Machine Learning and network based methods for the analysis of biological systems involved in food processing

Mansouri, Anis (2025) Machine Learning and network based methods for the analysis of biological systems involved in food processing, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Fisica, 37 Ciclo. DOI 10.48676/unibo/amsdottorato/11930.
Documenti full-text disponibili:
[thumbnail of Machine Learning and network-based methods for the analysis of biological systems involved in food processing.pdf] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (5MB)

Abstract

Throughout this thesis, we used network-based approaches such as network diffusion, community detection and centrality measures to successfully identify new genes related to E. coli’s antimicrobial resistance to widely used antimicrobial’s. Interestingly, some of these inferred genes were also experimentally validated. On the other hand, network-based centrality measures, combined with the dynamic constraint-based modeling approaches applied to genome scale metabolic models has permitted the development of a new tool used to construct context-specific metabolic networks in yeast cells. Alongside, we also considered applying machine learning methods to analyze cheese-related data collected by our colleagues within the E-MUSE consortium. We demonstrated a strong microbiome-metabolome relationship in cheese, by using a microbial metatranscriptome dataset for training the predictive model and another one as independent validation, and made use of it to estimate the cheese flavor profiles directly from the microbial gene expression. The accuracy of the trained models could reach 50 to 83 %. Moreover, the analysis of the genes selected by the modeling procedure showed their consistency with biological pathways, mainly the metabolic ones associated to flavor production.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Mansouri, Anis
Supervisore
Dottorato di ricerca
Ciclo
37
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Machine learning Network science Antimicrobial resistance Genome-Scale Metabolic Models Cheese making Food biotechnology Food safety
DOI
10.48676/unibo/amsdottorato/11930
Data di discussione
21 Marzo 2025
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^