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ABSTRACT 

In East Africa (EA), rainfall variability has a significant effect on 

socioeconomic and environmental impacts on the region, making accurate seasonal 

rainfall predictions essential. This variability particularly impacts rainfed agriculture, 

which forms the backbone of livelihoods and food security for millions. Rainfed 

agriculture is particularly vulnerable to erratic rainfall patterns since it depends 

significantly on seasonal rainfall for crop planting, harvesting, and management. This 

susceptibility frequently leads to lower yields, food shortages, and severe financial 

hardship. Global teleconnections such as El Niño-Southern Oscillation (ENSO) and the 

Indian Ocean Dipole (IOD) have a strong influence on the interannual variability of 

East African rains. Even though ENSO and IOD are known as the major large-scale 

atmospheric and oceanic systems that influence the seasonal East African rainfall 

patterns, the individual roles are not fully understood.  

In this work, we evaluated the predictability of East African short rains using 

model ensembles from the multi-system seasonal retrospective forecasts from the 

Copernicus Climate Change Service (C3S). We assess the prediction skill for 1- to 5-

month lead times using forecasts initialized in September for each year from 1993 to 

2016. Although most models exhibit significant mean rainfall biases, they generally 

show skill in predicting OND (October-December) precipitation anomalies across 

much of East Africa. However, skill is low or absent in some northern and western parts 

of the focus area. Along the East African coasts near Somalia and over parts of the 

western Indian Ocean, models demonstrate skill throughout the late winter (up to DJF: 

December-February), likely due to the persistence of sea surface temperature (SST) 

anomalies in the western Indian Ocean. Years when models consistently outperform 

persistence forecasts align with the mature phases of El Niño Southern Oscillation 

(ENSO) and/or Indian Ocean Dipole (IOD). When tracked using the Dipole Mode 

Index, this latter mode can generally predict the sign of the rainfall anomaly in all 

models. Despite East Africa's proximity to the West pole of the IOD, the correlation 

between short rains and IOD maximizes when both east and west are considered. This 

finding confirms previous studies based on observational datasets, which indicate that 
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broader-scale IOD variability associated with changes in the Walker Circulation, rather 

than local SST fluctuations, is the primary driver behind East African rainfall. 

In this study we also evaluate the predictability of East African long rainy 

season since it is a critical period for agricultural sector in the region. Therefore, we 

assessed the skill of the state-of-the-art seasonal prediction models from the C3S in 

forecasting East African long rains up to 3 lead seasons: May-March (MAM) to March-

July (MJJ) as initialized in February for each year from 1993 to 2016. Using lead-time-

dependent anomaly correlation analysis, we identify the years where the model 

consistently performs better than persistence forecasting. Therefore, we found that long 

rains have a connection with ENSO phase, showing significant correlations in both 

observational data and models. Consequently, the C3S seasonal prediction system is 

more effective at reproducing the long rains, particularly when the ENSO phase is 

active, compared to periods dominated by IOD phases.   

In this study, we also examined the independent roles of ENSO and IOD in 

influencing the variability of EASR using CESM model experiments. Through partial 

correlation and composite anomaly techniques, our findings highlight the primary 

influence of the IOD, with warm (cool) SST anomalies strongly linked to above(below) 

normal OND rainfall anomaly over EA. In contrast, the direct impact of ENSO is less 

pronounced and largely dependent on its interactions with IOD. This result was also 

further confirmed in dynamical models such as CESM_noENSO and CESM_noIOD 

experiments. Overall, the IOD plays a critical role in shaping East African short-term 

rainfall variability. Its influence remains significant even when ENSO variability is 

excluded, highlighting its capacity to drive rainfall anomalies independently.
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1 INTRODUCTION 

1.1 East African Rainfall Regimes 

East Africa's climate is highly diverse due to its equatorial location, varying 

altitudes, the presence of the Great Rift Valley, large lakes, and proximity to the Indian 

Ocean (Nicholson, 2017). The region's major lakes, such as Lake Victoria, the largest 

freshwater lake in Africa, also play a crucial role in shaping local weather patterns 

(Chamberlain et al., 2014; Williams et al., 2015). The region is characterized by tropical 

humid, semi-arid, and arid climates. Generally, lowland areas such as the coastal zones 

and rift valley depressions tend to experience warm temperatures, while higher 

elevations, such as the Ethiopian Highlands, receive abundant rainfall due to orographic 

effects (Yang et al., 2014). 

The timing and intensity of precipitation across East Africa vary considerably, 

typically following either a unimodal or bimodal rainfall regime. The northern parts of 

the region, including the Ethiopian Highlands, generally exhibit a unimodal rainfall 

climatology, with a single rainy season extending from July to September (Dunning et 

al., 2016). However, notable differences in seasonality exist across sub-regions (Diro 

et al., 2011). Further south, in countries such as Kenya, Uganda, and Burundi, a bimodal 

rainfall pattern is more typical, with the "long rains" occurring from March to May and 

the "short rains" from October to December (Yang et al., 2015a). Some studies define 

the short rains more narrowly, concentrating primarily on October and November 

(Nicholson, 2017). 

These climatic variations are illustrated in Fig. 1.1, The central map displays 

elevation zones alongside selected locations where mean monthly rainfall (blue bars) 

and 2-meter air temperature (shown by red lines) are plottedIn the northern regions, 

including the Ethiopian Highlands, rainfall follows a unimodal pattern, peaking 

between July and September. Conversely, southern areas near Lake Victoria and coastal 

zones experience a bimodal distribution, with peak rainfall occurring in March–May 

and October–December. The figure further reveals that lowland and coastal regions 
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maintain consistently high temperatures throughout the year, while highland areas are 

significantly cooler. Particularly, Kenya’s central highlands record rainfall maxima 

exceeding 250 mm per month in April and November. Similarly, heavy precipitation 

occurs along Lake Victoria’s eastern edge in April and in coastal areas during May. 

However, Lake Turkana remains consistently dry, receiving less than 100 mm/month 

of rainfall even during the rainy seasons. Overall, within the broader continental 

context, East Africa exemplifies a complex climatic landscape shaped by topographic 

variations and proximity to major water bodies. 

 Numerous studies have emphasized that the broader East African region is 

predominantly characterized by a bimodal rainfall pattern with two primary rainy 

seasons: the "long rains" from March to May and the "short rains" from October to 

December (Schreck & Semazzi, 2004; Palmer et al., 2022). However, the short rains 

tend to show greater interannual variability than long rains (Palmer et al., 2023; Behera 

et al., 2005; Nicholson, 2015). The seasonal fluctuation significantly impacts many 

sectors in the region. The agriculture sector is particularly vulnerable, as rainfed 

farming dominates in many East African countries, affecting agricultural productivity 

and water availability, especially in Kenya, Tanzania, Uganda, and Ethiopia (MacLeod, 

2018). 

East Africa is highly vulnerable to climate extremes, such as prolonged droughts 

and devastating floods (Haile et al., 2020), which have severely impacted local 

economies and food security over the years (Niang et al., 2014). Recent studies indicate 

a declining trend in rainfall during the long rains season and increased variability during 

the short rains (Cattani et al., 2018; Gebrechorkos et al., 2018). This pronounced 

variability, coupled with the rising frequency of extreme events, has made East Africa 

one of the most food-insecure regions globally, heavily reliant on humanitarian 

assistance. 
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Figure 1.1 Geographic features and topography of East Africa. Elevation is extracted 

from the Digital Elevation Model (DEM) from STRM. The panels show the annual 
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cycle of rainfall and temperature over different regions of East Africa. The 

precipitation and temperature of two-meter (T2m) data are taken from ERA5. 

1.2 Driving mechanisms of East African rainfall variability 

A complex interaction of local, regional, and global climatic factors affects East 

African rainfall variability, resulting in significant variations in precipitation patterns 

over time and space. Broadly, we can classify global and local driving mechanisms that 

affect the distribution and intensity of EA rainfall from interannual to intraseasonal time 

scales. These drivers and their roles in the EA rainfall pattern are discussed in the 

following sections. 

1.2.1 Global teleconnections 

Global teleconnections are large-scale climate phenomena that link oceanic and 

atmospheric processes over remote have a significant impact on the variability of 

tropical rainfall, including over East Africa (Behera et al., 2005; Black et al., 2005; 

Schreck & Semazzi, 2004). These influences of regional climate systems from seasonal 

and interannual time scales and in turn, can regulate rainfall patterns by modifying air 

circulation, moisture transport, and SSTs (Lyon & DeWitt, 2012; Nicolson, 2017). This 

is especially true in equatorial Africa, where patterns like changes in SSTs over tropical 

oceans are strongly associated with these interactions. Rainfall variability is influenced 

by atmospheric components, including wind systems associated with teleconnections, 

which can either amplify or suppress precipitation patterns (Liu, 2007). Identifying 

sources of variability has been given major focus so far in equatorial East Africa (Hills, 

1979; Schneider et al., 2014; Chobo and Huo, 2024), which is directly impacted by 

ENSO's modification of the Walker Circulation (Sasaki, 2015). Examining these 

oscillating patterns is essential for managing water resources, agriculture, and the 

livelihoods of millions of people in East Africa. Moisture transport into Africa is altered 

by the IOD and ENSO, which involves temperature differences between the eastern and 

western Indian Oceans. 

El Niño-Southern Oscillation (ENSO) 
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The ENSO in the Pacific Ocean plays a critical role in East African rainfall 

variability (Indeje et al., 2000). It is widely regarded as the primary source of skill for 

seasonal-to-interannual rainfall predictions in the region. In EA, drought is strongly 

associated with the complexity and variability of the ENSO and land-atmosphere 

feedback (Zeng, 2003; Liebmann et al., 2014; Hua et al., 2016). During El Niño years, 

warmer SST disrupts global air circulation, leading to above-average rainfall over East 

Africa, particularly during the OND rainy season, which often causes flooding (Behera 

et al., 2005). Global atmospheric circulation patterns, e.g., ENSO, which alternates 

between warm (El Niño) and cool (La Niña) phases, hence influencing regional 

climates worldwide, including East African regions (Ashok & Yamagata, 2003). El 

Niño years cause the Pacific Ocean’s SST to be much warmer than normal, which 

throws off the Walker circulation and other global air circulation patterns (Navarra et 

al., 2013). Particularly, during the short rainy season, this disturbance causes more 

convection and moisture transfer to East Africa, which results in above-normal rainfall 

(Palmer et al., 2023). In 2019, intense ENSO-related rainfall triggered widespread 

flooding that affected millions across Kenya, Tanzania, and Uganda. This extreme 

seasonal anomaly led to catastrophic impacts across the region (Wainwright et al., 

2021).  

The excessive rains underscored the region’s vulnerability to ENSO-driven 

extremes, leading to widespread flooding and significant disruptions to local 

economies, infrastructure, and agricultural activities (Roy et al., 2022). In contrast, La 

Niña years—marked by cooler-than-average sea surface temperatures in the central and 

eastern Pacific—are often associated with reduced rainfall across East Africa (Hoell & 

Funk, 2014). Drought conditions are frequently linked to this ENSO phase, which has 

a major effect on the region's food security and water availability (Park et al., 2020). 

Particularly in the eastern and southern regions of East Africa, the possibility of drier 

weather is increased by La Niña's cooling effect on the Pacific Ocean (Camberlin et al., 

2001; Lott et al., 2013). The periodic warming (El Niño) and cooling (La Niña) of sea 

surface temperatures in the central and eastern Pacific—known collectively as ENSO- 

have a profound impact on tropical rainfall patterns. During East Africa’s short rainy 

season, El Niño events are often linked to above-average rainfall, largely due to 
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enhanced convection over the western Indian Ocean and East Africa, driven by ENSO-

related shifts in atmospheric circulation (Izumo et al., 2010). However, the effects of 

El Niño and La Niña may be altered by the Rift Valley and local topographical features 

in East Africa that might alter the ENSO's large-scale climatic effects (Hamilton et al., 

2020).  

El Nino Modoki 

El Niño Modoki is a climate phenomenon characterized by SST anomalies in 

the central Pacific, flanked by cooler SSTs in the eastern and western Pacific, differing 

from the conventional El Niño, which features peak warming in the eastern Pacific 

(Ashok et al., 2007). This phenomenon has distinct atmospheric and oceanic impacts, 

influencing global weather patterns differently from traditional El Niño events 

(Marathe et al., 2015). The ENSO Modoki affects African seasonal rainfall variability. 

During March-May, both El Niño types reduce rainfall in southern regions while 

increasing it in the north, but they consistently suppress northern rainfall from June to 

September. In October-December, canonical El Niño and positive IOD enhance East 

African rainfall, while El Niño Modoki reduces it. Beyond Walker circulation, this 

driver also impacts African rainfall by altering jet stream dynamics, particularly 

weakening the tropical easterly jet and shifting the African easterly jet southward, 

reducing rainfall in northern tropical regions like the Sahel (Preethi et al., 2015).  

Canonical El Niño and El Niño Modoki generally reduce (increase) rainfall in 

the southern (northern) hemisphere during March-May, but both suppress northern 

rainfall in June-September. In boreal spring and summer, Indian Ocean drivers often 

counteract Pacific influences. During October-December, El Niño and positive IOD 

enhance rainfall in Eastern Africa, while El Niño Modoki has the opposite effect. These 

drivers influence African rainfall by altering the Walker circulation and jet streams, 

affecting the tropical easterly and African easterly jets (Preethi et al., 2015). 

Depending on local conditions, these drivers affect the distribution and intensity 

of rainfall, with some regions impacted by the larger climatic drivers (Vellinga & 

Milton, 2018a). Even though ENSO has a significant impact, the interaction of these 

local and regional elements highlights how challenging it is to forecast rainfall patterns. 
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Previously, although ENSO is known as the best predictor of rainfall variability in East 

Africa, however, IOD has recently become a major source in predicting EA rainfall 

variability (Behera et al., 2005). Efforts to produce precise and trustworthy rainfall 

forecasts are made more difficult by its interactions with other climatic factors, such as 

the IOD and regional topography (Wang et al., 2019).  

Indian Ocean Dipole (IOD) 

Indian Ocean Dipole (IOD) key driver of natural variability over the Indian 

Ocean, which controls the variability of East African rainfall patterns (Black, 2005; 

Behera et al., 2005). To track the influence of IOD variability, define as dipole mode 

index (DMI; Saji et al., 1999) calculated as the difference between SST anomalies in 

the western Indian Ocean (50°E - 70°E, 10°S - 10°N) and the eastern Indian Ocean 

(90°E - 110°E, 10°S - 0°). Previous studies found that the variability in the IOD is often 

associated with droughts and floods in East Africa. For instance, the severe East African 

floods of 1961 were linked to a strong west-east SST dipole in the Indian Ocean. Recent 

studies have also shown that countries in the region, including Kenya, Tanzania, and 

Ethiopia, are particularly vulnerable to flooding and landslides during positive IOD 

episodes, which bring heavier-than-average rainfall (Xiao et al., 2022). Conversely, 

negative IOD phases, characterized by cooler western Indian Ocean near East African 

coast and warmer SSTs over eastern Indian Ocean near Indonesia, tend to increase the 

likelihood of drought conditions over the Horn of Africa (Abiy et al., 2019). 

The variability of IOD has the power to either amplify or lessen the effects of 

ENSO on rainfall in East Africa. The western Indian Ocean warms more than the 

eastern Indian Ocean during a positive IOD phase, which frequently intensifies El 

Niño's effects by increasing rainfall in East Africa. On the other hand, East Africa often 

has less rainfall during a negative IOD phase, especially during the long rains (MAM 

season). Given that ENSO and the IOD can affect atmospheric and oceanic conditions 

either separately or in combination, these interactions add a great deal of complexity to 

the forecasting of seasonal rainfall patterns (Luo et al., 2010; Saji et al.,1999). The IOD 

can occur independently or coexist with ENSO events (Ashok & Yamagata, 2003). For 

example, in 1961 and 1967, IOD events occurred during East Africa's short rainy season 
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without coinciding with ENSO events. In contrast, in years like 1972, 1982, 1994, and 

1997, the IOD coincided with warm-phase ENSO events (Meyers et al., 2007). The 

1997 IOD event, which remains one of the most significant on record, exhibited two 

notable features: the IOD tends to emerge in summer, peak in October, and rapidly 

subside by December. The IOD’s biennial pattern may reflect its interaction with the 

monsoon system, as well as other tropical climate models that show a similar quasi-

biennial oscillation, such as monsoon cycles. The argument that the ocean-atmosphere 

coupling observed during the 1997–1998 severe droughts in Indonesia and intense 

flooding in East Africa, surpassed what would typically be expected from ENSO alone 

(Webster et al, 1999). However, this discrepancy suggests that the IOD’s influence on 

East African precipitation is not always consistent because other factors, such as the 

Madden-Julian Oscillation (MJO), may modulate rainfall patterns on intraseasonal 

timescales. 

Madden-Julian Oscillation (MJO) 

MJO is an intraseasonal tropical climate phenomenon characterized by large-

scale convective disturbances that move eastward along the equator (C. Zhang, 2005). 

Wet and dry spells in the East African region are also shaped by the MJO from a 30 to 

60-day oscillating pattern of enhanced and suppressed convection that has a major 

impact on intra-seasonal east rainfall patterns over East Africa (Ochieng et al, 2023). 

These disturbances significantly influence East African weather patterns by modulating 

rainfall, wind patterns, and atmospheric circulation, with implications for East Africa 

(Kimani et al., 2020).  

The MJO is divided into two phases: an active convective phase and a 

suppressed phase. When the active phase of the MJO moves over the Indian Ocean, it 

enhances convection and moisture availability, leading to increased rainfall across parts 

of East Africa, particularly during the short rainy season (Fig 1.2). The suppressed 

phase, on the other hand, is often associated with drier conditions(Pohl & Camberlin, 

2006).  These dry conditions led to profound implications for agricultural productivity 

and water resources (Berhane & Zaitchik, 2014) in which the interaction between the 

MJO and local weather patterns exacerbates drought conditions or (Kimani et al., 2020) 
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lead to intense rainfall events affecting both food security and infrastructure (Wheeler 

& Hendon, 2004). In some regions of Africa, such as the Congo Basin and East Africa, 

the MJO signal is visible. Rainfall is often higher while the MJO convective core is 

over the Indian Ocean and lower when it is over the eastern Pacific during the East short 

and long rainy seasons (Macleod et al., 2021; Maybee et al., 2023). The typical Easterly 

winds become weaker during "wet" periods and stronger during "dry" ones (Pohl & 

Camberlin, 2006). 

 

 

Figure 1.2 The teleconnection mechanisms that cause a) enhanced (shaded in orange 

color) and b) reduced (shaded in blue color) rainfall across Eastern Africa by 

warm and cold SST, respectively. The green contour denotes the region of Eastern 

- two wet seasons annually (Palmer et al., 2023). 

1.2.2 Local drivers 

Local drivers such as East African highlands, lakes, and the Turkana channel 

have a role in regional distribution, seasonality, and diurnal fluctuations of rainfall 

(Camberlin & Philippon, 2002). A substantial maximum of rainfall occurs over Lake 

Victoria because of the mesoscale circulation system it forms (Anyah & Semazzi, 
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2006). The complex topography of East Africa significantly influences the region's low-

level atmospheric circulation, which in turn affects rainfall variability (Kinuthia & 

Asnani, 1982). The diverse geography, ranging from arid lowlands near the Indian 

Ocean coast to steep highlands, poses challenges for accurately forecasting rainfall 

patterns (Nicholson, 2017). The EA's topography is diverse, with a ring of mountains 

that includes Africa's highest peaks (>5000m above mean sea level) and a low-lying 

area in the east, such as the Afar Depression, located in Ethiopia's eastern edge (Fig. 

1.1).  

The Turkana Channel serves as a narrow opening that connects the generally 

low-lying (northwest) surface to the eastern coastal plain. The inner highlands are 

likewise divided by the channel from the north Ethiopian highlands and southeast 

African highlands (Kinuthia and Asnani, 1982). These orographic channelling causes 

of constant jet (which is known as the Turkana Jet), which has mean winds of around 

10–12 m.s.1, and peaks at a geopotential height of 850 hp (Nicholson, 2015; Sun et al., 

1999; Indeje et al., 2001). At the jet's entrance, there is a noticeable divergence during 

the day, descent takes place above its core (Sun et al., 1999), which may prevent 

convection and add to northern Kenya's aridity (Nicholson, 2015). However, the 

advection of moisture from the Indian Ocean to the Ethiopian highlands depends on the 

jet (Viste and Sorteberg, 2013). These highlands usually receive more consistent 

rainfall due to orographic lifting, where moist air is forced to rise over mountain ranges, 

cooling and condensing into precipitation (Viste & Sorteberg, 2013). In contrast, 

lowland areas such as the Eastern tip of Ethiopia, northern Kenya, and parts of Somalia 

are more arid, receiving far less rainfall (Haile et al., 2020). This implies, complex 

interaction between atmospheric circulation and topography contributes to the diversity 

in rainfall distribution (Hamilton et al., 2020), causing some areas to be more 

susceptible to seasonal droughts while others have more consistent rainfall (Onyutha et 

al., 2022). 

The highlands form a north-south barrier from the Red Sea to southern Tanzania 

(Fig. 1.1). These barriers in the northern East African Rift System (EARS) still suffer 

from the underrepresentation of predictive models (Mologni et al, 2024). Over the 

Ethiopian Massif, the most extensive highland area in Africa, with almost 50% of the 
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continent’s area above 1500 m (McCann, 1995). Large tablelands are dissected by deep 

valleys and dominated by several summits culminating above 4000 m. Further south lie 

the East African Highlands, organized as two mountain arcs following the eastern and 

the western Rift valleys, from about 4°N to 10°S. In the east, the Kenya Highlands, at 

an average elevation of 1500-2500m, are flanked to the east and south-east by Africa’s 

two highest mountains: Mt Kenya (5199 m) and Mt Kilimanjaro (5895m). To the 

southern parts of the region, these mountains are prolonged by the Eastern Arc 

Mountains, of lower elevation. In the west, the western Rift Mountains run from 

western Uganda to southern Tanzania, and several peaks above 3000 m, among which 

are the Rwenzori Mountains (5109 m). Between the two arcs is a large tableland around 

1000-1200 m, on which lies Lake Victoria. Overall, the East African Highlands have a 

major impact on both the regional and extra-regional climate variability over the 

regions (Slingo et al., 2005). In particular, the wet conditions prevailing over the Congo 

Basin are a result of the presence of the East African highlands (Nicholson, 2017).  

1.3 Role of the Intertropical Convergence Zone (ITCZ) 

The ITCZ plays a crucial role in East African rainfall. It is a band of low 

pressure near the equator where trade winds from both hemispheres converge, leading 

to uplift and precipitation. The seasonal migration of the ITCZ northward and 

southward dictates the timing and intensity of rainfall in East Africa. During its northern 

passage, the ITCZ brings the long rains, while its southern shift contributes to the short 

rains. However, the positioning and movement of the ITCZ are influenced by global 

and regional climate drivers, which add variability to rainfall patterns. The location of 

the ITCZ matters in the magnitude of the precipitation field in the EA region (Kebacho, 

2023). However, its variability is primarily driven by large-scale atmospheric and 

oceanic systems that influence seasonal weather patterns (Nicholson, 2017; Palmer et 

al., 2023).  

One of the most significant factors is the movement of the ITCZ, which is a 

band of clouds and rain that forms where the northeast and southeast trade winds meet 

near the equator (Nicholson, 2018; Zhao & Cook, 2021). The ITCZ brings a fluctuating 

amount of rainfall to different parts of East Africa as it migrates north and south with 
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the changing of the seasons (McGee et al., 2014). The bimodal rainfall pattern of long 

rain and short rainy season is due to the migration of the ITCZ across the region, which 

also controls the seasonal cycle of rainfall. For example, the ITCZ sweeps over the 

region during the long rainy season, resulting in extensive rainfall; during the short 

rains, it backs away southward and contributes to precipitation, though less intensely. 

As confirmed by Camberlin & Philippon (2002), short rains are influenced by the ITCZ 

when it migrates from the north to the southern hemisphere, while the long rains are 

influenced by its migration from the south to the north.  

The movement ITCZ is inherently variable, leading to significant interannual 

fluctuations in rainfall patterns across East Africa (Lashkari & Jafari, 2021). Shifts in 

the ITCZ are a major contributor to anomalous rainfall events (Camberlin & Philippon, 

2002), which can result in extreme outcomes such as floods and droughts (Cioffi et al., 

2016; Nicholson, 2016). While local factors, including East Africa’s complex 

topography, play a critical role in shaping regional rainfall variability, several studies 

(Behera et al., 2005; Indeje et al., 2000; Vellinga & Milton, 2018) have demonstrated 

that large-scale climate drivers, particularly ENSO and the IOD, are primary influencers 

of this variability. 

1.4 State-of-the-art Seasonal Prediction Systems  

Skillful seasonal-time-scale predictions are currently made on a real-time basis 

for several tropical regions around the world, including equatorial east Africa (Gualdi 

et al., 2020; Hitoshi et al., 2022; Saha et al., 2014). For example, C3S seasonal 

prediction models are a suite of numerical models used for generating global and 

regional rainfall seasonal forecasts. The models used for such predictions are based on 

empirical associations between elements of the general circulation of the atmosphere 

and ocean derived from historical data (Johanson et al., 2019). Such associations are 

used to define predictors of regional circulation or rainfall. Recently, huge efforts on 

improvements of dynamical seasonal prediction systems have become essential to 

predict climatic variability ahead of time (Gualdi et al., 2020; Stevens et al., 2013). 

These forecasting systems provide vital information for many sectors in the world, 

especially for climate-affected countries like EA. A couple models that integrate 
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interactions between the atmosphere, oceans, land, and ice are essential to replicate 

physical processes in the Earth's climate system(Merryfield et al., 2013). This strategy 

differs from statistical methods, which depend on correlations found in hindcast data. 

Dynamical prediction systems aim to provide more accurate and reliable forecasts of 

phenomena such as monsoon variability, drought likelihoods, and temperature 

anomalies by integrating real-time observations with physical laws and numerical 

models (Christensen & Berner, 2019). 

The main components of dynamical seasonal prediction systems are coupled 

systems, including atmospheric models, ocean models, and (Stockdale, 1997). 

Atmospheric models simulate large-scale circulation patterns and thermodynamic 

processes, which are essential for identifying weather variability over different 

timescales (Sillmann et al., 2017). Ocean models focus on capturing SST and ocean 

dynamics, which are critical for phenomena such as the ENSO (Luo et al., 2007). 

Coupled systems integrate the atmosphere and ocean to account for complex feedback 

mechanisms, significantly improving the skill of seasonal forecasts (Webster et al., 

1999). These models depend on data assimilation techniques, which combine 

observational data from satellites, buoys, and ground stations with model simulations 

to ensure accurate initialization. Data assimilation bridges the gap between real-world 

observations and theoretical models, enhancing the overall reliability of forecasts 

(Merryfield et al., 2020). 

Recent advances in dynamical seasonal prediction systems have significantly 

improved forecast accuracy and applicability. For example, ECMWF's SEAS5 has 

demonstrated skill in predicting temperature and precipitation anomalies using high-

resolution coupled models and advanced data assimilation (Johnson et al., 2018). It 

successfully predicted the 2015–2016 El Niño, highlighting its ability to anticipate 

extreme climate events. Despite recent advancements, several challenges hinder the full 

potential of dynamical seasonal prediction systems, and model biases remain a 

significant issue, which should account for accurate precipitation forecasts (Manzanas, 

2020). The bias may arise due to resolution constraints due to computational limitations 

that hinder the ability of models to capture localized phenomena. Moreover, 

uncertainties in coupled interactions, especially in regions with sparse observational 
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data, add complexity to long-term projections (Parker, 2010). Addressing these 

challenges requires innovative approaches, such as integrating machine learning 

algorithms for improved parameterization and leveraging hybrid systems that combine 

statistical and dynamical methodologies. Additionally, expanding observational 

networks and increasing computational resources will play a crucial role in advancing 

these systems. 

Coupled forecasting systems that integrate sea ice, land, and ocean components 

are increasingly adept at simulating a broad range of physical processes within the Earth 

system, across timescales from days to seasons. However, a persistent challenge in 

seasonal prediction lies in the inadequate representation of model physics, particularly 

cloud processes, which can compromise forecast accuracy (Morcrette et al., 2018). 

These limitations often result in model drifts, where simulations gradually diverge from 

observed values, and in persistent biases, defined as systematic deviations between 

model outputs and real-world data (Vitart and Balmaseda, 2017). Advancing seasonal 

prediction, therefore, hinges on improving cloud parameterizations and related physical 

processes (Merryfield et al., 2020; Sillmann et al., 2017). 

Another major hurdle is the accurate initialization of the ocean and sea ice 

components. Current seasonal prediction systems still exhibit considerable spread in 

initialized sea ice fields, which undermines forecast reliability (Chevallier et al., 2017; 

Zampieri et al., 2018). Despite these challenges, effective forecasting on sub-seasonal 

to decadal timescales remains a critical tool for decision-makers, as weather and climate 

variability can have profound social, economic, and environmental consequences. As a 

result, there is growing interest across scientific, operational, and applied sectors in 

developing more skilful forecasts to improve our understanding and management of 

extreme events. 

The several sources of predictability in the Earth's climate system (Fig. 1.4) are 

based on the periods in which they have an impact, ranging from days to centuries 

(Merryfield et al., 2020). Short-term predictability (days to weeks) is dominated by key 

phenomena like weather, the MJO, and the North Atlantic Oscillation (NAO). Soil 

moisture, the stratosphere, and phenomena like the quasi-biennial oscillation (QBO) 
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and IOD all affect subseasonal and seasonal forecasts. Oceanic patterns such as the 

Pacific Decadal Variability (PDV) and Atlantic Multidecadal Variability (AMV) and 

sources such as the ENSO offer predictability on longer periods. From weather 

forecasts to climate projections, natural and human-induced forcing become important 

drivers across decades to centuries. 

 

 

 

 

Figure 1.3 A schematic representation of the sources of predictability and temporal 

ranges for climate and weather forecasting (adopted from Merryfield et al., 2020) 
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1.5 Dissertation structure 

This PhD thesis is divided into six chapters. Chapter 1 provides a general 

introduction to East African rainfall regimes and their driving mechanisms. 

Chapter 2: Explores the seasonal predictability of the East African short rains 

(EASR) using state-of-the-art seasonal prediction models. Our findings indicate that 

while most models exhibit significant mean rainfall biases in certain regions, they 

demonstrate notable skill in capturing rainfall patterns during the short rainy season 

across much of East Africa. However, their performance is less consistent over the 

northern and western parts of the study region. In particular, the models struggle to 

accurately represent rainfall patterns along the East African highlands, especially in the 

Ethiopian and Kenyan highlands. This suggests that the influence of topographical 

features in these regions may not be well-represented in the models. 

Chapter 3: Assess the predictability of the East African long rains using 

dynamical models, employing similar methodologies to those in Chapter 2 but with 

different initial conditions. Additionally, we compare model outputs to the GPCP 

dataset to examine systematic errors at each lead time. We identify periods when the 

models consistently outperform persistence forecasts and determine years with higher 

predictability at monthly lead times. The results indicate that the models more 

accurately reproduce long rains (i.e., MAM rainfall anomalies) during ENSO years than 

during IOD periods. This suggests that large-scale interactions between atmospheric 

and oceanic conditions, particularly those driven by ENSO, have a stronger influence 

on the long rainy season in East Africa. 

Chapter 4 Investigate the independent roles of ENSO and IOD variability in 

influencing East African short rain variability using Community Earth System Model 

(CESM) experiments. The study examines four CESM experiments: CESM-CTRL 

(control simulation), CESM-noENSO (suppressed ENSO variability), CESM-noIOD 

(suppressed IOD variability), and CESM-amipFULL (atmosphere-only simulation with 

SST prescribed from CESM-CTRL). 
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1.6 Objectives 

This study aims to assess the seasonal predictability of East African rainfall by 

analyzing model ensembles and investigating the influence of large-scale climate 

phenomena, with a particular focus on the region’s two main rainy seasons. The key 

research questions addressed include: To what extent do dynamical seasonal prediction 

systems capture the spatial and temporal characteristics of East Africa’s major rainy 

seasons? Which climate drivers exert the greatest influence on the variability of the 

short (March–May) and long (October–December) rainy seasons? When and why does 

forecast skill vary—i.e., under what conditions is predictability enhanced or 

diminished? Additionally, the study evaluates how model performance depends on the 

phases of ENSO and the IOD, considering both their independent and combined effects 

on East African rainfall patterns. Specifically, the study addresses the following 

objectives:  

1. Assess the predictability of East African short rains (OND season) using 

C3S prediction models initialized in September.  

2. Assess the predictability of the East African long rains (MAM season) using 

C3S prediction models initialized in February. 

3. Evaluate Model Biases: Identify and quantify mean rainfall biases in 

dynamical climate prediction models to understand systematic errors in 

seasonal forecasts. 

4. Investigate the roles of ENSO and IOD on East African short rains using 

Earth system model experiments, exploring how suppressing these drivers 

alters regional rainfall patterns. 
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2 FORECASTING EAST AFRICAN SHORT RAINS 

2.1 Introduction 

The East African region is exposed to climate variability such as recurrent 

drought and floods, which leads to food insecurity. In recent years, intense droughts 

occurred in 1996, 1998, 2005, 2016, 2020, and 2021 (Doi et al., 2022). For example, 

(Amha et al., 2023) confirmed the extended meteorological drought from 2020 to 2021 

caused much crop failure and livestock production in eastern Ethiopia, Kenya, and 

Somalia. Since the region highly relies on rain-fed agriculture, the delayed onset or 

early cessation of the rainy seasons has a direct impact on crop patterns (MacLeod, 

2019).  This region experiences two rather distinct wet seasons, each linked to the 

seasonal north-south movement of low-pressure systems (Camberlin & Philippon, 

2002; Kebacho & Chen, 2022a; Palmer et al., 2023b). The first wet season, known as 

the long rains, typically occurs during the boreal spring months of March to May 

(MAM), characterized by heavier and more prolonged rainfall. However, recent studies 

indicate that some countries, including Kenya and Uganda, have experienced rainfall 

in January and February, extending the wet season into these months (Kebacho, 2024). 

The second wet season, or the short rains, generally takes place during the autumn 

months of October to December (OND), featuring shorter and less intense rainfall 

episodes (Nicholson, 2017; Palmer et al., 2023; Gamoyo et al., 2015). Compared to the 

long rainy season, the short rains exhibit greater interannual variability, which has 

significant socioeconomic implications for the region (Behera et al., 2005). 

Previous studies (Bahaga et al., 2016; Oelfke et al., 2003) assessed the 

predictability of the interannual variability of East African rains using both statistical 

and dynamical model outputs, as well as global observational datasets. For instance, 

Walker et al. (2019) evaluated the predictability of East African short rains using 

operational seasonal forecasts of Greater Horn of Africa Climate Outlook Forum 

(GHACOF) model, which produced seasonal forecasts through a combination of 

dynamical and statistical climate models, expert judgment, and consensus-building, 

integrating global model outputs with regional climate knowledge and historical data. 

Their analysis revealed significant limitations, including low predictive skill and 
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systematic errors, such as a pronounced dry bias in December over the southern parts 

of East Africa. In contrast, Ogutu et al. (2017) identified a wet bias during the short 

rainy season across many parts of the region while evaluating ensemble climate 

forecasts from the European Centre for Medium-Range Weather Forecasts system-4 

(ECMWF-4). Their analysis, employing metrics like the anomaly correlation 

coefficient (ACC), demonstrated that ECMWF-4 captured El Niño-Southern 

Oscillation (ENSO)-related anomalous years with region-dependent skill. Additionally, 

Bahaga et al. (2016) explored the predictability of September-October-November 

(SON) rainfall anomaly using the Asia-Pacific Climate Center Ocean-Atmosphere 

coupled multi-model ensemble hindcasts initialized on August 1. They reported that 5 

out of 10 coupled models showed statistically significant skill in predicting short rains 

over the East African equatorial region. However, skill was limited over most land 

areas, with better performance along sections of the western Indian Ocean coastline. 

Their findings also revealed a strong correlation between observed and predicted 

rainfall anomalies during SON, driven by the phase of a dominant regional climate 

mode, the Indian Ocean Dipole (IOD; Saji et al., 1999). Prediction of short rainy season 

over East Africa at least one season ahead has been successfully predicted using the 

dynamical coupled model, as in previous studies (Begera et al, 2005). 

ENSO and IOD modes have a strong influence on the interannual variability of 

east African short rains (Endris et al., 2019; Indeje et al., 2000), with their independent 

roles, as drivers of East African short rains, that have been studied using Scale 

Interaction Experiment-Frontier Research Center for Global Change, version 1 

(SINTEX-F1) model (Behera et al., 2005).  The latter study found that the SON rainfall 

anomaly (RFa) exhibited significant correlation with the pure IOD (i.e., an IOD event 

occurring during neutral ENSO phases), while the correlation with ENSO was found to 

be not statistically significant. When positive IOD coincided with strong El Nino in 

years like 1972 and 1997, East African short rains experienced excess precipitation 

(Saji et al., 1999).  Yet, some studies (Macleod & Caminade, 2019) suggest that positive 

ENSO phases, like the 2015 El Niño event, may occasionally exhibit a stronger 

association with East African short rains than the positive phase of the IOD. 

Consequently, a comprehensive assessment of East African rainfall predictability 



20 

 

should account for the combined effects of ENSO and IOD on rainfall variability 

(Cherchi & Navarra, 2013)as has been done for other regions (e.g., Liguori et al., 

2022).  

In addition to ENSO and IOD, factors such as Madden-Julian Oscillation (MJO) 

influence the fluctuations in East African brief rains. By regulating convection across 

the Indian Ocean and East Africa, the MJO, a prominent form of intraseasonal 

variability, has a major impact on rainfall patterns (e.g., Roundy & Kravitz, 2009; 

Liebmann et al., 1994). Moisture transfer from the Indian Ocean into East Africa is also 

significantly influenced by the position and intensity of the subtropical anticyclones, 

especially the Mascarene High (Behera et al., 2005; Williams et al., 2012). Moreover, 

depending on its strength and direction, the Somali Jet, a crucial part of the low-level 

atmospheric circulation, either promotes or inhibits moisture advection (Findlater, 

1971; Nicholson, 2017). The timing and intensity of the short rains are also influenced 

by the seasonal fluctuations in the ITCZ (Waliser & Gautier, 1993; Nicholson, 2018). 

Furthermore, by influencing surface heat fluxes and atmospheric stability, land-

atmosphere feedback such soil moisture and vegetation dynamics can locally increase 

or decrease rainfall (Taylor et al., 2012; Anyah et al., 2006).  

To date, no study has assessed the predictability of East African short rains 

using the multi-system seasonal retrospective forecasts provided by the Copernicus 

Climate Change Service (C3S), which employs state-of-the-art seasonal prediction 

systems. This study aims to fill this gap by not only evaluating the predictive skill of 

these systems but also examining the models' skill dependency on ENSO and IOD 

phases, considering both their independent and combined effects on the East African 

short rain patterns. 

2.2 Datasets, models, and methods 

2.2.1 Observational data set 

Forecast verification requires good observational data (Maraun et al., 2010) and 

robust verification methodologies. Over East Africa, a sparse climatological station 

network limits the use of pure in situ observations to verify gridded forecast products. 
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We therefore utilize observed rainfall data from the Global Precipitation Climatology 

Project (GPCP) version 3.2 and the European Centre for Medium-Range Weather 

Forecasts (ECMWF) fifth-generation reanalysis (ERA5). GPCP version 3.2 provides 

estimates with a resolution of 0.5° × 0.5° from 1979 to the present (Adler et al., 2003; 

Huffman et al., 2023). The dataset contains monthly analyses of global precipitation, 

merging observations from rain gauges with precipitation estimates from low-orbit 

satellite microwave data, geosynchronous-orbit satellite infrared data, and sounder-

based estimates.  The ERA5 dataset provides global climate reanalysis data with a 

spatial resolution of 0.25° × 0.25°. It integrates observational data from various sources, 

including surface stations, upper-air observations, and satellite data, using data 

assimilation. ERA5 offers data for multiple variables, including precipitation and sea 

surface temperature, spanning from 1979 to the present (Hersbach et al., 2020). Each 

dataset offers distinct advantages: GPCP assimilates precipitation data from multiple 

sources, and ERA5 provides a higher-resolution precipitation field that is physically 

consistent with the SST field used in this study. 

2.2.2 C3s model descriptions 

To assess the predictability of the East African short rain, i conducted an 

evaluation of eight coupled ocean-atmosphere model seasonal prediction systems 

available from Copernicus Climate Change Service (C3S) offers a comprehensive 

multi-system seasonal forecast service, presenting data from various state-of-the-art 

seasonal prediction systems. These systems offer insights into future climate patterns 

up to six months in advance. The service includes aggregated forecasts from multiple 

systems, as well as detailed information from individual participating centers, such as 

ECMWF, Met Office, Météo-France, Deutscher Wetterdienst (DWD), Euro-

Mediterranean Centre on Climate Change (CMCC), National Centers for 

Environmental Prediction (NCEP), Japan Meteorological Agency (JMA), and 

Environment and Climate Change Canada (ECCC).  

The JMA model, developed by the Japan Meteorological Agency, uses the 

JMA-GSM atmospheric general circulation model with a resolution of TL319 (~55 km) 

and 100 vertical levels. Its ocean component is MRI.COM v4.6, configured with a 0.25° 
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tripolar grid and 60 vertical levels, and the ensemble size is 10 (Hitoshi et al., 2020). 

The ECMWF model employs the IFS 43r1 AGCM at TCO319g resolution with 91 

levels and the NEMO v3.4 OGCM, which runs on a 0.25° ORCA grid with 75 vertical 

levels, using an ensemble size of 25 (Johnson et al., 2019). Similarly, the ECCC model 

from Environment and Climate Change Canada integrates the CanAM4 AGCM at T63 

(~2.8° lat-lon) with 35 levels and the CanOM4 OGCM at ~1.4° longitude by 0.94° 

latitude resolution with 40 levels, using 10 ensemble members (Merryfield et al., 2013). 

The UKMO model (UK Met Office) employs the GC3.2 AGCM at N216 (~0.83° 

longitude, 0.56° latitude) with 85 vertical levels, coupled with the NEMO v3.6 OGCM 

on a 0.25° ORCA grid with 75 levels, and has an ensemble size of 28 (Williams & 

Funk, 2011).  

The CMCC model, developed by the Centro Euro-Mediterraneo sui 

Cambiamenti Climatici, uses the CESM 1.2 AGCM (~0.5° latitude/longitude resolution 

with 46 levels) and the NEMO 3.4 OGCM at 0.25° resolution with 50 levels, employing 

40 ensemble members (Gualdi et al., 2020). The current version is CMCC-SPS3.5, i.e., 

Euro Mediterranean Center for Climate Change - Seasonal Prediction System, Version 

3.5. The System is based on a coupled Ocean-Atmosphere Global Climate Model 

operated monthly in Ensemble seasonal mode (6-month predictions) and comprises 

monthly ensemble hindcasts covering the period 1993-2016. It includes 46 vertical 

levels at a spatial resolution of roughly 0.5° latitude/longitude. The NEMO 3.4 ocean 

general circulation model (OGCM), which has 50 vertical levels and a better spatial 

resolution of 0.25°, is also incorporated into the CMCC model to provide precise 

representations of oceanic processes including heat flux and currents. 

The MeteoF model, from Météo-France, incorporates the global numerical 

weather prediction model ARPEGE (Action de Recherche Petite Echelle Grande 

Echelle) is an essential tool for operational weather forecasting at Météo France. v6.4 

AGCM with TL35 (~0.5° resolution) and 137 levels, coupled with the NEMO v3.6 

OGCM on a 0.25° ORCA grid with 75 levels, using an ensemble size of 25(Baté et al., 

2021). The DWD model, from the Deutscher Wetterdienst, features the ECHAM 6.3.05 

AGCM at T127 (~100 km) resolution with 95 levels and the MPIOM 1.6.3 OGCM 

configured at TP04 with 40 levels, running with 30 ensemble members (Stevens et al., 
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2013). The NCEP model, developed by the National Centres for Environmental 

Prediction, uses the GFS AGCM at T128 (~1° resolution) with 64 vertical levels and 

the GFDL MOM4 OGCM, which operates on a 0.25° equatorial grid to 0.5° resolution 

with 40 levels, featuring an ensemble size of 24(Saha et al., 2014). Table 2.1 provides 

a detailed summary of all models, highlighting differences in resolution and ensemble 

sizes. Climate variables, including precipitation and SST, were retrieved for a common 

hindcast period spanning from 1993 to 2016, at a monthly time scale. 

Table 2.1 Descriptions of coupled models’ multi-seasonal prediction systems from C3S 

accessible at (https://cds.climate.copernicus.eu/cdsapp).  

 

2.2.3 Skill evaluation method 

The anomaly correlation coefficient (ACC) analysis is a widely used statistical 

measure in climate prediction and forecasting to evaluate the skill of models in 
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reproducing observed anomalies (Wilks, 2011). It quantifies the degree of spatial or 

temporal agreement between simulated and observed anomalies, concerning their 

respective climatological means. Anomalies are deviations from a model's ensemble or 

observation's climatological average, which help isolate signals of variability from the 

background climate state. The ACC measures how well the simulated anomalies match 

the observed anomalies in both pattern and magnitude. A positive ACC indicates that 

the model has skill in predicting the observed anomalies, where a value of 1 implies 

perfect agreement, 0 suggests no correlation, and a negative value indicates anti-

correlation, meaning the model's predictions deviate systematically in the opposite 

direction. In seasonal and interannual prediction studies, the ACC is often applied to 

assess model performance across different lead times, regions, or seasons. For example, 

it can be used to compare predicted precipitation or sea surface temperature anomalies 

against observations over a specific region, such as East Africa, during key rainy 

seasons. The robustness of ACC results often depends on the verification dataset used 

(e.g., reanalysis data like ERA5) and the presence of large-scale climate drivers like 

ENSO and the IOD, which influence the anomaly patterns. Mathematically, it can be 

expressed by the following equation (1): 

𝐴𝐶𝐶(𝐹𝑐,𝑂𝑏) =
∑ ((𝐹𝑐𝑖 − 𝐹𝑐̅̅ ̅)(𝑂𝑏𝑖 − 𝑂𝑏̅̅̅̅ ))𝑛

𝑖=1

√∑ (𝐹𝑐𝑖 − 𝐹𝑐̅̅ ̅)2𝑛
𝑖=1   √∑ (𝑂𝑏𝑖 − 𝑂𝑏̅̅̅̅ )

2𝑛
𝑖=1

          (1) 

Where, in the case of temporal ACC, Obi is observational data for each year, Fci is an 

ensemble mean of forecast anomaly at initialized time for each year, and n is the number 

of years. 𝐹𝑐̅̅ ̅  and 𝑂𝑏̅̅̅̅  are the time means of models’ ensembles and observations, 

respectively. At 90% or 95% confidence levels, p-values obtained from the two-tailed 

Student's t-distribution are used to assess the statistical significance of the correlation 

coefficient (r).  

2.3 Model climatology and inter-annual variability 

To characterize the mean bias in forecasting precipitation during the East 

African short rain season, we compare the rainfall climatology of each model (i.e., 

ensemble mean) with GPCP and ERA5 observational products (Fig. 2.1). Observational 
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datasets and models present high precipitation over the southwest parts of the analyzed 

region. Specifically, the maximum rainfall pattern is observed over the Congo Basin 

with secondary peaks over Lake Victoria and southern Ethiopia, all located inland and 

away from the coast. These high rainfall areas appear to be closely linked with 

orographic features, such as the Mitumba Mountains stretch along the Western Rift 

Valley in Eastern Congo and the East African highlands (e.g., Ethiopian and Kenyan 

highlands). However, both GPCP and ERA5 have little precipitation over the Indian 

Ocean with a relative maximum located between the Equator and 5°S. While models 

represent this feature, all but NCEP overestimate the rainfall pattern. Overall, the 

climatology depicted by observations and all models except NCEP presents main 

features associated with orographic precipitation. However, a small-scale local 

precipitation maximum in the westernmost part of Ethiopia (i.e., the Ethiopian 

highlands, approximately around 7°N–38°E) is captured by only 50% of the models 

(i.e., JMA, ECMWF, CMCC, and MeteoF). While this feature is absent in the GPCP 

dataset (Fig. 1i), it appears to be realistic as it is also evident in ERA5 (Fig. 2.1j), which 

provides precipitation estimates at a higher spatial resolution (0.25° for ERA5 vs. 0.5° 

for GPCP). As expected, compared to observational datasets, the models' climatology 

generally exhibits smoother precipitation patterns.  

We also examined the year-to-year variation of short rainy season (Fig. 2.1k) 

by averaging RFa over part of East Africa between 5°S-10°N and 30°-50°E (blue box 

in Fig. 2.1i). Subsequently, we derived an equatorial East African rainfall index 

(EEARi), following a methodology like that of Palmer et al. (2023). The index reveals 

that 1997 appears to represent the peak rainfall for both models and observations. 

However, it also indicates that some models, such as DWD and NCEP, significantly 

underestimate this event.  Generally, GPCP and ERA5 present more year-to-year 

variations than the models, as the ensemble means smoothing out most of the internal 

variability that grows from the perturbation in the initial conditions.  Both models and 

observations generally exhibit consistency during the years with relatively strong 

positive rainfall anomalies. This consistency also holds for a few negative events 

presented in 1996 and 2010.  



26 

 

 



27 

 

 Figure 2.1 Rainfall climatology during the short rains (OND) derived from GPCP (i), 

ERA5 (j), shown upper panels, and the seasonal prediction systems from Copernicus 

Climate Change Service (C3S), which includes 8 ocean-atmosphere coupled model 

ensembles and cover the period 1993–2016 (a-h). The lower panel shows area-

averaged OND rainfall anomalies for part of Eastern Africa (30–50°E, 5°S-10°N; blue 

dashed box in i) for models, ERA5, and the GPCP dataset. Anomalies are computed 

relative to the climatology shown in the upper panel. 

In addition to the evolution of the EEARi, we looked at the spatial pattern of 

rainfall variability during the OND season as represented by the inter-annual standard 

deviation for both models and the observational dataset (Fig. 2.2). Over the ocean, 

GPCP and ERA5 present a double maximum variability at both sides of the equator at 

+- 5°, while in the model this is true only for ECCC MeteoF and NCEP. Furthermore, 

several models, but especially JMA and UKMO, present a significant bias in OND 

variability over the Eastern Indian Ocean. This high rainfall variability is also shown 

over the East African highlands and near to Congo basin. Consistent with the GPCP 

and ERA5 climatology, some models, including JMA, CMCC, and NCEP, demonstrate 

high rainfall variability over the highlands (Fig. 2 .2a, e, and g), while all models show 

minimal variability over northern parts of East Africa. 
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Figure 2.2 Rainfall standard deviation during the short rains (OND) derived from the 

seasonal prediction systems from C3S, which includes 8 ocean-atmosphere coupled 

model ensembles and covers the period 1993–2016 (c-j) and GPCP (i), ERA5 (j) 

datasets.  

In dynamic climate models, rainfall bias may arise from the model's lower 

resolution, initial conditions, boundary conditions, or physical process representation, 

parameterizations of convective processes, are some examples of common biases that 

can lead to overestimation or underestimation of rainfall in specific regions, particularly 
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in tropical and subtropical zones. The model biases (Fig.  2.3) are computed as the 

difference between the GPCP dataset and the ensemble mean of the individual models 

at lead season 1 (OND), 2 (AMJ), and 3 (MJJ) when the hindcast is initialized in 

September. Models like JMA, ECCC, CMCC, and MeteoF show notable positive biases 

over the western part of the region. Particularly, models such as CMCC and MeteoF 

exhibit a significant overestimation of precipitation over the Ethiopian humid 

highlands, with the first two lead seasons showing up to 6 mm/day. It is noteworthy 

that the MeteoF model shows the tendency for these positive biases to increase with 

lead time, indicating the challenges of sustaining reliability over long forecasting lead 

seasons. Relatively, UKMO and ECMWF have smaller biases throughout the region up 

to the late winter season. These findings highlight the necessity of better model 

calibration, especially to capture rainfall variability in important areas such as the major 

highlands. 
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Figure 2.3 Seasonal mean bias computed as the difference between GPCP and C3S 

model predictions for lead season 1 (OND), lead season 2 (NDJ), and lead season 3 

(DJF) of rainfall climatology (ensemble mean), which was initialized in September 

during 1993-2016.  
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2.4 Predictive skill of coupled models 

The predictive skills of coupled models for East African short rains are assessed 

using spatial (i.e., timeseries of pattern correlation) and temporal (i.e., pointwise-

correlation map) anomaly correlation coefficient (ACC; Nicolì et al., 2023). The ACC 

analysis is a common statistical metric used to measure the spatial (or temporal) 

correlation between the simulated and the observed anomaly, each computed relative 

to their respective climatology (see methods as shown in Eq. 1).  

We perform the correlation analysis between the ensemble means of each model and 

the observed East African rainfall anomalies during lead seasons 1 (OND), 2 (NDJ), 

and 3 (DJF). The forecasts are initialized in September for each year from 1993 to 2016 

(Fig. 2.4). At lead season 1, nearly all coupled models exhibit a significant correlation 

exceeding 0.6 across the western tropical Indian Ocean and the central to eastern 

African coastal regions. Moreover, along the East African coasts, models such as JMA, 

ECMWF, ECCC, UKMO, and CMCC (shown in Fig.2.4a-e) demonstrate robust 

predictive capabilities extending up to lead season 3. These skillful forecasts up to lead 

season 3 can be attributed in part to the persistence of SST over the Indian Ocean, which 

present autocorrelation values as high as 0.9 in both lead seasons 1 and 2 (Fig. 2.6). 

However, the DWD and NCEP models exhibited poor predictive skill, presenting 

correlations below 0.2 across several parts of the region in East Africa.  
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Figure 2.4 Pointwise-correlation maps between GPCP and C3S model predictions for 

lead season 1 (October-December: OND), lead season 2 (November-January: NDJ), 

and lead season 3 (December-February: DJF) of rainfall anomalies (ensemble mean) 

during 1993-2016. Stippling indicates areas where the correlation between the 

hindcast and observation is statistically significant at a 90% confidence level, as 

calculated by a two-sided Student t-test for 22(N-2) degrees of freedom.  

Furthermore, we also looked at the dependency of the prediction skill on 

monthly lead-time computing from ACC for patterns of anomalous precipitation. To 

understand the predictive skills of each model at a specific year, we highlighted the 3 

most skillful years in which the models consistently outperform the persistence 

forecasts for lead time from 1 to 3 months (Fig. 2 .5a-h). Specifically, when compared 

to persistence forecasts, 75% of coupled models present skillful predictions for the year 

1997 at 1-3 lead months. Similarly, only two coupled models, such as UKMO and 

MeteoF, depict the highest skill in 2010, resulting in the ACC values greater than the 

persistence at the 2nd lead months (Fig. 2 .5d and f). After lead month 2 (i.e., 

November, N), there is a decreasing skill, with most years exhibiting significantly lower 

ACC values compared to the persistent skill level. Overall, precipitation anomalies in 
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the years 1997 and 2010 are more predictable, with 70% of models presenting ACC 

values that outperform the persistence skill up to October, that is lead month 2. 

To assess the interannual predictive skill of coupled models for the East African 

short rainy season, we looked at the correlation between the observed and predicted 

RFa (computed over the EEAR box) across the hindcast periods (Fig. 2.5i). The highest 

skill was presented in all models during the year 1997. Moreover, the skills of most 

coupled models are similar during the years 1994, 1999, 2008, and 2010 (Fig. 3i). 

Particularly, 1994 is the second-most skillful year after 1997, with higher ACC values 

evident in models such as ECMWF, CMCC, MeteoF, NCEP, and DWD. Similarly, in 

the year 2008, we observe high correlation values across most coupled models, except 

for the ECCC and MeteoF. Several years with improved predictive accuracy seem to 

align with ENSO and IOD events, highlighting the significant impact these climate 

patterns have on both the variability and predictability of East African rainfall. 
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Figure 2.5 Anomaly correlation coefficient (ACC) between GPCP and each C3S model 

(a-h; upper panels) for monthly rainfall anomaly over part of Eastern Africa (blue 

dashed box of Fig. 1i) for each year (grey lines) from lead month 0 (September) to lead 

month 5 (February). In each subfigure, the top three forecasts stand out with distinct 

colours: the most accurate year is highlighted in red, the second-best in blue, and the 

third-best in magenta. These forecasts are determined by sorting all predicted years 

based on their average ACC values across September and October. The black dashed 

line indicates the persistence forecast. The lower panel (i) illustrates the spatial 
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correlation between each model and GPCP rainfall anomaly patterns for the OND 

seasonal mean, calculated over Equatorial Eastern Africa (30–50°E, 5°S-10°N). 

2.5 Predictability conditional on ENSO and IOD phases 

Several studies have shown how modes of interannual variability in the Indian 

and Pacific tropical oceans represent a main source of predictability for seasonal rainfall 

patterns (Palmer & Anderson, 1994; Troccoli, 2010). These studies indicate a clear 

association between mature phases of IOD and ENSO events (Saji et al., 1999; Behera 

et al., 2005). Thus, we investigate the role of tropical SST in influencing variability in 

East African short rains, utilizing indices that monitor rainfall (i.e., EEARi), ENSO, 

and IOD. Specifically, the Niño 3.4 index (N3.4; SST anomalies averaged over 120°W–

170°W, 5°S–5°N) tracks ENSO, while the Dipole Mode Index (DMI; SST anomalies 

difference between the western Indian Ocean (DMIw), 50°E−70°E, 10°S–10°N, and 

eastern Indian Ocean (DMIe), 90–110°E, 10°S -0) monitors IOD variability (Saji et al., 

1999, Liguori et al., 2022).   

The relationship between EEARi, N3.4, and DMI across models (Fig. 2 .7a-h) 

and ERA5 (Fig. 2.7 i) indicates that negative (positive) RFa are consistently linked to 

the concurrent negative (positive) phases of IOD and ENSO, with the magnitude of the 

anomaly that depends on the intensity of these two drivers in various years. ENSO and 

IOD present an important co-variability that results in a significant N3.4-DMI 

correlation during the OND season in both observations and models (0.74 for the 

observation and between 0.65 and 0.78 for the models; Fig. 2.7). 

The persistence of SST has a significant impact on the variability of rainfall in 

East Africa. Seasonal rainfall can be significantly impacted by persistent SST 

anomalies in important locations, such as the Pacific and Indian oceans, which can alter 

atmospheric circulation patterns and moisture delivery. For example, over portions of 

East Africa, warmer-than-normal SSTs in the western Indian Ocean are frequently 

linked to greater convection and rainfall, especially during the short rainy season.  

Similarly, SST anomalies in the Pacific can cause El Niño and La Niña events, which 

can either increase or decrease rainfall in the area and cause extremes like droughts or 

floods.   
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Therefore, to gain further insight into the impact of local SST fluctuations on 

the Easta African short rains, we computed the seasonal persistence values over the 

western Indian Ocean, which is adjacent to the East African coast (Fig. 2.7). Notably 

high persistence values were found, extending throughout the NDJ season, suggesting 

that the variations in SST in the western Indian Ocean tend to remain stable for some 

months which can impact atmospheric conditions during short rainy season in Easta 

Africa. 
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Figure 2.6 SST persistence from lead seasons 1(OND) to 3(DJF) for individual C3S 

coupled models. Persistence is quantified in each grid point by the autocorrelation 

between the SON and lead season time series.  
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When both IOD and ENSO are in the positive phase, all coupled models and 

GPCP present above-normal OND rainfall (green colors on Fig. 2.8) across the East 

African region. The best predicted year (Fig. 2.5) is associated with the strongest El 

Niño event on record (1997/1998), which co-occurred with a strong positive IOD phase. 

During the short rainy season of 1997, East Africa experienced the largest positive RFa, 

reaching up to 3 mm/day (Fig. 2.1k). While all models represent a high correlation 

between ENSO and IOD, the observed extreme 1997 precipitation event is particularly 

evident only in six out of eight models (i.e., JMA, ECMWF, ECCC, UKMO, CMCC, 

and NCEP). In this year, however, only the DWD model fails to simulate this RFa 

event, despite the high correlation between DMI and N34, as presented in Fig. 2.7 h. 

On the other hand, during negative ENSO and IOD phases, all models and 

GPCP tend to exhibit negative OND RFa (as shown by the yellow-filled circles in Fig. 

2.7). For instance, during the 1998 negative ENSO and IOD phase (Fall 1998) that 

immediately followed the record-breaking 1997/1998 El Niño event, the observed 

negative RFa were successfully forecasted at lead months in only three models, such as 

UKMO, MeteoF, and NCEP (Fig. 2 .7d, f, and g). However, when lead season is 

considered, only MeteoF, ECMWF, and JMA can predict an amplitude of the OND 

anomaly comparable to the observation (Fig. 2.7i).  Additionally, 2010 is identified as 

the second most skillful year by JMA (Fig. 2.7a), and as the third most skillful year by 

UKMO, MeteoF, and NCEP models (Fig. 2 .7f and g), showing negative OND seasonal 

anomalies during negative phases of DMI and N34 (Fig. 2 .8a, f, and g). 
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Figure 2.7 Scatterplot of Niño3.4 index (N34; x-axis) versus Dipole Mode Index (DMI; 

y-axis) during OND season for each of the 24 years analyzed in both model predictions 

(a-h) and GPCP dataset (i). The area of the circle is proportional to the absolute value 

of OND rainfall anomaly averaged over part of Eastern Africa (blue dashed box of Fig. 

2.1i), with positive (negative) anomaly coloured in green (orange). As in Fig. 2.5 the 

best forecasted year is highlighted in red, the second-best in blue, and the third-best in 

magenta. Additionally, the correlation coefficient between N3.4 and DMI is provided 

at the top of each subfigure for reference. (j-r) shows a similar analysis but with the 

western pole of the DMI index (DMIw). 

El Nino Modoki  

The relationship between the El Niño Modoki Index (EMI) and the Dipole Mode 

Index (DMI) during the OND season across eight seasonal forecast models and the 

ERA5 observational dataset (Fig.2.8).  The EMI is calculated following the methods 

Ashok et al., (2007) as follows: 

EMI = [𝑆𝑆𝑇𝐴]𝐴 −
1

2
[𝑆𝑆𝑇𝐴]𝐵 −

1

2
[𝑆𝑆𝑇𝐴]𝐶       (2) 

The square bracket in Eq. (2) represents the area-averaged SSTA over each of the 

regions: A (165°E–140°W, 10°S–10°N), B (110°W–70°W, 15°S–5°N), and C 

(125°E–145°E, 10°S–20°N), respectively 

As shown in Fig. 2.8, a stronger vertical spread of anomalies along the DMI axis 

indicates that positive DMI events tend to produce larger rainfall anomalies over 

Eastern Africa, even when EMI values are near zero. While both EMI and DMI 

contribute to OND rainfall variability, DMI appears to exert a stronger influence 

on the magnitude of rainfall anomalies, particularly in years with significant IOD 

activity. 
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Figure 2.8 Scatterplot of El Niño Modoki index (EMI; x-axis) versus Dipole Mode Index 

(DMI; y-axis) during the OND season for each of the 24 years analyzed in both model 

predictions (a-h) and GPCP dataset (i). The area of the circle is proportional to the 

absolute value of OND rainfall anomaly averaged over part of Eastern Africa (blue 

dashed box of Fig. 2.1i), with positive (negative) anomaly coloured in green (orange). 

As in Fig. 2.5 the best forecasted year is highlighted in red, the second-best in blue, and 

the third-best in magenta.  

Given the vicinity of East Africa to the Western pole of the IOD (i.e., DMIw 

region), we wanted to explore if the interannual variability of East African short rain 

was more strongly connected to fluctuations in the DMIw index, which has been shown 

to exhibit slightly higher predictability (Bahaga et al., 2016). However, despite this 

geographical closeness, the correlation between OND RFa in the EEAR region (i.e., 

EEARi) and DMIw is slightly lower than the correlation between EEARi and the 

overall DMI (see Fig. 2.9). This finding is remarkable considering that ENSO presents 
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a stronger connection with the DMIw compared to the DMI, as evidenced in both 

observational data and climate models (Fig. 2.7 j-r). The stronger correlation between 

EEARi and the DMI, despite the expectation that local SST variations would play a 

more significant role, emphasizes the importance of broader-scale IOD variability. This 

suggests that the key factor influencing East African rainfall is the IOD-driven 

disruption of the zonal atmospheric circulation associated with the Indian Ocean branch 

of the Walker Circulation (see Fig. 2.8). 

 

Figure 2.9 Correlation between East African RFa index and climate indices for the 

OND season. Asterisks (*) and (**) indicate significance at the 95% and 99% 

confidence levels, respectively. The RFa index is the area-averaged over Eastern Africa 

(30–50°E, 5°S-10°N) for both models and ERA5 

In addition to DMI and N34, we have also computed the correlation between 

the sea level pressure (SLP) and the rainfall anomalies to illustrate the association 

between the variation of SLP and the East African rainfall during the OND season. To 

do this, following the methods of Behera &Yamagata (2003), the SLP anomaly index 

is computed over the DMI region (slpDMI; Fig. 2 .10c) and equatorial wind anomaly 

index (UEQ; Fig. 2 .10d), evaluated across multiple models and observational datasets. 

The association between seasonal OND RFa anomalies index and each index from 
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ERA5 and individual models is evaluated at a statistical significance of 95% and 99% 

confidence level. As a result, the SLP dipole index is significantly negatively correlated 

with the SST dipole index during the OND season, which is displayed in most models 

and observational data sets (ERA5; black dots line shown in Fig. 2.10), which serves 

as a reference. The same is true for UEQ anomalies, representing equatorial wind 

anomalies. Both ERA5 and models demonstrate consistently high negative correlations 

with EASRi during the OND season. Relatively, EASRi has a negative correlation with 

UEQ presented in the NCEP and DWD models, showing correlation coefficients of 

0,41 and -0.39, respectively. 

The interannual variability of East African short rains is linked to canonical El 

Niño and El Niño Modoki events, with notable peaks during the 1997-98 and 2015-16 

El Niño episodes. Both indices show interannual variability but with different 

amplitudes and peak years (Fig. 10, a and b). For example, during 1997–1998, both 

indices peaked, indicating a strong canonical El Niño. However, in some years, like 

2004, 2009, and 2014, show stronger EMI than N34, suggesting those may be El Niño 

Modoki years. The second panel displays DMI anomalies for each model, showing 

strong agreement with ERA5. Similarly, the third panel, reflecting sea level pressure 

variations over the DMI region, we call it slpDMI (Behera et al, 2005). The negative 

slpDMI anomaly (Fig. 2.8) observed during positive DMI and ENSO events indicates 

the interplay between warmer SSTS, altered convection patterns can shift the Walker 

circulation over the tropical Indian Ocean. Similarly, negative UEQ is observed during 

both positive ENSO and positive IOD occur together, suggesting their combined effects 

strengthen the disruption of zonal wind patterns. More noticeable is the trade winds' 

reversal or weakening. Negative U-wind anomalies are strengthened by the suppression 

of the normal east-to-west wind flow caused by the diminished zonal pressure gradient 

across the Pacific and Indian tropical oceans.  
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Figure 2.10 Interannual variation of short rainy season derived from ERA5, and 

individual coupled models' ensemble mean field anomalies: a) N34, b) EMI, c) DMI, d) 

sea level pressure anomaly index over DMI region (slpDMI), e) Equatorial wind 

anomaly index (UEQ).  

2.6 Discussion and Conclusion 

In this study, we evaluate the predictability of East African short rains using 

eight state-of-the-art seasonal retrospective forecast systems from the Copernicus 

Climate Change Service (C3S), with a focus on forecasts initialized at the onset of the 

OND rainy season, namely in September. Despite the presence of localized biases (Fig. 

2.1), most models demonstrate appreciable skill in predicting OND precipitation 

anomalies across much of East Africa, although regions in northern and western parts 

of the study region remain challenging, exhibiting low or no skill. 

Importantly, the models show considerable skill extending into the DJF season 

along coastal East Africa, particularly near Somalia and parts of the western Indian 

Ocean. This is likely linked to persistent SST anomalies in the western Indian Ocean 

(Fig. 2.6), which remain significant well into the boreal winter across most models. 

These findings align with previous evaluations of the SINTEX-F1 model (Behera et al., 

2005) and the APCC Ocean–Atmosphere coupled multi-model ensemble (Bahaga et 

al., 2016), confirming the relevance of oceanic memory in sustaining forecast skill 

beyond the target season. 

Robustness of model performance is further supported by analyses using 

different verification datasets (e.g., ERA5 reanalysis), which show minimal variation 

in skill scores (Fig. 2.2). However, the anomaly correlation at various lead times (Fig. 

2.7) reveals a strong interannual dependency of model skill, particularly within the first 

six months. For instance, 2010 emerges as the second most skilful year only when 

ERA5 is used as the reference, illustrating some sensitivity to the verification dataset. 

These variations highlight the influence of major tropical modes of variability—

especially ENSO and IOD—on regional predictability (Hastenrath et al., 1993; Behera 

et al., 2005; Wang et al., 2009). 
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Particularly, skilful years often coincide with mature ENSO and IOD phases, 

with the most significant rainfall anomalies recorded during years when these modes 

occur simultaneously. Although El Niño years are typically associated with intense 

OND precipitation, the correlation between rainfall anomalies (RFa) and the Dipole 

Mode Index (DMI) is generally stronger than the correlation with Niño3.4 (N3.4) SST 

anomalies. This suggests that the Indian Ocean SST response to ENSO exerts a more 

pronounced influence on East African rainfall than ENSO’s direct teleconnections via 

atmospheric bridges. In most cases, the sign of the DMI successfully predicts the sign 

of seasonal rainfall anomalies, a consistency not always matched by N3.4. This finding 

resonates with earlier research emphasising the east–west SST dipole and associated 

atmospheric circulation patterns as key drivers of East African short rains (Yamagata 

et al., 2002; Black et al., 2003). 

Surprisingly, the extreme 2015/2016 El Niño event—one of the strongest on 

record—posed significant challenges for most models, which struggled to accurately 

simulate the rainfall patterns during the OND season. Only the NCEP and ECCC 

models (Fig. 2.3i) captured these anomalies adequately. The underperformance is likely 

due to the relatively weak positive IOD phase in 2015/2016 compared to the 1997/1998 

El Niño, which limited the amplification of the Indian Ocean Walker circulation 

(Macleod & Caminade, 2019). This underscores the complex and non-linear 

interactions between ENSO and IOD in shaping East African rainfall. We also analysed 

that canonical El Niño, positive IOD, and El Niño Modoki contribute to enhanced East 

African rainfall. Compared to the IOD, both indices (N34 and EMI) exhibit interannual 

variability with similar amplitudes (Fig. 10 and b), however, they show a weaker 

correlation with OND RFa. In some years, for instance, 1997–1998 saw peaks in both 

indices, indicating a strong canonical El Niño.  Beyond Walker circulation, this driver 

also impacts African rainfall by altering jet stream dynamics, particularly weakening 

the tropical easterly jet and shifting the African easterly jet southward, reducing rainfall 

in northern tropical regions like the Sahel (Preethi et al., 2015).  

Furthermore, both model simulations and observational data reveal that 

negative sea level pressure anomalies (slpDMI) during concurrent positive ENSO and 

IOD events are associated with intensified convection and significant changes in the 



47 

 

Walker Circulation over the tropical Indian Ocean. These atmospheric responses are 

well represented in the models, as evidenced by their strong agreement with ERA5 

slpDMI anomaly patterns. At the same time, negative upper equatorial wind (UEQ) 

anomalies point to a synergistic effect of ENSO and IOD in altering zonal wind 

patterns—weakening or even reversing the trade winds—via a reduced zonal pressure 

gradient across both the Pacific and Indian Oceans. Collectively, these feedback 

mechanisms significantly influence the variability of OND rainfall in East Africa. 

Despite the region's proximity to the western pole of the IOD, the strongest correlations 

with rainfall appear when both eastern and western poles are considered. This suggests 

that broader-scale IOD variability and its associated impact on the Walker Circulation 

play a more dominant role than local SST anomalies in driving rainfall variability. 

In summary, while current seasonal forecast models show promising skill in 

capturing OND rainfall anomalies across East Africa, particularly when both ENSO 

and IOD phases are accurately represented, limitations remain, especially in simulating 

complex interactions during extreme years. These findings highlight the importance of 

improving model representations of Indo-Pacific climate variability and their coupled 

teleconnections to enhance seasonal forecasting in this highly vulnerable region. 
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3 FORECASTING EAST AFRICAN LONG RAINS 

3.1 Introduction 

East African long rains, which run from March to May (MAM), are known 

locally as Gu in Somalia, Belg in Ethiopia, and Masika in Kenya, Tanzania, and 

Uganda. Its variability is linked to the migration ITCZ, which is taken as a major factor 

in the East African long rains (MacLeod, 2019; Yang et al., 2014). When the ITCZ 

shifts northward, it brings more moisture and convective activity. SSTs of the nearby 

Indian oceans, such as the Indian, and in the broad-scale air circulation patterns, affect 

its position and intensity. Changes in the ITCZ's position can cause variations in the 

long rains' timing, intensity, and spatial distribution, which frequently lead to either 

droughts or floods in EA (Lashkari & Jafari, 2021; Nicholson, 2018). Due to the 

significant rainfall it brings, which boosts agricultural production, restores water 

supplies, and increases economic activity, this season is vital to the region (MacLeod, 

2019). The long rains are particularly vital for food security, as they coincide with key 

planting and growing periods for staple crops. Its significance underscores the need for 

accurate forecasting to mitigate risks associated with variability, such as droughts or 

flooding, which can disrupt these critical sectors (Roy et al., 2024). 

During the last 30 years, East Africa has experienced a persistent decline in 

rainfall during the long rainy season (Funk et al., 2008; Williams and Funk, 2012). This 

has had major consequences for regional food security, where agriculture largely 

depends on rainfall and is thus highly vulnerable to climatic change (Funk et al., 2008; 

Lyon, 2014). It is unclear whether this decline is caused by internal multidecadal 

variability associated with changes in the tropical Pacific (Yang et al., 2014) or 

anthropogenically driven warming in the Indian Ocean or western Pacific region 

(Liebmann et al., 2014). Furthermore, this declining trend is confirmed by recent 

studies such as Palmer et al. (2023). Since 1985, marked variability and consistent 

negative trends in the long rains have been detected. Unusual rainfall during long rains 

can result in droughts over the region (Nicholson, 2017a). Due to this, it has led to 

persistent droughts, which have had increasingly severe impacts the agriculture and the 

broader economy in recent decades. For instance, from 2008 to 2010, the Horn of Africa 
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experienced a drought that affected over 13 million people, and it cost about $1 billion 

to respond to the crisis. This widespread drought exemplified the dire consequences of 

unpredictable weather patterns in East Africa, leading to a significant humanitarian 

crisis (Amha et al., 2023; Gebremeskel et al., 2019).   

Over the past two decades, EA experienced many drought episodes during the 

long rains, leading to severe food insecurity (Funk et al., 2014). For instance, between 

April 2016 and December 2017, Somalia experienced three extremely poor rainy 

seasons, which created a persistent and extensive drought that caused significant losses 

in livestock and agricultural harvests (Funk et al., 2018). These extreme events, 

observed over many years, are linked to the variability of sea surface temperature in the 

tropical oceans (Gebremeskel et al., 2019; Saji N. et al., 1999). Recurrent droughts are 

often associated with negative phases of SST anomalies over the central Pacific Ocean 

(Park et al., 2020). Numerous scholars have underlined that the variability in East 

Africa’s long rains is driven by both local factors, such as topography and land use, and 

remote drivers (Nicholson, 2017). 

Driving mechanisms of long rains variability and trends are connected to local 

and global drivers that influence atmospheric circulation, ocean temperatures, and 

precipitation patterns (Camberlin & Philippon, 2002; Palmer et al., 2023; Walker et 

al., 2020). ENSO plays a significant role in influencing the long rains in East Africa, 

with its various phases driving changes in precipitation patterns and variability 

(Vellinga & Milton, 2018b). Typically, strong El Niño events increase atmospheric 

moisture, often leading to enhanced rainfall. However, during La Niña conditions, 

particularly following strong El Niño episodes, warmer SST in the western Pacific can 

correspond to drier conditions over East Africa (Indeje et al., 2000). During the 2016–

2017 period, weakened Walker circulation due to El Niño, along with increased SSTs 

in the central and eastern Pacific, disrupted rainfall patterns and contributed to the dry 

seasons and droughts over East Africa observed (Funk et al., 2018).  However, the 

tropical ocean and East African rainfall are complex and can result in both wetter and 

drier conditions.  As the IOD peaks between September and November, long rain 

variability is less responsive to changes in IOD (Shaaban & Roundy, 2017). 
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However, the long rains are primarily influenced by ENSO, particularly through 

its associated atmospheric teleconnections, rather than through interactions with the 

Indian Ocean. Lyon and DeWitt (2012) found that the decline in long rains is closely 

linked to abrupt changes in the tropical Pacific, challenging earlier suggestions that 

emphasized the role of the Indian Ocean. Variations in zonal wind patterns, including 

regional monsoonal flows and the Walker circulation's strength, are also quite important 

(Nicholson, 2017). The intricacy of East Africa's climate system, where several factors 

work together to affect seasonal rainfall variability. The increased or suppressed rainfall 

during the long rainy season is also associated with MJO phase, which is the eastward 

movement of oceanic and atmospheric phenomena along the tropics (Pohl and 

Camberlin, 2006a; Hogan et al., 2015). These studies have shown that during MJO 

phase 2-4, negative rainfall anomalies were observed across the coastal and, while 

positive rainfall anomalies were observed over the highland. Based on this research, the 

mechanisms causing these up to three-week-long wet/dry episodes are well understood 

(Hogan et al., 2015; Nicholson, 2017). However, the impact of MJO on the long rains 

is not easily understood, involving changes to intraseasonal aspects such as onset timing 

and frequency of extreme events (Pohl and Camberlin, 2006b). According to Yang et 

al. (2020), there is also evidence that the Quasi-Biennial Oscillation (QBO), a 

stratospheric zonal wind pattern, influences the strength of convection and circulation 

patterns, which in turn influence rainfall during long rainy seasons. 

Variability in East African long rains is also greatly influenced by regional 

characteristics, including moisture recycling and land-atmosphere interactions. Surface 

evaporation rates are influenced by changes in plant cover and soil moisture, and these 

variations contribute to localized convective processes. Rainfall distribution is 

influenced by topography, especially the Rift Valley and the Ethiopian Highlands, 

which alter moisture transport and wind patterns (Diem et al., 2014).  Moreover, 

moisture advection from the Indian Ocean is influenced by the interplay of monsoonal 

winds and the Somali Jet, with stronger winds generally carrying more moisture into 

the area (Funk et al., 2016; Jain et al., 2021). Increasing an understanding of these 

mechanisms is essential for seasonal forecasting using dynamical models such as C3S 

models, which may promise to anticipate long rains fluctuation ahead of the season. 
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In this chapter, we used dynamical multi-system seasonal retrospective 

forecasts from the C3S to investigate the predictability of the long rains over EA. These 

predictions employ state-of-the-art seasonal prediction methods, designed to capture 

the complex climate dynamics impacting rainfall patterns. Here, we investigated 

whether the dynamical seasonal prediction systems accurately replicate the temporal 

and spatial characteristics of the long rainy season. We also identify which forecast 

systems can describe the MAM rainy season, which enables us to understand the 

connection with large-scale climatic drivers. This allows us to assess further the models' 

predictive accuracy across a range of temporal resolutions and investigate how the 

prediction systems' accuracy was affected by significant climate modes. We try to 

understand how these teleconnections influence East African long rain patterns and if 

the models sufficiently consider the interactions by analysing their separate and 

combined effects. Therefore, in this chapter, we evaluate the predictability of long rains 

by dynamical multi-system seasonal retrospective forecasts by addressing key 

questions: Do dynamical seasonal prediction systems reproduce the long rainy seasonal 

pattern? Which climate drivers are more influential on MAM rainfall variability? When 

and why is the forecast skill higher or lower, i.e., conditional predictability? 

Furthermore, we have checked the model's skill dependence on ENSO and IOD phases, 

considering both their independent and combined effects on the East African long rain 

pattern.  

3.2 Datasets, models, and methods 

In this chapter, we focused on the long rains' predictability. We applied the same 

datasets, models, and methods used to investigate Short Rains and described them in 

chapter 2, section 2.2.2.  

3.3  Model Climatology and Inter-annual variability 

To evaluate the capability of the dynamical models to accurately reproduce East 

African seasonal rainfall patterns during the long rain season, we compared the 

climatology of the ensemble mean of individual models with the operational dataset. 

The climatology and interannual seasonal anomaly for models and observational 

datasets for Season 1 (March-May, MAM) as initialized in February (Figure 3.1). The 



52 

 

rainfall anomaly indices for the MAM season are averaged over Equatorial Eastern 

Africa (30–50°E, 5°S–10°N), as shown by the blue dashed box in Figure 3.1. The 

observational datasets (Fig.3.1 i and j) display maximum rainfall over Lake Victoria 

Basin and the Ethiopian Highlands, regions known for their heavy rainfall during the 

long rains season. Similarly, most models displayed high rainfall over the highlands 

and the western part of the region, particularly near the equator. However, the DWD 

tends to underestimate the rainfall over the highlands, this discrepancy may be 

attributed to the coarse resolution of the model ensemble compared to observational 

reanalysis, which can make it challenging to capture topographic effects and localized 

convection accurately.  

The interannual variability of the long rainy season is presented (Fig. 3.1 k) by 

averaging over part of equatorial East Africa between 5°S-10°N and 30°-50°E (blue 

box in Fig. 3.1i) following a similar approach to Palmer et al. (2023). The index reveals 

that 1998 appears to represent the peak rainfall for most coupled models, which is not 

shown in ERA5.  However, compared to GPCP, most models significantly overestimate 

this event. The observational dataset presents higher interannual variability than 

models, as the ensemble means smoothing out most of the internal variability that grows 

from the perturbation in the initial conditions. Despite the observed variability, models 

and observations generally align well during years of strong positive rainfall anomalies, 

such as those in 1998 and 2010.  
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Figure 3.1 Seasonal rainfall climatology during the long rains (Maech-May: MAM) 

derived from GPCP (i), ERA5 (j), and the seasonal prediction systems from C3S, which 

includes 8 ocean-atmosphere coupled model ensembles and cover the period 1993–
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2016 (a-h). The lower panel shows area-averaged MAM rainfall anomalies for parts of 

Eastern Africa (30–50°E, 5°S-10°N; blue dashed box in i) for models, ERA5, and the 

GPCP dataset. Anomalies are computed relative to the climatology shown in the upper 

panel. 

The spatial pattern of rainfall variability during MAM season is represented by 

the inter-annual standard deviation for both models and GPCP dataset (Fig. 3.2). Over 

the ocean, GPCP presents maximum variability over Southwest parts of the Indian 

ocean at while in the model this is true only for ECCC, UKMO, and NCEP. 

Furthermore, several models but especially JMA, ECCC, MeteoF, and CMCC presents 

a significant variation in OND season over East African highlands. However, in most 

lands both observational products and models exhibit less rainfall variability. As GPCP 

climatology pattern, most of the coupled models show less rainfall variability is shown 

in Northern parts of East Africa.  
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Figure 3.2 Seasonal rainfall standard deviation during the long rains (MAM) derived 

from the seasonal prediction systems from C3S, which includes 8 ocean-atmosphere 

coupled model ensembles and covers the period 1993–2016 (c-j) and GPCP (i), ERA5 

(j) datasets. 

The model biases are computed over the East African region throughout three 

consecutive lead seasons, i.e., lead1(March-May, MAM) and the months that follow 

lead2(April-June, AMJ), and lead3 (May-July, MJJ), shown in Fig. 3.3. The biases are 

calculated as the difference between the GPCP dataset, and the ensemble mean of the 
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individual models. Models like JMA, ECCC, CMCC, and MeteoF show notable 

positive biases at lead seasons 1 and 2, suggesting an overestimation of precipitation 

over the Congo Basin and the southwestern portions of the region. Particularly, models 

such as CMCC and MeteoF exhibit a significant overestimation of precipitation over 

the Ethiopian humid highlands, with the first two lead seasons showing up to 6 mm/day. 

It is noteworthy that the MeteoF model shows the tendency for these positive biases to 

increase with lead time, indicating the challenges of sustaining reliability over long 

forecasting lead seasons. These findings highlight the necessity of better model 

calibration, especially to capture rainfall variability in important areas such as the major 

highlands.  
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Figure 3.3 Mean bias (Model-GPCP) for C3S model predictions for lead season 1 

(March-May: MAM), lead season 2 (April-June: AMJ), and lead season 3 (May-July: 

MJJ) of rainfall climatology (ensemble mean) which initialized in February during 

1993-2016.  
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3.4  Predictive skill of coupled models 

To evaluate the predictive skills of models in forecasting East African long rain 

pattern, we applied the spatial and temporal anomaly correlations. The ACC analysis is 

a common statistical metric used to measure the spatial (or temporal) correlation 

between the simulated and the observed anomaly (section 2.2.3 in chapter 2). 

Observational datasets such as GPCP and ERA5 are often used as benchmarks for 

evaluating model performance. Using forecasts initialized in February for the 1993–

2016 hindcast period, we computed pointwise ACC to assess the models’ predictive 

skill in reproducing EA long rains at lead seasons 1 (MAM), 2 (AMJ), and 3 (MJJ). 

Most models, higher skill appeared across the western Indian Ocean, whereas less or 

no skill was observed in many parts of the land, especially over highlands. This 

indicates that most models are shown consistently in replicating the EA long rains. 

However, throughout all lead seasons, some models like UKMO and NCEP show skill, 

particularly across portions of the central highlands and Western parts of the Indian 

Ocean. Some models, such as CMCC and UKMO, exhibit a significant forecasting skill 

across Northern Eritrea, the Red Sea, and the southern west Indian Ocean up to lead 

season two. However, as the lead time increases, the model’s skill declines, suggesting 

a reduction in accuracy for longer forecasts. In general, in the case of long rainy seasons, 

we have seen that different models have varying prediction abilities, as the ACC plots 

across lead seasons 1 (MAM), 2 (AMJ), and 3 (MJJ) reveal variations in the models' 

ability to predict rainfall anomalies. 
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Figure 3.4 Pointwise-correlation maps between GPCP and C3S model predictions for 

lead season 1 (May-March: MAM), lead season 2 (April-June: AMJ), and lead season 

3 (May-July: MJJ) of rainfall anomalies (ensemble mean) during 1993-2016. Stippling 

indicates area where the correlation between the hindcast and observation are 

statistically significant at 99% confidence level, as calculated by a two-side Student t-

test for 22(N-2) degrees of freedom.  

The dependency of the prediction skill on monthly lead-time is evaluated 

against GPCP anomaly (Fig 3.5 a-h). To understand monthly predictability of long rain, 

we evaluate the anomaly of each model at specific year. First, we identify the 3 most 

skillful years (highlighted in colors) in which the models consistently outperform the 

persistence forecasts for lead time from 1 to 3 months’ (Fig. 3a-h). Specifically, when 

compared to persistence forecasts, 5 out of 8 models present the highest skillful 

predictions for the year 1997 at 1-3 lead months. Similarly, only two coupled models, 

ECCC and UKMO, depict the high skill in 1998 and 2010 resulting in the ACC values 

greater than the persistence at the 2nd lead months (Fig. 3.4 c and d). After lead month 

2 (i.e., November, N), there is decreasing skill, with most years exhibiting significantly 

lower ACC values compared to the persistent skill level. Overall, precipitation 
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anomalies in the years 1997-1999 are more predictable, with most dynamical prediction 

systems presenting ACC values greater than the persistence skill. From the monthly 

dependent ACC, the MAM season models can predict monthly rainfall patterns with 

noticeable variation within models, highlighting the forecast accuracy decreasing 

across lead months. 

The interannual predictive skill of c3s models for the East African long rains 

(MAM) is analyzed (Fig 3.5 i). Here, we looked at the correlation between the observed 

and predicted RFa (the index computed over the blue box indicated in Fig.3.1i: EEARi) 

across the hindcast periods (1993-2016). The highest skill presented in all models, 

except MeteoF, during the year 1998. Even though 1997 is the most skillful year 

identified at monthly lead ACC (Fig 3.5 a-h), at lead season (MAM), the low skill 

evident in models (Fig 3.5 i). Similarly, in the year 2010 they also presented high 

correlation values across most coupled models, except for the ECCC and MeteoF.  
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Figure 3.5 Anomaly correlation coefficient (ACC) between GPCP and each C3S model 

(a-h; shown in the upper panels) for monthly rainfall anomaly over part of Eastern 

Africa (blue dashed box of Fig. 1i) for each year (grey lines) from lead month 0 

(February) to lead month 5 (February). In each subfigure, the top three forecasts stand 

out with distinct colours: the most accurate year is highlighted in red, the second-best 

in blue, and the third best in magenta. These forecasts are determined by sorting all 

predicted years based on their average ACC values across February and March The 

lower panel (i) illustrates the spatial correlation between each model and GPCP 
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rainfall anomalies for the MAM season, calculated over Equatorial Eastern Africa (30–

50°E, 5°S-10°N) 

3.5 Predictability conditional on ENSO and IOD phases 

Large-scale climatic drivers, specifically SST anomalies in the Indian and 

Pacific Oceans, are the primary source of predictability for the East African long rains. 

Rainfall patterns in the region are significantly influenced by variability in the Pacific 

Ocean, such as ENSO, and the Indian Ocean. While El Niño or La Niña events 

frequently alter moisture transport and atmospheric circulation, positive or negative 

IOD phases can have a substantial impact on the timing and intensity of the long rains. 

To identify the main source of predictability for the east African long rain pattern, we 

have seen the association with IOD and ENSO seasonal variability (Palmer & 

Anderson, 1994; Troccoli, 2010). 

 The role of tropical SST in modulating East African long rain is analyzed, 

utilizing indices that monitor rainfall (i.e., EEARi) and SST (ENSO and IOD). 

Specifically, the Niño 3.4 index (N3.4; SST anomalies averaged over 120°W–170°W, 

5°S–5°N) tracks ENSO, while the Dipole Mode Index (DMI; SST anomalies difference 

between the western Indian Ocean (DMIw), 50°E−70°E, 10°S–10°N, and eastern 

Indian Ocean (DMIe), 90–110°E, 10°S -0) monitors IOD variability (Saji et al., 1999).  

The relationship between MAM rainfall anomaly index and DMI across models (Fig. 3 

.6a-h) and observational datasets indicates there is a negative relation between DMI and 

N34 phases. From our analysis, the MAM rainfall season has no clear association with 

SST when we consider N34 and DMI as evident from observations and models (Fig. 

3.5). Even though MeteoF and NCEP models show a relatively high positive correlation 

between DMI and N34, there is no significant association with MAM rainfall anomaly.  

However, when we considered SST over the western Indian Ocean (DMIw) and 

N34, most coupled models and observations present that SST has a linear association 

with MAM rainfall anomaly (green colors on Fig. 3.6), except the MeteoF model across 

the East African region. Some successful predicted year that we identified (Fig. 3.5) is 

associated with the strongest El Niño event on record (1997/1998), East Africa 

experienced the largest positive RFa during MAM season (Fig. 3.1 k). While most 
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models exhibited weak association between N34 and DMI, strong association presented 

in all models and observational dataset when we considered the western Indian Ocean 

(DMIw). 

    



64 

 

 

Figure 3.6 Scatterplot of Niño3.4 index (N34; x-axis) versus Dipole Mode Index (DMI; 

y-axis) during MAM season for each of the 24 years analyzed in both model predictions 

(a-h) and GPCP dataset (i). The area of the circle is proportional to the absolute value 

of MAM rainfall anomaly averaged over part of Eastern Africa (blue dashed box of 

Fig. 1i), with positive (negative) anomaly coloured in green (orange). As in Fig. 3, the 

best forecasted year is highlighted in red, the second-best in blue, and the third-best in 

magenta. Additionally, the correlation coefficient between N3.4 and DMI is provided 

at the top of each subfigure for reference. (j-r) shows a similar analysis but with the 

western pole of the DMI index (DMIw).  

Given East Africa's proximity to the western pole of the Indian Ocean (DMIw 

region), the interannual variability of the East African long rains is more strongly linked 

to fluctuations in the Niño3.4 index, demonstrating higher predictability.  Statistically, 

Niño3.4 and DMIw show more consistent SST-rainfall relationships across years 

during the MAM season. However, when considering the west-east dipole (DMI), the 

correlation between the long rains and SSTs is notably weaker than the correlation with 

DMIw. Similarly, the correlation between the long rains and SSTs is relatively a little 

bit stronger with El Nino Modoki (Fig. 3.7). Hence, these finding highlights that the 

East African long rains are more closely associated with ENSO than with the overall 

DMI, as supported by both observational data and model simulations (Fig. 3.6 j-r). The 

stronger correlation with DMIw, despite the expectation that local SST variations 

would play a more dominant role, underscores the significant influence of large-scale 

ocean-atmosphere interactions, such as ENSO, on East Africa's rainfall variability 

during the long rains. 
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Figure 3.7 Scatterplot of El Niño Modoki index (EMI; x-axis) versus DMI (y-axis 

during MAM season for each of the 24 years analyzed in both model predictions (a-h) 

and GPCP dataset (i). The area of the circle is proportional to the absolute value of 

MAM rainfall anomaly averaged over part of Eastern Africa (blue dashed box of Fig. 

2.1i), with positive (negative) anomaly coloured in green (orange). As in Fig. 3.5, the 

best forecasted year is highlighted in red, the second-best in blue, and the third-best in 

magenta.  

The heatmap shown in Fig. 3.8 presents the correlation between MAM rainfall 

anomalies (RFa) and key climate indices—N34, DMI, slpDMI, EMI, and UEQ—across 

various dynamical models. Most models, along with ERA5 (0.41), show significant 

positive correlations with N34, reinforcing the strong influence of ENSO on MAM 

rainfall variability. While EMI (El Niño Modoki) shows a weak and inconsistent 

influence. DMI correlations are more mixed: while CMCC (0.62) and JMA (0.57) align 
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with observed patterns, others like UKMO (-0.46) and NCEP (-0.57) reveal opposite 

trends, highlighting model differences in representing IOD impacts. 

Particularly, UEQ—zonal wind anomalies over equatorial Africa show strong 

and consistent negative correlations across most models (e.g., JMA: -0.82, CMCC: -

0.83), emphasizing its key role in modulating moisture transport. Likewise, sea level 

pressure anomalies over the DMI region also exhibit significant negative correlations 

in models such as JMA (-0.74) and CMCC (-0.84), though these are generally weaker 

than for UEQ. In general, the CMCC and JMA stand out for capturing stronger and 

more consistent relationships across all indices. In contrast, models like ECCC and 

MeteoF show weaker signals, pointing to challenges in simulating the drivers of East 

African rainfall. While ENSO and UEQ remain the most robust predictors of rainfall 

variability, inconsistent DMI and slpDMI signals suggest a limited or model-dependent 

influence of IOD-related SST and pressure anomalies on the region’s long rains. 

 

Figure 3.8 Correlation between RFa and climate indices for MAM season. Asterisks 

(*) and (**) indicate significance at the 95% and 99% confidence levels, respectively.  

The interannual variability of SST, sea level pressures, and zonal wind anomaly 

for the MAM season is shown in, derived from multiple models and the ERA5 dataset 



67 

 

(black points shown in Fig. 3.9), providing insights into key climate drivers influencing 

East African long rains. Niño3.4 (N34) index, a key measure of ENSO variability, 

where all models exhibit strong agreement in capturing interannual fluctuations (Fig. 3 

.9a). This high coherence between models and ERA5 underscores the robust 

predictability of ENSO during MAM. The result revealed that East African long rains 

are linked to El Niño events, with notable peaks during the 1997-98 and 2015-16 El 

Niño episodes. The SST indices over the Indian Ocean, that is DMI, generally, models 

capture its variability, the spread between models is wider compared to the N34 index, 

reflecting greater uncertainty in simulating IOD-related processes. Additionally, we 

also examine sea level pressure variability of DMI (i.e., slpDMI shown in Fig. 3.7d), 

which highlights pressure differences associated with IOD variability. While the model 

patterns align broadly with ERA5, disagreements are noticeable, especially during 

extreme events. 

Equatorial zonal wind anomalies—east-west winds along the equator—play a 

crucial role in the advection of moist air from the Indian Ocean, significantly 

influencing regional moisture transport and atmospheric circulation. Among these, the 

UEQ index stands out as particularly important. While most models capture the general 

trends of wind anomaly in UEQ, some models present considerable variation. For 

example, in the year 2000, both ERA5 and most models (except for the ECCC model) 

show positive anomalies in sea level pressure (SLP) and zonal wind, despite the 

presence of a negative N34 anomaly (Fig. 3.7d and e). This suggests that during La 

Niña conditions, the cooling in the eastern and central Pacific enhances the descending 

branch of the Walker circulation, leading to higher SLP anomalies in those regions 

(Zhao and Cook, 2011; Williams and Funk, 2021). 
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Figure 3.9 Interannual variation of MAM seasonal mean observed, individual coupled 

model's ensemble means anomalies a) N34(SST anomalies averaged over 120°W–

170°W, 5°S–5°N) b) DMI, c) sea level pressure anomaly index over DMI region 

(slpDMI), d) Equatorial wind anomaly index (UEQ). The rainfall index is area-

averaged over Eastern Africa (30–50°E, 5°S-10°N) for both models and ERA5.  

3.6 Discussion and Conclusion 

This chapter examined the performance of state-of-the-art dynamical seasonal 

prediction models in capturing the East African long rains, focusing on eight coupled 

models from the C3S seasonal retrospective forecast systems. We limited our analysis 

to forecasts initialized in February, which aligns with the onset of the long rainy season 

in most parts of East Africa. 

Despite notable biases, particularly over the Congo Basin and the southwestern 

parts of the region (Fig. 3.1), most models demonstrated some skill in replicating 

rainfall anomalies over East Africa, especially in the southern sectors. However, model 

performance was limited over northern and western Africa. In some parts of the western 

Indian Ocean, predictive skill persisted through to MJJ seasons, as indicated by 

statistically significant correlations (Fig. 3.4). Rainfall predictability in the region is 

strongly linked to large-scale climate drivers, notably ENSO and IOD. The extended 

1997–1998 El Niño, for example, led to the highest recorded rainfall anomaly in 1998, 

as evidenced by both observational datasets and dynamical models. Although the El 

Niño event peaked in late 1997, sustained ocean-atmosphere responses, such as a 

disrupted Walker Circulation, continued into early 1998, facilitating enhanced moisture 

transport into East Africa (Roy et al., 2024). 

Our analysis shows that most models capture significant correlations between 

East African rainfall and the Niño3.4 index as well as the western Indian Ocean Dipole 

mode index (DMIw). Positive IOD events, marked by warmer SSTs in the western 

Indian Ocean, strengthen convection and increase moisture transport into East Africa, 

contributing to higher rainfall. Likewise, El Niño-related warming in the central and 
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eastern Pacific alters the Walker Circulation, enhancing moisture influx and increasing 

rainfall intensity in the region. 

We evaluated the models’ predictive skill up to three lead seasons (MAM to 

MJJ) by comparing their forecasts with GPCP observational data from 1993 to 2016. 

Models generally performed better during ENSO years than during IOD phases, 

underscoring the dominant influence of ENSO on the region’s rainfall variability. 

While the models reliably reproduced Niño3.4 variability, they exhibited greater 

discrepancies when simulating the DMI and UEQ indices. This highlights the 

complexity of the coupled ocean-atmosphere processes in the Indian Ocean and their 

variable representation across models. Overall, the models demonstrate reasonable skill 

in forecasting East African long rains, particularly under strong ENSO conditions. 

However, their limited ability to simulate Indian Ocean dynamics suggests the need for 

further improvements in representing regional teleconnections and air-sea interactions. 
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4 INVESTIGATE THE ROLES OF ENSO AND IOD ON EAST 

AFRICAN SHORT RAIN USING EARTH SYSTEM MODEL 

EXPERIMENTS  

4.1 Introduction  

Remote teleconnections significantly influence East African rainfall variability, 

which leads to intra-seasonal to interannual fluctuations that are more noticeable than 

in many comparable locations across the world (Nicholls, 1997). Although factors like 

the Southern Annular Mode (Hendon et al., 2007), MJO (Kimani et al., 2020)  and 

Atlantic Multi-decadal Oscillation (Xue et al., 2022)  also play a role on rain fall 

variability, tropical drivers mainly ENSO (Indeje et al., 2000; Macleod & Caminade, 

2019) and the IOD (Ashok & Yamagata, 2003; Behera et al., 2005; Saji N. et al., 1999) 

are recognized as the primary influences on interannual rainfall variability throughout 

East Africa (Pook and Gibson, 1999; Risbey et al., 2009). IOD often affects East 

Africa's rainfall, especially during the short rainy season, although the ENSO has a 

stronger effect throughout both the short and long wet seasons (Palmer et al., 

2024). Despite these significant influences, the observable indices used to track ENSO 

and IOD often exhibit high levels of co-variability (Ashok & Yamagata, 2003), 

challenging efforts to isolate the individual contributions of each driver to rainfall 

anomalies (Liguori et al., 2022). 

Recent studies argue that the frequent co-occurrence of ENSO and IOD phases 

makes it difficult to attribute observed East African rainfall patterns solely to one driver. 

To understand the independent role, it is important to distinguish the physical climate 

modes (ENSO and IOD) from the indices used to monitor their variability, such as the 

Niño3.4 index (N34; Trenberth, 1997) for Indian Ocean Dipole (Saji et al., 1999). To 

disentangle the individual contributions of climate drivers to the interannual variability 

of rainfall, some studies (e.g., Liguori et al., 2019) have employed both physical and 

statistical removal techniques. These methods enhance the accuracy of interpreting and 

attributing East Africa's complex rainfall variability. Analytical approaches have also 

been widely used to isolate the distinct influences of ENSO and the IOD on rainfall 
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variability (Liguori et al., 2022; McMonigal & Larson, 2022; Ummenhofer et al., 2009; 

Wang et al., 2019). Physical and statistical elimination approaches, such as regression-

based procedures and sensitivity experiments in climate models, have been used in 

research like Ligouri et al. (2022). By separating one mode's influence while accounting 

for the other, these methods make it possible to interpret each mode's effects more 

precisely. Studies such as Nicholson & Kim (1997) and Hastenrath et al. (2007) applied 

multiple regression and partial correlation analysis techniques to isolate the 

contribution of one mode, and the variability associated with the other mode is 

regressed out. For instance, by adjusting for Niño3.4 index values, ENSO-related 

fluctuation can be eliminated, enabling to evaluation of the IOD's remaining influence. 

To investigate atmospheric reactions to isolated causes, sensitivity experiments 

utilizing climate models are also frequently used. For example, simulations with SST 

anomalies limited to the Pacific or Indian Ocean are used (Luo et al., 2008; Tierney et 

al., 2013). Empirical orthogonal function analysis is another powerful tool to separate 

dominant modes of variability in climate datasets, distinguishing ENSO and IOD 

signals (Gupta et al., 2023) Advanced hybrid approaches, combining physical 

constraints with statistical techniques, such as the physical removal of SST patterns 

associated with one mode, have also proven effective (e.g., Ligouri et al., 2019) 

The triggering mechanism for the IOD using model simulation with and without 

removal of the ENSO signal was realized by using only climatological wind stress 

(Fischer et al., 2005). They found that during non-ENSO events, anomalous Hadley 

circulation over eastern IO causes anomalous southeasterly wind over Java Island, 

leading to upwelling cold SST, and triggering of upwelling Kelvin wave via the easterly 

component of the southeasterly wind. Cooling on the east of the IO leads to losses of 

the climatological heating due to convection, thereby triggering an anticyclone 

southwest of the anomalous heat sink (Roy et al., 2023). Such an anticyclone intensifies 

the southeasterly wind, and the process continues. The second mechanism for triggering 

the IOD is the shift of the Walker circulation during the El Niño phase. El Niño weakens 

the Walker circulation by shifting the warm pool to the east, leading to losses of the 

climatological heating over the Maritime-Continental Rossby wave southwest of the 
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heating source. Such a mechanism occurred in 1997, the greatest El Niño year ever 

observed (Ashok & Yamagata, 2003) 

Debates have arisen about whether the IOD is intrinsically linked to the ENSO 

or if it operates independently with its dynamics (Fischer et al., 2005; Luo et al., 2010; 

Saji et al., 1999). The interplay between these phenomena is evident, as developing El 

Niño events (or positive IOD phases) can induce positive IOD (or El Niño) conditions 

by triggering easterly (westerly) wind anomalies over the equatorial Indian (Pacific) 

Ocean through modifications to the Walker circulation (Behera et al., 2006; Luo et al., 

2010; Wang et al., 2019; Zhang et al., 2019). However, Saji et al. (1999) found that a 

strong inverse relationship between the IOD and ENSO appears mostly in the fall 

season. Both statistical and physical methods were used to eliminate the ENSO signal 

from the Pacific Ocean. The IOD signal was physically isolated using a global climate 

model in which the measured SSTs over the Pacific Ocean were substituted with 

climatological SSTs. To physically isolate the IOD signal, the study employed a GCM 

using climatological SSTs in place of the observed SSTs over the Pacific Ocean. The 

results showed that while the IOD signal persisted after removing the ENSO signal, it 

exhibited weaker amplitude compared to the control run with raw SST data. This 

suggests that atmospheric forcing may play a primary role in driving the IOD. The 

statistical relationship between ENSO and IOD is investigated, with a focus on 

consistent event classifications based on Bjerknes feedback and index thresholds 

(Lestari & Koh, 2016). In this study, they found that the El Niño and positive IOD 

mutually enhance each other, but La Niña and positive IOD reduce each other's co-

occurrence, demonstrating that co-occurrences are not coincider. On the other hand, 

there is minimal interaction between La Niña and negative IOD, and any historical 

coincidences are probably coincidental. Asymmetries in ENSO–IOD interactions and 

the different paths of El Niño and La Niña influences on the Indian Ocean are 

highlighted by these findings, which are corroborated by strong statistical tests and 

observable SST patterns (Cai et al., 2012; Xue et al., 2022). 

The IOD is an internal coupled mode in the Indian Ocean, which at times co-

occurs with the ENSO in the Pacific (Saji et al., 1999; Murtugudde et al., 2000). The 

relative influence of IOD and ENSO on East African short rains is not a surprise, as 
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previous studies briefly studied (Behera and Yamagata, 2006; Luo and Yamagata, 

2010). About 30% of positive IOD events co-occur with El Niño events (Rao et al., 

2002). About 65% of strong IOD events occurred when there was no ENSO in the 

tropical Pacific. However, 35% of IOD-positive events co-exist with El Niño events, 

which can suggest possible interactions between the ENSO and the IOD. The coupling 

process between the Walker circulation associated with the El Niño autumn is a crucial 

factor in inducing the positive IOD (Ueda and Matsumoto, 2000). Further, Behera and 

Yamagata (2001) showed that IOD can modulate the Darwin pressure anomalies, 

thereby affecting the Southern Oscillation Index (SOI). Using long-term data, Ashok et 

al. (2001) found that the physical existence of the coupled mode states that the major 

contribution to the IOD comes from the Indian Ocean. 

Saji et al. (1999) and Murtugudde et al. (2000) found that the intensity of the 

IOD and the equatorial zonal winds are strongly dependent on each other. Furtherly 

(Rao et al., 2002) confirmed that the zonal wind anomalies, the principal forcing for 

both the surface and subsurface dipoles, can bring the opposite polarity in SST 

anomalies and bring out the dynamical importance of these zonal winds in the 

development of dipole SST anomalies. Therefore, in this chapter, we assessed the role 

of tropical climate modes by isolating the ENSO signal from the Pacific through both 

statistical and physical methods. Statistical techniques, such as composite analysis and 

partial correlation, were used to investigate the influence of ENSO from other climate 

drivers, enabling us to understand its direct impact on East African rainfall variability. 

Physical approaches, including sensitivity experiments with CESM models, further add 

to this analysis by simulating atmospheric responses under prescribed SST anomalies 

associated with ENSO, thereby isolating its influence. we have also used similar 

techniques to isolate the influence of the IOD to investigate its independent role in 

causing rainfall variability during the short rainy season. Examining whether this 

variability is mainly driven by external climate forcings like volcanic eruptions and 

anthropogenic effects or by internal climate dynamics like the interaction between 

ENSO and IOD was a major emphasis.  
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4.2 Dataset, Model, and Methods 

4.2.1 Observational data and CESM experiments 

The observational SST and precipitation data are sourced from ERA5, a 

globally gridded monthly dataset with high spatial resolution, covering the period from 

1958 to 2022. ERA5 provides detailed and accurate observations, making it ideal for 

climate analysis and model validation. In addition, monthly precipitation data are 

obtained from GPCP version 2.3, which combines satellite and gauge-based 

measurements to produce a consistent and reliable global precipitation record. These 

datasets are essential for evaluating the performance of climate models and 

understanding observed climate variability. 

Data from the Community Earth System Model (CESM) low resolution (2.5°, 

2.5°) from NCAR were used to investigate the effect of internal variability on East 

African short rain variability. we conducted a series of experiments using CESM, 

employing four configurations such as CESM_CTRL, CESM_amipFULL, 

CESM_noIOD, and CESM_noIOD. As indicated in table 4.1 summarizes details of 

CESM (Community Earth System Model) experiments designed to analyse climate 

variability and the influence of specific climate drivers (Hurrell et al., 2013). The 

CESM_CTRL simulation is a fully coupled control experiment that includes dynamic 

interactions between the ocean, atmosphere, sea ice, and land components, spanning 

the data period 400-2200. It serves as a baseline for comparison with other experiments. 

The CESM_amipFULL (Atmospheric Model Intercomparison Project) simulation, an 

atmospheric-only experiment, uses SST prescribed from CESM_CTRL to isolate 

atmospheric responses, covering the period 801-1000. The CESM_noIOD experiment 

suppresses variability related to the IOD, allowing for the examination of its role in 

rainfall variability. Similarly, the CESM_noENSO simulation eliminates ENSO 

variability to isolate its impact on global and regional precipitation and temperature 

patterns. Both the CESM_noIOD and CESM_noENSO experiments span the period 

801-1000. All simulations are conducted at low resolution, with SST and precipitation 

as primary variables to investigate the individual and combined effects of ocean-

atmosphere processes on the East African short rain variability. 
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Table 4.1 Description of CESM model configuration applied for this study 

Features CESM_C

TRL 

CESM_A

MIP 

CESM_amipF

ULL 

CESM_noE

NSO 

CESM_noI

OD 

Configurat

ion 

Fully 

coupled 

model with 

atmosphere, 

ocean, land, 

and sea ice 

components. 

Atmospheric 

model with 

prescribed 

observed 

SSTs 

climatology 

(12 months). 

Atmospheric 

model with SSTs 

from 

CESM_CTRL. 

Partially 

coupled i.e. 

excludes 

ENSO 

variability. 

Partially 

coupled i.e. 

excludes IOD 

variability. 

SST 

Source 

Dynamically 

computed by 

the coupled 

ocean-

atmosphere 

model. 

Observations  From 

CESM_CTRL 

(internally 

generated SSTs). 

Dynamically 

computed with 

ENSO signals 

removed. 

Dynamically 

computed 

with IOD 

signals 

removed. 

Ocean-

Atmosphe

re 

Coupling 

Fully 

coupled. 

No coupling 

(prescribed 

SSTs). 

No coupling 

(prescribed 

SSTs). 

Partially 

coupled except 

in the ENSO 

region 

Partially 

coupled 

except in the 

Indian Ocean 

region 

Purpose Study natural 

variability 

and long-

term trends 

in a fully 

coupled 

system. 

Study the 

atmospheric 

response to 

observed 

SST 

variability. 

Study the 

atmospheric 

response to 

CTRL SST 

variability. 

Isolate climate 

impacts 

without ENSO 

variability. 

Isolate 

climate 

impacts 

without IOD 

variability. 
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Variability 

Included 

Full 

variability 

(e.g., ENSO, 

IOD). 

Observed 

SST 

variability. 

CESM-generated 

variability (e.g., 

ENSO, IOD). 

All variability 

except ENSO. 

All 

variability 

except 

variability 

driven by 

Indian Ocean 

SST. 

Period 

covered 

801-1000 801-1000 801-1000 801-1000 801-1000 

 

4.2.2 Method of analysis 

We analyse five experiments conducted under pre-industrial forcing: three partially 

coupled and two atmosphere-only runs. The coupled control run (CTRL-coupled) spans 

2200 years, with the first 400 years discarded as spin-up. All other experiments cover 

200 years, initialized from year 801 of the CTRL-coupled run. All model analyses are 

based on the 200 years from 801 to 1000. The partially coupled experiments include a 

full dynamical ocean, but they are run with the SSTs restored to the model monthly 

mean climatology of CTRL-coupled in specified regions following (Liguori & Di 

Lorenzo, 2019). Here, we consider two different restoring masks: the first covers a 

region in the eastern Pacific (180°W to the American coast, 20°S–N) to remove the 

SST imprint of ENSO variability (noENSO-coupled experiment), and the second 

covers a region in the Indian and west Pacific oceans (from the African coast to the 

maritime continent, 20°S to Asian coast) to remove the SST imprint of IOD variability 

(noIOD-coupled experiment). The CESM1 model and the mask used in the noENSO-

coupled experiment have been employed in previous studies specifically designed to 

constrain ENSO variability (Deser et al., 2017). The mask for the noIOD-coupled 

experiment is based on recent studies using nudged-SST simulations with CESM1 to 

explore variability in the Indian Ocean (Zhang et al., 2019). While we adopt a similar 

Indian Ocean mask, we restrict its eastern boundary to the Maritime Continent to 
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prevent direct influence on the Pacific Ocean, unlike the broader mask extending to the 

dateline (180°W). 

a) Composite analysis 

Composite analysis is a technique used to compare dry and wet situations, for 

example, to identify the circulation features particular to a particular combination of 

conditions. The key climate processes can then be explained by physical hypotheses 

derived from this (Boschat et al. 2016). In process-based climate model evaluation, the 

method can also be used to find common signals in the circulation of models that have 

biases in one way, such as wet vs dry models (Creese et al. 2019).  Composite analysis 

is a statistical method commonly used in meteorology and climatology to identify and 

analyze patterns associated with specific phenomena, such as El Niño events or extreme 

weather conditions (Wilks, 2011). This approach involves segregating data into subsets 

based on a particular criterion (e.g., above or below a threshold) and averaging the 

subsets to highlight characteristic patterns. Mathematically, the composite for a variable 

X can be expressed as  

𝑋𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 =
1

𝑁
∑ 𝑋𝑖

𝑁

𝑖=1

             (2) 

Where 𝑋𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 is the composite mean; N is the number of events or cases 

considered in the composite, and Xi represents individual data points in the subset of 

the variable X for the ith event. By isolating features associated with specific conditions, 

composite analysis helps researchers understand the influence of key drivers on climatic 

variables  

b) Partial correlation analysis 

Partial correlation analysis is a statistical method used to quantify the strength 

and direction of the relationship between two variables while controlling for the effects 

of one or more additional variables (Behera et al., 2005). In the context of East African 

short rainfall anomalies, this method is particularly useful for isolating the independent 

contributions of ENSO and IOD. By holding one variable constant (e.g., ENSO), the 

partial correlation can reveal the specific influence of the other variable (e.g., IOD) on 
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rainfall anomalies. By using this method, we can distinguish between the associated 

effects of ENSO and IOD, which frequently co-occur and influence rainfall patterns 

over East Africa during the OND season. Partial correlation analysis results are useful 

in determining whether short rainfall anomalies are driven more by ENSO than IOD. 

For instance, studies have shown that during certain years, the IOD exerts a stronger 

influence on East African rainfall compared to ENSO, particularly when ENSO signals 

are weak (Behera et al., 2005). Conversely, during strong El Niño years, ENSO can 

overshadow the IOD's influence, highlighting the need to account for both drivers 

independently (Schreck & Semazzi, 2004). It is applied to measure the association of 

EASR with DMI and ENSO by removing one of these factors, calculated as follows: 

 

𝑟13,2 =
𝑟13 − 𝑟12. 𝑟23

√(1 − 𝑟12
2 ) √(1 − 𝑟23

2 )
        (3) 

where 𝑟13 is  a correlation between DMI and the rainfall anomaly index, 𝑟12  is the 

correlation between DMI and Niño 3.4 index, 𝑟23  Correlations between Niño 3.4 and 

rainfall anomaly index 

4.3 Rainfall Climatology 

The rainfall seasonal climatology for the OND season across East Africa is 

shown in Fig. 4.1, which compares different CESM model experiments with 

observational datasets (ERA5 and GPCP). The upper panel (Fig. 4 .1a-f) displays the 

regional distribution of rainfall climatology for each dataset, while Fig. d) presents the 

seasonal precipitation cycle averaged over Equatorial East Africa is presented (shown 

in blue colour dotted line, Fig 4.1 .1a). Both the observational data set and model output 

exhibit a bimodal precipitation pattern, peaking during the long rains (MAM) and short 

rains (OND). While the models capture the general seasonal cycle, discrepancies are 

evident, particularly in the magnitude of rainfall tends to underestimate rainfall during 

March and April. Whereas CESM_noIOD and CESM_noENSO exhibit closer 

alignment with observations during February through April, which is part of the long 

rainy season. In comparison to observational data, the seasonal rainfall cycle over 

equatorial East Africa is generally captured by the CESM model simulations (Fig. 4.1), 
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which exhibit consistent patterns but differ in intensity. During the OND season, 

CESM_CTRL and CESM_amipFULL closely reproduce the observed peaks, showing 

strong alignment with each other. However, these models overestimated the OND 

rainfall pattern in contrast to the GPCP and ERA5 datasets. The seasonal cycle is 

accurately replicated by CESM overall, however, its overestimation during the OND 

season needs further research. 

The seasonal climatology, the ERA5 (Fig. 4 .1a) dataset represents the 

observational data, showing a pronounced rainfall maximum over the central parts of 

the analysed region, particularly in the Congo basin far from the coast. The 

CESM_AMIP (Fig. 4 .1d) model, which uses a prescribed SST pattern, simulates 

weaker rainfall, indicating reduced sensitivity to tropical climate modes. On the other 

hand, the CESM_noENSO (Fig. 4 .1e) and CESM_noIOD (Fig. 4 .1f) models present 

the rainfall maxima are slightly weaker and spatial gradients less pronounced than in 

ERA5. The CESM_noENSO model (Fig. 4.1 e) shows a notable reduction in rainfall 

over the region, suggesting the model has a notable systematic bias in rainfall patterns.  
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Figure 4.1 Seasonal OND rainfall climatology for ERA5 (a), model (b-f) and seasonal 

cycle of monthly rainfall (g) averaged over Equatorial East Africa region (30–50°E, 

5°S-10°N) for observational dataset (dotted line) and CESM coupled models averaged 

over available years (801-1000), GPCP (1979 to present), and ERA5 (1958-2022). 

There is interannual variability in the rainfall anomalies across all model experiments, 

with variations in the frequency and magnitude of events. A wider range of anomalies 

is produced by the complex interactions between ENSO and IOD, which are reflected 

in the CESM_CTRL simulation (Fully coupled control Run). Eliminating ENSO or 

IOD lowers this fluctuation, demonstrating their crucial influence on East African 

RAINFALL CLIMATOLOGY (OND)

a) ERA5 c) CESM_amipFULLb) CESM_CTRL

e) CESM_noENSOd) CESM_AMIP f) CESM_noIOD

g)
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rainfall. The models with the highest variability, CESM_CTRL and 

CESM_amipFULL, have standard deviations of 0.82 and 0.83 mm/day, respectively 

(Fig. 4.2 .2a and b). This suggests that the combined effects of ENSO and IOD continue 

to influence these models' natural variability.  

The standard deviation of CESM_noENSO, on the other hand, is smaller at 0.69 

mm/day, indicating less fluctuation because of the elimination of ENSO-related 

impacts (Fig. 4 .2c). Whereas CESM_noIOD with a standard deviation of 0.45 mm/day, 

exhibits the most variability since the elimination of IOD further reduces seasonal 

variations in rainfall (Fig 4.2 d). These findings demonstrate the distinct roles that 

ENSO and IOD play in the region's rainfall variability. While the lower variability in 

CESM_noENSO and CESM_noIOD indicates the lowered influence when these 

important climate causes are omitted, the larger variability in CESM_amipFULL 

highlights the important role of atmospheric variables in regulating East African 

rainfall.  Even though CESM_amipFULL and CESM_CTRL depict almost similar 

patterns and variability, in CESM_CTRL (coupled model), ocean dynamics can 

dampen atmospheric variability through feedback mechanisms such as thermocline 

adjustments or changes in ocean heat content, which act as a buffer. On the other hand, 

CESM_amipFULL relies solely on prescribed SSTs without such feedback, allowing 

atmospheric processes (e.g., convection and moisture transport) to respond more freely 

to the imposed SST anomalies, leading to slightly higher variability. 
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 Figure 4.2 Seasonal OND rainfall anomalies over East Africa derived from CESM 

experiments for the period 800–1000. The anomaly calculated over Equatorial Eastern 

Africa (30–50°E, 5°S-10°N) 

4.4 Rainfall variability 

Model bias describes the differences between the model's simulations and 

observational data that can be attributed to the model's assumptions, parameterizations, 

or structural constraints. The mean bias in rainfall anomalies between CESM model 
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simulations and ERA5 over EA (Fig 4.3). The control simulation (CESM_CTRL; Fig 

4.1a) displays both positive and negative biases in typical areas of the region. There is 

a noticeable negative bias close to 3°S, especially west of Lake Victoria, which suggests 

that rainfall in this region is significantly underestimated. On the other hand, some 

portion of western Indian and Western Ethiopia have moderate positive biases, 

indicating an overestimation of precipitation. While it captures the general structure of 

East African rainfall (Fig 4.1 b) noticeable differences arise in magnitude and spatial 

distribution compared to ERA5.These biases point to difficulties in accurately 

modelling localized rainfall mechanisms across intricate terrains. As presented in 

control experiment, similar rainfall biases are detected in the CESM amipFULL 

simulation (Fig 4.3 b), which accounts for observed SST forcing, though with 

somewhat smaller magnitudes. The positive biases in the eastern parts of the analysed 

region seem less severe and more dispersed, but the negative bias close to 3°S is still 

noticeable. This suggests that while adding observed SST forcing enhances the rainfall 

simulation to some extent, it does not completely remove the systemic biases. 

The spatial patterns in CESM_AMIP experiments (Fig 4.3c), where the models 

are only influenced by observed SSTs, are unchanged; however, positive biases become 

slightly noticeable near equator and western Ethiopia which is far from East African 

coast. This indicates that while SST forcing somewhat captures regional variability, it 

has trouble fully resolving local precipitation processes. The recurrence of biases calls 

attention to shortcomings in the model's depiction of land-atmosphere feedback and 

convection, particularly in the vicinity of Lake Victoria. Here we can say that 

CESM_AMIP simulations, which use observed SSTs as forcing, display relatively 

higher positive biases over the southwest portion of the Indian Ocean compared to 

CESM_CTRL and CESM_amipFULL. The better agreement with ERA5 highlights the 

significant role of realistic SST forcing in rainfall biases.  

The bias patterns in the CESM_noENSO experiment (Fig. 4.3d) are 

qualitatively like the control simulation, even if ENSO variability is eliminated. There 

is still a significant negative bias close to 3°S, as well as numerous smaller positive 

biases in other areas. This suggests that ENSO does not significantly influence the mean 

rainfall biases in this area. Similarly, CESM_noIOD exhibits bias patterns that are 
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nearly identical to CESM_CTRL when the Indian Ocean Dipole (IOD) is removed (Fig. 

4 .3e). Biases in both ENSO and IOD exclusion runs are persistent, indicating that their 

influence on the mean rainfall bias in the study area is minimal. Regionally, dry bias 

anomalies are especially evident across Kenya and some portions of the southern Congo 

Basin, suggesting that precipitation in these regions is slightly underestimated. On the 

other hand, orographic areas like the Bale Mountains in Ethiopia and the Mitumba 

Mountains in Uganda exhibit wet bias anomalies. 

 

Figure 4.3 Seasonal OND rainfall bias (a-e) for CESM coupled models. The mean bias 

is computed as the difference between each model (CESM_CTRL and 

CESM_amipFULL (801-1000), CESM_AMIP (400-2200), and the observational 

dataset ERA5(1958-2022)  

4.5 Characterization of ENSO and IOD  

To characterize ENSO and IOD, we applied the Dipole Mode Index (DMI), 

which represents the gradient of SST anomalies between the eastern and western 

equatorial Indian Oceans, to identify anomalous years for the IOD. To identify between 

strong ENSO and IOD years, thresholds based on standard deviations, a commonly 

used technique in climate research, were used (Saji et al., 1999). Positive or negative 
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IOD anomalous years are identified as SST anomalies with a DMI greater than ±0.5 

standard deviations (Saji et al., 1999).  When the Niño 3.4 index exceeds ±0.7 standard 

deviation, events are classified as El Niño (positive ENSO) or La Niña (negative 

ENSO). La Niña events (negative ENSO) are characterized by Niño 3.4 values below 

−0.7, whereas El Niño events (positive ENSO) are identified when the Niño 3.4 index 

exceeds +0.7 standard deviation (Trenberth, 1997).  

In the observations (4.4a), during only ENSO (positive) years (top-left), strong 

warming occurs over the equatorial Pacific Ocean, consistent with the typical El Niño 

pattern, while the Indian Ocean shows minimal anomalies.  In contrast, during only 

IOD (positive) years (top-centre), there is a clear dipole pattern over the Indian Ocean: 

positive anomalies (warming) in the western basin and negative anomalies (cooling) in 

the eastern basin. During the co-occurrence of IOD (positive) and El Niño (top-right), 

the warming in the Pacific associated with El Niño dominates, and the Indian Ocean 

exhibits a strong dipole pattern. For the combined scenarios (bottom row), all ENSO 

(positive) and all IOD+ENSO (positive) reveal more widespread warming across the 

Pacific and Indian Oceans, indicating the superimposed effects of ENSO and IOD. 

The CESM CTRL model (4.4 b) captures similar spatial patterns to observations 

but with notable differences. During only ENSO (positive) years (top-left), the 

equatorial Pacific exhibits strong warming resembling El Niño, although the magnitude 

and spatial extent appear slightly weaker compared to observations. During only IOD 

(positive) years (top-center), the Indian Ocean dipole pattern is evident, but the cooling 

in the eastern basin appears less pronounced than in observations. Pure IOD and ENSO 

(positive) years (top-right), the Pacific warming is prominent, and the IOD signature 

remains visible in the Indian Ocean. In all ENSO (positive) and all IOD (positive) 

scenarios (bottom row), the CESM CTRL model reproduces the broad Pacific warming 

and Indian Ocean dipole features reasonably well, while biases are evident compared 

to observations. 

In the case of CESM amipFULL simulations (4.4 c), the SST anomalies are 

prescribed in the model's boundary conditions, particularly from the control experiment 

SSTs. Therefore, the patterns closely resemble those in the CESM CTRL but with some 
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differences due to atmospheric dynamics. Thus, during only ENSO (positive) years 

(top-left), the equatorial Pacific warming remains dominant, consistent with El Niño, 

while during only IOD(+ve) years (top-center), the dipole pattern in the Indian Ocean 

is apparent, but slightly weaker than in observations. The only IOD+ENSO (positive) 

years (top-right) display combined Pacific warming and Indian Ocean dipole anomalies 

like the CTRL experiment. The all ENSO (positive) and all IOD+ENSO (positive) 

panels (bottom row) exhibit broader and more consistent SST warming patterns across 

the Pacific, with notable dipole features in the Indian Ocean, reflecting the combined 

influence of ENSO and IOD. 

Comparing with Observational data, the CESM experiments (CESM_CTRL 

and CESM_amipFULL) capture the general SST anomaly patterns during ENSO and 

IOD years, such as Pacific warming during El Niño and the dipole signature in the 

Indian Ocean. However, the models tend to underestimate the magnitude and spatial 

extent of anomalies, particularly in the Indian Ocean during only IOD (positive) years. 

In all datasets, ENSO appears to exert a stronger influence on SST anomalies globally, 

especially in the Pacific Ocean. The co-occurrence of IOD with ENSO amplifies 

warming patterns in the Indian Ocean. The CESM_CTRL fully coupled model and 

CESM amipFULL atmospheric-only model show similar SST patterns, but differences 

arise due to coupling in control which allows the ocean-atmosphere feedback processes 

to evolve dynamically. In contrast, CESM amipFULL uses prescribed SSTs, limiting 

internal variability. This analysis highlights the ability of CESM models to reproduce 

observed SST anomalies during ENSO and IOD years while revealing areas for 

improvement, particularly in representing the Indian Ocean dipole magnitude and its 

independent role. 
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Figure 4.4 Composite SST anomaly over tropics for the OND season from 

observational data (ERA5) and the CESM model experiment. The anomalies are 

computed for climatological periods for ERA5 (1958-2022), and models (801 –1000) 

when only IOD occurs (first column panels), only El Niño occurs (second column 

panels), and both IOD and ENSO occur together (the third column panels). 

CESM_noIOD experiments 

In the case of the noIOD experiment, the composite SST anomalies over the 

tropical region during the OND season are presented in Fig. 4.5. Here, we compare the 

two scenarios: (1) years with only ENSO-positive events (n = 23) and (2) all ENSO-

positive years (n = 57). In the case of only ENSO-positive, the SST anomalies reveal a 

strong warming signal presented in the central and eastern Pacific, characteristic of El 

Niño conditions, while minimal anomalies are observed in other regions, particularly 

the Indian Ocean. In contrast, the case of all ENSO-positive shows a broader warming 

b) CESM CTRL

a) OBS

c) CESM amipFULL

[°C]

COMPOSITE SST ANOMALY



89 

 

pattern that suggests additional contributions, possibly from residual IOD influences, 

despite the noENSO experimental setup. 

 

Figure 4.5 Composite SST anomaly over Tropics for OND season from CESM noENSO 

experiment. 

CESM_noENSO experiments 

We also investigate the composite SST anomalies during the OND season from 

the CESM noENSO experiment (Fig. 4.6), highlighting the role of IOD as tracked by 

DMI (the bottom panel). The anomalies are computed for climatological periods CESM 

noENSO (0801 –1000) when only IOD occurs (first column panel), and only El Niño 

occurs (second column panel). Therefore, we identified anomalies for years with only 

positive IOD events (n = 45) and all positive IOD years (n = 64). In years with only 

positive IOD events, the SST anomaly pattern reveals a strong west-east gradient in the 

Indian Ocean, with normal conditions in the western equatorial region and the eastern 

equatorial Pacific.  

N
3

4

CESM noIOD

[°C]

COMPOSITE SST ANOMALY



90 

 

 

Figure 4.6 Composite SST anomaly for the OND season from the CESM noENSO 

experiment. The DMI index computed the difference between the West and East Indian 

Ocean model experiments. 

4.6 IOD and ENSO Driven East African Short Rain Variability 

IOD and ENSO are the major factors influencing East African rainfall 

variability during the OND season through SST-induced changes to convection and the 

large-scale atmospheric circulation; the region's rainfall variability can be influenced 

independently or in combination. The intricate interaction of ENSO and IOD influences 

the variability of EASR. Here, as shown in Fig. 4.7, we examine the association of 

EASRi with DMI (right column denoted in red) and Niño3.4 (left column, denoted in 

blue). As a result, EASRi shows a moderately positive association with Niño3.4 (r = 

0.57) for the ERA5 dataset, but a greater correlation with DMI (r = 0.79), indicating the 

IOD's dominant role in influencing rainfall patterns. The connection with Niño3.4 is 

relatively weaker in the CESM tests (CESM_CTRL: r=0.28, CESM_amipFULL: 

r=0.23). In contrast, the DMI consistently demonstrates strong correlations in these tests 

(r=0.81 and r=0.83, respectively), indicating the dominant influence of the IOD on East 

African short rains in these simulations. 

COMPOSITE SST ANOMALYCESM noENSO
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The independent influence of the IOD and ENSO on EASR is further proven by 

the noENSO and noIOD experiments (Fig. 4.5 and 4.6). The results demonstrate that, 

during the OND season, the IOD has a greater influence on regulating East African 

rainfall, whereas ENSO has a smaller and secondary effect. The case of the noIOD 

experiment has depicted that a negative correlation exists between N34 and EASRi (r 

= -0.53), suggesting that ENSO alone is not responsible for favourable rainfall 

anomalies. In contrast, the noENSO experiment keeps a strong link between DMI and 

EASRi (r = 0.83), confirming the robust and independent influence of the IOD. 

Therefore, these results prove that the IOD plays a dominant role in controlling East 

African short rains during OND, particularly in CESM simulations. The robustness of 

the IOD's impact is confirmed by the high correlations between the DMI and the East 

African short rains as presented in both observations and CESM simulations. The IOD 

continues to impact even when ENSO variability is reduced, highlighting its 

independent role in triggering rainfall anomalies. On the other hand, the negative 

correlation presented noIOD experiment indicates that ENSO by itself is unable to 

generate good rainfall conditions. 
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Figure 4.7 Scatterplot of East African short rain index (EASRi) versus N34 (first 

column indicated in blues colour), and IOD (the second column indicated in red colour) 

during the OND season for ERA5 reanalysis, CESM experiments. The solid line 

indicates the linear regression line. 

4.6.1 Positive phases  

Composite rainfall anomalies are computed for years with significant anomalies 

during IOD and ENSO events. During IOD phases, anomalous years are selected when 
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the DMI index exceeds 0.5 standard deviations (std), showing significant positive or 

negative IOD phases. Similarly, for ENSO, seasonal composite rainfall anomalies are 

calculated during El Niño years when the Niño3.4 (N34) index exceeds 0.7 standard 

deviations. These thresholds help identify the years with strong SST anomalies, 

allowing for a clearer understanding of how these phenomena influence seasonal 

rainfall patterns over East Africa. We examined the composite rainfall anomalies over 

East Africa during OND season using three IOD/ENSO phases (Fig.4.8): positive 

ENSO only(left), positive IOD only (center), and Joint IOD and ENSO positive phases 

(right column; identified as sorting common years that co-exist both ENSO and IOD).  

The variation in sample sizes (n) for each phase indicates the frequency of IOD/ENSO 

events. During positive ENSO phases, CESM_CTRL and CESM_amipFULL exhibit 

stronger and more localized dry anomalies, especially over central and northern regions, 

while the observational data present similar but weak rainfall anomalies with slight 

drying over East Africa. 

For the positive IOD phase, all datasets reveal extensive wet anomalies over 

East Africa, confirming the main role of the IOD on rainfall variability. This effect is 

well captured by the CESM_CTRL and CESM_amipFULL simulations, which show 

intensified wet anomalies. The rainfall anomalies increased during the combined 

positive ENSO and IOD phases, with all datasets displaying significantly wet 

conditions throughout East Africa. While CESM_CTRL and CESM_amipFULL 

exhibit more pronounced wet anomalies, especially in the southern and central regions. 

Therefore, from Fig. 4.8, we can understand that the spatial patterns and magnitude of 

rainfall anomalies underscore the obvious role of the IOD, both individually and in 

combination with ENSO, in modulating East African OND rainfall. While CESM 

simulations align reasonably well with ERA5, they tend to overestimate rainfall 

responses, particularly during the combined phase. 
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Figure 4.8 Composite rainfall anomaly over East Africa region for OND season from 

observational data (ERA5) and CESM model experiment during positive phase of 

ENSO/IOD. The anomalies are computed for climatological periods (ERA5 1958-2022) 

and models (0801 –1000) when pure positive IOD (pIOD) occurs (first column panels), 

pure El Niño occurs (second column panels), and co-occurring of pIOD and El Niño 

(the third column panels). The sample size(n) is the number of events that exceed the 

threshold standard deviation of SST anomaly indices. The Stippling indicates 

significant composite anomalies (p < 0.05) relative to neutral years. 

4.6.2 Negative phase 

We also looked at the composite rainfall anomalies of the OND season during 

negative IOD/ENSO phases (Fig.4.9): Pure La Niña only(left), negative IOD (nIOD) 

and co-occurring of nIOD and La Niña (right column; identified as sorting common 

years that co-exist).  The variation in sample sizes (n) for each phase indicates the 

frequency of nIOD/ La Niña events. During La Niña phases, CESM_CTRL and 

CESM_amipFULL exhibit localized wet anomalies, especially over central and 

northern regions, similarly, the observational data set presents similar but wet rainfall 

anomalies over land and some parts of the western Indian Ocean. Whereas during the 

negative IOD phase, all datasets reveal extensive dry anomalies over East Africa as 

expected, confirming the main role of IOD on rainfall variability. This effect is well 

captured by the CESM_CTRL and CESM_amipFULL simulations, which show 
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increased dry anomalies. The rainfall anomalies are significantly reduced during the 

combined negative ENSO and IOD phases, with all datasets displaying significantly 

dry conditions throughout East Africa. While CESM_CTRL and CESM_amipFULL 

exhibit more pronounced negative anomalies, especially over the ocean part. In general, 

we can understand that the spatial patterns and magnitude of rainfall anomalies 

underscore the obvious role of the IOD, both individually and in combination with 

ENSO, in modulating East African OND rainfall.  

Figure 4.9 Composite rainfall anomaly over East Africa region for OND season from 

observational data (ERA5) and CESM model experiment during negative phase of 

ENSO/IOD. The anomalies are computed with respect to climatological periods (ERA5 

1958-2022) and models (0801 –1000) when pure negative IOD (nIOD) occurs (first 

column panels), pure La Niña (second column panels) and co-occurring nIOD and La 

Niña occur together (the third column panels). The sample size(n) which numbers of 

events that exceeds threshold standard deviation of SST anomaly indices. The Stippling 

indicates significant composite anomalies (p < 0.05) relative to neutral years. 

4.6.3 Independent roles of ENSO and IOD  

To understand the independent roles of IOD and ENSO, two CESM 

experiments (CESM noIOD and noENSO) are applied. By isolating the effects of each 

event, these models enable identify the roles to rainfall variability. Therefore, we have 

tested for both positive and negative phases of IOD and ENSO (shown in Fig 4.10). 
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During the positive phase, the CESM_noIOD experiment (left column) presents 

significant negative rainfall anomalies over central parts of the East Africa region. 

Hence, ENSO plays a part in lowering rainfall when ENSO is removed. In the case of 

the CESM_noENSO experiment we noticed primarily above normal rainfall, especially 

in the coast and southwestern parts of the Indian ocean. The combined effects of ENSO 

and IOD are reflected in the joint anomalies (right column), where the IOD's positive 

contribution partially offsets ENSO's strong positive influence, creating a more 

balanced pattern with the strongest positive anomalies continuing to exist in the eastern 

parts of the region under analysis, including the ocean portion.  

The CESM_noENSO experiment exhibits extensive negative anomalies during 

the negative phase, suggesting that IOD is responsible for the drying effect in East 

Africa's coastal and southeast regions. The CESM_noIOD experiment, on the other 

hand, demonstrates notable positive anomalies along central and southern East Africa, 

which is in line with the IOD's negative phase's localized wetting effect. With IOD-

driven positive anomalies along the coast partially offsetting ENSO-driven negative 

anomalies in core regions, the joint anomalies exhibit a complex spatial structure. In 

CESM_noENSO and noIOD tests, we found that ENSO and IOD have geographically 

different effects on East African rainfall variability, with ENSO having a greater 

influence during the positive phase and a more limited interaction during the negative 

phase. 
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Figure 4.10 Composite rainfall anomaly over East Africa region for OND season from 

CESM noIOD and noENSO experiments during positive phase (first column) and 

negative phase (second column). The anomalies are computed concerning 

climatological models (0801 –1000). The sample size(n) is the number of events that 

exceed the threshold standard deviation of SST anomaly indices. The Stippling 

indicates significant composite anomalies (p < 0.05) relative to neutral years. 

Furthermore, we applied statistical analysis using the partial correlation 

technique between SST and rainfall anomalies over East Africa during the OND season, 

as presented for both observations (OBS) and the CESM_CTRL model (Fig. 4.11). The 

analysis is divided into two components: (1) the influence of the IOD (DMI) while 

excluding ENSO (N34), and (2) the influence of ENSO (N34) while excluding the IOD 

(DMI). This method effectively isolates the independent roles of ENSO and IOD in 

East African short rainfall variability. Using equation 3, we computed the partial 

correlations for observations (OBS) and CESM models, the top panel indicates the 

influence of the IOD (DMI) while excluding ENSO. When we exclude the ENSO 

signal, strong positive signals are exhibited over equatorial and northern East Africa 

(5°S–15°N), indicating that a positive IOD event leads to above-normal rainfall in this 

region. This result aligns with the known IOD mechanism, where warm SST anomalies 

in the western Indian Ocean enhance convection and moisture transport towards East 

Africa. While we exclude the roles of ENSO signals for observations (bottom panel), 

we observed weak or no significant correlations appear over East Africa, suggesting 
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that ENSO's direct influence on OND rainfall is limited when the IOD is excluded. The 

spatial pattern indicates that ENSO primarily affects regions outside East Africa, with 

negative correlations appearing over the western Indian Ocean and positive signals in 

the central and eastern Indian Ocean. This highlights that ENSO's impact on East 

African short rains may depend on its interaction with the IOD. 

In the CESM_CTRL model, the top panel shows the independent roles of the 

IOD while excluding ENSO. As observations, the CESM_CTRL model captures a 

strong positive relationship between the IOD and East African rainfall anomalies. 

Positive correlations dominate the equatorial and northern East African regions, 

extending into the western Indian Ocean. Compared to observations, the CESM_CTRL 

model shows slightly higher strength and spatial extent of these correlations. 

Nonetheless, the model effectively simulates the critical role of the IOD in modulating 

East African short rains. CESM_CTRL isolates the role of ENSO while excluding the 

influence of the IOD. weak or negative correlations are presented over East Africa, 

highlighting the limited direct influence of ENSO on rainfall in the region. However, 

significant negative correlations emerge over the Indian Ocean, consistent with ENSO-

driven cooling patterns during El Niño events. These findings suggest that ENSO's 

primary impact on East African rainfall is indirect, often mediated through its 

interaction with the IOD. 

 

Figure 4.11 Partial correlation between SST indices and rainfall anomaly from the C3S 

models after excluding Niño-3.4 (upper) and DMI (bottom) during the OND season. 
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Stippling indicates the area where the correlation between sea surface temperature 

indices and RF anomaly, which are statistically significant at a 99% confidence level 

as calculated by a two-sided Student t-test for 22(N-2) degrees of freedom.  

4.7 Discussion and Conclusion 

In this chapter, we investigate the independent roles of ENSO and IOD in 

modulating EASR variability from Community Earth System Model (CESM) 

experiments such as CESM-CT, CESM-noENSO, CESM-noIOD, and CESM-

amipFULL (atmosphere-only simulation with SSTs coming from the CESM_CTRL 

coupled). In the analysis, we confirmed that IOD has the dominant role in driving East 

African short rains during the OND season, as evidenced by strong positive correlations 

in both observations and the CESM_CTRL and CESM_noIOD experiments. On the 

other hand, ENSO has a weaker influence, with its impact largely dependent on its 

interaction with IOD. The CESM_CTRL model performs well in reproducing the 

observed relationships, making it a valuable tool for understanding the independent 

contributions of ENSO and IOD to regional climate variability. In summary, the 

CESM_CTRL model and observational data demonstrate how the Indian Ocean SST 

variability dominates EASR during the OND season. Positive (negative) IOD SST 

anomalies exhibit a strong correlation with above-normal (below-normal) rainfall in 

East Africa. Warm SST anomalies in the western Indian Ocean promote convection and 

moisture transport to the EA region, which is in line with the known mechanism of the 

IOD (Ummenhofer et al., 2009). Here in this study, ENSO influence is restricted in the 

absence of the IOD, as evidenced by the weak or non-existent direct association 

between East African rainfall and both observations and the CESM model. 

Nevertheless, ENSO continues to have an impact beyond East Africa, with positive 

signals in the middle and eastern Indian Ocean and negative correlations over the 

western Indian Ocean (Schott & Mccreary, 2001). Given the complexity of the 

mechanisms driving East African short rains (Walker et al., 2020), our results further 

suggest that ENSO's impact on rainfall is primarily indirect, often facilitated through 

its interaction with the IOD. 
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5 GENERAL DISCUSSION  

Using observations and models, we assessed the predictability of two major east 

African rainy seasons i.e. long rain and short rains under seasonal retrospective forecast 

systems from the C3S. Given our aim, we only considered the forecast initialized at the 

beginning of the short and long rainy season, namely in September and February, 

respectively. The predictability East African short rains were evaluated of using eight 

seasonal retrospective forecast systems from C3S, focusing on September-initialized 

forecasts.  In the seasonal climatology, both models and observational dataset depicts a 

noticeable rainfall maximum over the central parts of the analysed region, particularly 

in Congo basin which is far from the coast (see Fig 2.1 in chapter 2 and Fig 4.1 in 

chapter 4). This feature is typical of the OND season, where rainfall is driven by the 

seasonal migration of the ITCZ and local monsoon dynamics (Nicholson, 2017).  

In terms of ACC, most models demonstrate skill in predicting OND rainfall 

anomalies across East Africa, with notable biases (Fig. 2.1). Along the East African 

coast (near Somalia) and parts of the western Indian Ocean, models exhibit skill 

extending to DJF, likely due to SST persistence in the western Indian Ocean (Fig. 2.6). 

These findings align with prior studies, such as Behera et al. (2005) and Bahaga et al. 

(2016). Model skill shows strong inter-annual variability, with skilful years typically 

coinciding with mature ENSO and IOD phases. While El Niño events are linked to 

significant rainfall anomalies, the Indian Ocean SST response to ENSO, as indicated 

by DMI, plays a more influential role than the direct ENSO-driven impacts (e.g., 

atmospheric bridge). The sign of the DMI reliably predicts the rainfall anomaly sign, 

unlike Niño3.4. Consistent with Yamagata et al. (2002) and Black et al. (2003), the 

east-west SST dipole and zonal circulation patterns are key drivers of short rain 

variability. However, during the 2015/2016 El Niño, most models failed to replicate 

OND rainfall patterns, except for NCEP and ECCC. This failure is attributed to a 

weaker positive IOD phase compared to 1997/1998, reducing Indian Ocean Walker 

circulation intensity (Macleod & Caminade, 2019).  

In the third chapter of this study, we also evaluate the predictability of long rainy 

season using similar models applied in chapter two. The capability of C3S coupled 
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models to replicate East African rainfall anomalies at consecutive lead seasons i.e. 

MAM (Lead 1), AMJ (lead 2), and MJJ (lead 3) varies when compared to GPCP data. 

The significance of ocean-atmosphere interactions as shown by Kebacho & Chen, 

(2022) the fact that most models exhibit considerable skill across the western Indian 

Ocean, where comparable correlations remain throughout all seasons (Fig 3.4).  While 

most models consistently showed moderate to high skill throughout East Africa during 

the short rainy season (Fig. 2.4), the skills in the long rainy season noticed more model-

dependent and localized. These is because of long rains (MAM) are driven by a variety 

of regional and global causes, including ENSO and Indian Ocean dynamics, rather than 

by a single large-scale phenomenon like the IOD (Kebacho & Chen, 2022b; Vigaud et 

al., 2017). This fluctuation reflects the intrinsic complexity of these climatic drivers 

(Nicholson, 2017). According to Funk et al., (2018), East African long rains are more 

influenced by ENSO when warmer or cooler SSTs occur in the western Pacific. Strong 

El Niño episodes may be followed by cool La Niña conditions in the East Pacific dry 

long rainy season relate to higher SSTs in the western equatorial Pacific, while dry 

conditions during the MAM season are linked to warmer SSTs in the western Pacific. 

Here, our study also found similar results, with significant correlations between the 

MAM rainfall index and the N34 index in most models, consistent with the 

observational dataset. This indicates a robust connection between ENSO events and 

East African long rains (as shown in Figures 3.6, 3.7, and Table 3.1). 

The Walker circulation, which reduces the magnitude of rainfall during long 

rainy season which is reinforced by warmer SSTs over the western Pacific (Roy et al., 

2024). For example, during 2016–2017, this SST pattern caused droughts and dry 

seasons to follow one another (Funk et al., 2018). Because the IOD peaks months later, 

from September to November, than the long rains, variations in the long rains are less 

susceptible to changes in IOD (Shaaban and Roundy, 2017). In our study, we confirm 

this finding: both observational datasets and model simulations consistently show lower 

rainfall variability during the long rains. Similar to the GPCP climatology, most 

coupled models indicate less MAM rainfall variability, particularly in the northern 

regions of East Africa (Fig 3.2). However, during short rainy season the rainfall 

variability is higher as evident in both observational dataset and most c3s models. As 
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shown in Fig 3.4 most c3s models depicts skill in over ocean and Eastern parts of the 

analysed region, but perform less well or inconsistently, especially in northern and 

western EA regions. The successful predicted year that we identified (Fig. 3.5) is 

associated with the strongest El Niño event on record (1997/1998), East Africa 

experienced the largest positive RFa during MAM season (Fig. 3.1 k) however less in 

magnitude compared to OND season (presented in Fig. 2.1 k). Additionally, there are 

considerable differences in the skill amongst models, suggesting that over East Africa, 

it is difficult to consistently capture the complex links between ocean-atmosphere 

coupling, regional moisture transport during the long rains (Nicholson, 2018).  

The East African regional rainfall variability is frequently determined by the 

interplay between ENSO and IOD (Wang et al., 2019). The Indian Ocean's atmospheric 

circulation patterns can be altered by positive ENSO phases, which are defined by warm 

SSTs in the central and eastern Pacific (Shaaban, 2015). Depending on the IOD phase, 

these modifications may intensify or lessen rainfall anomalies brought on by the IOD 

(McMonigal & Larson, 2022). On the other hand, when ENSO is not present, the IOD 

uses its well-established mechanism of SST-induced convection changes to 

independently generate regional rainfall variability (Roy et al., 2024). This is true as 

Behera et al. (2005) and Yamagata et al. (2003) stated that 79% of the extreme years of 

short rains are associated with IOD anomalous years using the SINTEX-F1 model. It is 

therefore natural to expect that the atmospheric circulation change associated with the 

IOD is a major driver of the anomalous short rains. To understand the independent roles 

of IOD and ENSO on East African short rain variability, we investigated using the 

CESM experiments analysis. Consistent to previous studies (Luo et al., 2010; Wang et 

al., 2019) we noticed significant correlation between positive OND rainfall and IOD 

phases. In the observational data set (ERA5), EASRi shows a moderate positive 

correlation with N34 (r = 0.57) and a stronger correlation with DMI (r = 0.79), 

indicating that the IOD has a dominant influence on East African short rains (Fig. 4.7). 

The association between the DMI and the East African Short Rain Index (EASRi) peaks 

during boreal fall, aligning with the short rains season and supporting previous findings 

(Behera et., 2005). These values remain largely unchanged even when the influence of 

Niño3.4 is excluded, indicating the robust role of the IOD. Both simple and partial 
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correlation coefficients in the model align well with observations. Thus, the IOD's 

crucial significance is further highlighted by the noticeably reduced rainfall responses 

depicted in the suppressed IOD variability experiment (CESM-noIOD). These results 

are consistent with previous studies (Saji et al., 1999 and Behera et al., 2005) they found 

that the IOD to be a major cause of rainfall anomalies in East Africa, where as ENSO's 

direct influence on EASR is comparatively weaker, as evidenced by weak correlations 

between ENSO and rainfall in both observations and CESM_CTRL simulations (Fig 

4.9). ENSO's impact is more pronounced when it interacts with the IOD, emphasizing 

its indirect role. For instance, during concurrent positive ENSO and positive IOD 

events, the rainfall anomalies are amplified, highlighting the synergistic effects of these 

phenomena. Without the IOD, as in the CESM-noIOD experiment, ENSO's influence 

on EASR is minimal. This is consistent with findings from studies like Black et al. 

(2003), which reported limited ENSO impacts on East African rainfall when isolated 

from IOD variability.  
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6 GENERAL CONCLUSIONS 

This PhD thesis aims to examine the predictability of seasonal rainfall patterns 

and investigate the roles of ENSO and IOD that influence the two major rainy seasons 

(long rains, MAM, and short rains, OND) over East Africa. First, we evaluated the 

predictive skill of eight coupled ocean-atmosphere seasonal prediction models provided 

by C3S in reproducing the East African rainfall pattern. While most models show 

significant mean rainfall biases over highlands, they generally perform well in 

predicting OND rainfall anomalies over the coastal region. However, their skill is 

limited or absent in some northern and western areas. Along the Somali coast and over 

parts of the Western Indian Ocean, models demonstrate notable skill, up to lead season 

3, which is linked to the persistence of SST anomalies in the Western Indian Ocean. 

However, during the long rainy season, models perform more accurately in reproducing 

rainfall anomaly during ENSO years than during IOD phases, indicating that large-scale 

interactions between atmospheric and oceanic conditions influence the long rain 

patterns of the East African region.  

In 1997 and 1998, the model's strong performance compared to persistence 

forecasts often coincided with the mature phases of ENSO and IOD. The IOD, tracked 

using the DMI, effectively predicts the sign of OND rainfall anomalies. Despite East 

Africa’s proximity to the IOD’s west pole, the correlation between short rains and IOD 

is strongest when both east and west poles are considered. This suggests that broader-

scale IOD variability, associated with changes in the Walker Circulation, drives East 

African rainfall variability more than localized SST fluctuations. Long rainy season 

patterns appear to be more impacted by large-scale atmospheric-oceanic interactions, 

as the models demonstrate higher predictive skill in simulating the MAM season during 

ENSO compared to IOD years. 

Using CESM experiments, we demonstrated that IOD exerts a stronger 

influence than ENSO (Niño3.4) on East African short rains during the OND season. 

Observations from ERA5 show a moderate positive correlation between EASRi and 

Niño3.4 (r = 0.57) but a much stronger correlation with DMI (r = 0.79), suggesting the 

IOD's dominant role. CESM simulations further support this, showing weaker 
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correlations between EASRi and Niño3.4 (r = 0.28–0.23), while the DMI consistently 

maintains high correlations (r = 0.81–0.83). The noIOD experiment reveals a negative 

correlation between Niño3.4 and EASRi (r = -0.53), confirming that ENSO alone is 

insufficient to produce favourable rainfall anomalies. Conversely, the noENSO 

experiment retains a strong correlation between DMI and EASRi, affirming the IOD's 

independent and robust influence on rainfall patterns. 

Overall, we found that the IOD has a critical role in shaping East African short 

rains, with ENSO having a smaller role.  The IOD's influence remains significant even 

when ENSO variability is excluded, highlighting its capacity to drive rainfall anomalies 

independently. These findings align with prior research and underscore the importance 

of the IOD in regulating rainfall during the OND season, particularly in CESM 

simulations, where its dominance is evident across different experimental setups. This 

study offers valuable insights into the predictability of East African rainfall; however, 

several limitations should be acknowledged. Notably, the analysis does not fully 

account for other potential drivers such as regional topography, tropical circulation 

systems, and local land–atmosphere interactions beyond ENSO and IOD. Additionally, 

the limited spatial resolution of the models may hinder their ability to capture localized 

weather systems, likely contributing to the observed biases. Therefore, addressing the 

sources of rainfall bias should be a primary focus of future research, as dynamical 

models consistently exhibit notable errors over many East African highland regions and 

parts of the western Indian Ocean. Moreover, in our area of interest (East Africa), 

limited availability and accuracy of observational datasets, such as station-based 

rainfall measurements, may introduce additional uncertainties in model validation.  
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