 2, . . . .

Let F and K be two continuos functions

F : R× Rn × U −→ R, K : R× Rn −→ R.

Here F is the ”utility rate” function, and K is the ”bequest” function.

Let G be a fixed domain in R × Rn and let T̂ be the first exit time after s from G for the

process {Xs,x
r }r≥s, i.e.

T̂ = T̂ s,x(ω) = inf{r > s | (r,Xs,x
r (ω)) ∈ G} ≤ +∞ (1.27)

Let F u(r, z) = F (r, z, u). Suppose that

Es,x
[ ∫ T̂

s
|F ur(r,Xr)|dr + |K(T̂ ,X

T̂
)| · χ{T̂<+∞}

]
< +∞ for all s, x, u. (1.28)

We define the performance function Ju(s, x) by

Ju(s, x) := Es,x
[ ∫ T̂

s
F ur(r,Xr)dr +K(T̂ ,X

T̂
) · χ{T̂<+∞}

]
. (1.29)
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In order to get a simpler notation we define

Yt = (s+ t,Xs.x
s+t) ∈ Rn+1 for t ≥ 0, Y0 = (s, x), (1.30)

and we substitute Yt in (1.24) to get the equation

dYt = dY u
t = b(Yt.ut)dt+ σ(Yt, ut)dBt. (1.31)

We denote by Qs,x = Qy the probability of Yt starting at y = (s, x) for t = 0.

We observe that∫ T̂

s
F ur(r,Xr)dr =

∫ T̂−s

0
F us+t(s+ t,Xs+t)dt =

∫ T

s
F us+t(Yt)dt

where

T := inf{t > 0 | Yt 6∈ G} = T̂ − s (1.32)

We also observe that

K(T̂ ,X
T̂

) = K(Y
T̂−s) = K(YT )

so the performance function may be written in terms of Y as follows:

Ju(y) = Ey
[ ∫ T

0
F ut(Yt)dt+K(YT ) · χ{T<+∞}

]
, (1.33)

here y := (s, x), and ut is a time shift of the ut in (1.31).

Definition 1.3.1 (Stochastic Bellman function). Given a Borel set U ⊆ Rn+1, given two

continuous functions

F : R× Rn × U −→ R, K : R× Rn −→ R,

and given the stochastic differential equation (1.24)

dXt = dXu
t = b(t,Xt, ut)dt+ σ(t,Xt, ut)dBt

associated to the coefficients

b : R× Rn × U → Rn, σ : R× Rn × U → Rn×m,

we denote by Bellman function associated to the equation (1.24), to the functions F and K,

over a set of admissible controls C, a function

B : G −→ R
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B(y) = sup
{ut}t≥0∈C

Ju(y).

Here Ju is the performance function defined in (1.33), and the supremum is taken over the set

C of admissible controls. Here C is a set of controls {ut}t≥0 that are F (m)
t -adapted, with values

ut(ω) ∈ U .

If a control {u∗t }t≥0 such that

B(y) = sup
{ut}t≥0∈C

Ju(y) = Ju
∗
(y)

exists, then {u∗t }t≥0 is called optimal control.

We may take into consideration different types of control functions. The set of control

functions that we will look into is the set of Markov controls, which is the set C of stochastic

processes defined by

C :=

{
u(t, ω) = u0(t,Xt(ω)) | for u0 : Rn+1 → U, u0 measurable

}
. (1.34)

1.4 The Hamilton-Jacobi-Bellman Equation

Following the definitions in the previous section, we consider the set C of Markov controls

u(t, ω) = u0(t,Xt(ω))

defined in (1.34), and, after introducing Yt = (s + t,Xs+t) as explained in (1.30), the system

equation becomes

dYt = b(Yt, u0(Yt))dt+ σ(Yt, u0(Yt))dBt. (1.35)

For every v ∈ U and f ∈ C2
0 (R× Rn) we define the operator

(Lvf)(y) =
∂f

∂s
(y) +

n∑
i=1

bi(y, v)
∂f

∂xi
(y) +

n∑
i,j=1

ai,j(y, v)
∂2f

∂xi∂xj
(y), ∀y ∈ R× Rn, (1.36)

here ai,j = 1
2(σσT )i,j , y = (s, x) and x = (x1, . . . , xn). Then, by Theorem (1.2.8), for each

choice of the function u0 (that defines the control u), the solution Yt = Y u
t is an Itô diffusion

with infinitesimal generator A given by

(Af)(y) = (Lu0(y)f)(y) for f ∈ C2
0 (R× Rn), y ∈ G.

For every v ∈ U we define F v(y) = F (y, v). The first fundamental result in stochastic control

theory is the following:
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Theorem 1.4.1 (The Hamilton-Jacobi-Bellman (HJB) equation (I)). Under the notations of

the previous section, consider the Bellman function

B(y) = sup{Ju(y) | u = u0(Y ) Markov control }.

Suppose that B satisfies

Ey
[
|B(Yα)|+

∫ α

0
|LvB(Yt)|dt

]
< +∞

for all bounded stopping times α < T , for all y ∈ G and for all v ∈ U . Suppose that the

stopping time T is T < +∞ almost surely with respect to Qy for all y ∈ G, and suppose that a

optimal Markov control u∗ = u∗0(Y ) exists. Suppose ∂G is regular for Y u∗. Then

sup
v∈U
{F v(y) + (LvB)(y)} = 0 for all y ∈ G, (1.37)

and

B(y) = K(y) for all y ∈ ∂G. (1.38)

The supremum in (1.37) is obtained if v = u∗0(y), where u∗ = u∗0(Yt) is an optimal control. In

other words

F (y, u∗0(y)) + (Lu
∗
0(y)B)(y) = 0 for all y ∈ G. (1.39)

A converse of the previous theorem holds as well.

Theorem 1.4.2 (A converse of the HJB equation (I)). Let φ be a function in C2(G) ∩ C(G)

such that, for all v ∈ U ,

F v(y) + (Lvφ)(y) ≤ 0; y ∈ G, (1.40)

with boundary values

lim
t→T

φ(Yt) = K(YT ) · χ{T<+∞} (1.41)

almost surely with respect to Qy, and such that

{φ(Yτ )}τ≤T is uniformly Qy-integrable (1.42)

for all Markov controls u and all y ∈ G. Then

φ(y) ≥ Ju(y) for all Markov controls u and all y ∈ G. (1.43)

Moreover, if for each y ∈ G we have found u∗0(y) such that

F u
∗
0(y)(y) + (Lu

∗
0(y)φ)(y) = 0, (1.44)

then u0 = u∗0(Y ) is a Markov control such that

φ(y) = Ju0(y),

and hence u0 must be a optimal control and φ(y) = B(y).
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The last result that we are going to mention is that, under suitable conditions on b, σ, F, ∂G

and assuming that the set of control values is compact, it is possible to show that there exists

a smooth function φ such that

sup
v
{F v(y) + (Lvφ)(y)} = 0 for y ∈ G,

and

φ(y) = K(y) y ∈ ∂G.

Moreover, by a measurable selection theorem one can find a measurable function u0 that defines

a Markov control u∗t (ω) = u0(Xt(ω)) such that

F u0(y)(y) + (Lu0(y)φ)(y) = 0

for almost all y ∈ G with respect to Lebesgue measure in Rn+1, and that the solution Xt = Xu∗
t

exists. For details see Øksendal [24, p. 241].

Moreover, it is always possible to get as good as a performance with Markov controls as it is

with arbitrary F (m)
t -adapted controls, as long as some extra conditions are satisfied, as stated

in the next theorem.

Theorem 1.4.3. Let

ΦM (y) = sup{Ju(y) | u = u0(Y ) Markov control},

and

Φa(y) = sup{Ju(y) | u = u(t, ω) F (m)
t -adapted control}.

Suppose there exists an optimal Markov control u∗ = u∗0(Y ) for the Markov control problem

ΦM (y) = Ju
∗
0(y) for all y ∈ G

such that all the boundary points of G are regular with respect to Y u∗
t and suppose that ΦM is

a function in C2(G) ∩ C(G) satisfying

Ey
[
|ΦM (Yα)|+

∫ α

0
|LuΦM (Yt)|dt

]
< +∞

for all bounded stopping times α ≤ T , all adapted controls u and all y ∈ G. Then

ΦM (y) = Φa(y) for all y ∈ G.

For the proof of the last three theorems see Øksendal [24, chapter 11].
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Chapter 2

Hardy’s inequality

Introduction

In this chapter we use the method of the Bellman function to characterize the measures

for which the weighted dual Hardy’s inequality holds on dyadic trees. We also give an explicit

interpretation of the corresponding Bellman function in terms of the theory of stochastic opti-

mal control.

This chapter is structured as follows.

In section 2.1 we prove Theorem 0.0.1 for the optimal setting. We characterize the measures for

which the weighted dyadic Hardy’s inequality holds in the subsection 2.1.1, we enunciate the

Bellman function B associated to this problem and prove its key properties in the subsection

2.1.2, and we prove the weighted dyadic Hardy’s inequality using the Bellman function method

in subsection 2.1.3.

In section 2.2 we prove the sharpness of the constant C(p) in Theorem 0.0.1. We define

a function B that satisfies the main inequality and prove the optimality of the domain D in

the subsection 2.2.1, we improve the previous result and define a function B̂ that satisfies the

main inequality and a supplementary property in the subsection 2.2.2, and we prove that the

constant C(p) is sharp for dyadic Hardy’s inequality in the subsection 2.2.3.

In section 2.3 we state a stochastic optimal control problem whose solution is given by the

Bellman function used throughout the paper. This gives a direct probabilistic interpretation

to our function. We show a natural way to transition from a dyadic inequality to a Hamilton-

Jacobi-Bellman inequality in the subsection 2.3.1, we define a stochastic optimal control prob-

39
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lem whose solution is a Bellman function that satisfies the required Hamilton-Jacobi-Bellman

inequality in the subsection 2.3.2, and we prove that the Bellman function associated to the

stochastic optimal control problem we defined is equal to the function B in subsection 2.3.3.

2.1 Hardy’s inequality

2.1.1 Inequality over the dyadic tree

Let D(I0) be the dyadic tree over I0 = [0, 1]. Let I ∈ D(I0), let

ϕ : D(I0) −→ R.

We denote the sum of the values ϕ(J) for J ∈ D(I) by∑
J∈D(I)

ϕ(J) =:
∑
J⊆I

ϕ(J).

Let Λ be a positively valued measure over the dyadic tree defined as follows: for each node

I ∈ D(I0)

D(I0) 3 I 7−→ λI ∈ R+.

We define the following objects as follows:

Λ(I) =
∑
K⊆I

λK ,

(Λ)I =
1

|I|
∑
K⊆I

λK =
1

|I|
Λ(I),∫

I
φ dΛ =

∑
K⊆I

φ(K)λK ,

(φΛ)I =
1

|I|
∑
K⊆I

φ(K)λK =
1

|I|

∫
I
φ dΛ.

Now we are going to prove Theorem (1.3) in the article [5]. in the general case p 6= 2.

Theorem 2.1.1 (Dual weighted Hardy’s inequality for dyadic trees). Let D(I0) be the dyadic

tree originating at I0, let {αI}I⊆I0 be a sequence of positive numbers. Let Λ : D(I0) → R+ be

a positive measure over the dyadic tree. Let φ : D(I0) → R+ be a positive function such that

φ ∈ lp(D(I0)). Let p be a real number such that 1 < p < +∞. If the inequality

1

|I|
∑
K⊆I

αK(Λ)pK ≤ (Λ)I < +∞ ∀I ∈ D(I0) (2.1)
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is satisfied, then
1

|I0|
∑
I⊆I0

αI(φΛ
1
p′ )pI ≤ C(p)(φp)I0 . (2.2)

Here 1
p + 1

p′ = 1, C(p) =
(
p/(p− 1)

)p
= (p′)p is a constant depending only on p, and

(φΛ
1
p′ )I =

1

|I|
∑
K⊆I

φ(K)λ
1
p′
K , (Λp)I0 =

1

|I0|
∑
I⊆I0

λpI .

We will prove this theorem using the Bellman function method.

2.1.2 Bellman function for Hardy’s inequality

Let p ∈ R, 1 < p < +∞. We consider the function

B(F, f,A, v) =

(
p

p− 1

)p
F − pp

p− 1

fp

(A+ (p− 1)v)p−1
(2.3)

defined over the domain

D :=

{
(F, f,A, v) ∈ R4

∣∣ F > 0, f > 0, A > 0, v > 0, v ≥ A, fp ≤ Fvp−1

}
.

Let us name C(p) =
(
p/(p− 1)

)p
. The function B has the following properties:

1) B is a concave function defined over a convex domain.

2) C(p)F ≥ B(F, f,A, v) ≥ 0.

A proof of these properties can be found in the appendix.

The next lemma is about the main inequality, which will be the key to prove the dyadic

Hardy’s inequality.

Lemma 2.1.2. The function B satisfies

B(F, f,A, v)− 1

2

[
B(F−, f−, A−, v−) + B(F+, f+, A+, v+)

]
≥ pp fp

(A+ v(p− 1))p
c, (2.4)

which, by using the fact that v ≥ A, entails

B(F, f,A, v)− 1

2

[
B(F−, f−, A−, v−) + B(F+, f+, A+, v+)

]
≥ fp

vp
c. (2.5)

where the inequality holds for all

F = F̃ + bp, f = f̃ + ab,

v = ṽ + ap
′
, A = Ã+ c,
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and

F̃ =
1

2
(F− + F+), f̃ =

1

2
(f− + f+),

ṽ =
1

2
(v− + v+), Ã =

1

2
(A− +A+),

for every choice of a ≥ 0, b ≥ 0, c ≥ 0. Here p′ is the real number such that 1
p + 1

p′ = 1.

Proof. We start by considering the telescopic sum

B(F, f,A, v)− B(F̃ , f̃ , A− c, ṽ) = B(F, f,A, v)− B(F, f,A− c, v) + (2.6)

B(F, f,A− c, v)− B(F̃ , f̃ , A− c, ṽ).

Since the function B is concave and differentiable over a convex domain, we recall that a concave

differentiable function’s values are lower or equal to the values of any of its tangent hyperplanes.

This entails that, for every g concave and differentiable, for every choice of x, x∗ in the domain

of the function g

g(x)− g(x∗) ≤
4∑
i=1

∂g(x∗)

dxi
(xi − x∗i ). (2.7)

By changing the sign of (2.7) we get

g(x∗)− g(x) ≥
4∑
i=1

∂g(x∗)

dxi
(x∗i − xi). (2.8)

So, when g = B, x = (F, f,A, v), x∗ = (F, f, Ã, v) = (F, f,A−c, v), the inequality (2.8) becomes

B(F, f,A, v)− B(F, f,A− c, v) ≥ pp fp

(A+ (p− 1)v)p
c. (2.9)

By combining (2.9) with (2.6) we get

B(F, f,A, v)−B(F̃ , f̃ , A−c, ṽ) ≥ B(F, f,A−c, v)−B(F̃ , f̃ , A−c, ṽ)+(p−1)pp
fp

(A+ (p− 1)v)p
c.

(2.10)

Now we consider g = B, x = (F̃ , f̃ , A − c, ṽ), x∗ = (F, f,A − c, v), so the inequality (2.8)

becomes

B(F, f,A− c, v)− B(F̃ , f̃ , A− c, ṽ) ≥
(

p

p− 1

)p
bp − pp−1

p− 1

(
f

A− c+ (p− 1)v

)p−1

ab+

(p− 1)pp
(

f

A− c+ (p− 1)v

)p
ap
′
.
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Now let

y =
f

A− c+ (p− 1)v
.

We observe that y > 0 because f > 0, v > 0, A − c > 0 by definition of the domain of B. So

the last inequality can be rewritten in the form

B(F, f,A− c, v)− B(F̃ , f̃ , A− c, ṽ) ≥
(

p

p− 1

)p
bp − pp+1

p− 1
yp−1ab+ (p− 1)ppypap

′
=: φ(y).

Now we are going to prove that φ(y) ≥ 0 for all y ≥ 0.

We observe that φ(y) = C(p)bp ≥ 0 when a = 0.

Now we assume a > 0 and we compute the derivative of the function φ:

φ′(y) = pp+1yp−2

(
(p− 1)ap

′
y − ab

)
.

So the derivative φ′(y) is such that φ′(y) ≤ 0 for 0 ≤ y ≤ b
(p−1)ap′−1 , and φ′(y) ≥ 0 for

y ≥ b
(p−1)ap′−1 , so ỹ = b

(p−1)ap′−1 is a point of absolute minimum for φ, so as long as φ(ỹ) ≥ 0

the inequality holds for all y ≥ 0. So we compute

φ(ỹ) = bp − pỹp−1ab+ (p− 1)ỹpap
′

=(
p

p− 1

)p
bp − pp+1

p− 1

(
b

(p− 1)ap′−1

)p−1

ab+ (p− 1)pp
(

b

(p− 1)ap′−1

)p
ap
′

=(
p

p− 1

)p
bp − pp+1

p− 1
bp

1

app′−p−p′
+

pp

(p− 1)p−1
bp

1

app′−p−p′
.

Now we recall that
1

p
+

1

p′
= 1; pp′ = p+ p′.

So we get

φ(ỹ) =

(
p

p− 1

)p
bp − pp+1

p− 1
bp +

pp

(p− 1)p−1
bp =

bp
(

p

p− 1

)p[
1− p+ p− 1

]
= 0.

So the inequality φ(y) ≥ 0 holds for all y ≥ 0, for every choice a ≥ 0, b ≥ 0, so the inequality

(2.10) becomes

B(F, f,A, v)− B(F̃ , f̃ , A− c, ṽ) ≥ pp fp

(A+ (p− 1)v)p
c. (2.11)

Now we observe that (F̃ , f̃ , A− c, ṽ) = (F̃ , f̃ , Ã, ṽ) = 1
2((F+, f+, A+, v+) + (F−, f−, A−, v−)), so

for the last step we use the fact that B is concave and we get

B(F, f,A, v)− 1

2

[
B(F+, f+, A+, v+) + B(F−, f−, A−, v−)

]
≥ pp fp

(A+ (p− 1)v)p
c.
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Finally, using the fact that A ≤ v, we get the weaker version of the previous inequality

B(F, f,A, v)− 1

2

[
B(F+, f+, A+, v+) + B(F−, f−, A−, v−)

]
≥ fp

vp
c.

2.1.3 Proof of the inequality

Now we will prove Theorem 2.1.1 using the Bellman function method.

Proof. Let I ∈ D(I0), we denote by I− ∈ D(I0) and I+ ∈ D(I0) the two children of the node

I.

For every I ∈ D(I0) we define

I 7−→ vI ∈ R+,

I 7−→ FI ∈ R+,

I 7−→ fI ∈ R+,

I 7−→ AI ∈ R+,

as follows:

vI := (Λ)I ,

FI := (φp)I ,

fI := (φΛ
1
p′ )I ,

AI :=
1

|I|
∑
K⊆I

αK(Λ)pK .

Now we define

aI :=

(
λI
|I|

) 1
p′

,

bI :=
φ(I)

|I|
1
p

,

cI :=
αI(Λ)pI
|I|

,
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so we get

vI =
1

|I|
λI +

1

2
(VI− + VI+) = ap

′

I + ṽI ,

FI =
1

|I|
φ(I)p +

1

2
(FI− + FI+) = bpI + F̃I ,

fI =
φ(I)λ

1
p′
I

|I|
+

1

2
(fI− + fI+) = aIbI + f̃I ,

AI =
αI(Λ)pI
|I|

+
1

2
(AI− +AI+) = cI + ÃI .

We observe that the hypothesis (2.1) entails AI ≤ vI , and we also observe that, by applying

Hölder’s inequality to fI , we get

fI =
1

|I|
∑
K⊆I

φIλ
1
p′
Y ≤

1

|I|
1
p

(∑
K⊆I

φpI

) 1
p 1

|I|
1
p′

(∑
K⊆I

λI

) 1
p′

=

= (φp)
1
p

I (Λ)
1
p′
I = F

1
p

I v
1
p′
I .

So, for all choices of φ : D(I0)→ R+, α : D(I0)→ R+, Λ : D(I0)→ R+, I ∈ D(I0), the points

xI := (FI , fI , AI , vI), xI− := (FI− , fI− , AI− , vI−), xI+ := (FI+ , fI+ , AI+ , vI+)

are elements of the domain of the function B defined in (2.3). So we can compute the value of

the function B at xI , xI− and xI+ , for all I ∈ D(I0). We observe that

B(FI , fI , AI , vI) = B(F̃I + bpI , f̃I + aIbI , ÃI + cI , ṽI + ap
′

I ),

where

F̃ = 1
2(F− + F+), f̃ =

1

2
(f− + f+),

ṽ = 1
2(v− + v+), Ã =

1

2
(A− +A+),

so we can apply lemma 2.1.2 to get

|I|
fpI
vpI
cI ≤ |I|

[
B(xI)−

1

2

(
B(xI−) + B(xI+)

)]
,

|I|
fpI

(λ)pI

αI(λ)pI
|I|

≤ |I|B(xI)− |I−|B(xI−)− |I+|B(xI+),

αIf
p
I ≤ |I|B(xI)− |I−|B(xI−)− |I+|B(xI+).
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Summing over all I ∈ D(I0) and using the telescopic nature of the sum we get∑
I⊆I0

αIf
p
I ≤ |I0|B(FI0 , fI0 , AI0 , vI0) ≤ |I0|C(p)FI0 . (2.12)

Now we recall that FI0 = (φp)I0 and fI = (φΛ
1
p′ )I , so we get

1

|I0|
∑
I⊆I0

αI(φΛ
1
p′ )pI ≤

(
p

p− 1

)p
(φp)I0 ,

which is the thesis (2.2), ending the proof.

2.2 Sharpness of the constant

In this section we prove that the constant

C(p) :=
(
p′)p =

(
p

p− 1

)p
is sharp for Theorem 2.1.1.

2.2.1 From dyadic inequality to real function

In this subsection we define a new function

B : D −→ R

such that B satisfies the main inequality (2.5). The tecnique used to define B is a standard

technique often used in the theory of the Bellman function method.

Let I ∈ D(I0). We consider the function

B(F, f,A, v) =
1

|I|
sup

{∑
J⊆I

αJ

(
1

|J |
∑
K⊆J

φ(K)λ
1
p′
K

)p ∣∣∣∣ α, φ,Λ satisfy (i)I , (ii)I , (iii)I , (2.13)

(iv)I in (F, f,A, v)

}
,

(2.14)

where the notation α, φ, Λ satisfy (i)I , (ii)I , (iii)I , (iv)I in (F, f,A, v) means that

α : I 7−→ αI ∈ R+,

Λ : I 7−→ λI ∈ R+,

φ : I 7−→ φ(I) ∈ R+,

and
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(i)I

F =
1

|I|
∑
J⊆I

φ(J)p,

(ii)I

f =
1

|I|
∑
J⊆I

φ(J)λ
1
p′
J ,

(iii)I

A =
1

|I|
∑
J⊆I

αJ

(
1

|J |
∑
K⊆J

λK

)p
,

(iv)I

v =
1

|I|
∑
J⊆I

λJ .

We observe that the function B does not depend on the choice of the interval I, and it can be

proved by rescaling the weights α, the function φ and the measure Λ.

Lemma 2.2.1. The function B is well defined over the domain D, and it satisfies the main

inequality (2.5).

Proof. Given any fixed choice of α̃, φ̃, Λ̃ and I ∈ D(I0), we consider the points

F = 1
|I|
∑
J⊆I

φ̃(J)p

f = 1
|I|
∑
J⊆I

φ̃(J)λ̃
1
p′
J

A = 1
|I|
∑
J⊆I

α̃J

(
1
|J |
∑
K⊆J

λ̃K

)p
v = 1

|I|
∑
J⊆I

λ̃J

(2.15)



F+ = 1
|I+|

∑
J⊆I+

φ̃(J)p

f+ = 1
|I+|

∑
J⊆I+

φ̃(J)λ̃
1
p′
J

A+ = 1
|I+|

∑
J⊆I+

α̃J

(
1
|J |
∑
K⊆J

λ̃K

)p
v+ = 1

|I+|
∑
J⊆I+

λ̃J

(2.16)
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F− = 1
|I−|

∑
J⊆I−

φ̃(J)p

f− = 1
|I−|

∑
J⊆I−

φ̃(J)λ̃
1
p′
J

A− = 1
|I−|

∑
J⊆I−

α̃J

(
1
|J |
∑
K⊆J

λ̃K

)p
v− = 1

|I−|
∑
J⊆I−

λ̃J

. (2.17)

We observe that these points satisfy the following equations:

F = 1
2(F− + F+) + φ̃(I)p

|I| , f =
1

2
(f− + f+) +

φ̃(I)λ̃
1
p′
I

|I|
,

A = 1
2(A− +A+) +

α̃I

(
1
|I|
∑
J⊆I

λ̃J

)p
|I| , v =

1

2
(v− + v+) +

λ̃I
|I|
.

By setting

b =
φ̃(I)

|I|
1
p

, c =

α̃I

(
1
|I|
∑
J⊆I

λ̃J

)p
|I|

, a =
λ̃

1
p′
I

|I|
1
p′
, (2.18)

we get the following equations for the previous points:

F = 1
2(F− + F+) + bp, f = 1

2(f− + f+) + ab,

A = 1
2(A− +A+) + c, v = 1

2(v− + v+) + ap
′
.

(2.19)

We are going to compute

B(F, f,A, v) ≥ 1

|I|
∑
J⊆I

α̃J

(
1

|J |
∑
K⊆J

φ̃(K)λ̃
1
p′
K

)p
,

which gives us

B(F, f,A, v) ≥ 1

|I|
α̃I

(
1

|I|
∑
J⊆I

φ̃(J)λ̃
1
p′
J

)p
+

1

|I|
∑

J∈D(I+)

α̃J

(
1

|J |
∑
K⊆J

φ̃(K)λ̃
1
p′
K

)p
+

1

|I|
∑

J∈D(I−)

α̃J

(
1

|J |
∑
K⊆J

φ̃(K)λ̃
1
p′
K

)p
.

Now we observe that
α̃I
|I|

=
c

vp
,
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so the previous inequality becomes

B(F, f,A, v) ≥ fp

vp
c+

1

|I|
∑

J∈D(I+)

α̃J

(
1

|J |
∑
K⊆J

φ̃(K)λ̃
1
p′
K

)p
+

1

|I|
∑

J∈D(I−)

α̃J

(
1

|J |
∑
K⊆J

φ̃(K)λ̃
1
p′
K

)p
.

(2.20)

By construction, α̃, ϕ̃ and Λ̃ satisfy the conditions (i)I+ , (ii)I+ , (iii)I+ and (iv)I+ in (F+, f+, A+, v+),

and satisfy the conditions (i)I− , (ii)I− , (iii)I− and (iv)I− in (F−, f−, A−, v−).

Moreover, for any choice of α, ϕ and Λ such that

� α, ϕ and Λ satisfy the conditions (i)I , (ii)I , (iii)I and (iv)I in (F, f,A, v),

� α, ϕ and Λ satisfy the conditions (i)I+ , (ii)I+ , (iii)I+ and (iv)I+ in (F+, f+, A+, v+),

� α, ϕ and Λ satisfy the conditions (i)I− , (ii)I− , (iii)I− and (iv)I− in (F−, f−, A−, v−),

the following inequality holds:

B(F, f,A, v) ≥ fp

vp
c+

1

|I|
∑

J∈D(I+)

αJ

(
1

|J |
∑
K⊆J

φ(K)λ
1
p′
K

)p
+

1

|I|
∑

J∈D(I−)

αJ

(
1

|J |
∑
K⊆J

φ(K)λ
1
p′
K

)p
.

(2.21)

So, by taking the supremum over all α, ϕ and Λ for both the second and the third addend on

the right hand side (using the fact that α, ϕ and Λ can be ”independently” defined over D(I+),

D(I−) and I) in the inequality (2.21), we get

B(F, f,A, v) ≥ fp

vp
c

+
1

|I|
sup

{ ∑
J⊆I+

αJ

(
1

|J |
∑
K⊆J

φ(K)λ
1
p′
K

)p ∣∣∣∣ α, φ,Λ satisfy (i)I+ , (ii)I+ , (iii)I+ ,

(iv)I+ in (F+, f+, A+, v+)

}
+

1

|I|
sup

{ ∑
J⊆I−

αJ

(
1

|J |
∑
K⊆J

φ(K)λ
1
p′
K

)p ∣∣∣∣ α, φ,Λ satisfy (i)I− , (ii)I− , (iii)I− ,

(iv)I− in (F−, f−, A−, v−)

}
.

Using the definition of the function B and the fact that |I| = 2|I+| = 2|I−| we get

B(F, f,A, v) ≥ fpc+
1

2

[
B(F+, f+, A+, v+) +B(F−, f−, A−, v−)

]
.

The proof is completed by showing that, for any choice of (F, f,A, v), (F+, f+, A+, v+) and

(F−, f−, A−, v−) in the domain of the main inequality (2.5), there exists a choice of α, φ and
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Λ such that the points (F, f,A, v), (F+, f+, A+, v+) and (F−, f−, A−, v−) satisfy the equations

(2.15), (2.16) and (2.17).

Let (F, f,A, v), (F+, f+, A+, v+) and (F−, f−, A−, v−) be points in D such that they satisfy

(2.19).

If we show that, for any point (F̃ , f̃ , Ã, ṽ) ∈ D and for any interval I ∈ D(I0), there exists a

choice of α, φ and Λ such that

F̃ = 1
|I|
∑
J⊆I

φ(J)p,

f̃ = 1
|I|
∑
J⊆I

φ(J)λ
1
p′
J ,

Ã = 1
|I|
∑
J⊆I

αJ

(
1
|J |
∑
K⊆J

λK

)p
,

ṽ = 1
|I|
∑
J⊆I

λJ ,

(2.22)

then the proof is complete.

This is true because, in that case, given I ∈ D(I0) we can choose α+, φ+, Λ+ such that

F+ = 1
|I+|

∑
J⊆I+

φ+(J)p,

f+ = 1
|I+|

∑
J⊆I+

φ+(J)(λ+
J )

1
p′ ,

A+ = 1
|I+|

∑
J⊆I+

α+
J

(
1
|J |
∑
K⊆J

λ+
K

)p
,

v+ = 1
|I+|

∑
J⊆I+

λ+
J ,

and α−, φ−, Λ− such that 

F− = 1
|I−|

∑
J⊆I−

φ−(J)p,

f− = 1
|I−|

∑
J⊆I−

φ−(J)(λ−J )
1
p′ ,

A− = 1
|I−|

∑
J⊆I−

α−J

(
1
|J |
∑
K⊆J

λ−K

)p
,

v− = 1
|I−|

∑
J⊆I−

λ−J .

We can now define

λJ =



λ+
J if J ∈ D(I+),

λ−J if J ∈ D(I−),

|I|ap′ if J = I,

1 otherwise,
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φ(J) =



φ+(J) if J ∈ D(I+),

φ−(J) if J ∈ D(I−),

|I|
1
p b if J = I,

1 otherwise,

αJ =



α+
J if J ∈ D(I+),

α−J if J ∈ D(I−),

|I|c(
1
|I|
∑
J⊆I

λ̃J

)p if J = I,

1 otherwise.

The maps α, φ, Λ defined in this way are such that the points (F, f,A, v), (F+, f+, A+, v+) and

(F−, f−, A−, v−) satisfy the equations (2.15), (2.16) and (2.17), which is the claim.

So, to finish the proof, all that is left to do is to prove that, for any point (F̃ , f̃ , Ã, ṽ) ∈ D and

for any interval I ∈ D(I0), there exists a choice of α, φ and Λ such that (2.22) holds.

Let (F, f,A, v) ∈ D be arbitrary. We are now going to show that there exist

I 7−→ αI ∈ R+,

I 7−→ λI ∈ R+,

I 7−→ φ(I) ∈ R+,

such that the hypothesis

1

|I|
∑
K⊆I

αK

(
1

|K|
∑
J⊆K

λJ

)p
≤ 1

|I|
∑
K⊆I

λI < +∞ ∀I ∈ D(I0) (2.23)

holds, and such that

F =
1

|I0|
∑
I⊆I0

φ(I)p, (2.24)

f =
1

|I0|
∑
I⊆I0

φ(I)λ
1
p′
I ,

A =
1

|I0|
∑
I⊆I0

αI

(
1

|I|
∑
K⊆I

λK

)p
,

v =
1

|I0|
∑
I⊆I0

λI .

Let us define the parameters

P1 :=
f

F
1
p v

1
p′
, P2 :=

A

v
. (2.25)
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By the definition of D we have v ≥ A, fp ≤ Fvp−1, so we get

0 < P1 ≤ 1, 0 < P2 ≤ 1. (2.26)

Let φ0 > 0, λ0 > 0, x1 ∈
(
0, 1

2

)
, x2 ∈

(
0, 1

2p

)
to be chosen later. We define

λI := λ0 · |I|
log 1

2
(x1)

, (2.27)

φ(I) := φ0 · |I|
log 1

2
(x2)

.

Let us compute the following expressions:

1

|I0|
∑
I⊆I0

φ(I)p =
1

|I0|
∑
I⊆I0

φ0
p · |I|p log 1

2
(x2)

= (2.28)

φ0
p

|I0|

+∞∑
n=0

(
|I0|

1

2n

)p log 1
2

(x2)

· 2n =

φ0
p |I0|

p log 1
2

(x2)−1
+∞∑
n=0

(
1

2n

)log 1
2

(x2
p)

· 2n =

φ0
p |I0|

log 1
2

(2x2
p)

+∞∑
n=0

(2x2
p)n =

φ0
p |I0|

log 1
2

(2x2
p) 1

1− 2x2
p
.

1

|I0|
∑
I⊆I0

λI =
1

|I0|
∑
I⊆I0

λ0 · |I|
log 1

2
(x1)

= (2.29)

λ0

|I0|

+∞∑
n=0

(
|I0|

1

2n

)log 1
2

(x1)

· 2n =

λ0 |I0|
log 1

2
(x1)−1

+∞∑
n=0

(
1

2n

)log 1
2

(x1)

· 2n =

λ0 |I0|
log 1

2
(2x1)

+∞∑
n=0

(2x1)n =

λ0 |I0|
log 1

2
(2x1) 1

1− 2x1
.
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1

|I0|
∑
I⊆I0

φ(I)λ
1
p′
I =

1

|I0|
∑
I⊆I0

φ0λ0

1
p′ · |I|

1
p′ log 1

2
(x1)+log 1

2
(x2)

= (2.30)

φ0λ0

1
p′

|I0|

+∞∑
n=0

(
|I0|

1

2n

) 1
p′ log 1

2
(x1)+log 1

2
(x2)

· 2n =

φ0λ0

1
p′ |I0|

log 1
2

(
x1

1
p′ x2

)
−1

+∞∑
n=0

(
1

2n

)log 1
2

(
x1

1
p′ x2

)
· 2n =

φ0λ0

1
p′ |I0|

log 1
2

(
2x1

1
p′ x2

)
+∞∑
n=0

(
x1

1
p′ x2

)n
· 2n =

φ0λ0

1
p′ |I0|

log 1
2

(
2x1

1
p′ x2

)
1

1− 2x1

1
p′ x2

.

We observe that, since we have I0 > 0, x1 ∈
(
0, 1

2

)
, x2 ∈

(
0, 1

2p

)
, we get

0 < |I0|
log 1

2
(2x2

p) 1

1− 2x2
p
< +∞, 0 < |I0|

log 1
2

(2x1) 1

1− 2x1
< +∞. (2.31)

Now we choose

φ0 :=

 F

|I0|
log 1

2
(2x2

p) 1
1−2x2

p

 1
p

, (2.32)

λ0 :=
v

|I0|
log 1

2
(2x1) 1

1−2x1

. (2.33)

From (2.28) and (2.32) we get
1

|I0|
∑
I⊆I0

φ(I)p = F, (2.34)

from (2.29) and (2.33) we get
1

|I0|
∑
I⊆I0

λI = v. (2.35)

Now we are going to choose x1 ∈
(
0, 1

2

)
, x2 ∈

(
0, 1

2p

)
such that

1

|I0|
∑
I⊆I0

φ(I)λ
1
p′
I = f.

The last equation is equivalent to

1
|I0|

∑
I⊆I0

φ(I)λ
1
p′
I

F
1
p v

1
p′

=
f

F
1
p v

1
p′

= P1,
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so, since we have (2.34) and (2.35), we are going find x1 ∈
(
0, 1

2

)
, x2 ∈

(
0, 1

2p

)
such that

1
|I0|

∑
I⊆I0

φ(I)λ
1
p′
I(

1
|I0|

∑
I⊆I0

φ(I)p

) 1
p
(

1
|I0|

∑
I⊆I0

λI

) 1
p′

= P1, (2.36)

for any arbitrary value 0 < P1 ≤ 1.

We compute (2.36) using (2.28), (2.29) and (2.30) to get

P1 =

φ0λ0

1
p′ |I0|

log 1
2

(
2x1

1
p′ x2

)
1

1−2x1

1
p′ x2(

φ0
p |I0|

log 1
2

(2x2
p) 1

1−2x2
p

) 1
p
(
λ0 |I0|

log 1
2

(2x1) 1
1−2x1

) 1
p′

= (2.37)

φ0λ0

1
p′

φ0λ0

1
p′

|I0|
log 1

2

(
2x1

1
p′ x2

)

|I0|
1
p

log 1
2

(2x2
p) |I0|

1
p′ log 1

2
(2x1)

(1− 2x1)
1
p′ (1− 2x2

p)
1
p

1− 2x1

1
p′ x2

=

|I0|
log 1

2

(
2x1

1
p′ x2

)

|I0|
log 1

2

(
2

(
1
p+ 1

p′

)
x1

1
p′ x2

) (1− 2x1)
1
p′ (1− 2x2

p)
1
p

1− 2x1

1
p′ x2

=

(1− 2x1)
1
p′ (1− 2x2

p)
1
p

1− 2x1

1
p′ x2

.

Let us define the function

g :

(
0,

1

2

)
×
(

0,
1

2p

)
−→ R, (2.38)

g(x1, x2) :=
(1− 2x1)

1
p′ (1− 2x2

p)
1
p

1− 2x1

1
p′ x2

. (2.39)

To prove that for any arbitrary 0 < P1 ≤ 1 there exist x1 ∈
(
0, 1

2

)
, x2 ∈

(
0, 1

2p

)
such that (2.36)

is satisfied, we are going to prove that

(0, 1] ⊆
{
g(x1, x2)

∣∣∣∣ x1 ∈
(

0,
1

2

)
, x2 ∈

(
0,

1

2p

)}
. (2.40)

Let x1 ∈
(
0, 1

2

)
, take x2 = x1

1
p . Then

g(x1, x2) = g(x1, x1

1
p ) =

(1− 2x1)
1
p′ (1− 2x1)

1
p

1− 2x1

1
p′+

1
p

= 1. (2.41)
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To finish the proof we are going to show that

lim inf
(x1,x2)→( 1

2
, 1
2p )

g(x1, x2) = 0. (2.42)

To prove this let us consider

ε := 1− 2x1; δ := 1− 2xp2, (2.43)

which gives us

x1 = x1(ε) =
1− ε

2
; x2 = x2(ε) =

(
1− δ

2

) 1
p

. (2.44)

So we have ε ∈ (0, 1), δ ∈ (0, 1), and (2.42) is equivalent to

lim inf
(x1,x2)→( 1

2
, 1
2p )

g(x1, x2) = lim inf
(ε,δ)→(0,0)

ε
1
p′ δ

1
p

1− (1− ε)
1
p′ (1− δ)

1
p

= 0. (2.45)

Now, using big O notation, we consider the Taylor polynomial of degree 1 of the function

x 7→ (1− x)
1
p , i.e.

(1− x)
1
p = 1− x

p
+O(x2)

x→0
. (2.46)

So we get

g(x1, x2) =
ε

1
p′ δ

1
p

1−
(

1− ε
p′ +O(ε2)

ε→0

)(
1− δ

p +O(δ2)
δ→0

) = (2.47)

ε
1
p′ δ

1
p

ε
p′ + δ

p −
εδ
pp′ −O(ε2)

ε→0

(
1− δ

p +O(δ2)
δ→0

)
−O(δ2)

δ→0

(
1− ε

p′ +O(ε2)
ε→0

) .
(2.48)

Let t > 0. Let us choose

δ = δ(ε) := ε1+t. (2.49)

Then we get

g(x1, x2) =
ε

1
p′+

1
p

+ t
p

ε
p′ + ε1+t

p −
ε
1+ 1

p+ 1
t

pp′ −O(ε2)
ε→0

(
1− ε1+t

p +O(ε2+2t)
ε→0

)
−O(ε2+2t)

ε→0

(
1− ε

p′ +O(ε2)
ε→0

) .
(2.50)
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Finally, we multiply numerator and denominator by ε, and we use big O notation properties,

to get

g(x1, x2) =
ε
t
p

1
p′ + εt

p −
ε

1
p+ 1

t

pp′ −O(ε)
ε→0

(
1− ε1+t

p +O(ε2+2t)
ε→0

)
−O(ε1+2t)

ε→0

(
1− ε

p′ +O(ε2)
ε→0

) .
(2.51)

The denominator converges to 1
p′ as ε → 0, while the numerator converges to 0 as ε → 0,

which proves that, under the previous choices, we have

g(x1(ε), x2(ε))→ 0 as ε→ 0. (2.52)

Since g(x1, x2) > 0 by construction, this entails that

lim inf
(x1,x2)→( 1

2
, 1
2p )

g(x1, x2) = 0. (2.53)

The function g is a continuous function defined over the connected set {(x1, x2) | x1 ∈(
0, 1

2

)
, x2 ∈

(
0, 1

2p

)
}, so, since we also proved (2.41), it follows that

(0, 1] ⊆
{
g(x1, x2)

∣∣∣∣ x1 ∈
(

0,
1

2

)
, x2 ∈

(
0,

1

2p

)}
, (2.54)

which is the equation we wanted to prove.

The last equation entails that (2.36) is satisfied for any 0 < P1 ≤ 1, so we proved that for all

F > 0, f > 0, v > 0 such that fp ≤ Fvp−1 then there exist λ0 > 0, φ0 > 0, 0 < x1 <
1
2 ,

0 < x2 <
1
2p such that the maps

λI := λ0 · |I|
log 1

2
(x1)

, (2.55)

φ(I) := φ0 · |I|
log 1

2
(x2)

satisfy the equations

F =
1

|I0|
∑
I⊆I0

φ(I)p, (2.56)

f =
1

|I0|
∑
I⊆I0

φ(I)λ
1
p′
I ,

v =
1

|I0|
∑
I⊆I0

λI .

Now it is only left to prove that there exist

α : D(I0) −→ R+ (2.57)



2.2. SHARPNESS OF THE CONSTANT 57

such that we have

A =
1

|I0|
∑
I⊆I0

αI

(
1

|I|
∑
K⊆I

λK

)p
.

Given the previous definitions of λI and φI , let us consider

α : D(I0) −→ R+ (2.58)

I 7−→ αI := P2 · λI
(

1

|I|
∑
K⊆I

λK

)−p
,

where P2 is the parameter defined in (2.25). This expression is well defined because, by con-

struction of λI , we have
1

|I|
∑
K⊆I

λK > 0 ∀I ∈ D(I0). (2.59)

From this definition, for all I ∈ D(I0), we get

1

|I|
∑
J⊆I

αJ

(
1

|J |
∑
K⊆J

λK

)p
= P2

1

|I|
∑
J⊆I

λJ ≤
1

|I|
∑
J⊆I

λJ < +∞, (2.60)

which means that the hypothesis (2.23) is satisfied. Moreover, for I = I0, we get

1

|I0|
∑
I⊆I0

αI

(
1

|I|
∑
K⊆I

λK

)p
= P1

1

|I0|
∑
I⊆I0

λI = P1 · v = A, (2.61)

which is the required inequality. So we proved that for all (F, f,A, v) ∈ D there exist

I 7−→ αI ∈ R+,

I 7−→ λI ∈ R+,

I 7−→ φ(I) ∈ R+,

such that
1

|I|
∑
K⊆I

αK

(
1

|K|
∑
J⊆K

λJ

)p
≤ 1

|I|
∑
K⊆I

λI < +∞ ∀I ∈ D(I0)

holds, and such that

F =
1

|I0|
∑
I⊆I0

φ(I)p,

f =
1

|I0|
∑
I⊆I0

φ(I)λ
1
p′
I ,

A =
1

|I0|
∑
I⊆I0

αI

(
1

|I|
∑
K⊆I

λK

)p
,

v =
1

|I0|
∑
I⊆I0

λI ,
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ending the proof of the optimality of the domain D.

Since the function B satisfies the main inequality (2.5) it can be proved that the function

B also satisfies the following infinitesimal inequalities:

3′. d2B ≤ 0,

3′′. ∂B
∂A ≥

fp

vp .

Inequalities 3′ and 3′′ use the notion of derivative from the theory of distributions. However,

we will skip the technical details about the optimal regularity of the functions, and, during the

remaining part of the work, we will assume that the function B has C2 regularity.

2.2.2 Improvement of the ”Bellman” type function

In this subsection we use the function B defined in (2.13) to define a new function B̂ which

satisfies the same properties, and it also satisfies an additional property which allows us to

prove the sharpness of the constant C(p).

In the following lemmas we are going to show that the characterization of the dual dyadic

Hardy’s inequality holds for a constant K(p) if and only if there exists a ”Bellman” type

function B̂ with the previous properties, and such that B̂ can be written in the form

B̂(F, f,A, v) = K(p)F − fp

ϕ(A, V )p−1
,

where ϕ is a linear function.

Lemma 2.2.2. Let 1 < p < +∞ and K(p) ∈ R. The following statements are equivalent:

� The characterization of the dual dyadic Hardy’s inequality 2.1.1 holds for constant K(p),

i.e. if the inequality

1

|I|
∑
J⊆I

αJ

(
1

|J |
∑
K⊆J

λK

)p
≤ 1

|I|
∑
J⊆I

λJ < +∞ ∀I ∈ D(I0) (2.62)

is satisfied, then

1

|I0|
∑
I⊆I0

αI

(
1

|I|
∑
J⊆I

φ(J)λ
1
p′
J

)p
≤ K(p)

1

|I0|
∑
I⊆I0

φ(I)p. (2.63)
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� There exists a function

B̂ : D −→ R

where

D = {(F, f,A, v) ∈ R4 | F > 0, f > 0, A > 0, v > 0, A ≤ v, fp ≤ Fvp−1}

such that

1. B̂ is defined over the domain D,

2. K(p)F ≥ B̂(F, f,A, v) ≥ 0 for all (F, f,A, v) ∈ D,

3′. d2B̂(F, f,A, v) ≤ 0,

3′′. ∂B̂
∂A (F, f,A, v) ≥ fp

vp .

Moreover, the function B̂ may be written in the form

B̂(F, f,A, v) = B̂h(F, f,A, v) = K(p)F + fph(A, v). (2.64)

Proof. Suppose there exists a function B̂ that satisfies the properties 1, 2, 3′ and 3′′.

By integration it follows that a function B̂ that satisfies 3′ and 3′′ also satisfies the main in-

equality (2.5), so the previous proof for the characterization dual dyadic Hardy’s inequality

holds using the Bellman function method and the function B̂.

It is left to prove that, if the Theorem 2.1.1 holds for a constant K(p), then a function B̂ with

the previous properties exists.

Let us assume that the characterization for the dual dyadic Hardy’s inequality holds for

constant a K(p). Consider the function B defined in (2.13). The definition of B does not

depend on the choice of the interval I, so we choose I = I0. We observe that, by definition of

the function B, we have B(F, f,A, v) ≥ 0. We assumed that the characterization for the dual

dyadic Hardy’s inequality holds for the constant K(p), so, since B(F, f,A, V ) is defined as the

supremum of the left hand side of the thesis (2.63), where

F = 1
|I|
∑
J⊆I

φ(J)p, f =
1

|I|
∑
J⊆I

φ(J)λ
1
p′
J ,

A = 1
|I|
∑
J⊆I

αJ

(
1
|J |
∑
K⊆J

λK

)p
, v =

1

|I|
∑
J⊆I

λJ ,

we get B(F, f,A, v) ≤ K(p)F . We also observed earlier that B satisfies 3′ and 3′′. So we proved

that B satisfies 1, 2, 3′ and 3′′. We are now going to define the function

u(f,A, v) := sup
F

{
B(F, f,A, v)−K(p)F

}
.
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Lemma 2.2.3. Let φ(x, y) be a concave function, and let Φ(x) = supy φ(x, y). Then Φ is

concave.

The function B is concave because it satisfies 3′, so the function u is concave. By homo-

geneity of B we get

B(apF, af,A, v) = apB(F, f,A, v) ∀a > 0,

which entails

u(af,A, v) = apu(f,A, v) ∀a > 0.

So u can be written in the form

u(f,A, v) = fph(A, v).

We are now going to consider the function

B̂(F, f,A, v) := K(p)F + u(f,A, v),

which can be written in the form

B̂(F, f,A, v) = B̂h(F, f,A, v) = K(p)F + fph(A, v).

By construction 0 ≤ B̂(F, f,A, v) ≤ K(p)F , B̂ is concave and ∂B̂
∂A (F, f,A, v) ≥ fp

vp . So the

function B̂ satisfies the properties 1, 2, 3′ and 3′′ and it is written in the form (2.64), finishing

the proof.

Lemma 2.2.4. Let 1 < p < +∞ and K(p) ∈ R. The following statements are equivalent:

� The characterization of the dual dyadic Hardy’s inequality (2.1.1) holds for constant K(p),

i.e. if the inequality

1

|I|
∑
J⊆I

αJ

(
1

|J |
∑
K⊆J

λK

)p
≤ 1

|I|
∑
J⊆I

λJ < +∞ ∀I ∈ D(I0) (2.65)

is satisfied, then

1

|I0|
∑
I⊆I0

αI

(
1

|I|
∑
J⊆I

φ(J)λ
1
p′
J

)p
≤ K(p)

1

|I0|
∑
I⊆I0

φ(I)p. (2.66)

� There exists a function

B̂ϕ(F, f,A, v) = K(p)F − fp

ϕ(A, v)p−1
(2.67)

such that
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1. B̂ϕ is defined over the domain

D = {(F, f,A, v) ∈ R4 | F > 0, f > 0, A > 0, v > 0, A ≤ v, fp ≤ Fvp−1},

2̊. vp−1

ϕ(A,v)p−1 ≤ K(p),

3̊. ∂ϕ
∂A(A, v) ≥ 1

(p−1)vpϕ(A, v)p,

4̊. ϕ(A, v) > 0,

5̊. ϕ is linear.

Proof. Let K(p) be a constant. By Lemma 2.2.2 the characterization of the dual dyadic Hardy’s

inequality (2.1.1) holds for the constant K(p) if and only if there exists a function

B̂h(F, f,A, v) = K(p)F + fph(A, v) (2.68)

such that

1. B̂h is defined over the domain

D = {(F, f,A, v) ∈ R4 | F > 0, f > 0, A > 0, v > 0, A ≤ v, fp ≤ Fvp−1}

2. K(p)F ≥ B̂h(F, f,A, v) ≥ 0 for all (F, f,A, v) ∈ D

3′. d2B̂h(F, f,A, v) ≤ 0

3′′. ∂B̂h

∂A (F, f,A, v) ≥ fp

vp

The properties 3′ and 3′′ hold for the function (2.68) if and only if

3∗. d2(fph(A, v)) ≤ 0

3∗∗. ∂h
∂A(A, v) ≥ 1

vp

We are going to rewrite the condition 3∗ in a better way.

Let us compute the charateristic polynomial of the Hessian matrix H(fph(A, v)), i.e. the

polynomial

P (λ)(f,A, V ) = det(H(fph(A, v))− λI).

We are going to skip writing down the variables f , A and v in the following computations, to

simplify the notation.

By computation, the charateristic polynomial is

P (λ) = a3λ
3 + a2λ

2 + a1λ+ a0,
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where

a3 = −1,

a2 = fp−2

[
f2

[
∂2h

∂A2
+
∂2h

∂v2

]
+ p(p− 1)h

]
,

a1 = f2p−2

[
f2

[
p(p− 1)

(
∂2h

∂A∂v

)2

− ∂2h

∂A2

∂2h

∂v2

]
+

p2

[(
∂h

∂A

)2

+

(
∂h

∂v

)2]
− p(p− 1)

[
∂2h

∂A2
+
∂2h

∂v2

]
h

]
,

a0 = f3p−2

[
p(p− 1)

[
∂2h

∂A2

∂2h

∂v2
h−

(
∂2h

∂A∂v

)2

h

]
+

p2

[
2
∂h

∂A

∂h

∂v

∂2h

∂A∂v
−
[(

∂h

∂v

)2 ∂2h

∂A2
+

(
∂h

∂A

)2∂2h

∂v2

]]]
.

The condition 3∗ holds if and only if all the roots of the polynomial P (λ) are non-positive.

Since a3 < 0, a necessary condition for 3∗ is

a2 ≤ 0, a1 ≤ 0, a0 ≤ 0, (2.69)

for all the points (f,A, V ) such that f > 0, 0 < A < v.

Since f > 0 it follows that the condition (2.69) is equivalent to

4. f2

[
∂2h

∂A2
+
∂2h

∂v2

]
+ p(p− 1)h ≤ 0,

5. f2

[
p(p− 1)

(
∂2h

∂A∂v

)2

− ∂2h

∂A2

∂2h

∂v2

]
+ p2

[(
∂h

∂A

)2

+

(
∂h

∂v

)2]
−

p(p− 1)

[
∂2h

∂A2
+
∂2h

∂v2

]
h ≤ 0,

6. p(p− 1)

[
∂2h

∂A2

∂2h

∂v2
h−

(
∂2h

∂A∂v

)2

h

]
+

p2

[
2
∂h

∂A

∂h

∂v

∂2h

∂A∂v
−
[(

∂h

∂v

)2 ∂2h

∂A2
+

(
∂h

∂A

)2∂2h

∂v2

]]
≤ 0.

We observe that the conditions 4, 5 and 6 hold for all f > 0, so, by letting f → 0, it follows
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that the conditions

4′. h ≤ 0,

5′. p

[(
∂h

∂A

)2

+

(
∂h

∂v

)2]
− (p− 1)

[
∂2h

∂A2
+
∂2h

∂v2

]
h ≤ 0,

6. p(p− 1)

[
∂2h

∂A2

∂2h

∂v2
h−

(
∂2h

∂A∂v

)2

h

]
+

p2

[
2
∂h

∂A

∂h

∂v

∂2h

∂A∂v
−
[(

∂h

∂v

)2 ∂2h

∂A2
+

(
∂h

∂A

)2∂2h

∂v2

]]
≤ 0.

are necessary for 4, 5 and 6.

The function B̂h defined in (2.68) is concave, so it follows that h is concave. Moreover, the the

function h satisfies the condition 3∗∗, and h ≤ 0, so h(A, v) < 0 for all 0 < A < v. So it follows

that the conditions

4′′. h(A, v) < 0, for 0 < A < v,

5′. p

[(
∂h

∂A

)2

+

(
∂h

∂v

)2]
− (p− 1)

[
∂2h

∂A2
+
∂2h

∂v2

]
h ≤ 0,

6. p(p− 1)

[
∂2h

∂A2

∂2h

∂v2
h−

(
∂2h

∂A∂v

)2

h

]
+

p2

[
2
∂h

∂A

∂h

∂v

∂2h

∂A∂v
−
[(

∂h

∂v

)2 ∂2h

∂A2
+

(
∂h

∂A

)2∂2h

∂v2

]]
≤ 0.

are necessary for 4′, 5′ and 6.

Since 4′′ holds, we define

ψ(A, v) =

[
− 1

h(A, v)

] 1
p−1

, for 0 < A < v, (2.70)

so we get

h(A, v) = − 1

ψ(A, v)p−1
, for 0 < A < v. (2.71)

By computation (see the Appendix), using the equation (2.71), we rewrite the conditions 4′′,

5′′ and 6 in the following way:

4̊. ψ(A, v) > 0, for 0 < A < v,

5̂. ∆ψ ≤ 0,

6̂.

(
∂2ψ

∂A∂v

)2

− ∂2ψ

∂A2

∂2ψ

∂v2
≤ 0,
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and we rewrite the condition 3∗∗ in the following way:

3̊.
∂ψ

∂A
(A, v) ≥ 1

(p− 1)vp
ψ(A, v)p.

Conditions 5̂ and 6̂ entail that the Hessian matrix of ψ is negative semi-definite.

So we proved that, if the characterization of the dual dyadic Hardy’s inequality 2.1.1 holds for

a constant K(p), then there exists a function

B̂ψ(F, f,A, v) = K(p)F − fp

ψ(A, v)p−1

such that:

1. B̂ψ is defined over the domain

D = {(F, f,A, v) ∈ R4 | F > 0, f > 0, A > 0, v > 0, A ≤ v, fp ≤ Fvp−1},

2̊. vp−1

ψ(A,v)p−1 ≤ K(p) for all (F, f,A, v) ∈ D,

3̊. ∂ψ
∂A(A, v) ≥ 1

(p−1)vpψ(A, v)p ,

4̊. ψ(A, v) > 0 for 0 < A < v,

5̃. ψ is concave.

Now we are going to prove that Theorem 2.1.1 holds for the constant K(p) if and only if there

exists a linear function ϕ(A, v) such that the function

B̂ϕ(F, f,A, v) = K(p)F − fp

ϕ(A, v)p−1

satisfies 1, 2̊, 3̊ and 4̊.

If a function ϕ with such properties exists, then the function B̂ϕ satisfies 1, 2, 3′ and 3′′, so, by

the previous lemma, Theorem 2.1.1 holds for the constant K(p).

Suppose that Theorem 2.1.1 holds for the constant K(p). By the previous point there exists a

concave function ψ satisfying 1, 2̊, 3̊ and 4̊. Let us define the function

t : (0,+∞) −→ R

v 7−→ ψ(0, v).

The function ψ satisfies 2̊, 3̊ and 4̊, so it follows that

sup
0<v

(
v

t(v)

)p−1

= sup
0<v

(
v

ψ(0, v)

)p−1

= sup
0<A≤v

(
v

ψ(A, v)

)p−1

≤ K(p). (2.72)
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Moreover, the function t satisfies

lim
v→+∞

(
v

t(v)

)
≤ sup

0<v

(
v

t(v)

)
. (2.73)

By combining (2.72) and (2.73) we get

lim
v→+∞

(
v

t(v)

)p−1

≤ K(p). (2.74)

The function t is concave and non-negative, so

lim
v→+∞

t′(v) ≥ 0,

otherwise the function t would be negative as v → +∞. Moreover,

lim
v→+∞

t′(v) > 0.

Indeed, let us suppose that t′(v)→ 0 for v → +∞. If t is bounded by above then

lim
v→+∞

(
v

t(v)

)p−1

= +∞ 6≤ K(p),

in contradiction with (2.74).

If t(v)→ +∞ as t→ +∞, then

lim
v→+∞

(
v

t(v)

)p−1

= lim
v→+∞

(
1

t′(v)

)p−1

= +∞ 6≤ K(p),

in contradiction with (2.74).

Let us define a linear function

ϕ(A, v) = C1A+ C2v for 0 < A ≤ v, (2.75)

and let us choose

C1 > 0, C2 = lim
v→+∞

t′(v), (2.76)

we will fix the value of C1 later.

By construction, C2 > 0, so the function ϕ is positive. Moreover, since C1 > 0, it follows that

sup
0<A≤v

(
v

ϕ(A, v)

)p−1

= sup
0<v

(
v

C1 · 0 + C2v

)p−1

=

(
1

C2

)p−1

= lim
v→+∞

(
1

t′(v)

)p−1

=

= lim
v→+∞

(
v

t(v)

)p−1

≤ K(p),
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so we proved that
vp−1

ϕ(A, v)p−1
≤ K(p) for 0 < A ≤ v. (2.77)

It is left to prove that ϕ satisfies 3̊.

We observe that the following statements are equivalent:

I)
∂ϕ

∂A
(A, v) ≥ 1

(p− 1)vp
ϕ(A, v)p for 0 < A ≤ v.

II) There exists v > 0 such that

∂ϕ

∂A
(v, v) ≥ 1

(p− 1)vp
ϕ(v, v)p,

where
∂ϕ

∂A
(v, v) = lim

x→v
x<v

∂ϕ

∂A
(x, v).

Indeed, I) trivially implies II). On the other hand, if ϕ satisfies II), then

C1 ≥
1

(p− 1)vp
(C1v + C2v)p.

However, we observe that C1 > 0, and

∂ϕ

∂A
(A, v) =

∂ϕ

∂A
(v, v) = C1,

so it follows that

∂ϕ

∂A
(A, v) ≥ 1

(p− 1)vp
(C1v + C2v)p ≥ 1

(p− 1)vp
(C1A+ C2v)p =

1

(p− 1)vp
ϕ(A, v)p,

so we proved that I) holds.

We are now going to prove that the function ϕ satisfies II).

Consider a fixed ṽ > 0. Let us define the function

rṽ : (0, ṽ] −→ R

A 7−→ ψ(A, ṽ).

By construction, the function rṽ is concave, strictly increasing.

Moreover, we observe that ϕ(0, v) ≤ ψ(0, v) for all v > 0. Indeed, by construction, we have

lim
x→0

ϕ(0, x) = 0 ≤ lim
x→0

ψ(0, x),



2.2. SHARPNESS OF THE CONSTANT 67

and, by concavity of ψ,

∂

∂v
ϕ(0, y) = C2 = lim

x→+∞

∂

∂v
ψ(0, x) ≤ ∂

∂v
ψ(0, y) for all y > 0.

So, by integration, it follows that

rṽ(0) = ψ(0, ṽ) ≥ ϕ(0, ṽ). (2.78)

Now we set C1 to be the value

C1 =
ψ(ṽ, ṽ)− ϕ(0, ṽ)

ṽ
=
rṽ(ṽ)− ϕ(0, ṽ)

ṽ
. (2.79)

The following pictures show the construction we just defined.
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By construction, C1 > 0, and

ϕ(ṽ, ṽ) = C1ṽ + C2ṽ =
ψ(ṽ, ṽ)− ϕ(0, ṽ)

ṽ
ṽ + C1 · 0 + C2ṽ = ψ(ṽ, ṽ)− ϕ(0, ṽ) + ϕ(0, ṽ) =

ψ(ṽ, ṽ) = rṽ(ṽ). (2.80)

By concavity of rṽ, since ϕ(0, ṽ) < rṽ(0), we get

r′ṽ(ṽ) ≤ rṽ(ṽ)− rṽ(0)

ṽ
≤ rṽ(ṽ, ṽ)− ϕ(0, ṽ)

ṽ
= C1. (2.81)

However, the function rṽ satisfies equation 3̊, i.e.

r′ṽ(A) ≥ 1

(p− 1)ṽp
rṽ(A)p for 0 < A < ṽ, (2.82)

so, by letting A→ ṽ, since rṽ(ṽ) = ϕ(ṽ, ṽ), we get

1

(p− 1)vp
ϕ(ṽ, ṽ)p =

1

(p− 1)ṽp
rṽ(ṽ)p ≤ r′ṽ(ṽ) ≤ C1 =

∂

∂A
ϕ(ṽ, ṽ), (2.83)
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proving that II) holds.

So, by the previous remark, I) holds, i.e.

∂ϕ

∂A
(A, v) ≥ 1

(p− 1)vp
ϕ(A, v)p for 0 < A ≤ v, (2.84)

so we proved that ϕ satisfies 3̊, finishing the proof.

2.2.3 Optimality of the constant

In this section we prove the optimality of the constant C(p) for Theorem 2.1.1.

Theorem 2.2.5. The constant C(p) =
(
p/(p− 1)

)p
in Theorem 2.1.1 is sharp.

Proof. By Lemma 2.2.4, Theorem 2.1.1 holds for a constant K(p) if and only if there exists a

function

B̂ϕ(F, f,A, v) = K(p)F − fp

ϕ(A, v)p−1
, (2.85)

such that

1. B̂ϕ is defined over the domain

D = {(F, f,A, v) ∈ R4 | F > 0, f > 0, A > 0, v > 0, A ≤ v, fp ≤ Fvp−1},

2̊. vp−1

ϕ(A,v)p−1 ≤ K(p),

3̊. ∂ϕ
∂A(A, v) ≥ 1

(p−1)vpϕ(A, v)p,

4̊. ϕ(A, v) > 0,

5̊. ϕ is linear.

We set

ϕ(A, v) = C
− 1
p−1

1 (A+ C2v), (2.86)

for C1 = C1(p) > 0, C2 = C2(p) > 0, getting

B̂ϕ(F, f,A, v) = K(p)F − C1
fp

(A+ C2v)p−1
. (2.87)

This parametrization is sufficient to define all functions ϕ with the required properties.

By construction, 4̊ and 5̊ are satisfied.

Without loss of generality, we may suppose that the inequality 2̊ is sharp, i.e.

sup
0<A<v

vp−1

ϕ(A, v)p−1
= K(p). (2.88)
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Indeed, if a function ϕ satisfies 1, 3̊, 4̊, 5̊, and it satisfies

sup
0<A<v

vp−1

ϕ(A, v)p−1
= K(p)− ε = K̃(p) < K(p), (2.89)

then it also satisfies the condition (2.88) for a more optimal constant K̃(p) < K(p).

By computation, since C1 > 0, the condition (2.88) is equivalent to

sup
v>0

vp−1

ϕ(0, v)p−1
= K(p),

i.e.

sup
v>0

C1
vp−1

(0 + C2v)p−1
=

C1

Cp−1
2

= K(p).

So we are going to set

C1 = K(p)Cp−1
2 . (2.90)

So, by combining (2.90) and (2.86), we get

ϕ(A, v) = K(p)
− 1
p−1C−1

2 (A+ C2v). (2.91)

By construction, the function ϕ satisfies 1, 2̊, 4̊ and 5̊. Now we observe that the following

statements are equivalent:

I) ϕ satisfies 3̊, i.e.
∂ϕ

∂A
(A, v) ≥ 1

(p− 1)vp
ϕ(A, v)p for 0 < A ≤ v.

II) There exists v > 0 such that

∂ϕ

∂A
(v, v) ≥ 1

(p− 1)vp
ϕ(v, v)p,

where
∂ϕ

∂A
(v, v) = lim

x→v
x<v

∂ϕ

∂A
(x, v).

III)

C2 ∈ S(K(p)) :=

{
x > 0

∣∣∣∣ (x+ 1)p − (p− 1)K(p)xp−1 ≤ 0

}
.

We already proved in the previous lemma that I) and II) are equivalent.

To prove that II) is equivalent to III) we compute the condition II) for v > 0, getting

K(p)
− 1
p−1C−1

2 ≥ 1

(p− 1)vp
K(p)

− p
p−1C−p2 (v + C2v)p. (2.92)



2.2. SHARPNESS OF THE CONSTANT 71

By computation, (2.92) is equivalent to

(C2 + 1)p − (p− 1)K(p)Cp−1
2 ≤ 0, (2.93)

which is equivalent to C2 ∈ S(K(p)).

So we proved that the Theorem 2.1.1 holds for a constant K(p) if and only if the set S(K(p))

is not empty.

To finish the proof that the constant

C(p) =
(
p′)p =

(
p

p− 1

)p
is optimal for the Theorem 2.1.1, we only need to prove that

S(K(p)) = ∅ for K(p) < C(p). (2.94)

Consider the following function:

Φ(K(p)) : (0,+∞) −→ R

x 7−→ (x+ 1)p − (p− 1)K(p)xp−1.

The set S(K(p)) is the set of points x > 0 such that Φ(K(p)) ≤ 0.

If we consider K(p) = C(p) then, by computation, we get

Φ(C(p))(x) = (x+ 1)p − pp

(p− 1)p−1
xp−1. (2.95)

It is easy to prove that the function Φ(C(p)) has a unique global minimum point at x = p−1, and

the minimum is Φ(C(p))(p−1) = 0, which entails that S(C(p)) = {p−1}, and Φ(C(p))(x) ≥ 0

for x > 0.

If we consider, for any fixed ε > 0, the constant

K(p) = C(p)− ε < C(p),

then the function Φ(K(p)) is the function

Φ(K(p))(x) = (x+ 1)p − (p− 1)(C(p)− ε)xp−1 =

= (x+ 1)p − (p− 1)C(p)xp−1 + (p− 1)εxp−1 =

= Φ(C(p))(x) + P (ε)(x),

where P (ε)(x) = (p− 1)εxp−1.

However, P (ε)(x) > 0 for x > 0, and Φ(C(p))(x) ≥ 0 for x > 0, so it follows that Φ(K(p))(x) >

0 for x > 0, which entails that the set S(K(p)) is empty for all K(p) < C(p).

So Theorem 2.1.1 does not hold for any constant K(p) smaller than C(p).

Moreover, we proved in section 1 that it holds for the constant C(p) =
(
p′
)p

, so the constant

C(p) is the optimal constant for the theorem, finishing the proof.
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2.3 Stochastic approach to the problem

We will now analyze this problem from the point of view of the theory of stochastic opti-

mal control, and we will show that the function B can be interpreted as the Bellman function

associated to a stochastic optimal control problem naturally related to the dyadic problem. In

this section we use the same notations used in [24], chapter 11. See [19] for more details about

the topic.

We are going to show that

Theorem 2.3.1. The functions B and g are identical.

Here g is the Bellman function solution to the following stochastic optimal control problem

associated to the inequality (2.4).

Consider x ∈ D, u = (u1, u2, . . . , u5) ∈ R5 such that u5 ≥ 0. Let us define the payoff density

ηu(x) := pp
(

x2

x3 + (p− 1)x4

)p
u5.

Let x ∈ D. We define the bequest function

K(x) = lim inf
y→x
y∈D

B(y).

We remark that, for the definition of the stochastic Bellman function, we only need to define

the bequest function K on the boundary of the domain D, however we follow the definition

used in [24].

Let us define the coefficients

b(u, x) := (0, 0,−u5, 0),

σ(u, x) := (u1, u2, u3, u4).

Let {ut}t≥0 be a control such that ut(ω) ∈ {u ∈ R5 | u5 ≥ 0}. We consider the stochastic

process {Xt} = {(Ft, ft, At, vt)} solution to the following stochastic differential equation

Xt = x0 +

∫ t

0
b(us, Xs)ds+

∫ t

0
σ(us, Xs)dBs, (2.96)

where x0 ∈ D is the starting point, {Bt}t≥0 is a 1-dimensional Brownian motion and the domain

of values of Xt is the set D. Let τD be the first exit time for {Xt}t≥0 from D, i.e.

τD(ω) :=

inf{s > 0 | Xs(ω) 6∈ D} if {s > 0 | Xs(ω) 6∈ D} 6= ∅,

+∞ otherwise.
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The Bellman function associated to the problem is

g(x) = sup
{ut}

Ex
[ ∫ τD

0
pp
(

fs
As + (p− 1)vs

)p
u5 ds+K(XτD)χ{τD<+∞}

]
,

where the supremum is taken over the set of controls {ut}t≥0 satisfying proper measurability

conditions and whose values range in the set {(u1, u2, u3, u4, u5) ∈ R5 | u5 ≥ 0}.

We observe that, for this result, we used the stronger version of the main inequality (2.4)

instead of the weaker version (2.5). By using a stronger main inequality we still get a Bellman

function that can be used in the proof of Theorem 2.1.1 with the Bellman function method,

however finding the solution to the problem associated to the weaker inequality (2.5) would

require more work.

We are now going to show in the following subsections how we got to the stochastic optimal

control problem and how we solved it.

2.3.1 From the dyadic to the stochastic problem

In this subsection we will show that the main inequality satisfied by the function B can be

used to prove that B satisfies a differential inequality that will be the starting point from which

we enunciate the stochastic optimal control problem having B as a solution.

We are going to recall the problem we are considering. Let p ∈ R, 1 < p < +∞. We consider

the function

B(F, f,A, v) =

(
p

p− 1

)p
F − pp

p− 1

fp

(A+ (p− 1)v)p−1
,

defined over the domain

D :=

{
(F, f,A, v) ∈ R4

∣∣ F > 0, f > 0, A > 0, v > 0, v ≥ A, fp ≤ Fvp−1

}
.

We proved in section 1 that B satisfies the inequality (2.4). We are now going to show how the

inequality (2.4) entails a differential inequality for the function B.

Let us consider a fixed point (F̃ , f̃ , Ã, ṽ) in the set of the interior points of D. Let us consider

a ≥ 0, b ≥ 0, c ≥ 0. Let us consider t > 0. We now define

φ(t) = (F̃ + (tb)p, f̃ + t2ab, Ã+ tc, ṽ + (ta)q) ∈ R4,

ψ(t) = (F̃ + u1t, f̃ + u2t, Ã+ u3t, ṽ + u4t) ∈ R4.
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As long as we choose t̃ ∈ R+ small enough, we have that φ(t) ∈ D and ψ(t) ∈ D for all 0 ≤ t < t̃.

So we may now compute the main inequality (2.4) in the following way

B
(
F̃ + (t2b)p, f̃ + (t2)2ab, Ã+ t2c, ṽ + (t2a)p

′
)
− B

(
F̃ , f̃ , Ã, ṽ

)
+

B
(
F̃ , f̃ , Ã, ṽ

)
− 1

2

[
B
(
F̃ + u1t, f̃ + u2t, Ã+ u3t, ṽ + u4t

)
+

B
(
F̃ − u1t, f̃ − u2t, Ã− u3t, ṽ − u4t

)]
≥ pp fp

(A+ (p− 1)v)p
t2c,

which is equivalent to

B(φ(t2))− B(φ(0)) + B(ψ(0))− 1

2

[
B(ψ(−t)) + B(ψ(t))

]
≥

pp
(f̃ + (t2)2ab)p

(Ã+ t2c+ (p− 1)(ṽ + (t2a)p′))p
t2c.

We are allowed to compute this inequality because, by setting X = φ(t2), X̃ = φ(0) = ψ(0)

and X+ = ψ(t), X− = ψ(−t), we have

X = X̃ +

(
(t2b)p, (t2a) · (t2b), (ta)p

′
, c2t

)
,

X̃ =
1

2
(X+ +X−),

and X, X̃, X+, X− are in the domain D, so the hypotheses of the main inequality are satisfied.

Dividing by t2 and taking the limit as t→ 0 we get

lim
t→0

B(φ(t2))− B(φ(0)) + B(ψ(0))− 1
2

[
B(ψ(−t)) + B(ψ(t))

]
t2

≥ pp f̃p

(Ã+ (p− 1)ṽ)p
c.

By a change of variable we get

lim
s→0

B(φ(s))− B(φ(0))

s
+ lim
t→0

B(ψ(0))− 1
2

[
B(ψ(−t)) + B(ψ(t))

]
t2

≥ pp f̃p

(Ã+ (p− 1)ṽ)p
c,

so we get
∂

∂t
B(φ(t))

∣∣∣∣
t=0

− 1

2

∂2

∂t2
B(ψ(t))

∣∣∣∣
t=0

≥ pp f̃p

(Ã+ (p− 1)ṽ)p
c. (2.97)

By computing the derivative we get

〈∇B(φ(0)), φ′(0)〉 − 1

2

[
〈H(B)(ψ(0))ψ′(0), ψ′(0)〉+ 〈∇B(ψ(0)), ψ′′(0)〉

]
≥ pp f̃p

(Ã+ (p− 1)ṽ)p
c.
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Now we observe that

φ′(0) = (0, 0, c, 0), ψ′(0) = (u1, u2, u3, u4) =: u, ψ′′(0) = (0, 0, 0, 0).

So we get

∂B
∂x3
· c− 1

2
〈H(B) · u, u〉 ≥ pp f̃p

(Ã+ (p− 1)ṽ)p
c (2.98)

for any c ≥ 0.

We may verify that the function

B(F, f,A, v) =

(
p

p− 1

)p
F − pp

p− 1

fp

(A+ v(p− 1))p−1

satisfies the inequality (2.98). We compute

∂B
∂x3

(F̃ , f̃ , Ã, ṽ) · c = pp
f̃p

(Ã+ ṽ(p− 1))p
c,

and B is concave so it satisfies −1
2〈H(B) · u, u〉 ≥ 0, showing that (2.98) is satisfied.

It follows that the function B satisfies the inequality

−∂B(x)

∂x3
u5 +

1

2

4∑
i,j=1

∂2B(x)

∂xi∂xj
uiuj + pp

(
x2

x3 + (p− 1)x4

)p
u5 ≤ 0 ∀x ∈ D, ∀u ∈ R5, u5 ≥ 0.

So the function B satisfies the following inequality

sup
u∈R5

u5≥0

{
− ∂B(x)

∂x3
u5 +

1

2

4∑
i,j=1

∂2B(x)

∂xi∂xj
uiuj + pp

(
x2

x3 + (p− 1)x4

)p
u5

}
≤ 0, (2.99)

so we will read the function B as a supersolution to a Hamilton-Jacobi-Bellman equation.

Moreover, B is actually a solution to the Hamilton-Jacobi-Bellman equation by taking u1 =

u2 = u3 = u4 = 0.

So B satisfies the Hamilton-Jacobi-Bellman equation

sup
u∈R5

u5≥0

{
− ∂B(x)

∂x3
u5 +

1

2

4∑
i,j=1

∂2B(x)

∂xi∂xj
uiuj + pp

(
x2

x3 + (p− 1)x4

)p
u5

}
= 0 ∀x ∈ D. (2.100)

So we naturally got a Hamilton-Jacobi-Bellman equation that can be interpreted as the equa-

tion associated to a stochastic optimal control problem.
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2.3.2 Stochastic optimal control problem

We are now going to enunciate a stochastic optimal control which defines a Bellman function

g such that g ≡ B.

Let us consider the following extension of the function B to the closure D of its domain:

B̃ : D −→ R

defined in the following way:

B̃(x) =

B(x) if x ∈ D,

lim inf
y→x

B(y) if x ∈ D\D.

Observation 2.3.1. For all points x ∈ D\D such that (x3, x4) 6= (0, 0) the function B extends

continuously to the value

B̃(x1, x2, x3, x4) = lim
y→x
B(y) =

(
p

p− 1

)p
x1 −

pp

p− 1

x2
p

(x3 + x4(p− 1))p−1
.

The remaining points x ∈ D\D are the points x = (F, f, 0, 0), however by definition of D we

have fp ≤ Fvp−1, so f = 0. For the points x = (F, 0, 0, 0) such that F ≥ 0 we have

B̃(x) = lim inf
y→x

B(y) = 0.

Proof. We are going to show this fact by recalling that B ≥ 0, so lim inf
y→x

B(y) ≥ 0, and by

considering a proper sequence of points. Let v ≥ A > 0, let 0 < t ≤ 1. Let us first assume that

F > 0. We are going to consider the points

x(t) = (F, (F (tv)p−1)
1
p , t2A, tv).

By construction x(t) ∈ D, lim
t→0

x(t) = (F, 0, 0, 0), and

lim
t→0
B(x(t)) = lim

t→0

[(
p

p− 1

)p
F − pp

p− 1

F (tv)p−1

(t2A+ (p− 1)tv)p−1

]
=

F · lim
t→0

[(
p

p− 1

)p
− pp

p− 1

vp−1

(tA+ (p− 1)v)p−1

]
= 0.

Let us assume F = 0. Let F̃ > 0. We consider the sequence

x(t) = (tF̃ , (tF̃ (tv)p−1)
1
p , t2A, tv),

and the proof holds with the same argument.

So 0 ≤ lim inf
y→x

B(y) ≤ lim
t→0
B(x(t)) = 0, which ends the proof.
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Let x ∈ D, t ≥ 0, u = (u1, u2, . . . , u5) ∈ R5 such that u5 ≥ 0. We will now define a payoff

density and a bequest function to get the stochastic optimal control problem we are looking for.

These functions will not depend on the time variable, so in the notation we will skip writing

it. Let us define the payoff density

ηu(x, t) ≡ ηu(x) := pp
(

x2

x3 + (p− 1)x4

)p
u5.

Let x ∈ D. We define the bequest function

K(x1, x2, x3, x4, t) ≡ K(x) := B̃(x),

i.e. K is the function

K(x1, x2, x3, x4, t) ≡ K(x) =


(

p
p−1

)p
x1 − pp

p−1
xp2

(x3+(p−1)x4)p−1 if x ∈ D,

lim inf
y→x

B(y) if x ∈ D\D.

To finish the formulation of the stochastic optimal control problem we define the coefficients

b(u, x, t) ≡ b(u, x) := (0, 0,−u5, 0),

σ(u, x, t) ≡ σ(u, x) := (u1, u2, u3, u4).

Let {ut}t≥0 be a control such that ut(ω) ∈ {u ∈ R5 | u5 ≥ 0}. We consider the stochastic

process {Xt} = {(Ft, ft, At, vt)} solution to the stochastic differential equation (2.96). The

Bellman function associated to the problem is

g(x) = sup
{ut}

Ex
[ ∫ τD

0
pp
(

fs
As + (p− 1)vs

)p
u5 ds+K(XτD)χ{τD<+∞}

]
,

where the supremum is taken over the set of controls {ut}t≥0 such that {ut} is measurable with

respect to Ft, where {Ft}t≥0 is the filtration generated by the variables {Bs | 0 ≤ s ≤ t}, and

such that the values ut(ω) belong to the set {(u1, u2, u3, u4, u5) ∈ R5 | u5 ≥ 0}.
So by Theorem 1.4.1 the function g satisfies the equation (2.100). We will also write the

equation (2.100) in the following way

sup
u∈R5

u5≥0

{
(Lug)(x) + pp

(
x2

x3 + (p− 1)x4

)p
u5

}
= 0 ∀x ∈ D. (2.101)

We recall that the operator

(Luϕ)(x) = −∂ϕ(x)

∂x3
u5 +

1

2

4∑
i,j=1

∂2ϕ(x)

∂xi∂xj
uiuj (2.102)
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is the infinitesimal generator of the process {Xt} solution to the equation (2.96) for the choice

of the control {ut} such that ut ≡ u ∈ {y ∈ R5 | y5 ≥ 0}. Indeed, by Theorem 1.2.8, the

infinitesimal generator A of such process can be characterized by

(Ag)(x) =

4∑
i=1

bi(u, x)
∂g

∂xi
(x) +

1

2

4∑
i,j=1

(σσT )i,j(u, x)
∂2g

∂xi∂xj
(x) = (Lug)(x).

2.3.3 The dyadic Bellman function is a stochastic Bellman function

We are now going to give the proof of Theorem 2.3.1.

Proof. We are going to prove the stronger statement

g(x) = B̃(x) ∀x ∈ D. (2.103)

By definition of B̃ equation (2.103) entails

g(x) = B̃(x) = B(x) ∀x ∈ D, (2.104)

which is the required statement. First we are going to prove that g(F, f,A, v) ≥ B(F, f,A, v).

We are going to compute

g(F, f,A, v) ≥ Ex0

[ ∫ τD

0
ηus(Xs)ds+K(XτD)χ{τD<+∞}

]
for the choice

ut = (0, 0, 0, 0, 1), x0 = (F, f,A, v).

Let us first suppose v > 0. By computation we get Fs ≡ F , fs ≡ f , vs ≡ v, As = A − s, and

τD = A, so, since the control is deterministic, we get

g(F, f,A, v) ≥
∫ A

0
pp
(

f

A− s+ (p− 1)v

)p
ds+K(F, f,A−A, v) =[

pp

p− 1

fp

(A− s+ (p− 1)v)p−1

]s=A
s=0

+ B̃(F, f, 0, v) =(
p

p− 1

)p fp

vp−1
− pp

p− 1

fp

(A+ (p− 1)v)p−1
+ lim inf
y→(F,f,0,v)

B(y) =(
p

p− 1

)p fp

vp−1
− pp

p− 1

fp

(A+ (p− 1)v)p−1
+

(
p

p− 1

)p
F −

(
p

p− 1

)p fp

vp−1
=(

p

p− 1

)p
F − pp

p− 1

fp

(A+ (p− 1)v)p−1
= B̃(F, f,A, v).
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On the other hand, if v = 0 then A = 0 and f = 0 by definition of the domain D, so in this

case the stopping time τD is equal to 0, so the profit gain over the trajectory is 0, and we are

left with the bequest gain. So the inequality becomes

g(F, f,A, v) ≥ 0 +K(F, 0, 0, 0) = B̃(F, 0, 0, 0) = 0,

which ends the proof that g ≥ B̃.

To prove that g ≤ B̃ we are going to first enunciate a heuristic argument to show it, using

Jensen’s inequality.

Let us consider a control u = {ut}t≥0 such that ut = (u1(t), . . . , u4(t), 0) for 0 ≤ t < s and then

ut = (0, 0, 0, 0, 1) for t ≥ s. Let {Xt} be the solution to (2.96) for this choice of the control

{ut}. The control {ut} lets the process {Xt} behave like a martingale diffusion (the process has

no drift) up to the time s, and on this part of the trajectory there is no profit gain (because

the profit density is equal to 0 when u5 = 0). Moreover, the control {ut} lets the process {Xt}
drift towards the boundary of the domain from the time s onwards.

Let t 7→ X(ω)(t) := Xt(ω) be a trajectory of the process {Xt}.
If τD(ω) ≤ s then, by continuity of the process {Xt}, the trajectory X(ω) lands on the point

XτD(ω)(ω) ∈ ∂D for almost all the ω with such properties. So almost all trajectories X(ω) such

that τD(ω) ≤ s gain an amount of profit equal to K(XτD(ω)) = B̃(XτD(ω)) = B̃(Xs∧τD(ω)).

If τD(ω) > s, the trajectory t 7→ Xt(ω) of the process {Xt} lands on a point x in the interior of

the domain D at the time s, without exiting the domain D before the time s. We observe that,

in the first part of the proof, we proved that a control {ût} such that ût = (0, 0, 0, 0, 1) generates

a process {X̂t} that gains an amount of average profit equal to the value of the function B̃ in

the starting point. So, by this observation, it follows that the trajectory X(ω) gains no profit

during the time 0 < t < s, and gains an amount of profit equal to B̃(Xs) = B̃(XτD(ω)∧s) during

the times s ≤ t ≤ τD(ω).

Based on these observations the average amount of profit gained by {Xt}, given a control {ut}
of this kind, is

Ju(x) = Ex
[
0 + B̃(Xs∧τD)

]
,

where the first addent stands for the null gain on the trajectory up to the time s ∧ τD, while

the second addend is equal to the gain from that moment onwards (the profit gain from the

bequest function at the end of times is included in the second addend).

Following this notation the Bellman function g is

g(x) = sup
u={ut}

Ju(x).
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However, B̃ is concave, so by Jensen’s inequality we have

Ex
[
B̃(Xs∧τD)

]
≤ B̃

(
Ex[Xs∧τD ]

)
.

Moreover, {Xt} is a martingale up to the time s by definition, so we get

Ju(x) = Ex
[
B̃(Xs∧τD)

]
≤ B̃

(
Ex[Xs∧τD ]

)
= B̃(x),

and the heuristic idea is that there is ”independence” between letting the process drift in the

third variable (which gives a non-negative gain) and letting the process be a diffusion (which

gains nothing), so we can let the process be a combination of the two and the argument will

still hold. So by taking the supremum over all controls {ut} we get

g(x) = sup
u={ut}

Ju(x) ≤ B̃(x).

We are now going to give a proof that g ≤ B̃ using Dynkin’s formula 1.2.10.

We will skip some technical details in the following proof.

Let {ut}t≥0 be a given control. Let {Xt}t≥0 be the process solution to (2.96) for this choice of

the control {ut}t≥0. Let τD be the first exit time for {Xt} from D. We will first assume that

τD < +∞ almost surely. We are now going to apply Dynkin’s formula

Ex[B̃(XτD)] = B̃(x) + Ex
[ ∫ τD

0
(LusB̃)(Xs)dx

]
(2.105)

to the function B̃ and the process {Xt}t≥0. We get

B̃(x) = Ex[B̃(XτD)]− Ex
∫ τD

0
(LusB̃)(Xs)ds.

Now, since τD < +∞ almost surely, the event χ{τD<+∞} has a probability of 1, so

B̃(x) = Ex[B̃(XτD)χ{τD<+∞}]− Ex
∫ τD

0
(LusB̃)(Xs)ds.

The equation (2.101) entails that −(LusB̃)(y) ≥ ηus(y), so we get

B̃(x) ≥ Ex
∫ τD

0
ηus(Xs)ds+ Ex[B̃(XτD)χ{τD<+∞}].

However, B̃(XτD) = K(XτD), so we get

B̃(x) ≥ Ex
∫ τD

0
ηus(Xs)ds+ Ex[K(XτD)χ{τD<+∞}] = g(x).
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If τD is not almost surely finite, we are going to show an idea of the proof. We may consider

the stopping time τ(T ) = τD ∧ T = min{τD, T} for T > 0. This procedure is equivalent to

considering the processes Yt = (t,Xt) in the domain [0, T ]×D, and then defining the Bellman

function B̃T associated to those processes, which is a standard way to define the Bellman

functions (see [24], chapter 11).

Since τ(T ) < +∞ almost surely, we may apply Dynkin’s formula to that stopping time and,

with the same argument we used before, we get

B̃T (x) ≥ Ex
∫ τ(T )

0
ηus(Xs)ds+ Ex[K(Xτ(T ))χ{τ(T )<+∞}]

↓ T → +∞ ↓ T → +∞

B̃(x) ≥ Ex
∫ τD

0
ηus(Xs)ds+ Ex[K(XτD)χ{τD<+∞}].

So, by taking the supremum over all controls {ut}, we get

B̃(x) ≥ sup
{ut}

Ex
[ ∫ τD

0
ηus(Xs)ds+K(XτD)χ{τD<+∞}

]
= g(x),

which ends the proof that B̃ ≡ v, so B̃ is the Bellman function solution to the stochastic optimal

control problem.

2.4 Appendix

We are going to prove that the domain

D :=

{
(F, f,A, v) ∈ R4

∣∣ F > 0, f > 0, A > 0, v > 0, v ≥ A, fp ≤ Fvp−1

}
is convex.

Proof. We write the domain D in the form

D = {v ≥ A} ∩ A,

here A is the set

A = {(F, f,A, v) ∈ R4 | F > 0, f > 0, v > 0, fp ≤ Fvp−1}.

To prove that the domain is convex we just need to prove that it is an intersection of convex

sets.
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The set {v ≥ A} is trivially convex because it is a half-plane. Since 1
p + 1

p′ = 1 and p−1
p = 1

p′ ,

the set A can be written in the form

A = S ∩ {f > 0},

here {f > 0} is another half-plane (a convex set), while S is the set

S = {(F, f,A, v) ∈ R4 | F > 0, v > 0, f ≤ F
1
p v

1
p′ }.

The set S is the subgraph of the function

h : R+ × R× R+ −→ R+
0

(F,A, v) 7−→ F
1
p v

1
p′ .

To prove that S is convex, all we need to do is to prove that h is a concave function (since h

is defined over a convex domain).

Since h does not depend on the variable A, we will treat it as a function over the other two

variables only:

h : R+ × R+ −→ R+

(F, v) 7−→ F
1
p v

1
p′ .

We compute the Hessian matrix of the function h: for all F > 0, v > 0

∂h

∂F
(F, v) =

1

p
F

1
p
−1
v

1
p′ , ∂h

∂v (F, v) = 1
p′F

1
p v

1
p′−1

.

∂2h

∂F 2
(F, v) =

1− p
p2

F
1
p
−2
v

1
p′ , ∂2h

∂v∂F (F, v) = 1
pp′F

1
p
−1
v

1
p′−1

,

∂2h

∂F∂v
(F, v)

1

pp′
F

1
p
−1
v

1
p′−1

, ∂2h
∂v2 (F, v) = 1−p′

p′2
F

1
p v

1
p′−2

.

So the Hessian matrix is

H(h)(F, v) =


1−p
p2 F

1
p
−2
v

1
p′ 1

pp′F
1
p
−1
v

1
p′−1

1
pp′F

1
p
−1
v

1
p′−1 1−p′

p′2
F

1
p v

1
p′−2

 . (2.106)

If the Hessian matrix of h has non-positive eigenvalues then the function h is concave.
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Now we compute the eigenvalues of the Hessian matrix (2.106):

det(H(h)(F, v)− λI) = det


1−p
p2 F

1
p
−2
v

1
p′ − λ 1

pp′F
1
p
−1
v

1
p′−1

1
pp′F

1
p
−1
v

1
p′−1 1−p′

p′2
F

1
p v

1
p′−2 − λ

 =

(1− p)(1− p′)
(pp′)2

F
1
p

+ 1
p
−2
v

1
p′+

1
p′−2 − 1

(pp′)2
F

2( 1
p
−1)

v
2( 1
p′−1) −

λ

[
1− p
p2

F
1
p
−2
v

1
p′ +

1− p′

p′2
F

1
p v

1
p′−2

]
+ λ2.

Now we recall that pp′ = p+ p′, so (1− p)(1− p′) = 1− p− p′ + pp′ = 1− p− p′ + p+ p′ = 1,

so we get

det(H(h)(F, v)− λI) = λ2 − λ
[

1− p
p2

F
1
p
−2
v

1
p′ +

1− p′

p′2
F

1
p v

1
p′−2

]
.

The eigenvalues of H(h)(F, v) are the solutions to the following equation equation of variable

λ:

det(H(h)(F, v)− λI) = 0.

The solutions are the two values

λ1 = 0, λ2 =
1− p
p2

F
1
p
−2
v

1
p′ +

1− p′

p′2
F

1
p v

1
p′−2

.

Now we observe that 1 − p < 0, 1 − p′ < 0 and F > 0, v > 0, so the second eigenvalue is

λ2 < 0, so the Hessian matrix H(h)(F, v) is negative semi-definite for all F > 0 and v > 0,

so this entails that h is concave, and the subgraph S is a convex set. So the domain D of the

function B in (2.3) is a convex set since it is an intersection of convex sets.

We are going to prove that the function

B(F, f,A, v) =

(
p

p− 1

)p
F − pp

p− 1

fp

(A+ (p− 1)v)p−1

is concave.

Proof. We will compute the eigenvalues of the Hessian Matrix H(B). We will compute the

actual 4× 4 Hessian matrix (without reducing it to a 2× 2 matrix), because the computation

can be useful to compute the eigenvectors, which may be useful to study the properties of some

of the stochastic processes associated to the problem.
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In the following equations we are going to omit writing the dependence of the derivatives from

the variables (F, f,A, v) to simplify the notations. The first order derivatives are

∂B
∂F =

(
p
p−1

)p
,

∂B
∂f

= − p
p+1

p− 1

fp−1

(A+ (p− 1)v)p−1
,

∂B
∂A = pp fp

(A+(p−1)v)p ,
∂B
∂v

= (p− 1)pp
fp

(A+ (p− 1)v)p
.

The second order derivatives make up the rows of the Hessian matrix HB.

The first row is

∂2B
∂F 2

= 0,
∂2B
∂F∂f

= 0,

∂2B
∂F∂A

= 0,
∂2B
∂F∂V

= 0.

The second row is

∂2B
∂f∂F

= 0,
∂2B
∂f2

= −pp+1 fp−2

(A+ (p− 1)v)p−1
,

∂2B
∂f∂A

= pp+1 fp−1

(A+ (p− 1)v)p
,

∂2B
∂f∂V

= (p− 1)pp+1 fp−1

(A+ (p− 1)v)p
.

The third row is

∂2B
∂A∂F

= 0,
∂2B
∂A∂f

= pp+1 fp−1

(A+ (p− 1)v)p
,

∂2B
∂A2

= −pp+1 fp

(A+ (p− 1)v)p+1
,

∂2B
∂A∂V

= −(p− 1)pp+1 fp

(A+ (p− 1)v)p+1
.

The fourth row is

∂2B
∂V ∂F

= 0,
∂2B
∂V ∂f

= (p− 1)pp+1 fp−1

(A+ (p− 1)v)p
,

∂2B
∂V ∂A

= −(p− 1)pp+1 fp

(A+ (p− 1)v)p+1
,

∂2B
∂V 2

= −(p− 1)2pp+1 fp

(A+ (p− 1)v)p+1
.

So the Hessian matrix of B at a point (F, f,A, v) is

H(B) =


0 0 0 0

0 −pp+1 fp−2

(A+(p−1)v)p−1 pp+1 fp−1

(A+(p−1)v)p (p− 1)pp+1 fp−1

(A+(p−1)v)p

0 pp+1 fp−1

(A+(p−1)v)p −pp+1 fp

(A+(p−1)v)p+1 −(p− 1)pp+1 fp

(A+(p−1)v)p+1

0 (p− 1)pp+1 fp−1

(A+(p−1)v)p −(p− 1)pp+1 fp

(A+(p−1)v)p+1 −(p− 1)2pp+1 fp

(A+(p−1)v)p+1

 .
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Let us compute the eigenvalues:

0 = det(H(B)− λI4) =

− λ det


−pp+1 fp−2

(A+(p−1)v)p−1 − λ pp+1 fp−1

(A+(p−1)v)p (p− 1)pp+1 fp−1

(A+(p−1)v)p

pp+1 fp−1

(A+(p−1)v)p −pp+1 fp

(A+(p−1)v)p+1 − λ −(p− 1)pp+1 fp

(A+(p−1)v)p+1

0 (p− 1)λ −λ

 =

λ2

[
(p− 1) det

(
−pp+1 fp−2

(A+(p−1)v)p−1 − λ (p− 1)pp+1 fp−1

(A+(p−1)v)p

pp+1 fp−1

(A+(p−1)v)p −(p− 1)pp+1 fp

(A+(p−1)v)p+1

)
+

det

(
−pp+1 fp−2

(A+(p−1)v)p−1 − λ pp+1 fp−1

(A+(p−1)v)p

pp+1 fp−1

(A+(p−1)v)p −pp+1 fp

(A+(p−1)v)p+1 − λ

)]
=

λ2

[
λ2 + p2p+2

[
fp−2

(A+ (p− 1)v)p−1
+

fp

(A+ (p− 1)v)p+1

]
λ+

p2p+2(p− 1)
fp

(A+ (p− 1)v)p+1
λ

]
=

λ3

[
λ+ p2p+2

[
fp−2

(A+ (p− 1)v)p−1
+ p

fp

(A+ (p− 1)v)p+1

]]
.

So the eigenvalues of the Hessian matrix H(B) are 0 of algebraic multiplicity 3 and

λ̃ = −p2p+2

[
fp−2

(A+(p−1)v)p−1 + p fp

(A+(p−1)v)p+1

]
of algebraic multiplicity 1. However, since f > 0,

v > 0 and A > 0, then λ̃ > 0, so all the eigenvalues are lower than or equal to 0. This entails

that the Hessian matrix is negative semi-definite, so the function B is concave.

We are going to prove that the function

B(F, f,A, v) =

(
p

p− 1

)p
F − pp

p− 1

fp

(A+ (p− 1)v)p−1

satisfies 0 ≤ B(F, f,A, v) ≤
(
p/(p− 1)

)p
F for all (F, f,A, v) ∈ D.

Proof. The thesis follows from the definition of the domain of the function. Since p > 1, F > 0,
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f > 0, A > 0, v ≥ A and fp ≤ Fvp−1, we get

B(F, f,A, v) =

(
p

p− 1

)p
F − pp

p− 1

fp

(A+ (p− 1)v)p−1
≥(

p

p− 1

)p
F − pp

p− 1

fp

(0 + (p− 1)v)p−1
≥(

p

p− 1

)p
F −

(
p

p− 1

)pFvp−1

vp−1
≥(

p

p− 1

)p[
F − F

]
= 0,

and

B(F, f,A, v) =

(
p

p− 1

)p
F − pp

p− 1

fp

(A+ (p− 1)v)p−1
≤
(

p

p− 1

)p
F.

We are going to prove that, by substitution of

h(A, v) = − 1

ψ(A, v)p−1
, for 0 < A < v, (2.107)

in the equations

4′′. h(A, v) < 0, for 0 < A < v,

5′. p

[(
∂h

∂A

)2

+

(
∂h

∂v

)2]
− (p− 1)

[
∂2h

∂A2
+
∂2h

∂v2

]
h ≤ 0,

6. p(p− 1)

[
∂2h

∂A2

∂2h

∂v2
h−

(
∂2h

∂A∂v

)2

h

]
+

p2

[
2
∂h

∂A

∂h

∂v

∂2h

∂A∂v
−
[(

∂h

∂v

)2 ∂2h

∂A2
+

(
∂h

∂A

)2∂2h

∂v2

]]
≤ 0,

we get the conditions

4̊. ψ(A, v) > 0, for 0 < A < v,

5̂. ∆ψ ≤ 0,

6̂.

(
∂2ψ

∂A∂v

)2

− ∂2ψ

∂A2

∂2ψ

∂v2
≤ 0.

Proof. Equation 4̊ trivially follows from substition of (2.107) in 4′′.

For the other equations we compute the following derivatives:

∂h

∂A
=
∂ψ

∂A

p− 1

ψp
,

∂ψ

∂v
=
∂h

∂v

p− 1

ψp
,



2.4. APPENDIX 87

∂2h

∂A∂v
=

∂2ψ

∂A∂v

p− 1

ψp
− ∂ψ

∂A

∂ψ

∂v

p(p− 1)

ψp+1
,

∂2h

∂A2
=
∂2ψ

∂A2

p− 1

ψp
−
(
∂ψ

∂A

)2 p(p− 1)

ψp+1
,

∂2h

∂v2
=
∂2ψ

∂v2

p− 1

ψp
−
(
∂ψ

∂v

)2 p(p− 1)

ψp+1
.

Now we compute the following products of derivatives:

∂2h

∂v2

∂h2

∂A2
=
∂2ψ

∂v2

∂2ψ

∂v2

(p− 1)2

ψ2p
− ∂2ψ

∂A2

(
∂ψ

∂v

)2 p(p− 1)2

ψ2p+1
− ∂2ψ

∂v2

(
∂ψ

∂A

)2 p(p− 1)2

ψ2p+1
+(

∂ψ

∂A

)2(∂ψ
∂v

)2 p2(p− 1)2

ψ2p+2
.

∂h

∂A

∂h

∂v

∂2h

∂A∂v
=
∂ψ

∂A

∂ψ

∂v

∂2ψ

∂A∂v

(p− 1)3

ψ3p
−
(
∂ψ

∂A

)2(∂ψ
∂v

)2 p(p− 1)3

ψ3p+1
,

(
∂h

∂A

)2 ∂2h

∂v2
=

(
∂ψ

∂A

)2 ∂2ψ

∂v2

(p− 1)3

ψ3p
−
(
∂ψ

∂A

)2(∂ψ
∂v

)2 p(p− 1)3

ψ3p+1
,

(
∂h

∂v

)2 ∂2h

∂A2
=

(
∂ψ

∂v

)2 ∂2ψ

∂A2

(p− 1)3

ψ3p
−
(
∂ψ

∂A

)2(∂ψ
∂v

)2 p(p− 1)3

ψ3p+1
,

∂2h

∂A2

∂2h

∂v2
=
∂2ψ

∂A2

∂2ψ

∂v2

(p− 1)2

ψ2p
− ∂2ψ

∂A2

(
∂ψ

∂v

)2 p(p− 1)2

ψ2p+1
−(

∂ψ

∂A

)2 ∂2ψ

∂v2

p(p− 1)2

ψ2p+1
+

(
∂ψ

∂A

)2(∂ψ
∂v

)2 p2(p− 1)2

ψ2p+2
,

(
∂2h

∂A∂v

)2

=

(
∂2ψ

∂A∂v

)2
(p− 1)2

ψ2p
− 2

∂2ψ

∂A∂v

∂ψ

∂A

∂ψ

∂v

p(p− 1)2

ψ2p+1
+(

∂ψ

∂A

)2(∂ψ
∂v

)2 p2(p− 1)2

ψ2p+2
.
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We substitute the previous computations in equation 5′ and we get

0 ≥p

[(
∂h

∂A

)2

+

(
∂h

∂v

)2
]
− (p− 1)

[
∂2h

∂A2
+
∂2h

∂v2

]
h =(

∂ψ

∂A

)2 p(p− 1)2

ψ2p
+

(
∂ψ

∂V

)2 p(p− 1)2

ψ2p
− (p− 1)

[
∂2ψ

∂A2

p− 1

ψp
−
(
∂ψ

∂A

)2 p(p− 1)

ψp+1
+

∂2ψ

∂v2

p− 1

ψp
−
(
∂ψ

∂v

)2 p(p− 1)

ψp+1

]
−1

ψ(A, v)p−1
=(

∂ψ

∂A

)2 p(p− 1)2

ψ2p
+

(
∂ψ

∂V

)2 p(p− 1)2

ψ2p
+
∂2ψ

∂A2

(p− 1)2

ψ2p−1
−
(
∂ψ

∂A

)2 p(p− 1)2

ψ2p
+

∂2ψ

∂v2

(p− 1)2

ψ2p−1
−
(
∂ψ

∂v

)2 p(p− 1)2

ψ2p
=

(p− 1)2

ψ2p−1

[
∂2ψ

∂A2
+
∂2ψ

∂v2

]
.

However, we have (p−1)2

ψ2p−1 ≥ 0, so we proved that equation 5′ is equivalent to

5̂. ∆ψ ≤ 0.
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Now we substitute the previous computations in equation 6 and we get

0 ≥p(p− 1)

[
∂2h

∂A2

∂2h

∂v2
h−

(
∂2h

∂A∂v

)2

h

]
+

p2

[
2
∂h

∂A

∂h

∂v

∂2h

∂A∂v
−
[(

∂h

∂v

)2 ∂2h

∂A2
+

(
∂h

∂A

)2∂2h

∂v2

]]
=

− p(p− 1)

[
∂2ψ

∂A2

∂2ψ

∂v2

(p− 1)2

ψ3p−1
− ∂2ψ

∂A2

(
∂ψ

∂v

)2 p(p− 1)2

ψ3p
−(

∂ψ

∂A

)2 ∂2ψ

∂v2

p(p− 1)2

ψ3p
+

(
∂ψ

∂A

)2(∂ψ
∂v

)2 p2(p− 1)2

ψ3p+1

]
+

p(p− 1)

[(
∂2ψ

∂A∂v

)2
(p− 1)2

ψ3p−1
− 2

∂2ψ

∂A∂v

∂ψ

∂A

∂ψ

∂v

p(p− 1)2

ψ3p
+(

∂ψ

∂A

)2(∂ψ
∂v

)2 p2(p− 1)2

ψ3p+1

]
+

2
∂ψ

∂A

∂ψ

∂v

∂2ψ

∂A∂v

p2(p− 1)3

ψ3p
− 2

(
∂ψ

∂A

)2(∂ψ
∂v

)2 p3(p− 1)3

ψ3p+1
−(

∂ψ

∂A

)2 ∂2ψ

∂v2

p2(p− 1)3

ψ3p
+ 2

(
∂ψ

∂A

)2(∂ψ
∂v

)2 p3(p− 1)3

ψ3p+1
−(

∂ψ

∂v

)2 ∂2ψ

∂A2

p2(p− 1)3

ψ3p
=

p(p− 1)3

ψ3p−1

[(
∂2ψ

∂A∂v

)2

− ∂2ψ

∂A2

∂2ψ

∂v2

]
.

However, we have p(p−1)3

ψ3p−1 ≥ 0, so we proved that equation 6 is equivalent to

6̂.

(
∂2ψ

∂A∂v

)2

− ∂2ψ

∂A2

∂2ψ

∂v2
≤ 0,

finishing the proof.
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Chapter 3

Potential theory on Ahlfors-regular

spaces

Introduction

In this chapter we prove formulas of quasi-additivity for the capacity associated to kernels

of radial type in the setting of the boundary of a tree structure and in the setting of com-

pact Ahlfors-regular spaces. We also define a notion of harmonic extension, to one additional

variable, of a function defined over a compact Ahlfors-regular space, and we prove a result of

tangential convergence of the harmonic extension to the values at the boundary.

This chapter is structured as follows.

In section 3.1 we define the capacity associated to a radial kernel on the boundary of a tree

and we prove a quasi-additivity formula for the capacity.

In section 3.2 we define the capacity associated to the Riesz kernel on an Ahlfors-regular

space and we prove a quasi-additivity formula for the capacity.

In section 3.3 we define the harmonic extension of a function defined over an Ahlfors-regular

space and we enunciate and prove several properties of the Harmonic extension.

In section 3.4 we prove several technical lemmas and propositions and then we prove the two

main results in this chapter: the non tangential convergence at the boundary of the harmonic

extension of a Riesz potential up to an exceptional set of zero capacity and the tangential con-

vergence at the boundary of the harmonic extension of a Riesz potential up to an exceptional

91
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set of null measure.

Notations

Let a, b ∈ R. We write a . b (respectively a & b) if and only if there exists a constant

0 < C < +∞ such that a ≤ C · b (respectively a ≥ C · b). Here the constant C does not depend

on any of the parameters of the problem.

We write a .(p1,p2,...,pn) b (respectively a &(p1,p2,...,pn) b) if and only if there exists a constant

C = C(p1, p2, . . . , pn), 0 < C < +∞, such that a ≤ C · b (respectively a ≥ C · b). Here the

constant C depends on the paramenters p1, p2, . . . , pn.

We write a ≈ b if and only if both a . b and a & b hold.

We write a ≈(p1,p2,...,pn) b if and only if both a .(p1,p2,...,pn) b and a &(p1,p2,...,pn) b hold.

Let (X, d) be a metric space. Let x ∈ X, r ≥ 0. We denote by Bd(x, r) the metric ball of

radius r and center x, i.e.

Bd(x, r) := {y ∈ X | d(x, y) < r}. (3.1)

3.1 Quasi-additivity on tree boundaries

In this section we prove a quasi-additivity formula for capacities associated to radial kernels

in the setting of the tree boundaries.

3.1.1 Setting of the problem

Let T be a tree. Suppose every node in T has at least 2 children. In this section X := ∂T

will denote the boundary of T . X is a metric space, where the metric on X is given by

ρ(x, y) = δ−d(x∧y,o),

where δ > 1 is a fixed constant.

Let m be a σ-finite Borel measure on X.

Let D denote the set

D := {0} ∪ {δ−n | n ∈ N}. (3.2)

Let K : D → R+ be a function. Suppose K is lower semi-continuos in 0, i.e.

lim inf
n→+∞

K(δ−n) ≥ K(0). (3.3)
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We define, with a small abuse of notation, the kernel K(x, y) := K(ρ(x, y)) for x, y ∈ X. It

follows that the function

x 7−→ K(x, y0)

is lower semi-continuous, for every choice of y0 ∈ X.

Suppose the kernel K satisfies the following conditions:

sup
x∈X

∫
X
K(x, y)dm(y) < +∞, sup

y∈X

∫
X
K(x, y)dm(x) < +∞. (3.4)

Let us denote

‖K‖1 := max

{
sup
x∈X

∫
X
K(x, y)dm(y), sup

y∈X

∫
X
K(x, y)dm(x)

}
< +∞. (3.5)

Definition 3.1.1. Let 1 < p < +∞. The capacity of a compact set E ⊆ X is

CK,p(E) := inf

{
‖f‖pLp(X,m)

∣∣∣∣ K ∗ f(x) ≥ 1 ∀x ∈ E
}
, (3.6)

where

K ∗ f(x) :=

∫
X
K(x, y)f(y)dm(y).

Definition 3.1.2. Let x ∈ X, r > 0. We define, when it exists, the radius

ηp(x, r) := inf

{
δ−n+ 1

2 ∈ R
∣∣∣∣ n ∈ N, m(Bρ(x, δ

−n+ 1
2 )) ≥ CK,p(Bρ(x, r))

}
. (3.7)

We also define

η∗p(x, r) := max{r, ηp(x, r)}. (3.8)

It follows that Bρ(x, r) ⊆ Bρ(x, η∗p(x, r)).

Observation 3.1.1. The radius ηp(x, r) does not exist when X is compact for x ∈ X and r > 0

such that

CK,p(Bρ(x, r)) > m(X). (3.9)

However, all the propositions and theorems using η∗p can be proved by separating the cases

where η∗p is not defined, using other properties, like the compactness of X. This follows from

the properties of the Riesz capacity of a ball in an Ahlfors-regular space (see Proposition 3.2.2).

We will always assume that the radius η∗p exists in the following proofs.

We enunciate Young’s inequality for the setting of tree boundaries.
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Lemma 3.1.1 (Young’s inequality for tree boundaries). Let K = K(x, y) be a kernel on a

metric measure space (X, ρ,m), and 1 ≤ p ≤ ∞. Then,

‖K ∗ f‖Lp(X,m) :=

[∫
X

(∫
X
K(x, y)f(y)dm(y)

)p
dm(x)

] 1
p

≤ ‖K‖1‖f‖Lp(X,m),

where

‖K‖1 := max

{
sup
x∈X

∫
X
K(x, y)dm(y), sup

y∈X

∫
X
K(x, y)dm(x)

}
.

Proof. We prove this result by interpolation. For p =∞ and f ≥ 0, we have∫
X
K(x, y)f(y)dm(y) ≤

∫
X
K(x, y)dm(y)‖f‖L∞(X,m) ≤

≤
(

sup
x∈X

∫
X
K(x, y)dm(y)

)
‖f‖L∞(X,m),

hence

‖K ∗ f‖L∞(X,m) ≤
(

sup
x∈X

∫
X
K(x, y)dm(y)

)
‖f‖L∞(X,m).

For p = 1 we have∫
X

∫
X
K(x, y)f(y)dm(y)dm(x) =

∫
X
K(x, y)dm(x)

∫
X
f(y)dm(y) ≤

≤

(
sup
y∈X

∫
X
K(x, y)dm(x)

)∫
X
f(y)dm(y),

hence

‖K ∗ f‖L1(X,m) ≤

(
sup
y∈X

∫
K(x, y)dm(x)

)
‖f‖L1(X,m).

The result follows from Riesz-Thorin interpolation theorem.

3.1.2 Quasi additivity for tree boundaries

We are now going to prove the first result in this chapter.

Theorem 3.1.2 (Quasi-additivity for tree boundaries). Let J be a countable (or finite) set of

indices. Let {Bρ(xj , rj)}j∈J be a family of metric balls in X such that ηp(xj , rj) exists for all

j ∈ J . Suppose E ⊆ X is a compact subset of
⋃
j∈J Bρ(xj , rj). Suppose {Bρ(xj , η∗p(xj , rj))}j∈J

is disjoint.

Then

CK,p(E) ≤
∑
j∈J

CK,p(E ∩Bρ(xj , rj)) ≤ A · CK,p(E), (3.10)

where A = A(X,K, p), 1 < A < +∞, is a constant depending only on X, K and p.
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For the proof of Theorem 3.1.2 we recall the dual definition of capacity (see [1]).

Theorem 3.1.3 (Dual definition of capacity). Let 1
p + 1

q = 1. Then

CK,p(E) = sup

{
‖µ‖p

∣∣∣∣ µ is concentrated on E; ‖K ∗ µ‖Lq(X,m) ≤ 1

}
, (3.11)

where

‖µ‖ :=

∫
X
dµ(x); K ∗ µ(y) :=

∫
X
K(x, y)dµ(x)

Proof of Theorem 3.1.2. If CK,p(E) = 0 the proof is trivial by the monotonicity of the capacity.

Suppose CK,p(E) > 0. Let Ej := E ∩ Bρ(xj , rj). Without loss of generality, we may assume

CK,p(Ej) > 0 for all j. Indeed, let J0 := {j ∈ J | CK,p(Ej) > 0}. It follows that CK,p(Ej) = 0

for all j ∈ J\J0, so ∑
j∈J

CK,p(E ∩Bρ(xj , rj)) =
∑
j∈J0

CK,p(E ∩Bρ(xj , rj)),

hence we will assume CK,p(Ej) > 0 for all j ∈ J .

To prove the thesis (3.10) it is sufficient to prove that∑
j∈J

CK,p(E ∩Bρ(xj , rj)) ≤ A · CK,p(E). (3.12)

For simplicity we will assume J ⊆ N. Let Ej := E ∩ Bρ(xj , rj) for j ∈ J , let 0 < ε <∑
j CK,p(Ej) be arbitrary. Let 1

p + 1
q = 1. By the dual definition of capacity for every j ∈ J

there exists a measure µj such that
µj is concentrated on Ej ,

‖K ∗ µj‖Lq(X,m) = 1,

CK,p(Ej)− 2−jε ≤ ‖µj‖p ≤ Ck,p(Ej).

(3.13)

Let µ∗j := Ck,p(Ej)
1
qµj and µ∗ :=

∑
j µ
∗
j .

We get

‖µ∗j‖p = Ck,p(Ej)
p
q ‖µj‖p. (3.14)

From (3.13) we get

CK,p(Ej)
1+ p

q − CK,p(Ej)
p
q · 2−jε ≤ CK,p(Ej)

p
q ‖µj‖p ≤ Ck,p(Ej)1+ p

q . (3.15)

From (3.14) and (3.15) we get

CK,p(Ej)
1+ p

q − CK,p(Ej)
p
q · 2−jε ≤ ‖µ∗j‖p ≤ Ck,p(Ej)

1+ p
q . (3.16)
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If 2−jε > CK,p(Ej) then, from (3.16), we get

CK,p(Ej)− 2−jε < 0 < ‖µ∗j‖ ≤ Ck,p(Ej), (3.17)

so we proved that

CK,p(Ej)− 2−jε ≤ ‖µ∗j‖ ≤ Ck,p(Ej). (3.18)

We are going to prove that (3.18) also holds when 2−jε ≤ CK,p(Ej). To prove it we claim the

following:

CK,p(Ej)− 2−jε ≤
[
CK,p(Ej)

1+ p
q − CK,p(Ej)

p
q · 2−jε

] 1
p

. (3.19)

Indeed, let j ∈ J , suppose 2−jε ≤ CK,p(Ej). From (3.16) we get[
CK,p(Ej)

1+ p
q − CK,p(Ej)

p
q · 2−jε

] 1
p

≤ ‖µ∗j‖ ≤ Ck,p(Ej). (3.20)

Let

ψj : [0, CK,p(Ej)] −→ R,

ψj(x) =

[
CK,p(Ej)

1+ p
q − CK,p(Ej)

p
q · x

] 1
p

.

The function ψj is concave, and

ψj(0) = CK,p(Ej); ψj(CK,p(Ej)) = 0.

Consider the following function:

φj : [0, CK,p(Ej)] −→ R,

φj(x) = CK,p(Ej)− x.

The function ψj is linear, and

φj(0) = CK,p(Ej); φj(CK,p(Ej)) = 0.

By concavity we get φj(x) ≤ ψj(x) for all x ∈ [0, CK,p(Ej)].

We observe that, by hypothesis, 0 ≤ 2−jε ≤ CK,p(Ej), so, using (3.20), we get

CK,p(Ej)−2−jε = φj(2
−jε) ≤ ψj(2−jε) =

[
CK,p(Ej)

1+ p
q−CK,p(Ej)

p
q ·2−jε

] 1
p

≤ ‖µ∗j‖ ≤ Ck,p(Ej),

proving the claim (3.19), and thus proving that (3.18) holds for any choice of j ∈ J and for

any ε.
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Now we are going to prove that

‖K ∗ µ∗‖qLq(X,m) ≤ C ·
∑
j∈J

CK,p(Ej), (3.21)

where C = C(X,K, p) is a constant depending only on X, K and p.

Let j ∈ J . We define the measure

dµ′j(y) :=
‖µ∗j‖

m(Bρ(xj , η∗p(xj , rj)))
χBρ(xj ,η∗p(xj ,rj))(y)dm(y); µ′ :=

∑
j∈J

µ′j . (3.22)

By construction ‖µ′j‖ = ‖µ∗j‖, so, using (3.18), we get

‖µ′j‖ ≤ CK,p(Ej). (3.23)

By the definition of the function η∗p we have

m(Bρ(xj , η
∗
p(xj , rj))) ≥ CK,p(Bρ(xj , rj)) ≥ CK,p(Bρ(xj , rj) ∩ E) = CK,p(Ej), (3.24)

so, using (3.22) and (3.24), we get

dµ′j =
‖µ∗j‖

m(Bρ(xj , η∗p(xj , rj)))
χBρ(xj ,η∗p(xj ,rj))dm ≤

≤
CK,p(Ej)

CK,p(Ej)
χBρ(xj ,η∗p(xj ,rj))dm ≤

≤χBρ(xj ,η∗p(xj ,rj))dm.

By construction dµ′ has a density with respect to dm, so we may write dµ′ = f · dm, where

f ≤
∑
j∈J

χBρ(xj ,η∗p(xj ,rj)), (3.25)

and we get

‖µ′‖ = ‖f‖L1(X,m). (3.26)

By hypothesis the sets Bρ(xj , η
∗
p(xj , rj)) are disjoint, so we have

f ≤ 1. (3.27)
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Using (3.4), (3.23), (3.26), (3.27) and Lemma 3.1.1 we get

‖K ∗ µ′‖qLq(X,m) =

∫
X

[ ∫
X
K(ρ(x, y))dµ′(y)

]q
dm(x) =∫

X

[ ∫
X
K(ρ(x, y))f(y)dm(y)

]q
dm(x) ≤

‖K‖q1‖f‖
q
Lq(X,m) ≤ ‖K‖

q
1‖f‖

q−1
L∞(X,m)‖f‖L1(X,m) ≤

‖K‖q1 · 1
q−1 · ‖f‖L1(X,m) = ‖K‖q1‖µ

′‖ = ‖K‖q1
∑
j

‖µ′j‖ ≤

‖K‖q1
∑
j

CK,p(Ej).

So we proved the following estimate for the q-norm of the potential of the measure µ′:

‖K ∗ µ′‖qLq(X,m) ≤ ‖K‖
q
1

∑
j

CK,p(Ej), (3.28)

where ‖K‖q1 is a constant depending only on X, K and p, and, by (3.4), ‖K‖q1 < +∞.

We are now going to prove an estimate for K ∗ µ∗(x̃), for x̃ ∈ X.

Let j ∈ J . Let x̃ ∈ X be a point such that x̃ 6∈ Bρ(xj , η
∗
p(xj , rj)). The measure µ′j is

concentrated on the set Bρ(xj , η
∗
p(xj , rj)), so we get

K ∗ µ′j(x̃) =

∫
X
K(x̃, y)dµ′j(y) =

∫
Bρ(xj ,η∗p(xj ,rj))

K(x̃, y)dµ′j(y) ≥(
min

y∈Bρ(xj ,η∗p(xj ,rj))
K(x̃, y)

)
µ′j(Bρ(xj , η

∗
p(xj , rj))) =(

min
y∈Bρ(xj ,η∗p(xj ,rj))

K(x̃, y)

)
‖µ∗j‖

m(Bρ(xj , η
∗
p(xj , rj)))

m(Bρ(xj , η∗p(xj , rj)))
=(

min
y∈Bρ(xj ,η∗p(xj ,rj))

K(x̃, y)

)
‖µ∗j‖.

Moreover, µ∗j is concentrated on Ej ⊆ Bρ(xj , η∗p(xj , rj)), so we get

K ∗ µ∗j (x̃) =

∫
X
K(x̃, y)dµ∗j (y) =

∫
Bρ(xj ,η∗p(xj ,rj))

K(x̃, y)dµ∗j (y) ≤(
max

y∈Bρ(xj ,η∗p(xj ,rj))
K(x̃, y)

)
µ∗j (Bρ(xj , η

∗
p(xj , rj))) =(

max
y∈Bρ(xj ,η∗p(xj ,rj))

K(x̃, y)

)
‖µ∗j‖.
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So we proved that

K ∗ µ′j(x̃) ≥
(

min
y∈Bρ(xj ,η∗p(xj ,rj))

K(x̃, y)

)
‖µ∗j‖; K ∗ µ∗j (x̃) ≤

(
max

y∈Bρ(xj ,η∗p(xj ,rj))
K(x̃, y)

)
‖µ∗j‖.

(3.29)

However, K(x̃, y) = K(ρ(x̃, y)), and x̃ 6∈ Bρ(xj , η∗p(xj , rj)), so, by definition of ρ, if follows that

ρ(x̃, y1) = ρ(x̃, y2) for all y1, y2 ∈ Bρ(xj , η∗p(xj , rj)). (3.30)

So the function

y 7→ ρ(x̃, y)

is constant when y ∈ Bρ(xj , η∗p(xj , rj)), which proves that

min
y∈Bρ(xj ,η∗p(xj ,rj))

K(x̃, y) = max
y∈Bρ(xj ,η∗p(xj ,rj))

K(x̃, y). (3.31)

So, using (3.29) and (3.31) , we get

K ∗ µ∗j (x̃) ≤ K ∗ µ′j(x̃) for x̃ 6∈ Bρ(xj , η∗p(xj , rj)). (3.32)

If x̃ 6∈
⋃
j Bρ(xj , η

∗
p(xj , rj)) then, by applying (3.32) for all j ∈ J , we get

K ∗ µ∗(x̃) ≤ K ∗ µ′(x̃). (3.33)

If x̃ ∈ Bρ(xj0 , η∗p(xj0 , rj0)) for some j0 ∈ J , then, by the disjointness of {Bρ(xj , η∗p(xj , rj))}j∈J ,

we have

x̃ 6∈
⋃
j 6=j0

Bρ(xj , η
∗
p(xj , rj)),

so we get

K ∗ µ∗(x̃) =K ∗ µ∗j0(x̃) +
∑
j 6=j0

K ∗ µ∗j (x̃) ≤

K ∗ µ∗j0(x̃) +
∑
j 6=j0

K ∗ µ′j(x̃) ≤

K ∗ µ∗j0(x̃) +
∑
j

K ∗ µ′j(x̃) =

K ∗ µ∗j0(x̃) +K ∗ µ′(x̃).

So we proved that, if x̃ ∈ Bρ(xj0 , η∗p(xj0 , rj0)) for some j0 ∈ J , then

K ∗ µ∗(x̃) ≤ K ∗ µ∗j0(x̃) +K ∗ µ′(x̃). (3.34)
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Now we are going to prove that

‖K ∗ µ∗‖qLq(X,m) ≤ C ·
∑
j

Ck,p(Ej), (3.35)

where C = C(X,K, p) is a constant depending only on X, K and p.

We use (3.33), (3.34) and the disjointness of the sets {Bρ(xj , η∗p(xj , rj))}j to estimate

‖K ∗ µ∗‖qLq(X,m) =

∫
X\
⋃
j Bρ(xj ,η∗p(xj ,rj))

(K ∗ µ∗(x))qdm(x) +∫
⋃
j Bρ(xj ,η∗p(xj ,rj))

(K ∗ µ∗(x))qdm(x) ≤∫
X\
⋃
j Bρ(xj ,η∗p(xj ,rj))

(K ∗ µ′(x))qdm(x) +

∑
j

∫
Bρ(xj ,η∗p(xj ,rj))

(K ∗ µ∗(x))qdm(x) ≤

‖K ∗ µ′‖qLq(X,m) +
∑
j

∫
Bρ(xj ,η∗p(xj ,rj))

(K ∗ µ∗j (x) +K ∗ µ′(x))qdm(x).

We are going to apply Jensen’s inequality for finite sums to the last inequality. Let n ≥ 2 be a

natural number, let q > 1, let ai ≥ 0 for 1 ≤ i ≤ n. By Jensen’s inequality we have( n∑
i=1

ai

)q
≤ nq−1

n∑
i=1

aqi . (3.36)

For each fixed j ∈ J we apply (3.36) to the last estimate for the q-norm of K ∗µ∗, where n = 2,

a1 = K ∗ µ∗j (x) and a2 = K ∗ µ′(x), and we get

‖K ∗ µ∗‖qLq(X,m) ≤ ‖K ∗ µ
′‖qLq(X,m) + 2q−1

∑
j

∫
Bρ(xj ,η∗p(xj ,rj))

(K ∗ µ∗j (x)q +K ∗ µ′(x)q)dm(x).

(3.37)

So we get the estimate

‖K ∗ µ∗‖qLq(X,m) ≤ ‖K ∗ µ
′‖qLq(X,m) + 2q−1

∑
j

‖K ∗ µ∗j‖
q
Lq(X,m) + 2q−1‖K ∗ µ′‖qLq(X,m). (3.38)

We observe that, by definition of µ∗, we have

‖K ∗ µ∗j‖
q
Lq(X,m) = ‖K ∗ (CK,p(Ej)

1
qµj)‖qLq(X,m) = CK,p(Ej)‖K ∗ µj‖qLq(X,m), (3.39)
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but ‖K ∗ µj‖Lq(X,m) = 1 by (3.13), so we get

‖K ∗ µ∗j‖
q
Lq(X,m) = CK,p(Ej). (3.40)

So we use (3.28) and (3.40) and the estimate (3.38) to get

‖K ∗ µ∗‖qLq(X,m) ≤ ‖K‖
q
1

∑
j

CK,p(Ej) + 2q−1
∑
j

CK,p(Ej) + 2q−1‖K‖q1
∑
j

CK,p(Ej). (3.41)

So we proved that

‖K ∗ µ∗‖qLq(X,m) ≤
[
(2q−1 + 1)‖K‖q1 + 2q−1

]∑
j

CK,p(Ej), (3.42)

where C = [(2q−1 + 1)‖K‖q1 + 2q−1] < +∞ is a constant depending only on X, K and p.

Now we are going to finish the proof by defining a proper normalized measure.

We define the measure

µ̊ :=

[
C ·
∑
j

CK,p(Ej)

]− 1
q

µ∗. (3.43)

From (3.42) we get

‖K ∗ µ∗‖Lq(X,m) ≤
[
C ·
∑
j

CK,p(Ej)

] 1
q

. (3.44)

By construction µ̊ is concentrated on E, and, using (3.44), we get

‖K ∗ µ̊‖Lq(X,m) =

∥∥∥∥K ∗ [[C ·∑
j

CK,p(Ej)
]− 1

qµ∗
]∥∥∥∥

Lq(X,m)

=

[
C ·
∑
j

CK,p(Ej)
]− 1

q ‖K ∗ µ∗‖Lq(X,m) ≤

[
C ·
∑
j

CK,p(Ej)
]− 1

q
[
C ·
∑
j

CK,p(Ej)
] 1
q = 1.

So we proved that the measure µ̊ is a test measure for the dual definition of capacity, so we get

CK,p(E) ≥ ‖µ̊‖p. (3.45)
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By computation, using (3.18), we get

‖µ̊‖ =

[
C ·
∑
j

CK,p(Ej)

]− 1
q

‖µ∗‖ =

[
C ·
∑
j

CK,p(Ej)

]− 1
q ∑

j

‖µ∗j‖ ≥

[
C ·
∑
j

CK,p(Ej)

]− 1
q ∑

j

(CK,p(Ej)− 2−jε) ≥

[
C ·
∑
j

CK,p(Ej)

]− 1
q
[∑

j

CK,p(Ej)− ε
]
.

So, using the last inequality and (3.45), we get

CK,p(E) ≥C−
p
q

[∑
j

CK,p(Ej)
− 1
q

[∑
j

CK,p(Ej)− ε
]]p

,

for any arbitrary ε > 0. We let ε→ 0 and, since 1− 1
q = 1

p , we get∑
j

CK,p(Ej) ≤ C
p
qCK,p(E). (3.46)

So, since p
q = 1

q−1 , we proved that

∑
j

CK,p(Ej) ≤
[
(2q−1 + 1)‖K‖q1 + 2q−1

] 1
q−1

CK,p(E), (3.47)

where the constant A = [(2q−1 + 1)‖K‖q1 + 2q−1]
1
q−1 < +∞ is a constant depending only on X,

K and p, ending the proof.

Remark 3.1.1. The previous theorem also holds (up to modifying the constant A) for a generic

non-radial kernel K = K(x, y) ≥ 0 such that:

� The function x 7→ K(x, y0) is lower semi-continuous for any y0 ∈ X.

� The function y 7→ K(x0, y) is measurable for any x0 ∈ X.

� The kernel is globally integrable, i.e.

‖K‖1 := max

{
sup
x∈X

∫
X
K(x, y)dm(y), sup

y∈X

∫
X
K(x, y)dm(x)

}
< +∞.
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� There exists a constant C = C(X,K, p) such that at least one of the following conditions

holds:

1.

K ∗ µEj (x) ≤ C ·K ∗
(
µEj
)′

(x),

for all x ∈ Bρ(xj , η∗p(xj , rj)), for all j ∈ J , where µEj is the equilibrium measure for

the set Ej := E ∩Bρ(xj , η∗p(xj , rj)), and
(
µEj

)′
is the measure defined by

d
(
µEj
)′

(y) :=
‖µEj ‖

m(Bρ(xj , η∗p(xj , rj)))
χBρ(xj ,η∗p(xj ,rj))(y)dm(y).

2.

sup
y∈Bρ(xj ,η∗p(xj ,rj))

K(x̃, y) ≤ C · inf
y∈Bρ(xj ,η∗p(xj ,rj))

K(x̃, y),

for all x̃ 6∈ Bρ(xj , η∗p(xj , rj)), for any j ∈ J .

We observe that the condition 2 entails the condition 1.

The following corollary allows to reformulate the previous theorem for different values of

the constant A.

Corollary 3.1.4. Let J be a countable (or finite) set of indices, and α > 0 a real number.

Consider the kernels K and αK and the associated capacities CK,p and CαK,p. Denote by

ηαK,p(xj , rj) the radius

ηαK,p(x, r) := inf

{
δ−n+ 1

2 ∈ R
∣∣∣∣ n ∈ N, m(Bρ(x, δ

−n+ 1
2 )) ≥ CαK,p(Bρ(x, r))

}
, (3.48)

and define

η∗αK,p(x, r) := max{r, ηαK,p(x, r)}. (3.49)

Let {Bρ(xj , rj)}j∈J be a family of metric balls in X such that ηαK,p(xj , rj) exists for all j ∈ J .

Suppose E ⊆ X is a compact subset of
⋃
j∈J Bρ(xj , rj). Suppose {Bρ(xj , η∗αK,p(xj , rj))}j∈J is

disjoint.

Then

CK,p(E) ≤
∑
j∈J

CK,p(E ∩Bρ(xj , rj)) ≤ A(X,K,α, p) · CK,p(E), (3.50)

here A(X,K,α, p) = [(2q−1 + 1)αq‖K‖q1 + 2q−1]
1
q−1 is a constant depending on X, K, α and p.
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3.2 Ahlfors-regular spaces

In this section we prove a quasi-additivity formula for the Riesz capacity in the setting of

the Ahlfors-regular spaces.

3.2.1 Setting of the problem

Definition 3.2.1. Let (X, d,m) be a compact metric measure space. Let Q > 0. We say that

X is a Q-regular Ahlfors space if there exist constants 0 < C1 ≤ C2 such that

C1r
Q ≤ m(B(x, r)) ≤ C2r

Q (3.51)

for all x ∈ X, for all 0 < r < diam(X).

We will say that X is an Ahlfors-regular space without mentioning the dimension Q when that

paremeter is not relevant to the discussion.

Our work focuses on Q-regular Ahlfors spaces such that the measure m is the Hausdorff

measure of dimensional parameter Q. Hausdorff measures are known to be regular measures,

so we will assume regularity of the measure m in the following part of this work.

The following theorem and definitions allow us construct a tree structure starting from an

Ahlfors-regular space (see [8] for more details).

Theorem 3.2.1 (Christ decomposition). Let (X, d,m) be a compact Q-regular Ahlfors space.

There exists a collection of qubes {Qkα ⊆ X | α ∈ Ik, k ∈ N}, where Ik is a set of indices, and

there exist constants 0 < δ < 1, C3 > 0 and C4 > 0 such that:

i) m
(
X\
⋃
α∈Ik Q

k
α

)
= 0 for all k ∈ N.

ii) If l ≥ k then ∀α ∈ Ik, ∀β ∈ Il we have either Qlβ ⊆ Qkα or Qlβ ∩Qkα = ∅.

iii) For all l ∈ N, for all β ∈ Il and for all k < l there exists a unique α ∈ Ik such that

Qlβ ⊆ Qkα.

iv) diam(Qkα) ≤ C4 · δk.

v) For all k ∈ N, for all α ∈ Ik, there exist zkα ∈ Qkα such that B(zkα, C3 · δk) ⊆ Qkα.

Moreover, we may assume that I0 = {1}, and Q0
1 = X.

Definition 3.2.2. Let (X, d,m) be an Ahlfors Q-regular space as above. Consider a Christ

decomposition

{Qkα ⊆ X | α ∈ Ik, k ∈ N}, (3.52)
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like the one in Theorem 3.2.1, such that I0 = {1}, and Q0
1 = X.

We define a tree structure T ≡ (V (T ), E(T )), where the set of the vertices of T is

V (T ) := {Qkα ⊆ X | α ∈ Ik, k ∈ N}, (3.53)

and we define the set of edges E(T ) in the following way: for all Qkα ∈ V (T ) and for all

Qlβ ∈ V (T ) then (Qkα, Q
l
β) ∈ E(T ) if and only if k = l− 1 and α is the unique index in Ik such

that Qlβ ⊆ Qkα defined by property iii) in Theorem 3.2.1.

The structure T ≡ (V (T ), E(T )) is a tree structure such that o := Q0
1 = X is the root of the

tree T .

Definition 3.2.3. (X, d,m) be a Q-regular Ahlfors space, and let T ≡ (V (T ), E(T )) be the

tree previously defined. We define the boundary ∂T of the tree T as the set of half infinite

geodesics starting at the origin o, i.e.

∂T :=

{(
Q0
α0
, Q1

α1
, . . . , Qj−1

αj−1
, Qjαj , Q

j+1
αj+1

, . . .
) ∣∣∣∣ Q0

α0
= o, (Qkαk , Q

k+1
αk+1

) ∈ E(T ) ∀k ∈ N
}
.

(3.54)

We define the map

Λ : ∂T −→ X (3.55)

Λ((o,Q1
α1
, Q2

α2
, . . . )) =

⋂
n∈N

(
Qnαn

)
.

The map Λ identifies X and ∂T (see [8] for more details).

Let x = (o,Q1
α1
, Q2

α2
, . . . ) ∈ ∂T and y = (o,Q1

β1
, Q2

β2
, . . . ) ∈ ∂T . We define x ∧ y ∈ V (T ) ∪ ∂T

in the following way: if x = y then x ∧ y := x = y, if x 6= y then x ∧ y := Qjγ , where

j = max{k ∈ N | αl = βl for all l ≤ k}, and γ = αk = βk.

Let us define the distance

ρ : ∂T × ∂T −→ R (3.56)

ρ(x, y) = δcount(x∧y,o),

where 0 < δ < 1 is the constant defined in Theorem 3.2.1, and count(x ∧ y, o) is the distance

that counts how many edges of the geodesic that connects x ∧ y and o are in between o and

x∧y. In particular, if x∧y = Qkα ∈ V (T ) then count(x∧y, o) = k, otherwise x∧y = x = y ∈ ∂T
and count(x ∧ y, o) = +∞ and ρ(x, y) = 0. We have diam(∂T ) = 1 < +∞.

Let HQρ denote the Q-dimensional Hausdorff measure on ∂T with respect to the distance

ρ. The space ∂T endowed with the distance ρ and the measure HQρ is a compact Q-regular

Ahlfors space, so there exist constants 0 < K1 < K2 such that

K1 · rQ ≤ HQρ (Bρ(x, r)) ≤ K2 · rQ (3.57)



106 CHAPTER 3. POTENTIAL THEORY ON AHLFORS-REGULAR SPACES

for all x ∈ ∂T , for all 0 < r < diamρ(∂T ). Here (Bρ(x, r)) denotes the metric ball of center x

and radius r in ∂T with respect to the metric ρ, and diamρ denotes the diameter with respect

to the metric ρ.

3.2.2 Riesz potential

In this subsection we define the Riesz capacity in our setting and we enunciate some prop-

erties we will use later in this work.

Definition 3.2.4 (Riesz potential on X). Let (X, d,m) be a compact Q-regular Ahlfors space.

Let 1 < p < +∞ and 1
p + 1

p′ = 1. Let 1
p′ < s < 1. We define the Riesz Kernel

KX,s : X ×X −→ R (3.58)

(x, y) 7−→ 1

d(x, y)Q·s
.

Let E ⊆ X be a compact set. We define the Lp capacity of E associated to the kernel KX,s:

CKX,s,p(E) := inf
{
‖f‖pLp(X,m)

∣∣ f ∈ Lp(X,m), Gf(x) ≥ 1 ∀x ∈ E
}
, (3.59)

where Gf denotes the potential of f , and it is defined by

Gf(x) :=

∫
X
KX,s(x, y)f(y)dm(y). (3.60)

Definition 3.2.5 (Riesz potential on ∂T ). Let (X, d,m) be a compact Q-regular Ahlfors space.

Let ∂T be the boundary of the tree T associated to X. Let ∂T be endowed with the distance

ρ defined in 3.56 and with the Hausdorff measure HQρ . Let 1 < p < +∞ and 1
p + 1

p′ = 1. Let
1
p′ < s < 1. We define the Riesz Kernel

K∂T,s : ∂T × ∂T −→ R (3.61)

(x, y) 7−→ 1

ρ(x, y)Q·s
.

Let E ⊆ ∂T be a compact set. We define the Lp capacity of E associated to the kernel K∂T,s:

CK∂T,s,p(E) := inf
{
‖f‖pLp(∂T,ρ)

∣∣ f ∈ Lp(∂T, ρ), If(x) ≥ 1 ∀x ∈ E
}
, (3.62)

where If denotes the potential of f , and it is defined by

If(x) :=

∫
∂T
K∂T,s(x, y)f(y)dHQρ (y). (3.63)

The following estimate for the capacity of a ball in an Ahlfors-regular space is a known

result from the general theory of potential on Ahlfors-regular spaces (see [8]).
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Proposition 3.2.2 (Estimate for the capacity of a ball in an Ahlfors-regular space). Let

(X, d,m) be a Q-regular Ahlfors space, let p > 1, 1
p + 1

p′ = 1, let 1
p′ ≤ s < 1. Then there exist

constants 0 < C̃1 < C̃2, 0 < K̃1 < K̃2, r0 > 0 which depend only on X, Q, p and s such that

for all x ∈ X, for all r < r0 the following formulas hold:

� case 1
p′ < s < 1:

C̃1 · r
Qp
(
s− 1

p′

)
≤ CKX,s,p(Bd(x, r)) ≤ C̃2 · r

Qp
(
s− 1

p′

)
, (3.64)

� case s = 1
p′ :

K̃1 ·
1

log
(

1
r

) ≤ CKX,s,p(Bd(x, r)) ≤ K̃2 ·
1

log
(

1
r

) . (3.65)

The following theorem is a known result from the theory of capacity on trees and Ahlfors-

regular spaces (see [8]), and it will be used in the proof of the second main result of this

work.

Theorem 3.2.3 (Comparing the capacities on X and ∂T ). Let (X, d,m) be a Q-regular Ahlfors

space, let (∂T, ρ,HQρ ) be the Q-regular Ahlfors boundary of the associated tree T . Then there

exist constants A1, A2 such that 0 < A1 ≤ A2, and such that for every closed set F ⊆ ∂T and

for every closed set G ⊆ X we have

1.

A1 · CK∂T,s,p(F ) ≤ CKX,s,p(Λ(F )) ≤ A2 · CK∂T,s,p(F ).

2.

A1 · CKX,s,p(G) ≤ CK∂T,s,p(Λ
−1(G)) ≤ A2 · CKX,s,p(G).

3.2.3 Quasi-additivity on compact Ahlfors-regular spaces

The following theorem is the second result in this chapter, and it will be used later in the

proof of the main results in this chapter.

Theorem 3.2.4 (Quasi-additivity for Riesz capacity on compact Ahlfors-regular spaces). Let

(X, d,m) be a compact Q-regular Ahlfors space. Let 1 < p < +∞ and 1
p + 1

p′ = 1. Let
1
p′ ≤ s < 1. For every x ∈ X and r > 0 let us define (when it exists) the radius

ηX,p(x, r) := inf
{
R > 0 | m(Bd(x,R)) ≥ CKX,s,p(Bd(x, r))

}
, (3.66)

and let us define

η∗X,p(x, r) := max{r, ηX,p(x, r)}. (3.67)
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Then there exists a constant Ω = Ω(X, p, s) ≥ 1 such that for all M ≥ 1 there exists a constant

1 < Ã < +∞ such that, for any countable family {Bd(xk, rk)}k∈F of balls in X such that

the family {Bd(xk,Ω · η∗X,p(xk,M · rk))}k∈F is disjoint, for any compact set E ⊆ X such that

E =
⋃
k Ek and Ek ⊆ Bd(xk, rk) ∀k, we have∑

k∈F
CKX,s,p(Ek) ≤ Ã · CKX,s,p(E). (3.68)

The constant Ã depend only on the choice of the space X and the of the parameters p, s and

M .

Proof. We begin the proof with the case M > 1. Let M > 1 be arbitrary. We can write M in

the following way

M = 1 + ε > 1, where ε > 0. (3.69)

Let {Bd(xk, rk)}k∈F be a family of balls in X. Let E =
⋃
k∈F Ek be a compact set such that

Ek is a compact subset of Bd(xk, rk) for all k ∈ F . Consider a Christ decomposition

{Qkα ⊆ X | α ∈ Ik, k ∈ N} (3.70)

like the one defined in Theorem 3.2.1. Consider le associated tree structure T and the boundary

of the tree (∂T, ρ,HQρ ) defined in definition 3.2.3.

Without loss of generality we may assume rk ≤ C3 for all k ∈ F . Consider a fixed k ∈ F . We

define

j(k) := max{j ∈ N | C3 · δj ≥ rk}, (3.71)

where 0 < δ < 1 and C3 > 0 are the constants defined in Theorem 3.2.1.

By the statement v) in Theorem 3.2.1 we have that for every k ∈ F for every α ∈ Ij(k) there

exists z
j(k)
α ∈ Qj(k)

α such that B(z
j(k)
α , C3 · δj(k)) ⊆ Qj(k)

α .

Moreover, by the statement ii) in Theorem 3.2.1 we have

Qj(k)
α1
∩Qj(k)

α2
= ∅ for all α1, α2 ∈ Ij(k) such that α1 6= α2. (3.72)

Let us consider the family G(k) ⊆ Ij(k) of indices such that the family of qubes{
Qj(k)
α | α ∈ G(k)

}
(3.73)

is the minimal covering of qubes at the level j(k) of the set Ek, i.e.

Ek ⊆
⋃

α∈G(k)

Q
j(k)
α and Ek ∩Q

j(k)
α 6= ∅ ∀α ∈ G(k). (3.74)
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Consider an arbitrary α ∈ G(k). Let w(k) ∈ Qj(k)
α be arbitrary. By (3.74) there exists y(k) ∈

Ek ∩Q
j(k)
α . By construction Ek ⊆ Bd(xk, rk), so d(xk, y(k)) ≤ rk. Moreover, by statement iv)

in Theorem 3.2.1 we have diam(Q
j(k)
α ) ≤ C4 · δj(k). By definition 3.71 we have δj(k) ≤ δ−1 · rk,

so we get

diam(Q
j(k)
α ) ≤ C4 · δ−1 · rk. (3.75)

So, by triangle inequality, we get

Q
j(k)
α ⊆ Bd(xk, rk(1 + C4 · δ−1)). (3.76)

We are now going to repeat the previous steps, but instead of qubes at the level j(k) we will

use qubes at the level j(k) + n, where n ∈ N will be fixed later.

We define the family H(k, n) ⊆ Ij(k)+n such that

Ek ⊆
⋃

α∈H(k,n)

Q
j(k)+n
α and Ek ∩Q

j(k)+n
α 6= ∅ ∀α ∈ H(k, n). (3.77)

For all α ∈ H(k, n) we have that there exists z
j(k)+n
α ∈ Qj(k)+n

α such that

B(zj(k)+n
α , C3 · δj(k)+n) ⊆ Qj(k)+n

α , (3.78)

and such that

Qj(k)+n
α1

∩Qj(k)+n
α2

= ∅ for all α1, α2 ∈ Ij(k)+n such that α1 6= α2. (3.79)

We still have δj(k) ≤ δ−1 · rk, and we also have diam(Q
j(k)+n
α ) ≤ C4 · δj(k)+n, so we get

diam(Q
j(k)+n
α ) ≤ C4 · δn−1 · rk. (3.80)

By triangle inequality we get

Q
j(k)+n
α ⊆ Bd(xk, rk(1 + C4 · δn−1)). (3.81)

So, by taking

n := inf{ñ ∈ N | C4 · δñ−1 < ε} (3.82)

and using (3.69), we have

Q
j(k)+n
α ⊆ Bd(xk,M · rk). (3.83)

We observe that the definition (3.82) does not depend on the choice of k ∈ F .

Equation (3.83) holds for all k ∈ F and for all α ∈ H(k, n), and we get

Bd(xk, rk) ⊆
⋃

α∈H(k,n)

Q
j(k)+n
α ⊆ Bd(xk,M · rk) ∀k ∈ F . (3.84)
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We observe that there exists Ñ ∈ N such that

|H(k, n)| ≤ Ñ ∀k ∈ F . (3.85)

Indeed, for any k ∈ F , using (3.78) and (3.79), we get that the set

S(k) :=
⋃

α∈H(k,n)

Bd(z
j(k)+n
α , C3 · δj(k)+n) (3.86)

is a disjoint intersection of metric balls, and

S(k) ⊆
⋃

α∈H(k,n)

Q
j(k)+n
α ⊆ Bd(xk,M · rk). (3.87)

However, the space X is a Q-regular Ahlfors space, so, using (3.51) and (3.71), we get

m(S(k)) =
∑

α∈H(k,n)

m(Bd(z
j(k)+n
α , C3 · δj(k) · δn)) ≥ (3.88)

∑
α∈H(k,n)

m(Bd(z
j(k)+n
α , rk · δn)) ≥

∑
α∈H(k,n)

C1 · rQk · δ
nQ =

|H(k, n)| · C1 · rQk · δ
nQ.

On the other hand, applying the estimate (3.51) to Bd(xk,M · rk) gives us

m(Bd(xk,M · rk)) ≤ C2 ·MQ · rQk . (3.89)

However, S(k) ⊆ Bd(xk,M · rk), so m(S(k)) ≤ m(Bd(xk,M · rk)) and we get

|H(k, n)| ≤ C2

C1
·MQ · δ−nQ ∀k ∈ F , (3.90)

proving the claim (3.85).

Consider k ∈ F and α ∈ Ik. By definition 3.55 we have

X ⊇ Qkα 7−→ Λ−1(Qkα) ⊆ ∂T. (3.91)

Let S ⊆ X be a closed set. Let us define (with a slight abuse of notation)

Λ̃−1(Qkα ∩ S) :=

{
x =

(
Q0
β0
, Q1

β1
, Q2

β2
, . . .

)
∈ ∂T

∣∣∣∣ Λ(x) ∈ Qkα ∩ S, βk = α

}
, (3.92)
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and we also define Λ̃−1(Qkα) := Λ̃−1(Qkα ∩X).

We have

Λ̃−1(Qkα ∩ S) ⊆ Λ−1(Qkα ∩ S), and Λ(Λ̃−1(Qkα ∩ S)) = Qkα ∩ S. (3.93)

Let k ∈ F . Let us denote N(k) := |H(k, n)| < Ñ . To simplify the notation let us denote the

family of indices H(k, n) by

H(k, n) = {α1(k), α2(k), . . . , αN(k)(k)}. (3.94)

For every k ∈ F , for every i = 1, 2, . . . , N(k) we define, when they exist,

η∗(k, i) ∈ N and β(k, i) ∈ Iη∗(k,i), (3.95)

so that the qube Q
η∗(k,i)
β(k,i) is the smallest qube such that Q

η∗(k,i)
β(k,i) ⊇ Q

j(k)+n
αi(k) and such that

HQρ
(

Λ̃−1
(
Q
η∗(k,i)
β(k,i)

))
≥ CK∂T,s,p

(
Λ̃−1

(
Q
j(k)+n
αi(k)

))
. (3.96)

Statements ii) and iii) in Theorem 3.2.1 prove that Q
η∗(k,i)
β(k,i) is uniquely determined.

The following picture shows the construction we made, where Ω > 1 is the constant mentioned

in the statement of this theorem, we will fix the value of Ω later.

We claim that there exists a universal constant Ω1 > 0 such that for all k ∈ F , for all i =

1, 2, . . . , N(k) we have

diamd

(
Q
η∗(k,i)
β(k,i)

)
≤ Ω1 · CK∂T,s,p

(
Λ̃−1

(
Q
j(k)+n
αi(k)

)) 1
Q
. (3.97)
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Indeed, by the Ahlfors Q-regularity of X and ∂T we can prove that there exist universal

constants 0 < Ω2 < Ω3 such that

Ω2 ·m
(
Q
η∗(k,i)
β(k,i)

)
≤ HQρ

(
Λ̃−1

(
Q
η∗(k,i)
β(k,i)

))
≤ Ω3 ·m

(
Q
η∗(k,i)
β(k,i)

)
. (3.98)

Moreover, using the definition (3.95) and using the Ahlfors Q-regular property (3.57) we can

also prove that

CK∂T,s,p

(
Λ̃−1

(
Q
j(k)+n
αi(k)

))
≤ HQρ

(
Λ̃−1

(
Q
η∗(k,i)
β(k,i)

))
≤ K2

K1
δ−Q · CK∂T,s,p

(
Λ̃−1

(
Q
j(k)+n
αi(k)

))
.

(3.99)

By combining (3.98) and (3.99) we get

m
(
Q
η∗(k,i)
β(k,i)

)
≤ 1

Ω2

K2

K1
δ−Q · CK∂T,s,p

(
Λ̃−1

(
Q
j(k)+n
αi(k)

))
. (3.100)

However, by statements iv) and v) in Theorem 3.2.1 we have that there exists a ball

Bd

(
z
η∗(k,i)
β(k,i) , r̃k,i

)
such that

Bd

(
z
η∗(k,i)
β(k,i) , r̃k,i

)
⊆ Qη

∗(k,i)
β(k,i) and diamd

(
Q
η∗(k,i)
β(k,i)

)
≤ C4

C3
r̃k,i. (3.101)

By the Ahlfors Q-regularity condition (3.51) we get

r̃k,i ≤
1

C
1
Q

1

·m
(
Bd

(
z
η∗(k,i)
β(k,i) , r̃k,i

)) 1
Q ≤ 1

C
1
Q

1

·m
(
Q
η∗(k,i)
β(k,i)

) 1
Q
. (3.102)

Finally, by combining (3.100), (3.101) and (3.102), we get

diamd

(
Q
η∗(k,i)
β(k,i)

)
≤ C4

C3

(
1

C1Ω2

K2

K1

) 1
Q

δ−1 · CK∂T,s,p
(

Λ̃−1
(
Q
j(k)+n
αi(k)

)) 1
Q
. (3.103)

By choosing

Ω1 :=
C4

C3

(
1

C1Ω2

K2

K1

) 1
Q

δ−1 (3.104)

we prove the claim (3.97). The constant Ω1 is universal and does not depend on the choice of

k ∈ F and i = 1, 2, . . . , N(k).

Now we are going to define the value of the constant Ω defined in the hypotheses of this

theorem.

Let k ∈ F . We define

B∗k := Bd(xk, η
∗
X,p(xk,M · rk)). (3.105)
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By (3.83) we have Bd(xk, η
∗
X,p(xk,M · rk)) ⊇ Q

j(k)+n
αi for all i = 1, 2, . . . , N(k). So, by the

definition (3.67) we get

m(B∗k) ≥CKX,s,p
(
Bd(xk, η

∗
X,p(xk,M · rk))

)
≥ (3.106)

CKX,s,p

(
Q
j(k)+n
αi(k)

)
∀i = 1, 2, . . . , N(k).

However, by construction, we have

Λ
(

Λ̃−1
(
Q
j(k)+n
αi(k)

))
= Q

j(k)+n
αi , (3.107)

and the set Λ̃−1
(
Q
j(k)+n
αi(k)

)
⊆ ∂T is a closed set, so we can apply Theorem 3.2.3 to get

m(B∗k) ≥ A1 · CK∂T,s,p
(

Λ̃−1
(
Q
j(k)+n
αi(k)

))
∀i = 1, 2, . . . , N(k). (3.108)

Since B∗k is a metric ball in X we can use the Ahlfors Q-regularity condition (3.51) to get

η∗X,p(xk,M ·rk) ≥
1

C
1
Q

2

·m(B∗k)
1
Q ≥

(
A1

C2

) 1
Q

·CK∂T,s,p
(

Λ̃−1
(
Q
j(k)+n
αi(k)

)) 1
Q ∀i = 1, 2, . . . , N(k).

(3.109)

Now we observe that Q
η∗(k,i)
β(k,i) ∩ Ek 6= ∅ because Q

η∗(k,i)
β(k,i) ⊇ Q

j(k)+n
αi(k) and because of (3.77), and

we also recall that Ek ⊆ Bd(xk, rk) by construction, so, by triangle inequality and by using the

estimate (3.97), we get that for all y ∈ Qη
∗(k,i)
β(k,i) we have

d(y, xk) ≤ rk + diamd

(
Q
η∗(k,i)
β(k,i)

)
≤ rk + Ω1 · CK∂T,s,p

(
Λ̃−1

(
Q
j(k)+n
αi(k)

)) 1
Q
. (3.110)

Finally, we are going to define the constant Ω > 0 mentioned in the thesis of this theorem by

Ω := 1 + Ω1 ·
(
C2

A1

) 1
Q

. (3.111)

For all k ∈ F consider the ball Bd(xk,Ω · η∗X,p(xk,M · rk)).
By construction η∗X,p(xk,M · rk)) ≥M · rk ≥ rk, and we proved the estimate (3.109), so we get

Ω · η∗X,p(xk,M · rk)) =

(
1 + Ω1

(
C2

A1

) 1
Q

)
· η∗X,p(x,M · rk)) ≥ (3.112)

rk + Ω1 ·
(
C2

A1

) 1
Q

·
(
A1

C2

) 1
Q

· CK∂T,s,p
(

Λ̃−1
(
Q
j(k)+n
αi(k)

)) 1
Q ≥

rk + Ω1 · CK∂T,s,p
(

Λ̃−1
(
Q
j(k)+n
αi(k)

)) 1
Q
.
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However, we proved (3.110), so we get that

Q
η∗(k,i)
β(k,i) ⊆ Bd(xk,Ω · η

∗
X,p(xk,M · rk)) (3.113)

for every k ∈ F , for every i = 1, 2, . . . , N(k).

Now we finish the proof by proving (3.68).

Let {Bd(xk, rk)}k∈F be a family of balls in X such that {Bd(xk,Ω · η∗X,p(xk,M · rk))}k∈F is

disjoint, Let E ⊆ X be a compact set such that E =
⋃
k Ek and Ek ⊆ Bd(xk, rk) ∀k.

By construction

Ek ⊆
N(k)⋃
i=1

Q
j(k)+n
αi(k) (3.114)

and there exists a universal Ñ ∈ N such that N(k) ≤ Ñ for all k ∈ F .

We are going to define for all k ∈ F and for all i = 1, 2, . . . , Ñ

Ek,i :=

Ek ∩Q
j(k)+n
αi(k) if i ≤ N(k),

∅ otherwise.
(3.115)

It follows that

Ek =
Ñ⋃
i=1

Ek,i ∀k ∈ F . (3.116)

Using (3.93) we get

Ek,i =

Λ
(

Λ̃−1
(
Ek ∩Q

j(k)+n
αi(k)

))
if i ≤ N(k),

∅ otherwise.
(3.117)

To simplify the notation let us denote

Ek ∩Q
j(k)+n
αi(k) := ∅, Λ−1

(
Ek ∩Q

j(k)+n
αi(k)

)
:= ∅ (3.118)

whenever i > N(k).

So we apply the subadditivity of the capacity to (3.116) to get

∑
k∈F

CKX,s,p (Ek) =
∑
k∈F

CKX,s,p

 Ñ⋃
i=1

Ek,i

 ≤ Ñ∑
i=1

∑
k∈F

CKX,s,p (Ek,i) . (3.119)

Let i < Ñ be a fixed index. Let k ∈ F .

If i > N(k) then, by definition

CK∂T,s,p

(
Λ−1

(
Ek ∩Q

j(k)+n
αi(k)

))
= CK∂T,s,p(∅) = 0. (3.120)
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Otherwise, we have Ek,i = Λ
(

Λ̃−1
(
Ek ∩Q

j(k)+n
αi(k)

))
, so we can apply the estimate in Theorem

3.2.3 to get

∑
k∈F

CKX,s,p (Ek) ≤ A2 ·
Ñ∑
i=1

∑
k∈F

CK∂T,s,p

(
Λ̃−1

(
Ek ∩Q

j(k)+n
αi(k)

))
. (3.121)

We observe that, for any fixed i < Ñ , the sum∑
k∈F

CK∂T,s,p

(
Λ̃−1

(
Ek ∩Q

j(k)+n
αi(k)

))
(3.122)

can be estimated using Theorem 3.1.2.

Indeed, we have

Λ−1
(
Ek ∩Q

j(k)+n
αi(k)

)
=

{
x = (Q0

β0
, Q1

β1
, . . . ) ∈ ∂T

∣∣∣∣ Λ(x) ∈ Ek ∩Q
j(k)+n
αi(k) , βj(k)+n = αi(k)

}
,

(3.123)

so it follows that, for any choice of wk,i ∈ Λ−1
(
Ek ∩Q

j(k)+n
αi(k)

)
, we have

Λ−1
(
Ek ∩Q

j(k)+n
αi(k)

)
⊆ Bρ(wk,i, δj(k)+n) ⊆ ∂T. (3.124)

Moreover, we have

Λ−1
(
Q
j(k)+n
αi(k)

)
= Bρ(wk,i, δ

j(k)+n) ⊆ ∂T and Λ−1
(
Q
η∗(k,i)
β(k,i)

)
= Bρ(wk,i, δ

η∗(k,i)) ⊆ ∂T.
(3.125)

Using (3.96) we get that Bρ(wk,i, δ
η∗(k,i)) is the smallest possible ball such that

Bρ(wk,i, δ
η∗(k,i)) ⊇ Bρ(wk,i, δj(k)+n), (3.126)

and

HQρ
(
Bρ(wk,i, δ

η∗(k,i))
)
≥ CK∂T,s,p

(
Bρ(wk,i, δ

j(k)+n)
)
. (3.127)

So, using definition (3.8), we have

η∗p(wk,i, δ
j(k)+n) = δη

∗(k,i). (3.128)

In (3.113) we proved

Q
η∗(k,i)
β(k,i) ⊆ Bd(xk,Ω · η

∗
X,p(x,M · rk)) ∀k ∈ F , ∀i ≤ Ñ , (3.129)

but the family {Bd(xk,Ω · η∗X,p(x,M · rk))}k∈F is disjoint by hypothesis, so it follows that the

family {
Λ̃−1

(
Q
η∗(k,i)
β(k,i)

)}
k∈F

=
{
Bρ(wk,i, δ

η∗(k,i))
}
k∈F

(3.130)
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is disjoint for every fixed i ≤ Ñ .

So the hypotheses of Theorem 3.1.2 are satisfied, and we may apply (3.10) to (3.121) to get

∑
k∈F

CKX,s,p (Ek) ≤ A ·A2 ·
Ñ∑
i=1

CK∂T,s,p

(⋃
k∈F

Λ̃−1
(
Ek ∩Q

j(k)+n
αi(k)

))
. (3.131)

We recall the following quasi-additivity formula for the capacity of a finite union of sets:

Ñ∑
i=1

CK∂T,s,p (Si) ≤ Ñ · CK∂T,s,p

 Ñ⋃
i=1

Si

 . (3.132)

Applying this formula to (3.131) we get

∑
k∈F

CKX,s,p (Ek) ≤ A ·A2 · Ñ · CK∂T,s,p

 Ñ⋃
i=1

⋃
k∈F

Λ̃−1
(
Ek ∩Q

j(k)+n
αi(k)

) . (3.133)

Now, to finish the proof, we observe that

Λ

 Ñ⋃
i=1

⋃
k∈F

Λ̃−1
(
Ek ∩Q

j(k)+n
αi(k)

) =
Ñ⋃
i=1

⋃
k∈F

Ek ∩Q
j(k)+n
αi(k) =

⋃
k∈F

Ek = E. (3.134)

So we may apply Theorem 3.2.3 to (3.133) to get∑
k∈F

CKX,s,p (Ek) ≤ A ·A2
2 · Ñ · CKX,s,p (E) . (3.135)

The constant Ã := A ·A2
2 · Ñ only depends on X, s, p, M and on the chosen Christ decompo-

sition, finishing the proof for the case M > 1.

The case M = 1 follows as a corollary from the case M > 1.

Indeed, choose an arbitrary M̃ > 1. Let {Bd(xk, rk)}k∈F be a countable family of balls

in X such that the family {Bd(xk, Ω̃ · η∗X,p(xk, rk))}k∈F is disjoint. Here the constant Ω̃ =

Ω̃(X, p, s, M̃) > Ω will be fixed later. Then there exists N̂ = N̂(X, s, p, M̃) ∈ N such that, up

to a proper choice of the indexes of the family {Bd(xk, rk)}k∈F , we have

+∞⋂
k=N̂

Bd(xk, Ω̃ · η∗X,p(xk, M̃ · rk)) = ∅. (3.136)

This property holds if we choose Ω̃ such that

Ω̃ · η∗X,p(xk, rk) ≥ Ω · η∗X,p(xk, M̃ · rk) (3.137)
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for all k ≥ N̂ .

We claim that such N̂ exists because of the properties of the Riesz capacity (see Proposition

3.2.2). Indeed, there exists Ĉ > 1 and r̂ > 0 universal constants such that, for all x ∈ X, for

all 0 < r < r̂ we have

C̃ · CKX,s,p (Bd(x, r)) ≥ CKX,s,p
(
Bd(x, M̃ · r)

)
, (3.138)

which entails

η∗X,p(xk, rk) &X,s,p,M̃ C̃Q · η∗X,p(xk, M̃ · rk), (3.139)

for all rk < r̂. The claim follows from the compactness of X, because there exists N̂ ∈ N such

that rk < r̂ for all k ≥ N̂ . If such N̂ did not exist then we would have

m(X) ≥ m

(⋃
k∈N

Bd(xk, rk)

)
=
∑
k∈N

m(Bd(xk, rk)) = +∞, (3.140)

which contradicts the compactness of X.

So we proved that (3.136) holds as long as we choose

Ω̃ := C̃ · Ω. (3.141)

Now we consider an arbitrary compact set E ⊆ X such that E =
⋃
k Ek and Ek ⊆ Bd(xk, rk) ∀k.

We apply the quasi-additivity formula (3.135) to the family {Ek}k∈N and we get

+∞∑
k=N̂

CKX,s,p (Ek) ≤ Ã · CKX,s,p

+∞⋃
k=N̂

Ek

 . (3.142)

Finally, we apply the finite quasi-additivity formula and we get

∑
k∈F

CKX,s,p (Ek) =
N̂−1∑
k=1

CKX,s,p (Ek) +
+∞∑
k=N̂

CKX,s,p (Ek) ≤ (3.143)

N̂−1∑
k=1

CKX,s,p (Ek) + Ã · CKX,s,p

+∞⋃
k=N̂

Ek

 ≤
Ã

N̂−1∑
k=1

CKX,s,p (Ek) + CKX,s,p

+∞⋃
k=N̂

Ek

 ≤
Ã · N̂ · CKX,s,p

N̂−1⋃
k=1

Ek ∪
+∞⋃
k=N̂

Ek

 ,
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so we get ∑
k∈F

CKX,s,p (Ek) .(X,s,p) CKX,s,p (E) , (3.144)

so, up to choosing the new values of the constants Ω and Ã for the case M = 1, the theorem

is proved.

3.3 Harmonic extension

In this section we define the harmonic extension of a function defined over an Ahlfors-

regular space and we enunciate and prove several properties of the Harmonic extension.

3.3.1 Dyadic Poisson Integral and Riesz kernel

Let (X, d,m) be an Ahlfors Q-regular space. In the following part of this work we will be

considering the space X × (0,+∞) with the metric

ρ ((x1, y1), (x2, y2)) := max{d(x1, x2), |y1 − y2|}. (3.145)

We are now going to define the harmonic extension on X × (0,+∞).

Definition 3.3.1 (Poisson Integral in X × (0,+∞)). Let f ∈ Lp(X). We define the Poisson

Integral

PI(f)(x, y) :=

∫
X
C(x, y) · 1

yQ

+∞∑
k=0

χBd(x,2ky)(z)

2(Q+1)k
f(z)dm(z). (3.146)

Here C(x, y) is the constant that normalizes the Poisson Kernel, i.e.

C(x, y) :=

[∫
X

1

yQ

+∞∑
k=0

χBd(x,2ky)(z)

2(Q+1)k
dm(z)

]−1

. (3.147)

Remark 3.3.1. There exist constants 0 < C1 ≤ C2 < +∞ depending only on the choice of X

and Q such that

C1 ≤ C(x, y) ≤ C2 ∀x ∈ X, ∀y > 0, (3.148)

i.e.

C(x1, y1) ≈(X,Q) C(x2, y2) for all (x1, y1), (x2, y2) ∈ X × (0,+∞). (3.149)

We will use a dyadicization of the Riesz kernel to prove a property of the Poisson Integral.
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Lemma 3.3.1 (Discretization of the Riesz kernel). Let g ∈ Lp(X). Then

KX,s ∗ g(x) ≈(Q,s)

∫
X

+∞∑
j=−∞

χBd(x,2j)(z)

2(Qs)j
g(z)dm(z) (3.150)

for every x ∈ X.

Proof. Let x ∈ X. For every z 6= x we have

+∞∑
j=−∞

χBd(x,2j)(z)

2(Qs)j
=

∑
j such that
j>log2(d(x,z))

1

2(Qs)j
, (3.151)

and we have∑
j such that
j>log2(d(x,z))

1

2(Qs)j
=

∑
j such that

j≥dlog2(d(x,z))e

1

2(Qs)j
≤ 1

1− 2Qs
1

2(Qs)(log2(d(x,z)))
=

1

1− 2Qs
1

d(x, z)Qs
,

(3.152)∑
j such that
j>log2(d(x,z))

1

2(Qs)j
=

∑
j such that

j≥dlog2(d(x,z))e

1

2(Qs)j
≥ 1

1− 2Qs
1

2(Qs)(log2(d(x,z))+1)
=

1

2Qs − 22Qs

1

d(x, z)Qs
.

(3.153)

But KX,s(x, z) = 1/d(x, z)Qs, so we get

KX,s(x, z) ≈(Q,s)

+∞∑
j=−∞

χBd(x,2j)(z)

2(Qs)j
(3.154)

for all z 6= x. Since m({x}) = 0 we get

KX,s ∗ g(x) ≈(Q,s)

∫
X

+∞∑
j=−∞

χBd(x,2j)(z)

2(Qs)j
g(z)dm(z) (3.155)

for all g ∈ Lp(X), for all x ∈ X, and the lemma is proved.

3.3.2 Commutative convolution-like property

Now we will prove that the order of the Poisson Integral and the Riesz potential can be

exchanged up to a universal multiplicative constant. The proof of this property in Rn+1 trivially

follows from the commutative property of the convolution. In the setting of compact Ahlfors-

regular spaces this proof is based on a geometrical property of the dyadicization of the Riesz

kernel, and on the dyadic nature of the Poisson Integral we defined.
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Lemma 3.3.2 (Exchanging the order of the Poisson Integral and of the Riesz potential). Let

f ∈ Lp(X), let y > 0. Then

KX,s ∗ (PI(f)(·, y))(x) ≈(X,Q,s) PI(KX,s ∗ f)(x, y) (3.156)

for all x ∈ X.

Proof. By Lemma 3.3.1 we know that

KX,s ∗ (PI(f)(·, y))(x) ≈(Q,s)

∫
X

+∞∑
j=−∞

χBd(x,2j)(z)

2(Qs)j
PI(f)(z, y)dm(z), (3.157)

and

PI(KX,s ∗ f)(x, y) ≈(Q,s) PI

∫
X

+∞∑
j=−∞

χBd(·,2j)(z)

2(Qs)j
f(z)dm(z)

 (x, y), (3.158)

so we will prove the statement by proving

∫
X

+∞∑
j=−∞

χBd(x,2j)(z)

2(Qs)j
PI(f)(z, y)dm(z) ≈(X,Q,s) PI

∫
X

+∞∑
j=−∞

χBd(·,2j)(z)

2(Qs)j
f(z)dm(z)

 (x, y)

(3.159)

for all f ∈ Lp(X), for all x, z ∈ X, for all y > 0.

Let L.H.S. and R.H.S. denote the left hand side and the right hand side of (3.159) respectively.

We compute

L.H.S. =

∫
X

+∞∑
j=−∞

χBd(x,2j)(z)

2(Qs)j

∫
X

C(z, y)

yQ

+∞∑
k=0

χBd(z,2ky)(w)

2(Q+1)k
f(w)dm(w)dm(z) = (3.160)

∫
X

∫
X

C(z, y)

yQ

+∞∑
j=−∞

+∞∑
k=0

χBd(x,2j)(z)χBd(z,2ky)(w)

2[(Q+1)k+(Qs)j]
f(w)dm(z)dm(w).

Remark 3.3.1 entails C(z, y) ≈(X) C(x, y), and we have

χBd(z,2ky)(w) = χBd(w,2ky)(z),

so we get

L.H.S. ≈(X)
C(x, y)

yQ

∫
X

∫
X

+∞∑
j=−∞

+∞∑
k=0

χBd(x,2j)(z)χBd(w,2ky)(z)

2[(Q+1)k+(Qs)j]
dm(z)

 f(w)dm(w). (3.161)



3.3. HARMONIC EXTENSION 121

Now we compute

R.H.S. =PI

∫
X

+∞∑
j=−∞

χBd(·,2j)(z)

2(Qs)j
f(z)dm(z)

 (x, y) = (3.162)

∫
X

C(x, y)

yQ

+∞∑
k=0

χBd(x,2ky)(w)

2(Q+1)k

∫
X

+∞∑
j=−∞

χBd(w,2j)(z)

2(Qs)j
f(z)dm(z)dm(w) =

∫
X

∫
X

C(x, y)

yQ

+∞∑
j=−∞

+∞∑
k=0

χBd(x,2ky)(w)χBd(w,2j)(z)

2[(Q+1)k+(Qs)j]
f(z)dm(z)dm(w) =

C(x, y)

yQ

∫
X

∫
X

+∞∑
j=−∞

+∞∑
k=0

χBd(x,2ky)(w)χBd(z,2j)(w)

2[(Q+1)k+(Qs)j]
dm(w)

 f(z)dm(z).

We rename the bound variables in the last equation to get

R.H.S. =
C(x, y)

yQ

∫
X

∫
X

+∞∑
j=−∞

+∞∑
k=0

χBd(x,2ky)(z)χBd(w,2j)(z)

2[(Q+1)k+(Qs)j]
dm(z)

 f(w)dm(w). (3.163)

So, to prove that L.H.S. ≈(X,Q,s) R.H.S. for all f ∈ Lp(X), for all x ∈ X, for all y > 0, it is

sufficient to prove that∫
X

+∞∑
j=−∞

+∞∑
k=0

χBd(x,2j)(z)χBd(w,2ky)(z)

2[(Q+1)k+(Qs)j]
dm(z) ≈

(X,Q,s)

∫
X

+∞∑
j=−∞

+∞∑
k=0

χBd(x,2ky)(z)χBd(w,2j)(z)

2[(Q+1)k+(Qs)j]
dm(z)

(3.164)

for all x,w ∈ X, for all y > 0.

We will prove the stronger statement

+∞∑
j=−∞

+∞∑
k=0

m(Bd(x, 2
j) ∩Bd(w, 2ky))

2[(Q+1)k+(Qs)j]
≈(X,Q,s)

+∞∑
j=−∞

+∞∑
k=0

m(Bd(w, 2
j) ∩Bd(x, 2ky))

2[(Q+1)k+(Qs)j]
(3.165)

for all x,w ∈ X, for all y > 0.

The claim is trivial when x = w. Let us consider x 6= w. So we have d(x,w) > 0, and we may

define

j̃(x,w) = dlog2(d(x,w))e , (3.166)

which is the first index j such that w ∈ Bd(x, 2j).
Let us consider the following equation

+∞∑
j=−∞

+∞∑
k=0

m(Bd(x, 2
j) ∩Bd(w, 2ky))

2[(Q+1)k+(Qs)j]
= (I) + (II) + (III), (3.167)
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where

(I) =

j̃(x,w)−2∑
j=−∞

+∞∑
k=0

m(Bd(x, 2
j) ∩Bd(w, 2ky))

2[(Q+1)k+(Qs)j]
, (3.168)

(II) =

j̃(x,w)∑
j=j̃(x,w)−1

+∞∑
k=0

m(Bd(x, 2
j) ∩Bd(w, 2ky))

2[(Q+1)k+(Qs)j]
, (3.169)

(III) =
+∞∑

j=j̃(x,w)+1

+∞∑
k=0

m(Bd(x, 2
j) ∩Bd(w, 2ky))

2[(Q+1)k+(Qs)j]
. (3.170)

Now we are going to give estimates of the values of (I), (II) and (III).

We start from estimating (I). Consider j ≤ j̃(x,w)− 2. We define

k(j) = max

{⌊
log2

(
d(x,w)− 2j

y

)⌋
+ 1, 0

}
, (3.171)

which is the smallest index k ≥ 0 such that Bd(x, 2
j) ∩Bd(w, 2ky) 6= ∅.

We write

(I) =

j̃(x,w)−2∑
j=−∞

[ k(j)−1∑
k=0

m(Bd(x, 2
j) ∩Bd(w, 2ky))

2[(Q+1)k+(Qs)j]
+ (3.172)

k(j)+1∑
k=k(j)

m(Bd(x, 2
j) ∩Bd(w, 2ky))

2[(Q+1)k+(Qs)j]
+

+∞∑
k=k(j)+2

m(Bd(x, 2
j) ∩Bd(w, 2ky))

2[(Q+1)k+(Qs)j]

]
,

with the convention
∑b

k=a ϕ(k) := 0 if b < a.

By definition of k(j) we have Bd(x, 2
j) ∩Bd(w, 2ky) = ∅ if k < k(j).

Now we consider k ≥ k(j) + 2. We have

k ≥ k(j) + 2 = max

{⌊
log2

(
d(x,w)− 2j

y

)⌋
+ 1, 0

}
+ 2 ≥ log2

(
d(x,w)− 2j

y

)
+ 2, (3.173)

hence we get

2ky ≥ 2
log2

(
d(x,w)−2j

y

)
+2
y = 4

(
d(x,w)− 2j

)
. (3.174)

Now we consider an arbitrary point v ∈ Bd(x, 2j). By triangle inequality we have

d(v, w) ≤ d(v, x) + d(x,w) ≤ 2j + d(x,w). (3.175)
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However, we set j ≤ j̃(x,w)− 2, so we get

j ≤ j̃(x,w)− 2 = dlog2(d(x,w))e − 2 ≤ log2(d(x,w))− 1, (3.176)

hence

2j ≤ 2log2(d(x,w))−1 ≤ 1

2
d(x,w). (3.177)

So from (3.174) and (3.177) we get

2ky ≥ 2d(x,w) ≥ 2j +
3

2
d(x,w). (3.178)

From (3.175) and (3.178) we get d(v, w) ≤ 2ky, so we proved that Bd(x, 2
j) ⊆ Bd(w, 2

ky) for

all x,w ∈ X, for all j ≤ j̃(x,w)− 2, for all k ≥ k(j) + 2.

So we proved that

(I) =

j̃(x,w)−2∑
j=−∞

[ k(j)−1∑
k=0

m(∅)
2[(Q+1)k+(Qs)j]

+ (3.179)

k(j)+1∑
k=k(j)

m(Bd(x, 2
j) ∩Bd(w, 2ky))

2[(Q+1)k+(Qs)j]
+

+∞∑
k=k(j)+2

m(Bd(x, 2
j))

2[(Q+1)k+(Qs)j]

]
.

Now we use the equations

m(∅) = 0, (3.180)

0 ≤ m(Bd(x, 2
j)) ≤ m(Bd(x, 2

j) ∩Bd(w, 2ky)), (3.181)

m(Bd(x, r)) ≈(X) r
Q ∀x ∈ X, for 0 < r < diam(X), (3.182)

to get the following equation:

(I) ≥
j̃(x,w)−2∑
j=−∞

+∞∑
k=k(j)+2

m(Bd(x, 2
j))

2[(Q+1)k+(Qs)j]
&(X) (3.183)

j̃(x,w)−2∑
j=−∞

+∞∑
k=k(j)+2

2jQ

2[(Q+1)k+(Qs)j]
=

j̃(x,w)−2∑
j=−∞

1

1− 1
2Q+1

1

2(Q+1)(k(j)+2)

2jQ

2(Qs)j
.
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We remark that we may use the estimate (3.182) because for all j ≤ j̃(x,w) − 1 we have

w 6∈ Bd(x, 2j), hence 2j < diam(X) for all j ≤ j̃(x,w)− 2.

Now we estimate the value of k(j). Consider j = j̃(x,w)− 2. We have

k(j̃(x,w)− 2) = max

{⌊
log2

(
d(x,w)− 2j̃(x,w)−2

y

)⌋
+ 1, 0

}
> log2

(
d(x,w)− 2j̃(x,w)−2

y

)
.

(3.184)

So we get

2k(j̃(x,w)−2)y > d(x,w)− 2j̃(x,w)−2. (3.185)

However we use equation (3.166) to get

2k(j̃(x,w)−2)y > d(x,w)− 2log2(d(x,w))+1−2 =
1

2
d(x,w). (3.186)

Now let j < j̃(x,w)− 2). From (3.186) we get

2k(j̃(x,w)−2)+1y > d(x,w), (3.187)

hence

Bd(w, 2
k(j̃(x,w)−2)+1y) ∩Bd(x, 2j) 6= 0 for all j < j̃(x,w)− 2. (3.188)

However, from the definition of k(j), it follows that k(j) is the smallest index k such that

Bd(w, 2
ky) ∩Bd(x, 2j) 6= 0, so we proved

k(j) ≤ k(j̃(x,w)− 2) + 1 for all j ≤ j̃(x,w)− 2. (3.189)

So we use equations (3.183) and (3.189) to get

(I) &(X)
1

1− 1
2Q+1

1

2(Q+1)(k(j̃(x,w)−2)+3)

j̃(x,w)−2∑
j=−∞

2jQ

2(Qs)j
&(X,Q) (3.190)

1

2(Q+1)(k(j̃(x,w)−2))

+∞∑
i=2−j̃(x,w)

1

2Q(1−s)i = (3.191)

1

2(Q+1)(k(j̃(x,w)−2))

1

1− 1
2Q(1−s)

1

2Q(1−s)(2−j̃(x,w))
≈(Q,s) (3.192)

1

2(Q+1)(k(j̃(x,w)−2))
2Q(1−s)j̃(x,w). (3.193)

So we proved the lower estimate

(I) &(X,Q,p)
1

2(Q+1)(k(j̃(x,w)−2))
2Q(1−s)j̃(x,w). (3.194)
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Now we prove an upper estimate for (I). We compute

(I) ≤
j̃(x,w)∑
j=−∞

+∞∑
k=k(j)

m(Bd(x, 2
j))

2[(Q+1)k+(Qs)j]
.(X) (3.195)

j̃(x,w)−2∑
j=−∞

+∞∑
k=k(j)

2jQ

2[(Q+1)k+(Qs)j]
=

j̃(x,w)−2∑
j=−∞

1

1− 1
2Q+1

1

2(Q+1)k(j)

2jQ

2(Qs)j
.

By monotonicity in the definition of k(j) we deduce

k(j) ≥ k(j̃(x,w)− 2) for all j ≤ j̃(x,w)− 2, (3.196)

so we get

(I) .(X)
1

1− 1
2Q+1

1

2(Q+1)k(j̃(x,w)−2)

j̃(x,w)−2∑
j=−∞

2jQ

2(Qs)j
≈(X,Q) (3.197)

1

2(Q+1)k(j̃(x,w)−2)

j̃(x,w)−2∑
j=−∞

2jQ

2(Qs)j
≈(Q,s)

1

2(Q+1)k(j̃(x,w)−2)
2Q(1−s)j̃(x,w).

So we proved

(I) .(X,Q,s)
1

2(Q+1)k(j̃(x,w)−2)
2Q(1−s)j̃(x,w), (3.198)

which, alongside (3.194), proves

(I) ≈(X,Q,s)
1

2(Q+1)k(j̃(x,w)−2)
2Q(1−s)j̃(x,w). (3.199)

Now we are going to estimate the value of (III) and we are going to compare (II) and

(III).

Let us define

jdiam := blog2(diam(X))c+ 1. (3.200)

By computation we get

2jdiam = 2blog2(diam(X))c+1 > 2log2(diam(X)) = diam(X), (3.201)
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so we proved

X = Bd(x, 2
j) for all j ≥ jdiam. (3.202)

Moreover we get

2jdiam−1 = 2blog2(diam(X))c ≤ 2log2(diam(X)) = diam(X). (3.203)

We may write

(III) =

jdiam−1∑
j=j̃(x,w)+1

+∞∑
k=0

m(Bd(x, 2
j) ∩Bd(w, 2ky))

2[(Q+1)k+(Qs)j]
+

+∞∑
j=jdiam

+∞∑
k=0

Bd(w, 2
ky)

2[(Q+1)k+(Qs)j]
(3.204)

Consider j̃(x,w) + 1 ≤ j ≤ jdiam − 1. We define

k̃(j) = max

{⌊
log2

(
2j − d(x,w)

y

)⌋
+ 1, 0

}
, (3.205)

which is the smallest index k ≥ 0 such that Bd(w, 2
ky) 6⊆ Bd(x, 2j).

Suppose k ≥ k̃(j) + 2, suppose v ∈ Bd(x, 2j). By triangle inequality we get

d(v, w) ≤ d(v, x) + d(x.w) ≤ d(x,w) + 2j . (3.206)

However, from (3.205) we get

k ≥ k̃(j) + 2 > log2

(
2j − d(x,w)

y

)
+ 2, (3.207)

hence

2ky > 4(2j − d(x,w)). (3.208)

But from (3.166) we have

j ≥ j̃(x,w) + 1 ≥ log2(d(x,w)) + 1, (3.209)

hence

2j ≥ 2d(x,w). (3.210)

Now from (3.208) and (3.210) we get

2ky > 2j + (3 · 2j − 4d(x,w)) ≥ 2j + 2d(x,w). (3.211)
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Combining (3.207) and (3.211) we get

2ky > d(v, w), (3.212)

so we proved that

Bd(x, 2
j) ⊆ Bd(w, 2ky) (3.213)

for every x,w ∈ X, for every j̃(x,w) + 1 ≤ j ≤ jdiam − 1, for every k ≥ k̃(j) + 2.

Now we use (3.213) and the definition of k̃(j) to write

(III) =

jdiam−1∑
j=j̃(x,w)+1

[ k̃(j)−1∑
k=0

m(Bd(w, 2
ky))

2[(Q+1)k+(Qs)j]
+ (3.214)

k̃(j)+1∑
k=k̃(j)

m(Bd(x, 2
j) ∩Bd(w, 2ky))

2[(Q+1)k+(Qs)j]
+

+∞∑
k=k̃(j)+2

m(Bd(x, 2
j))

2[(Q+1)k+(Qs)j]

]
+

+∞∑
j=jdiam

+∞∑
k=0

m(Bd(w, 2
ky))

2[(Q+1)k+(Qs)j]
,

with the convention
∑b

k=a ϕ(k) := 0 if b < a.

Let us define

kdiam :=

⌊
log2

(
diam(X)

y

)⌋
+ 1. (3.215)

By the same argument used for jdiam we get

2kdiamy > diam(X) and 2kdiam−1y ≤ diam(X), (3.216)

and we prove

X = Bd(x, 2
ky) for all k ≥ kdiam. (3.217)
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So we can write

(III) =

jdiam−1∑
j=j̃(x,w)+1

[ k̃(j)−1∑
k=0

m(Bd(w, 2
ky))

2[(Q+1)k+(Qs)j]
+ (3.218)

k̃(j)+1∑
k=k̃(j)

m(Bd(x, 2
j) ∩Bd(w, 2ky))

2[(Q+1)k+(Qs)j]
+

+∞∑
k=k̃(j)+2

m(Bd(x, 2
j))

2[(Q+1)k+(Qs)j]

]
+

+∞∑
j=jdiam

[ kdiam−1∑
k=0

m(Bd(w, 2
ky))

2[(Q+1)k+(Qs)j]
+

+∞∑
k=kdiam

m(X)

2[(Q+1)k+(Qs)j]

]
.

Now we are going to prove that (II) .(Q,s) (III).

Suppose j̃(x,w) > jdiam − 2.

Then, the expression (3.218) reformulates to

(III) =
+∞∑

j=jdiam

[ kdiam−1∑
k=0

m(Bd(w, 2
ky))

2[(Q+1)k+(Qs)j]
+ (3.219)

+∞∑
k=kdiam

m(X)

2[(Q+1)k+(Qs)j]

]
.

Let us denote by Φ the first addend of the first sum in (3.219) with respect to the index j, i.e

Φ =

kdiam−1∑
k=0

m(Bd(w, 2
ky))

2[(Q+1)k+(Qs)jdiam]
+

+∞∑
k=kdiam

m(X)

2[(Q+1)k+(Qs)jdiam]
. (3.220)

Now we consider the equation

(II) =

j̃(x,w)∑
j=j̃(x,w)−1

+∞∑
k=0

m(Bd(x, 2
j) ∩Bd(w, 2ky))

2[(Q+1)k+(Qs)j]

and we use monotonicity of the measure m to get

(II) ≤
j̃(x,w)∑

j=j̃(x,w)−1

+∞∑
k=0

m(Bd(w, 2
ky))

2[(Q+1)k+(Qs)j]
, (3.221)
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which reformulates to

(II) ≤
j̃(x,w)∑

j=j̃(x,w)−1

kdiam−1∑
k=0

m(Bd(w, 2
ky))

2[(Q+1)k+(Qs)j]
+

+∞∑
k=kdiam

m(X)

2[(Q+1)k+(Qs)j]

 . (3.222)

By definition we get j̃(x,w) ≤ jdiam, so we have two cases:

1. Case j̃(x,w) = jdiam − 1: we get

(II) ≤ 22QsΦ + 2QsΦ. (3.223)

2. Case j̃(x,w) = jdiam: we get

(II) ≤ 2QsΦ + Φ. (3.224)

So from (3.223) and (3.224) we get

(II) .(Q,s) (III) (3.225)

whenever j̃(x,w) > jdiam− 2, and the constant associated to equation (3.225) does not depend

on x and w.

Now suppose j̃(x,w) ≤ jdiam− 2 Let us denote by Φ first addend of the first sum in (3.218)

with respect to the index j, i.e.

Φ =

k̃(j̃(x,w)+1)−1∑
k=0

m(Bd(w, 2
ky))

2[(Q+1)k+(Qs)(j̃(x,w)+1)]
+ (3.226)

k̃(j̃(x,w)+1)+1∑
k=k̃(j̃(x,w)+1)

m(Bd(x, 2
j̃(x,w)+1) ∩Bd(w, 2ky))

2[(Q+1)k+(Qs)(j̃(x,w)+1)]
+

+∞∑
k=k̃(j̃(x,w)+1)+2

m(Bd(x, 2
j̃(x,w)+1))

2[(Q+1)k+(Qs)(j̃(x,w)+1)]
.
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We may write

(II) =

j̃(x,w)∑
j=j̃(x,w)−1

+∞∑
k=0

m(Bd(x, 2
j) ∩Bd(w, 2ky))

2[(Q+1)k+(Qs)j]
= (3.227)

=

j̃(x,w)∑
j=j̃(x,w)−1

[ k̃(j̃(x,w)+1)−1∑
k=0

m(Bd(x, 2
j) ∩Bd(w, 2ky))

2[(Q+1)k+(Qs)j]
+ (3.228)

k̃(j̃(x,w)+1)+1∑
k=k̃(j̃(x,w)+1)

m(Bd(x, 2
j)) ∩Bd(w, 2ky))

2[(Q+1)k+(Qs)j]
+

+∞∑
k=k̃(j̃(x,w)+1)+2

m(Bd(x, 2
j) ∩Bd(w, 2ky))

2[(Q+1)k+(Qs)j]

]
. (3.229)

Now we use the following facts:

1. m(Bd(x, 2
j) ∩ Bd(w, 2ky)) ≤ m(Bd(x, 2

j)), m(Bd(x, 2
j) ∩ Bd(w, 2ky)) ≤ m(Bd(w, 2

ky)),

by the monotonicity of m.

2. m(Bd(x, 2
j)) ≤ m(Bd(x, 2

j̃(x,w)+1)) for j = j̃(x,w)− 1 and j = j̃(x,w), because

Bd(x, 2
j) ⊆ Bd(x, 2j̃(x,w)+1).

So we get

(II) ≤
j̃(x,w)∑

j=j̃(x,w)−1

[ k̃(j̃(x,w)+1)−1∑
k=0

m(Bd(w, 2
ky))

2[(Q+1)k+(Qs)j]
+ (3.230)

k̃(j̃(x,w)+1)+1∑
k=k̃(j̃(x,w)+1)

m(Bd(x, 2
j̃(x,w)+1) ∩Bd(w, 2ky))

2[(Q+1)k+(Qs)j]
+

+∞∑
k=k̃(j̃(x,w)+1)+2

m(Bd(x, 2
j̃(x,w)+1))

2[(Q+1)k+(Qs)j]

]
. (3.231)

So, by computation and using the definition of Φ, we get

(II) ≤ 22QsΦ + 2QsΦ. (3.232)

Combining (3.225) and (3.232) we get

(II) .(Q,s) (III), (3.233)
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for all x,w ∈ X, and the constant associated to (3.233) does not depend on x,w ∈ X. Now we

go back to estimating equation (III).

We consider equation (3.218):

(III) =

jdiam−1∑
j=j̃(x,w)+1

[ k̃(j)−1∑
k=0

m(Bd(w, 2
ky))

2[(Q+1)k+(Qs)j]
+

k̃(j)+1∑
k=k̃(j)

m(Bd(x, 2
j) ∩Bd(w, 2ky))

2[(Q+1)k+(Qs)j]
+

+∞∑
k=k̃(j)+2

m(Bd(x, 2
j))

2[(Q+1)k+(Qs)j]

]
+

+∞∑
j=jdiam

[ kdiam−1∑
k=0

m(Bd(w, 2
ky))

2[(Q+1)k+(Qs)j]
+

+∞∑
k=kdiam

m(X)

2[(Q+1)k+(Qs)j]

]
,

and we claim that

k̃(j)+1∑
k=k̃(j)

m(Bd(x, 2
j) ∩Bd(w, 2ky))

2[(Q+1)k+(Qs)j]
+

+∞∑
k=k̃(j)+2

m(Bd(x, 2
j))

2[(Q+1)k+(Qs)j]
≈(Q,s)

+∞∑
k=k̃(j)+2

m(Bd(x, 2
j))

2[(Q+1)k+(Qs)j]
.

(3.234)

Indeed, we can trivially get one part of equation (3.234) because

+∞∑
k=k̃(j)+2

m(Bd(x, 2
j))

2[(Q+1)k+(Qs)j]
≤

k̃(j)+1∑
k=k̃(j)

m(Bd(x, 2
j) ∩Bd(w, 2ky))

2[(Q+1)k+(Qs)j]
+

+∞∑
k=k̃(j)+2

m(Bd(x, 2
j))

2[(Q+1)k+(Qs)j]
. (3.235)

For the other part we compute

+∞∑
k=k̃(j)+2

m(Bd(x, 2
j))

2[(Q+1)k+(Qs)j]
=
m(Bd(x, 2

j))

2(Qs)j

+∞∑
k=k̃(j)+2

1

2(Q+1)k
=

m(Bd(x, 2
j))

2[(Qs)j+(Q+1)(k̃(j)+2)]

1

1− 2−(Q+1)

(3.236)

and

k̃(j)+1∑
k=k̃(j)

m(Bd(x, 2
j) ∩Bd(w, 2ky))

2[(Q+1)k+(Qs)j]
≤
k̃(j)+1∑
k=k̃(j)

m(Bd(x, 2
j))

2[(Q+1)k+(Qs)j]
= (3.237)

m(Bd(x, 2
j))

2[(Qs)j+(Q+1)(k̃(j)+2)]

[
2Q+1 + 22(Q+1)

]
.
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From (3.236) and (3.237) we get

k̃(j)+1∑
k=k̃(j)

m(Bd(x, 2
j) ∩Bd(w, 2ky))

2[(Q+1)k+(Qs)j]
≤ 1

(2Q+1 + 22(Q+1))(1− 2−(Q+1))

+∞∑
k=k̃(j)+2

m(Bd(x, 2
j))

2[(Q+1)k+(Qs)j]
,

(3.238)

so we proved

k̃(j)+1∑
k=k̃(j)

m(Bd(x, 2
j) ∩Bd(w, 2ky))

2[(Q+1)k+(Qs)j]
.(Q)

+∞∑
k=k̃(j)+2

m(Bd(x, 2
j))

2[(Q+1)k+(Qs)j]
, (3.239)

and the claim (3.234) follows.

Finally, from (3.218) and (3.234) we get

(III) ≈(Q)

jdiam−1∑
j=j̃(x,w)+1

[ k̃(j)−1∑
k=0

m(Bd(w, 2
ky))

2[(Q+1)k+(Qs)j]
+

+∞∑
k=k̃(j)+2

m(Bd(x, 2
j))

2[(Q+1)k+(Qs)j]

]
+

+∞∑
j=jdiam

[ kdiam−1∑
k=0

m(Bd(w, 2
ky))

2[(Q+1)k+(Qs)j]
+

+∞∑
k=kdiam

m(X)

2[(Q+1)k+(Qs)j]

]
.

By construction we have 2ky ≤ diam(X) for all j̃(x,w) + 1 ≤ j ≤ jdiam − 1, for all 0 ≤ k ≤
k̃(j)−1, 2j ≤ diam(X) for all j̃(x,w) + 1 ≤ j ≤ jdiam−1, 2ky ≤ diam(X) for all k ≤ kdiam−1,

so we may apply the Ahlfors-regularity estimate (3.182) to get

(III) ≈(X,Q)

jdiam−1∑
j=j̃(x,w)+1

[ k̃(j)−1∑
k=0

2QkyQ

2[(Q+1)k+(Qs)j]
+ (3.240)

+∞∑
k=k̃(j)+2

2j

2[(Q+1)k+(Qs)j]

]
+

+∞∑
j=jdiam

[ kdiam−1∑
k=0

2QkyQ

2[(Q+1)k+(Qs)j]
+

+∞∑
k=kdiam

m(X)

2[(Q+1)k+(Qs)j]

]
.



3.3. HARMONIC EXTENSION 133

Now we recall what we proved up this point and finish the proof of the statement.

We proved (3.199), (3.233) and (3.240), i.e.

(I) ≈(X,Q,s) ϕ1(x,w, y) :=
1

2(Q+1)k(j̃(x,w)−2)
2Q(1−s)j̃(x,w),

0 ≤ (II) .(Q,s) (III),

(III) ≈(X,Q) ϕ2(x,w, y) :=

jdiam−1∑
j=j̃(x,w)+1

[ k̃(j)−1∑
k=0

2QkyQ

2[(Q+1)k+(Qs)j]
+

+∞∑
k=k̃(j)+2

2j

2[(Q+1)k+(Qs)j]

]
+

+∞∑
j=jdiam

[ kdiam−1∑
k=0

2QkyQ

2[(Q+1)k+(Qs)j]
+

+∞∑
k=kdiam

m(X)

2[(Q+1)k+(Qs)j]

]
.

We recall that, by definition, we have

+∞∑
j=−∞

+∞∑
k=0

m(Bd(x, 2
j) ∩Bd(w, 2ky))

2[(Q+1)k+(Qs)j]
= (I) + (II) + (III), (3.241)

so we get

+∞∑
j=−∞

+∞∑
k=0

m(Bd(x, 2
j) ∩Bd(w, 2ky))

2[(Q+1)k+(Qs)j]
≈(Q,s) (I) + (III) ≈(X,Q,s) ϕ1(x,w, y) + ϕ2(x,w, y).

(3.242)

However, ϕ1(x,w, y) = ϕ1(w, x, y), ϕ2(x,w, y) = ϕ2(w, x, y) for all x,w ∈ X, for all y > 0.

Indeed, we have

j̃(x,w) = dlog2(d(x,w))e = dlog2(d(w, x))e = j̃(w, x), (3.243)

k(j) = max

{⌊
log2

(
d(x,w)− 2j

y

)⌋
+ 1, 0

}
= max

{⌊
log2

(
d(w, x)− 2j

y

)⌋
+ 1, 0

}
,

(3.244)

k̃(j) = max

{⌊
log2

(
2j − d(x,w)

y

)⌋
+ 1, 0

}
= max

{⌊
log2

(
2j − d(w, x)

y

)⌋
+ 1, 0

}
,

(3.245)
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and all the other terms in the definitions of ϕ1 and ϕ2 do not depend on x and w, so we get

that ϕ1, ϕ2 are symmetrical with respect to exchanging the roles of x and w.

We finish the proof by exchanging the roles of x and w in (3.242) and we get

+∞∑
j=−∞

+∞∑
k=0

m(Bd(w, 2
j) ∩Bd(x, 2ky))

2[(Q+1)k+(Qs)j]
≈(X,Q,s)ϕ1(w, x, y) + ϕ2(w, x, y) = (3.246)

ϕ1(x,w, y) + ϕ2(x,w, y) ≈(X,Q,s)

+∞∑
j=−∞

+∞∑
k=0

m(Bd(x, 2
j) ∩Bd(w, 2ky))

2[(Q+1)k+(Qs)j]
,

which is the statement (3.165) we needed to prove, so the proof is finished.

3.3.3 Other properties of the Poisson Integral

Now we will prove two more properties of the Poisson Integral which are analogous to the

properties of the classical Poisson Integral in Rn+1.

Definition 3.3.2. Let f be a non negative function in Lp+(X), let M ≥ 1, ε > 0. We define

E(f, ε) := {(x, y) ∈ X × (0,+∞) | PI(KX,s ∗ f)(x, y) > ε}, (3.247)

EM,∗(f, ε) :=
⋃

(x,y)∈E(f,ε)

Bd(x,My) ⊆ X, (3.248)

EM
′
(f, ε) :=

⋃
(x,y)∈E(f,ε)

Bd(x,My)× {y} ⊆ X × (0,+∞). (3.249)

Lemma 3.3.3. [Harnack-type inequality] We have

PI(KX,s ∗ f)(x, y) &(X,Q,M) ε ∀(x, y) ∈ EM ′(f, ε). (3.250)

Proof. Let (x, y) ∈ EM
′
(f, ε). By definition of EM

′
there exist (x̃, y) ∈ E(f, ε) such that

x ∈ Bd(x̃,My). By (3.148) the constant C in the Poisson integral

PI(KX,s ∗ f)(x, y) :=

∫
X
C(x, y) · 1

yQ

+∞∑
k=0

χBd(x,2ky)(z)

2(Q+1)k
KX,s ∗ f(z)dm(z) (3.251)

is bounded, so we have C(x, y) ≈(X,Q) C(x̃, y), and we get

PI(KX,s ∗ f)(x, y) &(X,Q)

∫
X
C(x̃, y) · 1

yQ

+∞∑
k=0

χBd(x,2ky)(z)

2(Q+1)k
KX,s ∗ f(z)dm(z). (3.252)
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The function f is non negative, so KX,s ∗ f is also non negative, so we have

PI(KX,s ∗ f)(x, y) &(X,Q)

∫
X
C(x̃, y) · 1

yQ

+∞∑
k=blog2(M)c+1

1

2(Q+1)

χBd(x,2ky)(z)

2(Q+1)(k−1)
KX,s ∗ f(z)dm(z).

(3.253)

Now we change the index k of summation and put 1/(2(Q+1)(blog2(M)c+1)) in the leading constant

to get

PI(KX,s ∗ f)(x, y) &(X,Q,M)

∫
X
C(x̃, y) · 1

yQ

+∞∑
k=0

χBd(x,2k+blog2(M)c+1y)(z)

2(Q+1)k
KX,s ∗ f(z)dm(z).

(3.254)

Now let k ∈ {0, 1, 2, ...} be a fixed index. We have d(x, x̃) < My by definition of x̃, so, for all

z ∈ Bd(x̃, 2ky), we apply the triangle inequality to get

d(x, z) ≤ d(x̃, x) + d(x̃, z) < My + 2ky ≤ (2k +M)y ≤ 2k+blog2(M)c+1y. (3.255)

So we proved that Bd(x̃, 2
ky) ⊆ Bd(x, 2k+blog2(M)c+1y) for all k ∈ N, hence

+∞∑
k=0

χBd(x,2k+blog2(M)c+1y)(z)

2(Q+1)k
≥

+∞∑
k=0

χBd(x̃,2ky)(z)

2(Q+1)k
. (3.256)

We combine (3.254) and (3.256) to get

PI(KX,s ∗ f)(x, y) &(X,Q,M)

∫
X
C(x̃, y) · 1

yQ

+∞∑
k=0

χBd(x̃,2ky)(z)

2(Q+1)k
KX,s ∗ f(z)dm(z). (3.257)

However, by the definition of Poisson Integral and of x̃ and of E(f, ε) we get

PI(KX,s ∗ f)(x, y) &(X,Q,M) PI(KX,s ∗ f)(x̃, y) ≥ ε, (3.258)

which is the required inequality.

Observation 3.3.1. The previous Harnack-type inequality still holds if we replace KX,s ∗ f in

the previous definition and lemma with a generic function g ∈ L1(X) such that g > 0.

Lemma 3.3.4 (Uniform continuity at the boundary of the Poisson Integral). Let g ∈ C(X).

Then for every ε > 0 there exists δ > 0 such that

sup
x0∈X

(
sup

P∈Bρ((x0,0),δ)
|PI(g)(P )− g(x0)|

)
≤ ε (3.259)
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Proof. Let g ∈ C0(X). Then g ∈ C(x). The space X is compact, so by Heine-Cantor theorem

we have that for all ε1 > 0 there exists δ1 = δ1(ε1) > 0 such that for every x1, x2 ∈ X such that

d(x1, x2) < δ1 we have |g(x1)− g(x2)| < ε1.

Let ε1 > 0 be a number to be fixed later. Let δ1(ε1) > 0 be the number defined by the

Heine-Cantor theorem. We claim that for every 0 < ε2 < 1 there exist ỹ = ỹ(ε2, δ1) such that

I(x, y, δ1) :=

∫
X\Bd

(
x,
δ1
2

)C(x, y) · 1

yQ

+∞∑
k=0

χBd(x,2ky)(z)

2(Q+1)k
dm(z) ≤ ε2 (3.260)

for all x ∈ X, for all y < ỹ.

Indeed, let ε2 > 0. For all k ≤
⌊
log2

(
δ1
2y

)⌋
we have Bd(x, 2

ky) ⊆ Bd(x, δ12 ), so we can estimate∫
X\Bd(x,

δ1
2

)
C(x, y) · 1

yQ

+∞∑
k=0

χBd(x,2ky)(z)

2(Q+1)k
dm(z) ≤ C2

+∞∑
k=
⌊
log2

(
δ1
2y

)⌋
+1

m(Bd(x, 2
ky))

yQ2(Q+1)k
, (3.261)

here C2 is the uniform upper estimate of C(x, y) given in (3.148).

By Ahlfors-regularity of X we get the estimate

I(x, y, δ1) .(X) C2

+∞∑
k=
⌊
log2

(
δ1
2y

)⌋
+1

yQ2kQ

yQ2(Q+1)k
= C2

2

2

(⌊
log2

(
δ1
2y

)⌋
+1
) := ϕ(δ1, y). (3.262)

We observe that ϕ(δ1, y)→ 0 as y → 0, so there exists ỹ = ỹ(δ1, ε2) such that

I(x, y, δ1) .(X) ϕ(δ1, y) ≤ ε2 (3.263)

for all x ∈ X, for all 0 < y < ỹ. Up to multiplying ε2 by a constant which depends only on X

we get

I(x, y, δ1) ≤ ε2 (3.264)

for all x ∈ X, for all 0 < y < ỹ, proving the claim (3.260).

Now we are going to prove the statement. Let ε > 0. Fix

ε1 = ε1(ε) :=
ε

2
. (3.265)

Let δ1 = δ1(ε1) be the number defined by Heine-Cantor theorem. Let

osc(g) := sup(g)− inf(g) (3.266)

be the oscillation of the function g. If osc(g) = 0 then the functions g and PI(g) are constant,

so the claim is trivial. Suppose osc(g) > 0.

The function g is continuous over a compact set X, so osc(g) < +∞. Fix

ε2 = ε2(ε) :=
ε

2 · osc(g)
. (3.267)
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Let ỹ = ỹ(ε2, δ1) be the number previously defined.

Let x0 ∈ X, let P = (x, y) ∈ X × (0,+∞) such that y < ỹ and d(x, x0) < δ1
2 . We compute

PI(g)(P )− g(x0) =

∫
X

C(x, y)

yQ

+∞∑
k=0

χBd(x,2ky)(z)

2(Q+1)k
g(z)dm(z)− g(x0) = (3.268)

∫
X

C(x, y)

yQ

+∞∑
k=0

χBd(x,2ky)(z)

2(Q+1)k
(g(z)− g(x0)) dm(z).

Now we write

|PI(g)(P )− g(x0)| ≤
∫

Bd

(
x,
δ1
2

)
C(x, y)

yQ

+∞∑
k=0

χBd(x,2ky)(z)

2(Q+1)k
|g(z)− g(x0)| dm(z)+ (3.269)

∫
X\Bd

(
x,
δ1
2

)
C(x, y)

yQ

+∞∑
k=0

χBd(x,2ky)(z)

2(Q+1)k
|g(z)− g(x0)| dm(z).

If z ∈ Bd
(
x, δ12

)
then, by triangle inequality, we have

d(x0, z) ≤ d(x0, x) + d(x, z) ≤ δ1

2
+
δ1

2
= δ1, (3.270)

so by the definition of δ1 we have |g(z)− g(x0)| < ε1, so we get the estimate

|PI(g)(P )− g(x0)| ≤
∫

Bd

(
x,
δ1
2

)C(x, y) · 1

yQ

+∞∑
k=0

χBd(x,2ky)(z)

2(Q+1)k
· ε1dm(z)+ (3.271)

∫
X\Bd

(
x,
δ1
2

)C(x, y) · 1

yQ

+∞∑
k=0

χBd(x,2ky)(z)

2(Q+1)k
osc(g)dm(z).

However, y < ỹ, so we get

|PI(g)(P )− g(x0)| ≤ 1 · ε1 + osc(g) · ε2. (3.272)

So we substitute the values of ε1 and ε2 and we get

|PI(g)(P )− g(x0)| ≤ ε (3.273)

for all P = (x, y) ∈ X × (0,+∞) such that y < ỹ, d(x, x0) < δ1
2 . By defining

δ = δ(ε) := min

{
δ1

2
, ỹ

}
(3.274)
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we have that if ρ((x, y), (x0, 0)) < δ then

d(x, x0) < δ ≤ δ1

2
, and |y| < δ ≤ ỹ. (3.275)

So we proved that for all ε > 0 there exists δ = δ(ε) such that

|PI(g)(P )− g(x0)| ≤ ε (3.276)

for all x0 ∈ X, for all P ∈ Bρ((x0, 0), δ).

Taking the supremum over all x0 and P gives us (3.259), ending the proof.

3.4 Convergence at the boundary

In this section we prove several technical lemmas and propositions, and then we prove the

two main results of this work: the non tangential convergence at the boundary of the harmonic

extension of a Riesz potential up to an exceptional set of zero capacity and the tangential con-

vergence at the boundary of the harmonic extension of a Riesz potential up to an exceptional

set of null measure.

3.4.1 CKX,s,p-thinness at the boundary

Let (X, d,m) be an Ahlfors Q-regular space. The following definitions generalize the concept

of zero capacity to the space X × (0,+∞), and allow us to formulate the main result of this

work.

Definition 3.4.1. Let M ≥ 1. Let E ⊆ X × (0,+∞). We define

Et := {(x, y) ∈ E | 0 < y < t}, (3.277)

EM,∗ :=
⋃

(x,y)∈E

Bd(x,My) ⊆ X, (3.278)

EM,∗
t :=

⋃
(x,y)∈E

0<y<t

Bd(x,My) ⊆ X. (3.279)

Definition 3.4.2. Let M ≥ 1. Let E ⊆ X × (0,+∞). E is M -CKX,s,p-thin at X × {0} if

lim
t→0

CKX,s,p(E
M,∗
t ) = 0. (3.280)
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Remark 3.4.1. If E is M -CKX,s,p-thin at X × {0} then the essential projection of E

{x ∈ X | ∀t > 0 ∃y < t such that (x, y) ∈ E}

is of CKX,s,p-capacity 0, and hence of measure 0.

For every x ∈ X and r > 0 let us define (when it exists) the radius

ηX,p(x, r) := inf
{
R > 0 | m(Bd(x,R)) ≥ CKX,s,p(Bd(x, r))

}
, (3.281)

and let us define

η∗X,p(x, r) := max{r, ηX,p(x, r)}. (3.282)

Let C ≥ 1, M ≥ 1. Let E ⊆ X. We define

ẼK,p,C,M :=
⋃
x∈E

Bd(x,C · η∗X,p(x,M · δE(x))), (3.283)

where

δE(x) := d(x,EC) = d(x,X\E). (3.284)

The following lemmas and propositions will be used to prove the main results of this work.

Proposition 3.4.1. Let E ⊆ X be a Borel set. Under the previous notations we have

m(ẼK,p,C,M ) .(X,Q,s,p,C,M) CKX,s,p(E), (3.285)

for all constants C ≥ Ω, where Ω is the constant defined by Theorem 3.2.4.

Proof. Let Ω ≥ 1 be the constant defined in the proof of Theorem 3.2.4. Let C ≥ Ω. Let F be

an arbitrary compact subset of ẼK,p,C,M . We claim that we can find a finite family of points

xj ∈ E such that

F ⊂
⋃
j

Bd(xj , 5C · η∗X,p(xj ,M · rj)),

{B(xj ,Ω · η∗X,p(xj ,M · rj))} is disjoint,

rj = δE(xj).

Indeed, we consider the open covering⋃
x∈E

Bd(x,C · η∗X,p(x,M · δE(x))) = ẼK,p,C,M ⊇ F, (3.286)

and by compactness of F we find a finite covering

N⋃
j=1

Bd(xj , C · η∗X,p(x,M · rj)) ⊇ F. (3.287)
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It is not restrictive to assume that

r1 ≥ r2 ≥ · · · ≥ rN . (3.288)

We can find a finite covering

Ñ⋃
k=1

Bd(xjk , 5C · η
∗
X,p(x,M · rjk)) ⊇ F, (3.289)

such that {
Bd(xjk , C · η

∗
X,p(x,M · rjk))

}Ñ
k=1

is disjoint. (3.290)

Indeed, consider r1, which is the greatest radius rj for j = 1, 2, . . . , N . Suppose there are

exactly N(1) indexes jk1 , . . . , jkN(1)
6= 1 such that

Bd(xjk , C · η
∗
X,p(x,M · rjk)) ∩Bd(x1, C · η∗X,p(x,M · r1)) 6= ∅, (3.291)

for some 0 ≤ N(1) ≤ N − 1. Then we have rjh ≤ r1 for h = 1, 2, . . . , N(1). By triangle

inequality we get

Bd(xjh , C · η
∗
X,p(x,M · rjh)) ⊆ Bd(x1, 5C · η∗X,p(x,M · r1)) (3.292)

for all h = 1, 2, . . . , N(1). So, from (3.287) and (3.292), we get

F ⊆ Bd(x1, 5C · η∗X,p(x,M · r1)) ∪
⋃

j=2,...,N

j 6∈
{
jk1

,...,jkN(1)

}
Bd(xj , C · η∗X,p(x,M · rj)), (3.293)

and we have

Bd(x1, C · η∗X,p(x,M · r1)) ∩Bd(xj , C · η∗X,p(x,M · rj)) = ∅ (3.294)

for all j 6∈ {1, jk1 , jk2 , . . . , jk(N1)
}.

So we iterate this procedure a finite amout of times, considering each time rj the greatest radius

in the family {rj1 , . . . , rjM }, and we prove that there exists a family of indexes {j̃1, . . . , j̃Ñ} such

that

F ⊆
⋃

k=1,...,Ñ

Bd(xj̃k , 5C · η
∗
X,p(x,M · rj̃k)), (3.295)

and {
Bd(xj̃k , C · η

∗
X,p(x,M · rj))

}
k=1,...,Ñ

is disjoint. (3.296)

The claim follows because C ≥ Ω.

Let E′ =
⋃
j Bd(xj , rj). By definition of δE this is a subset of E. We apply Theorem 3.2.4 for

B(xj , rj) and E′ and we get∑
j

CKX,s,p(Bd(xj , rj)) .(X,Q,s,p) CKX,s,p(E
′) ≤ CKX,s,p(E). (3.297)
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We observe that we apply Theorem 3.2.4 instead of the finite quasi-additivity formula because

the number of sets in the family {Bd(xj , rj)}j depends on the choice of the sets F and E, and

it can be arbitrarily large.

Now we observe that

m(F ) ≤
∑
j

m(Bd(xj , 5C ·η∗X,p(xj ,M · rj))) ≈(X,Q,s,p,C,M)

∑
j

m(Bd(xj , η
∗
X,p(xj , rj))). (3.298)

By definition of η∗X,p, using properties of the Riesz capacity (see Proposition 3.2.2) and the

compactness of X, it follows that

m(Bd(xj , η
∗
X,p(xj , rj))) ≈(X,Q,s) m(Bd(xj , ηX,p(xj , rj))), (3.299)

and by definition of ηX,p and Ahlfors-regularity we have

m(Bd(xj , ηX,p(xj , rj))) ≈(X,Q,s) CKX,s,p(Bd(xj , rj)). (3.300)

Hence we get

m(F ) .(X,Q,s,p,C,M) CKX,s,p(E). (3.301)

A measure m on an Ahlfors-regular space (X, d,m) is regular, so, since F is an arbitrary

compact subset of ẼK,p,C,M , the required inequality follows and the theorem is proved.

Lemma 3.4.2. Let f ∈ Lp(X), f ≥ 0. Let ε > 0, let M ≥ 1. Consider

E(f, ε) = {(x, y) ∈ X × (0,+∞) | PI(KX,s ∗ f)(x, y) > ε}, (3.302)

EM,∗(f, ε) =
⋃

(x,y)∈E(f,ε)

Bd(x,My). (3.303)

Then

CKX,s,p(E
M,∗(f, ε)) .(X,Q,s,p,M)

(‖f‖Lp(X)

ε

)p
. (3.304)

Proof. Let

EM
′
(f, ε) =

⋃
(x,y)∈E(f,ε)

Bd(x,My)× {y} ⊆ X × (0,+∞). (3.305)

Since f ≥ 0 we have PI(KX,s ∗ f) ≥ 0, so we may apply Lemma 3.3.3 to get

PI(KX,s ∗ f)(x, y) &(X,Q,M) ε ∀(x, y) ∈ E′(f, ε). (3.306)

Let us consider the maximal function

F (x) := sup
y>0

PI(f)(x, y). (3.307)



142 CHAPTER 3. POTENTIAL THEORY ON AHLFORS-REGULAR SPACES

By the maximal inequality (see [26, Theorem 3.7]) we get

‖F‖Lp(X) .(X,p) ‖f‖Lp(X), (3.308)

so F ∈ Lp(X).

Now we compute the potential of F and we get that, for every y > 0, we have

KX,s ∗ F (x) =

∫
X
KX,s(x, z)F (z)dm(z) = (3.309)∫

X
KX,s(x, z) sup

ỹ>0
PI(f)(z, ỹ)dm(z) ≥∫

X
KX,s(x, z)PI(f)(z, y)dm(z) =

KX,s ∗ (PI(f)(·, y))(x).

Now we apply Lemma 3.3.2 and we get

KX,s ∗ F (x) &(X,Q,s)PI(KX,s ∗ f)(x, y), (3.310)

for every y > 0.

By construction EM,∗(f, ε) is the projection on the space X of the set EM
′
(f, ε) ⊆ X×(0,+∞),

so ∀x ∈ EM,∗(f, ε) ∃y(x) > 0 such that (x, y(x)) ∈ EM ′(f, ε).
We use (3.306) to get

KX,s ∗ F (x) &(X,Q,s) PI(KX,s ∗ f)(x, y(x)) &(X,Q,M) ε, ∀x ∈ EM,∗(f, ε). (3.311)

However, F ∈ Lp(X), so from the definition of capacity we get that

CKX,s,p(E
M,∗(f, ε)) .(X,Q,s,p,M)

(‖F‖Lp(X)

ε

)p
. (3.312)

Using the maximal inequality (3.308) we get

CKX,s,p(E
M,∗(f, ε)) .(X,Q,s,p,M)

(‖f‖Lp(X)

ε

)p
, (3.313)

ending the proof.

Lemma 3.4.3. Let E ⊆ X × (0,+∞). Let M ≥ 1. Let

f : X × [0,+∞) −→ [0,+∞) (3.314)

such that
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1)

f(x, y1) ≤ f(x, y2) for all y1 ≤ y2,

2) There exists a constant α ≥ 1 such that for all x1, x2 ∈ X, for all y ≥ 0 we have

f(x1, y) ≤ αf(x2, y).

Let Ωf,x0 := {(x, y) | d(x, x0) ≤ f(x0, y)}. Then

{x ∈ X | Ωf,x ∩ E 6= ∅} ⊆
⋃

x∈EM,∗
Ωαf,x(MδEM,∗(x)), (3.315)

where Ωf,x0(y) := {x ∈ X | (x, y) ∈ Ωf,x0}, and δEM,∗(x) = d
(
x,
(
EM,∗)C).

Proof. Let x0 ∈ {x ∈ X |Ωf,x ∩E 6= ∅}. Since Ωf,x0 ∩E 6= ∅ there exist (x̃, ỹ) ∈ Ωf,x0 ∩E. We

have

� x̃ ∈ Ωf,x0(ỹ), hence property 2) entails x0 ∈ Ωαf,x(ỹ).

� (x̃, ỹ) ∈ E, hence Bd(x̃,Mỹ) ⊆ EM,∗ by definition of EM,∗, so δEM,∗(x̃) ≥Mỹ.

The monotonicity of f entails the monotonicity of the regions Ωαf,x, so we have Ωαf,x(r1) ⊆
Ωαf,x(r2) ∀r1 < r2, for all x ∈ X, so we get

x0 ∈ Ωαf,x̃(ỹ) ⊆ Ωαf,x̃

(
1

M
δEM,∗(x̃)

)
⊆ Ωαf,x̃(MδEM,∗(x̃)), (3.316)

which entails the required inequality.

Proposition 3.4.4. Let C ≥ 1, let M ≥ 1. Let p > 1. Let 1
p′ ≤ s < 1. Consider the function

f(x, y) := C · η∗X,p(x,My). (3.317)

It can be proved that the function f satisfies the following two properties:

1)

f(x, y1) ≤ f(x, y2) for all y1 ≤ y2,

2) There exists a constant α̃ = α̃(X, s, p) > 1 such that for all x1, x2 ∈ X, for all y ≥ 0 we

have

f(x1, y) ≤ α̃f(x2, y).

The proof of the previous proposition follows from Proposition 3.2.2.
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Definition 3.4.3. Let α̃ = α̃(X, s, p) denote the constant defined by property 2) in the previous

proposition.

The following proposition will be used to prove the main result of this chapter.

Proposition 3.4.5. Let p > 1, 1
p′ ≤ s < 1. Let Ω > 1 be the constant defined by Theorem

3.2.4. Let M ≥ 1. If E ⊆ X × (0,+∞) is M -CKX,s,p-thin at X × {0} then, given

Ωx0,KX,s,p,Ω,M :=
{

(x, y) | x ∈ Bd(x0,Ω · η∗X,p(x0,My))
}
, (3.318)

for x0 ∈ X, we have

m

(⋂
t>0

{
x ∈ X | Ωx0,KX,s,p,Ω,M ∩ Et 6= 0

})
= 0. (3.319)

Proof. By Proposition 3.4.4 the function

f(x, y) := Ω · η∗X,p(x,My). (3.320)

satisfies the hypotheses of Lemma 3.4.3. So we apply Lemma 3.4.3 to the region

Ωx0,KX,s,p,Ω,M := Ωf,x0 = {(x, y) | d(x, x0) ≤ Ω · η∗X,p(x0,My)} (3.321)

and we get

{x ∈ X | Ωx,KX,s,p,Ω,M ∩ E = ∅} ⊆
⋃

x∈EM,∗
Ωα̃f,x(δEM,∗(x)) = (3.322)

⋃
x∈EM,∗

Ωx,KX,s,p,α̃Ω,M (δEM,∗(x)).

So by Proposition 3.4.1, with C = α̃Ω, we get

m({x ∈ X | Ωx,KX,s,p,Ω,M ∩ E 6= ∅}) .(X,Q,s,p,α̃Ω,M) CKX,s,p(E
M,∗). (3.323)

Now we apply equation (3.323) to E = Et and we get

m({x ∈ X | Ωx,KX,s,p,Ω,M ∩ Et 6= ∅}) .(X,Q,s,p,α̃Ω,M) CKX,s,p(E
M,∗
t )→ 0 as t→ 0 (3.324)

because E is M -CKX,s,p-thin at X × {0}, so the theorem follows.
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3.4.2 Convergence at the boundary

We will now prove one more lemma and then we will prove the main results of this chapter.

Lemma 3.4.6. Let f ∈ Lp(X). Let M ≥ 1 and δ > 0. Then there exist E ⊆ X × (0,+∞) and

F ⊆ X such that

1. CKX,s,p(E
M,∗) < δ and CKX,s,p(F ) < δ.

2. ∀ε > 0 there exists r > 0 such that

sup
x∈X\F

(
sup

P∈Bρ((x,0),r)\E
|PI(KX,s ∗ f)(P )−KX,s ∗ f(x)|

)
< ε. (3.325)

Proof. Let δ > 0. Let ε > 0. Let A = A(X,Q, s, p,M) > 0 be the constant defined by Lemma

3.4.2 such that

CKX,s,p(E
M,∗(f, ε)) ≤ A ·

(‖g‖Lp(X)

ε

)p
(3.326)

for all g ∈ Lp+(X), for all ε > 0. Let f ∈ Lp(x). Consider

f+ := max{f, 0}, f− := max{−f, 0}. (3.327)

Let ε1 = ε1(j) > 0 arbitrary to be fixed later. By Lusin’s theorem and Urysohn’s lemma for all

ε1 > 0, for all j ∈ N there exist g+
j , g

−
j ∈ Lp(X)∩C0(X) and there exist sets S+

j , S
−
j ⊆ X such

that m(S+
j ) < ε1, m(S−j ) < ε1, such that g+

j ≡ f+ in X\S+
j , g−j ≡ f− in X\S−j and such that

0 ≤ g+
j ≤ f+ and 0 ≤ g−j ≤ f−.

Indeed, let j ∈ N. We apply Lusin’s theorem to the function f+ and we get that there exist an

open set S+
1,j such that m(S+

1,j) <
ε1
2 and f+ is continuous in X\S+

1,j . Let S+
2,j be an arbitrary

closed set such that S+
2,j ⊆ X\S

+
1,j and m

((
X\S+

1,j

)
\S+

2,j

)
< ε1

2 . Such set exists because X is

an Ahlfors-regular space, so the measure m is regular. We apply Urysohn’s lemma and we get

that there exists a function

hj : X −→ [0, 1] (3.328)

such that hj is continuous, hj ≡ 1 on S+
2,j , hj ≡ 0 on S+

1,j . We define

g+
j := f+ · hj , (3.329)

and S+
j := X\S+

2,j .

By construction g+
j ∈ Lp(X)∩C0(X) (because X is compact), and we have g+

j ≡ f+ in X\S+
j ,

and 0 ≤ g+
j ≤ f+. Moreover, by construction we have

m(S+
j ) = m(X\S+

2,j) ≤ m
((
X\S+

1,j

)
\S+

2,j

)
+m(S+

1,j) ≤ ε1, (3.330)
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proving the claim for the function f+. We repeat the same argument for f− and the claim is

proved.

We have

‖f+ − g+
j ‖Lp(X) =

(∫
S+
j

|f+ − g+
j |
pdm

) 1
p

−→ 0 as ε1 → 0. (3.331)

Now we repeat the same argument for f− and choose ε1 = ε1(δ, A, j, p) small enough such that

‖f+ − g+
j ‖Lp(X) ≤ 2−j

(
2−jδ

2A

) 1
p

, (3.332)

‖f− − g−j ‖Lp(X) ≤ 2−j
(

2−jδ

2A

) 1
p

. (3.333)

We define

E+,j := E(f+−g+
j , 2

−j) = {(x, y) ∈ X×(0,+∞) | PI(KX,s∗(f+−g+
j ))(x, y) > 2−j}, (3.334)

E−,j := E(f−−g−j , 2
−j) = {(x, y) ∈ X×(0,+∞) | PI(KX,s∗(f−−g−j ))(x, y) > 2−j}. (3.335)

Following definition 3.4.1 we consider

EM,∗
+,j :=

⋃
(x,y)∈E+,j

Bd(x,My) ⊆ X, (3.336)

EM,∗
−,j :=

⋃
(x,y)∈E−,j

Bd(x,My) ⊆ X. (3.337)

By construction we may apply Lemma 3.4.2 and we get

CKX,s,p(E
M,∗
+,j ) ≤ A

(
‖f+ − g+

j ‖Lp(X)

2−j

)p
≤ A

(
2−j

2−j

(
2−jδ

2A

) 1
p

)p
= 2−j

δ

2
, (3.338)

CKX,s,p(E
M,∗
−,j ) ≤ A

(
‖f− − g−j ‖Lp(X)

2−j

)p
≤ A

(
2−j

2−j

(
2−jδ

2A

) 1
p

)p
= 2−j

δ

2
. (3.339)

Let us define

E :=

+∞⋃
j=1

E−,j ∪
+∞⋃
j=1

E+,j . (3.340)

By construction

EM,∗ =
⋃

(x,y)∈E

Bd(x,My) =
+∞⋃
j=1

EM,∗
−,j ∪

+∞⋃
j=1

EM,∗
+,j . (3.341)
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By the subadditivity of the capacity and by equations (3.338) and (3.339) we get

CKX,s,p(E
M,∗) ≤

+∞∑
j=1

2−j
δ

2
+

+∞∑
j=1

2−j
δ

2
= δ. (3.342)

Now we define

F+,j := {x ∈ X | KX,s ∗ (f+ − g+
j ) ≥ 2−j}, (3.343)

F−,j := {x ∈ X | KX,s ∗ (f− − g+
j ) ≥ 2−j}. (3.344)

For all x ∈ F+,j we have

KX,s ∗

(
f+ − g+

j

2−j

)
(x) ≥ 1, (3.345)

so by the definition of capacity we get

CKX,s,p(F+,j) ≤ ‖2j(f+ − g+
j )‖p

Lp
(X)

≤ 2−jδ

2A
. (3.346)

Up to multiplying δ by the constant A we can reformulate the last equation to get

CKX,s,p(F+,j) ≤ 2−j
δ

2
. (3.347)

By the same argument we also get

CKX,s,p(F−,j) ≤ 2−j
δ

2
. (3.348)

Let us define

F :=
+∞⋃
j=1

F−,j ∪
+∞⋃
j=1

F+,j . (3.349)

By the subadditivity of the capacity and by equations (3.347) and (3.348) we get

CKX,s,p(F ) ≤
+∞∑
j=1

2−j
δ

2
+

+∞∑
j=1

2−j
δ

2
= δ. (3.350)

We define

gj := g+
j − g

−
j . (3.351)

By linearity we get

PI(KX,s ∗ f)(x, y)−PI(KX,s ∗ gj)(x, y) = PI(KX,s ∗ (f − gj))(x, y) = (3.352)

PI(KX,s ∗ (f+ − f− − g+
j + g−j ))(x, y) =

PI(KX,s ∗ (f+ − g+
j ))(x, y)− PI(KX,s ∗ (f− − g−j ))(x, y),
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so by triangle inequality we get

|PI(KX,s ∗ f)(x, y)− PI(KX,s ∗ gj)(x, y)| ≤|PI(KX,s ∗ (f+ − g+
j ))(x, y)|+ (3.353)

|PI(KX,s ∗ (f− − g−j ))(x, y)|.

Let j ≥ 1. Suppose (x, y) ∈ X × (0,+∞)\E. Then (x, y) 6∈ E+,j ∪ E−,j , so by definition of

E+,j and E−,j we get

|PI(KX,s ∗ (f+ − g+
j ))(x, y)| < 2−j , and |PI(KX,s ∗ (f− − g−j ))(x, y)| < 2−j . (3.354)

From equations (3.353) and (3.354) we get

|PI(KX,s ∗ f)(x, y)− PI(KX,s ∗ gj)(x, y)| ≤ 2−j+1 (3.355)

for all (x, y) ∈ X × (0,+∞)\E. So we proved that

PI(KX,s ∗ gj)
j→+∞−→ PI(KX,s ∗ f) uniformly on X × (0,+∞)\E. (3.356)

Suppose x ∈ X\F . By additivity of the potential and by triangle inequality we get that

|KX,s∗f(x)−KX,s∗gj(x)| ≤ |KX,s∗f+(x)−KX,s∗g+
j (x)|+|KX,s∗f−(x)−KX,s∗g−j (x)|. (3.357)

However, by the definition of F+,j and F−,j , it follows that

|KX,s ∗ f(x)−KX,s ∗ gj(x)| ≤ 2−j+1 (3.358)

for all x ∈ X\F . So we proved that

KX,s ∗ gj
j→+∞−→ KX,s ∗ f uniformly on X\F. (3.359)

So from (3.356) and (3.359) we get that there exists j0 ∈ N such that

sup
x∈X\F

|KX,s ∗ f(x)−KX,s ∗ gj0(x)| ≤ ε

3
, (3.360)

sup
P∈X×(0,+∞)\E

|PI(KX,s ∗ f)(P )− PI(KX,s ∗ gj0)(P )| ≤ ε

3
. (3.361)

By construction gj0 ∈ C0(X), so KX,s ∗ gj0 ∈ C(X) so we apply Lemma 3.3.4 to the function

KX,s ∗ gj0 and we get that there exists r > 0 such that

sup
x∈X

(
sup

P∈Bρ((x,0),r)
|PI(KX,s ∗ gj0)(P )−KX,s ∗ gj0(x)|

)
≤ ε

3
. (3.362)

The statement follows from (3.360), (3.361) and (3.362) by triangle inequality.
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We are now going to prove the main results of this chapter.

Theorem 3.4.7 (Non tangential convergence for the Riesz potential). Let (X, d,m) be a com-

pact Ahlfors-regular space. Let f ∈ Lp(X). Let M > 1. Then ∃E ⊆ X × (0,+∞) such that E

is M -CKX,s,p-thin at X × {0} and

lim
(x,y)=P→(x0,0)
x∈Bd(x0,My)

(x,y)6∈E

PI(KX,s ∗ f)(P ) = KX,s ∗ f(x0) (3.363)

for CKX,s,p-almost everywhere x0 ∈ X, i.e. ∃F ⊂ X such that CKX,s,p(F ) = 0 and (3.363)

holds ∀x0 ∈ X\F .

Proof. Let f ∈ Lp(X). Let εj > 0 be a sequence such that εj ↓ 0 as j → +∞. By Lemma 3.4.6

there exist Ej ⊆ X × (0,+∞), Fj ⊆ X and rj ↓ 0 such that∑
j

CKX,s,p(E
M,∗
j ) < +∞, and

∑
j

CKX,s,p(Fj) < +∞, (3.364)

sup
x∈X\Fj

(
sup

P∈Bρ((x,0),rj)\Ej
|PI(KX,s ∗ f)(P )−KX,s ∗ f(x)|

)
< εj . (3.365)

Let us choose tj ↓ 0 such that

tj < rj+1, (3.366)

{(x, y) | x ∈ Bd(x0,My)} ∩Bρ((x0, 0), ri) ⊆
+∞⋃
j=i

Bρ((x0, 0), rj) ∩ {(x, y) | y ≥ tj}. (3.367)

A sequence tj with such properties exists thanks to the definition of the distance ρ.

Let us define

E′j = Ej ∩ {(x, y) | y ≥ tj}, (3.368)

and

E =
⋃
j

E′j . (3.369)

Let i ∈ N be a fixed index. By construction ti > tj for all j > i, and

Eti = {(x, y) ∈ E | y < ti} =

{
(x, y) ∈

+∞⋃
j=1

E′j

∣∣∣∣ y < ti

}
=

+∞⋃
j=1

{
(x, y) ∈ E′j

∣∣∣∣ y < ti

}
. (3.370)

However from (3.368) we have{
(x, y) ∈ E′j

∣∣∣∣ y < ti

}
= ∅ ∀j ≤ i, (3.371)
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so we get

Eti =
+∞⋃
j=i

{
(x, y) ∈ E′j

∣∣∣∣ y < ti

}
⊆

+∞⋃
j=i

Ej . (3.372)

From (3.278), (3.372) and by subadditivity of the capacity we get

CKX,s,p(E
M,∗
ti

) ≤ CKX,s,p

+∞⋃
j=i

EM,∗
j

 ≤ +∞∑
j=i

CKX,s,p

(
EM,∗
j

)
(3.373)

Equation (3.364) entails

CKX,s,p(E
M,∗
ti

) ≤
+∞∑
j=i

CKX,s,p

(
EM,∗
j

)
i→+∞−→ 0, (3.374)

so, using the monotonocity of the capacity, we get

CKX,s,p(E
M,∗
t )

t→0−→ 0, (3.375)

i.e. E is a M -CKX,s,p-thin set at X × {0}.
Now we define

F :=
+∞⋂
i=1

+∞⋃
j=i

Fj . (3.376)

By (3.364) we have

CKX,s,p(F ) ≤ CKX,s,p

+∞⋃
j=i

Fj

 ≤ +∞∑
j=i

CKX,s,p(Fj) −→ 0 as j → +∞, (3.377)

so we have CKX,s,p(F ) = 0.

Let x0 ∈ X\F . By definition ∃j0 = j0(x0) such that x0 ∈ Fj , ∀j ≥ j0. From (3.365) we get

sup
P∈Bρ((x0,0),rj)\Ej

|PI(KX,s ∗ f)(P )−KX,s ∗ f(x0)| ≤ εj ∀j ≥ j0. (3.378)

Let i ≥ j0. Using (3.367) and the definition of E we get

sup
({P=(x,y) | x∈Bd(x0,My)}∩Bρ((x0,0),ri))\E

|PI(KX,s ∗ f)(P )−KX,s ∗ f(x0)| ≤ (3.379)

sup
j≥i

(
sup

P∈(Bρ((x0,0),rj)∩{(x,y) | y≥tj})\E
|PI(KX,s ∗ f)(P )−KX,s ∗ f(x0)|

)
≤

sup
j≥i

(
sup

P∈(Bρ((x0,0),rj)∩{(x,y) | y≥tj})\Ej
|PI(KX,s ∗ f)(P )−KX,s ∗ f(x0)|

)
≤

sup
j≥i

εj = εi −→ 0 as i→ +∞,

which entails the thesis, finishing the proof.
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Theorem 3.4.8 (Tangential convergence for the Riesz potential). Let (X, d,m) be a compact

Ahlfors-regular space. Let p > 1, let 1
p′ ≤ s < 1. Let Ω > 1 be the constant defined by Theorem

3.2.4. Consider the region

Ωx0,KX,s,p,Ω,M :=
{

(x, y) | x ∈ Bd(x0,Ω · η∗X,p(x0,My))
}
. (3.380)

Let f ∈ Lp(X). Then

lim
(x,y)=P→(x0,0)
P∈Ωx0,KX,s,p,Ω,M

PI(KX,s ∗ f)(P ) = KX,s ∗ f(x0) (3.381)

for m-almost all x0 ∈ X.

Proof. The proof is similar to the one of Theorem 3.4.7. Let f ∈ Lp(X). Let εj > 0 be a

sequence such that εj ↓ 0 as j → +∞. By Lemma 3.4.6 there exist Ej ⊆ X × (0,+∞), Fj ⊆ X
and rj ↓ 0 such that∑

j

CKX,s,p(E
M,∗
j ) < +∞, and

∑
j

CKX,s,p(Fj) < +∞, (3.382)

sup
x∈X\Fj

(
sup

P∈Bρ((x,0),rj)\Ej
|PI(KX,s ∗ f)(P )−KX,s ∗ f(x)|

)
< εj . (3.383)

Let us choose tj ↓ 0 such that

tj < rj+1, (3.384)

{(x, y) | x ∈ Bd(x0,Ω · η∗X,p(x0,My)))} ∩Bρ((x0, 0), ri) ⊆
+∞⋃
j=i

Bρ((x0, 0), rj) ∩ {(x, y) | y ≥ tj}.

(3.385)

A sequence tj with such properties exists thanks to the definition of the distance ρ.

Let us define

E′j = Ej ∩ {(x, y) | y ≥ tj}, (3.386)

and

E =
⋃
j

E′j . (3.387)

By the same argument used in the proof of Theorem 3.4.7 we get

CKX,s,p(E
M,∗
t )

t→0−→ 0, (3.388)

i.e. E is a M -CKX,s,p-thin set at X × {0}.
Now we define

F :=

+∞⋂
i=1

+∞⋃
j=i

Fj , (3.389)
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and

S := F ∪

(⋂
t>0

{
x ∈ X | Ωx,KX,s,p,Ω,M ∩ Et 6= ∅

})
. (3.390)

By the same argument in the proof of Theorem 3.4.7 we have CKX,s,p(F ) = 0, and hence

m(F ) = 0. By Proposition 3.4.5 we have

m

(⋂
t>0

{
x ∈ X | Ωx,KX,s,p,Ω,M ∩ Et 6= ∅

})
= 0, (3.391)

so we proved

m(S) = 0. (3.392)

Let x0 ∈ X\S. By definition of S there exists j0 = j0(x0) such that x0 ∈ Fj , ∀j ≥ j0, and such

that

Ωx0,KX,s,p,Ω,M ∩ Et = ∅ for all t < tj0 . (3.393)

From (3.383) we get

sup
P∈Bρ((x0,0),rj)\Ej

|PI(KX,s ∗ f)(P )−KX,s ∗ f(x0)| ≤ εj ∀j ≥ j0. (3.394)

Let i ≥ j0. Using (3.385), (3.393) and the definition of E we get

sup
P=(x,y)∈Ωx0,KX,s,p,Ω,M

y<tj0

|PI(KX,s ∗ f)(P )−KX,s ∗ f(x0)| ≤ (3.395)

sup
P=(x,y)∈Ωx0,KX,s,p,Ω,M

\E
y<tj0

|PI(KX,s ∗ f)(P )−KX,s ∗ f(x0)| ≤ (3.396)

sup
j≥i

(
sup

P∈(Bρ((x0,0),rj)∩{(x,y) | y≥tj})\E
|PI(KX,s ∗ f)(P )−KX,s ∗ f(x0)|

)
≤

sup
j≥i

(
sup

P∈(Bρ((x0,0),rj)∩{(x,y) | y≥tj})\Ej
|PI(KX,s ∗ f)(P )−KX,s ∗ f(x0)|

)
≤

sup
j≥i

εj = εi −→ 0 as i→ +∞,

which entails the thesis, finishing the proof.

Observation 3.4.1. The region Ωx0,KX,s,p,Ω,M has the following properties:

� case 1
p′ < s < 1. There exist constants 0 < C̃1 < C̃2, y0 > 0 that depend only on X, s, p,

M such that

Ωx0,KX,s,p,Ω,M ∩ {(x, y) | y < y0} ⊇ {(x, y) | y < y0, x ∈ Bd(x0, C̃1 · y
1

p(s−1)+1 },

Ωx0,KX,s,p,Ω,M ∩ {(x, y) | y < y0} ⊆ {(x, y) | y < y0, x ∈ Bd(x0, C̃2 · y
1

p(s−1)+1 },



3.4. CONVERGENCE AT THE BOUNDARY 153

� case s = 1
p′ . There exist constants 0 < K̃1 < K̃2, 0 < D1 < D2, y0 > 0 that depend only

on X, s, p, M such that

Ωx0,KX,s,p,Ω,M ∩ {(x, y) | y < y0} ⊇ {(x, y) | y < y0, x ∈ Bd(x0, K̃1 · exp(D1 · y)},

Ωx0,KX,s,p,Ω,M ∩ {(x, y) | y < y0} ⊆ {(x, y) | y < y0, x ∈ Bd(x0, K̃2 · exp(D2 · y)}.

The proof of this observation follows from Proposition 3.2.2.
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