Data analytics and predictive models for sustainable multimodal mobility in future smart cities

Bellisardi, Federico (2025) Data analytics and predictive models for sustainable multimodal mobility in future smart cities, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Fisica, 37 Ciclo. DOI 10.48676/unibo/amsdottorato/12316.
Documenti full-text disponibili:
[thumbnail of data_analytics_and_predictive_models_for_sustainable_multimodal_mobility_in_future_smart_cities.pdf] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (51MB)

Abstract

This thesis investigates the integration of data analytics and predictive modeling to enhance multimodal urban mobility systems within the framework of smart cities. By leveraging diverse datasets—including Wi-Fi signals, mobile phone data, and vehicular sensor inputs—predictive models are developed to simulate and analyze pedestrian and vehicular mobility patterns. Two case studies are presented: the dynamics of pedestrian mobility in cultural heritage cities (Ferrara, ˇSibenik, and Dubrovnik) and vehicular traffic analysis in the Emilia-Romagna region. Advanced mobility algorithms and simulation tools, such as agent-based models and optimal velocity frameworks, are employed to optimize traffic flow and urban planning strategies. These methods provide actionable insights into infrastructure planning, pedestrian movement behaviors, and regional traffic management. The proposed models offer a robust framework for real-time decision-making and support sustainable urban mobility practices. The research underscores the transformative potential of data-driven models in urban mobility modeling and analysis, enabling the design of more efficient transportation systems and fostering urban sustainability. The methodologies developed in this work provide a scalable foundation for addressing complex challenges in mobility systems and advancing smart city infrastructures.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Bellisardi, Federico
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
37
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
data analytics, predictive modeling, multimodal mobility, smart cities, urban transportation, sustainability, sensor technology, traffic simulation
DOI
10.48676/unibo/amsdottorato/12316
Data di discussione
29 Maggio 2025
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^