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ABSTRACT

In East Africa (EA), rainfall variability has a significant effect on
socioeconomic and environmental impacts on the region, making accurate seasonal
rainfall predictions essential. This variability particularly impacts rainfed agriculture,
which forms the backbone of livelihoods and food security for millions. Rainfed
agriculture is particularly vulnerable to erratic rainfall patterns since it depends
significantly on seasonal rainfall for crop planting, harvesting, and management. This
susceptibility frequently leads to lower yields, food shortages, and severe financial
hardship. Global teleconnections such as EI Nifio-Southern Oscillation (ENSO) and the
Indian Ocean Dipole (IOD) have a strong influence on the interannual variability of
East African rains. Even though ENSO and 10D are known as the major large-scale
atmospheric and oceanic systems that influence the seasonal East African rainfall

patterns, the individual roles are not fully understood.

In this work, we evaluated the predictability of East African short rains using
model ensembles from the multi-system seasonal retrospective forecasts from the
Copernicus Climate Change Service (C3S). We assess the prediction skill for 1- to 5-
month lead times using forecasts initialized in September for each year from 1993 to
2016. Although most models exhibit significant mean rainfall biases, they generally
show skill in predicting OND (October-December) precipitation anomalies across
much of East Africa. However, skill is low or absent in some northern and western parts
of the focus area. Along the East African coasts near Somalia and over parts of the
western Indian Ocean, models demonstrate skill throughout the late winter (up to DJF:
December-February), likely due to the persistence of sea surface temperature (SST)
anomalies in the western Indian Ocean. Years when models consistently outperform
persistence forecasts align with the mature phases of El Nifio Southern Oscillation
(ENSO) and/or Indian Ocean Dipole (I0OD). When tracked using the Dipole Mode
Index, this latter mode can generally predict the sign of the rainfall anomaly in all
models. Despite East Africa's proximity to the West pole of the IOD, the correlation
between short rains and 10D maximizes when both east and west are considered. This

finding confirms previous studies based on observational datasets, which indicate that
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broader-scale 10D variability associated with changes in the Walker Circulation, rather

than local SST fluctuations, is the primary driver behind East African rainfall.

In this study we also evaluate the predictability of East African long rainy
season since it is a critical period for agricultural sector in the region. Therefore, we
assessed the skill of the state-of-the-art seasonal prediction models from the C3S in
forecasting East African long rains up to 3 lead seasons: May-March (MAM) to March-
July (MJJ) as initialized in February for each year from 1993 to 2016. Using lead-time-
dependent anomaly correlation analysis, we identify the years where the model
consistently performs better than persistence forecasting. Therefore, we found that long
rains have a connection with ENSO phase, showing significant correlations in both
observational data and models. Consequently, the C3S seasonal prediction system is
more effective at reproducing the long rains, particularly when the ENSO phase is
active, compared to periods dominated by 10D phases.

In this study, we also examined the independent roles of ENSO and IOD in
influencing the variability of EASR using CESM model experiments. Through partial
correlation and composite anomaly techniques, our findings highlight the primary
influence of the 10D, with warm (cool) SST anomalies strongly linked to above(below)
normal OND rainfall anomaly over EA. In contrast, the direct impact of ENSO is less
pronounced and largely dependent on its interactions with 10D. This result was also
further confirmed in dynamical models such as CESM_noENSO and CESM_nolOD
experiments. Overall, the 10D plays a critical role in shaping East African short-term
rainfall variability. Its influence remains significant even when ENSO variability is
excluded, highlighting its capacity to drive rainfall anomalies independently.
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1 INTRODUCTION

1.1 East African Rainfall Regimes

East Africa's climate is highly diverse due to its equatorial location, varying
altitudes, the presence of the Great Rift Valley, large lakes, and proximity to the Indian
Ocean (Nicholson, 2017). The region's major lakes, such as Lake Victoria, the largest
freshwater lake in Africa, also play a crucial role in shaping local weather patterns
(Chamberlain etal., 2014; Williams et al., 2015). The region is characterized by tropical
humid, semi-arid, and arid climates. Generally, lowland areas such as the coastal zones
and rift valley depressions tend to experience warm temperatures, while higher
elevations, such as the Ethiopian Highlands, receive abundant rainfall due to orographic
effects (Yang et al., 2014).

The timing and intensity of precipitation across East Africa vary considerably,
typically following either a unimodal or bimodal rainfall regime. The northern parts of
the region, including the Ethiopian Highlands, generally exhibit a unimodal rainfall
climatology, with a single rainy season extending from July to September (Dunning et
al., 2016). However, notable differences in seasonality exist across sub-regions (Diro
etal., 2011). Further south, in countries such as Kenya, Uganda, and Burundi, a bimodal
rainfall pattern is more typical, with the "long rains" occurring from March to May and
the "short rains" from October to December (Yang et al., 2015a). Some studies define
the short rains more narrowly, concentrating primarily on October and November
(Nicholson, 2017).

These climatic variations are illustrated in Fig. 1.1, The central map displays
elevation zones alongside selected locations where mean monthly rainfall (blue bars)
and 2-meter air temperature (shown by red lines) are plottedin the northern regions,
including the Ethiopian Highlands, rainfall follows a unimodal pattern, peaking
between July and September. Conversely, southern areas near Lake Victoria and coastal
zones experience a bimodal distribution, with peak rainfall occurring in March—May

and October—December. The figure further reveals that lowland and coastal regions



maintain consistently high temperatures throughout the year, while highland areas are
significantly cooler. Particularly, Kenya’s central highlands record rainfall maxima
exceeding 250 mm per month in April and November. Similarly, heavy precipitation
occurs along Lake Victoria’s eastern edge in April and in coastal areas during May.
However, Lake Turkana remains consistently dry, receiving less than 100 mm/month
of rainfall even during the rainy seasons. Overall, within the broader continental
context, East Africa exemplifies a complex climatic landscape shaped by topographic

variations and proximity to major water bodies.

Numerous studies have emphasized that the broader East African region is
predominantly characterized by a bimodal rainfall pattern with two primary rainy
seasons: the "long rains" from March to May and the "short rains" from October to
December (Schreck & Semazzi, 2004; Palmer et al., 2022). However, the short rains
tend to show greater interannual variability than long rains (Palmer et al., 2023; Behera
et al., 2005; Nicholson, 2015). The seasonal fluctuation significantly impacts many
sectors in the region. The agriculture sector is particularly vulnerable, as rainfed
farming dominates in many East African countries, affecting agricultural productivity
and water availability, especially in Kenya, Tanzania, Uganda, and Ethiopia (MacLeod,
2018).

East Africa is highly vulnerable to climate extremes, such as prolonged droughts
and devastating floods (Haile et al., 2020), which have severely impacted local
economies and food security over the years (Niang et al., 2014). Recent studies indicate
a declining trend in rainfall during the long rains season and increased variability during
the short rains (Cattani et al., 2018; Gebrechorkos et al., 2018). This pronounced
variability, coupled with the rising frequency of extreme events, has made East Africa
one of the most food-insecure regions globally, heavily reliant on humanitarian

assistance.
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Figure 1.1 Geographic features and topography of East Africa. Elevation is extracted
from the Digital Elevation Model (DEM) from STRM. The panels show the annual



cycle of rainfall and temperature over different regions of East Africa. The

precipitation and temperature of two-meter (T2m) data are taken from ERA5.
1.2 Driving mechanisms of East African rainfall variability

A complex interaction of local, regional, and global climatic factors affects East
African rainfall variability, resulting in significant variations in precipitation patterns
over time and space. Broadly, we can classify global and local driving mechanisms that
affect the distribution and intensity of EA rainfall from interannual to intraseasonal time
scales. These drivers and their roles in the EA rainfall pattern are discussed in the

following sections.
1.2.1 Global teleconnections

Global teleconnections are large-scale climate phenomena that link oceanic and
atmospheric processes over remote have a significant impact on the variability of
tropical rainfall, including over East Africa (Behera et al., 2005; Black et al., 2005;
Schreck & Semazzi, 2004). These influences of regional climate systems from seasonal
and interannual time scales and in turn, can regulate rainfall patterns by modifying air
circulation, moisture transport, and SSTs (Lyon & DeWitt, 2012; Nicolson, 2017). This
is especially true in equatorial Africa, where patterns like changes in SSTs over tropical
oceans are strongly associated with these interactions. Rainfall variability is influenced
by atmospheric components, including wind systems associated with teleconnections,
which can either amplify or suppress precipitation patterns (Liu, 2007). Identifying
sources of variability has been given major focus so far in equatorial East Africa (Hills,
1979; Schneider et al., 2014; Chobo and Huo, 2024), which is directly impacted by
ENSO's modification of the Walker Circulation (Sasaki, 2015). Examining these
oscillating patterns is essential for managing water resources, agriculture, and the
livelihoods of millions of people in East Africa. Moisture transport into Africa is altered
by the 10D and ENSO, which involves temperature differences between the eastern and

western Indian Oceans.

El Nifio-Southern Oscillation (ENSO)



The ENSO in the Pacific Ocean plays a critical role in East African rainfall
variability (Indeje et al., 2000). It is widely regarded as the primary source of skill for
seasonal-to-interannual rainfall predictions in the region. In EA, drought is strongly
associated with the complexity and variability of the ENSO and land-atmosphere
feedback (Zeng, 2003; Liebmann et al., 2014; Hua et al., 2016). During EIl Nifio years,
warmer SST disrupts global air circulation, leading to above-average rainfall over East
Africa, particularly during the OND rainy season, which often causes flooding (Behera
et al., 2005). Global atmospheric circulation patterns, e.g., ENSO, which alternates
between warm (El Nifio) and cool (La Nifa) phases, hence influencing regional
climates worldwide, including East African regions (Ashok & Yamagata, 2003). El
Nifio years cause the Pacific Ocean’s SST to be much warmer than normal, which
throws off the Walker circulation and other global air circulation patterns (Navarra et
al., 2013). Particularly, during the short rainy season, this disturbance causes more
convection and moisture transfer to East Africa, which results in above-normal rainfall
(Palmer et al., 2023). In 2019, intense ENSO-related rainfall triggered widespread
flooding that affected millions across Kenya, Tanzania, and Uganda. This extreme
seasonal anomaly led to catastrophic impacts across the region (Wainwright et al.,
2021).

The excessive rains underscored the region’s vulnerability to ENSO-driven
extremes, leading to widespread flooding and significant disruptions to local
economies, infrastructure, and agricultural activities (Roy et al., 2022). In contrast, La
Nifa years—marked by cooler-than-average sea surface temperatures in the central and
eastern Pacific—are often associated with reduced rainfall across East Africa (Hoell &
Funk, 2014). Drought conditions are frequently linked to this ENSO phase, which has
a major effect on the region's food security and water availability (Park et al., 2020).
Particularly in the eastern and southern regions of East Africa, the possibility of drier
weather is increased by La Nifia's cooling effect on the Pacific Ocean (Camberlin et al.,
2001; Lott et al., 2013). The periodic warming (El Nifio) and cooling (La Nifia) of sea
surface temperatures in the central and eastern Pacific—known collectively as ENSO-
have a profound impact on tropical rainfall patterns. During East Africa’s short rainy

season, El Nifio events are often linked to above-average rainfall, largely due to



enhanced convection over the western Indian Ocean and East Africa, driven by ENSO-
related shifts in atmospheric circulation (Izumo et al., 2010). However, the effects of
El Nifio and La Nifia may be altered by the Rift VValley and local topographical features
in East Africa that might alter the ENSO's large-scale climatic effects (Hamilton et al.,
2020).

El Nino Modoki

El Nifio Modoki is a climate phenomenon characterized by SST anomalies in
the central Pacific, flanked by cooler SSTs in the eastern and western Pacific, differing
from the conventional El Nifio, which features peak warming in the eastern Pacific
(Ashok et al., 2007). This phenomenon has distinct atmospheric and oceanic impacts,
influencing global weather patterns differently from traditional EI Nifio events
(Marathe et al., 2015). The ENSO Modoki affects African seasonal rainfall variability.
During March-May, both El Nifio types reduce rainfall in southern regions while
increasing it in the north, but they consistently suppress northern rainfall from June to
September. In October-December, canonical El Nifio and positive 10D enhance East
African rainfall, while EI Nifio Modoki reduces it. Beyond Walker circulation, this
driver also impacts African rainfall by altering jet stream dynamics, particularly
weakening the tropical easterly jet and shifting the African easterly jet southward,
reducing rainfall in northern tropical regions like the Sahel (Preethi et al., 2015).

Canonical El Nifio and EI Nifio Modoki generally reduce (increase) rainfall in
the southern (northern) hemisphere during March-May, but both suppress northern
rainfall in June-September. In boreal spring and summer, Indian Ocean drivers often
counteract Pacific influences. During October-December, El Nifio and positive 10D
enhance rainfall in Eastern Africa, while EI Nifio Modoki has the opposite effect. These
drivers influence African rainfall by altering the Walker circulation and jet streams,

affecting the tropical easterly and African easterly jets (Preethi et al., 2015).

Depending on local conditions, these drivers affect the distribution and intensity
of rainfall, with some regions impacted by the larger climatic drivers (Vellinga &
Milton, 2018a). Even though ENSO has a significant impact, the interaction of these

local and regional elements highlights how challenging it is to forecast rainfall patterns.
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Previously, although ENSO is known as the best predictor of rainfall variability in East
Africa, however, 10D has recently become a major source in predicting EA rainfall
variability (Behera et al., 2005). Efforts to produce precise and trustworthy rainfall
forecasts are made more difficult by its interactions with other climatic factors, such as

the 10D and regional topography (Wang et al., 2019).
Indian Ocean Dipole (I0OD)

Indian Ocean Dipole (I0D) key driver of natural variability over the Indian
Ocean, which controls the variability of East African rainfall patterns (Black, 2005;
Behera et al., 2005). To track the influence of 10D variability, define as dipole mode
index (DMI; Saji et al., 1999) calculated as the difference between SST anomalies in
the western Indian Ocean (50°E - 70°E, 10°S - 10°N) and the eastern Indian Ocean
(90°E - 110°E, 10°S - 0°). Previous studies found that the variability in the 10D is often
associated with droughts and floods in East Africa. For instance, the severe East African
floods of 1961 were linked to a strong west-east SST dipole in the Indian Ocean. Recent
studies have also shown that countries in the region, including Kenya, Tanzania, and
Ethiopia, are particularly vulnerable to flooding and landslides during positive 10D
episodes, which bring heavier-than-average rainfall (Xiao et al., 2022). Conversely,
negative 10D phases, characterized by cooler western Indian Ocean near East African
coast and warmer SSTs over eastern Indian Ocean near Indonesia, tend to increase the
likelihood of drought conditions over the Horn of Africa (Abiy et al., 2019).

The variability of 10D has the power to either amplify or lessen the effects of
ENSO on rainfall in East Africa. The western Indian Ocean warms more than the
eastern Indian Ocean during a positive 10D phase, which frequently intensifies El
Nifio's effects by increasing rainfall in East Africa. On the other hand, East Africa often
has less rainfall during a negative 10D phase, especially during the long rains (MAM
season). Given that ENSO and the 10D can affect atmospheric and oceanic conditions
either separately or in combination, these interactions add a great deal of complexity to
the forecasting of seasonal rainfall patterns (Luo et al., 2010; Saji et al.,1999). The 10D
can occur independently or coexist with ENSO events (Ashok & Yamagata, 2003). For

example, in 1961 and 1967, 10D events occurred during East Africa's short rainy season



without coinciding with ENSO events. In contrast, in years like 1972, 1982, 1994, and
1997, the 10D coincided with warm-phase ENSO events (Meyers et al., 2007). The
1997 10D event, which remains one of the most significant on record, exhibited two
notable features: the 10D tends to emerge in summer, peak in October, and rapidly
subside by December. The IOD’s biennial pattern may reflect its interaction with the
monsoon system, as well as other tropical climate models that show a similar quasi-
biennial oscillation, such as monsoon cycles. The argument that the ocean-atmosphere
coupling observed during the 1997-1998 severe droughts in Indonesia and intense
flooding in East Africa, surpassed what would typically be expected from ENSO alone
(Webster et al, 1999). However, this discrepancy suggests that the IOD’s influence on
East African precipitation is not always consistent because other factors, such as the
Madden-Julian Oscillation (MJO), may modulate rainfall patterns on intraseasonal

timescales.
Madden-Julian Oscillation (MJO)

MJO is an intraseasonal tropical climate phenomenon characterized by large-
scale convective disturbances that move eastward along the equator (C. Zhang, 2005).
Wet and dry spells in the East African region are also shaped by the MJO from a 30 to
60-day oscillating pattern of enhanced and suppressed convection that has a major
impact on intra-seasonal east rainfall patterns over East Africa (Ochieng et al, 2023).
These disturbances significantly influence East African weather patterns by modulating
rainfall, wind patterns, and atmospheric circulation, with implications for East Africa
(Kimani et al., 2020).

The MJO is divided into two phases: an active convective phase and a
suppressed phase. When the active phase of the MJO moves over the Indian Ocean, it
enhances convection and moisture availability, leading to increased rainfall across parts
of East Africa, particularly during the short rainy season (Fig 1.2). The suppressed
phase, on the other hand, is often associated with drier conditions(Pohl & Camberlin,
2006). These dry conditions led to profound implications for agricultural productivity
and water resources (Berhane & Zaitchik, 2014) in which the interaction between the

MJO and local weather patterns exacerbates drought conditions or (Kimani et al., 2020)



lead to intense rainfall events affecting both food security and infrastructure (Wheeler
& Hendon, 2004). In some regions of Africa, such as the Congo Basin and East Africa,
the MJO signal is visible. Rainfall is often higher while the MJO convective core is
over the Indian Ocean and lower when it is over the eastern Pacific during the East short
and long rainy seasons (Macleod et al., 2021; Maybee et al., 2023). The typical Easterly
winds become weaker during "wet" periods and stronger during "dry" ones (Pohl &
Camberlin, 2006).
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Figure 1.2 The teleconnection mechanisms that cause a) enhanced (shaded in orange
color) and b) reduced (shaded in blue color) rainfall across Eastern Africa by
warm and cold SST, respectively. The green contour denotes the region of Eastern

- two wet seasons annually (Palmer et al., 2023).

1.2.2 Local drivers

Local drivers such as East African highlands, lakes, and the Turkana channel
have a role in regional distribution, seasonality, and diurnal fluctuations of rainfall
(Camberlin & Philippon, 2002). A substantial maximum of rainfall occurs over Lake

Victoria because of the mesoscale circulation system it forms (Anyah & Semazzi,



2006). The complex topography of East Africa significantly influences the region's low-
level atmospheric circulation, which in turn affects rainfall variability (Kinuthia &
Asnani, 1982). The diverse geography, ranging from arid lowlands near the Indian
Ocean coast to steep highlands, poses challenges for accurately forecasting rainfall
patterns (Nicholson, 2017). The EA's topography is diverse, with a ring of mountains
that includes Africa's highest peaks (>5000m above mean sea level) and a low-lying
area in the east, such as the Afar Depression, located in Ethiopia's eastern edge (Fig.
1.1).

The Turkana Channel serves as a narrow opening that connects the generally
low-lying (northwest) surface to the eastern coastal plain. The inner highlands are
likewise divided by the channel from the north Ethiopian highlands and southeast
African highlands (Kinuthia and Asnani, 1982). These orographic channelling causes
of constant jet (which is known as the Turkana Jet), which has mean winds of around
10-12 m.s.1, and peaks at a geopotential height of 850 hp (Nicholson, 2015; Sun et al.,
1999; Indeje et al., 2001). At the jet's entrance, there is a noticeable divergence during
the day, descent takes place above its core (Sun et al., 1999), which may prevent
convection and add to northern Kenya's aridity (Nicholson, 2015). However, the
advection of moisture from the Indian Ocean to the Ethiopian highlands depends on the
jet (Viste and Sorteberg, 2013). These highlands usually receive more consistent
rainfall due to orographic lifting, where moist air is forced to rise over mountain ranges,
cooling and condensing into precipitation (Viste & Sorteberg, 2013). In contrast,
lowland areas such as the Eastern tip of Ethiopia, northern Kenya, and parts of Somalia
are more arid, receiving far less rainfall (Haile et al., 2020). This implies, complex
interaction between atmospheric circulation and topography contributes to the diversity
in rainfall distribution (Hamilton et al., 2020), causing some areas to be more
susceptible to seasonal droughts while others have more consistent rainfall (Onyutha et
al., 2022).

The highlands form a north-south barrier from the Red Sea to southern Tanzania
(Fig. 1.1). These barriers in the northern East African Rift System (EARS) still suffer
from the underrepresentation of predictive models (Mologni et al, 2024). Over the

Ethiopian Massif, the most extensive highland area in Africa, with almost 50% of the
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continent’s area above 1500 m (McCann, 1995). Large tablelands are dissected by deep
valleys and dominated by several summits culminating above 4000 m. Further south lie
the East African Highlands, organized as two mountain arcs following the eastern and
the western Rift valleys, from about 4°N to 10°S. In the east, the Kenya Highlands, at
an average elevation of 1500-2500m, are flanked to the east and south-east by Africa’s
two highest mountains: Mt Kenya (5199 m) and Mt Kilimanjaro (5895m). To the
southern parts of the region, these mountains are prolonged by the Eastern Arc
Mountains, of lower elevation. In the west, the western Rift Mountains run from
western Uganda to southern Tanzania, and several peaks above 3000 m, among which
are the Rwenzori Mountains (5109 m). Between the two arcs is a large tableland around
1000-1200 m, on which lies Lake Victoria. Overall, the East African Highlands have a
major impact on both the regional and extra-regional climate variability over the
regions (Slingo et al., 2005). In particular, the wet conditions prevailing over the Congo

Basin are a result of the presence of the East African highlands (Nicholson, 2017).
1.3 Role of the Intertropical Convergence Zone (ITCZ)

The ITCZ plays a crucial role in East African rainfall. It is a band of low
pressure near the equator where trade winds from both hemispheres converge, leading
to uplift and precipitation. The seasonal migration of the ITCZ northward and
southward dictates the timing and intensity of rainfall in East Africa. During its northern
passage, the ITCZ brings the long rains, while its southern shift contributes to the short
rains. However, the positioning and movement of the ITCZ are influenced by global
and regional climate drivers, which add variability to rainfall patterns. The location of
the ITCZ matters in the magnitude of the precipitation field in the EA region (Kebacho,
2023). However, its variability is primarily driven by large-scale atmospheric and
oceanic systems that influence seasonal weather patterns (Nicholson, 2017; Palmer et
al., 2023).

One of the most significant factors is the movement of the ITCZ, which is a
band of clouds and rain that forms where the northeast and southeast trade winds meet
near the equator (Nicholson, 2018; Zhao & Cook, 2021). The ITCZ brings a fluctuating

amount of rainfall to different parts of East Africa as it migrates north and south with
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the changing of the seasons (McGee et al., 2014). The bimodal rainfall pattern of long
rain and short rainy season is due to the migration of the ITCZ across the region, which
also controls the seasonal cycle of rainfall. For example, the ITCZ sweeps over the
region during the long rainy season, resulting in extensive rainfall; during the short
rains, it backs away southward and contributes to precipitation, though less intensely.
As confirmed by Camberlin & Philippon (2002), short rains are influenced by the ITCZ
when it migrates from the north to the southern hemisphere, while the long rains are
influenced by its migration from the south to the north.

The movement ITCZ is inherently variable, leading to significant interannual
fluctuations in rainfall patterns across East Africa (Lashkari & Jafari, 2021). Shifts in
the ITCZ are a major contributor to anomalous rainfall events (Camberlin & Philippon,
2002), which can result in extreme outcomes such as floods and droughts (Cioffi et al.,
2016; Nicholson, 2016). While local factors, including East Africa’s complex
topography, play a critical role in shaping regional rainfall variability, several studies
(Behera et al., 2005; Indeje et al., 2000; Vellinga & Milton, 2018) have demonstrated
that large-scale climate drivers, particularly ENSO and the IOD, are primary influencers
of this variability.

1.4 State-of-the-art Seasonal Prediction Systems

Skillful seasonal-time-scale predictions are currently made on a real-time basis
for several tropical regions around the world, including equatorial east Africa (Gualdi
et al., 2020; Hitoshi et al., 2022; Saha et al., 2014). For example, C3S seasonal
prediction models are a suite of numerical models used for generating global and
regional rainfall seasonal forecasts. The models used for such predictions are based on
empirical associations between elements of the general circulation of the atmosphere
and ocean derived from historical data (Johanson et al., 2019). Such associations are
used to define predictors of regional circulation or rainfall. Recently, huge efforts on
improvements of dynamical seasonal prediction systems have become essential to
predict climatic variability ahead of time (Gualdi et al., 2020; Stevens et al., 2013).
These forecasting systems provide vital information for many sectors in the world,

especially for climate-affected countries like EA. A couple models that integrate
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interactions between the atmosphere, oceans, land, and ice are essential to replicate
physical processes in the Earth's climate system(Merryfield et al., 2013). This strategy
differs from statistical methods, which depend on correlations found in hindcast data.
Dynamical prediction systems aim to provide more accurate and reliable forecasts of
phenomena such as monsoon variability, drought likelihoods, and temperature
anomalies by integrating real-time observations with physical laws and numerical
models (Christensen & Berner, 2019).

The main components of dynamical seasonal prediction systems are coupled
systems, including atmospheric models, ocean models, and (Stockdale, 1997).
Atmospheric models simulate large-scale circulation patterns and thermodynamic
processes, which are essential for identifying weather variability over different
timescales (Sillmann et al., 2017). Ocean models focus on capturing SST and ocean
dynamics, which are critical for phenomena such as the ENSO (Luo et al., 2007).
Coupled systems integrate the atmosphere and ocean to account for complex feedback
mechanisms, significantly improving the skill of seasonal forecasts (Webster et al.,
1999). These models depend on data assimilation techniques, which combine
observational data from satellites, buoys, and ground stations with model simulations
to ensure accurate initialization. Data assimilation bridges the gap between real-world
observations and theoretical models, enhancing the overall reliability of forecasts
(Merryfield et al., 2020).

Recent advances in dynamical seasonal prediction systems have significantly
improved forecast accuracy and applicability. For example, ECMWF's SEAS5 has
demonstrated skill in predicting temperature and precipitation anomalies using high-
resolution coupled models and advanced data assimilation (Johnson et al., 2018). It
successfully predicted the 2015-2016 El Nifio, highlighting its ability to anticipate
extreme climate events. Despite recent advancements, several challenges hinder the full
potential of dynamical seasonal prediction systems, and model biases remain a
significant issue, which should account for accurate precipitation forecasts (Manzanas,
2020). The bias may arise due to resolution constraints due to computational limitations
that hinder the ability of models to capture localized phenomena. Moreover,

uncertainties in coupled interactions, especially in regions with sparse observational
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data, add complexity to long-term projections (Parker, 2010). Addressing these
challenges requires innovative approaches, such as integrating machine learning
algorithms for improved parameterization and leveraging hybrid systems that combine
statistical and dynamical methodologies. Additionally, expanding observational
networks and increasing computational resources will play a crucial role in advancing

these systems.

Coupled forecasting systems that integrate sea ice, land, and ocean components
are increasingly adept at simulating a broad range of physical processes within the Earth
system, across timescales from days to seasons. However, a persistent challenge in
seasonal prediction lies in the inadequate representation of model physics, particularly
cloud processes, which can compromise forecast accuracy (Morcrette et al., 2018).
These limitations often result in model drifts, where simulations gradually diverge from
observed values, and in persistent biases, defined as systematic deviations between
model outputs and real-world data (Vitart and Balmaseda, 2017). Advancing seasonal
prediction, therefore, hinges on improving cloud parameterizations and related physical

processes (Merryfield et al., 2020; Sillmann et al., 2017).

Another major hurdle is the accurate initialization of the ocean and sea ice
components. Current seasonal prediction systems still exhibit considerable spread in
initialized sea ice fields, which undermines forecast reliability (Chevallier et al., 2017;
Zampieri et al., 2018). Despite these challenges, effective forecasting on sub-seasonal
to decadal timescales remains a critical tool for decision-makers, as weather and climate
variability can have profound social, economic, and environmental consequences. As a
result, there is growing interest across scientific, operational, and applied sectors in
developing more skilful forecasts to improve our understanding and management of

extreme events.

The several sources of predictability in the Earth's climate system (Fig. 1.4) are
based on the periods in which they have an impact, ranging from days to centuries
(Merryfield et al., 2020). Short-term predictability (days to weeks) is dominated by key
phenomena like weather, the MJO, and the North Atlantic Oscillation (NAO). Soil

moisture, the stratosphere, and phenomena like the quasi-biennial oscillation (QBO)
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and 10D all affect subseasonal and seasonal forecasts. Oceanic patterns such as the
Pacific Decadal Variability (PDV) and Atlantic Multidecadal Variability (AMV) and
sources such as the ENSO offer predictability on longer periods. From weather
forecasts to climate projections, natural and human-induced forcing become important

drivers across decades to centuries.

natural and anthropogenicforcing

extratropical oceans
PDV AM

ENSO

soil moisture

stratosphere

troposphere

Some sources of predictability

» day week month season year decade century

(4] |—|

2’ Weather

EE Subseasonal

5 —

:'3 Seasonal

: i, >
a Climate projection

Figure 1.3 A schematic representation of the sources of predictability and temporal
ranges for climate and weather forecasting (adopted from Merryfield et al., 2020)
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1.5 Dissertation structure

This PhD thesis is divided into six chapters. Chapter 1 provides a general

introduction to East African rainfall regimes and their driving mechanisms.

Chapter 2: Explores the seasonal predictability of the East African short rains
(EASR) using state-of-the-art seasonal prediction models. Our findings indicate that
while most models exhibit significant mean rainfall biases in certain regions, they
demonstrate notable skill in capturing rainfall patterns during the short rainy season
across much of East Africa. However, their performance is less consistent over the
northern and western parts of the study region. In particular, the models struggle to
accurately represent rainfall patterns along the East African highlands, especially in the
Ethiopian and Kenyan highlands. This suggests that the influence of topographical
features in these regions may not be well-represented in the models.

Chapter 3: Assess the predictability of the East African long rains using
dynamical models, employing similar methodologies to those in Chapter 2 but with
different initial conditions. Additionally, we compare model outputs to the GPCP
dataset to examine systematic errors at each lead time. We identify periods when the
models consistently outperform persistence forecasts and determine years with higher
predictability at monthly lead times. The results indicate that the models more
accurately reproduce long rains (i.e., MAM rainfall anomalies) during ENSO years than
during 10D periods. This suggests that large-scale interactions between atmospheric
and oceanic conditions, particularly those driven by ENSO, have a stronger influence

on the long rainy season in East Africa.

Chapter 4 Investigate the independent roles of ENSO and IOD variability in
influencing East African short rain variability using Community Earth System Model
(CESM) experiments. The study examines four CESM experiments: CESM-CTRL
(control simulation), CESM-noENSO (suppressed ENSO variability), CESM-nolOD
(suppressed 10D variability), and CESM-amipFULL (atmosphere-only simulation with
SST prescribed from CESM-CTRL).
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1.6  Obijectives

This study aims to assess the seasonal predictability of East African rainfall by
analyzing model ensembles and investigating the influence of large-scale climate
phenomena, with a particular focus on the region’s two main rainy seasons. The key
research questions addressed include: To what extent do dynamical seasonal prediction
systems capture the spatial and temporal characteristics of East Africa’s major rainy
seasons? Which climate drivers exert the greatest influence on the variability of the
short (March—May) and long (October—December) rainy seasons? When and why does
forecast skill vary—i.e., under what conditions is predictability enhanced or
diminished? Additionally, the study evaluates how model performance depends on the
phases of ENSO and the 10D, considering both their independent and combined effects
on East African rainfall patterns. Specifically, the study addresses the following

objectives:

1. Assess the predictability of East African short rains (OND season) using
C3S prediction models initialized in September.

2. Assess the predictability of the East African long rains (MAM season) using
C3S prediction models initialized in February.

3. Evaluate Model Biases: Identify and quantify mean rainfall biases in
dynamical climate prediction models to understand systematic errors in
seasonal forecasts.

4. Investigate the roles of ENSO and IOD on East African short rains using

Earth system model experiments, exploring how suppressing these drivers

alters regional rainfall patterns.
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2 FORECASTING EAST AFRICAN SHORT RAINS

2.1 Introduction

The East African region is exposed to climate variability such as recurrent
drought and floods, which leads to food insecurity. In recent years, intense droughts
occurred in 1996, 1998, 2005, 2016, 2020, and 2021 (Doi et al., 2022). For example,
(Amha et al., 2023) confirmed the extended meteorological drought from 2020 to 2021
caused much crop failure and livestock production in eastern Ethiopia, Kenya, and
Somalia. Since the region highly relies on rain-fed agriculture, the delayed onset or
early cessation of the rainy seasons has a direct impact on crop patterns (MacLeod,
2019). This region experiences two rather distinct wet seasons, each linked to the
seasonal north-south movement of low-pressure systems (Camberlin & Philippon,
2002; Kebacho & Chen, 2022a; Palmer et al., 2023b). The first wet season, known as
the long rains, typically occurs during the boreal spring months of March to May
(MAM), characterized by heavier and more prolonged rainfall. However, recent studies
indicate that some countries, including Kenya and Uganda, have experienced rainfall
in January and February, extending the wet season into these months (Kebacho, 2024).
The second wet season, or the short rains, generally takes place during the autumn
months of October to December (OND), featuring shorter and less intense rainfall
episodes (Nicholson, 2017; Palmer et al., 2023; Gamoyo et al., 2015). Compared to the
long rainy season, the short rains exhibit greater interannual variability, which has
significant socioeconomic implications for the region (Behera et al., 2005).

Previous studies (Bahaga et al., 2016; Oelfke et al., 2003) assessed the
predictability of the interannual variability of East African rains using both statistical
and dynamical model outputs, as well as global observational datasets. For instance,
Walker et al. (2019) evaluated the predictability of East African short rains using
operational seasonal forecasts of Greater Horn of Africa Climate Outlook Forum
(GHACOF) model, which produced seasonal forecasts through a combination of
dynamical and statistical climate models, expert judgment, and consensus-building,
integrating global model outputs with regional climate knowledge and historical data.

Their analysis revealed significant limitations, including low predictive skill and
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systematic errors, such as a pronounced dry bias in December over the southern parts
of East Africa. In contrast, Ogutu et al. (2017) identified a wet bias during the short
rainy season across many parts of the region while evaluating ensemble climate
forecasts from the European Centre for Medium-Range Weather Forecasts system-4
(ECMWEF-4). Their analysis, employing metrics like the anomaly correlation
coefficient (ACC), demonstrated that ECMWF-4 captured EI Nifio-Southern
Oscillation (ENSO)-related anomalous years with region-dependent skill. Additionally,
Bahaga et al. (2016) explored the predictability of September-October-November
(SON) rainfall anomaly using the Asia-Pacific Climate Center Ocean-Atmosphere
coupled multi-model ensemble hindcasts initialized on August 1. They reported that 5
out of 10 coupled models showed statistically significant skill in predicting short rains
over the East African equatorial region. However, skill was limited over most land
areas, with better performance along sections of the western Indian Ocean coastline.
Their findings also revealed a strong correlation between observed and predicted
rainfall anomalies during SON, driven by the phase of a dominant regional climate
mode, the Indian Ocean Dipole (I0D; Saji et al., 1999). Prediction of short rainy season
over East Africa at least one season ahead has been successfully predicted using the

dynamical coupled model, as in previous studies (Begera et al, 2005).

ENSO and IOD modes have a strong influence on the interannual variability of
east African short rains (Endris et al., 2019; Indeje et al., 2000), with their independent
roles, as drivers of East African short rains, that have been studied using Scale
Interaction Experiment-Frontier Research Center for Global Change, version 1
(SINTEX-F1) model (Behera et al., 2005). The latter study found that the SON rainfall
anomaly (RFa) exhibited significant correlation with the pure 10D (i.e., an 10D event
occurring during neutral ENSO phases), while the correlation with ENSO was found to
be not statistically significant. When positive 10D coincided with strong EI Nino in
years like 1972 and 1997, East African short rains experienced excess precipitation
(Sajietal., 1999). Yet, some studies (Macleod & Caminade, 2019) suggest that positive
ENSO phases, like the 2015 El Nifio event, may occasionally exhibit a stronger
association with East African short rains than the positive phase of the 10OD.

Consequently, a comprehensive assessment of East African rainfall predictability
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should account for the combined effects of ENSO and 10D on rainfall variability
(Cherchi & Navarra, 2013)as has been done for other regions (e.g., Liguori et al.,
2022).

In addition to ENSO and 10D, factors such as Madden-Julian Oscillation (MJO)
influence the fluctuations in East African brief rains. By regulating convection across
the Indian Ocean and East Africa, the MJO, a prominent form of intraseasonal
variability, has a major impact on rainfall patterns (e.g., Roundy & Kravitz, 2009;
Liebmann et al., 1994). Moisture transfer from the Indian Ocean into East Africa is also
significantly influenced by the position and intensity of the subtropical anticyclones,
especially the Mascarene High (Behera et al., 2005; Williams et al., 2012). Moreover,
depending on its strength and direction, the Somali Jet, a crucial part of the low-level
atmospheric circulation, either promotes or inhibits moisture advection (Findlater,
1971; Nicholson, 2017). The timing and intensity of the short rains are also influenced
by the seasonal fluctuations in the ITCZ (Waliser & Gautier, 1993; Nicholson, 2018).
Furthermore, by influencing surface heat fluxes and atmospheric stability, land-
atmosphere feedback such soil moisture and vegetation dynamics can locally increase
or decrease rainfall (Taylor et al., 2012; Anyah et al., 2006).

To date, no study has assessed the predictability of East African short rains
using the multi-system seasonal retrospective forecasts provided by the Copernicus
Climate Change Service (C3S), which employs state-of-the-art seasonal prediction
systems. This study aims to fill this gap by not only evaluating the predictive skill of
these systems but also examining the models' skill dependency on ENSO and 10D
phases, considering both their independent and combined effects on the East African

short rain patterns.
2.2 Datasets, models, and methods

2.2.1 Observational data set

Forecast verification requires good observational data (Maraun et al., 2010) and
robust verification methodologies. Over East Africa, a sparse climatological station
network limits the use of pure in situ observations to verify gridded forecast products.
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We therefore utilize observed rainfall data from the Global Precipitation Climatology
Project (GPCP) version 3.2 and the European Centre for Medium-Range Weather
Forecasts (ECMWF) fifth-generation reanalysis (ERA5). GPCP version 3.2 provides
estimates with a resolution of 0.5° x 0.5° from 1979 to the present (Adler et al., 2003;
Huffman et al., 2023). The dataset contains monthly analyses of global precipitation,
merging observations from rain gauges with precipitation estimates from low-orbit
satellite microwave data, geosynchronous-orbit satellite infrared data, and sounder-
based estimates. The ERAS dataset provides global climate reanalysis data with a
spatial resolution of 0.25° x 0.25°. It integrates observational data from various sources,
including surface stations, upper-air observations, and satellite data, using data
assimilation. ERAS offers data for multiple variables, including precipitation and sea
surface temperature, spanning from 1979 to the present (Hersbach et al., 2020). Each
dataset offers distinct advantages: GPCP assimilates precipitation data from multiple
sources, and ERA5S provides a higher-resolution precipitation field that is physically

consistent with the SST field used in this study.
2.2.2 C3s model descriptions

To assess the predictability of the East African short rain, i conducted an
evaluation of eight coupled ocean-atmosphere model seasonal prediction systems
available from Copernicus Climate Change Service (C3S) offers a comprehensive
multi-system seasonal forecast service, presenting data from various state-of-the-art
seasonal prediction systems. These systems offer insights into future climate patterns
up to six months in advance. The service includes aggregated forecasts from multiple
systems, as well as detailed information from individual participating centers, such as
ECMWF, Met Office, Météo-France, Deutscher Wetterdienst (DWD), Euro-
Mediterranean Centre on Climate Change (CMCC), National Centers for
Environmental Prediction (NCEP), Japan Meteorological Agency (JMA), and
Environment and Climate Change Canada (ECCC).

The JMA model, developed by the Japan Meteorological Agency, uses the
JMA-GSM atmospheric general circulation model with a resolution of TL319 (~55 km)
and 100 vertical levels. Its ocean component is MRI.COM v4.6, configured with a 0.25°
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tripolar grid and 60 vertical levels, and the ensemble size is 10 (Hitoshi et al., 2020).
The ECMWF model employs the IFS 43r1 AGCM at TCO319g resolution with 91
levels and the NEMO v3.4 OGCM, which runs on a 0.25° ORCA grid with 75 vertical
levels, using an ensemble size of 25 (Johnson et al., 2019). Similarly, the ECCC model
from Environment and Climate Change Canada integrates the CanAM4 AGCM at T63
(~2.8° lat-lon) with 35 levels and the CanOM4 OGCM at ~1.4° longitude by 0.94°
latitude resolution with 40 levels, using 10 ensemble members (Merryfield et al., 2013).
The UKMO model (UK Met Office) employs the GC3.2 AGCM at N216 (~0.83°
longitude, 0.56° latitude) with 85 vertical levels, coupled with the NEMO v3.6 OGCM
on a 0.25° ORCA grid with 75 levels, and has an ensemble size of 28 (Williams &
Funk, 2011).

The CMCC model, developed by the Centro Euro-Mediterraneo sui
Cambiamenti Climatici, uses the CESM 1.2 AGCM (~0.5° latitude/longitude resolution
with 46 levels) and the NEMO 3.4 OGCM at 0.25° resolution with 50 levels, employing
40 ensemble members (Gualdi et al., 2020). The current version is CMCC-SPS3.5, i.e.,
Euro Mediterranean Center for Climate Change - Seasonal Prediction System, Version
3.5. The System is based on a coupled Ocean-Atmosphere Global Climate Model
operated monthly in Ensemble seasonal mode (6-month predictions) and comprises
monthly ensemble hindcasts covering the period 1993-2016. It includes 46 vertical
levels at a spatial resolution of roughly 0.5° latitude/longitude. The NEMO 3.4 ocean
general circulation model (OGCM), which has 50 vertical levels and a better spatial
resolution of 0.25°, is also incorporated into the CMCC model to provide precise

representations of oceanic processes including heat flux and currents.

The MeteoF model, from Meétéo-France, incorporates the global numerical
weather prediction model ARPEGE (Action de Recherche Petite Echelle Grande
Echelle) is an essential tool for operational weather forecasting at Météo France. v6.4
AGCM with TL35 (~0.5° resolution) and 137 levels, coupled with the NEMO v3.6
OGCM on a 0.25° ORCA grid with 75 levels, using an ensemble size of 25(Bateé et al.,
2021). The DWD model, from the Deutscher Wetterdienst, features the ECHAM 6.3.05
AGCM at T127 (~100 km) resolution with 95 levels and the MPIOM 1.6.3 OGCM

configured at TPO4 with 40 levels, running with 30 ensemble members (Stevens et al.,
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2013). The NCEP model, developed by the National Centres for Environmental
Prediction, uses the GFS AGCM at T128 (~1° resolution) with 64 vertical levels and
the GFDL MOM4 OGCM, which operates on a 0.25° equatorial grid to 0.5° resolution
with 40 levels, featuring an ensemble size of 24(Saha et al., 2014). Table 2.1 provides

a detailed summary of all models, highlighting differences in resolution and ensemble

sizes. Climate variables, including precipitation and SST, were retrieved for a common

hindcast period spanning from 1993 to 2016, at a monthly time scale.

Table 2.1 Descriptions of coupled models’ multi-seasonal prediction systems from C3S

accessible at (https://cds.climate.copernicus.eu/cdsapp).

Organizatio AGCM Atm. resolution OGCM  Ocean resolution Ense.mbl Reference
n name e size
TL319
JMA- » MRI.CO 0.252 tripolar (Hitoshi et al,,
JMA GSM (~55km)/100 Mv4.6  grid/ 60 levels 10 2020)
levels
IFS TC0319g/ 91 NEMO  0.25° ORCA /75 (Johnson etal,
ECWMF 43rl levels v3.4 levels 25 2019)
. ~ (1.4°lon, .
ECCC Canams 103 (~Z87lat oMy 0.94°lat)/ 10 (Merryfield et
lon) / 35 levels al, 2013)
40 levels
N216 (~0.83%lon a1s
o ! NEMO 0.25° ORCA/75 (Williams et
UKMO GC3.2 0.56°lat) / 85 v3.6 levels 28 al, 2018)
levels
CESM ~0.5%at-lon/46 NEMO o (Gualdi et al,,
CMCC 12 levels 34 0.25°/50 levels 40 2020)
Meteop  ARPEGE  TL35(~059)/ NEMO  0.25° ORCA /75 05 (Baté etal,,
v6.4 137 levels v3.6 levels 2021)
ECHAM T127(~100km)/ MPIOM (Stevens et al.,
bWD 6.3.05 95 levels 163  [P04/40levels 30 2013)
T128 (~1°) /64 GFDL 0.25° (equator) (Sahaetal,,
NCEP GFS levels MOM4  to 0.5° /40 levels 24 2014)

2.2.3 Skill evaluation method

The anomaly correlation coefficient (ACC) analysis is a widely used statistical

measure in climate prediction and forecasting to evaluate the skill of models in
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reproducing observed anomalies (Wilks, 2011). It quantifies the degree of spatial or
temporal agreement between simulated and observed anomalies, concerning their
respective climatological means. Anomalies are deviations from a model's ensemble or
observation's climatological average, which help isolate signals of variability from the
background climate state. The ACC measures how well the simulated anomalies match
the observed anomalies in both pattern and magnitude. A positive ACC indicates that
the model has skill in predicting the observed anomalies, where a value of 1 implies
perfect agreement, O suggests no correlation, and a negative value indicates anti-
correlation, meaning the model's predictions deviate systematically in the opposite
direction. In seasonal and interannual prediction studies, the ACC is often applied to
assess model performance across different lead times, regions, or seasons. For example,
it can be used to compare predicted precipitation or sea surface temperature anomalies
against observations over a specific region, such as East Africa, during key rainy
seasons. The robustness of ACC results often depends on the verification dataset used
(e.g., reanalysis data like ERA5) and the presence of large-scale climate drivers like
ENSO and the 10D, which influence the anomaly patterns. Mathematically, it can be

expressed by the following equation (1):

™, ((Fc; — Fo)(0b; — 0B))

ACC(FC,Ob) = (1)

J " (F¢; — Fc)? \/Z?zl(Obi — 0b)"

Where, in the case of temporal ACC, Ob; is observational data for each year, Fci is an
ensemble mean of forecast anomaly at initialized time for each year, and n is the number
of years. Fc and Ob are the time means of models’ ensembles and observations,
respectively. At 90% or 95% confidence levels, p-values obtained from the two-tailed
Student's t-distribution are used to assess the statistical significance of the correlation

coefficient (r).
2.3 Model climatology and inter-annual variability

To characterize the mean bias in forecasting precipitation during the East
African short rain season, we compare the rainfall climatology of each model (i.e.,
ensemble mean) with GPCP and ERAS observational products (Fig. 2.1). Observational
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datasets and models present high precipitation over the southwest parts of the analyzed
region. Specifically, the maximum rainfall pattern is observed over the Congo Basin
with secondary peaks over Lake Victoria and southern Ethiopia, all located inland and
away from the coast. These high rainfall areas appear to be closely linked with
orographic features, such as the Mitumba Mountains stretch along the Western Rift
Valley in Eastern Congo and the East African highlands (e.g., Ethiopian and Kenyan
highlands). However, both GPCP and ERAS have little precipitation over the Indian
Ocean with a relative maximum located between the Equator and 5°S. While models
represent this feature, all but NCEP overestimate the rainfall pattern. Overall, the
climatology depicted by observations and all models except NCEP presents main
features associated with orographic precipitation. However, a small-scale local
precipitation maximum in the westernmost part of Ethiopia (i.e., the Ethiopian
highlands, approximately around 7°N-38°E) is captured by only 50% of the models
(i.e.,, IMA, ECMWF, CMCC, and MeteoF). While this feature is absent in the GPCP
dataset (Fig. 1i), it appears to be realistic as it is also evident in ERA5 (Fig. 2.1j), which
provides precipitation estimates at a higher spatial resolution (0.25° for ERA5 vs. 0.5°
for GPCP). As expected, compared to observational datasets, the models' climatology

generally exhibits smoother precipitation patterns.

We also examined the year-to-year variation of short rainy season (Fig. 2.1k)
by averaging RFa over part of East Africa between 5°S-10°N and 30°-50°E (blue box
in Fig. 2.1i). Subsequently, we derived an equatorial East African rainfall index
(EEARI), following a methodology like that of Palmer et al. (2023). The index reveals
that 1997 appears to represent the peak rainfall for both models and observations.
However, it also indicates that some models, such as DWD and NCEP, significantly
underestimate this event. Generally, GPCP and ERA5 present more year-to-year
variations than the models, as the ensemble means smoothing out most of the internal
variability that grows from the perturbation in the initial conditions. Both models and
observations generally exhibit consistency during the years with relatively strong
positive rainfall anomalies. This consistency also holds for a few negative events
presented in 1996 and 2010.
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Figure 2.1 Rainfall climatology during the short rains (OND) derived from GPCP (i),
ERAGS (j), shown upper panels, and the seasonal prediction systems from Copernicus
Climate Change Service (C3S), which includes 8 ocean-atmosphere coupled model
ensembles and cover the period 1993-2016 (a-h). The lower panel shows area-
averaged OND rainfall anomalies for part of Eastern Africa (30-50°E, 5°S-10°N; blue
dashed box in i) for models, ERA5, and the GPCP dataset. Anomalies are computed

relative to the climatology shown in the upper panel.

In addition to the evolution of the EEARI, we looked at the spatial pattern of
rainfall variability during the OND season as represented by the inter-annual standard
deviation for both models and the observational dataset (Fig. 2.2). Over the ocean,
GPCP and ERAS present a double maximum variability at both sides of the equator at
+- 5°, while in the model this is true only for ECCC MeteoF and NCEP. Furthermore,
several models, but especially JMA and UKMO, present a significant bias in OND
variability over the Eastern Indian Ocean. This high rainfall variability is also shown
over the East African highlands and near to Congo basin. Consistent with the GPCP
and ERADS climatology, some models, including JMA, CMCC, and NCEP, demonstrate
high rainfall variability over the highlands (Fig. 2 .23, e, and g), while all models show

minimal variability over northern parts of East Africa.
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Figure 2.2 Rainfall standard deviation during the short rains (OND) derived from the
seasonal prediction systems from C3S, which includes 8 ocean-atmosphere coupled
model ensembles and covers the period 1993-2016 (c-j) and GPCP (i), ERA5 (j)
datasets.

In dynamic climate models, rainfall bias may arise from the model's lower
resolution, initial conditions, boundary conditions, or physical process representation,
parameterizations of convective processes, are some examples of common biases that

can lead to overestimation or underestimation of rainfall in specific regions, particularly

28



in tropical and subtropical zones. The model biases (Fig. 2.3) are computed as the
difference between the GPCP dataset and the ensemble mean of the individual models
at lead season 1 (OND), 2 (AMJ), and 3 (MJJ) when the hindcast is initialized in
September. Models like IMA, ECCC, CMCC, and MeteoF show notable positive biases
over the western part of the region. Particularly, models such as CMCC and MeteoF
exhibit a significant overestimation of precipitation over the Ethiopian humid
highlands, with the first two lead seasons showing up to 6 mm/day. It is noteworthy
that the MeteoF model shows the tendency for these positive biases to increase with
lead time, indicating the challenges of sustaining reliability over long forecasting lead
seasons. Relatively, UKMO and ECMWF have smaller biases throughout the region up
to the late winter season. These findings highlight the necessity of better model
calibration, especially to capture rainfall variability in important areas such as the major

highlands.
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Figure 2.3 Seasonal mean bias computed as the difference between GPCP and C3S
model predictions for lead season 1 (OND), lead season 2 (NDJ), and lead season 3
(DJF) of rainfall climatology (ensemble mean), which was initialized in September
during 1993-2016.



2.4 Predictive skill of coupled models

The predictive skills of coupled models for East African short rains are assessed
using spatial (i.e., timeseries of pattern correlation) and temporal (i.e., pointwise-
correlation map) anomaly correlation coefficient (ACC; Nicoli et al., 2023). The ACC
analysis is a common statistical metric used to measure the spatial (or temporal)
correlation between the simulated and the observed anomaly, each computed relative

to their respective climatology (see methods as shown in Eq. 1).

We perform the correlation analysis between the ensemble means of each model and
the observed East African rainfall anomalies during lead seasons 1 (OND), 2 (NDJ),
and 3 (DJF). The forecasts are initialized in September for each year from 1993 to 2016
(Fig. 2.4). At lead season 1, nearly all coupled models exhibit a significant correlation
exceeding 0.6 across the western tropical Indian Ocean and the central to eastern
African coastal regions. Moreover, along the East African coasts, models such as IMA,
ECMWEF, ECCC, UKMO, and CMCC (shown in Fig.2.4a-e) demonstrate robust
predictive capabilities extending up to lead season 3. These skillful forecasts up to lead
season 3 can be attributed in part to the persistence of SST over the Indian Ocean, which
present autocorrelation values as high as 0.9 in both lead seasons 1 and 2 (Fig. 2.6).
However, the DWD and NCEP models exhibited poor predictive skill, presenting
correlations below 0.2 across several parts of the region in East Africa.
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Figure 2.4 Pointwise-correlation maps between GPCP and C3S model predictions for
lead season 1 (October-December: OND), lead season 2 (November-January: NDJ),
and lead season 3 (December-February: DJF) of rainfall anomalies (ensemble mean)
during 1993-2016. Stippling indicates areas where the correlation between the
hindcast and observation is statistically significant at a 90% confidence level, as

calculated by a two-sided Student t-test for 22(N-2) degrees of freedom.

Furthermore, we also looked at the dependency of the prediction skill on
monthly lead-time computing from ACC for patterns of anomalous precipitation. To
understand the predictive skills of each model at a specific year, we highlighted the 3
most skillful years in which the models consistently outperform the persistence
forecasts for lead time from 1 to 3 months (Fig. 2 .5a-h). Specifically, when compared
to persistence forecasts, 75% of coupled models present skillful predictions for the year
1997 at 1-3 lead months. Similarly, only two coupled models, such as UKMO and
MeteoF, depict the highest skill in 2010, resulting in the ACC values greater than the
persistence at the 2nd lead months (Fig. 2 .5d and f). After lead month 2 (i.e.,
November, N), there is a decreasing skill, with most years exhibiting significantly lower

ACC values compared to the persistent skill level. Overall, precipitation anomalies in
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the years 1997 and 2010 are more predictable, with 70% of models presenting ACC

values that outperform the persistence skill up to October, that is lead month 2.

To assess the interannual predictive skill of coupled models for the East African
short rainy season, we looked at the correlation between the observed and predicted
RFa (computed over the EEAR box) across the hindcast periods (Fig. 2.5i). The highest
skill was presented in all models during the year 1997. Moreover, the skills of most
coupled models are similar during the years 1994, 1999, 2008, and 2010 (Fig. 3i).
Particularly, 1994 is the second-most skillful year after 1997, with higher ACC values
evident in models such as ECMWF, CMCC, MeteoF, NCEP, and DWD. Similarly, in
the year 2008, we observe high correlation values across most coupled models, except
for the ECCC and MeteoF. Several years with improved predictive accuracy seem to
align with ENSO and 10D events, highlighting the significant impact these climate

patterns have on both the variability and predictability of East African rainfall.
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Figure 2.5 Anomaly correlation coefficient (ACC) between GPCP and each C3S model

(a-h; upper panels) for monthly rainfall anomaly over part of Eastern Africa (blue
dashed box of Fig. 1i) for each year (grey lines) from lead month 0 (September) to lead

month 5 (February). In each subfigure, the top three forecasts stand out with distinct

colours: the most accurate year is highlighted in red, the second-best in blue, and the

third-best in magenta. These forecasts are determined by sorting all predicted years

based on their average ACC values across September and October. The black dashed

line indicates the persistence forecast. The lower panel (i) illustrates the spatial
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correlation between each model and GPCP rainfall anomaly patterns for the OND

seasonal mean, calculated over Equatorial Eastern Africa (30-50°E, 5°S-10°N).
2.5 Predictability conditional on ENSO and 10D phases

Several studies have shown how modes of interannual variability in the Indian
and Pacific tropical oceans represent a main source of predictability for seasonal rainfall
patterns (Palmer & Anderson, 1994; Troccoli, 2010). These studies indicate a clear
association between mature phases of 10D and ENSO events (Saji et al., 1999; Behera
et al., 2005). Thus, we investigate the role of tropical SST in influencing variability in
East African short rains, utilizing indices that monitor rainfall (i.e., EEARI), ENSO,
and 10D. Specifically, the Nifio 3.4 index (N3.4; SST anomalies averaged over 120°W—
170°W, 5°S-5°N) tracks ENSO, while the Dipole Mode Index (DMI; SST anomalies
difference between the western Indian Ocean (DMIw), 50°E—70°E, 10°S—10°N, and
eastern Indian Ocean (DMle), 90-110°E, 10°S -0) monitors IOD variability (Saji et al.,
1999, Liguori et al., 2022).

The relationship between EEARI, N3.4, and DMI across models (Fig. 2 .7a-h)
and ERAGS (Fig. 2.7 i) indicates that negative (positive) RFa are consistently linked to
the concurrent negative (positive) phases of 10D and ENSO, with the magnitude of the
anomaly that depends on the intensity of these two drivers in various years. ENSO and
IOD present an important co-variability that results in a significant N3.4-DMI
correlation during the OND season in both observations and models (0.74 for the

observation and between 0.65 and 0.78 for the models; Fig. 2.7).

The persistence of SST has a significant impact on the variability of rainfall in
East Africa. Seasonal rainfall can be significantly impacted by persistent SST
anomalies in important locations, such as the Pacific and Indian oceans, which can alter
atmospheric circulation patterns and moisture delivery. For example, over portions of
East Africa, warmer-than-normal SSTs in the western Indian Ocean are frequently
linked to greater convection and rainfall, especially during the short rainy season.
Similarly, SST anomalies in the Pacific can cause El Nifio and La Nifia events, which
can either increase or decrease rainfall in the area and cause extremes like droughts or

floods.
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Therefore, to gain further insight into the impact of local SST fluctuations on
the Easta African short rains, we computed the seasonal persistence values over the
western Indian Ocean, which is adjacent to the East African coast (Fig. 2.7). Notably
high persistence values were found, extending throughout the NDJ season, suggesting
that the variations in SST in the western Indian Ocean tend to remain stable for some
months which can impact atmospheric conditions during short rainy season in Easta
Africa.
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Figure 2.6 SST persistence from lead seasons 1(OND) to 3(DJF) for individual C3S
coupled models. Persistence is quantified in each grid point by the autocorrelation
between the SON and lead season time series.
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When both 10D and ENSO are in the positive phase, all coupled models and
GPCP present above-normal OND rainfall (green colors on Fig. 2.8) across the East
African region. The best predicted year (Fig. 2.5) is associated with the strongest El
Nifio event on record (1997/1998), which co-occurred with a strong positive 10D phase.
During the short rainy season of 1997, East Africa experienced the largest positive RFa,
reaching up to 3 mm/day (Fig. 2.1k). While all models represent a high correlation
between ENSO and 10D, the observed extreme 1997 precipitation event is particularly
evident only in six out of eight models (i.e., IMA, ECMWF, ECCC, UKMO, CMCC,
and NCEP). In this year, however, only the DWD model fails to simulate this RFa
event, despite the high correlation between DMI and N34, as presented in Fig. 2.7 h.

On the other hand, during negative ENSO and 10D phases, all models and
GPCP tend to exhibit negative OND RFa (as shown by the yellow-filled circles in Fig.
2.7). For instance, during the 1998 negative ENSO and 10D phase (Fall 1998) that
immediately followed the record-breaking 1997/1998 EI Nifio event, the observed
negative RFa were successfully forecasted at lead months in only three models, such as
UKMO, MeteoF, and NCEP (Fig. 2 .7d, f, and g). However, when lead season is
considered, only MeteoF, ECMWF, and JMA can predict an amplitude of the OND
anomaly comparable to the observation (Fig. 2.7i). Additionally, 2010 is identified as
the second most skillful year by JMA (Fig. 2.7a), and as the third most skillful year by
UKMO, MeteoF, and NCEP models (Fig. 2 .7f and g), showing negative OND seasonal
anomalies during negative phases of DMI and N34 (Fig. 2 .8a, f, and g).
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Figure 2.7 Scatterplot of Nifio3.4 index (N34; x-axis) versus Dipole Mode Index (DMI;
y-axis) during OND season for each of the 24 years analyzed in both model predictions
(a-h) and GPCP dataset (i). The area of the circle is proportional to the absolute value
of OND rainfall anomaly averaged over part of Eastern Africa (blue dashed box of Fig.
2.1i), with positive (negative) anomaly coloured in green (orange). As in Fig. 2.5 the
best forecasted year is highlighted in red, the second-best in blue, and the third-best in
magenta. Additionally, the correlation coefficient between N3.4 and DMI is provided
at the top of each subfigure for reference. (j-r) shows a similar analysis but with the
western pole of the DMI index (DMIw).

El Nino Modoki

The relationship between the El Nifio Modoki Index (EMI) and the Dipole Mode
Index (DMI) during the OND season across eight seasonal forecast models and the
ERAS observational dataset (Fig.2.8). The EMI is calculated following the methods
Ashok et al., (2007) as follows:

EMI = [SSTA], — % [SSTA]s — % [SSTAl, (2)

The square bracket in Eq. (2) represents the area-averaged SSTA over each of the
regions: A (165°E-140°W, 10°S-10°N), B (110°W-70°W, 15°S-5°N), and C
(125°E-145°E, 10°S-20°N), respectively

As shown in Fig. 2.8, a stronger vertical spread of anomalies along the DMI axis
indicates that positive DMI events tend to produce larger rainfall anomalies over
Eastern Africa, even when EMI values are near zero. While both EMI and DMI
contribute to OND rainfall variability, DMI appears to exert a stronger influence
on the magnitude of rainfall anomalies, particularly in years with significant IOD

activity.
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Figure 2.8 Scatterplot of EI Nifio Modoki index (EMI; x-axis) versus Dipole Mode Index
(DMI; y-axis) during the OND season for each of the 24 years analyzed in both model
predictions (a-h) and GPCP dataset (i). The area of the circle is proportional to the
absolute value of OND rainfall anomaly averaged over part of Eastern Africa (blue
dashed box of Fig. 2.1i), with positive (negative) anomaly coloured in green (orange).
As in Fig. 2.5 the best forecasted year is highlighted in red, the second-best in blue, and

the third-best in magenta.

Given the vicinity of East Africa to the Western pole of the 10D (i.e., DMIw
region), we wanted to explore if the interannual variability of East African short rain
was more strongly connected to fluctuations in the DMIw index, which has been shown
to exhibit slightly higher predictability (Bahaga et al., 2016). However, despite this
geographical closeness, the correlation between OND RFa in the EEAR region (i.e.,
EEARI) and DMlIw is slightly lower than the correlation between EEARI and the
overall DMI (see Fig. 2.9). This finding is remarkable considering that ENSO presents
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a stronger connection with the DMIw compared to the DMI, as evidenced in both
observational data and climate models (Fig. 2.7 j-r). The stronger correlation between
EEARI and the DMI, despite the expectation that local SST variations would play a
more significant role, emphasizes the importance of broader-scale 10D variability. This
suggests that the key factor influencing East African rainfall is the 10D-driven
disruption of the zonal atmospheric circulation associated with the Indian Ocean branch
of the Walker Circulation (see Fig. 2.8).

Corr [RFa and climate indices] for OND season (at 95%(*) and 99% (**) CL)

0.31 0.13 0.69** 0.75

N34

-0.50
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EMI
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Figure 2.9 Correlation between East African RFa index and climate indices for the
OND season. Asterisks (*) and (**) indicate significance at the 95% and 99%
confidence levels, respectively. The RFa index is the area-averaged over Eastern Africa
(30-50°E, 5°S-10°N) for both models and ERA5

In addition to DMI and N34, we have also computed the correlation between
the sea level pressure (SLP) and the rainfall anomalies to illustrate the association
between the variation of SLP and the East African rainfall during the OND season. To
do this, following the methods of Behera &Yamagata (2003), the SLP anomaly index
is computed over the DMI region (slpDMI; Fig. 2 .10c) and equatorial wind anomaly
index (UEQ; Fig. 2 .10d), evaluated across multiple models and observational datasets.
The association between seasonal OND RFa anomalies index and each index from
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ERAS and individual models is evaluated at a statistical significance of 95% and 99%
confidence level. As aresult, the SLP dipole index is significantly negatively correlated
with the SST dipole index during the OND season, which is displayed in most models
and observational data sets (ERAS; black dots line shown in Fig. 2.10), which serves
as a reference. The same is true for UEQ anomalies, representing equatorial wind
anomalies. Both ERAS and models demonstrate consistently high negative correlations
with EASRI during the OND season. Relatively, EASRI has a negative correlation with
UEQ presented in the NCEP and DWD maodels, showing correlation coefficients of
0,41 and -0.39, respectively.

The interannual variability of East African short rains is linked to canonical El
Nifio and EI Nifio Modoki events, with notable peaks during the 1997-98 and 2015-16
El Nifio episodes. Both indices show interannual variability but with different
amplitudes and peak years (Fig. 10, a and b). For example, during 1997-1998, both
indices peaked, indicating a strong canonical ElI Nifio. However, in some years, like
2004, 2009, and 2014, show stronger EMI than N34, suggesting those may be EI Nifio
Modoki years. The second panel displays DMI anomalies for each model, showing
strong agreement with ERABS. Similarly, the third panel, reflecting sea level pressure
variations over the DMI region, we call it slpDMI (Behera et al, 2005). The negative
slpDMI anomaly (Fig. 2.8) observed during positive DMI and ENSO events indicates
the interplay between warmer SSTS, altered convection patterns can shift the Walker
circulation over the tropical Indian Ocean. Similarly, negative UEQ is observed during
both positive ENSO and positive IOD occur together, suggesting their combined effects
strengthen the disruption of zonal wind patterns. More noticeable is the trade winds'
reversal or weakening. Negative U-wind anomalies are strengthened by the suppression
of the normal east-to-west wind flow caused by the diminished zonal pressure gradient

across the Pacific and Indian tropical oceans.
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Figure 2.10 Interannual variation of short rainy season derived from ERA5, and
individual coupled models' ensemble mean field anomalies: a) N34, b) EMI, ¢) DMI, d)
sea level pressure anomaly index over DMI region (slpDMI), e) Equatorial wind
anomaly index (UEQ).

2.6 Discussion and Conclusion

In this study, we evaluate the predictability of East African short rains using
eight state-of-the-art seasonal retrospective forecast systems from the Copernicus
Climate Change Service (C3S), with a focus on forecasts initialized at the onset of the
OND rainy season, namely in September. Despite the presence of localized biases (Fig.
2.1), most models demonstrate appreciable skill in predicting OND precipitation
anomalies across much of East Africa, although regions in northern and western parts

of the study region remain challenging, exhibiting low or no skill.

Importantly, the models show considerable skill extending into the DJF season
along coastal East Africa, particularly near Somalia and parts of the western Indian
Ocean. This is likely linked to persistent SST anomalies in the western Indian Ocean
(Fig. 2.6), which remain significant well into the boreal winter across most models.
These findings align with previous evaluations of the SINTEX-F1 model (Beheraet al.,
2005) and the APCC Ocean—-Atmosphere coupled multi-model ensemble (Bahaga et
al., 2016), confirming the relevance of oceanic memory in sustaining forecast skill

beyond the target season.

Robustness of model performance is further supported by analyses using
different verification datasets (e.g., ERAS reanalysis), which show minimal variation
in skill scores (Fig. 2.2). However, the anomaly correlation at various lead times (Fig.
2.7) reveals a strong interannual dependency of model skill, particularly within the first
six months. For instance, 2010 emerges as the second most skilful year only when
ERAGS is used as the reference, illustrating some sensitivity to the verification dataset.
These variations highlight the influence of major tropical modes of variability—
especially ENSO and I0D—on regional predictability (Hastenrath et al., 1993; Behera
et al., 2005; Wang et al., 2009).
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Particularly, skilful years often coincide with mature ENSO and 10D phases,
with the most significant rainfall anomalies recorded during years when these modes
occur simultaneously. Although EI Nifio years are typically associated with intense
OND precipitation, the correlation between rainfall anomalies (RFa) and the Dipole
Mode Index (DMI) is generally stronger than the correlation with Nifio3.4 (N3.4) SST
anomalies. This suggests that the Indian Ocean SST response to ENSO exerts a more
pronounced influence on East African rainfall than ENSQO’s direct teleconnections via
atmospheric bridges. In most cases, the sign of the DMI successfully predicts the sign
of seasonal rainfall anomalies, a consistency not always matched by N3.4. This finding
resonates with earlier research emphasising the east-west SST dipole and associated
atmospheric circulation patterns as key drivers of East African short rains (Yamagata
et al., 2002; Black et al., 2003).

Surprisingly, the extreme 2015/2016 El Nifio event—one of the strongest on
record—posed significant challenges for most models, which struggled to accurately
simulate the rainfall patterns during the OND season. Only the NCEP and ECCC
models (Fig. 2.3i) captured these anomalies adequately. The underperformance is likely
due to the relatively weak positive IOD phase in 2015/2016 compared to the 1997/1998
El Nifo, which limited the amplification of the Indian Ocean Walker circulation
(Macleod & Caminade, 2019). This underscores the complex and non-linear
interactions between ENSO and IOD in shaping East African rainfall. We also analysed
that canonical El Nifio, positive 10D, and EI Nifio Modoki contribute to enhanced East
African rainfall. Compared to the 10D, both indices (N34 and EMI) exhibit interannual
variability with similar amplitudes (Fig. 10 and b), however, they show a weaker
correlation with OND RFa. In some years, for instance, 1997-1998 saw peaks in both
indices, indicating a strong canonical El Nifio. Beyond Walker circulation, this driver
also impacts African rainfall by altering jet stream dynamics, particularly weakening
the tropical easterly jet and shifting the African easterly jet southward, reducing rainfall

in northern tropical regions like the Sahel (Preethi et al., 2015).

Furthermore, both model simulations and observational data reveal that
negative sea level pressure anomalies (slpDMI) during concurrent positive ENSO and

IOD events are associated with intensified convection and significant changes in the
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Walker Circulation over the tropical Indian Ocean. These atmospheric responses are
well represented in the models, as evidenced by their strong agreement with ERA5
slpDMI anomaly patterns. At the same time, negative upper equatorial wind (UEQ)
anomalies point to a synergistic effect of ENSO and 10D in altering zonal wind
patterns—weakening or even reversing the trade winds—via a reduced zonal pressure
gradient across both the Pacific and Indian Oceans. Collectively, these feedback
mechanisms significantly influence the variability of OND rainfall in East Africa.
Despite the region's proximity to the western pole of the 10D, the strongest correlations
with rainfall appear when both eastern and western poles are considered. This suggests
that broader-scale 10D variability and its associated impact on the Walker Circulation

play a more dominant role than local SST anomalies in driving rainfall variability.

In summary, while current seasonal forecast models show promising skill in
capturing OND rainfall anomalies across East Africa, particularly when both ENSO
and 10D phases are accurately represented, limitations remain, especially in simulating
complex interactions during extreme years. These findings highlight the importance of
improving model representations of Indo-Pacific climate variability and their coupled
teleconnections to enhance seasonal forecasting in this highly vulnerable region.
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3 FORECASTING EAST AFRICAN LONG RAINS

3.1 Introduction

East African long rains, which run from March to May (MAM), are known
locally as Gu in Somalia, Belg in Ethiopia, and Masika in Kenya, Tanzania, and
Uganda. Its variability is linked to the migration ITCZ, which is taken as a major factor
in the East African long rains (MacLeod, 2019; Yang et al., 2014). When the ITCZ
shifts northward, it brings more moisture and convective activity. SSTs of the nearby
Indian oceans, such as the Indian, and in the broad-scale air circulation patterns, affect
its position and intensity. Changes in the ITCZ's position can cause variations in the
long rains' timing, intensity, and spatial distribution, which frequently lead to either
droughts or floods in EA (Lashkari & Jafari, 2021; Nicholson, 2018). Due to the
significant rainfall it brings, which boosts agricultural production, restores water
supplies, and increases economic activity, this season is vital to the region (MacLeod,
2019). The long rains are particularly vital for food security, as they coincide with key
planting and growing periods for staple crops. Its significance underscores the need for
accurate forecasting to mitigate risks associated with variability, such as droughts or

flooding, which can disrupt these critical sectors (Roy et al., 2024).

During the last 30 years, East Africa has experienced a persistent decline in
rainfall during the long rainy season (Funk et al., 2008; Williams and Funk, 2012). This
has had major consequences for regional food security, where agriculture largely
depends on rainfall and is thus highly vulnerable to climatic change (Funk et al., 2008;
Lyon, 2014). It is unclear whether this decline is caused by internal multidecadal
variability associated with changes in the tropical Pacific (Yang et al., 2014) or
anthropogenically driven warming in the Indian Ocean or western Pacific region
(Liebmann et al., 2014). Furthermore, this declining trend is confirmed by recent
studies such as Palmer et al. (2023). Since 1985, marked variability and consistent
negative trends in the long rains have been detected. Unusual rainfall during long rains
can result in droughts over the region (Nicholson, 2017a). Due to this, it has led to
persistent droughts, which have had increasingly severe impacts the agriculture and the

broader economy in recent decades. For instance, from 2008 to 2010, the Horn of Africa
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experienced a drought that affected over 13 million people, and it cost about $1 billion
to respond to the crisis. This widespread drought exemplified the dire consequences of
unpredictable weather patterns in East Africa, leading to a significant humanitarian
crisis (Amha et al., 2023; Gebremeskel et al., 2019).

Over the past two decades, EA experienced many drought episodes during the
long rains, leading to severe food insecurity (Funk et al., 2014). For instance, between
April 2016 and December 2017, Somalia experienced three extremely poor rainy
seasons, which created a persistent and extensive drought that caused significant losses
in livestock and agricultural harvests (Funk et al.,, 2018). These extreme events,
observed over many years, are linked to the variability of sea surface temperature in the
tropical oceans (Gebremeskel et al., 2019; Saji N. et al., 1999). Recurrent droughts are
often associated with negative phases of SST anomalies over the central Pacific Ocean
(Park et al., 2020). Numerous scholars have underlined that the variability in East
Africa’s long rains is driven by both local factors, such as topography and land use, and

remote drivers (Nicholson, 2017).

Driving mechanisms of long rains variability and trends are connected to local
and global drivers that influence atmospheric circulation, ocean temperatures, and
precipitation patterns (Camberlin & Philippon, 2002; Palmer et al., 2023; Walker et
al.,, 2020). ENSO plays a significant role in influencing the long rains in East Africa,
with its various phases driving changes in precipitation patterns and variability
(Vellinga & Milton, 2018b). Typically, strong El Nifio events increase atmospheric
moisture, often leading to enhanced rainfall. However, during La Nifia conditions,
particularly following strong EI Nifio episodes, warmer SST in the western Pacific can
correspond to drier conditions over East Africa (Indeje et al., 2000). During the 2016—
2017 period, weakened Walker circulation due to El Nifio, along with increased SSTs
in the central and eastern Pacific, disrupted rainfall patterns and contributed to the dry
seasons and droughts over East Africa observed (Funk et al., 2018). However, the
tropical ocean and East African rainfall are complex and can result in both wetter and
drier conditions. As the 10D peaks between September and November, long rain

variability is less responsive to changes in IOD (Shaaban & Roundy, 2017).

49



However, the long rains are primarily influenced by ENSO, particularly through
its associated atmospheric teleconnections, rather than through interactions with the
Indian Ocean. Lyon and DeWitt (2012) found that the decline in long rains is closely
linked to abrupt changes in the tropical Pacific, challenging earlier suggestions that
emphasized the role of the Indian Ocean. Variations in zonal wind patterns, including
regional monsoonal flows and the Walker circulation's strength, are also quite important
(Nicholson, 2017). The intricacy of East Africa's climate system, where several factors
work together to affect seasonal rainfall variability. The increased or suppressed rainfall
during the long rainy season is also associated with MJO phase, which is the eastward
movement of oceanic and atmospheric phenomena along the tropics (Pohl and
Camberlin, 2006a; Hogan et al., 2015). These studies have shown that during MJO
phase 2-4, negative rainfall anomalies were observed across the coastal and, while
positive rainfall anomalies were observed over the highland. Based on this research, the
mechanisms causing these up to three-week-long wet/dry episodes are well understood
(Hogan et al., 2015; Nicholson, 2017). However, the impact of MJO on the long rains
is not easily understood, involving changes to intraseasonal aspects such as onset timing
and frequency of extreme events (Pohl and Camberlin, 2006b). According to Yang et
al. (2020), there is also evidence that the Quasi-Biennial Oscillation (QBO), a
stratospheric zonal wind pattern, influences the strength of convection and circulation

patterns, which in turn influence rainfall during long rainy seasons.

Variability in East African long rains is also greatly influenced by regional
characteristics, including moisture recycling and land-atmosphere interactions. Surface
evaporation rates are influenced by changes in plant cover and soil moisture, and these
variations contribute to localized convective processes. Rainfall distribution is
influenced by topography, especially the Rift Valley and the Ethiopian Highlands,
which alter moisture transport and wind patterns (Diem et al., 2014). Moreover,
moisture advection from the Indian Ocean is influenced by the interplay of monsoonal
winds and the Somali Jet, with stronger winds generally carrying more moisture into
the area (Funk et al., 2016; Jain et al., 2021). Increasing an understanding of these
mechanisms is essential for seasonal forecasting using dynamical models such as C3S

models, which may promise to anticipate long rains fluctuation ahead of the season.
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In this chapter, we used dynamical multi-system seasonal retrospective
forecasts from the C3S to investigate the predictability of the long rains over EA. These
predictions employ state-of-the-art seasonal prediction methods, designed to capture
the complex climate dynamics impacting rainfall patterns. Here, we investigated
whether the dynamical seasonal prediction systems accurately replicate the temporal
and spatial characteristics of the long rainy season. We also identify which forecast
systems can describe the MAM rainy season, which enables us to understand the
connection with large-scale climatic drivers. This allows us to assess further the models'
predictive accuracy across a range of temporal resolutions and investigate how the
prediction systems' accuracy was affected by significant climate modes. We try to
understand how these teleconnections influence East African long rain patterns and if
the models sufficiently consider the interactions by analysing their separate and
combined effects. Therefore, in this chapter, we evaluate the predictability of long rains
by dynamical multi-system seasonal retrospective forecasts by addressing key
questions: Do dynamical seasonal prediction systems reproduce the long rainy seasonal
pattern? Which climate drivers are more influential on MAM rainfall variability? When
and why is the forecast skill higher or lower, i.e., conditional predictability?
Furthermore, we have checked the model's skill dependence on ENSO and 10D phases,
considering both their independent and combined effects on the East African long rain
pattern.

3.2 Datasets, models, and methods

In this chapter, we focused on the long rains' predictability. We applied the same
datasets, models, and methods used to investigate Short Rains and described them in

chapter 2, section 2.2.2.
3.3 Model Climatology and Inter-annual variability

To evaluate the capability of the dynamical models to accurately reproduce East
African seasonal rainfall patterns during the long rain season, we compared the
climatology of the ensemble mean of individual models with the operational dataset.
The climatology and interannual seasonal anomaly for models and observational
datasets for Season 1 (March-May, MAM) as initialized in February (Figure 3.1). The
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rainfall anomaly indices for the MAM season are averaged over Equatorial Eastern
Africa (30-50°E, 5°S-10°N), as shown by the blue dashed box in Figure 3.1. The
observational datasets (Fig.3.1 i and j) display maximum rainfall over Lake Victoria
Basin and the Ethiopian Highlands, regions known for their heavy rainfall during the
long rains season. Similarly, most models displayed high rainfall over the highlands
and the western part of the region, particularly near the equator. However, the DWD
tends to underestimate the rainfall over the highlands, this discrepancy may be
attributed to the coarse resolution of the model ensemble compared to observational
reanalysis, which can make it challenging to capture topographic effects and localized

convection accurately.

The interannual variability of the long rainy season is presented (Fig. 3.1 k) by
averaging over part of equatorial East Africa between 5°S-10°N and 30°-50°E (blue
box in Fig. 3.1i) following a similar approach to Palmer et al. (2023). The index reveals
that 1998 appears to represent the peak rainfall for most coupled models, which is not
shown in ERA5. However, compared to GPCP, most models significantly overestimate
this event. The observational dataset presents higher interannual variability than
models, as the ensemble means smoothing out most of the internal variability that grows
from the perturbation in the initial conditions. Despite the observed variability, models
and observations generally align well during years of strong positive rainfall anomalies,
such as those in 1998 and 2010.
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Figure 3.1 Seasonal rainfall climatology during the long rains (Maech-May: MAM)
derived from GPCP (i), ERA5 (j), and the seasonal prediction systems from C3S, which
includes 8 ocean-atmosphere coupled model ensembles and cover the period 1993—
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2016 (a-h). The lower panel shows area-averaged MAM rainfall anomalies for parts of
Eastern Africa (30-50°E, 5°S-10°N; blue dashed box in i) for models, ERA5, and the
GPCP dataset. Anomalies are computed relative to the climatology shown in the upper
panel.

The spatial pattern of rainfall variability during MAM season is represented by
the inter-annual standard deviation for both models and GPCP dataset (Fig. 3.2). Over
the ocean, GPCP presents maximum variability over Southwest parts of the Indian
ocean at while in the model this is true only for ECCC, UKMO, and NCEP.
Furthermore, several models but especially JMA, ECCC, MeteoF, and CMCC presents
a significant variation in OND season over East African highlands. However, in most
lands both observational products and models exhibit less rainfall variability. As GPCP
climatology pattern, most of the coupled models show less rainfall variability is shown
in Northern parts of East Africa.
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Figure 3.2 Seasonal rainfall standard deviation during the long rains (MAM) derived
from the seasonal prediction systems from C3S, which includes 8 ocean-atmosphere
coupled model ensembles and covers the period 1993-2016 (c-j) and GPCP (i), ERA5
(j) datasets.

The model biases are computed over the East African region throughout three
consecutive lead seasons, i.e., lead1l(March-May, MAM) and the months that follow
lead2(April-June, AMJ), and lead3 (May-July, MJJ), shown in Fig. 3.3. The biases are
calculated as the difference between the GPCP dataset, and the ensemble mean of the
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individual models. Models like JMA, ECCC, CMCC, and MeteoF show notable
positive biases at lead seasons 1 and 2, suggesting an overestimation of precipitation
over the Congo Basin and the southwestern portions of the region. Particularly, models
such as CMCC and MeteoF exhibit a significant overestimation of precipitation over
the Ethiopian humid highlands, with the first two lead seasons showing up to 6 mm/day.
It is noteworthy that the MeteoF model shows the tendency for these positive biases to
increase with lead time, indicating the challenges of sustaining reliability over long
forecasting lead seasons. These findings highlight the necessity of better model
calibration, especially to capture rainfall variability in important areas such as the major

highlands.
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Figure 3.3 Mean bias (Model-GPCP) for C3S model predictions for lead season 1
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3.4 Predictive skill of coupled models

To evaluate the predictive skills of models in forecasting East African long rain
pattern, we applied the spatial and temporal anomaly correlations. The ACC analysis is
a common statistical metric used to measure the spatial (or temporal) correlation
between the simulated and the observed anomaly (section 2.2.3 in chapter 2).
Observational datasets such as GPCP and ERA5 are often used as benchmarks for
evaluating model performance. Using forecasts initialized in February for the 1993—
2016 hindcast period, we computed pointwise ACC to assess the models’ predictive
skill in reproducing EA long rains at lead seasons 1 (MAM), 2 (AMJ), and 3 (MJJ).
Most models, higher skill appeared across the western Indian Ocean, whereas less or
no skill was observed in many parts of the land, especially over highlands. This
indicates that most models are shown consistently in replicating the EA long rains.
However, throughout all lead seasons, some models like UKMO and NCEP show skill,
particularly across portions of the central highlands and Western parts of the Indian
Ocean. Some models, such as CMCC and UKMO, exhibit a significant forecasting skill
across Northern Eritrea, the Red Sea, and the southern west Indian Ocean up to lead
season two. However, as the lead time increases, the model’s skill declines, suggesting
a reduction in accuracy for longer forecasts. In general, in the case of long rainy seasons,
we have seen that different models have varying prediction abilities, as the ACC plots
across lead seasons 1 (MAM), 2 (AMJ), and 3 (MJJ) reveal variations in the models'

ability to predict rainfall anomalies.
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Figure 3.4 Pointwise-correlation maps between GPCP and C3S model predictions for
lead season 1 (May-March: MAM), lead season 2 (April-June: AMJ), and lead season
3 (May-July: MJJ) of rainfall anomalies (ensemble mean) during 1993-2016. Stippling
indicates area where the correlation between the hindcast and observation are
statistically significant at 99% confidence level, as calculated by a two-side Student t-

test for 22(N-2) degrees of freedom.

The dependency of the prediction skill on monthly lead-time is evaluated
against GPCP anomaly (Fig 3.5 a-h). To understand monthly predictability of long rain,
we evaluate the anomaly of each model at specific year. First, we identify the 3 most
skillful years (highlighted in colors) in which the models consistently outperform the
persistence forecasts for lead time from 1 to 3 months’ (Fig. 3a-h). Specifically, when
compared to persistence forecasts, 5 out of 8 models present the highest skillful
predictions for the year 1997 at 1-3 lead months. Similarly, only two coupled models,
ECCC and UKMO, depict the high skill in 1998 and 2010 resulting in the ACC values
greater than the persistence at the 2nd lead months (Fig. 3.4 ¢ and d). After lead month
2 (i.e., November, N), there is decreasing skill, with most years exhibiting significantly

lower ACC values compared to the persistent skill level. Overall, precipitation
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anomalies in the years 1997-1999 are more predictable, with most dynamical prediction
systems presenting ACC values greater than the persistence skill. From the monthly
dependent ACC, the MAM season models can predict monthly rainfall patterns with
noticeable variation within models, highlighting the forecast accuracy decreasing

across lead months.

The interannual predictive skill of ¢c3s models for the East African long rains
(MAM) is analyzed (Fig 3.5 i). Here, we looked at the correlation between the observed
and predicted RFa (the index computed over the blue box indicated in Fig.3.1i: EEARI)
across the hindcast periods (1993-2016). The highest skill presented in all models,
except MeteoF, during the year 1998. Even though 1997 is the most skillful year
identified at monthly lead ACC (Fig 3.5 a-h), at lead season (MAM), the low skill
evident in models (Fig 3.5 i). Similarly, in the year 2010 they also presented high
correlation values across most coupled models, except for the ECCC and MeteoF.
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Figure 3.5 Anomaly correlation coefficient (ACC) between GPCP and each C3S model
(a-h; shown in the upper panels) for monthly rainfall anomaly over part of Eastern
Africa (blue dashed box of Fig. 1i) for each year (grey lines) from lead month O
(February) to lead month 5 (February). In each subfigure, the top three forecasts stand
out with distinct colours: the most accurate year is highlighted in red, the second-best
in blue, and the third best in magenta. These forecasts are determined by sorting all
predicted years based on their average ACC values across February and March The
lower panel (i) illustrates the spatial correlation between each model and GPCP
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rainfall anomalies for the MAM season, calculated over Equatorial Eastern Africa (30—
50°E, 5°S-10°N)

3.5 Predictability conditional on ENSO and 10D phases

Large-scale climatic drivers, specifically SST anomalies in the Indian and
Pacific Oceans, are the primary source of predictability for the East African long rains.
Rainfall patterns in the region are significantly influenced by variability in the Pacific
Ocean, such as ENSO, and the Indian Ocean. While El Nifio or La Nifia events
frequently alter moisture transport and atmospheric circulation, positive or negative
IOD phases can have a substantial impact on the timing and intensity of the long rains.
To identify the main source of predictability for the east African long rain pattern, we
have seen the association with IOD and ENSO seasonal variability (Palmer &
Anderson, 1994; Troccoli, 2010).

The role of tropical SST in modulating East African long rain is analyzed,
utilizing indices that monitor rainfall (i.e., EEARIi) and SST (ENSO and IOD).
Specifically, the Nifio 3.4 index (N3.4; SST anomalies averaged over 120°W-170°W,
5°S-5°N) tracks ENSO, while the Dipole Mode Index (DMI; SST anomalies difference
between the western Indian Ocean (DMIw), 50°E—70°E, 10°S—10°N, and eastern
Indian Ocean (DMle), 90-110°E, 10°S -0) monitors IOD variability (Saji et al., 1999).
The relationship between MAM rainfall anomaly index and DMI across models (Fig. 3
.6a-h) and observational datasets indicates there is a negative relation between DMI and
N34 phases. From our analysis, the MAM rainfall season has no clear association with
SST when we consider N34 and DMI as evident from observations and models (Fig.
3.5). Even though MeteoF and NCEP models show a relatively high positive correlation

between DMI and N34, there is no significant association with MAM rainfall anomaly.

However, when we considered SST over the western Indian Ocean (DMIw) and
N34, most coupled models and observations present that SST has a linear association
with MAM rainfall anomaly (green colors on Fig. 3.6), except the MeteoF model across
the East African region. Some successful predicted year that we identified (Fig. 3.5) is
associated with the strongest EI Nifio event on record (1997/1998), East Africa
experienced the largest positive RFa during MAM season (Fig. 3.1 k). While most
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models exhibited weak association between N34 and DMI, strong association presented
in all models and observational dataset when we considered the western Indian Ocean
(DMIw).
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Figure 3.6 Scatterplot of Nifio3.4 index (N34; x-axis) versus Dipole Mode Index (DMI;
y-axis) during MAM season for each of the 24 years analyzed in both model predictions
(a-h) and GPCP dataset (i). The area of the circle is proportional to the absolute value
of MAM rainfall anomaly averaged over part of Eastern Africa (blue dashed box of
Fig. 1i), with positive (negative) anomaly coloured in green (orange). As in Fig. 3, the
best forecasted year is highlighted in red, the second-best in blue, and the third-best in
magenta. Additionally, the correlation coefficient between N3.4 and DMI is provided
at the top of each subfigure for reference. (j-r) shows a similar analysis but with the
western pole of the DMI index (DMIw).

Given East Africa’s proximity to the western pole of the Indian Ocean (DMIw
region), the interannual variability of the East African long rains is more strongly linked
to fluctuations in the Nifio3.4 index, demonstrating higher predictability. Statistically,
Nifio3.4 and DMIw show more consistent SST-rainfall relationships across years
during the MAM season. However, when considering the west-east dipole (DMI), the
correlation between the long rains and SSTs is notably weaker than the correlation with
DMIw. Similarly, the correlation between the long rains and SSTs is relatively a little
bit stronger with El Nino Modoki (Fig. 3.7). Hence, these finding highlights that the
East African long rains are more closely associated with ENSO than with the overall
DMI, as supported by both observational data and model simulations (Fig. 3.6 j-r). The
stronger correlation with DMIw, despite the expectation that local SST variations
would play a more dominant role, underscores the significant influence of large-scale
ocean-atmosphere interactions, such as ENSO, on East Africa's rainfall variability

during the long rains.
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CONNECTION WITH EL NINO MODOKI AND IOD PHASES
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Figure 3.7 Scatterplot of EI Nifio Modoki index (EMI; x-axis) versus DMI (y-axis
during MAM season for each of the 24 years analyzed in both model predictions (a-h)
and GPCP dataset (i). The area of the circle is proportional to the absolute value of
MAM rainfall anomaly averaged over part of Eastern Africa (blue dashed box of Fig.
2.1i), with positive (negative) anomaly coloured in green (orange). As in Fig. 3.5, the
best forecasted year is highlighted in red, the second-best in blue, and the third-best in

magenta.

The heatmap shown in Fig. 3.8 presents the correlation between MAM rainfall
anomalies (RFa) and key climate indices—N34, DMI, slpDMI, EMI, and UEQ—across
various dynamical models. Most models, along with ERA5 (0.41), show significant
positive correlations with N34, reinforcing the strong influence of ENSO on MAM
rainfall variability. While EMI (El Nifio Modoki) shows a weak and inconsistent
influence. DMI correlations are more mixed: while CMCC (0.62) and JMA (0.57) align
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with observed patterns, others like UKMO (-0.46) and NCEP (-0.57) reveal opposite

trends, highlighting model differences in representing 10D impacts.

Particularly, UEQ—zonal wind anomalies over equatorial Africa show strong
and consistent negative correlations across most models (e.g., JMA: -0.82, CMCC.: -
0.83), emphasizing its key role in modulating moisture transport. Likewise, sea level
pressure anomalies over the DMI region also exhibit significant negative correlations
in models such as JMA (-0.74) and CMCC (-0.84), though these are generally weaker
than for UEQ. In general, the CMCC and JMA stand out for capturing stronger and
more consistent relationships across all indices. In contrast, models like ECCC and
MeteoF show weaker signals, pointing to challenges in simulating the drivers of East
African rainfall. While ENSO and UEQ remain the most robust predictors of rainfall
variability, inconsistent DMI and slpDMI signals suggest a limited or model-dependent

influence of 10D-related SST and pressure anomalies on the region’s long rains.
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Figure 3.8 Correlation between RFa and climate indices for MAM season. Asterisks

(*) and (**) indicate significance at the 95% and 99% confidence levels, respectively.

The interannual variability of SST, sea level pressures, and zonal wind anomaly
for the MAM season is shown in, derived from multiple models and the ERAS dataset

66



(black points shown in Fig. 3.9), providing insights into key climate drivers influencing
East African long rains. Nifio3.4 (N34) index, a key measure of ENSO variability,
where all models exhibit strong agreement in capturing interannual fluctuations (Fig. 3
.9a). This high coherence between models and ERAS5 underscores the robust
predictability of ENSO during MAM. The result revealed that East African long rains
are linked to El Nifio events, with notable peaks during the 1997-98 and 2015-16 El
Nifio episodes. The SST indices over the Indian Ocean, that is DMI, generally, models
capture its variability, the spread between models is wider compared to the N34 index,
reflecting greater uncertainty in simulating 10D-related processes. Additionally, we
also examine sea level pressure variability of DMI (i.e., sipDMI shown in Fig. 3.7d),
which highlights pressure differences associated with 10D variability. While the model
patterns align broadly with ERAS5, disagreements are noticeable, especially during

extreme events.

Equatorial zonal wind anomalies—east-west winds along the equator—play a
crucial role in the advection of moist air from the Indian Ocean, significantly
influencing regional moisture transport and atmospheric circulation. Among these, the
UEQ index stands out as particularly important. While most models capture the general
trends of wind anomaly in UEQ, some models present considerable variation. For
example, in the year 2000, both ERA5 and most models (except for the ECCC model)
show positive anomalies in sea level pressure (SLP) and zonal wind, despite the
presence of a negative N34 anomaly (Fig. 3.7d and e). This suggests that during La
Nifa conditions, the cooling in the eastern and central Pacific enhances the descending
branch of the Walker circulation, leading to higher SLP anomalies in those regions
(Zhao and Cook, 2011; Williams and Funk, 2021).
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Figure 3.9 Interannual variation of MAM seasonal mean observed, individual coupled
model's ensemble means anomalies a) N34(SST anomalies averaged over 120°W-
170°W, 5°S-5°N) b) DMI, c) sea level pressure anomaly index over DMI region
(slpDMI), d) Equatorial wind anomaly index (UEQ). The rainfall index is area-
averaged over Eastern Africa (30-50°E, 5°S-10°N) for both models and ERA5.

3.6 Discussion and Conclusion

This chapter examined the performance of state-of-the-art dynamical seasonal
prediction models in capturing the East African long rains, focusing on eight coupled
models from the C3S seasonal retrospective forecast systems. We limited our analysis
to forecasts initialized in February, which aligns with the onset of the long rainy season

in most parts of East Africa.

Despite notable biases, particularly over the Congo Basin and the southwestern
parts of the region (Fig. 3.1), most models demonstrated some skill in replicating
rainfall anomalies over East Africa, especially in the southern sectors. However, model
performance was limited over northern and western Africa. In some parts of the western
Indian Ocean, predictive skill persisted through to MJJ seasons, as indicated by
statistically significant correlations (Fig. 3.4). Rainfall predictability in the region is
strongly linked to large-scale climate drivers, notably ENSO and I0D. The extended
1997-1998 EIl Nifio, for example, led to the highest recorded rainfall anomaly in 1998,
as evidenced by both observational datasets and dynamical models. Although the El
Nifio event peaked in late 1997, sustained ocean-atmosphere responses, such as a
disrupted Walker Circulation, continued into early 1998, facilitating enhanced moisture
transport into East Africa (Roy et al., 2024).

Our analysis shows that most models capture significant correlations between
East African rainfall and the Nifio3.4 index as well as the western Indian Ocean Dipole
mode index (DMIw). Positive 10D events, marked by warmer SSTs in the western
Indian Ocean, strengthen convection and increase moisture transport into East Africa,

contributing to higher rainfall. Likewise, EIl Nifio-related warming in the central and
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eastern Pacific alters the Walker Circulation, enhancing moisture influx and increasing

rainfall intensity in the region.

We evaluated the models’ predictive skill up to three lead seasons (MAM to
MJJ) by comparing their forecasts with GPCP observational data from 1993 to 2016.
Models generally performed better during ENSO years than during 10D phases,
underscoring the dominant influence of ENSO on the region’s rainfall variability.
While the models reliably reproduced Nifio3.4 variability, they exhibited greater
discrepancies when simulating the DMI and UEQ indices. This highlights the
complexity of the coupled ocean-atmosphere processes in the Indian Ocean and their
variable representation across models. Overall, the models demonstrate reasonable skill
in forecasting East African long rains, particularly under strong ENSO conditions.
However, their limited ability to simulate Indian Ocean dynamics suggests the need for

further improvements in representing regional teleconnections and air-sea interactions.
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4 INVESTIGATE THE ROLES OF ENSO AND IOD ON EAST
AFRICAN SHORT RAIN USING EARTH SYSTEM MODEL
EXPERIMENTS

4.1 Introduction

Remote teleconnections significantly influence East African rainfall variability,
which leads to intra-seasonal to interannual fluctuations that are more noticeable than
in many comparable locations across the world (Nicholls, 1997). Although factors like
the Southern Annular Mode (Hendon et al., 2007), MJO (Kimani et al., 2020) and
Atlantic Multi-decadal Oscillation (Xue et al., 2022) also play a role on rain fall
variability, tropical drivers mainly ENSO (Indeje et al., 2000; Macleod & Caminade,
2019) and the 10D (Ashok & Yamagata, 2003; Behera et al., 2005; Saji N. et al., 1999)
are recognized as the primary influences on interannual rainfall variability throughout
East Africa (Pook and Gibson, 1999; Risbey et al., 2009). 10D often affects East
Africa's rainfall, especially during the short rainy season, although the ENSO has a
stronger effect throughout both the short and long wet seasons (Palmer et al.,
2024). Despite these significant influences, the observable indices used to track ENSO
and 10D often exhibit high levels of co-variability (Ashok & Yamagata, 2003),
challenging efforts to isolate the individual contributions of each driver to rainfall
anomalies (Liguori et al., 2022).

Recent studies argue that the frequent co-occurrence of ENSO and IOD phases
makes it difficult to attribute observed East African rainfall patterns solely to one driver.
To understand the independent role, it is important to distinguish the physical climate
modes (ENSO and 10D) from the indices used to monitor their variability, such as the
Nifo3.4 index (N34; Trenberth, 1997) for Indian Ocean Dipole (Saji et al., 1999). To
disentangle the individual contributions of climate drivers to the interannual variability
of rainfall, some studies (e.g., Liguori et al., 2019) have employed both physical and
statistical removal techniques. These methods enhance the accuracy of interpreting and
attributing East Africa's complex rainfall variability. Analytical approaches have also
been widely used to isolate the distinct influences of ENSO and the IOD on rainfall
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variability (Liguori et al., 2022; McMonigal & Larson, 2022; Ummenhofer et al., 2009;
Wang et al., 2019). Physical and statistical elimination approaches, such as regression-
based procedures and sensitivity experiments in climate models, have been used in
research like Ligouri et al. (2022). By separating one mode's influence while accounting
for the other, these methods make it possible to interpret each mode's effects more
precisely. Studies such as Nicholson & Kim (1997) and Hastenrath et al. (2007) applied
multiple regression and partial correlation analysis techniques to isolate the
contribution of one mode, and the variability associated with the other mode is
regressed out. For instance, by adjusting for Nifio3.4 index values, ENSO-related
fluctuation can be eliminated, enabling to evaluation of the IOD's remaining influence.
To investigate atmospheric reactions to isolated causes, sensitivity experiments
utilizing climate models are also frequently used. For example, simulations with SST
anomalies limited to the Pacific or Indian Ocean are used (Luo et al., 2008; Tierney et
al., 2013). Empirical orthogonal function analysis is another powerful tool to separate
dominant modes of variability in climate datasets, distinguishing ENSO and 10D
signals (Gupta et al., 2023) Advanced hybrid approaches, combining physical
constraints with statistical techniques, such as the physical removal of SST patterns

associated with one mode, have also proven effective (e.g., Ligouri et al., 2019)

The triggering mechanism for the 10D using model simulation with and without
removal of the ENSO signal was realized by using only climatological wind stress
(Fischer et al., 2005). They found that during non-ENSO events, anomalous Hadley
circulation over eastern 10 causes anomalous southeasterly wind over Java Island,
leading to upwelling cold SST, and triggering of upwelling Kelvin wave via the easterly
component of the southeasterly wind. Cooling on the east of the 10 leads to losses of
the climatological heating due to convection, thereby triggering an anticyclone
southwest of the anomalous heat sink (Roy et al., 2023). Such an anticyclone intensifies
the southeasterly wind, and the process continues. The second mechanism for triggering
the 10D is the shift of the Walker circulation during the El Nifio phase. EI Nifio weakens
the Walker circulation by shifting the warm pool to the east, leading to losses of the
climatological heating over the Maritime-Continental Rossby wave southwest of the
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heating source. Such a mechanism occurred in 1997, the greatest El Nifio year ever
observed (Ashok & Yamagata, 2003)

Debates have arisen about whether the 10D is intrinsically linked to the ENSO
or if it operates independently with its dynamics (Fischer et al., 2005; Luo et al., 2010;
Saji et al., 1999). The interplay between these phenomena is evident, as developing El
Nifio events (or positive 10D phases) can induce positive 10D (or El Nifio) conditions
by triggering easterly (westerly) wind anomalies over the equatorial Indian (Pacific)
Ocean through modifications to the Walker circulation (Behera et al., 2006; Luo et al.,
2010; Wang et al., 2019; Zhang et al., 2019). However, Saji et al. (1999) found that a
strong inverse relationship between the 10D and ENSO appears mostly in the fall
season. Both statistical and physical methods were used to eliminate the ENSO signal
from the Pacific Ocean. The 10D signal was physically isolated using a global climate
model in which the measured SSTs over the Pacific Ocean were substituted with
climatological SSTs. To physically isolate the 10D signal, the study employed a GCM
using climatological SSTs in place of the observed SSTs over the Pacific Ocean. The
results showed that while the 10D signal persisted after removing the ENSO signal, it
exhibited weaker amplitude compared to the control run with raw SST data. This
suggests that atmospheric forcing may play a primary role in driving the 10D. The
statistical relationship between ENSO and 10D is investigated, with a focus on
consistent event classifications based on Bjerknes feedback and index thresholds
(Lestari & Koh, 2016). In this study, they found that the El Nifio and positive 10D
mutually enhance each other, but La Nifia and positive 10D reduce each other's co-
occurrence, demonstrating that co-occurrences are not coincider. On the other hand,
there is minimal interaction between La Nifia and negative 10D, and any historical
coincidences are probably coincidental. Asymmetries in ENSO-IOD interactions and
the different paths of El Nifio and La Nifia influences on the Indian Ocean are
highlighted by these findings, which are corroborated by strong statistical tests and
observable SST patterns (Cai et al., 2012; Xue et al., 2022).

The 10D is an internal coupled mode in the Indian Ocean, which at times co-
occurs with the ENSO in the Pacific (Saji et al., 1999; Murtugudde et al., 2000). The
relative influence of 10D and ENSO on East African short rains is not a surprise, as
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previous studies briefly studied (Behera and Yamagata, 2006; Luo and Yamagata,
2010). About 30% of positive 10D events co-occur with EI Nifio events (Rao et al.,
2002). About 65% of strong IOD events occurred when there was no ENSO in the
tropical Pacific. However, 35% of 10D-positive events co-exist with El Nifio events,
which can suggest possible interactions between the ENSO and the 10D. The coupling
process between the Walker circulation associated with the El Nifio autumn is a crucial
factor in inducing the positive IOD (Ueda and Matsumoto, 2000). Further, Behera and
Yamagata (2001) showed that IOD can modulate the Darwin pressure anomalies,
thereby affecting the Southern Oscillation Index (SOI). Using long-term data, Ashok et
al. (2001) found that the physical existence of the coupled mode states that the major

contribution to the IOD comes from the Indian Ocean.

Saji et al. (1999) and Murtugudde et al. (2000) found that the intensity of the
IOD and the equatorial zonal winds are strongly dependent on each other. Furtherly
(Rao et al., 2002) confirmed that the zonal wind anomalies, the principal forcing for
both the surface and subsurface dipoles, can bring the opposite polarity in SST
anomalies and bring out the dynamical importance of these zonal winds in the
development of dipole SST anomalies. Therefore, in this chapter, we assessed the role
of tropical climate modes by isolating the ENSO signal from the Pacific through both
statistical and physical methods. Statistical technigques, such as composite analysis and
partial correlation, were used to investigate the influence of ENSO from other climate
drivers, enabling us to understand its direct impact on East African rainfall variability.
Physical approaches, including sensitivity experiments with CESM models, further add
to this analysis by simulating atmospheric responses under prescribed SST anomalies
associated with ENSO, thereby isolating its influence. we have also used similar
techniques to isolate the influence of the 10D to investigate its independent role in
causing rainfall variability during the short rainy season. Examining whether this
variability is mainly driven by external climate forcings like volcanic eruptions and
anthropogenic effects or by internal climate dynamics like the interaction between

ENSO and IOD was a major emphasis.
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4.2 Dataset, Model, and Methods

4.2.1 Observational data and CESM experiments

The observational SST and precipitation data are sourced from ERAS5, a
globally gridded monthly dataset with high spatial resolution, covering the period from
1958 to 2022. ERAGS provides detailed and accurate observations, making it ideal for
climate analysis and model validation. In addition, monthly precipitation data are
obtained from GPCP version 2.3, which combines satellite and gauge-based
measurements to produce a consistent and reliable global precipitation record. These
datasets are essential for evaluating the performance of climate models and

understanding observed climate variability.

Data from the Community Earth System Model (CESM) low resolution (2.5°,
2.5°) from NCAR were used to investigate the effect of internal variability on East
African short rain variability. we conducted a series of experiments using CESM,
employing four configurations such as CESM_CTRL, CESM_amipFULL,
CESM _nolOD, and CESM_nolOD. As indicated in table 4.1 summarizes details of
CESM (Community Earth System Model) experiments designed to analyse climate
variability and the influence of specific climate drivers (Hurrell et al., 2013). The
CESM_CTRL simulation is a fully coupled control experiment that includes dynamic
interactions between the ocean, atmosphere, sea ice, and land components, spanning
the data period 400-2200. It serves as a baseline for comparison with other experiments.
The CESM_amipFULL (Atmospheric Model Intercomparison Project) simulation, an
atmospheric-only experiment, uses SST prescribed from CESM_CTRL to isolate
atmospheric responses, covering the period 801-1000. The CESM_nolOD experiment
suppresses variability related to the 10D, allowing for the examination of its role in
rainfall variability. Similarly, the CESM_noENSO simulation eliminates ENSO
variability to isolate its impact on global and regional precipitation and temperature
patterns. Both the CESM_nolOD and CESM_noENSO experiments span the period
801-1000. All simulations are conducted at low resolution, with SST and precipitation
as primary variables to investigate the individual and combined effects of ocean-

atmosphere processes on the East African short rain variability.
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Table 4.1 Description of CESM model configuration applied for this study

Features CESM_C | CESM_A | CESM_amipF | CESM_noE | CESM_nol
TRL MIP ULL NSO oD
Configurat Fully Atmospheric | Atmospheric Partially Partially
ion coupled model with model with SSTs | coupled i.e. coupled i.e.
model with prescribed from excludes excludes IOD
atmosphere, | observed CESM_CTRL. ENSO variability.
ocean, land, | SSTs variability.
and sea ice climatology
components. | (12 months).
SST Dynamically | Observations | From Dynamically Dynamically
Source computed by CESM_CTRL computed with | computed
the coupled (internally ENSO signals | with IOD
ocean- generated SSTs). | removed. signals
atmosphere removed.
model.
Ocean- Fully No coupling | No coupling Partially Partially
Atmosphe coupled. (prescribed (prescribed coupled except | coupled
e SSTs). SSTs). in the ENSO except in the
region Indian Ocean
Coupling region
Purpose Study natural | Study the Study the Isolate climate | Isolate
variability atmospheric | atmospheric impacts climate
and long- response to response to without ENSO | impacts
term trends observed CTRL SST variability. without 10D
in a fully SST variability. variability.
coupled variability.
system.
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Variability Full Observed CESM-generated | All variability All
Included | variability SST variability (e.g., | except ENSO. | variability
(e.g., ENSO, | variability. ENSO, 10D). except
I0D). variability
driven by
Indian Ocean
SST.
Period 801-1000 801-1000 801-1000 801-1000 801-1000
covered

4.2.2 Method of analysis

We analyse five experiments conducted under pre-industrial forcing: three partially
coupled and two atmosphere-only runs. The coupled control run (CTRL-coupled) spans
2200 years, with the first 400 years discarded as spin-up. All other experiments cover
200 years, initialized from year 801 of the CTRL-coupled run. All model analyses are
based on the 200 years from 801 to 1000. The partially coupled experiments include a
full dynamical ocean, but they are run with the SSTs restored to the model monthly
mean climatology of CTRL-coupled in specified regions following (Liguori & Di
Lorenzo, 2019). Here, we consider two different restoring masks: the first covers a
region in the eastern Pacific (180°W to the American coast, 20°S—N) to remove the
SST imprint of ENSO variability (noENSO-coupled experiment), and the second
covers a region in the Indian and west Pacific oceans (from the African coast to the
maritime continent, 20°S to Asian coast) to remove the SST imprint of 10D variability
(nolOD-coupled experiment). The CESM1 model and the mask used in the noENSO-
coupled experiment have been employed in previous studies specifically designed to
constrain ENSO variability (Deser et al., 2017). The mask for the nolOD-coupled
experiment is based on recent studies using nudged-SST simulations with CESML1 to
explore variability in the Indian Ocean (Zhang et al., 2019). While we adopt a similar

Indian Ocean mask, we restrict its eastern boundary to the Maritime Continent to
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prevent direct influence on the Pacific Ocean, unlike the broader mask extending to the
dateline (180°W).

a) Composite analysis

Composite analysis is a technique used to compare dry and wet situations, for
example, to identify the circulation features particular to a particular combination of
conditions. The key climate processes can then be explained by physical hypotheses
derived from this (Boschat et al. 2016). In process-based climate model evaluation, the
method can also be used to find common signals in the circulation of models that have
biases in one way, such as wet vs dry models (Creese et al. 2019). Composite analysis
is a statistical method commonly used in meteorology and climatology to identify and
analyze patterns associated with specific phenomena, such as El Nifio events or extreme
weather conditions (Wilks, 2011). This approach involves segregating data into subsets
based on a particular criterion (e.g., above or below a threshold) and averaging the
subsets to highlight characteristic patterns. Mathematically, the composite for a variable
X can be expressed as

1
Xcomposite = —
post N

M=

Xi (2)
i=1
Where Xcomposite is the composite mean; N is the number of events or cases
considered in the composite, and Xi represents individual data points in the subset of
the variable X for the i'" event. By isolating features associated with specific conditions,
composite analysis helps researchers understand the influence of key drivers on climatic

variables
b) Partial correlation analysis

Partial correlation analysis is a statistical method used to quantify the strength
and direction of the relationship between two variables while controlling for the effects
of one or more additional variables (Behera et al., 2005). In the context of East African
short rainfall anomalies, this method is particularly useful for isolating the independent
contributions of ENSO and 10D. By holding one variable constant (e.g., ENSO), the
partial correlation can reveal the specific influence of the other variable (e.g., IOD) on

78



rainfall anomalies. By using this method, we can distinguish between the associated
effects of ENSO and 10D, which frequently co-occur and influence rainfall patterns
over East Africa during the OND season. Partial correlation analysis results are useful
in determining whether short rainfall anomalies are driven more by ENSO than I0D.
For instance, studies have shown that during certain years, the 10D exerts a stronger
influence on East African rainfall compared to ENSO, particularly when ENSO signals
are weak (Behera et al., 2005). Conversely, during strong EIl Nifio years, ENSO can
overshadow the I0OD's influence, highlighting the need to account for both drivers
independently (Schreck & Semazzi, 2004). It is applied to measure the association of

EASR with DMI and ENSO by removing one of these factors, calculated as follows:

_ T13 —T12-723
32 = > >
\/(1 —13) \/(1 —133)

where 1,3 is a correlation between DMI and the rainfall anomaly index, 1y, is the

(3)

correlation between DMI and Nifio 3.4 index, 1,3 Correlations between Nifio 3.4 and

rainfall anomaly index
4.3 Rainfall Climatology

The rainfall seasonal climatology for the OND season across East Africa is
shown in Fig. 4.1, which compares different CESM model experiments with
observational datasets (ERA5 and GPCP). The upper panel (Fig. 4 .1a-f) displays the
regional distribution of rainfall climatology for each dataset, while Fig. d) presents the
seasonal precipitation cycle averaged over Equatorial East Africa is presented (shown
in blue colour dotted line, Fig 4.1 .1a). Both the observational data set and model output
exhibit a bimodal precipitation pattern, peaking during the long rains (MAM) and short
rains (OND). While the models capture the general seasonal cycle, discrepancies are
evident, particularly in the magnitude of rainfall tends to underestimate rainfall during
March and April. Whereas CESM_nolOD and CESM_noENSO exhibit closer
alignment with observations during February through April, which is part of the long
rainy season. In comparison to observational data, the seasonal rainfall cycle over

equatorial East Africa is generally captured by the CESM model simulations (Fig. 4.1),
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which exhibit consistent patterns but differ in intensity. During the OND season,
CESM_CTRL and CESM_amipFULL closely reproduce the observed peaks, showing
strong alignment with each other. However, these models overestimated the OND
rainfall pattern in contrast to the GPCP and ERA5 datasets. The seasonal cycle is
accurately replicated by CESM overall, however, its overestimation during the OND
season needs further research.

The seasonal climatology, the ERA5 (Fig. 4 .la) dataset represents the
observational data, showing a pronounced rainfall maximum over the central parts of
the analysed region, particularly in the Congo basin far from the coast. The
CESM_AMIP (Fig. 4 .1d) model, which uses a prescribed SST pattern, simulates
weaker rainfall, indicating reduced sensitivity to tropical climate modes. On the other
hand, the CESM_noENSO (Fig. 4 .1e) and CESM_nolOD (Fig. 4 .1f) models present
the rainfall maxima are slightly weaker and spatial gradients less pronounced than in
ERAS5. The CESM_noENSO model (Fig. 4.1 e) shows a notable reduction in rainfall

over the region, suggesting the model has a notable systematic bias in rainfall patterns.
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Figure 4.1 Seasonal OND rainfall climatology for ERAS (a), model (b-f) and seasonal
cycle of monthly rainfall (g) averaged over Equatorial East Africa region (30-50°E,
5°S-10°N) for observational dataset (dotted line) and CESM coupled models averaged
over available years (801-1000), GPCP (1979 to present), and ERA5 (1958-2022).

There is interannual variability in the rainfall anomalies across all model experiments,
with variations in the frequency and magnitude of events. A wider range of anomalies
is produced by the complex interactions between ENSO and 10D, which are reflected
in the CESM_CTRL simulation (Fully coupled control Run). Eliminating ENSO or

10D lowers this fluctuation, demonstrating their crucial influence on East African
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rainfal.  The models with the highest variability, CESM_CTRL and
CESM_amipFULL, have standard deviations of 0.82 and 0.83 mm/day, respectively
(Fig. 4.2 .2a and b). This suggests that the combined effects of ENSO and IOD continue
to influence these models' natural variability.

The standard deviation of CESM_noENSO, on the other hand, is smaller at 0.69
mm/day, indicating less fluctuation because of the elimination of ENSO-related
impacts (Fig. 4 .2c). Whereas CESM_nolOD with a standard deviation of 0.45 mm/day,
exhibits the most variability since the elimination of 10D further reduces seasonal
variations in rainfall (Fig 4.2 d). These findings demonstrate the distinct roles that
ENSO and IOD play in the region's rainfall variability. While the lower variability in
CESM _noENSO and CESM _nolOD indicates the lowered influence when these
important climate causes are omitted, the larger variability in CESM_amipFULL
highlights the important role of atmospheric variables in regulating East African
rainfall. Even though CESM_amipFULL and CESM_CTRL depict almost similar
patterns and variability, in CESM_CTRL (coupled model), ocean dynamics can
dampen atmospheric variability through feedback mechanisms such as thermocline
adjustments or changes in ocean heat content, which act as a buffer. On the other hand,
CESM_amipFULL relies solely on prescribed SSTs without such feedback, allowing
atmospheric processes (e.g., convection and moisture transport) to respond more freely

to the imposed SST anomalies, leading to slightly higher variability.
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Figure 4.2 Seasonal OND rainfall anomalies over East Africa derived from CESM
experiments for the period 800-1000. The anomaly calculated over Equatorial Eastern

Africa (30-50°E, 5°S-10°N)
4.4 Rainfall variability

Model bias describes the differences between the model's simulations and
observational data that can be attributed to the model's assumptions, parameterizations,

or structural constraints. The mean bias in rainfall anomalies between CESM model
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simulations and ERA5 over EA (Fig 4.3). The control simulation (CESM_CTRL; Fig
4.1a) displays both positive and negative biases in typical areas of the region. There is
a noticeable negative bias close to 3°S, especially west of Lake Victoria, which suggests
that rainfall in this region is significantly underestimated. On the other hand, some
portion of western Indian and Western Ethiopia have moderate positive biases,
indicating an overestimation of precipitation. While it captures the general structure of
East African rainfall (Fig 4.1 b) noticeable differences arise in magnitude and spatial
distribution compared to ERAS5.These biases point to difficulties in accurately
modelling localized rainfall mechanisms across intricate terrains. As presented in
control experiment, similar rainfall biases are detected in the CESM amipFULL
simulation (Fig 4.3 b), which accounts for observed SST forcing, though with
somewhat smaller magnitudes. The positive biases in the eastern parts of the analysed
region seem less severe and more dispersed, but the negative bias close to 3°S is still
noticeable. This suggests that while adding observed SST forcing enhances the rainfall

simulation to some extent, it does not completely remove the systemic biases.

The spatial patterns in CESM_AMIP experiments (Fig 4.3c), where the models
are only influenced by observed SSTs, are unchanged; however, positive biases become
slightly noticeable near equator and western Ethiopia which is far from East African
coast. This indicates that while SST forcing somewhat captures regional variability, it
has trouble fully resolving local precipitation processes. The recurrence of biases calls
attention to shortcomings in the model's depiction of land-atmosphere feedback and
convection, particularly in the vicinity of Lake Victoria. Here we can say that
CESM_AMIP simulations, which use observed SSTs as forcing, display relatively
higher positive biases over the southwest portion of the Indian Ocean compared to
CESM_CTRL and CESM_amipFULL. The better agreement with ERA5 highlights the
significant role of realistic SST forcing in rainfall biases.

The bias patterns in the CESM_noENSO experiment (Fig. 4.3d) are
qualitatively like the control simulation, even if ENSO variability is eliminated. There
is still a significant negative bias close to 3°S, as well as numerous smaller positive
biases in other areas. This suggests that ENSO does not significantly influence the mean
rainfall biases in this area. Similarly, CESM_nolOD exhibits bias patterns that are
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nearly identical to CESM_CTRL when the Indian Ocean Dipole (I0D) is removed (Fig.
4 .3e). Biases in both ENSO and 10D exclusion runs are persistent, indicating that their
influence on the mean rainfall bias in the study area is minimal. Regionally, dry bias
anomalies are especially evident across Kenya and some portions of the southern Congo
Basin, suggesting that precipitation in these regions is slightly underestimated. On the
other hand, orographic areas like the Bale Mountains in Ethiopia and the Mitumba

Mountains in Uganda exhibit wet bias anomalies.

a) CESM_CTRL b) CESM amipFULL C) CESM_AMIP
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Figure 4.3 Seasonal OND rainfall bias (a-e) for CESM coupled models. The mean bias
is computed as the difference between each model (CESM_CTRL and
CESM_amipFULL (801-1000), CESM_AMIP (400-2200), and the observational
dataset ERA5(1958-2022)

4.5 Characterization of ENSO and IOD

To characterize ENSO and 10D, we applied the Dipole Mode Index (DMI),
which represents the gradient of SST anomalies between the eastern and western
equatorial Indian Oceans, to identify anomalous years for the 10D. To identify between
strong ENSO and 10D years, thresholds based on standard deviations, a commonly

used technique in climate research, were used (Saji et al., 1999). Positive or negative
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IOD anomalous years are identified as SST anomalies with a DMI greater than £0.5
standard deviations (Saji et al., 1999). When the Nifio 3.4 index exceeds +0.7 standard
deviation, events are classified as El Nifio (positive ENSO) or La Nifia (negative
ENSO). La Nifia events (negative ENSO) are characterized by Nifio 3.4 values below
—0.7, whereas EI Nifio events (positive ENSO) are identified when the Nifio 3.4 index
exceeds +0.7 standard deviation (Trenberth, 1997).

In the observations (4.4a), during only ENSO (positive) years (top-left), strong
warming occurs over the equatorial Pacific Ocean, consistent with the typical EIl Nifio
pattern, while the Indian Ocean shows minimal anomalies. In contrast, during only
IOD (positive) years (top-centre), there is a clear dipole pattern over the Indian Ocean:
positive anomalies (warming) in the western basin and negative anomalies (cooling) in
the eastern basin. During the co-occurrence of 10D (positive) and EI Nifio (top-right),
the warming in the Pacific associated with El Nifio dominates, and the Indian Ocean
exhibits a strong dipole pattern. For the combined scenarios (bottom row), all ENSO
(positive) and all IOD+ENSO (positive) reveal more widespread warming across the

Pacific and Indian Oceans, indicating the superimposed effects of ENSO and 10D.

The CESM CTRL model (4.4 b) captures similar spatial patterns to observations
but with notable differences. During only ENSO (positive) years (top-left), the
equatorial Pacific exhibits strong warming resembling El Nifio, although the magnitude
and spatial extent appear slightly weaker compared to observations. During only 10D
(positive) years (top-center), the Indian Ocean dipole pattern is evident, but the cooling
in the eastern basin appears less pronounced than in observations. Pure IOD and ENSO
(positive) years (top-right), the Pacific warming is prominent, and the 10D signature
remains visible in the Indian Ocean. In all ENSO (positive) and all 10D (positive)
scenarios (bottom row), the CESM CTRL model reproduces the broad Pacific warming
and Indian Ocean dipole features reasonably well, while biases are evident compared

to observations.

In the case of CESM amipFULL simulations (4.4 c), the SST anomalies are
prescribed in the model's boundary conditions, particularly from the control experiment
SSTs. Therefore, the patterns closely resemble those in the CESM CTRL but with some
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differences due to atmospheric dynamics. Thus, during only ENSO (positive) years
(top-left), the equatorial Pacific warming remains dominant, consistent with El Nifio,
while during only 10D(+ve) years (top-center), the dipole pattern in the Indian Ocean
is apparent, but slightly weaker than in observations. The only IOD+ENSO (positive)
years (top-right) display combined Pacific warming and Indian Ocean dipole anomalies
like the CTRL experiment. The all ENSO (positive) and all IOD+ENSO (positive)
panels (bottom row) exhibit broader and more consistent SST warming patterns across
the Pacific, with notable dipole features in the Indian Ocean, reflecting the combined
influence of ENSO and 10D.

Comparing with Observational data, the CESM experiments (CESM_CTRL
and CESM_amipFULL) capture the general SST anomaly patterns during ENSO and
IOD vyears, such as Pacific warming during El Nifio and the dipole signature in the
Indian Ocean. However, the models tend to underestimate the magnitude and spatial
extent of anomalies, particularly in the Indian Ocean during only 10D (positive) years.
In all datasets, ENSO appears to exert a stronger influence on SST anomalies globally,
especially in the Pacific Ocean. The co-occurrence of 10D with ENSO amplifies
warming patterns in the Indian Ocean. The CESM_CTRL fully coupled model and
CESM amipFULL atmospheric-only model show similar SST patterns, but differences
arise due to coupling in control which allows the ocean-atmosphere feedback processes
to evolve dynamically. In contrast, CESM amipFULL uses prescribed SSTs, limiting
internal variability. This analysis highlights the ability of CESM models to reproduce
observed SST anomalies during ENSO and 10D years while revealing areas for
improvement, particularly in representing the Indian Ocean dipole magnitude and its

independent role.
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Figure 4.4 Composite SST anomaly over tropics for the OND season from
observational data (ERA5) and the CESM model experiment. The anomalies are
computed for climatological periods for ERA5 (1958-2022), and models (801 —1000)
when only 10D occurs (first column panels), only El Nifio occurs (second column
panels), and both 10D and ENSO occur together (the third column panels).

CESM_nolOD experiments

In the case of the nolOD experiment, the composite SST anomalies over the
tropical region during the OND season are presented in Fig. 4.5. Here, we compare the
two scenarios: (1) years with only ENSO-positive events (n = 23) and (2) all ENSO-
positive years (n = 57). In the case of only ENSO-positive, the SST anomalies reveal a
strong warming signal presented in the central and eastern Pacific, characteristic of El
Nifio conditions, while minimal anomalies are observed in other regions, particularly

the Indian Ocean. In contrast, the case of all ENSO-positive shows a broader warming
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pattern that suggests additional contributions, possibly from residual 10D influences,

despite the noENSO experimental setup.
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Figure 4.5 Composite SST anomaly over Tropics for OND season from CESM noENSO
experiment.

CESM_noENSO experiments

We also investigate the composite SST anomalies during the OND season from
the CESM noENSO experiment (Fig. 4.6), highlighting the role of 10D as tracked by
DMI (the bottom panel). The anomalies are computed for climatological periods CESM
noENSO (0801 —1000) when only 10D occurs (first column panel), and only EI Nifio
occurs (second column panel). Therefore, we identified anomalies for years with only
positive 10D events (n = 45) and all positive 1OD years (n = 64). In years with only
positive 10D events, the SST anomaly pattern reveals a strong west-east gradient in the
Indian Ocean, with normal conditions in the western equatorial region and the eastern

equatorial Pacific.
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Figure 4.6 Composite SST anomaly for the OND season from the CESM noENSO
experiment. The DMI index computed the difference between the West and East Indian

Ocean model experiments.
4.6 10D and ENSO Driven East African Short Rain Variability

IOD and ENSO are the major factors influencing East African rainfall
variability during the OND season through SST-induced changes to convection and the
large-scale atmospheric circulation; the region's rainfall variability can be influenced
independently or in combination. The intricate interaction of ENSO and IOD influences
the variability of EASR. Here, as shown in Fig. 4.7, we examine the association of
EASRI with DMI (right column denoted in red) and Nifio3.4 (left column, denoted in
blue). As a result, EASRi shows a moderately positive association with Nifio3.4 (r =
0.57) for the ERAS dataset, but a greater correlation with DMI (r = 0.79), indicating the
IOD's dominant role in influencing rainfall patterns. The connection with Nifio3.4 is
relatively weaker in the CESM tests (CESM_CTRL: r=0.28, CESM_amipFULL.:
r=0.23). In contrast, the DMI consistently demonstrates strong correlations in these tests
(r=0.81 and r=0.83, respectively), indicating the dominant influence of the 10D on East

African short rains in these simulations.
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The independent influence of the IOD and ENSO on EASR is further proven by
the noENSO and nolOD experiments (Fig. 4.5 and 4.6). The results demonstrate that,
during the OND season, the 10D has a greater influence on regulating East African
rainfall, whereas ENSO has a smaller and secondary effect. The case of the nolOD
experiment has depicted that a negative correlation exists between N34 and EASRI (r
= -0.53), suggesting that ENSO alone is not responsible for favourable rainfall
anomalies. In contrast, the noENSO experiment keeps a strong link between DMI and
EASRI (r = 0.83), confirming the robust and independent influence of the 10D.
Therefore, these results prove that the 10D plays a dominant role in controlling East
African short rains during OND, particularly in CESM simulations. The robustness of
the 10D's impact is confirmed by the high correlations between the DMI and the East
African short rains as presented in both observations and CESM simulations. The 10D
continues to impact even when ENSO variability is reduced, highlighting its
independent role in triggering rainfall anomalies. On the other hand, the negative
correlation presented nolOD experiment indicates that ENSO by itself is unable to
generate good rainfall conditions.

91



ERAS ERAS
2
1
0
1
-2

CESM_CTRL |
2 Sl e
1 ,:-i .ﬁ.‘.?‘"..- ‘.
of T . patiyt
1 ‘!3#:;h .
2

r=0.28

EASRI

CESM_amipFULL | -
'\ e o® - ®

2
X .W.
af e

-2 r=0.23
5 nolOD .
1 . s 7
- .#‘C
0 o. .. .'&-.: '.
i?. .'.. i' 1)
_'_‘|_ ® * e
-2 r=-0.53
-2 -1 0 1 2
N34

Figure 4.7 Scatterplot of East African short rain index (EASRi) versus N34 (first
column indicated in blues colour), and IOD (the second column indicated in red colour)
during the OND season for ERAS reanalysis, CESM experiments. The solid line

indicates the linear regression line.
4.6.1 Positive phases

Composite rainfall anomalies are computed for years with significant anomalies
during 10D and ENSO events. During 10D phases, anomalous years are selected when
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the DMI index exceeds 0.5 standard deviations (std), showing significant positive or
negative 10D phases. Similarly, for ENSO, seasonal composite rainfall anomalies are
calculated during El Nifio years when the Nifio3.4 (N34) index exceeds 0.7 standard
deviations. These thresholds help identify the years with strong SST anomalies,
allowing for a clearer understanding of how these phenomena influence seasonal
rainfall patterns over East Africa. We examined the composite rainfall anomalies over
East Africa during OND season using three IOD/ENSO phases (Fig.4.8): positive
ENSO only(left), positive IOD only (center), and Joint IOD and ENSO positive phases
(right column; identified as sorting common years that co-exist both ENSO and 10D).
The variation in sample sizes (n) for each phase indicates the frequency of IOD/ENSO
events. During positive ENSO phases, CESM_CTRL and CESM_amipFULL exhibit
stronger and more localized dry anomalies, especially over central and northern regions,
while the observational data present similar but weak rainfall anomalies with slight

drying over East Africa.

For the positive 10D phase, all datasets reveal extensive wet anomalies over
East Africa, confirming the main role of the 10D on rainfall variability. This effect is
well captured by the CESM_CTRL and CESM_amipFULL simulations, which show
intensified wet anomalies. The rainfall anomalies increased during the combined
positive ENSO and 10D phases, with all datasets displaying significantly wet
conditions throughout East Africa. While CESM_CTRL and CESM_amipFULL
exhibit more pronounced wet anomalies, especially in the southern and central regions.
Therefore, from Fig. 4.8, we can understand that the spatial patterns and magnitude of
rainfall anomalies underscore the obvious role of the 10D, both individually and in
combination with ENSO, in modulating East African OND rainfall. While CESM
simulations align reasonably well with ERAS5, they tend to overestimate rainfall
responses, particularly during the combined phase.
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Figure 4.8 Composite rainfall anomaly over East Africa region for OND season from
observational data (ERA5) and CESM model experiment during positive phase of
ENSO/IOD. The anomalies are computed for climatological periods (ERAS5 1958-2022)
and models (0801 —1000) when pure positive IOD (pIOD) occurs (first column panels),
pure EI Nifio occurs (second column panels), and co-occurring of plOD and EI Nifio
(the third column panels). The sample size(n) is the number of events that exceed the
threshold standard deviation of SST anomaly indices. The Stippling indicates

significant composite anomalies (p < 0.05) relative to neutral years.
4.6.2 Negative phase

We also looked at the composite rainfall anomalies of the OND season during
negative IOD/ENSO phases (Fig.4.9): Pure La Nifia only(left), negative 10D (nlOD)
and co-occurring of nlOD and La Nifa (right column; identified as sorting common
years that co-exist). The variation in sample sizes (n) for each phase indicates the
frequency of nlOD/ La Nifia events. During La Nifia phases, CESM_CTRL and
CESM_amipFULL exhibit localized wet anomalies, especially over central and
northern regions, similarly, the observational data set presents similar but wet rainfall
anomalies over land and some parts of the western Indian Ocean. Whereas during the
negative 10D phase, all datasets reveal extensive dry anomalies over East Africa as
expected, confirming the main role of 10D on rainfall variability. This effect is well
captured by the CESM_CTRL and CESM_amipFULL simulations, which show
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increased dry anomalies. The rainfall anomalies are significantly reduced during the
combined negative ENSO and 10D phases, with all datasets displaying significantly
dry conditions throughout East Africa. While CESM_CTRL and CESM_amipFULL
exhibit more pronounced negative anomalies, especially over the ocean part. In general,
we can understand that the spatial patterns and magnitude of rainfall anomalies
underscore the obvious role of the 10D, both individually and in combination with
ENSO, in modulating East African OND rainfall.
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Figure 4.9 Composite rainfall anomaly over East Africa region for OND season from
observational data (ERA5) and CESM model experiment during negative phase of
ENSO/IOD. The anomalies are computed with respect to climatological periods (ERAS
1958-2022) and models (0801 —1000) when pure negative 10D (nlOD) occurs (first
column panels), pure La Nifia (second column panels) and co-occurring nlOD and La
Nifia occur together (the third column panels). The sample size(n) which numbers of
events that exceeds threshold standard deviation of SST anomaly indices. The Stippling

indicates significant composite anomalies (p < 0.05) relative to neutral years.

4.6.3 Independent roles of ENSO and 10D

To understand the independent roles of IOD and ENSO, two CESM
experiments (CESM nolOD and noENSO) are applied. By isolating the effects of each
event, these models enable identify the roles to rainfall variability. Therefore, we have
tested for both positive and negative phases of 10D and ENSO (shown in Fig 4.10).
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During the positive phase, the CESM_nolOD experiment (left column) presents
significant negative rainfall anomalies over central parts of the East Africa region.
Hence, ENSO plays a part in lowering rainfall when ENSO is removed. In the case of
the CESM_noENSO experiment we noticed primarily above normal rainfall, especially
in the coast and southwestern parts of the Indian ocean. The combined effects of ENSO
and 10D are reflected in the joint anomalies (right column), where the IOD's positive
contribution partially offsets ENSO's strong positive influence, creating a more
balanced pattern with the strongest positive anomalies continuing to exist in the eastern

parts of the region under analysis, including the ocean portion.

The CESM_noENSO experiment exhibits extensive negative anomalies during
the negative phase, suggesting that 10D is responsible for the drying effect in East
Africa's coastal and southeast regions. The CESM_nolOD experiment, on the other
hand, demonstrates notable positive anomalies along central and southern East Africa,
which is in line with the IOD's negative phase's localized wetting effect. With 10D-
driven positive anomalies along the coast partially offsetting ENSO-driven negative
anomalies in core regions, the joint anomalies exhibit a complex spatial structure. In
CESM_noENSO and nolOD tests, we found that ENSO and 10D have geographically
different effects on East African rainfall variability, with ENSO having a greater
influence during the positive phase and a more limited interaction during the negative

phase.
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Figure 4.10 Composite rainfall anomaly over East Africa region for OND season from
CESM nolOD and noENSO experiments during positive phase (first column) and
negative phase (second column). The anomalies are computed concerning
climatological models (0801 —1000). The sample size(n) is the number of events that
exceed the threshold standard deviation of SST anomaly indices. The Stippling

indicates significant composite anomalies (p < 0.05) relative to neutral years.

Furthermore, we applied statistical analysis using the partial correlation
technique between SST and rainfall anomalies over East Africa during the OND season,
as presented for both observations (OBS) and the CESM_CTRL model (Fig. 4.11). The
analysis is divided into two components: (1) the influence of the IOD (DMI) while
excluding ENSO (N34), and (2) the influence of ENSO (N34) while excluding the IOD
(DMI). This method effectively isolates the independent roles of ENSO and 10D in
East African short rainfall variability. Using equation 3, we computed the partial
correlations for observations (OBS) and CESM models, the top panel indicates the
influence of the 10D (DMI) while excluding ENSO. When we exclude the ENSO
signal, strong positive signals are exhibited over equatorial and northern East Africa
(5°S-15°N), indicating that a positive 10D event leads to above-normal rainfall in this
region. This result aligns with the known 10D mechanism, where warm SST anomalies
in the western Indian Ocean enhance convection and moisture transport towards East
Africa. While we exclude the roles of ENSO signals for observations (bottom panel),

we observed weak or no significant correlations appear over East Africa, suggesting
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that ENSO's direct influence on OND rainfall is limited when the 10D is excluded. The
spatial pattern indicates that ENSO primarily affects regions outside East Africa, with
negative correlations appearing over the western Indian Ocean and positive signals in
the central and eastern Indian Ocean. This highlights that ENSO's impact on East

African short rains may depend on its interaction with the 10D.

In the CESM_CTRL model, the top panel shows the independent roles of the
IOD while excluding ENSO. As observations, the CESM_CTRL model captures a
strong positive relationship between the 10D and East African rainfall anomalies.
Positive correlations dominate the equatorial and northern East African regions,
extending into the western Indian Ocean. Compared to observations, the CESM_CTRL
model shows slightly higher strength and spatial extent of these correlations.
Nonetheless, the model effectively simulates the critical role of the 10D in modulating
East African short rains. CESM_CTRL isolates the role of ENSO while excluding the
influence of the 10D. weak or negative correlations are presented over East Africa,
highlighting the limited direct influence of ENSO on rainfall in the region. However,
significant negative correlations emerge over the Indian Ocean, consistent with ENSO-
driven cooling patterns during El Nifio events. These findings suggest that ENSO's
primary impact on East African rainfall is indirect, often mediated through its

interaction with the 10D.
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Figure 4.11 Partial correlation between SST indices and rainfall anomaly from the C3S

models after excluding Nifio-3.4 (upper) and DMI (bottom) during the OND season.
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Stippling indicates the area where the correlation between sea surface temperature
indices and RF anomaly, which are statistically significant at a 99% confidence level

as calculated by a two-sided Student t-test for 22(N-2) degrees of freedom.
4.7 Discussion and Conclusion

In this chapter, we investigate the independent roles of ENSO and 10D in
modulating EASR variability from Community Earth System Model (CESM)
experiments such as CESM-CT, CESM-noENSO, CESM-nolOD, and CESM-
amipFULL (atmosphere-only simulation with SSTs coming from the CESM_CTRL
coupled). In the analysis, we confirmed that IOD has the dominant role in driving East
African short rains during the OND season, as evidenced by strong positive correlations
in both observations and the CESM_CTRL and CESM_nolOD experiments. On the
other hand, ENSO has a weaker influence, with its impact largely dependent on its
interaction with 10D. The CESM_CTRL model performs well in reproducing the
observed relationships, making it a valuable tool for understanding the independent
contributions of ENSO and 10D to regional climate variability. In summary, the
CESM_CTRL model and observational data demonstrate how the Indian Ocean SST
variability dominates EASR during the OND season. Positive (negative) IOD SST
anomalies exhibit a strong correlation with above-normal (below-normal) rainfall in
East Africa. Warm SST anomalies in the western Indian Ocean promote convection and
moisture transport to the EA region, which is in line with the known mechanism of the
IOD (Ummenhofer et al., 2009). Here in this study, ENSO influence is restricted in the
absence of the 10D, as evidenced by the weak or non-existent direct association
between East African rainfall and both observations and the CESM model.
Nevertheless, ENSO continues to have an impact beyond East Africa, with positive
signals in the middle and eastern Indian Ocean and negative correlations over the
western Indian Ocean (Schott & Mccreary, 2001). Given the complexity of the
mechanisms driving East African short rains (Walker et al., 2020), our results further
suggest that ENSO's impact on rainfall is primarily indirect, often facilitated through

its interaction with the 10D.
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5 GENERAL DISCUSSION

Using observations and models, we assessed the predictability of two major east
African rainy seasons i.e. long rain and short rains under seasonal retrospective forecast
systems from the C3S. Given our aim, we only considered the forecast initialized at the
beginning of the short and long rainy season, namely in September and February,
respectively. The predictability East African short rains were evaluated of using eight
seasonal retrospective forecast systems from C3S, focusing on September-initialized
forecasts. In the seasonal climatology, both models and observational dataset depicts a
noticeable rainfall maximum over the central parts of the analysed region, particularly
in Congo basin which is far from the coast (see Fig 2.1 in chapter 2 and Fig 4.1 in
chapter 4). This feature is typical of the OND season, where rainfall is driven by the

seasonal migration of the ITCZ and local monsoon dynamics (Nicholson, 2017).

In terms of ACC, most models demonstrate skill in predicting OND rainfall
anomalies across East Africa, with notable biases (Fig. 2.1). Along the East African
coast (near Somalia) and parts of the western Indian Ocean, models exhibit skill
extending to DJF, likely due to SST persistence in the western Indian Ocean (Fig. 2.6).
These findings align with prior studies, such as Behera et al. (2005) and Bahaga et al.
(2016). Model skill shows strong inter-annual variability, with skilful years typically
coinciding with mature ENSO and 10D phases. While El Nifio events are linked to
significant rainfall anomalies, the Indian Ocean SST response to ENSO, as indicated
by DMI, plays a more influential role than the direct ENSO-driven impacts (e.g.,
atmospheric bridge). The sign of the DMI reliably predicts the rainfall anomaly sign,
unlike Nifio3.4. Consistent with Yamagata et al. (2002) and Black et al. (2003), the
east-west SST dipole and zonal circulation patterns are key drivers of short rain
variability. However, during the 2015/2016 El Nifio, most models failed to replicate
OND rainfall patterns, except for NCEP and ECCC. This failure is attributed to a
weaker positive 10D phase compared to 1997/1998, reducing Indian Ocean Walker
circulation intensity (Macleod & Caminade, 2019).

In the third chapter of this study, we also evaluate the predictability of long rainy
season using similar models applied in chapter two. The capability of C3S coupled
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models to replicate East African rainfall anomalies at consecutive lead seasons i.e.
MAM (Lead 1), AMJ (lead 2), and MJJ (lead 3) varies when compared to GPCP data.
The significance of ocean-atmosphere interactions as shown by Kebacho & Chen,
(2022) the fact that most models exhibit considerable skill across the western Indian
Ocean, where comparable correlations remain throughout all seasons (Fig 3.4). While
most models consistently showed moderate to high skill throughout East Africa during
the short rainy season (Fig. 2.4), the skills in the long rainy season noticed more model-
dependent and localized. These is because of long rains (MAM) are driven by a variety
of regional and global causes, including ENSO and Indian Ocean dynamics, rather than
by a single large-scale phenomenon like the IOD (Kebacho & Chen, 2022b; Vigaud et
al., 2017). This fluctuation reflects the intrinsic complexity of these climatic drivers
(Nicholson, 2017). According to Funk et al., (2018), East African long rains are more
influenced by ENSO when warmer or cooler SSTs occur in the western Pacific. Strong
El Nifio episodes may be followed by cool La Nifia conditions in the East Pacific dry
long rainy season relate to higher SSTs in the western equatorial Pacific, while dry
conditions during the MAM season are linked to warmer SSTs in the western Pacific.
Here, our study also found similar results, with significant correlations between the
MAM rainfall index and the N34 index in most models, consistent with the
observational dataset. This indicates a robust connection between ENSO events and

East African long rains (as shown in Figures 3.6, 3.7, and Table 3.1).

The Walker circulation, which reduces the magnitude of rainfall during long
rainy season which is reinforced by warmer SSTs over the western Pacific (Roy et al.,
2024). For example, during 2016-2017, this SST pattern caused droughts and dry
seasons to follow one another (Funk et al., 2018). Because the 10D peaks months later,
from September to November, than the long rains, variations in the long rains are less
susceptible to changes in 10D (Shaaban and Roundy, 2017). In our study, we confirm
this finding: both observational datasets and model simulations consistently show lower
rainfall variability during the long rains. Similar to the GPCP climatology, most
coupled models indicate less MAM rainfall variability, particularly in the northern
regions of East Africa (Fig 3.2). However, during short rainy season the rainfall
variability is higher as evident in both observational dataset and most c3s models. As
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shown in Fig 3.4 most c3s models depicts skill in over ocean and Eastern parts of the
analysed region, but perform less well or inconsistently, especially in northern and
western EA regions. The successful predicted year that we identified (Fig. 3.5) is
associated with the strongest ElI Nifio event on record (1997/1998), East Africa
experienced the largest positive RFa during MAM season (Fig. 3.1 k) however less in
magnitude compared to OND season (presented in Fig. 2.1 k). Additionally, there are
considerable differences in the skill amongst models, suggesting that over East Africa,
it is difficult to consistently capture the complex links between ocean-atmosphere

coupling, regional moisture transport during the long rains (Nicholson, 2018).

The East African regional rainfall variability is frequently determined by the
interplay between ENSO and IOD (Wang et al., 2019). The Indian Ocean's atmospheric
circulation patterns can be altered by positive ENSO phases, which are defined by warm
SSTs in the central and eastern Pacific (Shaaban, 2015). Depending on the 10D phase,
these modifications may intensify or lessen rainfall anomalies brought on by the 10D
(McMonigal & Larson, 2022). On the other hand, when ENSO is not present, the IOD
uses its well-established mechanism of SST-induced convection changes to
independently generate regional rainfall variability (Roy et al., 2024). This is true as
Behera et al. (2005) and Yamagata et al. (2003) stated that 79% of the extreme years of
short rains are associated with IOD anomalous years using the SINTEX-F1 model. It is
therefore natural to expect that the atmospheric circulation change associated with the
IOD is a major driver of the anomalous short rains. To understand the independent roles
of 10D and ENSO on East African short rain variability, we investigated using the
CESM experiments analysis. Consistent to previous studies (Luo et al., 2010; Wang et
al., 2019) we noticed significant correlation between positive OND rainfall and 10D
phases. In the observational data set (ERA5), EASRi shows a moderate positive
correlation with N34 (r = 0.57) and a stronger correlation with DMI (r = 0.79),
indicating that the 10D has a dominant influence on East African short rains (Fig. 4.7).
The association between the DMI and the East African Short Rain Index (EASRI) peaks
during boreal fall, aligning with the short rains season and supporting previous findings
(Behera et., 2005). These values remain largely unchanged even when the influence of
Nifo3.4 is excluded, indicating the robust role of the 10D. Both simple and partial
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correlation coefficients in the model align well with observations. Thus, the I0D's
crucial significance is further highlighted by the noticeably reduced rainfall responses
depicted in the suppressed 10D variability experiment (CESM-nolOD). These results
are consistent with previous studies (Saji et al., 1999 and Behera et al., 2005) they found
that the 10D to be a major cause of rainfall anomalies in East Africa, where as ENSO's
direct influence on EASR is comparatively weaker, as evidenced by weak correlations
between ENSO and rainfall in both observations and CESM_CTRL simulations (Fig
4.9). ENSO's impact is more pronounced when it interacts with the IOD, emphasizing
its indirect role. For instance, during concurrent positive ENSO and positive 10D
events, the rainfall anomalies are amplified, highlighting the synergistic effects of these
phenomena. Without the 10D, as in the CESM-nolOD experiment, ENSQO's influence
on EASR is minimal. This is consistent with findings from studies like Black et al.
(2003), which reported limited ENSO impacts on East African rainfall when isolated
from 10D variability.
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6 GENERAL CONCLUSIONS

This PhD thesis aims to examine the predictability of seasonal rainfall patterns
and investigate the roles of ENSO and 10D that influence the two major rainy seasons
(long rains, MAM, and short rains, OND) over East Africa. First, we evaluated the
predictive skill of eight coupled ocean-atmosphere seasonal prediction models provided
by C3S in reproducing the East African rainfall pattern. While most models show
significant mean rainfall biases over highlands, they generally perform well in
predicting OND rainfall anomalies over the coastal region. However, their skill is
limited or absent in some northern and western areas. Along the Somali coast and over
parts of the Western Indian Ocean, models demonstrate notable skill, up to lead season
3, which is linked to the persistence of SST anomalies in the Western Indian Ocean.
However, during the long rainy season, models perform more accurately in reproducing
rainfall anomaly during ENSO years than during 10D phases, indicating that large-scale
interactions between atmospheric and oceanic conditions influence the long rain

patterns of the East African region.

In 1997 and 1998, the model's strong performance compared to persistence
forecasts often coincided with the mature phases of ENSO and 10D. The IOD, tracked
using the DMI, effectively predicts the sign of OND rainfall anomalies. Despite East
Africa’s proximity to the [OD’s west pole, the correlation between short rains and IOD
is strongest when both east and west poles are considered. This suggests that broader-
scale 10D variability, associated with changes in the Walker Circulation, drives East
African rainfall variability more than localized SST fluctuations. Long rainy season
patterns appear to be more impacted by large-scale atmospheric-oceanic interactions,
as the models demonstrate higher predictive skill in simulating the MAM season during
ENSO compared to 10D years.

Using CESM experiments, we demonstrated that 10D exerts a stronger
influence than ENSO (Nifi03.4) on East African short rains during the OND season.
Observations from ERA5 show a moderate positive correlation between EASRI and
Nifo03.4 (r = 0.57) but a much stronger correlation with DMI (r = 0.79), suggesting the
IOD's dominant role. CESM simulations further support this, showing weaker
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correlations between EASRI and Nifio3.4 (r = 0.28-0.23), while the DMI consistently
maintains high correlations (r = 0.81-0.83). The nolOD experiment reveals a negative
correlation between Nifio3.4 and EASRI (r = -0.53), confirming that ENSO alone is
insufficient to produce favourable rainfall anomalies. Conversely, the noENSO
experiment retains a strong correlation between DMI and EASRI, affirming the 10D's

independent and robust influence on rainfall patterns.

Overall, we found that the 10D has a critical role in shaping East African short
rains, with ENSO having a smaller role. The IOD's influence remains significant even
when ENSO variability is excluded, highlighting its capacity to drive rainfall anomalies
independently. These findings align with prior research and underscore the importance
of the 10D in regulating rainfall during the OND season, particularly in CESM
simulations, where its dominance is evident across different experimental setups. This
study offers valuable insights into the predictability of East African rainfall; however,
several limitations should be acknowledged. Notably, the analysis does not fully
account for other potential drivers such as regional topography, tropical circulation
systems, and local land—atmosphere interactions beyond ENSO and I0D. Additionally,
the limited spatial resolution of the models may hinder their ability to capture localized
weather systems, likely contributing to the observed biases. Therefore, addressing the
sources of rainfall bias should be a primary focus of future research, as dynamical
models consistently exhibit notable errors over many East African highland regions and
parts of the western Indian Ocean. Moreover, in our area of interest (East Africa),
limited availability and accuracy of observational datasets, such as station-based

rainfall measurements, may introduce additional uncertainties in model validation.
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