Machine learning for strong lensing: paving the way for the Euclid mission

Leuzzi, Laura (2025) Machine learning for strong lensing: paving the way for the Euclid mission, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Astrofisica, 37 Ciclo.
Documenti full-text disponibili:
[thumbnail of LL_phd_thesis.pdf] Documento PDF (English) - Accesso riservato fino a 10 Maggio 2027 - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (24MB) | Contatta l'autore

Abstract

In this Thesis, we explore the possibilities and limitations of the application of machine learning techniques to the analysis of strong gravitational lensing events by galaxies and galaxy clusters. This work is done in preparation of the survey that the Euclid mission is conducting, and that will cover one third of the sky in six years, delivering the images of more than one billion galaxies. Given the large volume of data, the identification of strong lensing events and their subsequent modelling will be necessarily based on automated methods. The main objective of this work is characterizing the performance of these techniques and exploring new possible applications. In the first part of the Thesis, we investigate the impact of training sets on the ability of convolutional neural networks to identify lens candidates. We evaluate this using Euclid mock observations, by training three architectures on simulated data, and on the Early Release Observations of the Perseus cluster, that are among the first publicly images released by the Euclid collaboration. In the second part of the Thesis, we focus on strong lensing by galaxy clusters. We develop a new version of the code SkyLens, for simulating cluster-lenses, and we validate the procedure for generating the clusters' properties by comparing the lensing properties of a simulated cluster to those of a real cluster of similar mass distribution and redshift. Moreover, these simulations are useful for the validation of automated classification and modelling methods, because we generate a catalog of properties of cluster members and lensed sources along with the images. Finally, we present a novel method, currently under development, that relies on equivariant graph neural networks for identifying the multiple images of lensed background sources. This work is important in the context of characterizing machine learning models before their widespread application to Euclid data.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Leuzzi, Laura
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
37
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Machine Learning, Strong Lensing, Galaxies, Galaxy Clusters, Euclid mission
Data di discussione
17 Marzo 2025
URI

Altri metadati

Gestione del documento: Visualizza la tesi

^