Application and development of an artificial intelligence based multiparametric malignancy index (MMI) for interpretation of 3T multiparametric prostate MRI

Ferroni, Fabio (2025) Application and development of an artificial intelligence based multiparametric malignancy index (MMI) for interpretation of 3T multiparametric prostate MRI, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Scienze e tecnologie della salute, 37 Ciclo. DOI 10.48676/unibo/amsdottorato/12045.
Documenti full-text disponibili:
[thumbnail of tesi_dottorato_fabio_ferroni.pdf] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (1MB)

Abstract

Introduction: Prostate cancer (PCa) diagnosis and management remain challenging due to its varied progression, from slow-growing forms to aggressive types requiring early intervention. Advances in detection, such as risk-adapted screening and multiparametric MRI (mpMRI), have improved early diagnosis, but balancing high-risk identification with minimizing overdiagnosis is crucial. This study investigates the application of machine learning (ML), specifically a Random Forest (RF) model, to enhance PCa detection accuracy using clinical and radiological features. Materials and Methods: A cohort of 314 patients aged 55-75 was analyzed, with key variables including PSA levels, PI-RADS scores, prostate volume, and rADC. The RF model was chosen for its robustness in handling mixed data types and complex feature interactions. Patients were stratified into ISUP grades (0, 1, 2+), with non-cancerous (ISUP 0) and aggressive (ISUP 2+) cases distinctly represented. A subset of 95 patients was reserved for testing to evaluate model generalization. Results: Among the cohort, 182 cases had lower PI-RADS scores (2 and 3), and 132 had higher scores (4 and 5). The RF model achieved 68% accuracy on the test set, with precision and recall for each ISUP grade: ISUP 0 (precision: 0.79, recall: 0.83), ISUP 1 (precision: 0.22, recall: 0.12), and ISUP 2+ (precision: 0.58, recall: 0.74). Feature importance analysis highlighted rADC, prostate volume, and PSA as key predictors, with the model demonstrating strong ability to distinguish between non-cancerous and aggressive PCa cases, supported by an AUC score. Conclusions: This study highlights the potential of ML to improve PCa diagnostic accuracy. The RF model’s effective integration of clinical and radiological data provides insights into key predictors, aiding in risk stratification. This work also supports the FLUTE project, which aims to enhance PCa diagnostics through federated learning, laying the groundwork for AI-driven diagnostic tools and personalized treatment planning.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Ferroni, Fabio
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
37
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Prostate Cancer, Machine Learning , Random Forest , Diagnostic Accuracy, ISUP Grades , PSA , PI-RADS , Risk Stratification , Prostate, Artificial Intelligence, MRI
DOI
10.48676/unibo/amsdottorato/12045
Data di discussione
9 Aprile 2025
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^