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The E-MUSE Project

"European dairy industry is an important agri-food sector; it represents more than
300,000 jobs and 10 billion € positive trade balance. Five out of ten top global dairy
companies are European and more than 80 % of them are SMEs. More than 300 Eu-
ropean cheeses and dairy products are sold all over the world and are protected as
geographical indications or traditional specialties. Mastering a cheese-ripening pro-
cess to avoid sanitary risk and waste, and produce typical cheeses with organoleptic
properties valued by the consumers is of economic and social significance.

Complex microbial Ecosystems MUItiScale modElling (E-MUSE) project aims to
develop innovative modelling methodologies to improve knowledge about complex bi-
ological systems and to control and/or predict their evolution by combining artificial
intelligence and systems biology. This multidisciplinary strategy integrating genome-
scale metabolic models, dynamic modelling methodologies, together with the design of
efficient statistical and machine learning tools, will allow analysis of multi-omics data
and application of the results to macro-scale properties related to cheese ripening and
consumer preference.

Moreover, in the context of sustainable development, more and more consumers are
diversifying their diet and consume plant-based food. Introduction of plant-based pro-
teins in the cheese process brings issues such as acidity or safety. Modelling strategies
of E-MUSE will help to target and solve these issues. E-MUSE will train researchers
with multidisciplinary skills in mathematics, bioinformatics and biology to design and
use innovative multiscale modelling methodologies, giving researchers a harmonised
language to address future research questions about complex biological systems.

Finally, the ultimate outcome of E-MUSE is to develop, for the industry, a dynamic
modelling software to control the food process.” (source: https://www.itn-emuse.
com

)

Our collaboration within the E-MUSE Project

We owe the mouth-watering Parmigiano that we enjoy with a glass of good wine to
tiny microscopic artisans, which cooperate harmoniously to craft delicious and healthy
food products.

Microorganisms have specific but complementary and interdependent roles during
food-making processes. They create functional networks where different species/strains
share many substrates, products, and enzymes, and have many tasks in common.
On the other hand and at the sub-cellular level, each specific microorganism has its
own molecular networks that ensure its functions, like signaling networks, regulatory
networks and metabolic networks involving enzymes and metabolites.

In order to study these inter and intra-species interactions and predict their out-
come, we used machine learning and network theory approaches to reconstruct and
analyze these networks. These approaches allow the integration of multi-omics data
(genomics, transcriptomics, metabolomics. ..) and, thus, allow a more realistic mod-
eling and representation of the complex biological processes that govern food making.
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Chapter 1

Introduction

In this introductory chapter, we introduce the different methods and topics addressed
during this thesis, i.e:

e The use of microbial gene expression as a proxy to estimate flavor levels in cheese
(Chapter 2).

e The use of network approaches to identify new genes associated to antimicrobial
resistance in Escherichia coli (Chapter 3).

e The combination of network-based and flux-based analyses to create context-
specific metabolic networks of yeasts (Chapter 4). This work is in collaboration
with PhD. Diego Troitino from the Bio2Eng group headed by Prof. Eva Balsa-
Canto.

The methods used and developed throughout this thesis can be applicable in dif-
ferent contexts. Here, we apply them in our main research topics which are related
to food sector, namely, food making and food safety. In the introduction section of
chapters 2, 3 and 4, we report some other research fields where similar methods have
been already used.

1.1 Cheese: an overview

In this section, we introduce the biochemistry and the microbiology of cheese. We
present basic biological and biochemical facts that help the non-specialist reader to
understand the motivations and the results of our work described in Chapter 2. In this
work, we analyzed multi-omics data including metatransciptomics, metametabolomics
and growth data collected from an experimental surface-ripened cheese. We first used
metatranscriptomics and metametabolomics to train classification models that infer
metabolites levels from microbial gene expression. The features selected and used to
construct the models and perform the predictions were biologically relevant as they were
consistent with biological metabolic pathways. We also investigated the contribution
of each microbial species to these features, i.e, which feature(s) (gene(s)) belongs to
which microbe, and we found that bacteria contributed more than yeasts. To check this
finding, we performed correlation analyses to study the association between microbial
growth and the metabolites and, indeed, we found strong correlations between the
bacteria and most of the metabolites, contrary to yeasts which had poor correlations.
Yeasts play an important role in flavor development in real cheeses, but as the studied
cheese in this work is experimental, we couldn’t detect a significant yeast-metabolite
correlation. Nevertheless, the correlation results are still in concordance with the results
of the modeling step.

1.1.1 Brief history

About nine thousands years ago, human began the domestication of milk-producing
animals. Archaeologist argued that these domestic animals were initially kept only for
their meat, bones and hide, and that additional uses of these animals have began later.
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Around 3500 BC, the practice of keeping mammals for their secondary products and
uses such as milk, wool and labor has been adopted and spread through western Asia,
Europe and as far east as India [1]. Milk was consumed fresh due to its instability, espe-
cially in hot conditions, where it spoils and sours quickly. The curdling of milk occurs
naturally by the effect of microbes such as bacteria and yeasts. Humans took advan-
tage of this natural phenomenon to preserve milk, i.e, transform it into cheese, a more
stable product which preserves the nutritional benefits of milk on top of its appealing
gustatory characteristics. The earliest surviving cheese was found by archaeologists
in a tomb from the Egyptian First Dynasty between 3100 and 2900 BC. In the same
epoch, the word ”cheese” was reported in Sumerian civilization’s literature, mainly, in
food glossaries including a list of twenty distinct cheeses [2]. Later, cheese started ex-
panding westward. It was made throughout western and central Europe countries such
as Greece, Austria and Switzerland. During the Roman Empire, cheese (”caseus”) was
a favorite luxury food, thus, its production and trading have grown in many Mediter-
ranean countries from Spain, France to Turkey. It’s worth-noting that cheese was also
known in Eurasian and central Asia countries such as Russia and Mongolia [3].

Nowadays, there are at least 1000 varieties of cheese [4], around one third are already
described, classified and named [5, 6]. The Food and Agriculture Organization of the
United Nations reported that cheese exports reached 2.6 million tonnes in 2019 [7]. In
2020, EU countries were the largest cheese producers and consumers, followed by the
United States and Canada [8].

1.1.2 Biochemistry

Cheese results from a transformation of raw milk by different microbial species such
as bacteria, yeasts and molds. Cheese production relies on six major steps: (1) milk
selection, (2) acidification, (3) coagulation, (4) dehydration of the coagulum to obtain
the curd, (5) shaping of the curd, (6) ripening (maturation) of the curd to obtain
a desired texture and flavor profile [9]. At the molecular level, raw milk components
such as lactose, lipids and proteins undergo primary and secondary events [10]. Primary
events involve:

e Metabolism of lactose present in the raw milk by lactic acid bacteria (starters).
The conversion of lactose into lactate causes the acidification of the milk which
prevents spoilage by pathogenic organisms. The starters also produce enzymes
responsible for the metabolism of residual lactate and citrate, which are very
important substrate for a range of reactions during ripening, in addition of being
precursors for flavor compounds in some cheese varieties.

e Lipolysis of milk triglycerides by indigenous, endogenous and/or exogenous li-
pase to fatty acids which are important precursors for the production of volatile
flavor compounds.

e Proteolysis is the most complex and important of the primary biochemical
events. It occurs by proteolytic action of endogenous enzymes as well as pro-
teinases and peptidases from the starters, non-starter lactic acid bacteria and
perhaps secondary microflora, to produce free amino acids which are important
precursors of many flavor compounds.

The molecules resulting from the primary events undergo secondary biochemical
events consisting mainly in the metabolism of free fatty and amino acids leading to
the formation of flavor compounds. Free fatty acids can directly contribute to cheese
flavor. Free amino acids as well as fatty acids can act as precursors for reactions leading
to the formation of flavors.

1.1.3 Microbiology

Microbes involved in cheese making can be classified into two categories: Starter Lactic
Acid Bacteria (SLAB) and secondary microbiota. Both SLAB and secondary micro-
biota can be intentionally introduced into the cheese or accidentally through a contact



with the cheese making equipment. SLAB, such as Lactococcus and Streptococcus ther-
mophilus, are mainly used to start the ripening process by acidifying the milk, but can
also contribute to flavor compound formation during cheese ripening. The secondary
microbiota includes four groups: (1) Non-Starter Lactic Acid Bacteria (NSLAB) such
as nonstarter lactobacilli, Pediococcus, Enterococcus, and Leuconostoc; (2) propionic
acid bacteria; (3) molds; and (4) bacteria and yeast, which grow on the surface of
smear-ripened cheeses. The secondary microbiota doesn’t play a significant role in
cheese acidification but has an important role in flavor development during cheese
ripening [11].

1.1.4 Multi-omics data integration for the characterization of
cheese

The transformation of milk into cheese requires a complex set of metabolic reactions.
Each reaction is catalyzed by one or several enzymes to produce certain products from
the substrates available in milk. These enzymes can be endogenous, i.e, already present
in the milk such as proteases and lypases, or expressed by the microbes involved in
cheese fermentation and ripening, such as the SLAB and the secondary microflora. The
different molecules resulting from this complex dynamics and biochemical reactions
can be measured thanks to omics approaches that are able to collect multiple layers
of information such as (meta)genomics, (meta)transcriptomics, (meta)proteomics and
(meta)metabolomics. Thus, an integrative analysis of the different omics-data would
reveal more biological insights about the mechanisms that govern cheese ripening.

Microbes play a crucial role in cheese ripening and there are tight inter-relationships
between the characteristics of cheese such as texture and flavor and its microbial com-
position. Microbiome-Metabolome inter-relationships are of great interest in cheese
industry as flavors and aroma are the main properties that influence consumers’ pref-
erences [12, 13, 14]. Many studies have been conducted to analyze these relationships
and try to define fingerprints allowing the characterization of cheese. Afshari et al. [15,
16] analyzed metagenomics and metabolomics data collected from artisanal and indus-
trial Cheddar cheese of different brands and age. They could identify dominant taxa
and metabolites that can differentiate artisanal Cheddar from the industrial one. In
addition, they could find a correlation between OTUs', the metabolites and the cheese
type as some OTUs and metabolites were strongly associated to a given cheese type,
its brand and its ripening age. These studies identified biomarkers (OTUs, metabo-
lites...) that can be used to determine cheese quality and authenticity as they allow
to distinguish between different cheese types and brands. Bertuzzi et al. [17] studied
the association between flavor development and the microbial composition in surface-
ripened cheese. They could find correlations between bacteria and yeasts’ abundance
and the levels of the major volatile compounds classes such as alcohols, aldehydes,
esters...

In Chapter 2, we present a machine learning approach to investigate the microbiome-
metabolome relationship in an artificial surface-ripened cheese.

1.2 Network science

In this section, we present the basic concepts in network science, i.e, a definition of a
graph (network), the types of graphs, their representation and the different metrics and
methods commonly used to extract information from them (centrality measures, node
prioritization, community detection...). We applied two network-based methods: 1)
Network diffusion to prioritize genes eventually associated to antimicrobial resistance
in Escherichia coli (Chapter 3); 2) Centrality measures to detect relevant reactions used
to build reduced and context-specific yeast genome scale metabolic model (Chapter 4).

!Operational Taxonomic Unit (OTU): a group of closely related microbes which are arranged
together based on the similarity of specific genomic sequences.



1.2.1 Foundation

Graph theory or network theory has been invented by the famous mathematician Leon-
hard Euler in the 18" century. The story of network science started in Kaliningrad
city (previously called Konigsberg) in Russia. In this city, there were four districts
connected to each other by seven bridges, every Sunday, the citizens of Kaliningrad en-
joyed playing a challenging game: it was a kind of puzzle consisting in walking through
all the part of the city in a continuous walk while crossing each of the seven bridges
only once, and return to the starting point. No one could find such a path and the
problem was then called " The Seven Bridges of Konigsberg”. When this came to Eular
attention, he applied himself to solve it. In 1741, he published an article [18] where
he provided mathematical demonstration to prove that the problem is unsolvable, and
provided also a general rule to answer the question whatever the number of bridges.
Euler’s work has been considered as the earliest in graph science [19, 20, 21].

1.2.2 Basic concepts

Definition

A graph G is a representation of associations between a finite set of objects. It’s a
diagram where each object called "node” or "vertex” V is connected to other nodes
by one or more links called "edges” E:

G=V.E

V is a vector of vertices V = {vy,va,...,vu} and E = {e1, ea, ..., e,} is a vector of
edges. An edge ex = (v;,vj) connects vertices v; and vj.

Figure 1.1: Undirected simple graph with 5 nodes and 6 edges.

In the graph (Figure 1.1), V.= {A,B,C,D,E} and E = {(A,B), (A, D), (B,A), (B,C)
(B,D),(C,B),(C,E), (D,E)}. Graph G is an undirected graph because the nodes are

not associated with directions, i.e, the edges (vi,vj) = (vj, vi).

Based on the characteristics of their edges, graphs can be classified as follows (see
Figure 1.2):

e Simple graphs: node pairs are connected by only one edge and no node connects
with itself through a loop edge.

e Multiple graphs: node pairs can be connected by more than one edge (multiple
edges) and loop edges can exist.

e Directed graphs: edges have heads and tails, i.e, they are directed from one
node v; (the tail) to the other node v;j (head). Unlike undirected graphs, for any
edge vi — vj, the edges (vi, vj) # (v, vi).

e Weighted graphs: edges are weighted by a numerical value that represents the
strength of the association between node pairs, but, depending on the context,
it can have different meanings, e.g, in a social network, the weight can represent
the number of common friends between two individuals, in a gene co-expression
network, the edges’ weights represent the correlation between the genes.
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Figure 1.2: (a) Simple graph; (b) Multiple graph; (c) Directed graph; (d) Weighted graph.

Graphs can be also classified according to their node types:

e Unipartite graphs: also called one-mode graphs. The nodes in these graphs
are of the same type, e.g, a gene network is unipartite because all nodes are genes.

e Bipartite graphs: also called bigraphs, they contain two types of nodes and a
set of edges connecting only nodes of different types [22], e.g, metabolic networks
are bipartite because nodes can be either reactions or metabolites, and edges
represent the association between reactions and metabolites.

Representation of graphs

Graphs are represented and maintained in the computer memory in the form of two
standard data structures: arrays and lists [23, 24]. Array representation of a graph
consists in a two-dimensional square matrix called adjacency matrix (Table 1.1). For
a simple undirected and unweighted graph having m nodes, the adjacency matrix
A = [a;] is a symmetric m x m matrix. At each position (vi,vj), the entry can be
either 1 or 0 representing connection (1) or absence of connection (0) between v; and
Vj:

1, if (v;,v;) € E
Aij = .
! 0, otherwise

Secondly, graph can be represented by a two-column edge list (Table 1.2). Convention-
ally, edges go from the node in the first column to the node in the second one in the
case of directed networks. If the network is weighted, a third column containing the

edge’s weight is added.
A B C D E

A B
A0 |]1]0]1]0 AlD
Bj1|0|1]1]|0 B C
Cio|1]0/0 |1 B | D
D1 /10|01 R
E{0]O0]1|1]0 D E

Table 1.1: Adjacency matrix of the graph in

figure 1.1 Table 1.2: Edge list of the graph in figure 1.1

For relatively small graphs, adjacency matrices are easily accessed and traversed. How-
ever, in the case of large graphs or sparse graphs containing more nodes than edges,
the use of array representation is ineffective due to high memory requirement. In such
cases, list representation is a good memory-effective alternative.



1.2.3 Network centrality measures

Many social, economic or biological processes can be modeled as networks of connected
nodes (individuals, companies, biomolecules...). The need of metrics that can measure
the importance or the influence of the actors (nodes) within those networks raised a rush
of research as they can provide an effective tool to understand networks and extract
useful information from them. In the late 1940s, the Group Networks Laboratory at
MIT directed by Alex Bavelas has made the first attempts to define centrality indices to
measure the individuals’ implication in information flow within professional and social
networks [25]. Afterwards, various centrality measures (CMs) have been developed and
used depending on the context and the applications. For a comprehensive review of
CMs, please refer to these research articles [26, 27, 28, 29, 30]. Here, we describe eight
of the most commonly used CMs:

e Degree: also called connectivity, it is the simplest local CM. It reflects how well a
node is connected within the network, i.e, how many links it has with other nodes
[31, 32]. In weighted networks, the degree of a node is a float called strength.
In directed networks, In-Degree and Out-Degree represent the number of edges
directed into and out of a node, respectively.

e Betweenness: introduced by Freeman 1977 [33], it measures how many times
a node lies on the shortest path? between node pairs. Nodes having a high
betweenness play a role of ”"bridges”, i.e, it’s often needed to pass through them
to go from a node to another, or from a group of nodes to another while covering
the shortest distance. For example, in a network of individuals, people having
a high betweenness play an important role in transferring information between
groups.

e Clustering coefficient: measures the tendency of the nodes in the network to
cluster together. There exist two versions: Local and Global clustering coefficient
(CF). Local CF is calculated by dividing the number of a node’s links within its
neighborhood by the number of links that could possibly exist between them [34].
Global CF (a.k.a. transitivity) indicates the clustering of the whole network. It’s
the proportion of closed triplets ® out of all triplets in the network [35].

e ClusterRank: accounts for the node’s influence (the degree) as well as its neigh-
bors’ influences in addition to it’s local clustering coefficient [36].

e H index: is a score proposed by Jorge Hirsch to assess the productivity and
the impact of scientists or scholars [37, 38]. It was then introduced into network
science as a centrality measure by Korn et al [39]. For example, a node having
H-index = 4 means that it’s connected to 4 nodes, each one of them is linked to,
at least, 4 other nodes. H-index has been used to measure the nodes’ influence
in many real-world networks [40, 41].

e Local H index: H-Index has a resolution limit as it assigns the same score to
too many nodes. To overcome this problem, an improved version called Local
H-Index was designed [42] to take into account both H-index of the node and
the H-Index of its neighbors. That is to say, the higher the H-Index of a node’s
neighbors, the more influential is the node.

e Neighborhood Connectivity: is defined as the average connectivity of a node’s
neighbors [43]. The importance of a node doesn’t rely only on it’s degree (con-
nectivity) but also on the connectivity of its neighbors.

e Collective influence: is calculated by multiplying a node’s reduced degree
(degree - 1) by the reduced degrees of all nodes at a distance [ from it, with [
being the shortest path around that node. CL is a global centrality metric which

2Shortest path: the path with the minimum number of edges between two nodes.
3closed triplets: three nodes all connected together by three edges.



relies on the effect of node removal on the entire network (percolation): (1) the
CLs of all nodes are calculated, then, nodes with the highest CL are removed;
(2) CL recalculated again to find the new high-scored nodes to remove; (3) the
process is reiterated until the giant component of the network vanishes. Nodes
that causes the dismantling of the giant component are considered as influential
nodes [44].

CMs are computed directly from adjacency matrices or edge lists and can be categorized
into three categories:

e Global CMs: called "global” because the entire (global) structure of the network
is needed to compute them, e.g, Closeness CM [25, 45] which reflects how close/far
is a node from the other nodes in a network. A node having high closeness has
an important role in spreading information within the network as it can quickly
reach many nodes. In the case of large networks, computing global CMs has high
computational complexity.

e Local CMs: don’t require the entire network to be calculated. They take into
consideration only the node’s first neighborhood such as Degree CM.

e Semi-Local CMs: intermediate between global and local CMs as they encom-
pass an environment that is farther than the node’s first neighbors, e.g, Neigh-
borhood Connectivity CM.

Centrality measures are used in a multitude of contexts. Wang et al. [46] studied nodal
centrality of China’s air transport network and they found a correlation between the
socio-economic indicators of cities and their centralities. In biological contexts, Ozgiir
et al. [47] could identify genes related to prostate cancer by means of a centrality-based
ranking performed on gene networks. Martino et al. [48] used degree and eigenvector
centrality to study attention-deficit/hyperactivity disorder on the brain connectivity
network.

Each CM reflects a specific characteristic of the node. To extract as much informa-
tion as possible about the nodes in a network, CMs shouldn’t be considered individually,
but combined to synergize their effects. In Chapter 4, we discuss the methods that can
be used to combine CMs.

1.2.4 Network diffusion

Network diffusion (ND) also called network propagation relies on the propagation of an
information from source node (seed node) to other nodes in a given network under the
assumption that nodes underlying similar characteristics tend to interact with one an-
other [49]. In an iterative manner, the information is propagated through the network,
and, after convergence, the non-source nodes get a propagation (diffusion) score re-
flecting how likely they share the characteristics of the source nodes. For instance, ND
was used to prioritize genes related to hereditary disorders in protein—protein interac-
tion networks (PPI). The phenotype (information) was propagated from genes already
known to be related to hereditary disorders (the seed genes) to the other uncharacter-
ized genes within the network [50] in order to obtain a list of new genes potentially
associated to the disease. Many diffusion algorithms have been developed and used in
different contexts. In Chapter 3, we used the Bersanelli et al. method [51] to prioritize
genes potentially associated to antimicrobial resistance in E. coli.

1.2.5 Community detection in networks

Community detection (CD) also called module or cluster detection is another network-
based method applied in different contexts such as sociology, economy, technology and
biology. Communities are clusters of nodes tending to interact more with each other
as compared to the other nodes in the network. Those nodes probably have similar
properties, thus, the formed cluster may have a specific function(s) within the network.
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Therefore, CD is of great importance as it can reveal additional information about the
network which cannot be uncovered if the nodes were analyzed individually [52, 53].

The first analyses of communities have been performed on social networks. In
1927, Stuart Rice [54] has designed an index of cohesion and an index of likeness for
a quantitative measure of the voting pattern within and between groups of people,
respectively. He applied his measures to small political bodies and could cluster people
according to their voting behavior. Later, Weiss and Jacobson [55] introduced a CD
method which is considered as an early version of several modern CD algorithms. The
authors studied working relationships between 196 members (nodes) of a governmental
agency (the network). By means of private interviews, the authors could report 2400
work relationships (edges) between the members of the agency. Finally, to define the
workers clusters, they omitted the members having work relationships with different
groups. Those members played a role of bridges and their removal permitted the
separation of the distinct work groups.

Later on, many algorithms have been developed to perform CD and, more impor-
tantly, metrics have been designed to assess the clustering quality to help the algo-
rithms find the optimal clusters. The quality function mostly used in many algorithms
is Modularity. Modularity a is quantitative measure (a score) introduced by Newman
and Girvan [56] to quantify how tightly the nodes are connected to each other within
a defined module (cluster). It relies on the assumption that random graphs are not
expected to have a cluster structure, therefore, one can detect communities on a graph
by comparing its edges’ density to the density of the same edges in a random graph
(null model). The function is formulated as follows:

1
Modularity = 3 Z (As; — Rij) 6(C;, C)
ij

where

_ kik;

- 2m

ij

and m is the total number of edges in the graph; A is the adjacency matrix of the

graph we want to cluster. k; and k; are degrees of nodes ¢ and j, respectively. R;;

computes the number of edges between i and j in the random graph (the null model).

d is a function that renders 1 if the nodes ¢ and j are in the same community (C; = C}),
0 otherwise.

Modularity is used as a quality function, i.e, it measures how good/bad are the
results returned by CD algorithms. It is an index to assess the quality and the relevance
of the clustering. For an extensive description of various CD methods and quality
functions, please refer to [57, 58, 59, 60]. Here, we present three categories of CD
algorithms used in social and biological contexts and their basic principles:

e Similarity-based methods: create clusters based on the (diss)similarity be-
tween the nodes, such as graph partitioning [61, 62] and hierarchical clustering

e Modularity-based algorithms: rely on the optimization of modularity to
define the clusters, such as Newman’s greedy optimization algorithm [64] and
Louvain algorithm [65]. These algorithms combine hierarchical clustering and
modularity such that nodes are grouped together in a way that maximizes their
modularity (more detailed description in Chapter 3).

e Divisive algorithms: rely on the division of the network into communities by
removing the edges that connect many clusters. Girvan and Newman [66, 56]
developed a popular algorithm to find these inter-community edges. To define
the underlying community structures, the algorithm removes the edge having a
high betweenness, i.e, a high number of shortest paths that go through them.
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1.3 Antimicrobial resistance

Bacterial infections especially those caused by contaminated food represented for us
an interesting topic to address in this thesis. We were interested in the Gram-negative
bacteria Escherichia coli as it’s associated to many infectious disease in humans [67].
Different antibiotic resistant F coli strains are already identified in contaminated food
such as meat, eggs and milk [68], therefore, we wanted to investigate more E coli’s
resistance to antibiotics for a better characterization that could contribute to the iden-
tification of potential drug targets.

In Chapter 3, we describe a systems biology approach based on network and sta-
tistical methods to analyses the F coli’s PPI. By means of network diffusion, we could
prioritize a list of genes potentially associated to AMR. Then, we could experimentally
validate four candidate genes that showed significant resistance against six antimicro-
bials.

1.3.1 Overview

Bacteria and archaea are the earliest living organisms on Earth which appeared around
3.6 billions years ago [69]. Despite their low complexity, bacteria developed an effective
strategy to survive under stressful conditions. Similar to an immune system in animals,
bacteria can protect themselves by resisting and bypassing the effect of harmful agents
such as antimicrobials. Antimicrobial resistance (AMR) was firstly identified in 1940
in Staphylococcus against penicillin-R [70], however, later scientific expeditions have
demonstrated that AMR predated the introduction of antimicrobials by humans. In
Ellesmere Island in Canada, scientists have discovered 2000-years-old microbial isolates
that carry AMR against ampicilin [71]. Furthermore, targeted metagenomic analyses
have identified genes conferring resistance to [-lactam, tetracycline and glycopeptide
antibiotics in a 30000-year-old DNA isolated from the Beringian permafrost [72].

Nowadays, AMR is becoming a concerning global health issue. In 2019, the World
Health Organization published a report where it predicted that deaths caused by AMR
will reach 10 millions death per year by 2050, surpassing other leading causes of death
in humans such as cancer, heart disease and diabetes [73]. The development of AMR
is accelerated by the misuse and overuse of antimicrobials and its spread all over the
world is facilitated by globalization [74]. In 2008, Yong et al. [75] have identified the
mutli-drug resistant gene New Delhi Metallo-g-Lactamase 1 in an Indian patient in
Sweden, this illustrates the role of global trade and travel in allowing the resistant
organisms to spread further than ever before.

AMR is generating increasing concern for public health worldwide, requiring the im-
plementation of novel strategies for its containment and the mitigation of its dramatic
effects.

1.3.2 In Stilico methods for the characterization of AMR

AMR is serious global healthcare crisis caused by the increasing prevalence of resistant
microbes. The identification of successful drug targets allowing the design of efficient
therapeutical strategies represent a great challenge for the pharmaceutical industry
[76]. In clinical studies, AMR microbes are identified through antimicrobial suscepti-
bility testing by exposing them to different antimicrobials then selecting the microbes
which could grow on these lethal conditions. These microbes are isolated and many of
their biological characteristics such as genomes and proteomes are made available and
stored in database [77]. In the era of Big Data, computational methods can provide
effective tools to further analyze these databases in order to complement the conven-
tional experimental protocols of disease characterization and drug design. The use of
such methods contribute to lowering the time, the cost and the efforts dedicated to
design new therapies [78].

Different in silico methods are used to elucidate AMR mechanisms and identify
new drug targets. These methods can be classified into three categories basing on
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the data that are used: 1) Molecular modeling-based approaches; 2) Machine Learn-
ing approaches; and 3) Network-based approaches. Of course, these methods can be
combined to complement each other in order to improve the results [79, 80, 81, 82].

e Molecular modeling-based approaches: are based on the in silico modeling
and prediction of drug-target interactions. They require two inputs: 1) the 3D
structure of the target of interest (a protein, enzyme...); 2) The 3D molecular
structure of the candidate antimicrobial. Proteins’ 3D structures can be found in
database such as the Protein Data Bank (PDB) [83], if not, homology modeling
methods can be used to reconstruct the protein’s 3D structure from its amino acid
sequence. Antimicrobial’s 3D structures, as well as other chemical compounds,
can be extracted from chemical libraries like ChEMBL [84], PubChem [85] and
DrugBank [86]. One of the methods used for the selection of drug candidates is
virtual screening [87]. It relies on an in silico binding of the 3D structures of a
large chemical library with a protein of interest. The molecule(s) having a high
binding affinity are selected as drug candidates for further clinical essays.

e Machine learning-based approaches: in the field of drug design, the Quan-
titative Structure—Activity Relationship approach (QSAR) is widely used [88].
QSAR relies on learning the functional properties of the molecules, such as their
antimicrobial and inhibition activities, from their physicochemical features (de-
scriptors) like molecular weight, lipophilicity, number of rings... Then, the QSAR
models are used to predict the antimicrobial activity of the new molecules of in-
terest.

Artificial intelligence (AI) methods have a wider use. In addition to identifying
new antibacterials from chemical libraries [89, 90], Al is also used to identify
potential targets [91], predict acquired AMR [92] antibiotic susceptibility profiles
of microbes [93], recommend antibiotic prescriptions [94] and predict the effect
of drugs on biomarkers [95].

e Network-based approaches: rely on the analysis of different kinds of net-
works such as gene networks, protein networks and antibacterial-target networks
to detect possible AMR-related genes and AMR-related functional motifs. At
least two types of functional motifs [96] can be found in biological networks: 1)
Topology-based motifs [97] which are sub-networks, i.e. a set of nodes inter-
connected together with a certain pattern, e.g. closed triplets; 2) Topology-free
motifs [98] are sub-networks of nodes defined not only by the nodes’ intercon-
nectedness but also by the nodes’ functions. In these kind of motifs, nodes are
interconnected and share exactly the same properties (i.e. biological functions),
contrary to the topology-based motifs where nodes can have different properties.
One topology-free motif can be associated to several functions as biomolecules
such as genes and proteins can be pleiotropic®.

Carunta et al. [99] could detect functional motifs which can be associated to AMR
in F. coli from a network of AMR-related genes. By means of centrality measures
and community detection approaches, Myryala et al. [100] analyzed the gene
network of P. aeruginosa PA01 strain and could detect hub genes and functional
clusters associated to AMR, which could be potential targets to mitigate the
multiple drug resistance (MDR) in P. aeruginosa. Using a similar approach,
Anitha et al. [101] and Miryala et al. [82] have characterized MDR and identified
potential drug targets in the pathogens Acinetobacter baumannii and FE. coli
0157:H7, respectively.

4Pleiotropy: in biology, a gene or protein is said pleotropic if it determines different phenotypic
traits.
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1.4 Network Science and Constraint-based Model-
ing

Cells are the basic units of life. Their functions is governed by the interaction of dif-
ferent types of biomolecules such as DNAs, RNAs, proteins and metabolites. These
molecules form networks of specific functions: signal transduction networks, gene reg-
ulatory networks, protein-protein interaction networks and metabolic networks. These
latter play a crucial role in maintaining cell functions as they provide the ”fuel” and
the ”ingredients” indispensable for the functioning of the other biological networks.
Therefore, studying metabolic networks can shed light on many unknown biological
processes, but before being able to perform such studies, these complex and dynamic
networks need to be first modeled, then, analyzed using the appropriate tools. Here
Genome Scale Metabolic Modeling (GSMM) and Flux Balance Analysis (FBA) come
into play. In the next sections, we introduce GSMM and FBA which we combined
with network approaches (Chapter 4) in order to reconstruct context-specific metabolic
models of yeast.

1.4.1 Genome Scale Metabolic Modeling

After the complete sequence of the free-living microorganism Haemophilus influenzae
Rd was made available, the first GSMM was constructed to model the metabolic path-
ways in H. influenzae [102]. GSMMs are built starting from the genome sequence
which is annotated with curated biochemical information. The annotated genes define
the reactions and their associated metabolites to be included in the model [103]. For
a detailed GSMM construction procedures, please check these papers [103, 104, 105].
Here, we describe the four major steps for building a GSMM from a genome :

1. The construction of the first version of the model from the genomic
sequence: This first version is called a draft GSMM. It contains all the proteins
encoded by the genome and their associated metabolites when those proteins are
enzymes, and, for the proteins that are transporters, the model accounts also for
the metabolites entering or going out of the cell through them. The GSMM is
represented as stoichiometric matrix (Table 1.3) where the columns represent the
reactions and rows represent the metabolites. The entries can be either positive
integers if the metabolite is produced by a reaction(s); negative integers if the
metabolite is consumed by a reaction(s); or, a null entry (0) if the metabolite
is not associated to the reaction(s) [106]. For instance, reaction R; consumes 2
molecules of the metabolite M; and 1 molecule of M, to produce 1 molecule of
of M; (Table 1.3).

|Ri Ry Ry Ry
M, |2 1 -1 0
My| -1 0 1 -1
My| 1 -1 0 1

Table 1.3: Stoichiometric matrix of a toy GSMM with four reactions and three metabolites.

2. The refinement of the draft GSMMs by filling the gaps and correct-
ing inconsistencies: the gene-protein-reaction associations (GPR) are retrieved
from databases such as BIGG [107], KEGG [108], BRENDA [109], BioCyc [110]
and ModelSEED [111]. These databases may not include all the GPR of the
modeled organism, therefore, the draft GSMM should be checked manually to fill
its gaps by adding missing reactions. In addition, not all the organisms can be
found in these databases. To annotate a new organism’s genome, gene sequence
similarity is used to define the GPR associations, but sequence similarity doesn’t
systematically lead to a function transfer [105]. Furthermore, the presence of a
gene sequence in the organism’s genome doesn’t systematically mean that the
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gene is expressed and its product is involved in a metabolic pathway. There-
fore, in addition to gap filling, draft GSMMs should also be checked for such
inconsistencies.

3. Definition of the biomass equation and the growth medium require-
ment: as stated by Santos et al. [112], a GSMM becomes a model only if it
includes biomass equation, in other words, GSMMs can’t be used for prediction
purposes unless they have a mathematical representation. Otherwise, the GSMM
is just a reconstruction of the metabolic network.

The biomass equation (see the example below) determines the chemical com-
position of the cell. It represents the relative contribution of the cell’s organic
(proteins, lipids, RNAs, vitamins, cofactors...) and non organic (ions) molecules.
The chemical composition can be either determined by experiments, found in the
literature, or estimated.

Biomass = 0.55 x Protein 4+ 0.10 x RNA + 0.07 x DNA 4 0.10 x Lipids
+ 0.09 x Carbohydrates + 0.03 x Cofactors + 0.01 x Inorganic ions

The illustrative mass equation above determines the relative fractions of the
different molecules in the cell.

Secondly, as energy is required for every biological process, the biomass equation
must also account for the energetic costs for maintaining the growth, i.e. how
many ATP® molecules the cell consumes to ensure its functions such as macro-
molecular biosynthesis. Like biomass composition, energy requirement can be
either estimated or experimentally defined. The following reaction represent the
ATP hydrolysis where x is the stoichiometric number of the reaction, i.e. how
many reactant/product are consumed /produced:

2ATP + 2HyO — xADP + 2P, + xH*

Finally, comes the determination of the growth medium requirement, i.e. the
essential nutrients that the organism takes up from the medium to ensure its
growth, such as vitamins and carbon and nitrogen sources. These data can be
retrieved either from the literature or defined through experiments.

4. Experimental validation of the curated model: now that the model is
available, it should be tested to assess its consistency and predictive performance.
To do so, simulation can be done to see wether the cell can grow and reach
coherent production of, for instance, COy and ATP. Also, the model can be
compared to knock-out cells with a known phenotype. The knocked-out gene
can be "switched off” in the model, then a simulation is run. If the model’s
results are not in accordance with the experimentally observed phenotype, then
the model should be checked and curated again to resolve the inconsistency

Experimental evaluation of the model and manual curation are iterated until
obtaining the most consistent model representing as well as possible the metabolic
properties of the studied organism.

The reconstruction of good-performance GSMMs is time-demanding, for example,
the curation of the model can take months to a year [103]. Therefore, many tools
have been developed to expedite the reconstruction of GSMM such as KBase [113],
Merlin [114] and ModelSEED [115] (for an extensive review of the available GSMM
reconstruction tools, please consult [116, 117]). These open-source tools are available
online (e.g. KBase and ModelSEED) or in user-friendly standalone interface (Merlin).

5 Adenosine triphosphate (ATP): is the molecule used in living beings to generate/store energy.
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They allow the user to carry out the different steps required to build GSMMs such as
genome annotation, gap filling and validation of the model. Functionalities of these
tools are more or less similar, however, they can differ in the way they build a model
starting from the genomic sequence: 1) The GSMM can be built from scratch by
annotating the different genes and adding the biochemical information extracted from
databases (KEGG, BRENDA...); 2) In the case where the new organism to be modeled
is phylogenitically close to an organism of which a curated GSMM is already available,
one can use a template-based approach, that is, using the information from the existing
GSMM to build the new one.

We note that, although GSMMs are comprehensive representation of the cell’s
metabolic potential, they don’t take into account the kinetics of the reactions, i.e.
the rate at which each metabolite is consumed or produced. Therefore, GSMMs can’t
capture dynamic behaviors of the metabolic pathways. Kinetic models, on the other
hand, accounts for both the structure and the kinetic details of the reactions. A
legitimate question arises: if kinetic models represent metabolism in a more realistic
way, why one would use GSMMs? Before answering the question, let’s first stress
that kinetic models were indeed successfully used in many context to explore and
control metabolic pathways, such as in human metabolic disease [118] and metabolic
engineering of lactic acid bacteria [119], but such results can be achieved only if a
detailed kinetic model is available, i.e, a model that accounts for most (all) the kinetic
parameters that govern the biochemical reactions in the system [120]. Such complete
models are not often available because kinetic parameters are not available for all the
reactions, and, in the rare cases where they can be estimated, the corresponding models
are relatively small and isolated from the whole metabolic network of the cell [112].
Given these limitations, GSMMs offer an alternative to cover the metabolic potential of
the cell without the need of estimating every kinetic parameter. Of course, discarding
these parameters is not totally costless, but, regardless this limitation, GSMMs can be
used as an effective tool to explore metabolic pathways and predict their outcomes if
combined with adequate methods, such as Flux Balance Analysis (next section).

1.4.2 Flux Balance Analysis

Flux Balance Analysis (FBA) [121] is used to Analyze the metabolites’ Fluxes under
the assumption that the system is Balanced, in other words, FBA computes the flow
of the metabolites in a metabolic network by assuming a steady-state, i.e. a metabolic
state where the amounts of produced and consumed metabolites are equal. FBA uses
Linear Programming (LP) to maximize or minimize a function of interest, i.e, an
objective function. LP finds the optimum of the objective function by computing the
parameters that minimize/maximize it. These parameters can be computed from a set
of constrained linear equations.

Let’s take a simple example to illustrate FBA. Figure 1.3 represent a metabolic
network where the substrate S is converted into metabolite M, which is, in turn,
converted into two products P; and P,. v, v, and vs are the rates or the fluxes
expressed of each of the reactions, i.e. how much of the metabolite is consumed or
produced by the reaction per unit time.

P
7
v
§S—— M
AN
Py

Figure 1.3: Simple reaction pathway involving three reactions, one substrate S, one interme-
diate metabolite M and two products P; and P,

To run FBA, we have to set the mass balance and the capacity constraints (bound-
aries) on the fluxes v:
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Mass balance:

S-v=0

where S represent the stoichiometry matrix of the metabolic network, and v is
a column vector of the fluxes of each reaction (i.e, vy, vy and v3). At steady-state,
v — v —v3 = 0.

Now, suppose that our objective is to maximize M yield. To do so, we have to
maximize the rate of the reaction that is producing M, i.e, v;. We can formulate the
problem as follows:

Objective: maximize v;
given:

mass balance constraint: vy — vy —v3 =0

capacity constraints: —o0o <1 <00
0 S (%) S 5)
2 S (%] S 10

Thus

v = Vg + U3

max(vy) = max(ve) + mazx(vs) = 15

The upper and lower allowable bounds of the different fluxes can be measured
experimentally or set according the objective function of the simulation. For example,
in our example, if we knew that the cell doesn’t produce P; in the studied context, we
could set v3 = 0.

The cells” metabolic networks are stable and resilient to perturbations due to the
redundancy of the enzymes and reaction pathways [122, 123]. Therefore, the optimal
state that can be found by FBA is just one state among a set of possible optimal states,
as the objective function (e.g. maximization of growth) can be achieved through dif-
ferent reactional routes implying different metabolites fluxes. To capture and measure
this metabolic flexibility, one can use a variant of FBA which is Flux Variability Anal-
ysis (FVA) [124]. Instead of a unique flux value, FVA computes a range of possible
flux values for each reaction.

Furthermore, metabolism is a dynamic and evolving process, thus, the assumption
of steady-state is valid only in some particular cases [125]. To cope with this limitation,
FBA can be applied sequentially by running it at each time point of the evolution of
the system, and this variant of FBA is called Dynamic Flux Balance Analysis (dFBA)
[126].

In Chapter 4, we combine FBA /FVA and network-topology-based metrics to create
context-specific yeast’s GSMM.
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Chapter 2

Estimation of metabolite levels in
cheese from microbial gene
expression

2.0.1 Introduction

Cheese is a dairy product that has been produced since the earliest civilizations some
8000 years ago during the “Agricultural Revolution” [127]. TIts production spread
throughout Europe and the Middle East and later to North and South America and
Oceania. Nowadays, there are at least 1000 cheese varieties produced all over the
world [4]. The conversion of fresh milk into cheese involves different microbial species
including bacteria, yeasts and moulds which perform the three major pathways consti-
tuting the biochemistry of cheese fermentation and ripening: (1) metabolism of resid-
ual lactose and of lactate and citrate (primary reactions), (2) lipolysis and fatty acid
metabolism (3) proteolysis and amino acid catabolism (secondary reactions). These
biochemical processes result in the development of flavor and texture characteristics of
the cheese. For instance, Lc. lactis ssp. lactis and Leuconostoc spp metabolize citrate
to diacetyl in the presence of a fermentable sugar during manufacture and early ripen-
ing. Diacetyl contributes to the flavor of Dutch-type cheeses and possibly Cheddar
also. The COy produced is responsible for the small eyes characteristic of Dutch-type
cheeses. The metabolism of fatty acids in cheese by Penicillium spp produces n-methyl
ketones which dominate the taste and aroma of blue cheese [127].

Cheese flavor and aroma are among the main properties that determine cheese’s
quality and influence consumers’ preferences [12, 13, 14]. For that reason, one of the
main issues for the dairy industry is monitoring and characterizing cheese’s composi-
tion, aroma, flavor and nutritional characteristics during cheese making processes [128].
The most powerful sensory tool in cheese flavor research is descriptive sensory analysis.
It requires trained human sensory evaluators to identify and quantify sensory aspects
like appearance, aroma, flavor, texture... [129]. A good cheese flavor evaluator requires
regular maintenance and 75-100 hours of training, which makes the descriptive analysis
of flavor one of the most complex modalities to train [130]. Furthermore, this form
of sensory analysis can be challenged with subjectivity on the side of less trained or
unprofessional panelists, the sensitivities of smell receptors [131] and taste buds [132],
since the sense of smell and taste varies with age, and in some cases, sex [133, 131]
and lifestyle activities such as smoking [134]. Thus, human evaluation and inspection
during food quality control may lead to inconsistent decisions. To cope with these
challenges, metabolomics technology offers different tools that can identify and quan-
tify the cheese’s flavors and aroma such as gas chromatography, mass spectrometry,
aroma extract dilution analysis (AEDA) and odor activity value (OAV) [135]. Gas
chromatographic methods are widely applied in food science and technology due to an
efficient compound separation and versatility. However, these metabolomics analyses
demand expensive instrumentation and are time consuming as the optimum recovery of
flavor compounds usually require more than one procedure to avoid degradation and
formation of artifacts and reach a detectable concentration of the components [136,
130, 137].

18



The final characteristics of a cheese, mainly flavors and aroma, are due to the com-
plex dynamics and biochemical reactions involving the enzymes produced by cheese
microorganisms and the milk components (lactose, fats, proteins). Therefore, analyz-
ing these enzymatic profiles through sequencing methods such as metagenomics, pro-
teomics and transcriptomics can serve to predict and characterize the metabolic profile
of cheese. These sequencing methods are well developed and relatively cost-effective
compared to the metabolomics experiments that directly measure the metabolic profiles
of dairy products [138]. Using an integrative approach to analyze 16S rRNA sequenc-
ing and metabolomics data collected from industrial and artisanal cheddar cheeses,
Ashfari et al [15] could detect strong relationships between the cheese microbiota and
metabolome and uncovered specific taxa and metabolites that contributed to these
relationships. Bertuzzi et al [17] have investigated the metabolic potential of the res-
ident microorganisms of a surface-ripened cheese through whole-metagenome shotgun
sequencing. They showed how variations in the microbial populations influence impor-
tant aspects of cheese ripening, especially flavor development. In human-based studies,
Mallick et al [139] have developed MelonnPan, an elastic net regularization method that
can predict gut metabolites from the metagenomic data of gut microbial communities.
This approach displayed promising performance and can be used for the prediction of
metabolomes in similar studies where only microbiome is available. Similarly, neural
networks have been developed to infer metabolic profiles from metagenomic and un-
cover microbe-metabolite relationships in environmental and clinical settings, such as
soil biocrust wetting, cystic fibrosis and inflammatory bowel disease [140, 141, 142].

Objective of the work

To our knowledge, the possibility of inferring cheese metabolic profile from microbial
metatranscriptomics has not been sufficiently explored yet. In this work, we inves-
tigated the metatranscriptome-metabolome relationship in an experimental surface-
ripened cheese by means of predictive models and correlation analyses. We trained
Elastic Net and Random Forest (RF) models to infer the metabolic outcome of the
cheese from its microbial gene expression profile. Ultimately, cheese quality control
(monitoring metabolic/flavor profile) could be complemented by such straightforward
in silico predictions, which are more cost-effective and less time consuming than the
traditional sensory analyses techniques. This can reduce cheese making costs, especially
for large-scale cheese/food manufacturers that are very aware of customer preferences
in terms of quality and affordability (cost).

Summary

Despite the spareness of the data, the accuracy of the models could reach 50 to 83 %.
Moreover, the analysis of the genes selected by the modeling procedure showed their
consistency with biological pathways, mainly metabolic ones. Our results demonstrate
that metatranscriptomics data can be used as an informative proxy to estimate flavor
profiles in cheese.

2.0.2 Materials and Methods

In this section, we describe the different steps we carried out to build the predictive
models and investigate their biological relevance. In a nutshell, these steps included: 1)
Pre-processing and transformation of the raw data; 2) Feature selection, construction
and assessment of the predictive models; 3) Investigation of the models signatures’s
correlation with the microbes and biological pathways.

Note: metatranscriptomics and metametabolomics stand for the transcriptomics (gene
expression) and metabolomics data, respectively, associated to microbial species in a
given environment. For the sake of clarity, we use the terms transcriptomics and
metabolomics to refer to these data from now on. In addition, we write the names
of the predictive models with a capital letter, e.g, Alcohols is the model that predicts
alcohols amounts.
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transcriptomics and metabolomics data used for training and testing the
predictive models

Our data consist of longitudinal transcriptomics and metabolomics data collected from
two independent experiments, that were used separately for training and testing our
classification. Each of the training and test datasets contain one transcriptomics (the
predictors) set and one metabolomics set (the outcomes). The rows in the trancrip-
tomics datasets contains the time points and the columns contain the sequenced genes.
In the metabolomics data, rows represent the same time points and columns contain
6 measured metabolite classes: Alcohols, Aldehydes, Alkanes, Ketones, Esters and
Sulphur compounds.

The training data were collected from an experiment with a surface-ripened cheese,
fermented and ripened using a reduced microbial community composed of six bacte-
ria and three yeasts: Glutamicibacter arilaitensis (Ga), Brevibacterium aurantiacum
(Ba), Corynebacterium casei (Cc), Hafnia alvei (Ha), Lactococcus lactis (L1), Staphy-
lococcus equorum (Se), Debaryomyces hansenii (Dh), Geotrichum candidum (Ge) and
Kluyveromyces lactis (K1). There were three different experimental conditions: Con-
trol, and two other conditions where the Dh or the Gc yeast was omitted from the
medium. There were three replicates at each of the time points Day 7, Day 14, Day
24 and Day 31.

The test data set, as provided by Dugat-Bony et al. 2015 [143], is identical to
the training one in terms of cheese type and microbial community, except for the
experimental conditions (perturbation) which were set according to a variation in NaCl
concentration. There were three replicates at each of the time points Day 1, Day 7,
Day 14, Day 24 and Day 31.

Normalization of the transcriptomics data

To be able to use transcriptomics data for any analysis, one should consider eliminating,
or, at least, reducing the biases induced by biological and technical artifacts as they
can create a spurious variability between the studied samples. Here, we introduce two
biological and one technical artifacts we should deal with our data:

e The sequencing depth: is a common technical artifact in sequencing. It rep-
resents the resolution of the sequencing, i.e, how many times the gene sequence
is read during the sequencing. Sequencing depth varies between samples and this
results in a variation of the total read counts per sample [144]. For instance,
when the sequencing depth is two times higher in sample 2 than sample 1, the
genes read counts will be duplicated and the gene expression will seem increased
while it’s actually not.

e Microbial abundance: is a biological artifact encountered with microbial data
due their evolving behavior (growth or decay over time). This makes the genes
expression seem to be varying (increasing or decreasing) across samples.

Suppose we measured the expression of one gene in one microbial community
in two conditions, control and treatment, to see whether the treatment has an
effect on the expression of the studied gene. Suppose we found that the gene
was ten times more expressed in the treatment condition, and at the same time,
growth data showed us that the microbial community has also grown by ten
times. In this case, the variation in gene expression doesn’t reflect a real shift
in the biological behavior of the microbial community under the treatment, as
the number of expressed genes increased just because there were more expressing
microbes.

¢ RNA composition: is the second biological artifact we should reduce. To
illustrate the concept, suppose this time we are interested in the expression of
gene A in one microbe, in control and treatment conditions. Suppose we measured
10 reads of gene A in the control and only 2 reads in treatment condition. Could
we say that the treatment decreased the expression of gene A? Yes, it could
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be. But, this decrease could be also due to a high expression of another gene B
which competed for the available sequencing machinery (polymerases, primers,
nucleotides...) available in the sequencing pool. As a results, gene A will be less
accessible for the sequencing machinery mostly saturated by by gene B, and thus,
gene A will seem under-expressed by the microbe while it was just not enough
sequenced as in the control condition.

To deal with these biases, we adopted a method proposed by Klingenberg et al.
[145]. The procedure relies on splitting the transcriptomics data by microbial species
then performing a normalization method that accounts for the sequencing depth and
the RNA composition, such as the Trimmed Mean of the M-values normalization
(TMM) [146], on each subset.

Both training and test transcriptomics data were split into nine species-specific
datasets, each one representing a given microbial species. In each species-specific
dataset the lowly expressed genes, i.e, genes with less than 10 reads in three ran-
domly selected samples, were filtered out. After this step, only two genes remained
in Staphylococcus equorum data in the test set, thus, this species was discarded. As a
result, we got nine and eight filtered species-specific datasets in the training and test
set, respectively. Then, these datasets were normalized using TMM normalization,
implemented in edgeR R package [147], to reduces the variations between samples due
to the sequencing depth and the RNA composition.

This procedure allows to reduce the variation in gene expression profiles across sam-
ples which is due to a variation in microbial abundances and sequencing artifacts, and
not to an actual change in functional and biological profiles. After this processing, the
remaining gene expression differences reflect better the different behavior of organisms
under the changing conditions. Finally, the filtered and normalized species-specific
datasets were merged to re-obtain the entire training and test datasets used for the
modeling procedure.

Orthology-based shrinkage of transcriptomics data

The metabolic profile in cheese is the result of the contribution of different enzymes
expressed by the different microbes. Despite their differences, bacteria and yeasts
can express proteins and enzymes having similar functions. These proteins (genes)
are called orthologous proteins/genes [148]. To reduce the data’s dimensionality, we
chose to sum together the expressions of the orthologous genes (same KEGG Orthology
identifier [149]). This allowed the shrinkage of the sample sizes in both training and test
sets to almost the half (Table 2.1). This is a first dimensionality reduction step which is
required before training predictive models. The second step is features selection which
is described farther in this chapter.

Raw | Lowly expressed genes filtered | Orthologous genes merged
Training set | 9868 8210 4245
Test set 3899 1769 1279

Table 2.1: Sample size of the training and test datasets before and after filtering out the
lowly expressed genes and merging of the orthologous genes. The number of observations is
34 and 24 in the training and test set, respectively.

Metabolomics data processing

Alongside gene expression, the amounts of six metabolite classes were measured in
the two experiments: Alcohols, Aldehydes, Alkanes, Ketones, Esters, and Sulphur
compounds. So, for each of the training and test sets, we had the corresponding
metabolites amounts (observations) per each time point. The original metabolomics
data are numerical, so we first trained regression models to estimate metabolites nu-
merical amounts from transcriptomics, while bearing in mind that regression is not
the best choice as the observations are very sparse (34 observations). We trained
Elastic Net (EN) [150] and generalized additive models (GAMs) [151] after log and
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Z-transformation of the data. Indeed, the predictive performances were very poor (low

R?!, Table 2.2).

Metabolite Elastic Net | GAM (log transformed) | GAM (z-transformed)
Alcohol 0.0034 0.075 0.114
Aldehyde 0.0253 0.038 0.149
Alkane 0.0415 0.0033 0.062
Ketone 0.0172 0.041 0.009
Ester 0.0330 0.018 0.004
Sulphur compounds 0.0008 0.072 0.006

Table 2.2: R-Squared (R?) values of the trained EN and GAM regression models.

To cope with this problem, we decided to train classification instead of regression
models as the prediction of a class is "easier” than predicting an accurate continuous
value. As expected, the models’ performances improved (see Results section).

To do so, we converted the numerical values into levels (categories). Given that
there were no available human labeling of each observed amount, we investigated the
metabolites distribution in order to find patterns allowing classifying them into cate-
gories.

The metabolite distributions approximately follow a bimodal distribution (Figure
2.1). We run the Expectation-Maximization (EM) algorithm? [153] to try to fit two
gaussians to these data. To set the priors of the EM algorithm, we run k-means
clustering® [155] with two centers (k = 2). Then, for each cluster determined by k-
means, we computed its mean, standard deviation and proportion. These values were
then updated by the EM algorithm, and after convergence, we obtained the estimated
means, standard deviations and proportions. These values represent the posteriors we
used to model the density of the gaussians (red line in figure 2.1).

'R-Squared (R?): also called coefficient of determination. It can take values between 0 and 1. It
represents how well the genes (predictors) explains the variation of the actual metabolites amounts.

ZnormalmixEM() function from the miztools R package [152]

3kmeans() function R version 4.2.2 [154]
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Figure 2.1: Distribution of the amount of each metabolite in the training (a) and test data
(b). Red line: fitted gaussian using Expectation-Maximization algorithm

We labeled the continuous values in each cluster by “High” or “Low”. Note that
this labeling is relative and arbitrary. It’s used only to distinguish the two clusters,
it could be "Level 17 and "Level 2”7, ”Class1” and ”Class2”... This labeling is purely
statistical, in other words, it doesn’t necessarily correspond to what a cheese expert
would qualify as ”High” or ”Low”.

Each of the two data sets as well as the metabolite class were clustered and labeled

separately. The original values of the metabolites amounts and the created labels are
provided in the supplementary table 2.14 (Only for the test datasets. The training
datasets are not published yet).
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Training data and test data: further processing

In this section, we give more details about the processed training and test data sets.
We describe the issues we had to deal with before being able to use these data for
training and validation the predictive models.

1) Same metabolites but different genes

The two transcriptomics datasets were collected from two similar but not totally
identical experiments. The expression profiles of microbes depend on the conditions in
which they grow, therefore, the number as well as the type of the expressed genes vary
from a time point to another, and, from a condition to another.

Given that training and test transcriptomics data were collected using two different
experimental designs, the genes found in these datasets don’t overlap totally. In the
training set 4245 expressed genes were detected while in the test set there were 1279.
The number of common genes between those dataset is 1062 genes (based on KEGG
[149] Orthology Numbers). The problem that arises here is that we can’t train a model
on a given set of features then validate it in a different set, even if the predicted variable
(metabolite class) is exactly the same. So we had two options: 1) training the model
using the full training set (FTS, 4245 genes and 34 observations) and cross-validate
them using the same dataset, i.e. FTS; 2) Training the models on a reduced training
set (RTS) which is a subset of FTS containing only the 1062 common genes with the
test set, then, validate the models on the test set (Table 2.3). Option 1 is good in terms
of completeness, i.e, all the microbial profile is explored by the modeling procedure to
find the best fitting representing the transcriptome-metabolome relationship, but, on
the other hand, the validation is less robust as the models are cross-validated. Option
2 offers a robust validation, as the test set is independent from the training one, but,
almost half of the predictive features (genes) are not explored, and this may result in
a less accurate estimation of the transcriptome-metabolome correlation in cheese.

To guarantee both completeness and robustness, we performed two modeling pro-
cedures in parallel: 1) We trained and cross-validated the classification models using
FTS consisting of 4245 genes/34 samples and, 2) We trained the models using RTS
(1062 common genes/34 samples) then validated them on the independent test set.

Training Set (FTS) | Test Set | Training Set N Test Set | Reduced Training Set

Genes 4245 1279 1062 1062

Samples 34 24 - 34

Table 2.3: The size of the original training (FTS) and test sets, in addition to the created
Reduced Training Set.

2) The data are cursed and imbalanced!

Let’s remind that both FTS and RTS are dimensionally high, i.e, there are more
predictors (genes) than observations (levels of metabolites). There are 34 data points
(metabolite levels) in FTS and RTS, and 4145 and 1062 genes, respectively. This in-
duces what is called ” The Curse of Dimensionality” [156] which is problematic because:

e At a fixed number of data point, the performance of a predictive model increases
as the number of predictors increase until it reaches an optimum corresponding to
the optimal number of predictors. Exceeding this optimum results in a decrease
of the model’s performance. This is known as the Hughes Phenomenon [157].

e Few data point with a high number of predictors cause the model to overfit, i.e,
it can perfectly fit the patterns in the training data but fails to generalize, i.e,
perform good predictions from new data.

e Too many features increases the number of redundant and correlated predic-
tors. A model with many correlated predictors is less informative and generalizes
poorly.
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Secondly, we investigated the levels of the six metabolite classes and we found a
class imbalance, i.e, the "High” label is much more lower than the "Low” one Table
2.4. When the response variable (classes) is skewed, it can break down relatively robust
procedures used for unskewed data [158].

To handle the high dimensionality and class imbalance, we performed and com-
pared three classification approaches (described below): 1) EN models to handle multi-
collinearity and shrink the data; 2) Random Forest classifiers to handle class imbalance;
3) EN-based feature selection followed by RF classifiers to cope with both problems.

Metabolite Training set | Test set
Alcohols 7/27 6/18
Aldehydes 7/27 3/21
Alkanes 12/22 10/14
Ketones 12/22 8/16
Esters 9/25 2/22
Sulphur compounds 9/25 3/21

Table 2.4: The number of High/Low labels associated to each numerical value of the metabo-
lite amounts.

Elastic Net classifiers to handle multicollinearity

As stated earlier, we wanted to train classification models that predict the Low/High
levels of a given metabolite class, based on microbial gene expression values. More
precisely, we trained six different models, each one predicting one metabolite class. In a
similar work, Mallick et al. [139] have trained elastic net regularization model to predict
gut metabolites from the metagenomics data of human gut microbial communities. In
our work, we adopted a similar methodology.

To handle high dimensionality, there exist shrinkage methods such as Ridge [159]
and LASSO [160]. These two methods are designed to shrink the solution space by
constraining the model’s coefficients. The regularization of the model is needed in
the case of high dimensional data to get more stable models. Ridge was initially
designed to handle correlated predictors. It can assigns very small coefficients to non-
relevant predictors, but never assigns a null (0) coefficient. LASSO, on the other hand,
can shrink the number of the predictors by assigning a null coefficient. EN combines
Ridge and LASSO features, i.e, it handles multicollinearity (predictors correlation) and
assigns null coefficient to non informative predictors [161, 162], in addition, EN can be
used for both regression and classification.

In regression models, EN cost function combines Ridge and LASSO as follows:

m
1 2 Z
2
J(Q)ElasticNetRegression = % (h(xz) - yz) +A 1 — Oé 9 + Oél@ |
i=1
~ ~~ 4 -
Mean Squared Error (Data fitting term) Regularlzatlon term (L1 + L2)

with @ are the model’s coefficients, m is the number of the observations (34 in our
case), h(x;) and y; are the predicted and true values of z;, respectively. A is a tuning
parameter that controls the overall strength of the penalty imposed by the Regulariza-
tion term [150, 163]. We can see how the Regularization term in EN combines Ridge
(L2 penalty: 67) and LASSO (L1 penalty: |6;|) by means of the parameter o which is
used to set the compromise between Ridge and LASSO:

0 < a < 1: compromise between Ridge and LASSO
a = 0 : Ridge regularization

a =1 : LASSO regularization
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As stated earlier, we chose to build classification models in our study to predict the
level of the metabolites (”High/Low”) instead of continuous numerical values. To use
EN for classification, the Mean Squared Error term is replaced by the Logistic Loss
term as follows:

1 m
. . L= E —: 1 N — (1 — w1 1— .
J(e)ElastlcNetCla551ﬁcat10n m < [ Y; Og(h(l’l)) ( ?Jz) Og( h(xl>)] +

=1

J/

~
Logistic Loss (Cross-Entropy)

1
A Z {5(1 — )% 4 )]
j=1

N

~
Elastic Net Regularization (L1 + L2)

with:
1

h(z;) = 11 oo

To train the EN classifiers, we used the caret [164] and glmnet [163] R packages.

Random Forest to handle class imbalance

The examination of the response variable (Low/High classes) related to the training
and test data sets revealed a class imbalance for most of the metabolite classes, where
the “Low” class is bigger than the “High” one (Table 2.4). In a similar context, Liu
et al. [165] compared Random Forest, Support Vector Machine and back propagation
neural network in classifying imbalanced metabolomics data and they showed that
Random Forest was the best to cope with imbalanced learning.

The idea behind Random Forest (RF) [166] is that, instead of trying to build one
powerful model, one can build many independent models (the trees) of which the votes
are combined (the forest) to make the final decision. These kind of machine learning
methods that aggregate many predictive models are called ensemble methods.

To give a real-life example that illustrates the idea behind RF, suppose you have
some symptoms (predictors) and you want to know whether you have a serious or
benign health problem (i.e, the class to predict: serious/benign). Instead of seeing one
physician (model), whose diagnostic can be either judicious or wrong, it’s better to see
many physicians (independent models). The final diagnostic about your health state
will be the result of aggregating the votes of the different physicians.

Now that we know where the the word ”Forest” comes from, the adjective ”Ran-
dom” describes how the decision trees are built withing the forest. To make sure that
every tree is different than the others, and thus, yields a quite different information,
RF uses two random sampling methods: bootstrap and random feature sampling.

To illustrate that, suppose the rows in our training data represent the observations
(High/Low metabolite level) and columns represent the predictors (the genes): 1)
Bootstrap randomly samples with replacement rows (the observation) from the training
data; 2) Random feature sampling randomly select a set of predictors (columns); 3)
The randomly selected observations and predictors now constitute a sub-training set
on which a decision tree is built. Finally, the obtained trees are aggregated to build
the Forest. This step is called Bootstrap Aggregation or Bagging. The Forest is then
used to predict the outcomes from new data. For the details and the steps of decision
tree construction, please refer to and for intuitive tutorials and illustrations [167, 168,
169].

Bootstrap helps to reduce the data imbalance as the random selection of observa-
tions can result in sub-training data sets where the classes "High” and ”Low” are more
or less equally represented. On the other hand, random feature sampling contributes
to the improvement of RF models as they reduce the total variance of the created
Random Forest (Viyest). The fact of building trees from different randomly selected
predictors results in a less correlation between these trees:
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Viorest = p02 + uoj

with 7" is the number of the trees in the Random Forest, p is the average correlation
between them and o? is their variance. We can see how a reduced p and a bigger T
can decrease the total variance of the Random Forest.

In our second modeling approach, we trained RF classifiers using caretv 6.0.94
[164] on the original FTS and RTS, without prior selection of predictors. We have
seen that the performances of two different RF models can be significantly different.
Therefore, to effectively assess our modeling procedure, we run 1000 replications with
1000 different random seeds. As a result, we got 1000 similar but not identical RF
models then we averaged their performances to get an overall estimation (Table 2.8).

EN feature selection and RF

In our third modeling approach, we wanted to deal with both high dimensionality and
class imbalance by: 1) Performing a feature selection, i.e, a shrinkage of the data using
EN; 2) Training of RF classifiers using the selected predictors (see Results).

Biological validation of the selected features

To assess the biological relevance of the selected genes (predictors), we performed a
Spearman correlation test [170] between their eigengenes and the amounts of each
metabolite class. The eigengene E is the first principal component summarizing the
expression profiles in each selected gene set [171]. Then, we performed a permutation
test to see how significant is the EN-feature selection as compared to a random gene
selection.

Secondly, these genes have been analyzed to assess their relevance and associa-
tion to biological pathways through over-representation analysis (ORA), using the en-
richKEGG() function from clusterProfiler R package [172]. The expressed genes have
been chosen as background gene list (gene universe). As metabolic pathways are inter-
connected and often overlap [173], i.e, enzymes and metabolites of a specific reaction
chain can be also involved in another reaction chain, we merged selected predictors of
the six models to construct the gene set used to run the ORA.

Assessment of the classification models

For a more accurate estimation of the RF models’ performances, we used metrics
suitable for imbalanced learning: Balanced Accuracy, Area Under ROC curve (AUC),
F1 score and Specificity.

First of all, we define the "Low” class as the Positive (P) class/event, and the
"High” as the Negative one (N). True Positives (TP) and True Negatives (TN) are
the correctly predicted ”"Low” and ”"High” classes, respectively. False Positives (FP)
and False Negatives (FN) are the incorrectly predicted ”Low” and ”High” classes,
respectively.

Accuracy is the simplest metric used for the evaluation of predictive models. It
is the proportion of good predictions,, i.e, TP and TN out of all the predictions
(TP4+FP+TN+FN). Accuracy is widely used, however it can be misleading in the
case of imbalanced classes.

Therefore, we used Balanced Accuracy as an alternative as it takes into account
both the proportions of correctly predicted positive (Sensitivity or recall) and negative
classes, then averages them:

TP + TN
Balanced Accuracy = 2N . TN+FP
Sensitivit TP
ensitivity = ———
YT TP+ FN
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TN
TN + FP

Area Under the Receiver Operating Characteristic Curve (AUC) measures how well
the model discriminate between ”Low” and ”High” classes. 0.5 < AUC < 0.6 indicates
that the models prediction are random. AUC > 0.7 indicates that the model has fair
to excellent (AUC = 1) discrimination ability [174]. The ROC curve plots the variation
of the sensitivity of the model (also called Recall or True Positive Rate (TPR)) as a
function of the variation of the False Positive Rate (FPR, i.e, 1-Specificity). The AUC
is computed as follows:

Specificity =

1
AUC = / TPR(FPR)d(FPR)
0
F1l-measure represent the harmonic mean of Precision and Recall:

Precision - Sensitivity

F,=2.
! Precision + Sensitivity
with
TP
Precision —
recision = w5 TP

The models trained on the F'T'S were assessed using a Leave-One-Out cross-validation
(LOO-CV), whereas those trained on the RTS were estimated using the independent
test set. In the case of RF models, the performances of the 1000 replicates were aver-
aged to get an overall estimation. Feature selection and model fitting were performed
using the R package caretv 6.0.94 [164].

Analysis of microbes’ contribution to the selected features

The selected gene sets from both FTS and RTS were analyzed to define which gene(s)
is expressed by which microbe(s). Each organism’s contribution is represented by a
percentage:

the number of the microbe’s genes in the selected set

Contribution percentage =
P & total number of the microbe’s expressed genes

Microbes highly involved in metabolic process leading to flavor formation should
have high contribution percentages, i.e, the feature selection step should capture more
genes expressed by those microbes. To check this assumption, we measured the re-
lationship between the different microbial species and the metabolites classes. We
computed a Spearman correlation [170] between the growth rate of these microbes
(CFUs?) and the measured amounts of metabolites across the samples.

2.0.3 Results

EN performances

In the Methods section, we showed that EN regression models performed poorly in
predicting the metabolite amounts (numerical values) from the transcriptomics data.
Here, we present the performance of the EN classifiers trained on both F'TS and RTS,
then cross-validated using LOO and validated using the independent test set (Tables
2.5 and 2.6, respectively).

The cross-validation results are overall very good, except the specificity values. We
can see that Alcohols and Aldehydes models could correctly predict only around 50 %
of the minority class ”High”.

4Colony Forming Units: is a unit used to measure microbial growth.
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Model Balanced Accuracy | AUC | F1 | Specificity
Alcohols 0.71 0.88 | 0.93 0.43
Aldehydes 0.71 0.88 | 0.93 0.43
Alkanes 0.79 0.80 | 0.90 0.58
Ketones 0.83 0.83 | 0.92 0.67
Esters 0.94 0.98 | 0.98 0.89
Sulphur compounds 0.94 0.97 | 0.98 0.89

Table 2.5: Performances of the EN classifiers trained on FTS and cross-validated using LOO.

Model Balanced Accuracy | AUC | F1 | Specificity
Alcohols 0.47 0.79 | 0.83 0
Aldehydes 0.48 0.68 | 0.91 0
Alkanes 0.48 0.51 | 0.69 0.1
Ketones 0.47 0.38 | 0.52 0.50
Esters 0.70 0.93 | 0.93 0.50
Sulphur compounds 0.38 0.30 | 0.16 0.67

Table 2.6: Performances of the EN classifiers trained on RTS and validated using the inde-
pendent test set.

The EN models trained on the RTS and validated on the independent test set
yielded poor to moderate performances (BA < 0.48 and Specificity € [0,0.67]). Esters
is the only model with satisfying performances (BA = 0.70 and Specificity = 0.50).

The class imbalance can be the cause of the poor performance of these classifiers,
especially, in predicting the less represented class ”"High”, which is reflected by their
low specificity scores. To try to improve the specificity of the models, we used Random
Forest classifiers (next section).

RF performances

This second classification approach aimed at improving the classification performances
by using RF classifiers which can cope with imbalanced data.

RF models trained on FTS have more or less similar performances as the EN coun-
terpart (Table 2.7)

Model Balanced Accuracy | AUC | F1 | Specificity
Alcohols 0.68 0.90 | 0.90 0.43
Aldehydes 0.68 0.90 | 0.90 0.43
Alkanes 0.80 0.76 | 0.89 0.63
Ketones 0.76 0.75 | 0.85 0.61
Esters 0.94 0.99 | 0.98 0.89
Sulphur compounds 0.84 0.95 | 0.92 0.75

Table 2.7: Performances of the RF classifiers trained on FTS and cross-validated using LOO.

As compared to EN classifiers trained on RTS (previous section), RF models overall
resulted in a net improvement of the prediction performances (Table 2.8), except for
the Sulphur compounds model which totally failed to predict the minority class ”High”
(Specificity = 0).
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Model Balanced Accuracy | AUC | F1 | Specificity
Alcohols 0.77 0.89 | 0.87 0.69
Aldehydes 0.83 0.96 | 0.87 0.87
Alkanes 0.56 0.63 | 0.50 0.73
Ketones 0.44 0.51 | 0.60 0.31
Esters 0.50 0.90 | 0.09 1
Sulphur compounds 0.50 0.60 | 0.93 0

Table 2.8: Performances of the RF classifiers trained on RTS and validated using the inde-
pendent test set.

EN+RF performances

In the third modeling procedure, we combined EN and RF to: 1) shrink the data
set and select the most relevant predictors; 2) train RF classifiers. We were aiming
at handling both predictor multicollinearity and class imbalance. Here we show the
RF performances obtained by both cross-validation (LOO) and validation using the
independent test set.

All the models performed very well in terms of accuracy (BA € [0.82,0.94]) as well
as in prediction of the less abundant class "High” (Specificity € [0.67,0.89]) (Table
2.9). These are promising results however, the cross-validation is not so robust as the
models were trained on F'TS and validate on it using LOO.

Model Balanced Accuracy | AUC | F1 | Specificity
Alcohols 0.83 0.96 | 0.94 0.72
Aldehydes 0.83 0.96 | 0.94 0.72
Alkanes 0.82 0.87 | 0.90 0.67
Ketones 0.82 0.92 | 0.90 0.67
Esters 0.94 0.99 | 0.98 0.89
Sulphur compounds 0.91 0.98 | 0.96 0.86

Table 2.9: Performances of the RF classifiers trained after EN-feature selection, on FTS and
cross-validated using LOO.

For a more robust estimation of the models’ performances, the RF were trained
using the predictors selected from the RTS then validated on the independent test
set. In terms of accuracy, all models were rather good (BA € [0.49,0.83]). Alcohols,
Aldehydes and Esters models had good specificity scores, 0.76, 0.77 and 1, respectively,
while the specificity score for the remaining models ranged from 0 to 0.40. The Sulphur
compounds model still failed to predict any ”"High” class (Table 2.10).

Model Balanced Accuracy | AUC | F1 | Specificity
Alcohols 0.83 0.92 | 091 0.76
Aldehydes 0.79 0.84 | 0.87 0.77
Alkanes 0.49 0.54 | 0.58 0.40
Ketones 0.49 0.52 | 0.79 0.007
Esters 0.58 0.92 | 0.27 1
Sulphur compounds 0.50 0.44 | 0.93 0

Table 2.10: Performances of the RF classifiers trained after EN-feature selection, on RT'S and
validated using the independent test set.

Correlation between the selected predictors and the biological traits

The EN features selection has retained about 0.004-0.03 % and 0.007-0.08 % of the total
number of genes in FTS and RTS, respectively. To assess the correlation between the
selected predictors and the metabolites classes, each predictors set has been represented
by its eigengene E (the first component vector), then Spearman correlation has been
computed between E and the corresponding metabolite class (Table 2.11). In both
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FTS and RTS, E correlates well with the corresponding metabolite class where the
highest correlation was observed for Sulphur compounds and the lowest for Alcohols.

Despite the strong correlations between aldehydes and esters and the corresponding
selected predictors, they are not significantly higher than correlations obtained by a
random predictor selection. In the case of Aldehydes, 20 % and 15 % of the random
correlations were equal or higher than 0.66 and 0.68, respectively. For Esters, 23 % and
42 % of the permuted correlations were equal or higher than 0.85 and 0.77, respectively.
This could be due to the high dimensionality of the data which causes the model to
be unstable, i.e, it can find several patterns that explain well the metabolite-genes
relationship.
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Table 2.11: Number of features selected in each modeling procedure and the correlation of

*. the correlation is not better than random

their eigengene with the metabolites classes.

(pvalue > 0.05).



Secondly, to assess the biological relevance of the selected predictors from both FTS
and RTS, we run an over-representation analysis to see which biological pathways were
significantly represented. Seven metabolic pathways were associated to the predictors
selected by the EN algorithm (Table 2.12).

Microbial metabolism in diverse environments, Phenylalanine metabolism, Biosyn-
thesis of secondary metabolites, Carbon metabolism, Citrate cycle (TCA cycle) and
Glyoxylate and dicarboxylate metabolism. Biosynthesis of secondary metabolites was
exclusively enriched in FTS whereas Pyruvate metabolism was exclusively enriched in
RTS (Table 2.12). Cheese ripening, mainly, the development of aromatic compounds
(alcohols, aldehydes, ketones...) involve many metabolic pathways such as carbon
metabolism and citrate cycle [10, 175].

=
-
wn

Over-represented Pathways RTS
Microbial metabolism in diverse environments
Phenylalanine metabolism
Biosynthesis of secondary metabolites
Carbon metabolism
Citrate cycle (TCA cycle)
Glyoxylate and dicarboxylate metabolism

Pyruvate metabolism v
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Table 2.12: KEGG pathways over-represented using the genes selected from FTS and RTS.

The selected genes will analyzed individually by the biologists with whom we col-
laborate. In Table 2.13 we report some of the genes encoding enzymes involved in
metabolic pathways. The entire selected gene set will be analyzed to depict the inter-
connections between the metabolic pathways in which these genes are involved.

KEGG ID Name Function
K04021 aldehyde dehydrogenase conversion of aldehydes
into acetates
K00121 alcohol dehydrogenase conversion of primary

and secondary alcohols
to the corresponding
aldehyde or ketone
KO01579 aspartate 1-decarboxylase synthesis of vitamin Bj
required to synthesize
coenzyme A which is es-
sential for cellular en-
ergy production for the
synthesis and degrada-
tion of proteins, carbo-
hydrates, and fats.
K00232 acyl-CoA oxidase enhances ketone forma-
tion

K00683 glutaminyl-peptide cyclotransferase | degradation of peptides
into free amino acids
K01069 hydroxyacylglutathione hydrolase | D-lactate biosynthesis
from methylglyoxal

Table 2.13: Non-exhaustive list of the genes selected by the EN algorithm and their biochem-
ical functions.

Microbes’ contribution to the signatures

The comparison of the bacterial and yeast’s expression profiles in both training and test
transcriptomics data showed that yeasts express about two to three times more genes
(mRNAs) than bacteria. It was expected that the yeasts would contribute more to
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the models’ signatures, however, the EN feature selection has retained more bacterial
than yeast’s genes as shown in figure 2.2. In FTS-selected gene set, the percentages of
selected genes from each bacteria were: Ga 13 %, Ba 20 %, Cc 10 %, Ha 10%, LI 11
%, Se 13 %, Dh 5 %, Ge 5 % and Kl 6 %. This holds true also in RTS where bacteria
contributed more then yeasts to the selected gene set: Ga 30 %, Ba 41%, Cc 27 %,
Ha 26 %, Ll 24 %, Dh 14 %, Gc 11 % and Kl 16 %. In both selection procedures,
Ba species had the highest contribution. Note that the percentages dont’ sum up to
100 because each microbe’s percentage is independent from the others, i.e. the number
of selected genes belonging to each microbe was divided by the total number of its
expressed genes, and not by the total number of selected genes (see Methods).
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Figure 2.2: Contribution percentage of each siaecies to the selected gene sets from both FTS
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This suggests that, in this specific case, i.e, experimental cheese, bacteria contribute
to flavor formation more than yeasts. These observations are in line with the correlation
results (Figure 2.3) where flavor amounts were more correlated with the growth of
bacteria than yeasts. In other words, the increase or decrease of bacterial metabolic
activity due to a decreases/increase of their number, induces a significant variation of
the cheese flavor profile.
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Figure 2.3: Spearman correlations between microbial growth and metabolites amount. Black
crosses represent non-significant correlations. The areas of the circles and the colors’ intensity
are proportional to the absolute value of the correlation coefficients.

2.0.4 Conclusion

The training of predictive models on highly dimensional and imbalanced data is chal-
lenging. To cope with these problems, we performed three modeling procedures to
build classifiers that can predict the flavor profile of cheese from its microbial expres-
sion profile. To rank our modeling approaches, we averaged the obtained performances,
specifically, the balanced accuracy (BA) and the specificity, to get an overall estima-
tion. The considered models were those which were trained on the RTS and validated
on the independent test set, as this is the most robust way to assess a predictive model.

In terms of accuracy, the Random Forest classifiers trained on predictors selected
by EN were the most robust (Average BA = 0.83), then, come the RF models trained
on predictors selected by EN with an average BA = 0.77, and, lastly, the EN classifiers
with BA = 0.47. In terms of their capability to correctly predict the minority class
"High”, the RF models trained without prior feature selection were the best (Average
Specificity = 0.60), then come the RF models trained on selected features with an
average specificity = 0.49. The EN models had the lowest average specificity which
was equal to 0.30.
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Statistically, the model performances are satisfying given the challenging data they
were built on. In terms of biological relevance, we showed the EN feature selection and
regularization method could select genes that are significantly associated to metabolic
pathways.

2.0.5 Discussion

Here we review the work and try to point out some issues and propose alternatives to
overcome them.

First, the data we started from were not very suited for training predictive models
as they were sparse, i.e, having few data points (34 observations) and a large number
of predictors (FTS: 4145 genes; RTS: 1062 genes), in addition to the existence of class
imbalance. All these aspects induces many problems such as over-fitting, predictors
multicollinearity and decreased specificity. Furthermore, as we couldn’t train robust
regression models, we opted for classification ones but no human expert labeling of
the numerical values were available for these experiments. Therefore, to assign a label
"High/Low” to each metabolite amount we used a pure statistical method, i.e. K-
Means clustering, by assuming that that the metabolites amounts can be grouped into
two groups, and this doesn’t hold true for all the metabolites in the two experiments.
For some of metabolites, it’s hard to clearly distinguish two distributions (e.g. Esters
in Figure 2.1 a). This approximate clustering of the outcome variable comes at a cost,
it resulted in a class imbalance for most of the metabolites, which in turn makes the
training and the validation of the models more challenging.

Nevertheless, the performances of the cross-validated models were very satisfying
with an accuracy ranging from 68 % to 94 %. Furthermore, we provided also a more
robust validation using a totally independent test set, overall, the performances of
these models were satisfying and their predictions were significant (AUC > 0.5) It’s
true that most of them suffered from a low specificity, but in average, their accuracy
can be qualified as good.

The usefulness of such models that are in general accurate but less powerful when it
comes to predict the minority class, is a topic of discussion in the scientific community
[176, 177]. Should we discard them or they are still useful? Actually, it will depend
on the context and the reason they are used for. If one aims at correctly predicting
the majority class then these models can be effective, but, if one is interested in the
rare events (minority class) because of their importance, then low-specificity models
will not be so useful.

One of the objectives of this study was to demonstrate that estimation of cheese
flavor profile from the gene expression of the microbial communities is feasible. These
straightforward estimations can make cheese quality control faster and cheaper as com-
pared to the traditional metabolomics and sensory approaches. To this aim, more
robust and generic models can be built if cheese big data will be made available, es-
pecially, transcriptomics and metabolomics data. Therefore, there is a need to create
such databases where omics-data of different cheeses are merged and made available
for different analyses, especially, machine learning. These models can be then used by
industrials during cheese making processes for a more effective quality control.

Elastic Net regularization was successfully used to select genes associated to phe-
notypic traits. Torang et al. [178] used EN to find gene signatures that can distinguish
between the types of immune cells. In our study, we could select genes significantly
related to metabolic pathways. We can make use of such algorithms in the field of
metabolic engineering. In a nutshell, metabolic engineering (ME) aims at modifying
the cells regulatory and metabolic pathways to obtain desirable functions and prod-
ucts [179]. This technique has been used to create modified microorganism used for
bioremediation (degradation of xenobiotics) and production pharmaceutical. In food
industry, modified microorganisms have been used for many tasks, such as improve-
ment of starch utilization in bakery and improvement of lactic acid production in dairy
products [180, 181]. ME relies on the identification of key genes related to the traits
and functions one wants to improve, therefore, machine learning algorithms can be
effective tools to identify these genes-traits relationships.
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2.0.6 Supplementary data
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Table 2.14: Labeling of the numerical metabolite amounts in the test set.



Chapter 3

Network diffusion analysis to
elucidate antimicrobial resistance
mechanisms of E. col: and reveal
potential drug targets

3.0.1 Introduction

The continuous increase of antimicrobial resistance (AMR) is of concern for public
health. Out of 4.95 millions deaths caused by microbial infections, it was estimated
that bacterial AMR was directly responsible for 1.27 million global deaths in 2019
[182]. AMR is defined as the ability of microbes to survive and bypass the effect of
different antimicrobial agents such as antibiotics, disinfectants, and food preservatives.
The misuse and overuse of these agents can cause bacteria, viruses, fungi and parasites
to adapt by developing protective mechanisms such as mutations, metabolic adapta-
tions and secretion of anti-antimicrobial molecules. The microbes can become totally
resistant or less susceptible against the antimicrobial agents, as a result, the disease
spread increases and leads to severe illness, disability and deaths [183, 184, 185].

The emergence of multidrug-resistant or pan drug-resistant Gram-negative bac-
teria suggests the need to focus the research of both the scientific community and
pharmaceutical companies on the development of new antimicrobials. In the past, the
approach to drug discovery was essentially based on the analysis of one or two levels
of biological information linked explicitly to the target and mechanism of action of
the molecule within a biological model. More recently, with the progress in omics and
computational sciences, the scientific community has reached an increasing awareness
that genes and proteins are not acting as standalone molecules, but they interact on
multiple hierarchical levels as complex networks [186, 187, 188]. In the cell, proteins
are organized in complex structures and collaborate to perform biological functions.
A comprehensive mapping of interactions between genes in the genome is a relevant
information to understand such processes . Protein—protein interaction (PPI) networks
aim to grasp this complex pattern of interactions by modeling individual proteins as
vertices, and their relationships as undirected edges. In general, coding genes are
considered to have a one-to-one relationship with proteins. PPI information can be
retrieved from a variety of resources based on known and/or computationally predicted
interactions. In on-line resources such as STRING [189], GeneMANIA [190], FunCoup
[191] and ConsensusPathDB [192], experimental data are integrated with interaction
prediction algorithms, thus aiming for high comprehensiveness and coverage.

Meaningful biological insights can be extracted from biological networks through
different network-based analyses. Network diffusion (ND) is used in many contexts such
as gene prioritization, function prediction, survival prediction and disease sub-typing
[193]. ND relies on the propagation of information (signal) from already characterized
source nodes ("seed” genes, proteins, metabolites...) through the network. Basing on
the guilt-by-association principle [194], nodes that are more adjacent to the source
nodes will be prioritized and will accumulate more signal after convergence, and thus,
they will be more likely related to the phenotypic trait or the function of interest [195].
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In biological studies, ND has been used for different purposes such as the prediction
of functional associations of unannotated gene sets [196], the prediction of protein
functions [197], and the identification of cancer gene mutations [198]. Recently, ND
was applied to immune-related protein interaction networks to identify key proteins
that can be new COVID-19-drug targets [199].

Objective of the work

In this work, we aimed at deepening the knowledge of AMR mechanisms in Fscherichia
coli in order to provide relevant biological insights that can contribute to the develop-
ment of new antimicrobial therapeutic strategies.

Summary

We propose a systems biology approach to identify genes and biological pathways asso-
ciated with AMR, by mapping known AMR-related genes from CARD and PointFinder
databases into the E. coli protein interactome. Through a network diffusion algorithm
already applied in similar contexts, we identified network modules, consisting in a list
of genes and pathways, in part already known to be involved in AMR mechanisms
and in part new, out of which we selected relevant gene candidates for in vitro suscep-
tibility testing knockout mutants against nine different antibiotics. Compared to the
wild-type E. coli BW251183, the mutants AuhpB, AmdaB, ArpmG and ArplA showed
a significant shift in their anti-microbial susceptibility to streptomycin, ciprofloxacin,
ampicillin, tetracycline and chloramphenicol. Both experimental (susceptibility tests)
and statistical (ORA) validations demonstrated the effectiveness of network-based in
silico approaches such as ND in discovering relevant genes associated to AMR in F.
coli.

Our results contribute to a better understanding and characterization of antimi-
crobial resistance in E coli, furthermore, the in vitro validated genes represent new
putative drug targets.

3.0.2 Methods and Materials

Protein-Protein Interaction Networks (PPI)

For tour analysis, we used the PPI network of the reference organism FE. coli K12
MG1655 available on STRING-v11.5 [200]. The PPI undirected interactions were
collected based on the “b number” E. coli gene identifiers for each node. A total
of 4053 nodes and 33656 edges were retained, considering only relationships between
proteins characterized by a high combined confidence score (score > 0.7) as provided

by STRING website.

Mapping known antimicrobial resistance genes on E. coli K-12 MG1655
PPI

CARD (v3.2.7, https://card.mcmaster.ca) [201] and PointFinder (v.4.1.0) [202] databases
were selected as comprehensive databases of AMR-related genes. In total, we collected

a list of 34 AMR-related genes from the two databases that could be mapped onto the
E. coli’s PPI (Table 3.1): 32 genes from CARD, 2 from PointFinder. These genes were
used as "seed genes” for the network diffusion procedure.
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b# | Gene Name | CARD | PointFinder
B0463 AcrA v
B0464 AcrR v
B0543 EmrE v
B0578 NfsB v
B0842 MdfA v
B0851 NfsA v
B0929 OmpF v
B1093 FabG v
B1288 Fabl v
B1530 MarR v
B1782 GyrA v v
B2231 GlpT v
B2240 Ptsl v
B2416 ParC v v
B3019 ParE v v
B3030 FolP v v
B3177 MurA v
B3189 UhpT v
B3669 UhpA v
B3699 GyrB v v
B3806 CyaA v
B3912 CpxR v
B3987 RpoB v
B4036 LamB v v
B4062 SoxS v
B4063 SoxR v
B4150 AmpC v v
B4396 Rob v
B4113 | BasR/pmrA v
B4112 | BasS/pmrB v
B0084 | FtsI(PBP3) v
B3339 | TufA/EFTu v
B3980 | TufB/EFTu v

Table 3.1: List of CARD and PointFinder genes mapped to E. coli K-12 MG1655 protein-
protein network. The column ” Gene_name” reports the genes’ SYMBOL IDs and their syn-
onyms, if any.

The seed genes list comprises the genes annotated with the prefix “Ecol ” according
to CARD annotation. Genes related to AMR in E coli without this prefix are left as
a validation gene set to assess how well the diffusion approach can recover genes that
are already well known to be involved in AMR.

Network diffusion Analysis

To identify genes and pathways associated with AMR, we employed the Bersanelli et al.
[51] network diffusion algorithm from the R package diffuStats [203]. This algorithm
consists in a random walk with restart, in which the initial 34 AMR gene list and the
E. coli K-12 MG1655 gene interaction network represent the inputs.

The network diffusion process simulates fluid dispersion in the network, in which the
seed genes act as fluid (information) sources. The diffusion starts with an initial vector
So of scores for each node: sy(seed_gene) = 1, so(not_seed_gene) = 0. Then, given the
network’s adjacency matrix A, the algorithm iteratively propagates the information to
the non_seed_genes to produce a score vector S* at convergence for all the nodes:

Sip1 = aA s+ (1 —a)sg

where o defines the probability for the fluid to be retained by the source nodes.
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It controls how much information is kept in the nodes versus how much tends to be
spread through the network. The convergence is reached when there is no significant
difference between s,,1 and s;:

|8t+1 — St| < ].0_6

In our study, we assign an initial score of 1 to the seed genes only. Due to the
diffusion process, the genes with high connectivity degree, i.e. the network hubs, may
accumulate more fluid, thus acquiring a high diffusion score s* at convergence, only
because of their central position in the network. Thus, to mitigate this hub effect we
consider the smoothed version of the s* as previously described [51].

To select the top-ranking genes, sorted by their diffusion score s* after convergence,
a permutation procedure was applied by running 1000 diffusions with 34 randomly as-
signed seed genes at each iteration. A p-value for each true s* score was then computed
(p_val = proportion of random scores > true s* score). Genes having an s* score with
p-value < 0.01 were selected as top-ranking AMR-related genes. In total, there were
127 selected genes (including the 34 seed genes) with a significant diffusive score.

Community detection: Louvain algorithm

From the initial E. coli PPI, we extracted a sub-network corresponding to the top-
127 genes selected by the network diffusion step. We run the Louvain algorithm [65]
implemented in igraph R package [204] to detect communities within these sub-network
and try to associate them with specific biological pathways in which these genes are
involved. We chose this method due to its proven good performances in detecting
communities in complex networks [60].

The Louvain method is so called because all the authors were connected to the
Catholic University of Louvain in Belgium [205]. It is an unsupervised community
detection algorithm based on modularity optimization, i.e, it creates clusters such that
the forming nodes have the optimal modularity. The algorithm has two phases:

e Phase 1: all the nodes of the network are considered as starting communities,
then, local communities are built by linking each individual node with its neigh-
bors. Secondly, each of the initial nodes are moved from their local community to
a host-community, i.e, another local community to which the moved node doesn’t
belong. If the moved node increases the modularity of the host community then
it’s kept there. This operation is done for all nodes until obtaining local com-
munities yielding an optimal modularity score. Finally, these communities are
aggregated to build super-nodes.

e Phase 2: starting from the super-nodes a new network is built. The super-nodes
are interlinked to each other if there exists at least one edge connecting two nodes
from two different super-nodes.

Now that a new network is obtained, the Phase 1 procedure is repeated.

e Convergence of the algorithm: Phase 1 and Phase 2 are repeated iteratively
until no improvement of modularity is observed. The resulting communities will
be then the output of the algorithm.

Pathway enrichment analysis

KEGG pathway annotation [149] was used for the identification of over-represented
pathways. The selected genes were used to perform an over-representation analysis
(ORA) based on hypergeometric distribution via the R package clusterProfiler [206].
The p-values of the enrichment analysis were corrected for multiple testing by using
the Benjamini-Hochberg post-hoc method [207]. An FDR < 0.05 value was chosen to
define the significantly over-represented pathways.
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Validation of identified genes

Out of the genes prioritized by the network diffusion algorithm, 13 genes were selected
for in wvitro evaluation as potential antimicrobial resistance targets. The knockout
strains used in this study were obtained from the KEIO collection [208], including
the parent strain Fscherichia coli BW25113. All strains were initially streaked on
LB agar (Sigma Aldrich), prepared according to the manufacturer’s instructions, and
incubated at 37°C. Isolated colonies from these plates were then cultured in LB broth
(Sigma Aldrich) for subsequent antibiotic susceptibility testing.

Antibiotics Susceptibility Test

The assessment of antibiotic susceptibility in F. coli isolates was conducted utilizing
the Kirby-Bauer disc diffusion method following the protocols outlined by the Clinical
and Laboratory Standards Institute [209]. A total of nine antimicrobial agents were as-
sessed: Ampicillin (10 pg), Chloramphenicol (30 ug), Ciprofloxacin (5 ug), Fosfomycin
(200 pg), Penicillin G (10U), Polymyxin B (300U), Spectinomycin (10 ug), Strepto-
mycin (10 pg), and Tetracycline (30 pg). Initially, the E. coli isolates were cultured in
nutrient broth and then incubated at a temperature of 35 + 2 °C for 18-24 hours. The
bacterial suspension was subsequently standardized to a 0.5 McFarland turbidity stan-
dard, resulting in a concentration of around 108 CFU/ml. Employing cotton swabs,
the bacterial suspension was uniformly distributed on Mueller-Hinton agar plates and
allowed to air dry for 15 minutes. The antibiotic discs were positioned on the agar
surface with a minimum distance of 30 mm between each disc. Subsequently, the
plates were inverted and aerobically incubated at a temperature of 35 £+ 2 °C for 16-
18 hours. The zones of inhibition were quantified using an automated colony counter
(Interscience Scan500) and interpreted in line with the recommendations provided by
the CLSI [210]. To ensure quality control, the E. coli ATCC 25922 strain was utilized.
The bacteriological media were procured from HiMedia Laboratories in Mumbai, India,
while the antibiotic discs were sourced from Thermo Scientific™ Oxoid™.

For each tested antibiotics, the average inhibition diameters of the mutants were
compared to the wild type using an unpaired Student’ s T test. The p values were
adjusted for multiple hypothesis testing using the Benjamini-Hochberg post-hoc cor-
rection for multiple tests [207]. The statistical analysis was carried out using R [154].

3.0.3 Results

Network-based and pathway analyses

First, the 34 AMR-related seed genes extracted from CARD and Pointfinder databases
(Figure 3.1) shows the inter-connectedness of these genes. The over-representation
analysis (ORA) of these seed genes resulted in six inter-connected KEGG pathways:
beta-Lactam resistance, Cationic antimicrobial peptide (CAMP) resistance, T'wo-component
system, Fatty acid biosynthesis and metabolism and biotin metabolism. These results
reflect the complexity of the antimicrobial mechanisms which can involve more than

one biological pathway [211, 212].
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Figure 3.1: Subnetwork of the 34 known antimicrobial genes (seed genes) with the links found
in F coli PPI STRING interactome.

The ND generated a list of 127 genes associated to AMR: 34 are the original seed
genes, while the remaining 93 constitute the novel achievement of our approach. We
considered the PPI sub-network induced by the 127 gene list, consisting of one big,
connected component of 117 nodes and two small components of 6 and 3 nodes, and one
isolated node. ORA applied to these 127 genes resulted in seven significantly enriched
pathways, namely, Ribosome, CAMP, beta-lactam resistance, Fatty acid biosynthesis,
Peptidoglycan biosynthesis, Fatty acid metabolism and Biotin metabolism (Table 3.2).
These results overlap with the ones obtained by using ORA applied to the 34 seed genes
only. This suggests that the 93 prioritized genes added by the diffusion algorithm were
consistent with antimicrobial resistance pathways in F. coli.

Mapping these pathways to the eight network clusters defined by the Louvain com-
munity detection algorithm (Figure 3.2 a and b) resulted in a partial overlap: Ribo-
some pathway overlaps with cluster 3, CAMP with cluster 6, beta-lactam resistance
with cluster 1, Fatty acid biosynthesis/metabolism and biotin metabolism, which share
their genes, overlap with cluster 4, Peptidoglycan biosynthesis overlap with cluster 2.
These cluster are partially consistent with biological pathways due to the overlapping
nature of these latter. For instance, CAMP, peptidoglycan and beta-lactam resistance
as well as fatty acid metabolism/biosynthesis and biotin metabolism are pathways that
have several genes in common: genes and proteins can have multiple functions, and
thus, be involved in multiple pathways.
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Figure 3.2: (a) The Induced sub-network of E. coli k-12 MG1655 protein-protein network
with 127 genes colored by membership to one of the 8 clusters identified by the Louvain
community detection algorithm. (b) Plot of the same network with genes colored by KEGG
pathway annotation. The isolated gene emrFE is not shown.
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Before reviewing the identified genes individually (next section), we analyzed their
relation to AMR in E coli at the pathway level by considering the over-represented
pathways (Table 3.2). Ribosome was the most significant and largest pathway with
seventeen 30S and 50S ribosomal subunit proteins responsible for decoding mRNAs
and control of translation fidelity, and the catalysis of protein synthesis, respectively
[213]. Interestingly, none of them was a seed gene. We investigated their first-order
neighborhood and we found four seed genes: tufA, tufB, rpoB and gyrA (Figure 3.3).
These links have allowed the information flow to reach ribosomal genes and made
them appear in the top-ranking list. The diffusion process was thus able to uncover
the relation between AMR and ribosomes which represent important targets of many
antimicrobial therapeutical strategies, such as miscoding using streptomycin and paro-
momycin [214], minimization of ribosomal mobility [215], blockage of the protein exit
tunnel [216].

-

®
@

Seed genes

® Ribosomal genes

Figure 3.3: A sub-network showing the links between the seed genes tufA, tufB, rpoB and
gyrA with the ribosomal genes prioritized by the network diffusion algorithm.

CAMP resistance pathway was the second largest enriched pathway (11 genes).
The cationic peptides (CPs) are antimicrobial components naturally expressed by ani-
mals, plants and even bacteria [217]. Through electrostatic interactions, they bind the
outer layer of the bacterial cytoplasmic membrane and induce the lysis of the targeted
microbial cell [218]. Bacteria can acquire resistance against CPs through different
mechanisms such as the modification of the cell surface structure and its net charge in
gram-negative bacteria to alter CPs binding [217]. Another CAMP resistance mecha-
nism observed in E. coli and S. aureus relies on the trapping and proteolytic degra-
dation of CPs by producing of metalloproteinases [219]. Moreover, it has been shown
that E coli and other bacteria have developed another strategy to survive in CP-rich
environments. It consists in the release of negatively charged capsular polysaccharides
to neutralize and titrate CPs by means of electrostatic interactions [220].

Beta-lactams (BL) are antibacterial designed to disrupt the peptidoglycan struc-
turation to provoke cell wall defects that lead to the lysis of the targeted bacteria.
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Beta-lactam resistance (3rd over-represented pathway) is one of the early characterized
and most successful AMR strategies used by bacteria [221], which acquire resistance
against BL, such as penicillins, through different mechanisms: (1) Inactivation and
destruction of the antimicrobial through beta-lactamases (2) Decreased penetration of
the antimicrobial to the target site or alteration of the target site itself (3) Excretion
of BL molecules through efflux pumps [222].

Finally, the over-represented pathways fatty acid, peptidoglycan and biotin biosyn-
thesis/metabolism can contribute to AMR resistance through global cell adaptations
of the bacteria such as metabolic adaptations and cell envelop homeostasis. Fatty acids
biosynthesis is a key pathway in bacterial cell growth; therefore, it represents an impor-
tant antimicrobial target [223]. E. coli can acquire resistance to antibacterial agents
that inhibit its lipid synthesis such as triclosan by altering its target, the enoyl-[acyl-
carrier-protein| reductase fabl. A missense mutation in fabl hinders triclosan activity
by reducing the binding affinity of the complex fabl-triclosan [224]. Survival strate-
gies relying on membrane homeostasis are found in many pathogens to increase their
fitness in the presence of environmental stressors such as antibiotics [225]. It has been
observed that increased tPMP (thrombin-induced platelet microbicidal protein) resis-
tance in S. aureus is due to a higher cell membrane fluidity caused by a preponderance
of longer chain, unsaturated fatty acids [226].

Peptidoglycan sacculus (PS) is an elastic and net-like polymer that surrounds the
cytoplasmic membrane in most bacteria. It contributes to the preservation of the
cell integrity during growth and division and the protection of the bacteria against
environmental challenges such as osmotic stress [227]. PS structuration is disrupted
by BL that target the penicillin-binding proteins responsible for the synthesis of the
4—3 peptidoglycan cross-linking. To cope with BL effects, E. coli expresses the L,D-
transpeptidase YcbB which catalyses an unusual 3—3 peptidoglycan cross-linking to
maintain cell wall integrity [228].
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Pathway

FDR

# Genes
Network

in

Gene IDs

# Total GGenes
in Pathway

Seed
Genes

Ribosome

4.43e-07

17

rpsB,
rpsA,
rpml,
rplM,
rplQ,
rpsM,
rpsQ,
rpsC,

rplV,
rplW,
rpsd,
rpm@G,
rpmB,
rplA, rplJ,
rpsF, rpsR

78

CAMP

tance

resis-

2.3e-06

11

IpxA,

acrB,

acrA,
pagP,
phoP,
marA,
pmrD,
tolC,

cpxR,
basS, basR

36

AcrA,
cpxR,
basS, basR

Beta-lactam re-
sistance

2.3e-06

ftsI, acrB,
acrA,
mrdA,
ompkF,
ompC,
tolC,
ampC

17

ftsl, acrA,
ompkF,
ampC

Fatty acid

biosynthesis

8e-05

fabZ,
fabD,
fabG, fabl,
accD, fabB

13

fabG, fabl

Peptidoglycan
biosynthesis

3.7e-04

ftsl, murF,
murD,
murG,
murC,
mrdA,

murA

24

Ftsl, murA

Fatty acid

metabolism

1.3e-03

fabZ,
fabD,
fabG, fabl,
accD, fabB

21

fabG, fabl

Biotin
metabolism

1.4e-02

fabZ,
fabG, fabl,
fabB

14

fabG, fabl

Table 3.2: Results of the pathway enrichment analysis (ORA) applied to the 127 genes in-
cluding 34 seed genes and 93 AMR-~associated genes newly identified by the network diffusion

algorithm.
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Literature validation of the prioritized AMR genes

In table 3.3 we listed the nodes (genes) with the highest diffusive score s* in each over-
represented pathway (excluding original seed genes). The complete list of the identified
genes and their annotation is provided in the supplementary table 3.5. Except rpmB, all
genes in table 3.3 are already known to be associated to AMR in many microorganisms
including E coli. For each gene, we reported the information source (literature and/or
CARD) where a detailed description of the AMR mechanism is provided.

Gene | s* Annotated Pathways Source
uhpB | 0.26 No [229]
uhpC | 0.25 No [229]
rpmB | 0.027 Ribosome

rpsj | 0.026 Ribosome [230], CARD
rpmG | 0.026 Ribosome [231]
marA | 0.1 CAMP resistance [232], CARD
pmrD | 0.05 CAMP resistance [233, 234]
ompC | 0.04 Beta-lactam resistance (235, 236], CARD
fabD | 0.05 Fatty acid biosynthesis/metabolism/Biotin [237]
rabB | 0.04 Fatty acid biosynthesis/metabolism/Biotin [238]
fabZ | 0.04 Fatty acid biosynthesis/metabolism/Biotin [239]
murC | 0.04 Peptidoglycan biosynthesis [240]
tolC | 0.09 CAMP resistance/Beta-lactam resistance CARD
actB | 0.07 CAMP resistance/Beta-lactam resistance CARD
mrdA | 0.04 | Beta-lactam resistance/Peptidoglycan biosynthesis [241]

Table 3.3: Most relevant genes considering the highest values of diffusion score Sx (excluding
seed genes) and their biological pathways.

uhpB and uhpC' are inner membrane proteins belonging to the phosphorelay system
uhp B-uhp C-uhpA responsible for sensing glucose-6-phosphate and its accumulation into
the bacterial cells. Chromosomal mutations of uhpB and uhpC' confer resistance to
fosfomycin in E. coli CFT073 [229].

308 and 50S ribosomal subunit proteins constitute the largest over-expressed path-
way (Ribosome, 17 genes, Table 3.2). Under high tigecycline concentrations, nine
populations of E. colv BW25113 were able to grow due to a reduced susceptibility
conferred by a mutation in the ribosomal S10 protein rpsJ [230].

marA is transcriptional dual regulator which is part of the multiple antibiotic re-
sistance (MAR) chromosomal locus in F coli. It has a positive regulatory activity on
acrAB-tolC efflux pump system that confers a multi-drug resistance by an active trans-
port of antimicrobial molecules outside the cell [242, 243]. In a recent study [232], two
highly resistant FE. coli strains EV18 and EVC (resistant to NF and chloramphenicol,
respectively) have been found to have a low cytoplasmic pH compared to the sensitive
wild-type. It has been shown that MAR operon can contribute to the decrease of cy-
toplasmic pH, which is considered as a basal microbial protection mechanism against
antimicrobials.

pmrD is a signal transduction protein, when over-expressed in Salmonella Ty-
phimurium it confers resistance to polymyxin B [233]. E. coli has a pmrD homologue
which is required for the modification of the lipopolysaccharide structure of lipid A.
This modification has been shown to promote resistance against CPs [234].

ompC' is one of the major outer membranes porins in F. coli playing an important
role in protecting the bacterial cell against harmful physical and chemical stressor such
as toxins and antibiotics [244]. The over-expression of membrane porins in E. coli leads
to reduced susceptibility to BLs and other antibiotics [235, 236]. BL antibiotics such
as carbapenem and diazabicyclooctane are effective inhibitors of the penicillin-binding
proteins (PBPs) involved in bacterial cell wall biosynthesis. Several E. coli clinical
isolates are less susceptible to these antibiotics because of the presence of mutations in
the mrdA gene (PBP2) [241].
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fabD, fabBand fabZ genes play essential roles in fatty acid biosynthesis and elonga-
tion in E. coli [245, 246]. fadDB mutants have been shown to be resistant against the
calmodulin antagonist trifluoroperazine. This resistance could be due to a modification
of the cell membrane permeability through a modulation of its fatty acid composition
[237]. Thiolactomycin antibiotic (TLM) is a type II fatty acid synthesis inhibitor. In
TLM-resistant E coli strain ANS1, a missense mutation of fabB gene (T1168G) leads
to a functional fabB protein carrying a valine amino acid at position 390 (F390V).
The valine’s side chain hinders TLM effect by preventing the formation of TLM-fabBG
complex [238]. Finally, chromosomal mutations in the dehydratase fabZ have been
associated to a 200-fold increased resistance against LpxC inhibitors [239].

Because of their essential role in maintaining microbial cell integrity, genes in-
volved in PS biosynthesis are interesting antibiotic targets, such as murC, an UDP-
N-acetylmuramate-alanine ligase responsible for the addition of the first amino acid
of the peptide moiety in the assembly of the monomer unit of peptidoglycan [247].
This gene has been targeted with a pyrazolopyrimidine antibiotic in bothF. coli and
Pseudomonas aeruginosa, and when the intracellular concentration of this antibiotic is
optimal, murC enzymatic activity is inhibited in E. coli [240].

In vitro antibiotic susceptibility of mutants

In order to phenotypically investigate their role in AMR, 13 newly identified genes
were selected for knockout experiments, based on the following criteria: 1) genes cod-
ing for proteins with functions potentially related to mechanisms of action of known
antimicrobial agents; 2) Not seed genes 3) not essential genes (i.e. genes for which the
knockout is not fatal for the bacterial cell). These genes were: uhpB (JW3643-KC),
mdaB (JW2996-KC), yiel’ (JW3691-KC), pitB (JW2955-KC), mplA (JW3947-KC),
wurB (JWO0762-KC), rpmG (JW3611-KC), rpsF (JW4158-KC), nemA (JW1642-KC),
ompC (JW2203-KC) ompT (JW0554-KC), yeaD (JW1769-KC) and yeaE (JW1770-
KC). uhpB is a sensor HK protein which controls production of the sugar phosphate
transporter uhpT [248]. G469R mutation in the uhpB gene was associated to fos-
fomycin resistance [229]. The susceptibility of the knockout mutant to other antimi-
crobials with similar mechanisms of action than fosfomycin was not yet investigated.
mdaB is a NADPH oxidoreductase that protects cells against quinonoid compounds
[249]. Tt has been reported that the protein is able to confer resistance to the an-
tibiotics DMP 840, adriamycin and etoposide [250]. yieF' is a chromium reductase
involved in bacterial tolerance to this heavy metal [251]. pitB is a phosphate trans-
porter [252]. In the cell, ortophosphates were suggested to link heavy metals. Metal
phosphates are transported out of the cell by pitB contributing to heavy metal resis-
tance, [252]. rplA is a ribosomal protein. The knockout of the corresponding gene
has been associated to zinc resistance [253]. Co-resistance against antimicrobials and
heavy metals was described as synergistic with the potential to antimicrobial resistance
[254]. In particular, heavy metals promote the spread of antimicrobial resistance genes
and bacteria in the environment [255]. worB is involved in the SOS response associ-
ated to DNA biosynthesis and repair [256]. Another protein involved in DNA repair
is rpmG which was associated to resistance against mitomycin C, a natural antimi-
crobial synthesized by Streptomices caespitosis and associated to DNA damage [231].
The rpsF gene codes for S6 ribosomal protein [257]. Mutations in ribosomal proteins
have been already described as associated to erytromycin, spectinomycin and strepto-
mycin resistance in F. coli [258]. The yeaD gene encodes for the d-exose-6-phosphate
epimerase-like protein which is involved in galactose metabolism [259, 260]. Bacterial
epimerases are involved in complex carbohydrates polymer that are used in cell wall
and cell membrane [260]. Finally, the nemA gene encodes N-ethylmaleimide reductase
in Escherichia coli [261]. The presence of the gene was associated to higher resistance
of E. coli to acid hydrolysate of sugarcane bagasse [262]. The correlation between acid
tolerance and antimicrobial resistance has been previously described [263]. ompT is a
protease located on the outer membrane and participating to the adhesion of E. coli
0157:H7 to human epithelial [264].
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Mutant | Streptomycin | Ciprofloxacin | Ampicillin | Tetracycline | Chloramphenicol
WwWT I I S S S

uhpB 1 (0.016) 1(0.012) I* S (0.016) S*

mdaB I (0.05) I* R* S (0.05) S (0.03)
rpmG I (0.02) S* S* S* S (0.015)
rplA S* S* S* S* S*

Table 3.4: Susceptibility tests of the selected mutants as compared to the wild-type according
to CLSI standards. S: Sensitive, I: Intermediate, R: Resistant. *: the inhibition zone diameter
of the mutant is significantly different than the WT at p.value < 0.01. p.values > 0.01 are
included between parentheses. Some mutants didn’t shift their AMR class even when their
inhibition zone diameter was significantly different than the wild-type.

As expected, not all the knockout mutants showed a different antimicrobial sus-
ceptibility phenotype than the wildtype, suggesting that they are not involved in an-
timicrobial resistance, or their involvement might be synergistic with other genes to be
explored. Following antimicrobial susceptibility tests, uhpB and mdaB Keio mutants
were resistant to ampicillin, whereas the wild type strain was susceptible (Table 3.4)

3.0.4 Conclusion

Identifying new genes associated to AMR or better characterizing the mechanisms as-
sociated to this phenomenon are relevant research topics, due to the increasing risk
associated to AMR. For this purpose, we performed a systems analysis of E. coli inter-
actome, through a network diffusion algorithm that, starting from known AMR-related
genes reported in the Comprehensive Antibiotic Resistance Database (CARD) and in
the PointFinder databases, identified novel putative genes associated to AMR. The
network induced by the seed and the identified genes showed a community structure
partly overlapping with known biological pathways (as annotated in KEGG [149] thus
it was possible to associate part of the identified genes to known biological mechanisms,
some of them known to be involved in AMR mechanisms and other not. We extracted
a list of genes, prioritizing them by their relevance within the PPI network, and tested
their corresponding knockout E. coli mutants with standard EUCAST/CLSI proce-
dures for susceptibility to several antibiotics, and obtained an experimental validation
for uhpB, mdaB, rpmG and rplA.

3.0.5 Discussion

Several studies highlighted the relevance of gene interaction study and its importance
in AMR in different microbial pathogens [265]. Hence, we used network diffusion ap-
proach to examine several AMR mechanisms in E. coli to reveal new potential drug
targets. Additionally relevant genes were validated though knockout experiments. In
the present study, 127 genes were identified belonging to the following pathways: Ri-
bosome (e.g. rpmG and 1plA); Cationic antimicrobial peptide (CAMP) resistance (e.g.
acrAB, tolC, phoP and basR); beta-Lactam resistance (e.g, acrAB-tolC and ompC);
Fatty acid biosynthesis (fab genes); Peptidoglycan biosynthesis (mur genes); Fatty acid
metabolism; Biotin metabolism.

Ribosome is a pathway already observed as enriched in other microorganisms namely
S. aureus, C. difficile, H. pylori and C. jejuni [266, 267, 268, 269]. CAMP and beta-
lactam resistance and peptidoglican biosynthesis were previously reported as relevant
pathways in AMR mechanisms in S. aureus, S. Typhi and E. coli O157:H7 [270]. Fatty
acid biosynthesis was reported as significantly enriched in E. coli O157:H7 [271]. Not
surprisingly, genes related to efflux pumps (i.e. acrAB, tolC), were identified in this
study as in previous ones [272]. By actively extruding antibiotics from the bacteria,
multi-drug eflux pumps are under the lens of researchers since two decades as potential
targets for novel drugs able to revert resistant phenotypes to several antibiotics [273].
New genes not previously identified by system biology approaches are uhpB, uhpC and
mdaB. uhpB is a sensor histidine kinase of a two component system (TCS). TCSs have
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been previously highlighted as primary pathways by which bacteria adapt to environ-
mental stresses such as antibiotics. Knock out mutants of TCSs genes prioritized in
the present study, namely, phoP, cpzR, and basR previously showed significant shift in
their antimicrobial susceptibility reinforcing their role in AMR mechanisms [272].

Among the 127 genes identified, 13 were retained for validation experiments. Among
these, E. coli knockout mutants of uhpB, mdaB, rpmG, and rplA showed a significant
variation of their antimicrobial susceptibility (AST) in comparison to the wild-type,
suggesting their functional involvement in related AMR mechanisms. In particular
uhpB and mdaB knockout mutants showed a shifted AST against ampicillin, rpmG
and rplA against ciprofloxacin, and rplA against streptomycin, suggesting their func-
tional involvement in related resistant mechanisms.

Differently from previous findings, uhpB mutants were not fosfomycin resistant.
The gene uhpB is an activator of the expression of uhpT, which is a phosphate in-
ducible transporter responsible for the uptake of small molecules [229]. In the present
study, results suggested the potential involvement of uhpT in the additional uptake of
ampicillin. Regarding mdaB, further studies are needed to elucidate if this enzyme
is able to inactivate ampicillin similarly to its detoxification role against quinones. As
far as ciprofloxacin is concerned, knockout mutants rpmG and rplA were susceptible to
this antimicrobial whereas the wildtype expressed an intermediate phenotype. rpmG
is already known to be involved in DNA repair, its role in ciprofloxacin susceptible
phenotype might be associated to the repair of DNA damages due to the inhibition of
DNA synthesis by this antimicrobial agent. rplA is a ribosomal protein with no appar-
ent connections with ciprofloxacin mode of action. rplA mutants were also susceptible
to streptomycin whereas the wildtype was intermediate. Streptomycin mode of action
relies on the inhibition of the protein synthesis. Although without a biological shift of
the antimicrobial susceptibility, rplA mutants showed a significantly higher zone diam-
eters than the wild type (p j 0.01) for all 5 antibiotics suggesting rplA is involved in the
mechanism of intrinsic resistance. This result is in line with Keio mutants MICs data
reported by Liu and colleagues [274]. However, WT strain was found intermediate for
streptomycin and ciprofloxacin in the present study whereas it was detected as sensitive
for those antibiotics by the previous study [274]. Additional studies are needed to con-
firm and further investigate the potential role of rplA in intrinsic multidrug resistance
or reduced susceptibility.

The four identified genes uhpB, mdaB, rpmg and rplA can be targeted either by a
direct inhibition of their products (proteins) or indirectly by disrupting the regulatory
pathway in which they are involved. For instance, uhpB gene is part of the two-
component signal transduction system in E. coli responsible for sensing and transport
of glucose-6-phosphate [275]. In this system, the protein uhpC' senses the presence
of glucose-6-phosphate, then, it interacts with uhpB. uhpC-uhpB interaction induces
the activation of uhpA which, in turn, induces the expression of uhpT which is the
protein responsible for the transport of many phosphorylated sugars including glucose-
6-phosphate [276]. The susceptibility tests we carried out showed that E. coli becomes
less sensitive to Ampicilin when uhpB is absent as the corresponding mutant AMR-
profile switches from Sensitive (WT) to Intermediate. Therefore, E. coli resistance to
Ampicilin can be mitigated through a therapeutic strategy that enhances uhpB activity.
rplA is a risbosomal sub-unit. Ribosomes are responsible for the translation of mRNA
into proteins [277]. We have seen that E. coli mutants lacking rplA are less resistant to
Streptomycin and Ciprofloxacin than the wild type, therefore, therapies based on the
direct inhibition of rplA protein or the inhibition of its expression would be effective
against F. coli resistance to Streptomycin and Ciprofloxacin. dskA is an endogenous
E. coli’s protein that decrease the expression of rplA, so, a possible way to indirectly
repress mplA would be by the administration of drugs structurally similar to dskA. The
identification of gene candidates is a crucial step in drug discovery, however, the design
of effective drugs is not straightforward due to the complexity and interconnectedness
of biological pathways, in addition to the capability of the microbes to be resistant to
multiple drugs [278]. Therefore, the findings of our work are a first step towards the
development of new therapies to mitigate AMR in E. coli which require further studies
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to identify the most effective strategy.

The ND approach was able to uncover ribosomes pathway, a pathway of interest
targeted by different antimicrobial strategies, even though the network was not seeded
with any ribosomal gene. This suggests that the outcomes of the ND gene prioritization
are not limited by the initial seed genes. Most of the top-ranking genes belonged to
known biological pathways: literature-based investigation and in vitro testing revealed
implication in AMR for most of them. We performed susceptibility testing for thirteen
selected mutants under nine different antibiotics: four mutants showed significant AMR
shift as compared to the wild-type, in relation to five over nine tested antibiotics.
Possibly the rest of the identified genes could be the false-positives, but it could be
worth further in vitro testing using other antimicrobials.

3.0.6 Supplementary table

Table 3.5: The list of the 93 AMR-related genes prioritized by the network diffusion approach,
in addition to the 34 seed genes.

Symbol | b number | KEGG annotation | is_seed | diffusion_score_Sx
uhpT b3666 hexose-6- YES 0.801231429974594
phosphate:phosphate
antiporter

uhpA b3669 DNA-binding tran- | YES 0.794068832752411
scriptional activator
UhpA

glpT b2240 sn-glycerol 3- | YES 0.362348566172805
phosphate:phosphate
antiporter

ptsl b2416 PTS enzyme I YES 0.308972861751571
acrA b0463 multidrug eflux | YES 0.298002659860054
pump membrane
fusion lipoprotein
AcrA

fabl b1288 enoyl-[acyl-carrier- YES 0.294422847975814
protein| reductase
uhpB b3668 sensory histidine ki- | NO 0.256489441518528
nase UhpB
uhpC b3667 inner membrane pro- | NO 0.251650558662633
tein sensing glucose-
6-phosphate

basR b4113 DNA-binding tran- | YES 0.233545958190829
scriptional dual
regulator BasR

folP b3177 dihydropteroate syn- | YES 0.210048775401827
thase

cyaA b3806 adenylate cyclase YES 0.18230290314585

pitB b2987 metal phos- | NO 0.137596607913984

phate:H(+) Sym-
porter PitB

vhjB b3520 putative DNA- | NO 0.130045062575375
binding  transcrip-
tional regulator
YhjB

ycaK b0901 putative NAD(P)H- | NO 0.127905983952938

dependent  oxidore-
ductase YcaK
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mdaB

b3028

NADPH:quinone oxi-
doreductase MdaB

NO

0.121634905014061

tufB

b3980

translation elon-
gation factor Tu
2

YES

0.103510686077722

tufA

b3339

translation elon-
gation factor Tu
1

YES

0.102895704838596

yeakl

b1781

methylglyoxal reduc-
tase Yeall

NO

0.06849965078668

mdtK

b1663

multidrug efflux
pump MdtK

NO

0.066680419268121

emrD

b3673

multidrug efflux
pump EmrD

NO

0.06280046585373

mprA

b2684

DNA-binding tran-
scriptional repressor

MprA

NO

0.059638151998981

pmrR

b4703

putative bitopic in-
ner membrane pro-
tein

NO

0.059283295703077

plsX

b1090

putative phosphate
acyltransferase

NO

0.045645668710855

marB

b1532

multiple  antibiotic
resistance protein

MarB

NO

0.042808523055997

yeaD

b1780

putative aldose 1-
epimerase YeaD

NO

0.042805044003558

macB

b0879

ABC-type tripartite
eflux pump ATP
binding/membrane
subunit

NO

0.042568222182127

pagP

b0622

Lipid A palmitoyl-
transferase

NO

0.042435308529878

fabZ

b0180

3-hydroxy-acyl-
[acyl-carrier-protein]
dehydratase

NO

0.040334558855965

lpxC

b0096

UDP-3-0O-acyl-N-
acetylglucosamine
deacetylase

NO

0.038514304261013

phoP

b1130

DNA-binding tran-
scriptional dual
regulator PhoP

NO

0.036996396848245

murC

b0091

UDP-N-
acetylmuramate—
L-alanine ligase

NO

0.036996359525686

murD

b0088

UDP-N-
acetylmuramoyl-L-
alanine-D-glutamate
ligase

NO

0.036076039129444

plsY

b3059

putative glycerol-3-
phosphate acyltrans-
ferase

NO

0.035381713892495

sodA

b3908

superoxide dismutase
(Mn)

NO

0.035229027003966
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murG

b0090

N-
acetylglucosaminyl
transferase

NO

0.034981285821487

IpxA

b0181

acyl-[acyl-carrier-
protein]-UDP-N-
acetylglucosamine
O-acyltransferase

NO

0.034868411972527

mrdB

b0634

SEDS family protein
MrdB

NO

0.034829015158298

glpK

b3926

glycerol kinase

NO

0.034114114611957

skp

b0178

periplasmic chaper-
one Skp

NO

0.033238662065734

glpF

b3927

glycerol facilitator

NO

0.03310588034669

murF

b0086

D-alanyl-D-alanine-
adding enzyme

NO

0.032869303546023

topA

b1274

DNA topoisomerase
1

NO

0.032665842180443

glmU

b3730

fused N-
acetylglucosamine-
1-phosphate uridyl-
transferase and
glucosamine-1-
phosphate acetyl-
transferase

NO

0.032385254520689

folB

b3058

dihydroneopterin al-
dolase

NO

0.032346391278466

mreB

b3251

dynamic cytoskeletal
protein MreB

NO

0.032166095956974

bamB

b2512

outer membrane pro-
tein assembly factor
BamB

NO

0.032023279208861

mraZ

b0081

DNA-binding tran-
scriptional repressor
MraZ

NO

0.031774983867738

accD

b2316

acetyl-CoA carboxyl-
transferase  subunit
beta

NO

0.031542084511844

yceD

b1088

DUF177 domain-
containing  protein
YceD

NO

0.030150344623432

ftsA

b0094

cell division protein
FtsA

NO

0.02925681968476

ftsQ

b0093

cell division protein

FtsQ

NO

0.028884357036002

dnaG

b3066

DNA primase

NO

0.027961243041426

rpoH

b3461

RNA polymerase,
sigma 32 (sigma H)
factor

NO

0.027836259256324

rpmB

b3637

50S ribosomal sub-
unit protein L28

NO

0.026811827074246

rpoC

b3988

RNA polymerase
subunit beta’

NO

0.026676178298001

rpoD

b3067

RNA polymerase,
sigma 70 (sigma D)
factor

NO

0.026580497011964
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rpoA b3295 RNA polymerase | NO 0.026575937057303
subunit alpha

rpsd b3321 30S ribosomal sub- | NO 0.02624190029595
unit protein S10

rplQ b3294 50S ribosomal sub- | NO 0.026170361371692
unit protein L17

rpsA b0911 30S ribosomal sub- | NO 0.02607704673147
unit protein S1

rpml b1717 50S ribosomal sub- | NO 0.026002415434723
unit protein L35

rpsR b4202 30S ribosomal sub- | NO 0.025985678836753
unit protein S18

rplA b3984 50S ribosomal sub- | NO 0.0259136634777
unit protein L1

rpsM b3298 30S ribosomal sub- | NO 0.025779235397691
unit protein S13

rpsQ b3311 30S ribosomal sub- | NO 0.025716648865321
unit protein S17

rplJ b3985 50S ribosomal sub- | NO 0.025674675532255
unit protein L10

rpsB b0169 30S ribosomal sub- | NO 0.025624614185735
unit protein S2

rpsF b4200 30S ribosomal sub- | NO 0.025615165161537
unit protein S6

priB b4201 primosomal replica- | NO 0.025534441866644
tion protein N

rpsC b3314 30S ribosomal sub- | NO 0.025494340114023
unit protein S3

metG b2114 methionine-tRNA NO 0.025396077083455
ligase

rplW b3318 50S ribosomal sub- | NO 0.025352534812794
unit protein L23

rplV b3315 50S ribosomal sub- | NO 0.025326888492826
unit protein L22

rplM b3231 50S ribosomal sub- | NO 0.02512905531526
unit protein L13

arfA b4550 alternative ribosome- | NO 0.02494438702434
rescue factor A

infA b0884 translation initiation | NO 0.024396031467337
factor IF-1

rmf b0953 ribosome modulation | NO 0.024340506076583
factor

nusG b3982 transcription termi- | NO 0.024002680550944
nation factor NusG

hpf b3203 ribosome NO 0.023081728448611
hibernation-
promoting factor

mipA b1782 MIltA-interacting YES 0.645942626575027
protein

fabG b1093 3-oxoacyl-[acyl- YES 0.34234427867348
carrier-protein]
reductase FabG

basS b4112 sensor histidine ki- | YES 0.235592389895031
nase BasS

nemA b1650 N-ethylmaleimide re- | NO 0.14475594834719

ductase
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ftsl b0084 peptidoglycan  DD- | YES 0.142851128013778
transpeptidase Ftsl

yieF b3713 chromate reductase | NO 0.108647681207274

acrD b2470 multidrug eflux | NO 0.069119537541059
pump RND perme-
ase AcrD

fabD b1092 [acyl-carrier-protein] | NO 0.046859905444703
S-malonyltransferase

fabB b2323 3-oxoacyl-lacyl car- | NO 0.042255646147304
rier protein| synthase
1

mrdA b0635 peptidoglycan  DD- | NO 0.036960250745843
transpeptidase MrdA

katG b3942 catalase /hydroperoxidpseO 0.036943599693355
HPI

ftsK b0890 cell division DNA | NO 0.032130874794963
translocase FtsK

uvrB b0779 excision nuclease | NO 0.030028510254639
subunit B

rpmG b3636 50S ribosomal sub- | NO 0.026232132734047
unit protein L33

secY b3300 Sec translocon sub- | NO 0.026123608299064
unit SecY

lepA b2569 30S ribosomal sub- | NO 0.025071492393252
unit biogenesis factor
LepA

nfsB b0578 NAD(P)H  nitrore- | YES 0.530049625058895
ductase NfsB

soxR b4063 DNA-binding tran- | YES 0.367411944018482
scriptional dual
regulator SoxR

cpxR b3912 DNA-binding tran- | YES 0.282458400582228
scriptional dual
regulator CpxR

lamB b4036 maltose outer mem- | YES 0.147295305785713
brane channel/phage
lambda receptor pro-
tein

pmrD b2259 signal transduction | NO 0.048886958742469
protein PmrD

ompC b2215 outer membrane | NO 0.038869264970844
porin C

ompT b0565 DLP12 prophage; | NO 0.033359062142597
protease 7

ftsZ b0095 cell division protein | NO 0.02930555460478
FtsZ

secA b0098 protein translocation | NO 0.028775823923588
ATPase

ompA b0957 outer membrane pro- | NO 0.026970200813083
tein A

nfsA b0851 NADPH-dependent | YES 0.545080241576949
nitroreductase NfsA

murA b3189 UDP-N- YES 0.250962834085843

acetylglucosamine 1-
carboxyvinyltransferag

¢}
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oxyR

b3961

DNA-binding tran-
scriptional dual
regulator OxyR

NO

0.037278135411326

crp

b3357

DNA-binding tran-
scriptional dual
regulator CRP

NO

0.03542244755828

lacZ

b0344

beta-galactosidase

NO

0.034991121532641

acrR

b0464

DNA-binding tran-
scriptional repressor

AcrR

YES

0.473670373698583

parkl

b3030

DNA topoisomerase
IV subunit B

YES

0.23843747364297

rpoB

b3987

RNA polymerase
subunit beta

YES

0.079002644545744

emrkE

b0543

DLP12
prophage; mul-
tidrug/betaine/choling

eflux transporter
EmrE

YES

1.70944372066826

gyrB

b3699

DNA gyrase subunit
B

YES

0.134912375109366

mdfA

b0842

multidrug ef-
flux pump
MdfA /Na(+):H(+)
an-
tiporter/K(+):H(+)
antiporter

YES

0.300743537765386

rob

b4396

DNA-binding tran-
scriptional dual
regulator Rob

YES

0.548635237479999

araC

b0064

DNA-binding tran-
scriptional dual
regulator AraC

NO

0.055465134711617

SOXS

b4062

DNA-binding tran-
scriptional dual
regulator SoxS

YES

0.355662537069716

ompF

b0929

outer membrane
porin F

YES

0.199356633775028

marR

b1530

DNA-binding tran-
scriptional repressor

MarR

YES

0.395965728916185

parC

b3019

DNA topoisomerase
IV subunit A

YES

0.335664392645696

acrB

b0462

multidrug eflux
pump RND perme-
ase AcrB

NO

0.065828860622623

tolC

b3035

outer membrane
channel TolC

NO

0.086053853250199

marA

b1531

DNA-binding tran-
scriptional dual
regulator MarA

NO

0.105650761716941

gyrA

b2231

DNA gyrase subunit
A

YES

0.154388786749611

ampC

b4150

beta-lactamase

YES

0.291891226132292
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Chapter 4

Context-Specific Genome-Scale
Constrained Models Using
Transcriptomics, Flux Variability,
and Network Topology

4.1 Introduction

Living cells are equipped with the necessary machinery to accomplish their biological
functions. This machinery can be modeled as networks of different molecules inter-
acting together to generate a given phenotype. There are three major biological net-
works: 1) Regulatory networks, 2) Transduction networks and 3) Metabolic networks.
Metabolic networks are of great interest because they provide all biological processes
with energy and elemental building molecules such as amino acids, fatty acids and
nucleic acids. Due to their important role, studying metabolic networks can shed light
onto many regulatory processes that control the cell’s functions.

Metabolic networks are large and complex as they involve many interconnected
reactions which convert many shared metabolites, therefore, comprehensive represen-
tation of such networks is challenging. Genome Scale Metabolic Modeling (GSMM)
is an effective approach used to model the metabolic potential of cells by combining
high-throughput genomics data and prior biochemical knowledge [279]. A multitude of
curated GSMMs of human cells, bacteria and yeasts are available in different databases
such as BIGG [107], KEGG [108] and ModelSEED [111]. To make use of these GSMMs,
one can use constraint-based modeling (CBM), i.e, the combination of constraint-based
methods such as Flux Balance Analysis (FBA) and GSMM to model the metabolic
properties of the cells and predict their outcomes [112]. FBA is a constraint-based
methods as it relies on: 1) The mass balance constraint arising from the assumption of
a steady-state, i.e, the equality of biomolecules’ production and consumption rates; 2)
The capacity constraints that define the lower and upper bounds imposed to the fluxes
of the reactions.

As the number of published GSMMs is growing over the past years, CBM could be
used in different context to study animal and microbial metabolism [280]. In the field
of food biotechnology, CBM has been used to improve microbial yields of metabolites
of interest such as low-calorie sweeteners, vitamins and bioactive peptides [281, 282],
as well as the design of microbial strains able to improve certain food nutritional and
safety aspects such as enhancing shelf-lives and the biotransformation of indigestible
compounds into edible food products [283].

Given the adaptive nature of the living beings, the cells are able to modulate their
metabolism according to the environment in which they live and grow. For instance,
in the presence of glucose, Saccharomyces cerevisiae produces the energy required for
its growth predominantly by glycolysis. When glucose becomes limiting, the yeast un-
dergoes a diauxic shift allowing it to produce energy from ethanol. To do so, the yeast
rewires its regulatory networks, mainly, the central energy signaling pathways [284].
This implies that, in each specific context, not all the metabolic network is operating
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but only a subset of specific reactions that are relevant to achieve the objective bio-
logical function. Therefore, to accurately model the cells” metabolism, there is a need
to focus on the active reactions within the GSMM and discard the non-relevant ones.
Different methods have been developed to create these context-specific GSMMs. Some
of them use experimental data such as transcriptomics to define the active/inactive
genes/reactions, such as the Gene Inactivity Moderated by Metabolism and Expres-
sion (GIMME) [285], and the FASTCORE family algorithms which determines the core
(active) reactions in a given condition basing on bibliography or proteomics data [286].
Gene expression is strongly associated and influences metabolic networks since most
of the biochemical reactions occurring inside cells are gene-regulated. Genes encode
proteins, and proteins can have enzymatic activity involved in the cell metabolism.
Thus mRNA expression is a proxy to measure enzyme (protein) levels inside the cells
to trigger metabolic reactions. Other GSMM reduction methods are purely compu-
tational, i.e. they perform the reduction of the GSMM based only on its structure.
Ataman et al. [287] developed redGEM which is a bottom-up reduction approach,
contrary to top-down approaches such as GIMME, redGEM doesn’t start from the
whole GSMM, but starts by the construction of a small and basic core network, which
is then extended to obtain a reduced GSMM representing the active reactions in the
context that is defined by the user. Jonnalagadda et al. [288] integrated graph-theory
into their GSMM reduction algorithm. To define the essential reaction to be included
in the reduced GSMM, they depict the network structure of the GSMM as a bipartite
graph connecting reactions and their metabolites. They analyze the network to find
the reactional routes that lead to the production of the same metabolites, then, out
of these redundant reactions, they keep the ones that optimize better the objective
function.

Another consequence of reactions’ redundancy is that objective functions, e.g. the
growth, can be attained through different routes. To explore the possible (sub)optimal
reaction fluxes, Mahadevan et al. [124] have proposed a variant of FBA so called
Flux Variability Analysis (FVA). It’s an effective tool to investigate the distribution
of the reactions fluxes which can shed light on alternative and interesting regulatory
pathways.

In addition of being context-specific and redundant, metabolism is also dynamic.
Therefore, classic FBA which assumes a static state of the network may not be the most
suitable to analyze GSMMs. Mahadevan et al. [126] proposed Dynamic FBA (dFBA)
to account for the evolving nature of metabolism and define phase or time-point-specific
fluxes.

Objective

In this work, we aimed at improving GSMM reduction by developing a new method
taking into account both experimental and network-topology information. Conven-
tional reduction methods require experimental data with several time-points - which is
often hard to acquire - to build reduced GSMMs able to model the systems’ dynamics.
To overcome this limitation, we added another layer of information to our method, i.e.
the network-topology-based information which contribute to obtain reduced GSMMs
with more relevant context-specific reactions.

Summary

Starting from time-series transcriptomics and metabolomics data, as well as the GSMM
of the yeast strain Saccharomyces cerevisiae T73, we developed and calibrated a new
GSMM-reduction algorithm. The method relies on the combination of constraint-based
modeling (dFVA), experimental data (transcriptomics and metabolomics) as well as
network-based approaches (centrality measures) to reduce the GSMM by discarding
non-relevant reactions and keep only the reactions that are more likely to be active in
the specific experimental context.

We found that the synergetic combination of different centrality measures could
effectively define the relevant reactions to keep in the reduced GSMM.
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The method was compared to the conventional GSMM-reduction methods GIMME
[285] and FASTCORE [286] in terms of the generated reduced GSMMs and prediction
performances. The corresponding results are not reported in this chapter'.

4.2 Materials and Methods

Experimental data

In this work, we used data related to the yeast strains Saccharomyces cerevisiae T73
comprising its Genome Scale Metabolic Model, longitudinal transcriptomics data and
extracellular metabolites.

We measured in ten sampling times extracellular metabolites, including sugars,
organic acids, main fermentative by-products and yeast assimilable nitrogen (YAN)
in the form of amino acids and ammonia, following the experimental protocol defined
in [289]. We also determined the concentrations of higher alcohols and esters for each
sampling time. Volatile compounds extraction and gas chromatography were performed
following the protocol by Rojas et al. [290]. Physiological and biomass parameters,
including OD600, dry weight (DW), colonies-forming unit (CFUs), and average cell
diameter (ACD), were determined at each sample time, provided that the cell sample
was sufficient to perform the corresponding measure.

Transcriptomics analysis was conducted on cells harvested from the fermentation
broth of each biological triplicate at three different time points. The time points were
during the growth phase (T1: 20 hours), at the end of the growth phase (T2: 26.5
hours), and early stationary phase (T3: 43.25 hours. To obtain the cells, the broth
volume was collected from the reactor and transferred to a polypropylene tube, which
was then centrifuged (4.000 rpm, 5 minutes, 4°C) to pellet the cells. The supernatant
was discarded, and the tube was flash-frozen in liquid nitrogen and stored at -80°C
until total RNA extraction. Following the manufacturer’s protocol, total RNA was
extracted using the High Pure RNA Isolation Kit (Roche, Mannheim, Germany). The
samples were sequenced using the Illumina Hiseq 2000, paired-end reads 75 bases long
and were deposited under the BioProject ID PRJNA473087. The sequence reads were
trimmed and quality filtered using Sickle (minimum read length of 50, minimum quality
per base of 23) and then aligned to the strain genomes using bowtie2 [291]. Gene counts
were obtained using HT'Seq-count version 0.9.0.[292].

The metabolic data (to be provided when the work is published) were used to
define the flux’s bounds, whereas transcriptomics data were combined to the network-
topology measures to distinguish between relevant and non-relevant reactions (next
sections).

Dynamic Flux Variability Analysis dFVA to define the time-dependent rel-
evant reaction sets

Through their different growth phases, yeasts modulate their metabolism to attain the
objective functions at each phase. These objective functions can be achieved through
different and redundant reaction routes. This results in different patterns of the reac-
tions’ flux distribution [124].

To measure the possible reactions’ fluxes at each transient state, we carried out
a dynamic Flux Variability Analysis, i.e, at each time point ¢, the maximums and
minimums of the reactions fluxes v maximizing the growth were computed as follows:

maxv; subject to C, vpin < U < Upax, £ = v

minwv; subject to S v =0, Vpin <V < Vpax, £ = o

IThis work is an integral part of PhD. Diego Troitifio’s thesis, from the Bio2Eng group headed by
Prof. Eva Balsa-Canto, therefore, some parts can’t be described in detail, mainly, the newly developed
scoring functions, but we do our best to clearly explain the methods, mainly, our part of collaboration
to this project. The work is being finalized and some results are still to be generated. The final paper
will be submitted for publication soon.

61


https://bio2eng.csic.es

where S represent the stoichiometric matrix of the metabolic network, and v is a
column vector of the fluxes of each reaction. v,,;, and v,,,, are the lower and upper
bounds of the flux v, respectively. We remark that fluxes v are a combination of the
original metabolic compounds together with the kinetic constants of the considered
reactions: Flux Balance Analysis is a simplification with respect to the full set of
differential equations describing the system of metabolic reactions in a cell, but it allows
to find a solution as a linear system of equations under the stationarity assumption
S -v =0. Z is the maximum growth value, a scalar objective function obtained as a
weighted sum of fluxes, with ¢ the objective function weight vector for each flux.

Networks construction

In this work we tried to estimate the relevance of each metabolic reaction by using
information contained in two related networks: 1) a gene co-expression network derived
from experimental observations (gene expression profiles at the different time points of
the experiment); 2) the biochemical reaction network as extracted from the publicly
available curated yeast GSMM.

Gene co-expression network

The data-driven gene co-expression network was built using WGCNA R package
[171] from the Next-Gen sequencing transcriptomics data, consisting of 6169 genes and
nine samples. First, the data were filtered out of lowly expressed genes (< 5 reads in
3 samples) then normalized using TMM method [146]. The processed and normalized
data contained 5480 genes. Secondly, we computed the the Spearman correlation [170]
between gene pairs and retained only the significant correlations at p.value < 0.05. As
a result, we obtained an edge list of 2446270 rows which represent a weighted gene-gene
network of 5476 nodes and 2446270 weighted edges. Four genes (5480-5476) were not
significantly correlated to any other gene, so they were not included in the network. The
correlation values were converted into network weights by considering their absolute
values (only positive weights) thus considering correlation and anti-correlation as an
indicator of strong relationship.

This pure data-driven approach can result in many spurious interactions that may
not actually exist between certain genes. To filter out such interactions, we matched the
data-driven network with the yeast’s protein network available on STRING database
[189] that thus provided the structural backbone of the network, using the correlation
values as weights. Every weight referring to an interaction that was not reported
in STRING was omitted. As a result, we got a filtered and weighted gene-gene (or
protein-protein) network of 5091 nodes and 169842 edges.

Reaction networks

Genes expressed by the yeast are not all involved in metabolic pathways. In this sec-
ond procedure, we focused on the yeast’s metabolic pathways reported in the Genome
Scale Metabolic Models (GSMM) model. GSMMs are encoded according to the Sys-
tems Biology Markup Language (SBML) standards developed for the communication
and storage of computational biological models [293]. GSMM can be saved in human-
readable files such as .xml and .json. In this work, the yeast’s GSMM was saved in
xml file which mainly contains the stoichiometric matrix of the metabolite-reaction
network in addition to the mass equation.

The metabolic network is thus represented by the stoichiometric matrix. It can be
interpreted as a bipartite network where the nodes are of two types: Reactions and
Metabolites, and the links exist only between the nodes of different types, i.e. between
the reactions and their associated metabolites. As we were interested in identifying
(non)relevant reactions, we converted the bipartite network into a unipartite or one-
mode reaction network. To do so, we first removed the following pool metabolites:
ATP, ADP, NAD, NADH, NADP, NADPH, O,, H,O, P;, H*, Glu_L and CO,. These
metabolites are consumed and produced by a large number of reactions, therefore,
suppressing them is crucial to avoid distorting the topological proprieties and over-
connecting the network due to the linkage of functionally unrelated reactions. Then,
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we created edges (links) between pairs of reactions that share at least one metabolite.
The conversion of the reaction-metabolite network into a reaction-reaction network is
done by multiplying the stoichiometric matrix by its transpose:

Reaction-Metabolite network = S

Reaction-Reaction network = S.S7

where S is the stoichiometric matrix and S7 its transpose. The stoichiometric
matrix can be easily extracted from the .xml files, otherwise, function such as mak-
eRactionNetwork() and bipartite_projection() from the NetPathMiner [294] and igraph
[295] R packages can be used for automatic parsing and conversion of GSMMs into
reaction networks starting from .xml files.

Following the steps described above, we built a reaction network with 3433 nodes
and 5978 edges.

Centrality measures of the reactions

Centrality measures (CMs) are scores used to define the importance and the influence
of a node within a network (see Introduction and Chapter 3). In this work, we tested

several CMs in order to select the most relevant reactions. We considered local, semi-
local and global CMs:

e Local CMs: reflect the node’s importance within its first neighborhood such as
Degree, Cluster_rank and Clustering coefficient CMs.

e Semi-Local CMs: take into account an environment beyond the node’s first
neighborhood but not the global network, such as H-index, Local H-index and
Neighborhood connectivity.

e Global CMs: measures the node’s importance by taking into account the entire
network, such as Collective_influence, Closenesses, Eccentricity and Betweenness
CMs.

Most of the mentioned CMs are already described in Chapter 1. Here we describe
the newly introduced CMs: Closeness and Eccentricity.

e Closeness CM: measures the distance (shortest path) of a node to the other
nodes in the network [45]. It represents the geographic position of the node in
the network. Nodes having high closeness spreads information fast as they are
close to many nodes:

1
B D tev (o dist(v,7)

where dist(v, t) is the distance between the nodes v and ¢.

Closeness(v)

e Eccentricity CM: also called "Harary Graph Centrality” or ” Jordan Centrality”
[296]. It is similar to Closeness CM, but it takes into account the longest of the
shortest paths between a given node and the other nodes in the network:

1
max{dist(¢,v) : t € V'}

Eccentricity(v) =

As each CM captures a specific property of the node, taking into account the CMs
individually may under/overestimate the node’s importance [30]. Therefore, we also
considered combining several CMs to create a comprehensive score that can reflect
better the node’s influence. We computed the Integrated Value of Influence score (IVI)
available on the influential R package [297]. IVI score combines the most important
centrality measures, namely, Degree Centrality (DC), Betweenness (BC), ClusterRank
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(CC), Neighborhood connectivity (NC), Local H index (LHC) and Collective influence
(CIC) in a way that synergizes their effect to identify influential nodes in the network
in an unbiased way. The IVI score of each node ¢ is formulated by the authors as
follows:

IVI; = (DC; + LHC;) ((NC; + CC;) (BC; + CIC;))

with:
DC(v;) = N(v;)

where N(v;) is the set of direct neighbors of node v;.
O'(CL, b|vz)
BC(v)= Y T2
W= 2 o
a#v;#b

where o(a, b) is the number of shortest paths from a to b, and o(a, b|v;) is the number
of those paths passing through v;

NC@w) = o5 3 DC()

Ui UjEN(Ui)
where v; is a node from the direct neighborhood of v;
CIC(v;) = [DC(vi) =1] Y [DC(v;) —1]
v;€0Ball(v;,d)

Ball(v;,d) is the set of nodes inside a ball of radius d (shortest path) around v;, and
OBall(v;, d) is the frontier of the ball

DC;

where C'(v;) is the clustering coefficient of node v;:

C(v)

. 2 X €;
~ DCy(DC; — 1)

where e; is the number of edges between the neighbors of node v;.

C(vi)

Hinger(v;) = max{h : Ny(v;) > h}
with Ny (v;) is the number of neighbors of v; with a degree > h.

LHC<UZ) = Hinde:v(vi) + Z Hindem<vj)

v; €N (v;)

The effectiveness of IVI score relies on the fact that it accounts for several node’s
centralities in different environments: 1) the local influence of the node, i.e. within
its direct neighborhood (DC and CC); the semi-local node’s influence, i.e. in the
environment beyond its direct neighborhood (LHC and NC); 3) the node’s influence
on the entire network (BC and CIC).

For each node in the data-driven gene co-expression network and in the reaction
network extracted from the GSMM, we computed the aforementioned CMs singularly
in addition to IVI scores.

Susceptible-Infected-Recovered model: another way to measure nodes’ im-
portance

The Susceptible-Infected-Recovered (SIR) model is mathematical model involving or-
dinary differential equations used in epidemics to measure the spread of a disease in a
population [298, 299]. In our case, the population is the reactions network, and each
reaction is an individual. SIR-based method assumes that at ¢, one random reaction
is "Infected” (I) while all the other reactions are ”Susceptible” (S), then, starting from
the ”Infected” node the disease is propagated through the network. The ”Susceptible”
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nodes become " Infected” with a rate which depends on their "Infected” neighbors. Fi-
nally, the algorithm stops when there are no more ”Infected” individuals, i.e, all nodes
are in state ”Susceptible” or "Recovered” (R) [300]:

as

22— _BsI
dt /8 Y
dl

— = BSI—~I
dt B ’Y?
dR

Rl §

it

£ is the disease transmission rate, it represents the probability for an infected node
to transmit ”disease” to its susceptible neighbors at time ¢ and ~ is the recovery rate,
it represents the probability of an ”Infected” node to become ” Recovered”.

The SIR-based method is used to rank reactions according to their importance,
that is, their role in spreading the ”disease” as follows:

1. The "disease” spread, measured by the number of ”Recovered” nodes, is com-
puted on the original reaction network using SIR model.

2. The ”disease” spread is recomputed on a perturbed network after the removal of
one reaction.

3. A SIR score is defined by computing the difference between the ”disease” spread
in the original and perturbed reaction networks.

4. Reactions resulting in a high SIR score are highly ranked and considered to be
more important, as their removal induces a significant variation of the disease
spread.

The steps above are repeated until all of the reactions have been removed from the
network one time, and involved in the network & — 1 times, where k is the number of
nodes in the original reaction network. The approach described here is a combination
of SIR model and Leave-One-Out method. It’s implemented in the sirir() function
from the influential R package [297].

Selection of relevant reactions

To reduce the GSMM and keep the most relevant reactions, we combined dFVA results,
transcriptomics, CMs, IVI and SIR scores as follows:

e Step 1: the fluxes computed by dFVA were used to create a score allowing to
classify the reactions into two sets: relevant and non-relevant reactions.

e Step 2: among the non-relevant reaction set, we wanted to recover other reac-
tions basing on their transcriptomics expression level. However, the expression
level of a gene isn’t always correlated with its actual function, i.e. some genes
can be lowly expressed but still play an important role in the metabolic network,
and vice versa. To cope with this issue, we created a score that complements the
transcriptomics information by taking into account also the network-topology-
based information captured by the different CMs, the IVI score as well as the
SIR score. Practically, for each non-relevant reaction defined by the dFVA-based
approach, a new score is computed. This score takes into account the reaction’s
transcription level in addition to one of the following metrics:

individual CMs, e.g, degree, or betweenness...

The average value of all CMs.
— SIR score.
— IVI score.

65



The reactions to be recovered from the Non-relevant set and moved to the Relevant
set must obtain a score above a certain threshold. This score is the combination of
transcriptomics-based information (number of reads) and the network-topology-based
information (CMs, IVI and SIR scores). The resulting context-specific GSMM will
then be composed of relevant reactions selected by the dFVA-based approach as well as
reactions recovered by the approach combining transcriptomics and network topology.
The reactions that couldn’t be recovered from the non-relevant reaction set were those
which had both a low expression level and a low network-topology-based score.

Note that the data-driven gene co-expression network can’t be directly used to
measure the reactions importance as each metabolic reaction can be either regulated by
one or more genes, or not regulated such as spontaneous and translocation reactions.
The network-topology-based scores (i.e. CMs, IVI, SIR) assigned to each reaction
represent the average scores of the gene(s) regulating that reaction. Non gene-regulated
reactions were discarded.

Consistency of the reduced GSMMs

The relevant reactions selected based on the gene co-expression network as well as
those selected based on the reaction network directly extracted from the yeast GSMM,
were used to construct the reduced and context-specific yeast GSMMs. The reduced
GSMMs were tested for their biological consistency, i.e, their ability to grow, to produce
COs and sufficiently produce ATP to maintain cell survival.

Algorithm implementation

The steps previously described were implemented in our algorithm called Genome-
scale model assembly by Network flux variability, Expression and network Topology
(GeNETop). The different constraint-based modeling operations were carried out using
the AMIGOZ2 [301] and COBRA tool boxes [302, 303], whereas the different network
approaches were carried out using WGCNA, igraph and influential R packages [171,
295, 297].

4.3 Results

At the moment of writing this section, this work is still being finalized, so, we’ll describe
the primary results obtained so far.

The scores used to select the relevant reactions were derived from and calculated on
two available networks: 1) The data-driven gene co-expression network; 2) The curated
reaction network extracted from the original GSMM. These scores were combined with
the reactions’ expression levels to recover reactions from a previously non-relevant
reaction set defined by dF'VA, in order to obtain a consistent reduced yeast’s GSMM.

Table 4.1 reports the biological consistency of the reduced GSMM obtained by the
two approaches. We can see that the scores derived from the data-driven correlation
network failed to obtain a reduced and biologically consistent GSMM, regardless the
network-topology-based metric that was used. The obtained reduced models were not
able to grow and produce COy and ATP. In addition, the primary metabolic path-
ways were incoherent and disconnected. Similarly, individual CMs and SIR scores
computed on the curated reaction network resulted also in biologically non consis-
tent reduced GSMM. However, averaging several CMs partially improved the reduced
GSMM, i.e, the primary metabolism was recovered even if GABA pathway and sec-
ondary metabolism were not consistent. Finally, despite some lacks in the secondary
metabolism, the synergetic combination of CMs using VI score got the best results in
terms of consistency as it could recover even the low-level metabolic flux reactions.
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Individual CMs | Averaged CMs SIR IVl
Data-driven Non consistent Non consistent Non consistent | Non con-
network sistent
Curated re- Non consistent Partially consistent | Non consistent | Consistent
action net- with some
work lacks in
secondary
metabolism

Table 4.1: Biological consistency of the reduced GSMM based on the scores derived from
the gene co-expression network (Data-driven network) and reaction network of the original
GSMM (Curated reaction network). CM: Centrality Measure. SIR: the score computed by
the Susceptible-Infected-Recovered model. IVI: the Integrated Value of Influence score.

We were interested in the different CMs calculated on the GSMM reaction network,
mainly those used to compute the IVI scores. Figure 4.1 shows that the distribution
of IVI scores and the CMs used to compute it correspond to a scale-free topology of
the network, i.e, there are few nodes (reactions) with high centrality values and the
majority of the nodes have low CMs (left-skewed distribution), and this is a character-
istic of many biological networks such as gene regulatory networks, protein networks
and metabolic networks,[304]. Secondly, except for Cluster Rank CM,the IVI score
correlates well with the individual CMs suggesting that the IVI function is able to
capture in a simultaneous way the information provided by each individual CMs. We
also notice that some individual CMs are correlated. The highest correlation (0.93)
is between Degree and Local H-Index CMs, implying that these CMs hold the same
information, i.e. using the one or the other individually may lead to the same ranking
of the reactions. Whereas, the lowest correlation (0.062) is obtained for Betweenness
and Neighborhood connectivity CMs. Out of the 15 pairwise correlation measured
between the individual CMs, 6 were strong (> 0.6): Degree-Local H-Index (0.919),
Degree-Betweenness (0.748), Degree-Collective Influence (0.852), Betweenness-Local
H-Index (0.638), Collective Influence-Local H-Index (0.928) and Collective Influence-
Betweenness (0.626). Despite these pairwise correlations detected for some CM pairs,
their combination through the IVI function led to the most biologically consistent
reduced GSMM.
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4.4 Conclusion

Through this analysis, aiming at identifying the core metabolic reactions in yeast cells
undergoing an observational experiment, we could see that the type of network central-
ity metrics as well as the types of networks used to compute them have a significant
impact on the biological relevance of the metabolic reactions selected to build a re-
duced and context-specific GSMM. Data-driven networks inferred from experimental
transcriptomics data failed to achieve consistent results even though they were re-
fined by matching them with curated gene-gene (protein-protein) network from the
STRING database [189]. On the other hand, the reaction network from the curated
yeast’s GSMM allowed obtaining scores that were useful for defining the relevant re-
actions. However, not all scores were effective, but only the one that combines several
CMs either by averaging them or combining them according to the IVI function.

The results of our work demonstrate the robustness and the consistency of manually
curated networks as compared to inferred ones. Furthermore, they stress the need for
choosing the adequate analysis methods and metrics to extract relevant information
from these networks.

4.5 Discussion

It’s important to stress that taking into account each CM separately can result in an
underestimation or overestimation of the nodes’ importance because some of them can
have high global centrality but low local centrality or vice versa. As an example taken
in a different context, on August 27, 2024, a landslide occurred in Maurienne train
station in France [305], which caused the interruption of train traffic between Milan and
Paris. Despite the low connectivity (degree) of Maurienne station in the transportation
network, as compared to highly connected hubs like Paris and Milan, it has a high
betweenness as its congestion led to significant disruption in the Franco-Italian train
network. Thus, the importance of Maurienne station could be underestimated if only
its degree CM was considered and not also its betweenness CM.

In metabolic networks, it has been shown that the correlations between reac-
tions/metabolites essentiality and their degree centrality (connectivity) was weak, as
reactions that are essential for growth have often a unique route (Elementary flux
Modes) which involve poorly connected but essential enzymes and metabolites [306,
307]. On the other hand, PageRank CM [308] was combined with reactions’ fluxes
to create a score allowing the selection of metabolites biomarkers related to diabetes
from human GSMM [308]. Furthermore, Beguerisse-Diaz et al. [309] have studied
the metabolic changes between healthy and diseased hepatic cells affected by the Pri-
mary Hyperoxaluria Type 1. They found that reactions related to diseased state didn’t
exhibit a significant variation in their fluxes, yet they showed large changes in their
PageRank centrality.

These findings demonstrate that: 1) flux-balance-based models to used describe cell
metabolic activity can be complemented by network-based analyses, mainly, the use
of CMs to identify key reactions and metabolites; 2) CMs capture different types of
information so they have to be chosen adequately in order to extract relevant informa-
tion from the network; 3) a comprehensive centrality score combining several CMs can
provide a better estimation of nodes’ importance.

Several works have addressed this problem to try to find the "best” combination
of CMs that can hold as much information as possible about the nodes. Chua et al.
[310] have created UniScore, a score that takes into consideration five different CMs
to predict essential proteins in protein-protein interaction networks. They evaluated
UniScore using a benchmark list of 1106 known essential proteins for Saccharomyces
cerevisiae and obtained improved predictions as compared to individual CM-based
prediction methods. In a more comprehensive study, Rio et al. [30] have used 16 well-
known CMs to rank and find essential genes in 18 reconstructed metabolic networks of
Saccharomyces cerevisiae. They showed that the simultaneous consideration of at least
two CMs could lead to a significant identification of essential genes. In this work, we
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have used a more recent score (IVI) [297] which has the advantage of including three
novel CMs, Collective influence, Local H index, and ClusterRank and combining them
in synergistic way with widely used and well-known CMs (Degree, Betweenness and
Neighborhood connectivity). The fact that IVI simultaneously takes into considera-
tion global, semi-local and local CMs makes it a suitable metric for capturing all the
topological characteristics of the reaction network.

Combination of constraint-based and network-based methods results in a better
selection of relevant biochemical reactions that the yeast uses to achieve a given func-
tion and metabolic outcome. These reactions and their related genes can be bio-
technologically manipulated in order to create modified yeast species that can be used
to enhance food aspects, mainly, flavor and safety.
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Chapter 5

Conclusion

Biological processes are complex and dynamic. To study them, there is a need for
modeling approaches that take into account this complexity. Throughout this thesis,
we opted for network-based methods which provide a comprehensive representation of
cell complexity, i.e. a representation accounting for the different interactions that can
exist between bio-molecules such as genes, proteins and metabolites. The network-
based approaches we used, i.e. network diffusion, community detection and centrality
measures, allowed us to achieve relevant and promising results over different analysis
purposes.

On one hand, the network diffusion applied to E. coli protein-protein network has
successfully identified new genes related to E. coli’s antimicrobial resistance to widely
used antimicrobial’s. Furthermore, some of these genes were also experimentally val-
idated in collaboration with our partners of the E-MUSE consortium. On the other
hand, network-based centrality measures, combined with the dynamic constraint-based
modeling approaches applied to genome scale metabolic models (GSMM), has permit-
ted the development of a new tool that can be used for the reduction and the construc-
tion of context-specific metabolic networks in yeast cells. In terms of their application
to cope with real-life challenges, the newly identified genes can be investigated using
further in wvitro assays to develop more effective therapeutic strategies against antimi-
crobial resistance in E. coli. On the other hand, the new GSMM reduction method can
provide more relevant yeast metabolic reconstructions that can uncover new metabolic
routes under a given condition. These routes can be used to control and redirect
the metabolic outcomes of yeasts towards desired phenotypic traits, especially in food
industry, such as the enhancement of food flavor profiles and food safety.

Alongside network-based approaches, we also considered applying machine learning
methods to analyze cheese-related data collected by our colleagues within the E-MUSE
consortium. The work was challenging as the data were sparse, with very few sam-
ples and a high number of variables, so not very well suited for machine learning
tasks. However, the objective of the work was worth it. We demonstrated a strong
microbiome-metabolome relationship in cheese, by using a microbial metatranscrip-
tome dataset for training and another one as independent validation, and made use
of it to estimate the cheese flavor profiles directly from the microbial gene expression.
Although the challenging data we started from, the performances of the predictive
models were, overall, satisfying.

Future Research Perspectives

Flavor as well as texture and, of course, safety, are the cheese’s characteristics indus-
trials give more importance to, thus the use of quality control protocols to monitor
cheese (off)flavors and contamination is mandatory. We think that assisting experi-
mental quality control methods with in silico predictive models can reduce costs and
time required to monitor cheese quality and safety. However, training robust predic-
tive models requires large data sets, which is not often available in omics data related
to cheese, so, there is a need for a comprehensive literature screening to collect such
data. We think that the creation of a ”Cheesomics” databases will allow applying
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more sophisticated machine learning tools that can be used to improve cheese making
processes.
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Chapter 6

Dissemination

7th International ISEKI-Food Conference, 5-7 July 2023, Palaiseau, France.
Oral presentation of the work: “Estimation of metabolite levels in cheese from
microbial gene expression”. [311]

Italian Chapter of Complex Systems Society 2023 Conference, 9-11 October
2023, Naples, Italy. Poster presentation of the work: “Network diffusion analysis to
elucidate antimicrobial resistance mechanisms of E. coli and reveal potential drug

targets”. [312]

7TH INTERNATIONAL CONFERENCE ON FOODOMICS, 14-16
February 2024, Cesena, Italy. Poster presentation of the work: “Estimation of
metabolite levels in cheese from microbial gene expression”. [313]

The 8th Antimicrobial Resistance Conference, 5-9 March 2024, Basel,
Switzerland. Poster presentation of the work: “Network diffusion analysis to
elucidate antimicrobial resistance mechanisms of E. coli and reveal potential drug

targets”. [314]

Foundations of Systems Biology in Engineering 2024 Conference, 7-12
September, 2024, Corfu, Greece. Poster presentation of the work: “Network diffusion
analysis to elucidate antimicrobial resistance mechanisms of E. coli and reveal

potential drug targets”. [315]

IDF World Dairy Summit 2024 and EMUSE x FATIROMICS workshop,
14-20 October, 2024, Paris. Oral presentation of the works: “Estimation of
metabolite levels in cheese from microbial gene expression”, “Network diffusion
analysis to elucidate antimicrobial resistance mechanisms of E. coli and reveal
potential drug targets” and ” Context-Specific Genome-Scale Constrained Models

Using Transcriptomics, Flux Variability, and Network Topology”. [316]
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