
Esame finale anno 2025  

 

 

 

DOTTORATO DI RICERCA IN 

SCIENZE CHIRURGICHE 

Ciclo 37 

 

 
Settore Concorsuale: 06/D4 - MALATTIE CUTANEE, MALATTIE INFETTIVE E MALATTIE 

DELL'APPARATO DIGERENTE 

Settore Scientifico Disciplinare: MED/35 - MALATTIE CUTANEE E VENEREE 

 

 

 

MACHINE AIDED DIAGNOSIS AND MELANOMA: HISTOPATHOLOGICAL 

FINDINGS 

 

 

 

Presentata da: Giulia Veronesi 
 

 

Coordinatore Dottorato 

Emanuela Marcelli 

Supervisore 

Emi Dika 

 

Co-supervisore 

Nico Curti 



1 
 

Abstract 

Introduction. The incidence of cutaneous melanoma has risen in recent years. Histopathological 

examination remains the gold standard for diagnosing cutaneous melanoma; however, it is often 

complex, with a discrepancy rate of 2.7–26% in identifying melanocytic neoplasms. The need to 

streamline workflows and develop new diagnostic support methods for cutaneous melanoma 

has driven increased research into the application of artificial intelligence. Our study is structured 

into three main sections: (i) automated silhouette definition and its diagnostic significance, (ii) 

extraction of nuclear features and classification modeling, and (iii) assessment of Breslow 

thickness. 

Materials and Methods. This study was conducted in collaboration with the Department of 

Statistical Sciences (UNIBO), the Department of Physics and Astronomy (UNIBO), and the 

Oncologic Dermatology Unit at IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy. Digital 

whole slide images were acquired using a scanner at 40x magnification. An AI-based image 

processing pipeline was applied to each image to segment nuclear cells and delineate the 

tumoral area (silhouette). The geometric contours of nuclear cell shapes and their spatial 

distribution were analysed. A classification model using Linear Discriminant Analysis was 

implemented. Finally, AI models were applied to measure Breslow thickness. 

Results.  (i) The automated silhouette identified by our pipeline closely matches those manually 

contoured by expert dermatopathologists, and based on its morphological characteristics, 

pathologists were able to diagnose melanoma with an error rate of just 4%. (ii) The 

morphological features of 2,204,813 nuclei were evaluated, and each sample's characteristics 

were summarized using 44 variables. Classification accuracy, assessed through Monte Carlo 

Cross-Validation, achieved an accuracy of 0.90 and a sensitivity of 0.84 in distinguishing 

cutaneous melanoma. (iii) We noted variability in a distance measure and heterogeneity in its 

acquisition methods. By evaluating the overall spatial distribution of cells, we observed a 

significant correlation between the pathologist-annotated distances and the 80th percentile of 

the cell distribution. 

Conclusion.  Automating clinical procedures provides invaluable support, leading to faster and 

more reliable sample evaluations. Our study can expedite the screening of whole slide image by 

prioritizing histopathology slides that exhibit high-risk melanoma features over those with low-

risk nevus characteristics. 
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Introduction 

Cutaneous melanoma (CM) is the deadliest form of skin cancer, with 57 000 deaths in 

2020 (0·7% of all cancer deaths), according to the Global Cancer Observatory. 1,2  

The incidence of CM has been rising globally over the past few decades, particularly in 

countries with predominantly fair-skinned populations or those with excessive sun 

exposure due to closer proximity to the equator. 3Age-cohort period analyses of 

melanoma incidence conducted between 1982 and 2011 in Australia, New Zealand, 

Norway, Sweden, the UK, and the white population of the USA revealed an approximate 

annual increase of 3%, with this upward trend continuing in subsequent years.4 In Europe, 

the incidence rate is 10 to 25 new CM cases per 100’000 inhabitants, with a significant 

increase among individuals over 60, particularly men. The primary risk factors include 

UV exposure, especially intermittent high sun exposure leading to sunburn, a high 

number of common nevi, large congenital nevi (CN) or atypical/dysplastic nevi (DN), 

and genetic predisposition. 5 

It is important to note that the incidence and mortality rates of CM vary globally 

depending on the quality and accessibility of primary care, availability of early diagnosis, 

effectiveness of primary prevention and advancements in disease management. In the 

clinical setting, the diagnosis of melanoma can vary significantly based on the level of 

medical training, expertise, and access to new technologies. 

A standard measure for melanoma detection is the number needed to biopsy (NNB), 

which indicates how many skin biopsies are performed to detect one case of melanoma. 

The NNB for melanoma ranges from 4 to 26 The use of dermoscopy, digital dermoscopy, 

sequential total body photography, and reflectance confocal microscopy has been shown 

to directly improve diagnostic accuracy in detecting melanoma. 5–7 (Fig.1-3) 
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Figure1- Two examples of superficial spreading CM. Clinically, both presented as pigmented macules with irregular 
borders (1a, 1c). Dermoscopically, they show streaks and whitish, structureless regression features, more pronounced 
in the first case (1b), representing a 0.5 mm melanoma according to tumor Breslow thickness, and more subtle in the 
second case (1d), representing a 0.2 mm melanoma according to tumor Breslow thickness. 

 

 

Figure 2- Dermoscopy is important as it allows for differential diagnosis between lesions that are difficult to recognize 
or appear similar. Here, we have two seemingly similar lesions, both displaying an irregular network: a DN (2a) and a 
CM (2b). In the latter case (2b), we observe how the network reverses in the central portion, creating a white mesh 
pattern typical of one of the dermoscopic criteria for melanoma 
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Figure 3- Two more similar cases. Clinically, both have a worrisome appearance, with multiple colors and irregular 
borders (3a, 3b). Dermoscopically, one shows a combined pattern with a central dermal component lacking atypical 
vascularization and a regular peripheral network, indicating a dermal nevus with junctional activity (3c). The other, 
however, displays a combined pattern with a dermal component featuring polymorphous vascularization and an 
irregular peripheral network, indicating a melanoma arising from a nevus (3d). 

 

The gold standard for diagnosing CM is the histopathological examination of 

haematoxylin and eosin (H&E)-stained tissue biopsy sections analysed via light 

microscope.8,9 This allows pathologists to observe the disease at the cellular level and 

apply their expertise to assess the tissue's morphological and cytological features for 

accurate diagnosis. However, manual evaluation of tissue samples is often complex, 

making it a time-consuming and labour-intensive process. Additionally, the high volume 

of skin biopsies in most pathology laboratories presents significant logistical and staffing 

challenges. Interpretation and classification of histological specimens rely on integrating 

various histological features, which may be influenced by the pathologist's subjectivity. 

As a result, diagnostic discrepancies for melanocytic neoplasms have been reported to 

range from 2.7% to as high as 25%–26%. 10–12 A worrying study, demonstrated an 

interobserver variation in diagnostic sensitivity among 20 pathologists ranging from 55% 

to 100%, making the results almost as unpredictable as a coin toss.. 13  
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The most common issues with inter- and intra-observer variability among pathologists 

involve the diagnosis of small or flat lesions, as well as lesions with spitzoid morphology. 

11–16 Terms with uncertain prognoses, such as atypical Spitz tumour (AST) and superficial 

atypical melanocytic proliferation of uncertain malignant significance (SAMPUS) have 

been suggested by the medical community and introduced into daily practice. 17 In 

particular, there is a tendency to overdiagnosis thin melanomas due to the difficulty in 

distinguishing between junctional-type DN and in situ/superficial spreading CM. 18–20 

For these types of lesions, it is important to implement new methods to aid in differential 

diagnosis. 21 

H&E histological analysis 

In the late 1940s, Ackerman was among the first to systematically describe the pathology 

of what was then referred to as “melanocarcinoma”.22 At that time, it was widely believed 

that all melanomas originated from preexisting moles, particularly the so-called “active 

junctional nevus”.23 From a modern perspective, much of what was once considered a 

precursor lesion would likely now be classified as melanoma in situ. Ackerman, along 

with Allen, Spitz, and Clark, were pioneering figures in the field of melanoma pathology. 

Many of the histopathologic criteria for diagnosing melanoma, which are still widely used 

by dermatopathologists today, were established in the 1970s. Around the same time, 

Breslow introduced depth of invasion as a prognostic marker for primary cutaneous 

melanoma.24 Ackerman, however, rejected the concept of precursor lesions such as 

“active junctional nevus”, “dysplastic lentiginous nevus of the elderly” and “premalignant 

melanosis” considering them to be misdiagnoses of melanoma in situ. 16 

The histopathologist’s diagnosis relies on visually assessing the overall architectural 

pattern (morphological features) and various cellular characteristics (cytological features) 

in histological samples.25 This process involves multiple steps of analysis and reasoning, 

which are essential for determining whether a neoplasm is benign or malignant.  

Morphological features are examined under low microscopic magnification (2x to10x), 

while cytological features identifying cellular atypia are observed at high microscopic 

magnifications (20x to 100x) 
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Lesion's silhouette 

One of the most crucial distinguishing features of a melanocytic neoplasm is its 

silhouette. 26 This term, introduced by Ackerman in 1985, describes the contour of the 

neoplasm and the morphologic aspects of tumour extension. 26 The importance of 

silhouette delineation, at a first glance, could be superior to that of other cytological 

details in determining the benign or malignant nature of a neoplasm. 26,27 

A neoplasm with a silhouette that is symmetrical, wedge-shaped, and sharply 

circumscribed with smooth borders is typically benign. In contrast, a silhouette that is 

asymmetrical, poorly circumscribed, and jagged in outline is almost always indicative of 

a malignant neoplasm. 25–27 The symmetry of the silhouette can be assessed in several 

ways: 

• Vertical symmetry: This can be evaluated by drawing an imaginary vertical line 

through the centre of the lesion. If the two resulting halves are similar, the lesion 

is likely benign (Fig.4). 27  

• Symmetry of lateral edges: This refers to the features of the lesion’s borders. A 

similar cellular arrangement and consistent cytological details on both sides are 

indicative of a benign lesion. 27 

• Horizontal symmetry: This can be assessed by dividing the lesion into several 

imaginary parallel strips. A benign nevus will show homogeneous histological 

details at each level of thickness, with uniform cellular characteristics and density. 

27 
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Figure 4- Vertical symmetry evaluated by drawing an imaginary vertical line through the center of the lesion. In this 

case of melanoma, we observe asymmetry between the two halves, particularly evident in the irregular distribution of 

nests, melanocytes at the junction, and the presence of skip areas—regions lacking cells alternating with areas where 

the cells are crowded together 

 

Epidermal pattern and presence of ulceration 

The evaluation of the epidermal pattern in nevi reveals uniform epidermal hyperplasia, 

with possible elongation or thickening of reticular ridges.27 In contrast, melanoma 

typically exhibits a disordered pattern, or even ulceration (Fig.5). 27 Areas of epidermal 

hyperplasia are alternate with regions of epidermal thinning, leading to attenuation of the 

basal and suprabasal layers and loss of reticular ridges. 27 The consumption of epidermis 

and the presence of a linear dermo-epidermal artefactual cleft are both considered a good 

clue to melanoma. 9 
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Figure 5- Ulcerated melanoma with the loss of an intact epidermis overlying the melanoma lesion. 

 

Dermo-epidermal junction pattern 

In melanoma, particular in superficial spreading type, the major disorder is localized on 

the dermo-epidermal junction (Fig. 6). 25 The nests in melanoma are large, confluent, 

irregularly shaped, and asymmetrically distributed at the junction. 25 They alternate 

irregularly with areas of single melanocytes or skip areas that are free of melanocytes. In 

nevi the nests are small and distributed without skip areas. Only Clark nevi could have 

variably sized or confluent nests .25 

Spatial distribution of cells 

In melanomas, single melanocytes are mostly irregularly distributed, not equidistant from 

one another, in both the basal layer and other epidermal layers, often within effaced rete 

ridges.25,27 In contrast, in nevi, single melanocytes are typically observed in a lentiginous 

pattern, arranged as junctional single units within elongated rete ridges. 25,27 

Neoplastic cells can scatter into the epidermis and follicular epithelium, a process known 

as pagetoid spread, due to its resemblance to the scattering of breast cancer cells into the 

epidermis in Paget disease of the nipple or other sites.25 This evaluation is particularly 

important for melanoma diagnosis, when numerous suprabasal melanocytes are involved, 

affecting the epidermal layers in a multifocal or diffuse manner, typically observed in 

both the central and peripheral portions of the lesion, and the melanocytes appear 
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atypical.28 However, pagetoid spread can also occur in certain nevi. In nevi, the number 

of suprabasal melanocytes is generally low, limited to the spinous layer, and the 

phenomenon is focal or spatially restricted, usually occurring in the central portion of the 

lesion. This benign occurrence is referred to as pseudoinfiltration. 25   

Miescher also highlights that while the tendency of cells to separate or loosen from 

neighboring cells is a normal occurrence in benign nevi, it becomes much more 

pronounced in malignant melanoma.29 A mild degree of disjunction can be observed in 

some compound junctional nevi, but the separation of individual cells is not as 

pronounced or widespread as in malignant melanomas. 25 

 

 

Figure 6 - At the junction, the atypical lesional cells are clustered in nests, but mostly are predominantly arranged as 

single units above the dermal papillae in a chaotic manner. The presence of pagetoid spread further supports the 

diagnosis of melanoma 

 

Dermis alteration 

The presence of atypical melanocytes in the dermis varies greatly basin on the melanoma 

subtypes.28 The involvement of adnexal structures, vessels or nerves is an indication of a 

more aggressive clinical evolution. 30 a lymphocytic infiltrate with pigment incontinence 

and diffuse fibroplasia are frequently present in the papillary dermis. 28  
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A dermal lymphocytic infiltrate, defined as present when evident beneath and/or within 

the context of melanocytic proliferation, may have either a sparse or pronounced 

distribution, sometimes forming a continuous band in the dermis. 28 An assessment of 

tumour-infiltrating lymphocytes (TIL) is critically important in the context of melanoma. 

In fact, studies have shown that the presence of intratumoral lymphocytes is generally a 

positive prognostic factor. 31,32 

The atypical melanocytes and TILs may alternate with diffuse fibroplasia (Fig.7) and 

areas of lesional cell loss, consistent with partial (or sometimes complete) regression.15  

The College of American Pathologists (CAP) defines histologic regression in melanoma 

as the replacement of tumour cells by lymphocytic inflammation, thinning of the 

epidermis, dermal fibrosis with inflammatory cells, melanophages, and telangiectasia.33 

Regression can be partial or complete. In partial regression, some melanoma cells remain 

surrounding or within the area of fibrosis, while in complete regression, no tumour cells 

are present.34 Less than 0.27% of cases show complete regression, diagnosed by the 

absence of melanoma cells but evidence of fibrosis, melanophages, or a documented prior 

clinical lesion or the presence of metastatic disease. 34 In such cases, "tumorous 

melanosis" may appear, consisting of melanin-laden macrophages without melanocytes.34 

Solar elastosis, which is seen in most cases of CM, consists of ribbon-like basophilic 

fibers, an abnormal product of damaged fibroblasts, typically found in sun-damaged 

skin.34 The presence of solar elastosis beneath a melanocytic proliferation supports a 

melanoma diagnosis, particularly when the melanocytes seem to be pushing downward 

and are accompanied by fibrosis between them. 25 

https://www.sciencedirect.com/topics/medicine-and-dentistry/metastatic-carcinoma
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Figure 7: Lamellar fibroplasia presented as bands of pink collagen wrap around the rete and nests of melanocytes that 
bridge between them. 

 

Cytological atypia 

Atypical melanocytes show two basic traits. They may be large with abundant cytoplasm 

and a large nucleus, or small with scant cytoplasm and a hyperchromatic, angulated 

nucleus. As a result, cells and their nuclei can vary significantly in size and shape at the 

same level of the lesion. 25 

Despite some exceptions, nuclear pleomorphism, hyperchromasia, large eosinophilic 

nucleoli, and an irregular, thick nuclear contour are reassuring indicators of atypical 

melanocytes. Furthermore, necrosis and mitoses, specially in cluster or in the deep portion 

of the lesion are findings favouring a melanoma diagnosis (Fig.8). 25  

Cytological atypia, generally continuous and severe in melanomas, was discontinuous 

(atypical cells were mixed to nonatypical ones) and slight/moderate in naevi.28 A practical 

method for assessing cytological symmetry is to draw parallel horizontal lines across the 

lesion. 25  In melanoma, the cytological details within each strip will vary, whereas in a 

nevus, the same cytological pattern is consistent throughout the entire section. 25 Cellular 
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heterogeneity is a key indicator of malignancy. Pleomorphism should be evaluated by 

examining the size, thickness, and colour of nuclear cells. 25 

 

Figure 8- In this cytological milieu, we observe significant nuclear pleomorphism, nuclei with coarse chromatin, and 
mitoses. 

Tumour Breslow Thickness 

Melanoma thickness is the strongest predictor of clinical outcome for patients with 

localized primary cutaneous melanoma.24,28 In clinical practice, The Breslow thickness 

measured vertically from the upper edge of the granular layer of the epidermis to the 

deepest invasive melanoma cells using an ocular micrometre calibrated to the microscope. 

35–40 

In case of ulceration and loss of epidermis, melanocyte distribution is assessed from the 

the ulcer base to the deepest portion of the tumour. Extensions along periappendageal 

sheaths and areas of regression are excluded from the measurement but should be reported 

as additional histological findings. This measurement has some limitations, particularly 

related to human variability and measurement imprecision. 39,40 Despite their expertise, 

pathologists supported by the ocular of the microscope can examine only a portion of the 

tumour at a time during the analysis, potentially missing the overall perspective and the 

global cell distribution. Moreover, the heterogeneity of the slices collected on the same 

patient could lead to significant thickness variations within the same tumour.  

Additionally, the Breslow measurement does not account for variations in the thickness 

of the normal epidermis at different anatomical sites and changes due to tissue fixation. 
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Special challenges include distinguishing in situ melanoma from superficially invasive 

melanoma and differentiating invasive melanoma with a nevoid appearance from 

melanoma associated with a nevus. 41–43  

Human involvement in evaluating Breslow thickness can lead to interobserver variation 

and estimation errors. 44–47 Possible imprecisions in Breslow thickness measurement has 

the potential to significantly impact the clinical evaluation of the patient, affecting 

prognostic estimations and decision management. 48 

The diagnostic criteria for melanoma can be more complex than those mentioned above, 

with certain types of melanomas displaying completely unique histological features. 

Histopathological examination is often complemented by additional diagnostic tools, 

particularly immunohistochemical (IHC) staining methods and genetic testing, especially 

when the histological sample is incomplete or the differentiation status of the neoplasm 

is unclear. 49–51  

Second opinion review of pathology specimens 

Second opinion reviews of pathological specimens are a common practice among 

pathologists, both within the same institution and across different national or international 

institutions (extradepartmental consultations).15,25 The recent multidimensional 

classification by the World Health Organization (WHO) has brought significant changes 

to the taxonomy of diseases, based on nine distinct pathways and the recognition of new 

entities characterized by specific morphologies and associated genetic-molecular 

alterations.52 Accurate subclassification within these WHO pathways is essential for 

optimizing treatment and may require additional analyses.53,54 

Several studies underscore the importance of real-time expert pathological review, 

especially for the diagnostic clarification of challenging atypical melanocytic lesions. 

12,15,55–58 A change in diagnosis for referred melanocytic lesions has been reported in 10-

35% of cases, with subsequent changes in management in most of these instances. 12,15,55–

58  In a simulated model involving a population of 10,000 individuals undergoing excision 

of a melanocytic lesion, diagnostic discrepancies were more likely to result in 

overdiagnosis rather than underdiagnosis of melanoma.59 In a retrospective study, major 
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and minor diagnostic disagreements were found in 20.2% and 48.8% of cases, 

respectively.60 

Most pathologists seek a second opinion for melanocytic tumours with uncertain 

malignant potential, moderately dysplastic nevi, early-stage invasive melanomas, or Spitz 

tumours. 12,15,55–58 The Italian Melanoma Intergroup (IMI) recently established a Second 

Opinion Consultation Service to provide systematic and timely pathological reviews of 

newly diagnosed ambiguous melanocytic lesions, further optimizing patient care. 15 

Second opinions have been shown to reduce healthcare costs by decreasing both 

overtreatment and undertreatment. 15  Additionally, second opinions offer valuable 

learning opportunities for less experienced physicians or those in need of updates in 

dermatopathology. 55 

However, there are also challenges associated with second opinions. Despite their utility, 

diagnostic variability among pathologists remains high, even among dermatopathology 

experts, due to the subjective nature of histopathological interpretation and the lack of 

objective reference standards for classifying melanocytic lesions. 55,56,61 Moreover, 

obtaining a second opinion can increase diagnostic costs and delay results, which may be 

a barrier for some patients or for healthcare systems with limited resources. 55  

In Italy, the National Health Service covers the initial pathological diagnosis for all 

citizens, regardless of income or age. However, second opinions are not reimbursed and 

are not currently included in the core benefits package (LEA).15 Finally, there are no clear 

and universally accepted guidelines on which cases warrant a second opinion or how to 

resolve diagnostic disagreements among pathologists. 55 

Immunohistochemical (IHC) 

In recent years, IHC has become increasingly valuable in aiding pathologists with 

melanoma diagnosis, thanks to its widespread availability in most laboratories, as well as 

its reliability and reproducibility.62,63 There are two types of biomarkers most commonly 

used for melanoma diagnosis and prognosis: melanocytic markers and proliferative 

markers.64 Melanocytic differentiation markers (S100, SOX10, HMB-45, Melan 

A/MART-1, MITF, Tyrosinase, KBA 6.2, NKI/beteb, PNL2, MC1R, CD146/Mel-CAM, 

NKI/C3, and p75NGFR) help determine whether an ambiguous lesion is melanocytic, 
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while proliferative markers (Ki-67, PHH3) serve as a strong indicator of cell cycle 

activity, providing insight into the lesion's proliferative potential.63,64 There is no single 

perfect biomarker for melanoma, which is why IHC screenings are often conducted using 

panels of multiple biomarkers. 63,64 Markers useful for the differential diagnosis between 

CN and CM ( p16, p21, p53, PRAME, NKI/beteb, 5-hmC, PTEN, , H3KT, and H3KS); 

Markers useful for the identification of specific histological subtypes of CN and CM 

(BRAF V600E, c-Kit/CD117, ROS1, ALK, pan-TRK, BAP-1, β-catenin, PRKAR1A, 

NF1, and IDH1); Double stains (DS) (HMB-45/Ki67, MART-1/Ki67, D2-40/MITF, D2-

40/S-100, D2 40/SOX10, D2-40/MART-1, CD34/SOX10, HMB-45/PRAME, MART-

1/PRAME, and MART- 1/PHH3) (Fig.9). 63,64 

 

Figure 9: Spitz cN with ALK-translocation (A,B). A case of Spitz cN with a characteristic plexiform morphology ((A): H&E, 
original magnification ×20), which suggests an ALK translocation and turned out positive for ALK ((B): H&E, original 
magnification ×20). Spitz cN with NTRK1-translocation (C,D). A case of Spitz cN with filigree-like rete ridges and 
lobulated nests ((C): H&E, original magnification ×50), which suggests a NTRK1 translocation and turned out positive 
for NTRK ((D): H&E, original magnification ×50). Deep-penetrating cN with CTNNB1 mutation (E,F). A dermal cN with 
a wedge-shaped silhouette, large and bland epithelioid melanocytes arranged in small nests, and ill-defined fascicles 
((E): H&E, original magnification ×80), which suggests a “deep-penetrating” morphology and turned out positive 
(cytoplasmatic and nuclear) for β-catenin ((F): H&E, original magnification ×80). Lentigo maligna melanoma (G,H). A 
lentigo maligna melanoma with single and nested atypical melanocytes that involve the adnexal structures and 
markedly efface the epidermis ((G): H&E, original magnification ×100). This case turns out positive for HMB-45 
(cytoplasmatic) and PRAME (nuclear), with a 4+ score ((H): HMB-45/PRAME, original magnification ×100; HMB-45: 
red, PRAME: brown). Note that DS HMB-45/PRAME allows us to simultaneously establish the melanocytic nature of 
the lesion and evaluate the PRAME score. Abbreviations: cN: cutaneous nevus; DS: double staining. 
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Despite recent advances in genetics, epigenetics, and molecular discoveries that have 

deepened our understanding of skin cancers, some aspects remain elusive, and H&E 

histological analysis continues to be the primary, and often the only, tool for diagnostic 

interpretation worldwide. Furthermore, the ability to conduct complex and costly 

molecular studies is often limited, particularly in pathology laboratories with constrained 

financial resources.  Therefore, developing new diagnostic techniques for skin tumours is 

crucial to help pathologists to standardize the diagnoses and to ensure accurate patient 

treatment planning. 

Artificial intelligence in histopatological melanoma diagnosis 

With the rise of digital pathology (DP) and the development of advanced computational 

tools, artificial intelligence applied to histopathology (often referred to as computational 

pathology) has made significant advancements and attracted growing attention in recent 

years.65,66 In DP, the glass slide can be digitized to produce a high-resolution image 

resembling the one from the microscope, called Whole-Slide Image (WSI).67 WSIs can 

be used for primary diagnosis just as successfully as a microscope. Artificial Intelligence 

(AI) techniques, particularly machine learning (ML) and deep learning (DL), with a focus 

on convolutional neural networks (CNNs), have proven highly effective for WSI image 

analysis. CNNs are especially suited to image processing tasks, allowing a fully automate 

extraction of geometrical and textural features from the image which could be linked to 

morphological features of the tissues and cells.65,66 

Early applications of AI in pathology began with interactive programs that integrated 

histologic data and clinical information. However, it was not until 2003 that AI systems 

were used to enhance learning through tutoring.68 In 2005, a hypertext atlas of 

dermatopathology was created, featuring 3’200 histopathologic images with the potential 

for continuous updates, highlighting AI's flexibility in education and research. 69 

In skin cancer research, one study first trained a convolutional neural network (CNN) on 

129’450 images representing 2’032 skin conditions. The CNN outperformed 21 

dermatologists in distinguishing between melanomas and benign nevi, achieving an area 

under the curve of over 91%. 70 Another study used CNNs to analyse 695 skin lesions, 
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finding 18-20% disagreement between the CNN and a histopathologist’s diagnosis, which 

closely matched inter-pathologist disagreement rates. 71 

Between 2008 and 2018, a multicentre database was developed with over 2’000 WSI, 

showing CNNs consistently outperformed human experts in identifying melanoma versus 

benign nevi. They trained two CNN architectures (namely ResNet-50 and VGG-19) using 

>9.95 million patches. The CNN is also used to detect cells between nevi and melanoma 

to make the classifications plausible 72 

Another study showed that CNN ensembles matched the performance of 18 expert 

dermatopathologists, with sensitivity, specificity and accuracy of 98%, 88%, and 93% 

respectively, comparable to experts. Despite some diagnostic discrepancies, CNNs 

showed high reproducibility, particularly when combined into ensembles. 73 

A recent study trained the Fast Random Forest algorithm on 125 histologic images of 63 

melanoma patients to reduce variability in diagnosing nevus with high-grade dysplasia 

and melanoma, achieving 17% discordance. They trained the algorithm to recognize 

architectural features (such as the arrangement of individual and aggregated melanocytes, 

and the symmetry or asymmetry of the lesion) and cytologic details (including nuclear 

atypia, pagetoid spread of melanocytes, and potential necrosis) 66,74 

Overall, AI systems, especially CNNs, have shown great promise in dermatopathology 

by improving diagnostic accuracy and objectivity, reducing time, and providing a 

valuable tool for both novice and experienced pathologists. 75 

In addition, AI models can offer quantitative assessments of biomarkers to classify 

diseases into subtypes and predict patient outcomes.76 For instance, AI can quantify the 

density of tumour-infiltrating T cells (TILs), an important prognostic factor, or help 

identify mitotic figures, which may signal malignancy. 77,78 Traditional methods for 

detecting mitosis manually are labour-intensive and prone to interobserver variability. AI-

based algorithms, particularly CNNs, have been developed to automate this process, 

learning complex patterns associated with mitosis from large datasets and detecting them 

with high precision. 78 In a retrospective study, authors developed a DL model using 

histopathology slides from 108 patients to predict metastasis risk, aiding 
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dermatopathologists in identifying aggressive tumours and forecasting survival 

outcomes. 79 

Despite the promise of AI in histopathology, only a small fraction of studies have been 

approved for clinical use, largely due to the lack of generalizability in their 

methodologies.80 One major limitation is the need for large, high-quality training datasets. 

Developing reliable DL models for WSI analysis requires manually annotated images, a 

time-consuming and challenging process that demands high precision to ensure accurate 

segmentation models. 81 Additionally, significant interobserver variability among 

pathologists complicates the efficient training of AI models. 81 

A key challenge with AI is that its outputs often do not intuitively align with traditional 

clinical reasoning or human logic. These models frequently operate as "black boxes," 

producing results without clear explanations of how they reached a specific conclusion.82 

This lack of interpretability hinders trust in AI models and slows their clinical adoption.80  

Finally, the current limitations of image databases, along with restricted image sharing 

between institutions, further complicate AI-based diagnosis.80 While dermatopathologists 

are trained to consider a wide range of differential diagnoses, most CNNs can only 

determine if an image is positive or negative for a specific disease.80 

Mosquera-Zamudio et al.80 analysed published research on DL methods for automatic 

image analysis of melanocytic tumour WSIs. The image modalities in the included studies 

varied significantly, both in terms of the diagnostic information they provide and the 

technical requirements (e.g., feature types, image sizes, preprocessing). Of the studies 

reviewed, 13 (41.38%) used only a single data source, typically relying on local datasets, 

while studies with multiple sources often utilized open-access datasets. Although studies 

using a single source achieved good results, they face a major limitation when applied to 

real-world clinical practice. Variations in tissue characteristics between different 

geographical and ethnic populations, as well as differences in tissue processing (e.g., 

gross sectioning, fixation, section thickness, staining methods, and scanning), can impact 

image quality, leading to inconsistencies between pathology labs. Therefore, for DL 

models to be effectively implemented in clinical practice, they must be trained on datasets 

from diverse sources. The more variety a model is exposed to, the better it will generalize 

to accurately predict new, unseen data.80 
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Purpose of the Study 

In these paragraphs, we have highlighted both the diagnostic and management challenges 

faced by histopathologists, including the complexity of diagnosing cutaneous melanoma, 

the need to streamline workflows, and the development of new diagnostic support 

methods that can supplement or replace resource-intensive investigations. We have also 

addressed critical issues associated with AI techniques documented to date. Building on 

this background, our study introduces a novel AI and statistical learning-based diagnostic 

approach for cutaneous melanoma. This method could prioritize the review of 

histopathologic slides in an automated pipeline by distinguishing high-risk melanoma 

features from low-risk nevus features. Additionally, it could provide a valuable second 

opinion in challenging cases, such as melanomas arising within nevi or in differentiating 

DN from CM. This study is organized into three main sections: 1) Automated silhouette 

definition and its diagnostic value, 2) Nuclei feature extraction and classification 

modeling, and 3) Evaluation of Breslow thickness. 

Automated silhouette definition and its diagnostic power 

Material and Methods 

This study involved the eDIMESLab and Oncologic Dermatology Unit, IRCCS Azienda 

Ospedaliero-Universitaria di Bologna. The protocol was approved by the Local 

Institutional Review Board. Histopathologic slides were collected by the Laboratory of 

dermatopathology, Dermatology, of the Sant’Orsola-Malpighi Hospital and the digital 

WSIs were acquired using a NanoZoomer 2.0-RS Hamamatsu scanner with a 40x (0.23 

µm/pixel) magnification and auto focusing. Each case was anonymized obscuring the 

histological image label and an anonymous identification number was assigned in order 

to guarantee the anonymization of sensitive data. All samples examined derived from 

deep excisional biopsies or wide excisions. Hematoxylin and Eosin (H&E) stained WSI 

were reviewed by expert dermatopathologists with >10 years of experience in dermato-

oncology. For each patient, multiple WSI slices were collected to guarantee a robust 

evaluation for the clinical practice. To reduce data redundancy, only non-consecutive 

slices were considered for the statistical analysis of each patient, when possible. 
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Histological evaluation included Breslow thickness, mitosis number, presence of 

ulceration, inflammation, and tumor regression. Clinical data were evaluated for each 

case, including gender, patients’ age at diagnosis, tumor location and clinical diameter of 

the lesions. 

Computer aided diagnosis system pipeline 

The entire set of WSIs was analyzed using a multi-resolution image processing pipeline. 

Starting from the low-resolution level of the WSI pyramid, the entire set of slices was 

automatically identified using an Otsu thresholding algorithm 83 on the grayscale version 

of the image, filtering the possible confounders (such as bubbles, dirt, and highlighter 

marks) on the glass slide. The automatic identification of the epidermis surface by 

thresholding algorithm can guarantee the rotation of the sample using the epidermis as 

reference and thus introduce a metric of depth. The identified slice ROIs were used to 

extract the image information on the highest resolution level (40× magnitude), allowing 

the focus of the next analyses on the only informative regions of the entire WSI. For each 

slice, the binary mask of the entire tissue was extracted, defining a representation of the 

slice contours. According to the slice mask obtained on the low-resolution level of the 

WSI, a dedicated U-Net segmentation model 84 was applied to identify the contained cells 

in the highest resolution level. The model was trained on the PanNuke 85 dataset to obtain 

a detailed description of the cells’ contours. The entire image processing pipeline was 

developed in Python using Openslide 86 and OpenCV packages 87 for the management 

and analysis of WSI samples. 

Silhouette definition 

The superposition of the distributions of the detected cells on the original WSI image 

provides its spatial registration. We further discretized these distributions in altitude 

levels of intensity: each level groups a range of density scores and we associated a 

different (incremental) color to each of them for the clinical visualization. The shapes of 

the resulting density levels act as silhouette descriptor of the neoplastic area. For the 

visualization of the results and the management of the produced silhouette a dedicated 

plug-in on the Sedeen Viewer software was developed. The Sedeen Viewer software is 

supported by the Pathology Image Informatics Platform (PIIP) project by Martel et al.88 
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and thus it provides an easy integration of our pipeline also in other WSI projects. In our 

application we provided to the clinician also the possibility to turn on/off each level of 

the density distribution: in this way we guaranteed an incremental accuracy of the density 

score and we left to the expert the possibility to choose the desired level (Fig. 10).  

 

Figure 10 - Heatmap elaboration. a: WSI comprises multiple consecutive sections of a single sample, each of which 
was analyzed independently; b: Sample extraction with the removal of possible confounding factors, identification of 
the epidermal surface and the rotation of the section; c: Automated and unsupervised cell identification and 
classification based on their morphological characteristics; d1-d2: The resulting spatial distribution highlights the 
density map of the cells in the section and the superimposition of this distribution on the original image allows its 
spatial registration with the WSI with silhouette delineation. 

The slides of 50 CM and 20 CN were included in this analysis. We divided the evaluation 

of the samples among two experts: 1) the first histopathologist performed the manual 

annotation of each WSI sample highlighting the melanoma and nevus silhouette; 2) the 

second expert estimated, with a blinding evaluation, the agreement between the areas 

identified by his colleague and the result of the automated algorithm. Then, the validated 

automated silhouettes were submitted to other dermatopathologists. Each silhouette was 

overlayed on the original WSI, and the opacity of the resulting image was adjusted to 

partially obscure the underlying histological source. During the blind evaluation, the 

expert was asked to determine the potential malignancy of the underlying lesion in 

relation to the silhouette shape. Each section was labelled as “melanoma” or “nevus”, and 

the results of the blind evaluation were compared to the ground truth diagnosis. 

Results 

We included 50 patients (28 males and 22 females, mean age 67 and 64 years) with 

diagnosis of superficial spreading CM and 20 CN (11 males and 9 females, mean age 42.2 

years). Clinical and histopathological results are summarized in table 1.  
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Table 1 - Clinical and histopathological characteristics of 70 patients (50 diagnosed with CM and 20 diagnosed with 
CN) 

Patients  n % n % 

 melanomas nevi 

Age  

<50 19 38 15 75 

50-59 6 12 3 15 

60-69 8 16 2 10 

>70 17 34 0 0 

Gender   

Female 22 44 9 45 

Male 28 56 11 55 

Location  

Trunk 28 56 15 75 

Head and neck 3 6 0 0 

Limbs 19 38 5 25 

Ulceration  

Absent 49 98 

Present 1 2 

Mitosis (x mm2) 

<1  45 90 

>1  5 10 

Breslow (mm) Average 0,4 

<0,8 44 88 

>= 0,8 6 12 

Regression 

Present 23 46 

Absent 27 54 

Inflammation 

Absent 9 18 

Present: 

- Brisk 

- Not-brisk 

 

11 

30 

 

22 

60 

   

Stage 

pTIS 2 4 

pT1a 42 84 

pT1b 3 6 

pT2a 3 6 
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The cells spatial distribution allows a multi-scale overview of the sample at different 

resolution levels, which are represented by a heatmap overlayed on the WSI. A global 

overview of the lesion silhouette can be achieved using the low-resolution levels of the 

WSI. This highlights the melanocytes spatial distribution in both the epidermis and dermis 

areas, guaranteeing the detection of a possible melanocytes’ invasion of the upper 

epidermis in a pagetoid growth. The qualitative measurement of the melanocytes’ 

structural disorder into the tissue allows a first fast evaluation of the sample. The heatmap 

is an easy-to-use visualization for assessing the level of clustering of detected cells. In 

94% (47/50) of melanomas and 100% (20/20) of nevi analysed, the automated silhouette 

identified by our method is compatible to those manually contoured by the expert 

dermatopathologist with a qualitative superiority to the manual scheme in identifying 

melanocytes.  Furthermore, the two pathologists confirm that areas with highest 

intensities of malignant melanocytes identified by our method correspond to the region 

of interest for melanoma diagnosis related to the presence of high nuclear density, nuclear 

atypia, and neo-angiogenesis (Fig.11). 

 

Figure 11 - The silhouette identified by our method is defined by a range of density scores. We used incremental colors 
(from yellow to red) to represent those levels for the clinical visualization. The method is comparable with the silhouette 
manually contoured by the expert histopathologist (blue line), and in some cases qualitatively superior in the 
identification of tumoral areas. 

Regarding principal limitations, it was seen that in some cases the automatic identification 

classified tissue characterized by visible inflammation or skin appendages, such as glands 
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and hair follicles, as melanoma-like regions. Both biological structures are characterized 

by a high level of cellular density and, without a following classification of the nuclei, 

are difficult to discard by the described method.  

The validated automated silhouettes were submitted to 2 dermatopathologists. A 

symmetrical, vertically oriented, wedge-shaped silhouette with a smooth, well-defined 

edge was associated with a benign lesion; an asymmetrical silhouette with a jagged and 

poorly defined edge was defined as a malignant lesion. On all the available sections (156), 

18% of the silhouettes led the expert to an incorrect diagnosis (melanoma-like silhouette 

vs. a diagnosis of benign nevus and nevus-like silhouette vs. a diagnosis of melanoma). 

This non-negligible error rate can be reduced in light of the following consideration: this 

analysis was performed considering multiple (at least 2 to a maximum of 6) sections for 

each patient in order to increment the statistical population which added to the robustness 

of this pipeline; but the identification of CM can be sometimes observed only in fewer 

sections. Adjusting for this consideration by grouping together the sections belonging to 

each patient, only 1 patient (4% of error rate) was incorrectly classified by the expert (Fig 

12).

 

Figure 12 - Examples of benign (left) and malignant (right) lesions in relation to the silhouette shape. The silhouette 
contour was filled to obtain a dense heatmap of the segmented area and the underlying histological source was 
partially obscured to focus the attention of the expert on the segmented area. In the case of nevus silhouette, the 
shapes are symmetrical, vertically oriented, wedge-shaped, and sharply circumscribed with smooth borders and flat 
base. An asymmetrical silhouette with a jagged and poorly defined edge is defined as a malignant lesion. 

Discussion 

In the diagnosis of melanocytic skin tumors, the assessment of the overall architectural 

pattern, the silhouette of the lesion, is fundamental.20,26,89 The most promising advances 

in histopathologic diagnosis are supported by new technologies and are based on image 



26 
 

processing techniques.90–92 Most published studies attempt to exploit deep neural 

networks in order to assess histomorphological features in H&E slides.91 However, deep 

neural network models require extensive training and multiple validation sets. Hekler et 

al. 91 applied a deep learning algorithm for the first time in histopathological melanoma 

classification showing a discrepancy between a convolutional neural network and the 

histopathologist in 19% of the images. These results were comparable to the pathologist 

interobserver variability described in the literature. 12,20,60 The goal of this model is to 

overcome the limitations of supervised approaches and, thus, it can be applied without 

relying on manually labeled samples. In literature, there are several deep learning models 

proposed to automate the processing of WSI that require manually annotated sets of 

images in order to obtain reproducible training of the parameters.93,94 This step is 

normally difficult and time-consuming to perform at the accuracy level required for a 

precise segmentation model. Many authors have already proposed automatic pipelines for 

the segmentation of histological samples, and a major part of them focus the analysis of 

small patches of each section, usually at lower resolution than the one allowed by the 

WSI.90–92,95 This approach guarantees a fast evaluation of the section, but it leads to a 

rough segmentation of the underlying physiological structures. The proposed method 

performs the analysis on the entire WSI without the need for a subdivision in patches. 

Therefore, it is possible to obtain segmentations and silhouettes at high resolution that are 

therefore easy to use and validate by the experts. The developed pipeline requires an 

elaboration time compatible with clinical application (an average of about 10 minutes per 

section). The most time-consuming step (87% of the time) is given by the segmentation 

and classification of the cells, which requires a high-resolution analysis of the WSI. 

Additionally, the pipeline can be further optimized using a GPU support. In accordance 

with Dall’Olio et al.96, the use of a distributed computing for high memory-consuming 

data should be discouraged, since the best computational performances are reached by a 

concurrent parallelization framework. In conclusion, we have shown that the proposed 

method allows for a quick identification of the most informative regions of interest for 

diagnosis. The agreement between the human silhouette and the areas identified by the 

automated algorithm in our study ranged from 94% in melanomas to 100% in nevi and 

the diagnostic power of these silhouettes was validated by two dermatopathologists. This 

result shows the importance of the lesion silhouette for the formulation of the 
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dermatopathological diagnosis and the importance of an accurate detection of the tumor 

area for the discrimination between benign and malignant skin lesions.  

Nuclei features extraction and classification model 

Material and Methods 

This study involved the the Department of Statistical Sciences (UNIBO), the Department 

of Physics and Astronomy (UNIBO) and Oncologic Dermatology Unit, IRCCS Azienda 

Ospedaliero-Universitaria di Bologna. The slides of 40 CM, 20 CN and 40 DN with a 

total of 146 samples, were selected for a statistical learning analysis based on nuclear 

morphological features and their spatial distribution. Firstly, the acquisition of the digital 

WSIs and the multi-resolution image processing pipeline to segment cells described in 

the previous chapter was applied to the set of WSIs included in this study to segment 

cells. Then, the data preparation process followed further steps that are described in the 

next paragraphs. 

Nuclei Features Extraction  

The cells’ masks collected on the entire dataset involved the analysis of more than 6 

million nuclei that were analysed to characterize their morphology and textural aspects. 

For each cell, the corresponding contour of the binary mask was extracted, and the 

component was characterized using 16 morphological features (e.g. area, perimeter, 

circularity, elongation, etc.) and 35 textural features (e.g. RGB, HSV, and Lab averages 

and variances, Haralick features 97 etc.). Associated to each cell, its spatial position on the 

slice was estimated considering the barycentre of its contour shape. The spatial 

coordinates of each cell were rescaled according to the PCA coordinates systems, 

providing information about their spatial distribution in relation to the epidermis layer. 

146 samples from the cell segmentation process were further summarized to build a set 

of variables that can describe the peculiarities of the different slides. This statistical 

processing of the samples, along with the subsequent analyses, has been carried out in R. 

The first step of the process involved the identification of the lesion in each slice. To this 

aim, the larger clusters of cells obtained by the HDBSCAN98 algorithm were isolated. 

Indeed, such a method is a density-based clustering algorithm that allows us to identify 
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groups of units (cells in our case) being connected according to measures related to the 

concept of density. (Fig.13) 

 

Figure 13 - Example of lesion identified by the HDBSCAN algorithm (in red) for each kind diagnosis. 

 

Subsequently, focusing on the cells constituting the lesion, the behaviours of cell area (A), 

aspect ratio (AR), extent (E), and sphericity (S) were investigated, noting that their spatial 

distributions vary over the sample area. (Fig.14)  

 

 

Figure 14 - Example of the distribution of average cell sphericity and average cell area across the four samples. This 
image illustrates how the spatial distribution of these features can vary within the sample area, highlighting that 
summarizing these variations is crucial for providing valuable information to differentiate between diagnoses. 

Since it is known that the studied lesions can manifest different cell characteristics with 

respect to their depth (Fig.15), these patterns were summarized by splitting the cells into 

different strata, namely four groups (labelled with S1, S2, S3, and S4) determined by the 

quartiles of the distances (Fig.16). As the fourth group of cells can display irregular 



29 
 

behaviour, it was excluded from the analysis. Then, in each stratum, the mean and the 

standard deviation (sd) of the cell attributes were computed (e.g. E_S2_mean will indicate 

the mean cell extent in the second stratum). To evaluate the heterogeneity of these features 

across the strata, the between-strata standard deviation was also computed (named, e.g., 

E_sd_bet), being defined as the standard deviation of the means obtained in the different 

strata of cells. 

 

Figure 15 - the blue lines emphasize the non-linear trends in the relationships between the features considered 
(sphericity and area) and the distance of the cells from the top. The vertical dashed lines identify the first 3 strata, 
included in the analysis (labelled with S1, S2 and S3); whereas the horizontal lines represent the average values of the 
cell features belonging to the different strata.   

 

 

Figure 16- To get information to use in statistical learning models, the lesion silhouette are summarized by splitting the 
cells into different strata, namely four groups determined by the quartiles of the distances 

 

A further useful aspect to include in the analysis regards the spatial correlation of the 

features measured on the segmented cells, i.e. evaluating if similar cells tend to be 

clustered or not. To this aim, basic descriptive geostatistical tools 99 can be useful and we 

fit the Spherical and the Exponential variogram models on the empirical variogram using 
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the R package gstat 100. The best variogram model is selected in terms of Akaike 

Information Criterion. The area feature showed a marked spatial correlation that we 

summarized in three typical variogram parameters: A_Range, A_Nugget, and 

A_Sill.  Another set of computed variables had the goal of describing the relationship 

among cells, relying on the distribution of the nearest neighbor distances (NND), 

evaluated through the spatstat R package 101. The NND distributions were summarized in 

the whole lesion and in the central part (S2+S3) through the median (med), standard 

deviation, and first and third quantiles (q1 and q3). Lastly, we included in the analysed 

dataset the number of cells, the strata widths, and the density of cells in S1. In this way, 

44 variables that describe the lesions included in the sample are available. 

Classification Model 

We studied several supervised classification techniques, concluding that the most 

interesting results were obtained considering the family of methods comprising Linear 

Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) 102. In more 

detail, we applied LDA to the entire set of variables, obtaining an optimal subset through 

a stepwise forward selection algorithm based on Wilks' Lambda criterion. As a 

benchmark, we also consider Regularized Discriminant Analysis (RDA) 103, which 

automatically handles potential multicollinearity issues and combines the group 

covariance matrices used in LDA with the more general definition of QDA. This is 

reached at the cost of losing the interpretability of the discriminant directions that 

characterize LDA. All functions needed to implement these methods are available in R 

within the packages MASS 104 and klaR 105. 

To evaluate the effectiveness of model classifications a Monte Carlo Cross-Validation 

(MCCV) study is performed by randomly splitting 200 times the whole dataset into a 

training set (85%) and a test set (15%). Then, the trained models were used to classify the 

samples in the test set, obtaining false negatives (FN), false positives (FP), true negatives 

(TN), and true positives (TP). At each iteration, we computed: 

accuracy = TN+TPFN+FP+TN+TP, 

sensitivity = TPTP+FN, 
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precision = TPTP+FP, 

F1=2TP2TP+FP+FN, 

MCC = TPTN-FPFN(TP+FP)(TP+FN)(TN+FP)(TN+FN), 

and we report their average as output. 

Results 

We included 40 patients with diagnosis of superficial spreading CM (23 males and 17 

females), 20 CN (11 males and 9 females), 40 DN (19 males and 21 females). Clinical 

and histopathological results are summarized in table 2.  

Table 2 - Clinical and histopathological characteristics of 100 patients (40 diagnosed with CM and 20 diagnosed with 
CN and 40 diagnosed with DN). 

Patients  n % n % n % 

 melanomas Congenital nevi Dysplastic nevi 

Age    

<50 11 27.5 13 65 21 52.5 

50-59 8 20 4 20 5 12.5 

60-69 9 22.5  3 15 8 20 

>70 12 30 0 0 6 15 

Gender     

Female 17 42.5 9 45 21 52.5 

Male 23 57.5 11 55 19 47.5 

Location    

Trunk 25 62.5 9 45 26 65 

Head and neck 1 2.5 0 0 0 0 

Limbs 14 35 11 55 14 35 

No Ulceration    

Mitosis (x mm2)   

<1  39 97.5   

>1  1 2.5   

Breslow (mm) ≤  0,8 with average of 0.5   

Regression   

Present 29 72.5   

Absent 11 27.5   

Inflammation   

Absent 8 20   

Present:     
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Patients  n % n % n % 

 melanomas Congenital nevi Dysplastic nevi 

- Brisk 

- Not-

brisk 

15 

17 

37.5 

42.5 

We applied the proposed image processing pipeline on a dataset composed by 146 

histological slices, analysing the spatial statistics variables of nuclei geometrical features 

and their distributions. A preliminary variable selection step was performed, obtaining 18 

relevant variables, listed in Table 3.  

Table 3 – Means of relevant variables in the different groups. The superscript letters denote groups that are 
significantly different, based on post-hoc comparisons from a Kruskal-Wallis test. 

  CM DN CN 

A_S1_mean -0.107a 0.246b -0.419b 

A_S2_sd 0.081a 0.220a -0.684b 

A_S3_sd -0.331a 0.529b -0.723c 

A_S3_mean -0.275a -0.080b 0.678b 

A_sd_bet -0.031a 0.450b -1.055c 

AR_S2_sd 0.260a -0.158b -0.065b 

S_S2_sd 0.242a -0.155ab -0.041b 

S_S2_mean -0.321a 0.139a 0.218b 

S_S3_mean 0.229a -0.355a 0.474b 

E_S3_sd -0.334a 0.445a -0.512b 

E_sd_bet -0.366a 0.566b -0.754c 

A_Range 0.498a -0.338b -0.040c 

A_Nugget -0.037a 0.338a -0.769b 

Width_S1 0.263a -0.464a 0.684b 

Width_S2 0.158a -0.372a 0.640b 

NND_central_med 0.100a 0.087ab -0.390b 

NND_central_q1 -0.100a 0.124a -0.130a 

NND_q3 0.275a 0.095b -0.716c 

 

To assess the effectiveness of the classification methods (CM vs. not CM) we conducted 

the MCCV study, whose results are reported in Table 4. By labelling melanoma samples 
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as 'positive’, the sensitivity index (0.844) provides insight into the effectiveness of the 

classification method in detecting actual cases. This high sensitivity is coupled with a 

precision of 0.865, indicating that the classification method does not excessively 

overestimate the number of predicted melanomas. As a summary measure related to the 

cases detection, the obtained F1 score is good (0.842). Additionally, the overall 

classification accuracy is high (0.904), further supported by a robust MCC of 0.783. We 

also highlight that LDA performed on an optimal subset of variables outperforms RDA, 

according to the considered metrics.  

Table 4 – Values of the indices used to evaluate the classification ability through the MCCV study. 

  Accuracy Sensitivity Precision MCC F1 Score 

LDA 0.904 0.844 0.865 0.783 0.842 

RDA 0.877 0.850 0.796 0.730 0.808 

 

One appealing feature of the LDA classification method is its interpretability, leveraging 

the dimensionality reduction properties of the technique to shed light on the classification 

process. Figure 17 shows the scores of the entire set of samples projected onto the two-

dimensional space defined by LDA, which represents linear combinations of the original 

variables that maximize the ratio of between-group to within-group variance. The 95% 

confidence ellipses indicate good group separation, with the right-hand-side plot 

highlighting CMs near the CN group, which may reflect the presence of CM cases 

overlapping with CN. The first linear discriminant (LD) axis accounts for 59.3% of the 

between-group/within-group variance ratio, mainly separating DN (on the right) from CN 

and CM (on the left), with CN showing higher scores along the second LD axis. Figure 2 

also shows the discriminant coefficients (arrows), indicating the direction of the most 

relevant variable contributions on the LD axes. This output should be interpreted 

alongside Table 3, which lists the mean values of variables for each sample group. The 

superscript letters denote groups that are significantly different, based on post-hoc 

comparisons from a Kruskal-Wallis test (ɑ=0.05), with the p-values adjusted for multiple 

comparisons using the multivariate t method. 
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Figure 17 -  Scores of the samples projected in the 2-dimensional space produced by the LDA, reporting the 95% 
confidence ellipses to highlight the groups. Arrows indicate the direction of the most relevant variables for the 
samples discrimination (discriminant coefficients).  

Discussion 

The primary challenge in applying artificial intelligence to dermatopathology is the lack 

of generalizability in existing methodologies.80-82 Most convolutional neural networks 

(CNNs) and other machine learning techniques are trained to classify images as positive 

or negative for specific diseases using “black box” models. 80-82 These models often 

produce outputs that are not intuitively interpretable using traditional clinical parameters 

or human logic. 80-82 Furthermore, current image databases are inadequate, and limited 

sharing of images between sources complicates AI-based diagnoses even further. 66,73,81,91 

In this work, an important outcome of the implemented methodology is the ability to 

interpret the classification rule from a histopathological perspective, as LDA is not 

considered a black-box approach. Two histopathologists validated the diagnostic 

significance of sample characteristics related to nuclear distribution and features. They 

identified key aspects of nuclear and cellular morphology as crucial for accurate 

histological diagnosis. For instance, in clinical practice, one method to assess cytological 

symmetry is to draw a series of parallel transverse lines across the lesion.25 In a 

melanoma, the cytological features within each section are distinctly varied. 25 In contrast, 

a benign nevus displays a consistent cytological pattern throughout the entire layer.25 

Greater variability in nuclear area and sphericity in the second skin layer (A_S2_sd and 
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S_S2_sd) may be attributed to increased pleomorphism associated with atypical 

melanocytes. This distinction aids in differentiating between CN, characterized by more 

uniform nuclei, and CM or CN, both of which can exhibit nuclear and cellular atypia. 

Moreover, the median nearest-neighbor distance (NND_central_med) is greater in CM 

compared to other groups, likely due to the higher prevalence of atypical melanocytes, 

where the nucleus tends to shift off-center, increasing its distance from surrounding 

nuclei. Lastly, another finding consistent with expected histological behavior is the 

clustering of nuclei with similar sizes in CM. This is reflected by higher values of the 

variogram range (A_range), indicating a slower decay of spatial correlation. Such 

clustering can be explained by the monoclonal proliferation of similar cells in localized 

areas or clusters, particularly as tumor cells separate from skip areas. 25 These results 

underline the importance of cellular and nuclear composition in distinguishing between 

benign and malignant skin lesions in dermatopathology.  

We reported the effectiveness of the classification method in detecting melanoma, which 

demonstrated a sensitivity index of 0.844 and a precision of 0.865. These results indicate 

that the classification method does not significantly overestimate the number of predicted 

melanomas. The classification results are obtained under a Bayes classifier approach, to 

maximize the overall accuracy. However, from a clinical perspective, this may not be 

ideal, as the two types of classification errors carry different levels of severity. For 

instance, failing to diagnose a case of CM is far more critical than incorrectly labeling a 

benign lesion as CM. To address this imbalance, the threshold for assigning the CM label 

can be lowered, increasing sensitivity. However, this comes at the cost of reduced 

precision and, subsequently, lower overall accuracy. 

We aim to further improve and extend this method for application to other histological 

entities. 
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Evaluating Breslow thickness 

Material and Methods 

The study was performed at the Oncologic Dermatology Unit, IRCCS Azienda 

Ospedaliero-Universitaria di Bologna with the collaboration of the Department of Physics 

and Astronomy (UNIBO).  40 WSI slides of CM, reported in table 2, were reviewed.  

We asked an expert histopathologist to re-label the entire set of slices according to the 

Breslow thickness, using their digitised versions in a blind evaluation. This second 

evaluation was performed using the Sedeen Viewer software supported by the Pathology 

Image Informatics Platform (PIIP)106 asking the histopathologist to draw a segment 

between the deepest melanocyte manually identified in the slice and the granular layer 

surface. This measurement was conducted without limits of time, allowing the use of the 

entire set of magnitudes (between 0.1x and 40x) according to the histopathologist's needs. 

For each identified segment, the coordinates of the starting and ending points were saved 

at pixel level and converted into micrometre according to the scale factor of the WSI 

sample. Starting from the same melanocyte identified by this procedure, we asked other 

5 histopathologists to evaluate the Breslow thickness on the entire set of WSI samples. 

Keeping track of the starting point of the measurement, the integration of other 

histopathologists guaranteed the monitoring of both the Breslow thickness and orientation 

of the ‘ruler’ during the evaluation.  A dedicated computer vision software was developed 

for the semi-automated analysis of the digitised WSI samples.  

Starting from a manually identified region of interest related to the top area of the slice, 

i.e. starting from the epidermis surface of each slice, and based on the annotation provided 

by Operator 1, the application of a series of artificial intelligence models allowed the 

automated identification of the granular layer surface and the entire set of cells in the 

tissue. The centroid of each identified cell was used as reference for its position in the 

tissue, evaluating its Euclidean distance from the granular layer shape. The evaluation of 

the geodesic distance from the tissue surface provided information about the spatial 

distribution of the cells and guaranteed the mathematically correct evaluation of the 

Breslow thickness in each point of the slice (Geodesic in the next), for each identified 

cell. The possibility to obtain a fully automated Breslow estimation starting from these 
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preliminary results relies on the possibility to have the classification of all the identified 

cells.  The statistical significance between the measurements of the operators was 

assessed using paired T-tests between Breslow values. The distributions of slopes 

produced during the measurements were analysed for all the operators (7 in total), and 

the spread was put in correlation with the spread in Breslow thickness estimation, to 

investigate how much of Breslow variance originated from choosing the direction. 

Results 

In the first analysis we evaluated the accordance between the Breslow thickness 

measurements performed by Operator 1 and Operator 2. We would like to stress that since 

Operator 1 performed their evaluation without the help of digitised data, the only term of 

comparison between the two operators was the Breslow score, without a direct 

comparison of the exact location in which the measurement was performed. The paired 

T-test between the two sets of measurements over the 40 available samples produced a p-

value of 0.47, showing no significant disagreement between the two operators. 

Nevertheless, it is important to notice that, despite the not significance of the obtained p-

value, the difference between the two operators was estimated as 23.2 ± 200.2 μm, 

confirming the presence of a bias between them that cannot be captured in terms of 

statistical test by the high heterogeneity of the two distributions of values. 

Using as a starting point the melanocyte identified by Operator 1, the mathematical 

minimum distance between it and the granular layer of the slice, i.e. the geodesic distance, 

was evaluated using the information extracted by the proposed semi-supervised software. 

(Fig. 18) 
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Figure 18 - User interface of the semi-automated software developed for the Breslow evaluation. Artificial intelligence 
models are employed to identify all cells in the tissue and delineate the granular layer surface. The coordinates of each 
identified cell are used to automatically compute the geodesic distance from the granular layer surface, which is then 
displayed in the upper-left corner of the viewer. In the bottom-right corner, a high-resolution region of interest (ROI) at 
40x magnification is shown to ensure accurate identification of cell populations. Depth isolines from the granular layer 
are displayed in varying intensities of orange. Users can manually select the desired location for measurement, 
obtaining the Breslow thickness at that point with higher precision than standard clinical practice. 

The linear regression between the two sets of measurements obtained an R² of 0.99 (y = 

0.97x, p-value ≤ 0.001), confirming the robust agreement between them. However, the 

evaluation of this kind of regression is significantly biassed using the same starting point: 

confirming this, the paired T-test between the two distributions of measurements leaded 

to a (partially) significant p-value of 0.02, with an average difference of 2.5 ± 45 μm. This 

result pointed out the difficulty of a human evaluator in the estimation of a geodetic 

distance between a point and a curved line like the complex shape of the granular layer 

achieved by the fixation process. 

The inclusion of the other 5 operators allowed us to increase the statistics of the 

measurements and the robustness of our hypothesis. Despite the not significant difference 

between the measurements of all the 7 operators among them, 5/7 of them showed a 

statistically significant difference if compared with the mathematical geodesic distance. 

The results obtained by the paired T-test evaluations over the 7 available operators in the 

Breslow evaluation are reported in Figure 19 
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Figure 19 - Statistical results obtained by the comparison of the Breslow measurements collected over 7 
histopathologists and the geodesic distance. a. Paired T-test between the 8 sets of Breslow measurements: for each 
test we reported the T statistic value, the corresponding p-value, and the adjusted p-value corrected by multiple tests 
(Benjamini–Hochberg); the statistical significance of the test was evaluated on the adjusted p-value, using one or more 
stars (*) for the nomenclature of the levels (0.05, 0.01, 0.001). b. Percentage of difference between the median values 
of the 8 sets of Breslow measurements: for each combination of variables we evaluated the difference between the 
two medians, normalising the results by the first value; we coloured the percentage difference in reds for positive 
differences and in blues for negative values. 

A more readable indication about the differences between the 7 operators could be 

obtained considering the percentage difference between the medians of the Breslow 

distributions (Fig. 20), in which we can easily notice how, despite the intrinsic variability 

between the human operators, there is a common overestimation trend when we compare 

them with the geodesic distance. 

 

Figure 202 - Statistical results obtained by the comparison of the angular inclinations produced by 6 histopathologists 
during Breslow measurement, starting from the same melanocyte. a. Distribution of the standard deviations of the 
angle distributions over 40 histological samples performed by 6 histopathologists; the average angle values ± standard 
deviation and the range of the distribution domain are reported in the box. b. Linear correlation between the variability 
of the angle values and variability of the resulting Breslow distances; the R² score and corresponding p-value of the 
linear regression are reported in the box. 
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To further describe the measurement errors and their cause during human evaluation, we 

analysed the variability of the angles of inclinations produced by the 6 operators for whom 

we had the information about starting and ending points, i.e. Operators 2–7. Considering 

the distributions of angles produced by the 6 operators, we analysed their standard 

deviations, using these metrics as indicators. The results obtained by our analyses are 

shown in Figure 20. The variability (intended as standard deviation) of the angles 

produced by the 6 operators ranged from a minimum of 0.65° to a maximum of 35.90° 

(ref. Figure 20a), showing an extreme variability during the measurements. Confirming 

this, we obtained a significant linear regression (y = 0.32x, R² of 0.67, Pearson correlation 

of 0.82, p-value ≤ 0.001) between the variability of the angles and the variability of the 

Breslow thickness estimations (ref. Figure 20b). This result confirms the quite intuitive 

link between the variability of a distance measure and the heterogeneity of the possible 

ways in which it was acquired. However, the implication of this kind of correlations in 

the current context could lead to significant clinical ambiguities, showing the intrinsic 

human issues in considering this type of measurements.  

By evaluating the overall spatial distribution of cells, we observed a significant 

correlation between the distances annotated by Operator 2 and the 80th percentile of the 

cell distribution (y = 0.88x, R² of 0.92, Pearson correlation of 0.96, p-value ≤ 0.001). 

Examples of the obtained distributions are shown in Figure 21. 

 

 

Figure 21 - Distribution of the distances evaluated from each cell and the corresponding granular layer in 3 different 
slices. a–c. For each cell automatically identified in the tissue by the artificial intelligence model, we reported the 
distribution of euclidean distances from their position and the identified granular layer; the set of geodesic distances 
could help the histopathologist in the correct measurement of the Breslow thickness, after the identification of the 
deepest melanocyte; the manually annotated Breslow distance could be approximated with the 80th percentile of the 
distance distribution, or, alternatively, with a fixed density value of the cell population, i.e. the distance in which the 
sparsity of the cell in the tissue surpasses a predetermined threshold. 

Discussion 
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In 1970, Alexander Breslow proposed that measuring melanoma thickness from the skin 

surface to the deepest point of invasion was an indicator of tumour burden and a 

prognostic feature for recurrence or metastasis.24 In 2009, the AJCC confirmed the 

prognostic significance of Breslow's thickness 107: the 10-year survival is 92% among the 

patients with T1 melanomas (0.1 – 1.0 mm) and is 50% in patients with T4 melanomas 

(≥ 4.1 mm). Over time, many studies have confirmed that tumour thickness is the single 

most important survival predictor for melanoma. 108,109 However, the correlation between 

thickness and prognosis is not absolute. 110 A small number of patients with the so-called 

“thin” melanoma (usually defined as a lesion with depth less than 0.8 mm in the last AJCC 

version) develop metastases and some with thick melanoma do not. 111–113 Beyond the 

limits determined by the pathologist's experience and its ability with the microscope, we 

need to pay attention to a second series of potential issues linked to the measurement 

process itself. In any kind of distance measurement, like the Breslow one, we always 

introduce two main sources of errors: i) the definition of the starting and ending points of 

our measure and ii) the orientation of the instrument used. These two sources of 

uncertainty are intrinsic in any kind of measurement, posing a limit on the reliability of 

our estimations. Furthermore, if the first error could be classified as ‘random error’ and 

therefore minimised increasing the statistics of our acquisition, the second one could 

represent a ‘systematic error’ type due to a personal bias of the pathologist. While 

approximating a melanocyte as a single point may not result in significant information 

loss, this is not the case for the granular layer surface. The epidermal layer is typically a 

curved line with several invaginations, and the section fixation process often causes 

shrinkage and additional curvature, further affecting the accuracy of measurements and 

the correct identification of the orientation of the micrometre. Our results emphasise the 

critical importance of Breslow measurements, which focus on the distance between a 

single cell and the shape of the granular layer shape. Significant variations in distances 

measured by different operators can be attributed to the subjective nature of the 

measurement, which depends on identifying a single point in the tissue slice (the 

minimum distance of a melanocyte from the skin). Statistically, any measurement based 

on a single outlier is prone to high variability, making it preferable to use more robust 

statistical indicators. An objective comparison between the Breslow definition and the 

spatial distribution of cells can be made by evaluating the distances between all cells and 
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the granular layer. Beyond these practical difficulties, it is interesting to note that in his 

initial work, Breslow identified the histological characteristic with the most robust and 

reliable prognostic potential for melanoma, despite the lack of evidence supporting the 

view that Breslow's index is related to tumour burden. 110,114 Instead, tumour thickness, 

serving as a quantitative marker for the biological behaviour that drives melanoma cells 

progression and invasion. Several studies have attempted to identify miRNA 

dysregulation and gene expression associated with Breslow’s thickness. 115–117 The 

proteins whose expression correlates with tumour thickness are often involved in cell 

adhesion, cell survival and invasion. 115,116,118 In particular, E-cadherin, a keratinocyte-

melanoma adhesion molecule, experiences a loss of expression early in melanoma 

progression, which is associated with increased tumour motility and invasiveness. 119,120 

Moreover, this mechanism results in altered signalling, leading to decreased apoptosis 

and evasion of senescence. 121–123  

In this perspective, Breslow thickness does not represent tumour mass but rather the 

tendency of melanoma cells towards motility, invasion, and progression. Therefore, it is 

important to consider cell density and the spatial distribution of cells in the slice to better 

contextualise the measurement of tumour thickness. The importance of cell distribution 

is underscored by the reasonable assumption that two melanomas with the same Breslow 

thickness, but different cell densities at the measurement point, may have different 

invasiveness and prognostic tendencies. The one with fewer invasive cells will likely have 

a better prognosis. The term 'Breslow density' was introduced in 2017 40 to describe an 

estimate of the melanoma cell area at the position where Breslow thickness is measured. 

This was done to demonstrate proof of concept that Breslow density could be a viable, 

simple, and reproducible morphological prognostic biomarker and to determine whether 

detailed future evaluation is warranted. The combination of Breslow density and 

thickness shows a marginal improvement in predicting 5-years survival. 40 

These studies highlight the importance of correlating Breslow thickness with the 

distribution and density of all cells in the preparation. Our analysis found a significant 

correlation between the distance annotated by Operator 2 and the 80th percentile of the 

cell distribution on the slide. By rethinking the measurement in these terms, Breslow 

thickness could be associated with the distance from the granular layer for about 80% of 
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the entire cell population, providing a more robust statistical metric that does not rely on 

identifying a specific cell. This result underscores the importance of incorporating 

artificial intelligence in digital pathology as a potential solution to refine standard 

histopathological measurements, ultimately redefining them with more reliable statistical 

indicators that minimise human subjectivity. 

Conclusion 

Artificial intelligence in dermatopathology cannot replace the human element in medical 

care; however, it plays a crucial role in streamlining workflows and improving diagnostic 

accuracy. Automating clinical procedures provides invaluable support for both laboratory 

and clinical practice, leading to faster and more reliable sample evaluations. Our study 

can expedite WSI screening by prioritizing histopathology slides that exhibit high-risk 

melanoma features over those with low-risk nevus characteristics.  

Furthermore, it can improve diagnostic accuracy in differentiating between benign and 

malignant skin lesions, assisting in tumour classification and reducing interobserver 

variability among pathologists, even in challenging cases such as dysplastic nevi and 

melanomas associated with nevi.   

Overall, this model has significant potential to advance clinical workflows and diagnostic 

practices in dermatopathology, offering an "automated second opinion" that can inform 

the final diagnostic decision in a timely and consistent manner. 
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