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Abstract 

 
Introduction: Prostate cancer (PCa) diagnosis and management remain challenging due to the disease's 

varied progression, which ranges from slow-growing, indolent forms to aggressive types needing early 

intervention. While recent advancements in detection, including risk-adapted screening and 

multiparametric MRI (mpMRI), have improved early diagnosis, balancing the identification of high-risk 

cases while minimizing overdiagnosis remains a critical research focus. This study explores the 

application of machine learning (ML), specifically a Random Forest (RF) model, to enhance PCa 

detection accuracy by classifying cases based on clinical and radiological features. 

Materials and Methods: A cohort of 314 patients aged 55-75 years was analyzed using key variables, 

including PSA levels, PI-RADS scores, prostate volume, and rADC. The RF model was selected for its 

robustness in handling mixed data types and complex feature interactions. To train and evaluate the 

model, patients were stratified into ISUP grades (0, 1, 2+), with non-cancerous (ISUP 0) and aggressive 

(ISUP 2+) cases distinctly represented. A subset of 95 patients was reserved for testing to assess the 

model's generalization capabilities. 

Results: Within the cohort, 182 cases were classified with lower PI-RADS scores (2 and 3), and 132 

were classified with higher scores (4 and 5). The RF model achieved an accuracy of 68% on the test set, 

with precision and recall metrics for each ISUP grade: ISUP 0 (precision: 0.79, recall: 0.83), ISUP 1 

(precision: 0.22, recall: 0.12), and ISUP 2+ (precision: 0.58, recall: 0.74). Feature importance analysis 

highlighted rADC, prostate volume, and PSA as top predictors, with an AUC score further underscoring 

the model’s ability to distinguish between non-cancerous and aggressive PCa cases. 

Conclusions: This study supports the potential of ML in improving diagnostic accuracy for PCa. The 

RF model, with its effective handling of clinical and radiological features, provides insights into 

significant predictors that could aid clinicians in risk stratification. Additionally, this work aligns with 

the aims of the FLUTE project, a European initiative seeking to leverage federated learning for enhanced 

PCa diagnostics across institutions. Although FLUTE is currently paused, the groundwork laid through 

this thesis offers a foundation for future AI-driven diagnostic tools, moving toward more accurate and 

personalized treatment planning in PCa management. 



 



 

 

 

 

 

 

 

 

 

 

 

 

“We should stop training radiologists now. It's just completely obvious 

that within five years, deep learning is going to do better than 

radiologists”. 

Geoffrey Hinton, AI pioneer and neural network innovator, 2016 
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1. Introduction 

The prostate is a small glandular organ located in the male pelvis, just below the bladder and anterior 

to the rectum. It encircles the prostatic urethra, the portion of the urethra that passes through the 

prostate, playing a key role in both urinary and reproductive systems. 

Anatomically, the prostate is divided into distinct zones: the peripheral zone (PZ), which constitutes 

the largest part of the gland and is the most common site for prostate cancer (PCa), the central zone 

(CZ) surrounding the ejaculatory ducts, and the transition zone (TZ), which often enlarges in benign 

prostatic hyperplasia (BPH). 

The prostate is encapsulated by a fibromuscular stroma, providing structural support, and it is closely 

associated with important anatomical structures like the seminal vesicles, neurovascular bundles, 

and the bladder neck. This intricate anatomical arrangement makes the prostate not only vital for 

reproductive function, by producing seminal fluid, but also a key structure in maintaining urinary 

continence and normal urinary flow. Understanding its anatomy is crucial for the accurate diagnosis 

and treatment of prostate-related diseases. 

 

1.1. Overview of PCa 

PCa is one of the most common malignancies affecting men worldwide, particularly in developed 

countries. PCa is a highly heterogeneous disease, characterized by variable clinical behavior ranging 

from slow-growing, indolent tumors to aggressive forms that can rapidly metastasize and lead to 

significant morbidity and mortality. The complexity of PCa arises from its diverse presentation and 

progression, requiring personalized approaches for its diagnosis, management, and treatment. 

The clinical management of PCa has significantly evolved over the last few decades. Early detection 

strategies, such as prostate-specific antigen (PSA) testing, along with advancements in imaging 

techniques, have contributed to identifying the disease at earlier stages. However, overdiagnosis and 

overtreatment remain significant challenges, particularly in cases of low-risk cancer. Thus, there is 

a strong emphasis on risk stratification and personalized care, which includes active surveillance for 

low-risk patients and more aggressive interventions for high-risk and advanced-stage diseases. 

 

1.2. Epidemiology and Risk Factors 

PCa is the second most commonly diagnosed cancer in men, with a higher incidence in developed 

countries. The incidence increases with age, with most cases diagnosed in men over the age of 65. 

This makes aging one of the strongest risk factors for PCa. Additionally, ethnic background plays a 

significant role, as African-American men are more likely to develop PCa and have a higher risk of 

aggressive disease compared to Caucasians and Asians. Genetic predisposition is also a major risk 

factor, with mutations in the BRCA1 and BRCA2 genes, as well as a family history of PCa, 

contributing to an increased risk. 

While age, ethnicity, and genetics are well-established risk factors, there is currently no strong 

evidence supporting specific lifestyle modifications or preventive measures to reduce the risk of 



PCa. However, ongoing research continues to explore the role of diet, inflammation, and 

environmental factors in the development of the disease. 

 

1.3. Pathophysiology and Classification 

PCa typically originates in the glandular cells of the prostate, and it is classified as an 

adenocarcinoma. The disease's progression is often slow, but a subset of tumors can behave 

aggressively and metastasize to other organs, such as bones and lymph nodes. The Tumor-Node- 

Metastasis (TNM) classification system is the standard for staging PCa and is essential for guiding 

treatment decisions. The 2017 TNM classification used in clinical practice helps categorize the 

primary tumor (T), regional lymph node involvement (N), and distant metastasis (M), providing a 

structured framework for understanding the extent of the disease. 

Histological evaluation of prostate tissue remains the gold standard for diagnosing and classifying 

PCa. The Gleason score (GS) and its updated version by the International Society of Urological 

Pathology (ISUP) are widely used to assess the aggressiveness of the tumor. The ISUP system 

stratifies PCa into five grade groups, based on the Gleason score, with group 1 representing low- 

risk tumors and group 5 encompassing high-risk, aggressive cancers. These grading and staging 

systems are vital for distinguishing between clinically significant PCa (csPCa), which requires 

intervention, and insignificant PCa (ncsPCa), which may be managed with active surveillance. 
 

 

 

 

1.4. Early Detection and Diagnosis 

Early detection of PCa typically involves PSA testing, digital rectal examination (DRE), and biopsy. 

PSA may be elevated in cases of PCa, benign prostatic hyperplasia (BPH), or prostatitis. Although 

PSA testing has improved early detection, it is not without limitations. The risk of overdiagnosis 

(identifying cancers that may never progress or cause harm) has led to increased scrutiny of PSA- 

based screening programs. 

To mitigate the risks of overdiagnosis, current guidelines advocate for a risk-adapted strategy in 

screening. This involves assessing individual risk factors, such as age, family history of PCa and 

genetic predisposition, to tailor screening efforts. For example, men with a family history of PCa or 

those carrying BRCA mutations may benefit from earlier and more frequent screening. 



Definitive diagnosis of PCa requires histopathological verification through prostate biopsy. 

Advances in magnetic resonance imaging (MRI) have improved the accuracy of biopsies, 

particularly when using MRI-targeted biopsies. These techniques help identify clinically significant 

lesions, reducing the likelihood of unnecessary biopsies in men with low-risk disease. 

1.5. Treatment Strategies 

The management of PCa depends on the stage of the disease, the patient's life expectancy, and the 

potential risks and benefits of treatment. Localized disease, which is confined to the prostate, may 

be managed through active surveillance, surgery (radical prostatectomy), or radiation therapy. 

Active surveillance is often recommended for men with low-risk, localized disease, allowing for 

regular monitoring without immediate treatment. This approach minimizes the risk of overtreatment 

and its associated side effects, such as urinary incontinence and sexual dysfunction. 

For intermediate- and high-risk PCa, curative treatment options include radical prostatectomy or 

radiation therapy, often combined with androgen deprivation therapy (ADT). ADT is designed to 

lower androgen levels or block androgen receptor signaling, thereby slowing the growth of cancer. 

In cases where the disease has metastasized, systemic therapies, including chemotherapy and next- 

generation androgen receptor inhibitors like abiraterone and enzalutamide, are recommended to 

prolong survival and improve quality of life. 

Emerging treatments for advanced PCa, such as prostate-specific membrane antigen (PSMA) 

PET/CT imaging and radioligand therapies, offer more targeted approaches, particularly for men 

with metastatic castration-resistant PCa. These innovations represent significant advancements in 

the management of advanced disease, providing more effective treatment options with potentially 

fewer side effects. 

In conclusion, PCa remains a complex and multifaceted disease, requiring a tailored approach to its 

diagnosis and management. Advances in early detection, particularly risk-adapted screening 

strategies and improvements in imaging, have enhanced the ability to identify PCa at earlier, more 

treatable stages. The challenge of balancing the benefits of early detection with the risks of 

overdiagnosis and overtreatment remains a critical focus of current research. 

AI models show great promise in addressing these challenges by supporting more accurate and 

standardized diagnostic processes. In line with this potential, tools like chatgpt contributed to the 

refinement and clarity of this thesis. PCa continues to pose a significant challenge in clinical practice 

due to its highly variable nature, with progression ranging from slow-growing, indolent forms to 

aggressive disease requiring timely intervention. Accurate early detection and precise 

characterization are key to ensuring appropriate treatment strategies, which is where multiparametric 

magnetic resonance imaging (mpMRI) has emerged as a crucial tool. MpMRI enables the detailed 

visualization of the prostate, offering valuable insights into both anatomical and functional changes 

associated with malignancy. Despite these advances, the variability in interpreting mpMRI results 

remains a challenge, underscoring the need for improved standardization and diagnostic accuracy 

[1]. 

 



2. The Role of Magnetic Resonance Imaging in PCa Diagnosis 

MpMRI has emerged as an essential tool in the diagnostic pathway for PCa. This chapter discusses 

the role of MRI in the detection, characterization, and risk stratification of PCa, providing an 

evidence-based overview of its clinical utility, limitations, and future directions. 

2.1. Role of MRI in PCa Detection 

Historically, PCa diagnosis relied heavily on PSA levels, DRE, and systematic transrectal ultrasound 

(TRUS)-guided biopsies. However, these methods presented challenges, including over-detection 

of indolent cancers and under-detection of aggressive disease. The advent of mpMRI has 

significantly improved the diagnostic accuracy, particularly for detecting csPCa, while reducing 

unnecessary biopsies. 

MpMRI combines three imaging sequences: T2-weighted imaging (T2w), diffusion-weighted 

imaging (DWI), and dynamic contrast-enhanced imaging (DCE). Each of these sequences provides 

specific information that aids in distinguishing between benign conditions and malignancies. For 

instance, PCa typically appears as areas of low signal intensity on T2w, with restricted diffusion on 

DWI, and early enhancement on DCE sequences. These features enhance the detection and 

localization of csPCa, particularly those of ISUP grade group ≥2. 

The Prostate Imaging-Reporting and Data System (PI-RADS), currently in version 2.1, provides a 

standardized approach to interpreting mpMRI results. The PI-RADS scoring system stratifies lesions 

on a scale from 1 to 5, where higher scores correspond to a greater likelihood of csPCa. This 

standardization has significantly reduced interobserver variability and has improved communication 

between radiologists and clinicians. 

2.2. MRI in Biopsy Decision-Making and Targeted Biopsies 

The integration of MRI into the diagnostic workflow has been a significant advancement in the 

indication for prostate biopsies. Historically, men with elevated PSA levels or abnormal DRE results 

would undergo systematic biopsies, which involve taking 12 cores from predefined regions of the 

prostate. Systematic biopsy has been associated with over-diagnosis of indolent cancers (e.g. ISUP 

grade group 1), and under-sampling of csPCa. 

MRI has transformed this paradigm by enabling MRI-targeted biopsy, which can be performed using 

cognitive guidance, MRI/ultrasound (US) fusion software, or direct in-bore MRI-guided biopsy. 

These techniques have shown to significantly improve the detection rate of csPCa while reducing 

the detection of low-risk lesions, which may not require immediate treatment. This is particularly 

evident in patients with prior negative biopsies but persistent suspicion of PCa. MRI- targeted biopsy 

has consistently demonstrated superiority over systematic biopsy in detecting ISUP 



grade group ≥2 cancers. 

 

A meta-analysis comparing MRI to template biopsies in biopsy-naive and repeat-biopsy settings 

reported a pooled sensitivity of 91% for ISUP grade group ≥2 cancers, compared to systematic 

biopsy alone. This increased accuracy minimizes unnecessary interventions and reduces the risk of 

overtreatment, making MRI-targeted biopsy a more precise and efficient diagnostic tool. 

2.3. Screening and Risk Stratification 

While MRI is not yet recommended as a primary screening tool for PCa due to cost and resource 

constraints, it plays a critical role following initial PSA testing. When PSA levels are elevated, MRI 

can help to stratify the risk of csPCa and guide the decision to perform a biopsy. By incorporating 

MRI findings into risk calculators, clinicians can better predict biopsy outcomes and avoid 

unnecessary procedures. 

Recent studies, such as the Stockholm3 trial, have demonstrated that using MRI in conjunction with 

PSA screening significantly reduces the number of biopsies performed, while improving the 

detection rate of csPCa . In addition, trials such as the PRECISION and MRI-FIRST have confirmed 

the efficacy of MRI as a triage tool, showing that an MRI-first approach results in fewer unnecessary 

biopsies and improved detection of csPCa . 

2.4. Limitations and Future Directions 

Despite its many advantages, MRI is not without limitations. One challenge is its lower sensitivity 

for detecting ISUP grade group 1 cancers, which can sometimes lead to underdiagnosis in cases 

where the cancer is not visible on MRI. Furthermore, the interpretation of MRI can vary depending 

on the radiologist’s experience and the quality of the imaging equipment. This highlights the need 

for standardized protocols and continued training to ensure accurate and reliable results . 

Additionally, while MRI-targeted biopsy reduces the detection of insignificant cancers, there 

remains a small risk of missing significant cancers, particularly in patients with negative MRI 

findings but persistent clinical suspicion. Ongoing research aims to refine MRI-based techniques 

and explore the use of artificial intelligence (AI) to enhance the accuracy and predictive value of 

MRI in PCa diagnosis . 

Looking ahead, the integration of advanced imaging modalities, such as prostate-specific membrane 

antigen (PSMA) PET/MRI, may further enhance the ability to detect and characterize PCa, 

particularly in cases where MRI alone may be insufficient. These emerging technologies hold 

promise for improving diagnostic precision and reducing the burden of PCa. 

2.5. Conclusion 

MRI has become a cornerstone in the diagnostic pathway for PCa. Its ability to accurately detect 

and localize csPCa, while reducing unnecessary biopsies, has revolutionized PCa diagnostics. As 

MRI technology continues to evolve, it will likely play an even more prominent role in personalized 



PCa management, guiding not only diagnosis but also treatment decisions and follow-up strategies. 

 

In summary, the use of MRI in PCa diagnosis enhances the precision of biopsies, facilitates early 

detection of csPCa, and reduces the risks associated with overdiagnosis and overtreatment. 

Continuing advancements in imaging technology and interpretation will undoubtedly further cement 

MRI’s role as an indispensable tool in the fight against PCa [1]. 

 



3. The PI-RADS System: A Framework for mpMRI Assessment 

3.1 Introduction to PI-RADS 

The Prostate Imaging Reporting and Data System (PI-RADS) is an internationally recognized 

framework designed to standardize the acquisition, interpretation, and reporting of mpMRI for PCa 

detection. It was initially developed in response to the need for greater consistency in prostate MRI 

protocols, given the variability in diagnostic accuracy across different institutions and radiologists. 

PI-RADS aims to improve the identification of csPCa while minimizing unnecessary biopsies and 

treatments for indolent cancers. 

3.2 Development and Evolution of PI-RADS 

PI-RADS was first introduced by the European Society of Urogenital Radiology (ESUR) in 2012, 

with version 1 (v1) providing the initial structured approach to prostate MRI. However, due to rapid 

advancements in imaging technology and increasing clinical experience, limitations of v1 became 

evident, particularly regarding interobserver variability and technical aspects of mpMRI. To address 

these issues, the American College of Radiology (ACR), ESUR, and the AdMeTech Foundation 

collaborated to release PI-RADS version 2 (v2) in 2015, followed by the most recent update, PI- 

RADS version 2.1 (v2.1), in 2019. 

3.3 Core Components of PI-RADS v2.1 

PI-RADS v2.1 is designed to evaluate treatment-naïve prostate glands using a standardized scoring 

system based on the analysis of three primary MRI sequences: T2w, DWI, and DCE. The system 

assigns scores ranging from 1 to 5 based on the likelihood that a particular lesion corresponds to 

csPCa, where: 
 

In PI-RADS v2.1, the dominant sequence for assessing the PZ is DWI, while for the TZ, T2W 

imaging takes precedence. DCE plays a supportive role, particularly in ambiguous cases where DWI 

findings are indeterminate (PI-RADS 3). This multiparametric approach enhances the diagnostic 

accuracy of prostate MRI by integrating both anatomical and functional data to evaluate the presence 

and aggressiveness of PCa. 



3.4 PI-RADS Scoring and Clinical Application 

The standardized scoring system is central to PI-RADS, providing a structured way to communicate 

imaging findings to clinicians, which informs subsequent patient management decisions, such as 

whether to proceed with biopsy or to pursue active surveillance. For example, lesions scored as PI- 

RADS 4 or 5 are highly suggestive of csPCa, often prompting a targeted biopsy. In contrast, lesions 

scored as PI-RADS 1 or 2 are unlikely to represent significant cancer, reducing the need for invasive 

procedures. 

3.5 Clinical Impact and Ongoing Research 

PI-RADS v2.1 has proven to be a valuable tool in improving the detection and management of PCa, 

significantly influencing clinical practice by enhancing diagnostic confidence and reducing 

unnecessary biopsies. However, ongoing research is focused on refining the system further, 

particularly in integrating advanced imaging techniques such as AI, MR spectroscopy and diffusion 

tensor imaging, which may be incorporated into future versions as clinical data accumulates [2]. 



4. Research project 

4.1. Protocol Design and IRB approval 

A comprehensive review of the existing literature on mpMRI was conducted, with a particular focus 

on advancements in quantitative MRI and radiomic features. Recent research has emphasized the 

potential of quantitative MRI metrics and radiomic analysis to enhance diagnostic accuracy and 

prognostic assessments, enabling more personalized treatment strategies for patients with PCa. 

The current project was reviewed and approved by the Institutional Review Board (IRB) in March 

2022. This approval ensures that the study adheres to ethical standards in conducting research 

involving human subjects, with particular attention to data privacy, and scientific rigor. The findings 

of this project aim to contribute to the growing body of knowledge on how mpMRI, enhanced by 

quantitative and radiomic approaches, can improve the diagnosis and management of PCa, 

ultimately leading to better patient outcomes. 

4.2. Patient enrollment 

For this study, we carried out an extensive retrospective review using the Picture Archiving and 

Communication System (PACS) of our institution, IRCCS IRST. The aim was to identify all patients 

who underwent 3T mpMRI over a three-year period, specifically from January 2018 to December 

2020. The criteria for inclusion required patients to have undergone MRI scans following a 

standardized protocol, with imaging performed using a 3T multicoil Ingenia MRI system by Philips. 

The standardized mpMRI protocols used for these patients included multiple key sequences: T2w 

imaging for anatomical detail, DWI to assess the diffusion of water molecules in tissues, Apparent 

Diffusion Coefficient (ADC) maps derived from DWI, and DCE sequences, which are instrumental 

in visualizing vascular patterns and perfusion characteristics in the prostate tissue. 

In addition to mpMRI, all patients underwent a transrectal ultrasound (TRUS)-guided biopsy of the 

prostate. This procedure was performed as part of their standard clinical care. The biopsies provided 

histopathological confirmation of the presence or absence of PCa for all selected patients. For 

patients who, as part of their therapeutic pathway, underwent radical prostatectomy, the 

histopathological report was carefully reviewed. This step was essential to obtain definitive 

confirmation of the presence and characteristics of the prostate tumor, allowing for a direct 

correlation between the findings obtained through mpMRI and the histopathological features 

observed in the surgical specimen. The analysis of the histopathological report provided crucial 

information on tumor staging, GS, extracapsular extension, and surgical margin involvement, 

among other relevant prognostic factors. 

To maintain the integrity and quality of the dataset, strict exclusion criteria were applied. Patients 

were not included in the study if they had any condition that could interfere with the quality or 

interpretation of the MRI images. Specifically, individuals with a hip prosthesis, which can cause 

significant artifacts on pelvic imaging, were excluded. Similarly, patients with prominent 



hemorrhage, which might obscure or distort the appearance of the prostate, were also excluded. 

Further exclusions included patients who had previously undergone radiotherapy (RT) or focal 

therapies such as high-intensity focused ultrasound (HIFU) or cryotherapy, as these treatments can 

significantly alter the prostate’s tissue characteristics, potentially confounding imaging 

interpretations. Lastly, patients whose mpMRI images were affected by severe motion artifacts were 

not included in the study, as these artifacts could degrade the quality of the images and reduce the 

reliability of the analysis. 

By adhering to these rigorous inclusion and exclusion criteria, we ensured that the study population 

consisted of patients whose mpMRI, biopsy, and, when applicable, histopathological data from 

radical prostatectomy could be reliably compared. This approach allowed for a more comprehensive 

evaluation, supporting a more accurate assessment of the diagnostic utility of mpMRI in the 

detection, characterization, and correlation with the final pathological outcomes of PCa. 

4.3. Manual database creation 

We manually created a comprehensive database using an Excel spreadsheet, integrating clinical, 

imaging, and pathological data from various sources. The clinical information—such as age, PSA 

levels, PSA density (calculated as PSA divided by prostate volume), DRE findings, and family 

history of PCa—was collected through an anamnesis form that each patient completed at the time 

of their mpMRI examination. For the MRI data, we carefully reviewed the radiological reports, 

focusing on image quality and the PI-RADS score for each lesion. To maintain clarity and relevance, 

we summarized the MRI findings by prioritizing the PI-RADS score of each identified lesion and 

its anatomical localization within the prostate. This simplified approach allowed us to capture the 

essential imaging data without unnecessary complexity. 

The pathological data, including results from both previous and subsequent prostate biopsies, as 

well as final anatomopathological reports for patients who underwent radical prostatectomy, were 

obtained from the institutional medical record system, Log80, used by AUSL Romagna. For these 

reports, some information was interpreted and summarized for inclusion in the database. 

Specifically, we extracted and recorded the highest GS and ISUP grade from either biopsy or 

surgical reports, ensuring that the most clinically relevant data were captured. This summarized 

approach provided a clear representation of each patient’s pathology results. 

Through the meticulous compilation and analysis of specific data points, combined with the 

interpretation of critical elements such as the most significant biopsy or surgical findings, we 

developed a comprehensive and precise dataset. This Excel database facilitated an in-depth 

comparison of clinical, imaging, and histopathological findings. It provided a solid foundation for 

evaluating the diagnostic utility of mpMRI in detecting and characterizing PCa, with definitive 

pathological outcomes serving as the cornerstone of our analysis.



4.4. Structured report and automatic database implementation 

Introduction 

 

In modern radiology, structured reporting has emerged as an essential tool to enhance 

communication between radiologists, clinicians, and researchers. The transition from traditional 

narrative reporting to structured formats has brought significant improvements in clarity, 

consistency, and usability of radiological data. This chapter explores the development and 

integration of a structured reporting system for mpMRI within our research institution, focusing on 

the automated compilation of a clinical-radiological database. We will examine the processes 

involved in creating this system and discuss its benefits, particularly in terms of data standardization 

and ease of access for future research and clinical applications. 

The Role of Structured Reporting in Radiology 

 

Radiological reporting has historically been narrative-based, relying on free-text descriptions that 

often vary in format, language, and detail. This approach, while flexible, presents challenges for 

data consistency, particularly when attempting to extract information for research purposes or for 

machine learning (ML) algorithms. Structured reporting addresses these issues by providing a 

standardized format that ensures essential information is consistently documented across all cases. 

For instance, the PI-RADS has been developed to standardize the reporting of mpMRI for PCa 

detection. In our institution, we collaborated with AGFA HealthCare to create a structured report 

specifically tailored for mpMRI, based on the PI-RADS v2.1 system. This report enhances clarity 

for both patients and specialists, enabling quick and efficient interpretation of findings. It includes 

key clinical and radiological data, such as PI-RADS scores for lesions, anatomical localization, and 

image quality assessment, ensuring that all relevant information is captured in a standardized format. 

Development and Integration of the Structured Report 

 

The process of developing the structured report involved multiple stages. Initially, clinical input was 

provided to AGFA HealthCare to design a report that met the needs of both radiologists and referring 

physicians. The structured report was created with a graphical interface that allows easy data entry, 

focusing on standardizing the collection of clinical and imaging data. This report includes fields for 

clinical history (e.g., PSA levels, PSAD), DRE results, family history for PCa, and MRI findings 

such as PI-RADS scores and lesion localization. 

To streamline data collection and minimize human error, we integrated this structured report into 

our institution’s Radiology Information System (RIS). This integration allowed for the automatic 

extraction and anonymization of clinical and radiological data directly from the patient's report. The 

automatic export of this data into an Excel format has significantly improved workflow efficiency, 

eliminating the need for manual data entry, which was previously time-consuming and prone to 

inconsistencies. 



 

Automation of Clinical-Radiological Database Creation 

 

Before the implementation of structured reporting, we manually compiled databases of patients 

undergoing mpMRI. This task involved collecting data from multiple sources, including patient 

anamnesis forms and radiological reports, which had to be transcribed and organized manually. 



Such manual processes were labor-intensive, time-consuming, and increased the risk of data entry 

errors. 

To address these challenges, we implemented an automated system that compiles data from both the 

structured radiology reports and the clinical information stored in the hospital’s repository (Log80), 

used by AUSL Romagna. 

This system automatically retrieves clinical and radiological data, has the capability to anonymize 

it, and compiles it into a single database. The automation process involves the extraction of key 

variables such as age, PSA levels, PSAD, as well as the PI-RADS score and anatomical localization 

of lesions. 

Additionally, this procedure allows for direct access to the anatomopathological report or biopsy 

results without the need to search for them in Log80. However, the system still requires the physician 

to read, summarize, and interpret the report, assigning the ISUP grade and entering it into the 

database. While the system does not yet provide a fully automated process, it significantly facilitates 

and reduces the amount of manual work involved, improving overall workflow efficiency. 

The system is expected to be further developed and enhanced over time, with the goal of eventually 

enabling automatic updates to the database as new patient data becomes available. This future 

implementation will not only streamline the process further but also ensure that the database remains 

current and reflective of the most up-to-date clinical and pathological information for each patient. 

Benefits of Structured Reporting and Automation 

 

The integration of structured reporting and automated database compilation has provided several 

key benefits to our institution: 

● Improved Data Standardization: Structured reporting ensures that essential clinical and 

imaging data are consistently documented across all cases, reducing variability and 

enhancing the reliability of the data. 

● Increased Efficiency: Automation of data extraction and anonymization has drastically 

reduced the time required to compile and manage clinical-radiological databases, allowing 

us to focus on more complex tasks such as data analysis and research. 

● Enhanced Research Capabilities: The availability of standardized, high-quality data 

facilitates the use of big data techniques and ML in radiology. The structured reports serve 

as a reliable source of ground truth for training AI algorithms aimed at improving PCa 

diagnosis and management . 

● Clinical Benefits: For clinicians, structured reports provide a clear, concise summary of 

patient data, aiding in decision-making and treatment planning. Additionally, patients benefit 

from reports that present information in an easily understandable format, improving 

communication and patient engagement. 

Conclusion 

 

The transition to structured reporting and automated data compilation has significantly improved 



the workflow within our radiology department, providing a more efficient and reliable means of 

managing clinical-radiological data. By integrating these systems, we have not only streamlined the 

process of database creation but also enhanced the quality and consistency of the data available for 

research and clinical applications. This innovation underscores the importance of structured 

reporting in modern radiology, particularly in the context of big data and AI, where accurate, 

standardized data is crucial for future advancements. 

Moreover, this initiative was driven by the fact that, during the course of my PhD, both my 

institution and I were awarded a European research grant through the FLUTE project. This funding 

created the necessity to implement and expand our manually curated databases, ensuring they met 

the high standards required for large-scale research. The transition to an automated and structured 

system was essential to meet the project's objectives, enabling us to handle the increasing amount 

of data efficiently and support the research efforts tied to the FLUTE project [3]. 



4.5. FLUTE project (Federated Learning and mUlti-party 

computation Techniques for prostatE cancer) 

FLUTE project seeks to enhance the diagnosis and treatment of csPCa through the integration of AI 

and Federated Learning (FL). The project is motivated by the challenges of accessing high-quality 

medical datasets due to stringent privacy regulations, which limit data sharing across institutions 

and borders. These challenges lead to biased AI models that are often overfitted to local data and do 

not generalize well across different populations. 

Context and Rationale 

 

In the field of healthcare, particularly in AI-driven medical research, the lack of sufficient and 

accessible data is a significant limitation. Patient privacy policies, such as the General Data 

Protection Regulation (GDPR) in Europe, prevent data from being easily shared across borders or 

institutions. As a result, AI models used for medical diagnosis, especially in PCa, are often trained 

on localized datasets, which may not capture the full variability of patient characteristics across 

different regions. This leads to inaccurate models that fail to generalize well when applied to new 

populations. 

FL offers a potential solution by allowing AI models to be trained on data stored at various 

institutions without moving the data itself. Instead, models are trained locally and then aggregated 

centrally, ensuring that patient data remains private. However, despite its promise, FL faces 

challenges related to scalability and privacy, particularly when it comes to sharing data securely 

across borders. 

Hypothesis and Goals 

 

The central hypothesis of the FLUTE project is that integrating AI techniques with FL will lead to 

the development of powerful predictive tools that can improve the diagnosis of csPCa and predict 

the aggressiveness of tumors. This approach is expected to facilitate personalized treatment plans 

that are tailored to the individual characteristics of each patient's tumor, ultimately improving patient 

outcomes. 

The project has three primary objectives: 

 

1. Improved Diagnosis of csPCa: The project aims to enhance the diagnosis of csPCa across 

Europe by utilizing a robust statistical model. This model, initially developed at the VHIR 

(Vall d'Hebron Institute of Research) based on seven clinical variables (age, family history 

of PCa , biopsy type, PSA levels, DRE, prostate volume, and PI-RADS category), will be 

trained with clinical and imaging data from various regions across Europe, including 

hospitals in Italy (IRST) and Belgium. By integrating MRI images with clinical data, the 

model is expected to achieve a higher level of diagnostic accuracy. 

2. Development of the FLUTE Platform: The FLUTE platform will be a cross-border federated 



AI solution, designed to facilitate secure data sharing and computational analysis among 

hospitals. By using privacy-enhancing technologies such as Secure Multi-Party Computation 

(SMPC) and Trusted Execution Environments (TEE), the platform will ensure that sensitive 

patient data is never exposed during the model training process. This will allow for 

collaborative research without compromising privacy. 

3. Synthetic Data Generation: The project also focuses on generating synthetic data—both 

clinical and imaging data—to be used for further research. This synthetic data will enable 

the sharing of research insights without exposing real patient information, thereby 

facilitating compliance with privacy regulations while still enabling scientific advancement. 

Methods and Technologies 

 

The development of the FLUTE platform incorporates a variety of advanced privacy-preserving 

techniques: 

● SMPC allows data to be shared across multiple parties while ensuring that no single party 

has access to the full dataset. 

● TEE provides a secure environment for the execution of computational tasks, ensuring that 

data remains encrypted even during processing. 

● Data Anonymization will be performed on all patient data before it is integrated into the 

federated system. Each hospital will pseudonymize its data locally, ensuring that individual 

identities cannot be traced back. 

Additionally, secret function sharing and sparse computing will be employed to improve the 

scalability of the federated algorithms. This will ensure that the system can handle large datasets 

from multiple hospitals while maintaining computational efficiency. Synthetic data generation will 

also play a crucial role in ensuring compliance with FAIR data-sharing principles (Findability, 

Accessibility, Interoperability, and Reusability). 

Once the system is developed, the predictive models will be trained and validated using real patient 

data, and the performance of these models will be compared with those trained on synthetic data. 

The validation process will involve multiple datasets from the participating hospitals to ensure that 

the models generalize well across different regions. 

Clinical Relevance and Expected Impact 

 

PCa is a common but highly variable disease, with cases ranging from indolent tumors that may not 

require immediate treatment to aggressive tumors that demand urgent intervention. Currently, there 

is no universal consensus on how to distinguish between these types, leading to over-diagnosis and 

over-treatment in many cases. 

Recent advancements in medical imaging, particularly mpMRI, have improved the ability to identify 

csPCa. However, the reliance on traditional markers like PSAD and DRE means that many indolent 

cases are still being over-diagnosed, while some aggressive cases are missed. The European 

Association of Urology (EAU) recommends risk-stratified diagnostic pathways, which can reduce 

unnecessary biopsies and imaging procedures. 



The FLUTE project aims to build on these advancements by creating a risk prediction tool that can 

better distinguish between indolent and aggressive forms of PCa. This will allow for more targeted 

use of diagnostic procedures, reducing the burden on patients and healthcare systems while 

improving early detection of aggressive tumors. By using FL, the project will be able to leverage 

data from multiple European regions, creating a geographically robust model that reflects the 

diversity of PCa cases across the continent. 

Ethical and Legal Considerations 

 

The project is designed to comply with the strict data protection regulations set forth by the GDPR. 

All data used in the study will be pseudonymized at the local level, with correspondence tables 

stored separately from the research data to ensure that individual patients cannot be re-identified. In 

addition, a Data Protection Impact Assessment (DPIA) will be conducted to identify and mitigate 

any potential risks to patient privacy. 

Each participating institution will be responsible for ensuring that data is handled in compliance 

with local and European regulations. For example, hospitals like VHIR and CHUL will only provide 

pseudonymized data, and IRST will further anonymize data before it is shared in the federated 

system. Special attention will be given to the rights of data subjects, with each hospital ensuring that 

patients are informed of how their data will be used. 

Pilot Study and Platform Validation 

 

Before the full implementation of the FLUTE platform, a pilot study will be conducted to assess the 

feasibility of FL in the context of PCa diagnosis. This pilot study will evaluate the technical 

infrastructure needed to deploy the platform, test the privacy-preserving methods, and ensure that 

the system can scale to handle the large datasets expected in the full study. 

Once the platform is operational, the AI models will be developed and validated using data from 

several hospitals. These models will combine clinical data (such as PSA levels, biopsy type, and 

patient history) with quantitative imaging biomarkers extracted from MRI scans to improve the 

accuracy of csPCa detection. The models' performance will be assessed based on their accuracy, 

sensitivity, and specificity, and compared to traditional diagnostic methods. 

Outcomes and Contributions 

 

The expected outcomes of the FLUTE project include: 

 

● A functional federated AI platform that enables secure, cross-border data sharing and 

collaborative model development. 

● A validated predictive tool that can be used in clinical settings to assess the probability of 

csPCa, improving early diagnosis and reducing unnecessary interventions. 

● The generation of synthetic datasets that can be used for further research while preserving 

patient privacy. 

● Ethical and legal guidelines for implementing FL in healthcare, ensuring that the platform 

can be widely adopted in compliance with GDPR. 



In summary, the FLUTE project aims to revolutionize PCa diagnosis by combining advanced AI 

techniques with FL, ensuring patient privacy while enabling the use of large, diverse datasets from 

across Europe. This approach will lead to more accurate and personalized treatments, improving 

outcomes for patients with PCa [4]. 

 

 

4.6. IRST contribution to FLUTE project 

The FLUTE project represents a significant research endeavor that focuses on advancing the 

diagnosis and treatment of PCa using cutting-edge technologies such as AI and FL. My involvement, 

as well as the contribution of the IRCCS IRST, has centered on developing a comprehensive clinical- 

radiological database and optimizing data management workflows to support the goals of the project. 

One of the key challenges we faced at the outset was the manual compilation of clinical-radiological 

databases for patients undergoing prostate MRI. This process, while necessary for research, was 

time-consuming and labor-intensive, particularly as it involved gathering data from multiple 

sources, including patient histories, imaging reports, and pathological findings. With the initiation 

of the FLUTE project, it became imperative to enhance our database infrastructure to manage large- 

scale data more efficiently and accurately, especially given the project's focus on integrating 

information from multiple institutions across Europe. 

In collaboration with AGFA HealthCare and the institutional Data Unit, we developed systems to 

streamline this process. The first step involved automating data extraction from the Radiology 

Information System (RIS) and integrating it with other clinical sources. This automation allowed us 

to retrieve essential clinical data, such as PSA levels, biopsy results, and patient histories, directly 

from the hospital's repository, Log80. The Data Unit played a crucial role in this process, 

implementing tools to automatically search for patients' MRI images in the PACS and anonymize 

them for subsequent analysis. This was a critical advancement, as it reduced the manual effort 

required to locate, extract, and anonymize patient data, ensuring compliance with data protection 

regulations while preparing the data for use in large-scale research. 

My personal involvement in this aspect of the project included providing the initial framework for 

the database, which contained clinical, anamnestic, radiological, and pathological information for 

each patient. This initial work laid the groundwork for the development of a dynamic, automated 

system capable of incorporating new data as it available. 

The next phase of the FLUTE project involves the integration of advanced imaging analytics. 

Starting in late 2024, we will begin analyzing radiological exams using QUIBIM-QP Prostate 

software to extract quantitative imaging biomarkers from various mpMRI sequences. These 



biomarkers, which provide detailed insights into tissue characteristics, will be integrated with 

clinical and laboratory data in a unified database. The goal is to create a robust dataset that combines 

imaging, clinical, and pathological information to develop predictive models for PCa diagnosis and 

risk stratification. 

By participating in the FLUTE project, IRST has positioned itself at the forefront of research in PCa 

diagnostics. The integration of FL has the potential to revolutionize the field by enabling the 

development of highly accurate diagnostic tools while maintaining patient privacy. This aspect of 

the project is particularly important given the sensitive nature of healthcare data and the stringent 

regulations governing its use. 

The structured databases we are developing will serve as a foundation for these AI-driven models. 

By harmonizing data from various sources and ensuring that it is anonymized and standardized, we 

are facilitating the application of AI algorithms that can analyze vast amounts of data to detect 

patterns and predict patient outcomes with greater accuracy. This approach also enables the IRST 

to contribute significantly to the collaborative efforts of the FLUTE project, working alongside other 

leading European institutions to improve PCa diagnosis and treatment on a large scale. 

The preliminary results of our work are still in the early stages. So far, we have begun compiling a 

clinical-radiological database for 400 patients who underwent mpMRI at our institution between 

2018 and 2023. This database serves as a starting point for ongoing research and will provide a solid 

foundation for future developments as we incorporate new data and quantitative imaging 

biomarkers. 

As the FLUTE project moves forward, we anticipate that the predictive models we develop will 

improve the accuracy of PCa diagnosis, enabling earlier detection and more precise risk 

stratification. This will ultimately lead to better treatment planning and improved patient outcomes. 

Furthermore, by leveraging FL and AI technologies, we aim to set new standards in the field of PCa 

diagnostics, paving the way for more personalized and effective healthcare solutions across Europe. 

In conclusion, the FLUTE project offers a unique opportunity for both IRST and myself to contribute 

to the future of PCa research. Our work in developing automated, standardized databases and 

integrating advanced imaging analytics is aligned with the project's overarching goals of improving 

diagnostic accuracy and patient outcomes through innovative AI technologies. As we continue to 

build on the foundation we have established, we are confident that our contributions will lead to 

significant scientific advancements and ultimately enhance the quality of care for PCa patients 

across Europe. 

4.7. MRI PRO training course 

To harmonize the clinic-radiological multicenter database within the FLUTE project, obtaining 

expert-level certification in prostate mpMRI reporting was essential. To fulfill this requirement, I 

successfully completed the MRI PRO course (www.mripro.io), an online Prostate MRI Training 

Course offered by Monash University. The evidence supporting the use of prostate MRI strongly 

depends on the experience of specialists who have interpreted a large volume of cases. Given the 

http://www.mripro.io/


complexity of prostate MRI, less experienced clinicians may risk missing significant cancers or 

misinterpreting benign findings, potentially leading to suboptimal patient outcomes. MRI PRO 

offers clinicians the opportunity to gain substantial experience with immediate feedback, helping 

them become proficient in prostate MRI interpretation before applying these skills in clinical 

practice. The primary objective of MRI PRO is to minimize variability and elevate the global 

standard for accurate prostate MRI reporting. Although I have personally interpreted over 1,000 

prostate MRI scans, I recognized the importance of formally testing my competencies and obtaining 

certification to ensure my expertise aligns with the highest professional standards. 

The MRI PRO platform provides access to 300 high-quality, histology-verified prostate MRI cases 

sourced from international centers. Each case is reviewed through structured reports, and the results 

are evaluated by a panel of six international expert radiologists. My personal results on 300 cases 

showed an overall accuracy of 92.8%, which reflects a high level of competence in identifying and 

reporting PCa lesions. 

Completing the MRI PRO course and receiving certification marks a significant milestone in further 

enhancing my expertise in prostate MRI interpretation. The course allowed me to rigorously validate 

my skills through the structured analysis of histology-verified cases, accompanied by expert 

feedback. Achieving an accuracy rate of 92.8% underscores my diagnostic proficiency and 

reinforces the importance of continuous skill assessment, particularly in a complex and evolving 

field like prostate MRI. By participating in this comprehensive evaluation, I contributed to the 

standardization and harmonization efforts for prostate MRI reporting, which are critical for 

multicenter collaborations like the FLUTE project. Moreover, the certification ensures that I am 

well-prepared to provide high-quality, consistent results, reducing inter-observer variability and 

ultimately contributing to improved patient outcomes [5]. 



5. ML tool for tumor malignancy classification 

5.1. Introduction 

A collaborative effort between the Medical Physics department and clinical experts was undertaken 

to bridge specific knowledge gaps and uphold the highest standards of scientific rigor. This 

interdisciplinary collaboration was essential for addressing the complex technical challenges 

associated with integrating ML into radiological and clinical workflows. By combining clinical 

expertise with the specialized knowledge of physics and data science, this partnership facilitated the 

precise development and rigorous evaluation of the Random Forest (RF) model, ensuring its robust 

and accurate application in the research context. 

The conceptual framework, centered on the clinical and radiological aspects, was developed in 

conjunction with the Medical Physics team, who played a key role in co-developing the 

methodology. Their expertise ensured robust data management, algorithmic precision, and rigorous 

statistical validation, which were crucial for constructing a model capable of delivering reliable 

clinical insights. The collaboration extended beyond data analysis to include in-depth discussions 

on dataset selection and result interpretation, ensuring the model's clinical relevance. This 

interdisciplinary partnership highlights the critical role of integrating clinical knowledge with 

technical expertise in medical research, leading to more comprehensive and accurate outcomes. 

In this chapter, we will detail the dataset used, emphasizing its structure, source, and relevance to 

the research question. Key preprocessing steps, such as managing missing data, addressing outliers, 

transforming categorical variables, and normalizing continuous variables, will be outlined. These 

steps are crucial for ensuring the dataset is in an optimal format for ML applications, preventing 

distortions that could affect model performance. Additionally, we will discuss the strategies used to 

balance the dataset, given the typical class imbalance found in medical data, such as the 

disproportionate representation of benign versus malignant cases. Proper class balancing ensures 

that the model does not overfit to the majority class, maintaining fairness and accuracy across 

predictions. 

Following the data preparation process, we will describe how the dataset was split into training, 

validation, and test subsets. This partitioning is critical for evaluating model performance, 

minimizing overfitting, and ensuring the generalizability of the results to unseen data. By the end of 

the preprocessing phase, the dataset will be ready for the application of ML algorithms, with the 

goal of deriving clinically meaningful insights to inform patient management decisions. 

The primary focus is the implementation and evaluation of a RF model designed to classify PCa 

patients based on their clinical and radiological data. Specifically, the model aims to predict the 

ISUP grades. Stratifying patients by their ISUP grade is crucial for guiding treatment decisions, such 

as any treatment for healthy patients (ISUP 0), opting for active surveillance in less aggressive cases 

(ISUP 1) or more intensive interventions like surgery or radiotherapy for more severe cases (ISUP 

2+). The objective of this analysis is to accurately distinguish between ncsPCa (ISUP 0 and 1) and 



csPCa (ISUP 2+). 

 

ML models, such as RF, have gained prominence in medical fields, especially in supporting complex 

decision-making tasks. Radiologists and clinicians often face the challenge of integrating vast 

amounts of data, ranging from mpMRI to clinical biomarkers such as PSA levels and patient history. 

ML models provide a systematic, data-driven approach to handle these complexities, enabling the 

identification of patterns that may not be easily detectable by human experts. In particular, RF 

models, which leverage ensemble learning, offer robustness in handling heterogeneous data sources, 

making them ideal for applications in PCa diagnosis. 

One of the key advantages of ML in radiology is its ability to quantify subtle imaging features, such 

as lesion shape, texture, and intensity, which might elude even experienced clinicians. Radiomics, 

a growing field in medical imaging, seeks to extract these quantitative features from radiological 

images, providing new avenues for cancer diagnosis and treatment planning. As demonstrated by 

Gillies et al. (2016), radiomics can enhance the prediction of disease outcomes, aiding in the 

development of personalized treatment strategies. In PCa, mpMRI is a rich source of information, 

and integrating ML models with radiomics has the potential to improve diagnostic accuracy, 

supplementing clinical expertise with objective, reproducible predictions. 

However, while ML models hold great promise, their integration into clinical practice must be 

approached cautiously. These models are not intended to replace clinical judgment but to support it. 

Physicians must critically evaluate the predictions generated by these models, considering their 

limitations, such as biases in training data or issues with generalizability to different patient 

populations. Moreover, ML models, while proficient at detecting patterns, lack the contextual 

awareness that comes from years of clinical experience. This makes the physician's role 

indispensable in validating and interpreting the model’s outputs, ensuring they align with the broader 

clinical picture. 

In conclusion, while ML models like RF offer significant advantages in enhancing diagnostic 

accuracy and improving patient care, their use in clinical practice should be seen as a collaborative 

tool, augmenting but not replacing the expertise of clinicians. As these models continue to evolve 

and prove their utility in areas like PCa classification, their role in guiding clinical decisions will 

likely expand, provided they are used responsibly and in conjunction with sound medical judgment 

[6-7-8-9].



5.2. Dataset Features 

The dataset includes a combination of clinical and radiological features, essential for classifying 

PCa severity. Below is an updated and detailed description of the key independent variables, 

considering the specific methodologies used for the PI-RADS and ISUP scores, as well as the 

method for calculating the rADC feature. 

● PSA: PSA is a blood biomarker commonly used in PCa screening. In this dataset, the PSA 

value corresponds to the blood sample taken closest to the date of the MRI scan, ensuring it 

reflects the most current information about the patient's PCa status at the time of imaging. 

Elevated PSA levels are associated with an increased likelihood of PCa, although they can 

also be elevated in benign conditions such as BPH or prostatitis. PSA levels are crucial in 

assessing PCa risk, particularly when considered alongside other clinical and radiological 

features. 

 

 

● Prostate Volume: The prostate volume is calculated using three diameters—anteroposterior 

(AP), laterolateral (LL), and craniocaudal (CC)—measured on the T2w MRI sequence. 

These dimensions are multiplied by 0.52, following the volumetric model of a sphere, to 

estimate the prostate volume. However, advanced imaging software with automatic prostate 

contouring capabilities offers a more precise and accurate assessment of prostate volume. 

Once these technologies become available in our clinical practice, we intend to incorporate 

them for enhanced volumetric accuracy. This method provides an approximation of the 

gland’s size and is critical for evaluating prostate health. Larger prostate volumes can 

naturally elevate PSA levels, making this feature essential for calculating PSAD. 

 

 

● PSAD: PSA density is calculated by dividing the PSA level by the prostate volume. It 

provides a more accurate assessment of PCa risk than PSA alone, particularly in patients 

with larger prostate volumes, where PSA levels may be elevated due to benign factors. 

 

 

● Age: The age of the patient at the time of the MRI exam. Age is a well-known risk factor for 

PCa, with increasing age correlating with a higher likelihood of developing the disease. 

 

 

● PI-RADS Score: The PI-RADS score is used to evaluate prostate lesions based on mpMRI. 

In this dataset, the PI-RADS score corresponds to the lesion with the highest score, as 

determined by the imaging. If multiple lesions have the same PI-RADS score, the lesion with 

the largest volume is selected as the dominant lesion. PI-RADS scores range from 1 to 5, 

with higher scores indicating a higher likelihood of csPCa. 

 

 

● rADC (pathological/healthy): This feature represents the ratio of ADC values between 



pathological and healthy tissues. The ADC values are derived from DWI, which measures 

the movement of water molecules in tissues. For the rADC calculation, two regions of 

interest (ROIs) are defined: one in the cancerous region and the other in the contralateral 

healthy tissue at the same level and in the same zone (e.g., CZ with CZ, PZ with PZ). The 

rADC is the ratio of the ADC values between these two ROIs, providing a quantitative 

measure to differentiate cancerous tissue from healthy tissue. This study was conducted 

retrospectively, utilizing previously acquired imaging data. Lower ADC values in the 

pathological ROI compared to the healthy ROI typically indicate higher cellular density and 

more aggressive tumors. 

 

 

● Zone: This feature indicates the anatomical zone of the prostate in which the dominant lesion 

is located: 

○ N = for negative patients with no lesions. 

○ C = for lesions located in the CZ, TZ, or anterior portion (AS). 

○ P = for lesions located in the PZ. 

 

 

5.3. Target Variable (ISUP) 

ISUP Class (0, 1, 2+): The target variable in this study is based on the highest GS found in either 

histological examination or biopsy results. If histological data from surgery or resection is available, 

the ISUP class reflects the highest GS provided by the pathologist. If histology is not available (e.g. 

patient treated with radiotherapy) , the highest GS from the biopsy sample is used. The ISUP 

classification system is a key determinant of cancer aggressiveness: 

● ISUP 0: No PCa. 

 

● ISUP 1: ncsPCa, typically managed through active surveillance. 

 

● ISUP 2+: csPCa requiring immediate therapeutic intervention, such as surgery or 

radiotherapy. 

 

 

This comprehensive dataset, which combines clinical variables (PSA, prostate volume, age) with 

imaging features (PI-RADS score, rADC), allows for a robust assessment of PCa risk and severity, 

aiding in diagnostic accuracy and treatment decision-making. 

 

 

5.4. Data Preprocessing 

Data Cleaning: 

 

Data cleaning is a critical step in any ML pipeline, particularly in medical datasets where missing 



values and outliers can significantly affect the model's performance and the validity of predictions. 

 

● Handling Missing Values: Missing data was addressed systematically to ensure no important 

information was lost, while still maintaining the integrity of the dataset. For numerical 

variables such as PSA, prostate volume, and rADC, statistical imputation techniques were 

used, often replacing missing values with the median to avoid the influence of extreme 

values (which can affect the mean). This approach ensures that each data point is as complete 

as possible, reducing the chance of bias in the model. 

 

 

● Outlier Detection and Management: Medical datasets often contain outliers that can either 

represent true rare cases or erroneous data points. In this study, outliers were identified 

through statistical methods such as Z-scores and interquartile ranges (IQR). It was important 

to differentiate between biological variations (legitimate outliers) and data entry errors. For 

instance, extremely high PSA levels might indicate aggressive PCa but can also result from 

technical issues or inaccuracies in measurement. Outliers that were determined to be 

biologically plausible were retained, while those likely due to errors were either corrected or 

removed. 

Feature Selection: 

 

Feature selection plays a pivotal role in reducing the complexity of the model, minimizing 

overfitting, and improving interpretability (particularly crucial in clinical settings where the 

decision-making process must be transparent and justifiable) . 

● Motivation for Feature Selection: The primary features included in the model were selected 

based on their clinical relevance to PCa. Key features such as PSA, prostate volume, rADC, 

PI-RADS score, and Zone have established roles in the literature for predicting PCa severity. 

Additionally, PSAD was derived by dividing PSA by prostate volume, as this metric 

provides a more refined assessment of PCa risk, particularly in cases where PSA alone may 

be misleading due to large prostate volumes. 

 

 

● Avoiding Multicollinearity: While feature selection is guided by clinical insight, 

multicollinearity between variables can degrade model performance by inflating variance. 

Therefore, the correlation matrix of the selected features was analyzed to ensure that highly 

correlated features did not coexist in the model, which could lead to redundancy. For 

example, prostate volume and PSAD are related, but PSAD was preferred as it normalizes 

PSA relative to prostate size, improving its predictive value. 

 

 

● Dimensionality Reduction: Although this dataset contained a manageable number of 

features, it is important to consider dimensionality reduction techniques, such as principal 



component analysis (PCA), when dealing with higher-dimensional datasets. These methods 

can reduce feature complexity while retaining most of the variance, though in this case, the 

clinically meaningful features were sufficient for building an interpretable and effective 

model. 

Dataset Split: 

 

Proper division of the dataset into training and test sets is critical to evaluate model performance 

and ensure generalizability. In this study, the dataset was split into a training set (70%) and a test 

set (30%). 

● Training and Test Split: The choice to use 70% of the data for training allows the model to 

learn from a sufficiently large portion of the data while reserving 30% for testing ensures 

that there is a robust evaluation of the model’s performance. This test set is used to validate 

the model’s ability to generalize to unseen data, a critical factor in clinical applications where 

predictions must be accurate across a broad patient population. 

 

 

● Selection of random_state: The random seed, or random_state, was fixed to ensure 

reproducibility of the results. Reproducibility is essential in scientific studies, particularly in 

medicine, where decision-making relies on replicable outcomes. A fixed random_state 

allows researchers to verify that the model behaves consistently across different runs and 

environments. 

 

 

● Test Size: A 30% test size provides a good balance between having enough data to train the 

model effectively and retaining a sufficient portion of data to thoroughly evaluate the 

model’s performance. In smaller medical datasets, this split might be adjusted to ensure that 

rare cases (e.g., aggressive cancer cases) are adequately represented in both the training and 

test sets. However, in this study, 30% was sufficient to capture the distribution of ISUP 

grades across the patient population. 

 

 

5.5. Feature Preprocessing 

 

 
Standardization of Numerical Variables: 

 

Even though RF is not affected by the scale of features (since it uses decision trees that rely on 

feature splits rather than distance-based calculations), there are still scenarios where standardization 

can be useful for consistency and interpretability, especially when working in conjunction with other 

models or when analyzing feature importance. 



● Importance of Standardization: Numerical variables such as PSA, rADC, prostate volume, 

and PSAD have varying scales and units of measurement. While this variation does not 

directly affect the RF algorithm, standardization can be useful for visualizing feature 

importance on a comparable scale and improving the consistency of the preprocessing 

pipeline, especially if the same dataset might later be used for other ML algorithms. 

 

 

● Application of StandardScaler: Standardization was applied using the StandardScaler from 

the sklearn.preprocessing library, which centers the data by subtracting the mean and scales 

it by the standard deviation. This ensures that all numerical variables have a mean of 0 and 

a standard deviation of 1. The following features were considered for standardization: 

○ PSA 

○ rADC 

○ Prostate Volume (measured in ml) 

○ PSAD ( measured in ng/ml/cm³) 

 

Although this step isn’t essential for RF itself, it adds uniformity across the pipeline when comparing 

feature importances or experimenting with different algorithms. 

Handling of Categorical Variables: 

 

In the dataset, categorical variables like PI-RADS score and Zone play a key role in the classification 

process. 

● Encoding Techniques: Since RF can handle both numerical and categorical data (through 

splitting decisions based on thresholds for numerical features and categorical values for 

categorical features), categorical encoding was necessary to convert non-numeric categorical 

variables into a format usable by the model. The PI-RADS and Zone variables were handled 

as follows: 

○ PI-RADS: This ordinal variable, which ranges from 1 to 5, was label encoded, as the 

values have an inherent order where higher PI-RADS scores indicate a higher 

likelihood of csPCA. 

○ Zone: This categorical variable represents the location of the lesion in the prostate, 

such as N (no lesions), C (CZ,TZ,AS), and P (PZ). To preserve the distinct categories 

without imposing any ordinal relationship, One-Hot Encoding was applied to convert 

each zone into binary indicator variables. For instance, each patient would have 

separate columns indicating whether their lesion is located in the peripheral or central 

regions. ('C' = 0, 'N' = 1, 'P' = 2) 

The choice of One-Hot Encoding ensures that the categorical variable does not imply a false order 

or ranking, which could mislead the model. 

By properly encoding categorical variables and handling numerical features, the dataset was made 

suitable for use in the RF classifier, ensuring that both feature types were appropriately considered 

during training. 



5.6. Data presentation 

This chapter provides a comprehensive overview of the cleaned dataset used to train the ML model 

for tumor malignancy classification. The dataset includes several key demographic, clinical, and 

radiological variables essential for building an accurate predictive tool. 

Demographic Variables 

 

● Age: The histogram displays the age distribution of 314 patients, with a majority of 

individuals aged between 55 and 75 years. The data shows a normal distribution centered 

around the 60–65 year range, with fewer patients at the extremes of the age spectrum. The 

orange line represents the smoothed density curve, illustrating the underlying distribution of 

age among the cohort. 

 

 
 

 

 
Age distribution of the patients in the dataset 

 

 

 

 

Clinical Data 

 

Clinical variables, including PSA, prostate volume, and PSAD, are distributed in a skewed log- 

normal distribution. 

● PSA: Distribution of PSA (ng/ml) levels shows a right-skewed distribution with the majority 

of values below 10 ng/ml. 

 

 

● Volume: Distribution of Prostate Volume (ml) reveals that most patients have prostate 

volumes ranging between 30 and 100 ml. 

 

 

● PSAD: Distribution of PSAD (ng/ml/cm³) shows a skewed distribution, with most values 



concentrated below 0.2, indicating a higher concentration of PSA relative to prostate volume 

in some patients. 

 

 

 

 

 

 

 
Distribution of PSA, Prostate Volume, and PSAD. 

 

 

Radiological Data 

 

Radiological features calculated from multiparametric MRI exams are crucial for the model's 

predictive capabilities. 

● rADC: The histogram shows the distribution of rADC values for 213 positive patients. The 

rADC ratio is calculated by dividing the ADC value of pathological tissue by that of healthy 

tissue. The majority of rADC ratios fall between 0.4 and 0.7, indicating the relative diffusion 

of water molecules in pathological versus healthy tissue. The orange line represents the 

smoothed density curve, highlighting the underlying distribution of the data. 

 

 
 

 

 
Distribution of the rADC (pathological/healthy tissue) ratio. 



 

 

● PI-RADS Score: The distribution of patients across PI-RADS categories in this cohort 

reveals that PI-RADS 2 has the highest representation with 101 patients (32.2%), followed 

by PI-RADS 4 with 92 patients (29.3%). PI-RADS 3 includes 71 patients (22.6%), while PI- 

RADS 5, representing more aggressive lesions, comprises 50 patients (15.9%). 

 

 
PATIENTS PERCENTAGE 

PI-RADS 2 101 32,2% 

PI-RADS 3 71 22,6% 

PI-RADS 4 92 29,3% 

PI-RADS 5 50 15,9% 

PI-RADS Patient Distribution by Category 
 

 

 

 

 

 

 

Proportional Distribution of Patients by PI-RADS Category 

 

● Zone: The pie charts show the proportion of lesions located in the PZ versus the other ( CZ 

+ TZ + AS) for each PI-RADS score. Higher PI-RADS scores are predominantly associated 

with lesions in PZ, with a marked increase in proportion as the PI-RADS score rises from 3 

to 5. 



 

 

 
 

 

Distribution of PI-RADS Scores 3, 4, and 5 across different prostate zones 

 

 

This table summarizes the distribution of lesion localization according to the PI-RADS score 

classification. The columns show the different lesion zones: N (No lesion), C (CZ + TZ + 

AS), and P (PZ). PI-RADS 2 primarily consists of patients with no detected lesions, while 

PI-RADS 3, 4, and 5 reveal a progression of lesion occurrence from the central to peripheral 

zones, with PI-RADS 5 showing the highest number of lesions in the PZ. 

 

 

 

 
LESION LOCALIZATION 

PI-RADS 

SCORE 

N (No lesion) C (CZ+TZ+AS ) P (PZ) 

P2 101 0 0 

P3 0 32 39 

P4 0 11 81 

P5 0 10 40 

Lesion Localization Based on PI-RADS Score. 



Histopathological Data 

 

The histopathological data analyzed here derive from prostatectomies and prostate biopsies, 

providing insights into prostate tissue characteristics and lesion grading. This data supports 

diagnostic accuracy and informs treatment strategies for prostate-related conditions. 

● ISUP Classification: The histopathological data reveal a distribution across ISUP grades, 

with 179 patients classified as ISUP 0, 61 patients as ISUP 1, and 74 patients as ISUP 2 or 

higher. 

 

 

 

 
PATIENTS PERCENTAGE 

ISUP 0 179 57% 

ISUP 1 61 19,4% 

ISUP 2+ 74 23,6% 

ISUP Patient Data 

 

 

 

 

Proportional Distribution of Patients by ISUP Category 

 

 

 

● ISUP Classification and PI-RADS Score : This bar chart shows the number of cases 

stratified by PI-RADS score and ISUP classification (ISUP 0, ISUP 1, ISUP 2+). The 

majority of PI-RADS 2 cases fall under ISUP 0, indicating no malignancy, while higher PI- 

RADS scores (P4 and P5) tend to have a greater distribution in ISUP 2+, representing higher 

malignancy risk. 



 

 

 
Distribution of Cases by PI-RADS Score and ISUP Classification 

 

 

 

The table summarizes the distribution of ISUP grades (0, 1, 2+) across different PI-RADS 

scores (P2, P3, P4, P5). Each cell represents the number of cases within a specific PI-RADS 

score and ISUP grade category. The totals in the rightmost column and bottom row indicate 

the sum of cases for each ISUP grade and PI-RADS score, respectively. 

 

 

 

 
PI-RADS SCORE TOTAL 

 
P2 P3 P4 P5 

 

ISUP 0 90 51 32 6 179 

ISUP 1 9 16 26 10 61 

ISUP 2+ 2 4 34 34 74 

TOTAL 101 71 92 50 314 

Distribution of ISUP Grades Across PI-RADS Scores 



Correlation Matrix analysis 

 

The correlation matrix provides insight into the relationships between various clinical, radiological, 

and pathological variables, specifically focusing on the ISUP grade, which indicates the 

aggressiveness of PCa. Understanding these correlations aids in identifying predictive factors for 

cancer severity and guides clinical decision-making. 

● ISUP and PI-RADS (0.63): The strongest positive correlation observed is between ISUP 

grade and PI-RADS score (0.63). This significant relationship implies that higher PI-RADS 

scores, which reflect higher suspicion of malignancy on MRI, are often associated with 

higher ISUP grades determined through histopathology. Clinically, this correlation 

underscores the value of PI-RADS in predicting tumor aggressiveness and supports its use 

as a non-invasive imaging tool in assessing cancer severity. 

 

 

● ISUP and rADC (-0.48): ISUP grade has a moderate negative correlation with the rADC 

value (-0.48). This inverse relationship suggests that lower ADC values, which indicate 

restricted diffusion on imaging, are associated with higher ISUP grades. Restricted diffusion 

is a common characteristic of high-grade tumors, making rADC an essential biomarker in 

identifying aggressive cancer. The strong negative correlation reinforces the utility of DWI 

in evaluating PCa risk. 

 

 

● ISUP and PSAD (0.38): The ISUP grade shows a moderate positive correlation with PSAD 

at 0.38, suggesting that PSAD may be associated with higher ISUP grades. This correlation 

is stronger than that of total PSA, which has a much lower correlation of 0.18 with ISUP, 

indicating that PSAD is a more reliable indicator of cancer aggressiveness than PSA alone. 

Given PSA’s role as a widely-used biomarker, these findings emphasize the added value of 

PSAD in assessing overall cancer risk, especially when used alongside imaging and 

histopathological data. 

In summary, the correlations observed in these data provide valuable insights for our model aimed 

at predicting PCa aggressiveness. The strong positive relationship between ISUP and PI-RADS 

(0.63) demonstrates the predictive power of PI-RADS in non-invasively assessing tumor severity, 

making it a key feature for our model. The moderate negative correlation between ISUP and rADC 

(-0.48) underscores the importance of DWI parameters, such as rADC, as indicators of high-grade 

tumors. Additionally, the positive correlation between ISUP and PSAD (0.38) underscores their 

value as complementary features. Together, these variables form a comprehensive dataset that 

enhances our model’s ability to accurately predict cancer aggressiveness, guiding personalized 

diagnostic and treatment decisions. 



 



5.7. Model Selection 

The dataset used for classifying PCa patients based on ISUP grades (0, 1, 2+) contains a combination 

of clinical and radiological variables. The main features include rADC, PSA, prostate volume, 

PSAD, calculated age, PI-RADS, and ZONE. These variables present several challenges due to their 

heterogeneous nature (both continuous and categorical data types) and the presence of non-linear 

relationships. Below is a detailed explanation of why RF is the most suitable model for this dataset, 

compared to other ML algorithms. 

 

 

1. Random Forest (RF) 

 

Pros: 

 

● Handling heterogeneous data: RF is highly effective with datasets that combine both 

numerical and categorical variables, like ours. It requires minimal preprocessing and can 

easily handle continuous variables like PSA and PSAD, as well as categorical variables such 

as PI-RADS and Zone, without the need for extensive transformations such as one-hot 

encoding. 

 

 

● Reducing overfitting: RF operates as a bagging algorithm that builds multiple decision trees 

using different data subsets, reducing the risk of overfitting. This is particularly 

advantageous in our dataset, where we have a relatively limited sample size (314 patients) 

with a large number of features, reducing the risk of overfitting due to the model's ability to 

generalize. 

 

 

● Feature importance: RF provides insight into the importance of each feature in the 

classification task. For example, it allows us to evaluate whether rADC, PSA, or PI-RADS 

has the most significant impact on predicting ISUP grades. This is crucial for clinical 

applications, where understanding the most influential features can guide better decision- 

making. 

 

 

● Handling class imbalance: In the dataset, cases of high-risk PCa (ISUP 2+) are less frequent 

compared to lower-risk cases (ISUP 0 and 1). RF can assign weights to classes to address 

this imbalance, ensuring that aggressive cancer cases are not underrepresented in the model’s 

predictions. 

Cons: 

 

● Computational costs: Training a RF model with many trees and high-dimensional features 



(as in our case with several radiological and clinical variables) can be computationally 

expensive. However, with sufficient computational resources and parallel processing, this 

issue can be mitigated. 

Conclusion: 

 

RF is highly suitable for our dataset due to its ability to handle heterogeneous data, reduce 

overfitting, and provide valuable insights into feature importance. Its flexibility in dealing with 

imbalanced classes and complex feature interactions makes it an ideal choice for classifying PCa 

based on ISUP grades. 

 

 

2. Logistic Regression (LR) 

 

Pros: 

 

● High interpretability: LR provides interpretable coefficients that show the impact of each 

feature on the prediction outcome. This is valuable in our context, where we can clearly see 

the influence of variables such as PSA or PI-RADS on the likelihood of a patient having 

aggressive PCa (ISUP 2+). 

Cons: 

 

● Limited to linear relationships: LR assumes a linear relationship between independent 

variables and the predicted class. In our dataset, however, there are non-linear interactions 

between clinical and radiological variables. For example, the combined effect of PSA and 

PI-RADS on PCa progression cannot be effectively modeled with a linear relationship. 

 

 

● Poor performance with high-dimensional data: Our dataset includes multiple complex 

radiological features, and LR may not perform well without significant feature engineering 

or dimensionality reduction, which could result in lost information. 

Conclusion: 

 

While LR offers simplicity and interpretability, its limitations in modeling non-linear relationships 

and handling complex, high-dimensional data make it less suitable for our task. 

 

 

3. Support Vector Machine (SVM) 

 

Pros: 

 

● Effective in high-dimensional spaces: SVM performs well in datasets with many features 

and can effectively separate classes using non-linear kernel functions. This is advantageous 



for our dataset, which includes complex imaging-derived features from mpMRI scans, such 

as rADC and PI-RADS. 

Cons: 

 

● Sensitive to class imbalance: SVM tends to underperform when classes are imbalanced, as 

in our dataset, where ISUP 2+ cases are underrepresented. This may result in poor 

performance in identifying aggressive PCa cases unless special techniques are used, such as 

adjusting class weights. 

 

 

● High computational cost: Training SVMs, especially with non-linear kernels such as RBF, 

can be computationally expensive and time-consuming. Given our dataset with high- 

dimensional radiological data, this could become a practical limitation. 

Conclusion: 

 

SVM could handle the complexity of radiological data well, but its sensitivity to class imbalance 

and computational expense make it less practical for this specific task. 

 

 

4. K-Nearest Neighbors (KNN) 

 

Pros: 

 

● Non-parametric: KNN makes no assumptions about the underlying data distribution, which 

can be beneficial for heterogeneous datasets like ours. 

Cons: 

 

● Curse of dimensionality: KNN suffers from the curse of dimensionality. In datasets with 

many features like ours, the distances between data points become less meaningful, leading 

to poor classification performance. For example, subtle differences in rADC or PI-RADS 

might not be accurately captured. 

 

 

● Difficulty with class imbalance: KNN relies on the majority of neighbors for classification, 

meaning that if the majority class dominates (e.g., ISUP 0), it is likely to bias the predictions 

toward this class, underrepresenting the more aggressive cancer cases (ISUP 2+). 

Conclusion: 

 

KNN is unsuitable for our dataset due to the high number of features and the imbalanced class 

distribution, which are likely to reduce its classification accuracy. 



5. Neural Networks (NN) 

 

Pros: 

 

● Ability to model complex, non-linear relationships: NN excel at capturing complex 

interactions between variables. This would be advantageous for our dataset, where there are 

intricate relationships between features such as rADC, PI-RADS, and PSA, which other 

models may struggle to capture. 

Cons: 

 

● Requires large datasets: NN perform best when trained on large amounts of data. With only 

314 samples, our dataset may be too small for a neural network to generalize effectively, 

leading to overfitting. 

 

 

● Lack of interpretability: NN are often described as "black-box" models. In clinical contexts, 

it is critical to understand and explain why a certain prediction was made, which is difficult 

with NN. 

Conclusion: 

 

While NN are powerful in modeling complex relationships, the small size of our dataset and the 

need for interpretability in a clinical setting make them less practical for this task. 

 

 

6. Conclusion 

 

Given the structure and challenges of our PCa dataset, RF stands out as the most suitable model. Its 

ability to handle both clinical and radiological data types, prevent overfitting in moderately-sized 

datasets, manage class imbalance, and provide interpretable feature importance rankings makes it 

the optimal choice for predicting ISUP grades based on clinical and mpMRI-derived features. 



5.8. RF Model 

Description of the Algorithm: 

 

RF is an ensemble learning algorithm that combines multiple decision trees to perform classification 

or regression tasks. It is based on the idea of aggregating the predictions of many individual decision 

trees to create a more accurate and robust model. In classification problems, each decision tree in 

the RF votes for a class, and the final prediction is determined by majority voting among all the 

trees. 

The algorithm works by constructing a multitude of decision trees, each trained on a random subset 

of the training data, a technique known as bagging (bootstrap aggregating). Additionally, during the 

construction of each tree, a random subset of features is chosen for each split, adding more 

randomness and helping to decorrelate the trees. This randomness makes RF less prone to overfitting 

compared to individual decision trees, which tend to overfit the training data. 

RF is particularly effective for multiclass classification problems because it can handle non-linear 

relationships, mixed data types (numerical and categorical), and automatically assess feature 

importance. This makes it a versatile and powerful tool in medical data analysis, where the 

relationships between features can be complex and nonlinear. 

Advantages of Using RF for Multiclass Classification: 

 

● Robustness to Overfitting: By averaging the predictions of multiple decision trees, RF 

reduces overfitting. While a single decision tree might overfit the training data, RF mitigates 

this by introducing randomness in data sampling and feature selection, making the model 

more generalizable. 

 

 

● Handling Non-Linear Relationships: Unlike linear models, RF is capable of capturing non- 

linear relationships between features, which is especially useful for medical data, where 

interactions between variables such as PSA, PI-RADS, and prostate volume are often non- 

linear. 

 

 

● Effective for Mixed Data Types: RF can seamlessly handle both numerical and categorical 

data without extensive preprocessing. This makes it suitable for medical datasets, where 

different types of data (e.g., imaging scores, clinical measurements, and categorical labels) 

are commonly found. 

 

 

● Feature Importance: RF provides a measure of feature importance based on how useful each 

feature is in improving splits across all trees. This feature is invaluable in medical research, 

as it provides insights into which variables are most important in predicting outcomes, such 



as distinguishing between different PCa grades. 

 

 

 

● Multiclass Capabilities: For the multiclass problem of classifying ISUP grades (0, 1, 2+), RF 

can naturally handle multiple classes without requiring complex modifications to the 

algorithm. This is particularly advantageous in comparison to other algorithms that require 

special extensions for multiclass classification. 

 

 

Initial Model Configuration: 

 

The RF model used in this analysis was configured with default parameters, with a few important 

adjustments to improve performance, particularly given the challenges presented by class imbalance: 

● Number of Trees (n_estimators): The default value of 100 trees was used to start the 

modeling process. This number of trees is generally sufficient to capture complex 

relationships in the data while maintaining computational efficiency. Increasing the number 

of trees might slightly improve accuracy, but with diminishing returns in terms of 

computational cost. 

 

 

● Max Features (max_features): By default, RF selects the square root of the number of 

features for each split. This ensures that individual trees are diverse, as they use different 

subsets of features, which helps in reducing correlation among trees and thereby enhances 

the model's robustness. 

 

 

● Class Weight (class_weight='balanced'): 

○ In this dataset, the target variable, ISUP class, is not evenly distributed across the 

classes. The majority of patients fall into ISUP grades 0 and 1, while ISUP 2+ (which 

indicates more aggressive cancer) is underrepresented. This class imbalance poses a 

challenge, as the model might become biased towards predicting the more frequent 

classes, neglecting the minority class, which is often the most clinically significant. 

○ The class_weight='balanced' parameter was used to address this issue. This option 

automatically adjusts the weights of the classes inversely proportional to their 

frequencies in the training dataset. As a result, the model gives more emphasis to 

minority classes (such as ISUP 2+), making sure that they are well-represented in the 

training process. This adjustment helps to improve the model's sensitivity to the 

minority class, ensuring that aggressive cancer cases are accurately identified. 



● Bootstrap (bootstrap=True): By default, RF uses bootstrap sampling to create different 

training subsets for each tree. This approach ensures that each tree is built on a slightly 

different subset of the data, which contributes to reducing overfitting and increasing the 

generalizability of the model. 

 

 

Conclusion: 

 

The RF algorithm is particularly well-suited for medical data classification problems, such as 

predicting PCa severity (ISUP grades), due to its ability to handle complex, non-linear interactions 

among features, robustness against overfitting, and capacity to deal with mixed data types. The use 

of default parameters, such as 100 trees and square root of features for splitting, provided a good 

starting point, while class_weight='balanced' played a crucial role in addressing the inherent class 

imbalance, ensuring the model's sensitivity to less frequent but clinically significant cases. These 

characteristics make RF an effective choice for predicting outcomes in clinical datasets, where 

accuracy and reliability are paramount. 

 

 

 

Hyperparameter Optimization 

Motivation: 

 

Hyperparameter optimization is a crucial step in improving the performance of ML models. Unlike 

model parameters, which are learned from the data during training, hyperparameters are external 

settings that guide how the model is trained. For example, the number of trees in a RF or the depth 

of each tree are hyperparameters that significantly impact the model’s performance. 

Optimizing these hyperparameters can enhance the model’s ability to generalize to unseen data, 

thereby avoiding both underfitting and overfitting. In medical contexts, such as predicting PCa 

severity using ISUP grades, hyperparameter tuning is particularly important because it helps 

improve the accuracy, precision, and robustness of the predictions, which can directly influence 

clinical decision-making. 

Techniques Used: 

 

GridSearchCV: 

 

● To perform hyperparameter optimization, GridSearchCV from the sklearn.model_selection 

library was used. This technique systematically evaluates all combinations of 

hyperparameter values defined in a predefined grid. The purpose is to find the combination 

that yields the best model performance. GridSearchCV is exhaustive, making it suitable for 

smaller hyperparameter grids where a thorough search is possible. 



● Parameters Considered: In this study, several important hyperparameters for the RF model 

were considered: 

○ Number of Estimators (n_estimators): This parameter controls the number of 

decision trees in the forest. Values such as [100, 200, 300] were tested to understand 

the impact of adding more trees on model performance. 

○ Max Depth (max_depth): This limits how deep each tree in the forest can grow. 

Values such as [10, 20, 30, None] were explored to control model complexity. 

Limiting depth prevents overfitting by making trees simpler. 

○ Minimum Samples per Split (min_samples_split): Defines the minimum number of 

samples required to split an internal node. Values like [2, 5, 10] were tested to control 

how the tree grows, which can significantly affect overfitting and underfitting. 

○ Minimum Samples per Leaf (min_samples_leaf): This parameter represents the 

minimum number of samples required to be at a leaf node, with values like [1, 2, 4] 

considered. Increasing this parameter can help in creating more generalized and 

stable models. 

○ Maximum Features (max_features): Controls the number of features considered 

when looking for the best split. Values such as ['sqrt', 'log2'] were included to find 

the optimal number of features, balancing tree diversity with depth. 

 

 

● RandomizedSearchCV (Optional): When the hyperparameter search space is large, 

RandomizedSearchCV is often used as an alternative to GridSearchCV. It selects random 

combinations of parameters from the defined ranges, which can be computationally more 

efficient for a large number of combinations while still providing good results. 

 

 

Cross-Validation: 

 

● Cross-Validation Process: To evaluate model performance during hyperparameter tuning, 

K-Fold Cross-Validation was used with k=5. This means that the training data was split into 

five equal parts. The model was trained on four parts and tested on the remaining part, 

repeating this process five times so that each part was used for testing once. The final model 

performance was then averaged over these five iterations. This approach helps in estimating 

the model's ability to generalize to unseen data and provides a more reliable assessment of 

model performance compared to a single train-test split. 

 

 

● Stratified Cross-Validation for Imbalanced Classes: Given that the ISUP classes are not 

evenly distributed in the dataset, a stratified version of K-Fold Cross-Validation was used. 

In stratified cross-validation, each fold maintains the same class distribution as the original 

dataset. This is particularly important in medical datasets where one or more classes may be 

underrepresented. By using stratified cross-validation, the model is exposed to a similar 

distribution of classes in each fold, ensuring that minority classes are adequately represented 



during training and evaluation. This is essential for avoiding biased models that over-predict 

the majority class while underperforming on minority classes (e.g., ISUP 2+, which is the 

most clinically relevant but least common). 

 

 

Conclusion: 

 

Hyperparameter optimization plays a critical role in enhancing the performance of ML models. In 

this study, GridSearchCV was employed to systematically search for the best combination of 

hyperparameters, such as the number of trees, tree depth, and splitting criteria, to build a robust RF 

model for PCa classification. The use of K-Fold Cross-Validation (specifically the stratified version) 

ensures that model evaluation is consistent and fair across different folds, thereby leading to more 

reliable and generalized predictions. This optimization process ultimately aims to create a model 

that can provide accurate, reproducible predictions in the context of PCa diagnosis, contributing to 

better patient outcomes. 



5.9. Model Training 

 

 
Training Procedure: 

 

After the hyperparameter optimization process, the RF model was trained using the best set of 

hyperparameters identified through GridSearchCV. This training phase involved fitting the RF 

model on the training dataset with the chosen combination of parameters to maximize performance 

and minimize errors. 

The training process utilized the following steps: 

 

● Best Hyperparameters Application: The best hyperparameters identified through 

GridSearchCV were applied to configure the final model. These included: 

○ Number of Estimators (n_estimators): The optimal number of trees was used to 

balance computational cost with model performance. 

○ Max Depth (max_depth): The depth of each tree was set based on the grid search 

results to control overfitting while maintaining the complexity required for capturing 

patterns in the data. 

○ Minimum Samples per Split (min_samples_split) and Minimum Samples per Leaf 

(min_samples_leaf): These parameters ensured that each split and each leaf node had 

enough data to prevent overfitting to specific data points. 

○ Class Weight (class_weight='balanced'): This parameter was maintained in the final 

model to handle class imbalance effectively, ensuring that minority classes (e.g., 

ISUP 2+) were not overlooked. 

 

 

● Data Preparation: The training dataset was used with appropriate preprocessing steps— 

numerical variables were standardized where needed, and categorical variables were 

encoded to ensure that the RF could process the data effectively. 

 

 

● Fitting the Model: The model was trained on the training set, using the best hyperparameters 

found. During this training process, the model constructed multiple decision trees, each using 

a different bootstrap sample of the data. The trees were then aggregated, with each making 

predictions independently, and the final prediction being determined by the majority vote of 

these trees. 

 

 

● Evaluation During Training: The training included continuous monitoring of the model's 

performance using cross-validation to ensure that overfitting was minimized. The stratified 

K-Fold Cross-Validation approach ensured that each fold maintained a similar class 



distribution as the overall dataset, allowing the model to learn effectively from each class. 

 

Results of the Optimization: 

 

The hyperparameter tuning process using GridSearchCV provided the following best combination 

of hyperparameters: 

● Number of Estimators (n_estimators): 200 

Increasing the number of estimators to 200 ensured that the model had enough trees to 

make stable and reliable predictions, while keeping the computational cost reasonable. 

 

 

● Max Depth (max_depth): 20 

Setting a maximum depth of 20 helped in balancing model complexity—deep enough to 

capture intricate relationships in the data without causing overfitting. 

 

 

● Minimum Samples per Split (min_samples_split): 5 

Requiring a minimum of 5 samples to split a node helped in preventing overly complex 

trees and ensured that each split was made with sufficient data. 

 

 

● Minimum Samples per Leaf (min_samples_leaf): 2 

Setting a minimum of 2 samples per leaf ensured that leaf nodes contained enough data to 

provide stable predictions, reducing the risk of overfitting. 

 

 

● Maximum Features (max_features): 'sqrt' 

Using the square root of the number of features at each split maintained diversity among 

the trees by ensuring that different splits were made based on different subsets of features. 

 

 

● Class Weight (class_weight): 'balanced' 

This setting automatically adjusted the weights for each class based on their occurrence, 

effectively addressing the imbalance issue in the ISUP classes and ensuring that aggressive 

cancer cases (which were underrepresented) were adequately emphasized. 

Conclusion: 

 

The model training phase was conducted using the best hyperparameters determined by the 

optimization process, ensuring that the RF model was well-configured to handle the complexity of 

the dataset. By tuning key hyperparameters, the model was able to achieve better generalization, 



improved accuracy, and sensitivity to the underrepresented classes. These optimizations ensured 

that the model could provide reliable predictions for PCa classification, thereby supporting clinical 

decision-making. 

 

 

5.10. Model Evaluation 

 

 
Evaluation Metrics: 

 

Evaluating the performance of a classification model, especially in the medical domain, requires 

multiple metrics to gain a comprehensive understanding of its strengths and weaknesses. The 

following metrics were used to assess the RF model trained for PCa classification based on ISUP 

grades. 

1.  Accuracy: 

 

● Definition: Accuracy is the ratio of correctly predicted instances to the total number of 

instances. It is calculated as: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 

 
 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 

● Interpretation: Accuracy provides an overall measure of how well the model is performing 

across all classes. While accuracy is easy to understand and widely used, it can be misleading 

in cases of imbalanced datasets. In this study, since the dataset is imbalanced (e.g., fewer 

cases of ISUP 2+), accuracy alone may not provide a true representation of model 

performance, particularly for underrepresented classes. 

2.  Classification Report: 

 

The classification report includes three main metrics for each class: precision, recall, and f1-score. 

 

● Precision: Precision is the ratio of true positive predictions to the total predicted positives 

for a particular class. It indicates how many of the model's positive predictions were actually 

correct. High precision is critical in medical settings, where minimizing false positives is 

important. 

 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

 
 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

 

 
● Recall (Sensitivity): Recall is the ratio of true positive predictions to all actual positives for 



a class. It shows the model’s ability to correctly identify all instances of a class. High recall 

is especially important for the more aggressive ISUP grades, where missing a positive case 

could lead to under-treatment. 

 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

 
 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

 

 
● F1-Score: The F1-score is the harmonic mean of precision and recall. It is a balanced 

measure that is useful when there is a need to find an optimal trade-off between precision 

and    recall,    particularly    in    cases    of    imbalanced    datasets. 

 

 
 

 

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 

 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

● Interpretation: The classification report for this RF model includes precision, recall, and F1- 

score for each ISUP class (0, 1, 2+). By examining these metrics individually for each class, 

we can understand the model's effectiveness in distinguishing between less aggressive 

cancers (ISUP 0 and 1) and more aggressive forms (ISUP 2+). 

3.  Confusion Matrix: 

 

The Confusion Matrix is a table that provides a comprehensive overview of the model's performance 

by comparing actual labels with predicted labels. 

● Interpretation: The confusion matrix presents true positives, true negatives, false positives, 

and false negatives for each class. This allows us to analyze specific types of errors the model 

makes, such as: 

○ False Negatives (FN): Especially critical in this medical application, as missing an 

aggressive cancer case (e.g., ISUP 2+) could have serious implications for patient 

care. 

○ False Positives (FP): Can lead to unnecessary treatments or additional follow-up 

procedures for patients, increasing healthcare costs and patient anxiety. 

The confusion matrix helps to identify whether the model is disproportionately misclassifying 

certain ISUP grades, indicating areas for potential improvement. 

4.  ROC-AUC Score: 

 

● ROC Curve: The Receiver Operating Characteristic (ROC) curve is used to evaluate the 

model’s ability to distinguish between classes by plotting the True Positive Rate (TPR) 

against the False Positive Rate (FPR) at various classification thresholds. In a multiclass 

classification problem, ROC curves are generated for each class using a "one-vs-rest" 

approach. 



● AUC: The Area Under the Curve (AUC) is a scalar value ranging from 0 to 1, representing 

the likelihood that the model will rank a randomly chosen positive instance higher than a 

randomly chosen negative instance. An AUC closer to 1 indicates good performance, while 

an AUC near 0.5 suggests no discriminative power. 

 

 

● Importance in Multiclass Problems: In multiclass classification, ROC-AUC helps 

understand the model’s discriminative ability for each ISUP grade. This is important to 

ensure that the model not only achieves high accuracy but also maintains strong 

discrimination capabilities across all classes, particularly for high-risk cases like ISUP 2+. 



5.11. Results 

This section presents the key outcomes of the RF model developed to classify PCa patients based 

on ISUP grades. The focus is on model performance across multiple metrics, highlighting its ability 

to differentiate between absence of PCa (ISUP 0), ncsPCa (ISUP 1) and more aggressive forms- 

csPCa (ISUP 2+). 

Model Performance Results 

 

The classification model was evaluated on the test set, consisting of 95 instances across three PCa 

severity classes (ISUP 0, 1, and 2+). The classification report provides key insights into the model's 

ability to distinguish between these classes, highlighting metrics such as precision, recall, and F1- 

score. 

 

 

 

 

Class 

 

Precision 

 

Recall 

 

F1-Score 

 

Support 

ISUP 0 0.79 0.83 0.81 59 

ISUP 1 0.22 0.12 0.15 17 

ISUP 2+ 0.58 0.74 0.65 19 

     

Accuracy   0.68 95 

Macro Avg 0.53 0.56 0.54 95 

Weighted Avg 0.65 0.68 0.66 95 

Classification Report for ISUP Grades 

 

 

 

Feature Importance Analysis 

 

The feature importance analysis performed on the RF model highlights the relative predictive power 

of each variable in classifying PCa severity. The chart shows that the most influential feature is the 

rADC (with an importance score exceeding 0.20), followed by Prostate Volume and PSA. Other 

features, such as PI-RADS, Age, and PSAD, also contribute to the model, though with slightly lower 



importance values. This distribution of importance reflects the model's assessment of each variable's 

contribution to improving classification performance. 

 

 

 

 
Feature importance in RF model 

 

 

 

The feature importance metric in RF models is based on the average decrease in node impurity 

across all trees in the ensemble. Higher importance values indicate features that, when used for 

splitting, reduce impurity (e.g., the Gini impurity or entropy) significantly, enhancing the model's 

predictive capacity. 

Confusion Matrix 

 

The confusion matrix provides a detailed overview of the model's performance in classifying PCa 

severity across three classes, based on the test set. This matrix is constructed from the predictions 

made on the test set, which contains a total of 95 instances. 



 

 

As shown in the matrix, the model demonstrates a strong ability to correctly classify instances of 

class 0, with 49 true positives. However, some misclassifications are observed between class 1 and 

class 2, where instances of class 1 are sometimes predicted as class 0 (9 instances) or class 2 (6 

instances), and vice versa. Similarly, for class 2, 14 instances are correctly classified, but there are 

4 misclassifications into class 0 and 1 into class 1. 

These misclassifications highlight the challenge in distinguishing between neighboring ISUP 

grades, particularly between class 1 and class 2. Despite this, the confusion matrix confirms the 

model's overall effectiveness on the test set, offering key insights into areas where additional feature 

engineering or model refinement could further improve classification accuracy. 

ROC Curves for ISUP Classification 

 

To evaluate the RF model’s classification performance across different ISUP grades, ROC curves 

were generated using a "one-vs-rest" approach for each class (ISUP 0, 1, and 2+). This approach 

allowed us to assess the model’s ability to discriminate between classes by focusing on the True 

Positive Rate (TPR) and False Positive Rate (FPR) for each ISUP grade [10 -11-12-13-14-15-16-

17-18-19-20-21-22-23-24-25-26-27-28-29].



 
 

 

 



5.12. Discussion 

 

 
Model Performance Overview 

 

The RF classifier developed for classifying PCa severity based on ISUP grades (0, 1, 2+) was 

evaluated using precision, recall, F1-score, and overall accuracy. The test set included 95 cases 

across three ISUP classes, reflecting varying cancer severity levels. 

 

 

● ISUP 0 (No Cancer): The model achieved strong performance in identifying cases without 

cancer, with precision, recall, and F1-score values of 0.79, 0.83, and 0.81, respectively. This 

high performance reduces the risk of unnecessary interventions by accurately distinguishing 

non-cancerous cases. 

 

 

● ISUP 1 (ncsPCa): Performance for ISUP 1, was lower, with precision and recall at 0.22 and 

0.12, respectively. The model’s limited ability to differentiate these cases highlights the 

challenges of distinguishing this category from both negative and high-risk cases. This 

limitation suggests a need for improved feature engineering or alternative modeling 

approaches. 

 

 

● ISUP 2+ (csPCa): For this group, the model reached a precision of 0.58 and a recall of 0.74. 

This moderate performance reflects a reasonable capacity to identify aggressive cases, 

though some high-severity instances were misclassified as lower grades. Recognizing such 

cases is critical for ensuring timely treatment of high-risk patients. 

 

 

The model demonstrates robust classification capability for ISUP 0 cases, while performance for 

ISUP 2+ cases is reasonable but leaves room for improvement. However, for ISUP 1, the model's 

suboptimal performance reflects the inherent limitations of prostate MRI, which historically 

underestimates or misses low-risk, ncsPCa. Since our model relies on categorical data from MRI 

(PI-RADS and rADC), rather than advanced MRI image analysis techniques, it is particularly 

susceptible to this bias. Consequently, if MRI fails to detect ISUP 1 lesions, the model is unlikely 

to accurately classify these cases. Integrating direct MRI image analysis using dedicated software 

in future iterations is expected to significantly enhance detection of low-grade lesions. 

Overall, the model achieves an accuracy of 0.68 on the test set, with a macro-average F1-score of 

0.54, indicating moderate balance across all classes, and a weighted-average F1-score of 0.66, 

reflecting stronger performance in the more prevalent ISUP 0 class. These results confirm the 



model's capability in detecting significant patterns while identifying areas for improvement, 

particularly in classifying ISUP 1 cases. 

 

 

Feature Importance interpretation 

 

The feature importance results reveal some counterintuitive aspects, such as the relatively lower role 

of PI-RADS compared to variables like rADC or PSA. This can be explained by several factors 

related to the model's nature and the dataset structure. Firstly, some variables may be redundant, 

meaning they provide similar information. When the model finds similar information in multiple 

features, it tends to reduce the importance of a specific variable, favoring those with higher 

informational variability. 

Additionally, derived variables like PSAD (which normalizes PSA relative to prostate volume) may 

cause a reduction in the importance of the original variables it derives from. This occurs because the 

model can find a more synthetic and linear representation of information through composite 

variables, reducing the need to rely on the base components. 

Finally, it’s worth noting that the feature importance in a RF model reflects impurity reduction in 

tree splits, which doesn’t necessarily align with the direct clinical relevance of variables. 

 

 

Confusion Matrix Analysis 

 

The confusion matrix provides further insight into the classification strengths and weaknesses: 

 

● True Positives: The model demonstrated effective classification for ISUP 0 cases with 49 

true positives. This strengthens confidence in the model’s reliability for no-cancer 

predictions. 

 

 

● Misclassifications: Misclassifications were most common between ISUP 1 and ISUP 2+, 

suggesting that the model struggles with the subtle clinical differences between these 

adjacent grades. These errors indicate areas for improvement, such as the inclusion of 

additional discriminative features. 

● False Negatives (ISUP 2+): Misclassifications where ISUP 2+ cases are labeled as 

lower grades pose a clinical risk as these patients may receive delayed treatment. 

These errors suggest a need for more refined features or additional data to improve 

model sensitivity for high-grade cancers. 

● False Positives: Cases misclassified as higher grades, particularly from ISUP 0 to 

ISUP 1 or 2+, could lead to overtreatment. While less concerning than false 

negatives, false positives still have implications for patient care, including 

unnecessary interventions. 



ROC Curve and AUC Analysis 

 

 

ROC curve evaluates the model's performance in distinguishing between different PCa severity 

categories, as defined by ISUP grading: 

● Class 0 (ISUP 0): Have an AUC of 0.85. This high AUC indicates that the model effectively 

differentiates non-cancerous cases from cancerous ones, showing strong discriminatory 

power for identifying patients without tumors. 

 

 

● Class 1 (ISUP 1): Have an AUC of 0.54. This low AUC reveals that the model struggles to 

distinguish these low-risk cases from other categories, demonstrating limited sensitivity and 

specificity for ISUP 1. The difficulty in classifying ISUP 1 cases may stem from the subtle 

features of ncsPCa, which are often underestimated or missed by MRI due to its intrinsic 

limitations. 

 

 

● Class 2 (ISUP 2+): Have an AUC of 0.87, suggesting high accuracy in identifying high-risk 

cases. The model performs well in distinguishing csPCa, likely due to the more pronounced 

features associated with these tumors. 

The model demonstrates strong performance in identifying the extremes: patients without cancer 

(ISUP 0) and those with csPCa (ISUP 2+). However, the limited performance for ISUP 1 cases 

(AUC 0.54) indicates a need for improvement, as these low-risk, ncsPCa are challenging to classify 

due to their subtle characteristics. Enhancing model performance for ISUP 1 detection could involve 

incorporating advanced imaging analysis techniques or additional data features to mitigate MRI’s 

inherent bias in detecting ncsPCa. 

 

 

Future Work 

 

The RF classifier demonstrates considerable potential as a predictive tool for assessing PCa severity, 

particularly in identifying no-cancer (ISUP 0) and high-risk (ISUP 2+) cases. However, its 

limitations in classifying ISUP 1 cases highlight areas for further refinement. Moving forward, 

several improvements are recommended to enhance the model’s accuracy, interpretability, and 

clinical utility. 

● Feature Enhancement: Expanding the feature set to include additional radiomic and 

clinical variables could enhance the model’s ability to differentiate between ISUP 1 and 

ISUP 2+ cases. The integration of imaging biomarkers through the FLUTE project, using 



QUIBIM’s QP Prostate software, will enable the inclusion of advanced radiomic features 

that capture tumor microarchitecture and biological characteristics. This addition is expected 

to improve the model’s sensitivity for detecting csPCa in ISUP 2+ cases by offering a more 

granular view of tumor heterogeneity and progression potential. 

 

 

● Addressing Class Imbalance: To improve the model’s recall for underrepresented ISUP 

grades, particularly ISUP 2+, future work should explore oversampling techniques like 

Synthetic Minority Over-sampling Technique (SMOTE) or hybrid methods that combine 

oversampling and undersampling. This approach would create a more balanced dataset, 

enabling the model to better identify high-risk cases and reduce the likelihood of under- 

diagnosing aggressive cancers. 

 

 

● Advanced Model Tuning and Ensemble Approaches: Exploring ensemble methods could 

further enhance the model’s sensitivity and specificity, especially for ISUP 2+ cases. 

Incorporating boosting techniques, such as XGBoost, alongside RF may improve overall 

predictive performance. A hybrid approach—using RF to capture complex feature 

interactions and XGBoost to sequentially reduce error rates—could enhance classification 

accuracy across all ISUP grades. 

 

 

● Enhancing Interpretability: For effective clinical adoption, model interpretability is 

crucial. Applying interpretability methods such as SHAP (SHapley Additive exPlanations) 

can provide local, model-agnostic explanations, clarifying feature contributions for 

individual predictions. This transparency will build trust among clinicians and help identify 

factors contributing to high-risk predictions, ensuring alignment with clinical understanding. 

 

 

● Data Expansion: Expanding the dataset, particularly for ISUP 2+ cases, would increase the 

model’s generalizability and robustness. Collaborating with additional healthcare 

institutions or accessing publicly available datasets could provide a more comprehensive 

data source. Longitudinal data collection would further support predictive modeling by 

capturing progression patterns over time, enhancing the model's ability to predict higher 

ISUP grades. 

 

 

● Developing a Robust Clinical Tool: The long-term goal is to develop a clinically viable 

tool that is accurate, interpretable, and suitable for real-time use. Future refinements will 

focus on balancing predictive power with usability across diverse clinical settings. Using FL 

approaches through the FLUTE project will facilitate this by training on multi-institutional 



data. This collaborative approach will yield a more generalizable model, adapting to regional 

variations and making it a valuable tool for broader clinical use. 

In summary, these future directions aim to refine the RF model’s accuracy, interpretability, and 

clinical applicability. Addressing class imbalance, improving model transparency, exploring 

ensemble techniques, expanding the dataset, and integrating advanced imaging biomarkers will help 

evolve the model into a highly reliable tool for predicting PCa severity. These advancements align 

with the goals of the FLUTE project, supporting a shift towards precision medicine in PCa care, 

where AI-driven tools play an essential role in personalized diagnosis and treatment planning. 



6. Development of a Web Application for MMI evaluation 

In this chapter, we describe the development of a web application that integrates a machine learning 

model for predictive purposes. The project aimed to create a user-friendly interface for non-technical 

users to input clinical data and obtain real-time predictions based on a pre-trained Random Forest 

(RF) model. After the training process, the model was serialized and exported as a .pkl file using 

joblib, allowing it to be seamlessly integrated into a web-based application. 

By deploying this trained model on a cloud-hosted platform like Google Cloud, it became possible 

to calculate risk classes for new patient data entered through a web interface. This solution enables 

users, such as clinicians and researchers, to input new clinical parameters via the portal and instantly 

receive predictions of the ISUP class. 

The solution is built using Python for backend processing and seamless integration of the ML model. 

The application is served in a robust production environment through Gunicorn, while Google Cloud 

App Engine is used as the cloud deployment platform, making the application easily accessible to 

users online. This setup leverages the scalability and reliability of Google Cloud, ensuring that the 

application can handle multiple user requests and provide consistent performance. 

 

 

 

Multiparametric Malignancy Index (MMI) Web Interface. The figure shows the web-based tool 

designed to predict ISUP grades using both clinical and radiological data. Users input demographic, 

hematologic, and radiological features, including patient age, PSA level, and ADC values, to receive a 

real-time ISUP grade prediction for PCa severity. The predicted class and the probability of each ISUP 

category are displayed for interpretation. 



This web-based approach serves as an example of how a trained model can be made accessible 

globally, allowing others to predict risk for their own patients. It demonstrates that real-time risk 

assessment can be performed remotely, without the need for local resources or ML expertise. 

 

 
https://ferroni-phd.oa.r.appspot.com/ 



7. Conclusions 

 

 
The RF model demonstrated moderate potential in classifying PCa severity, showing reasonable 

discriminatory power, especially in distinguishing between ISUP 0 (no cancer) and ISUP 2+ cases 

(csPCa). However, the model’s performance for ISUP 1 cases (ncsPCa) was considerably lower, as 

reflected by moderate AUC scores in the ROC curve analysis: 0.85 for ISUP 0, 0.87 for ISUP 2+, 

and only 0.54 for ISUP 1. These findings suggest that, while the model effectively identifies the 

absence of cancer and highly aggressive cases, it lacks sensitivity in detecting ncsPCa (ISUP 1), 

highlighting a crucial area for improvement. 

In particular, the RF model’s limited sensitivity for ISUP 1 cases, suggests a need for enhanced 

model tuning or further data balancing to better capture these cases. The lower AUC for ISUP 1 

indicates that future model iterations should focus on improving recall and precision for this group 

to ensure accurate classification. Additionally, this underperformance may not only reflect the need 

for additional features or model adjustments but also highlight the inherent limitations of prostate 

MRI, which historically tends to underestimate ncsPCa. 

The feature importance analysis identified rADC, Volume, and PSA as the most influential 

predictors, with rADC having the highest importance score. These findings underscore the clinical 

relevance of these features, yet indicate that PI-RADS and PSAD, while included, play a lesser role 

in the current model’s predictions. Although these variables are well-established in clinical practice, 

their relatively lower importance in this model suggests that incorporating additional predictive 

features could improve accuracy, especially for intermediate-risk cases like ISUP 1. This highlights 

the potential benefit of enhancing the model with supplementary data to address the complexity of 

these cases more effectively. 

This study provides a foundational framework for stratifying PCa severity using RF models based 

on clinical and radiological data. The model achieved satisfactory classification for ISUP 0 and 

ISUP 2+, indicating that it can be a valuable tool in specific clinical scenarios. However, the results 

underscore the need for further refinement, particularly in addressing the limitations seen in 

intermediate-risk classifications (ISUP 1). 

Looking ahead, this work sets a foundational stage for the FLUTE project, which aims to advance 

PCa diagnosis through integrating AI and FL. Future model iterations will incorporate quantitative 

imaging features from multiparametric MRI using QP Prostate software, developed by QUIBIM. 

By adding these advanced radiomic features, we aim to achieve a more nuanced representation of 

tumor biology and microarchitecture, potentially enhancing the model’s accuracy across all ISUP 

grades. 

In the words of Hippocrates, “Cure sometimes, treat often, comfort always”.' This AI-driven journey 

in PCa classification stands as a testament to precision medicine's promise: to transform complexity 

into clarity, guiding clinicians to make informed, personalized decisions. By advancing these tools, 

we step closer to a future where diagnostics seamlessly integrate data and expertise, providing hope 



and precision for every patient. 

 

In an era where medicine intertwines with AI, every piece of data becomes an opportunity to save 

lives and elevate patient care. This explorative model is not just a step toward more accurate 

diagnoses, but a leap toward a future where technology enhances the human touch. As William Osler 

said, 'Medicine is a science of uncertainty and an art of probability.' With these new frontiers, we 

turn uncertainty into knowledge for a better tomorrow. 



8. ANNEXES 

 

 

8.1. Python Code for RF Model 

The following annex provides the complete Python code used for the implementation, training, and 

evaluation of the RF model for the classification of PCa based on clinical and radiological data. 

The code is divided into several key stages, including data preprocessing, model training, 

hyperparameter tuning, and evaluation using performance metrics. 

 

python CODE: 

 

 

 
Part 0: Libreries 

 

 

 

 

import pandas as pd 

 

import time # For tracking training time 

 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import Pipeline 

from sklearn.compose import ColumnTransformer 

 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.model_selection import GridSearchCV 

 

 

Part 1: Data Loading and Splitting 

 

# Load and split data into training and test sets 

def load_and_split_data(file_path): 

data = pd.read_csv(file_path) 

 

X = data.drop(columns=['isup_classi (0, 1, 2)']) 

 

y = data['isup_classi (0, 1, 2)'] 

 

return train_test_split(X, y, test_size=0.3, random_state=42) 



# Load data from file 

 

file_path = r'C:\PHD\Prostate_DB.csv' 

 

X_train, X_test, y_train, y_test = load_and_split_data(file_path) 

 

 

 

 

Part 2: Preprocessing and Model Creation 

 

 

 

 

 

 

 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import Pipeline 

from sklearn.compose import ColumnTransformer 

 

from sklearn.ensemble import RandomForestClassifier 

 

 

 

 

# Create the model with a preprocessing pipeline 

def create_model(X_train): 

numeric_transformer = Pipeline(steps=[('scaler', StandardScaler())]) 

preprocessor = ColumnTransformer(transformers=[ 

('num', numeric_transformer, X_train.select_dtypes(include=['float64', 

'int64']).columns) 

 

]) 

 

random_forest = RandomForestClassifier(class_weight='balanced', 

random_state=42) 

 

pipeline = Pipeline(steps=[('preprocessor', preprocessor), ('classifier', 

random_forest)]) 

 

return pipeline 

 

 

 

 

# Create the pipeline model 

pipeline = create_model(X_train) 



Part 3: Hyperparameter Tuning with GridSearchCV 

 

 

 

 

from sklearn.model_selection import GridSearchCV 

import time 

 

 

# Perform hyperparameter tuning using GridSearchCV 

 

def perform_hyperparameter_tuning(pipeline, X_train, y_train): 

param_grid = { 

'classifier n_estimators': [100, 200, 300], 

 

'classifier max_depth': [10, 20, 30, None], 

 

'classifier min_samples_split': [2, 5, 10], 

 

'classifier min_samples_leaf': [1, 2, 4], 

 

'classifier max_features': ['sqrt', 'log2'] 

 

} 

 

grid_search = GridSearchCV(pipeline, param_grid, cv=5, scoring='accuracy', 

n_jobs=-1) 

 

 

 

 

start_time = time.time() 

grid_search.fit(X_train, y_train) 

elapsed_time = time.time() - start_time 

print(f"Training complete. Time taken: {elapsed_time:.2f} seconds.") 

 

 

 

 

return grid_search.best_estimator_ 

 

 

 

 

# Run hyperparameter tuning 

 

best_model = perform_hyperparameter_tuning(pipeline, X_train, y_train) 
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