Machine aided diagnosis and melanoma: histopathological findings

Veronesi, Giulia (2025) Machine aided diagnosis and melanoma: histopathological findings, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Scienze chirurgiche, 37 Ciclo. DOI 10.48676/unibo/amsdottorato/11926.
Documenti full-text disponibili:
[thumbnail of tesi Veronesi Giulia con frontespizio.pdf] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Creative Commons: Attribuzione - Non Commerciale - Non Opere Derivate 4.0 (CC BY-NC-ND 4.0) .
Download (2MB)

Abstract

The incidence of cutaneous melanoma has risen in recent years. Histopathological examination remains the gold standard for diagnosing cutaneous melanoma; however, it is often complex. The need to streamline workflows and develop new diagnostic support methods for cutaneous melanoma has driven increased research into the application of artificial intelligence. Our study is structured into three main sections: (i) automated silhouette definition and its diagnostic significance, (ii) extraction of nuclear features and classification modeling, and (iii) assessment of Breslow thickness. Automating clinical procedures provides invaluable support, leading to faster and more reliable sample evaluations. Our study can expedite the screening of whole slide image by prioritizing histopathology slides that exhibit high-risk melanoma features over those with low-risk nevus characteristics.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Veronesi, Giulia
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
37
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
melanoma, artificial intelligence
DOI
10.48676/unibo/amsdottorato/11926
Data di discussione
9 Aprile 2025
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^