Seasonal forecasting of east african rains

Tefera, Agumase Kindie (2025) Seasonal forecasting of east african rains, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Il futuro della terra, cambiamenti climatici e sfide sociali, 37 Ciclo.
Documenti full-text disponibili:
[thumbnail of Agumase_PhD_Thesis_Final(revised).pdf] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (7MB)

Abstract

In East Africa (EA), rainfall variability significantly impacts socioeconomic and environmental conditions, making accurate seasonal predictions essential. Rainfed agriculture, vital for livelihoods and food security, is highly vulnerable to erratic rainfall, leading to lower yields and financial hardship. Global teleconnections like El Niño–Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) strongly influence EA’s interannual rainfall variability, though their independent roles are not fully understood. We evaluated EA short rain predictability using C3S model ensembles, assessing 1- to 5-month lead forecasts initialized in September (1993–2016). Most models show skill in predicting OND precipitation anomalies but exhibit low skill in northern and western regions. Along Somalia’s coast and the western Indian Ocean, skill persists into late winter (DJF), likely due to SST anomaly persistence. Models outperform persistence forecasts during mature ENSO/IOD phases. The Dipole Mode Index predicts rainfall anomaly signs, confirming that broader-scale IOD variability associated with changes in the Walker Circulation, not local SST changes, drives EA rainfall. We also assessed long-rain predictability using C3S models initialized in February, evaluating at lead times from MAM to MJJ. Long rain variability is associated with ENSO, with models performing better during active ENSO phases than IOD-dominated periods. Consequently, the C3S seasonal prediction system demonstrates greater skill in reproducing the long rains during active ENSO phases compared to periods dominated by IOD variability. Using Community Earth System models (CESM) experiments, we examined ENSO and IOD’s independent roles in EA short rain variability. Partial correlation and composite analyses highlight IOD’s dominant influence, with warm (cool) SST anomalies linked to above (below) normal OND rainfall. ENSO’s direct impact is weaker and IOD-dependent. CESM_noENSO and CESM_noIOD experiments confirm IOD’s critical role, which persists even without ENSO variability, underscoring its independent influence on EA short rain variability.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Tefera, Agumase Kindie
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
37
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Seasonal forecasting, East African rainfall, ENSO, and IOD effects
Data di discussione
12 Giugno 2025
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^