Establishment of a radiomics laboratory: data mining and quantitative imaging techniques in clinical radiation oncology

Menghi, Enrico (2024) Establishment of a radiomics laboratory: data mining and quantitative imaging techniques in clinical radiation oncology, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Fisica, 36 Ciclo. DOI 10.48676/unibo/amsdottorato/11151.
Documenti full-text disponibili:
[thumbnail of 2_20240214_PhThesis_Menghi_AMS.pdf] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (5MB)

Abstract

This thesis focuses on the field of data mining and radiomics and its application in clinical radiation oncology from cancer diagnosis to therapies. One of the thesis objective is to establish a "Romagna Imaging Biobank" and apply radiomics to specific oncological pathologies. The goals are to establish a link between tumor phenotype and quantitative image descriptors and personalize anti-cancer therapies. First the thesis outlines a software platform development and a multicentre study for radiomic tools testing, investigating their reproducibility, sensitivity and stability in terms of features extraction. We examine the use of imaging biomarkers, both through phantom-based testing and patient-focused studies: In the first study, software packages compliant with the Image Biomarkers Standardization Initiative (IBSI) were assessed, revealing high standardization in feature implementation. Then we present a multicentre evaluation of dosiomics features, emphasizing their stability and effectiveness in distinguishing dose distributions across various radiation therapy technologies and techniques. The former investigates the use of MR-based quantitative analysis to differentiate testicular tumors, while the latter assesses the complementary roles of MRI-ADC and [68Ga]Ga-PSMA-11-based quantitative analysis in distinguishing prostate cancer patients of varying risk levels. The last patient-focused study introduces a radiomic signature for the classification of benign lipid-poor adrenal adenomas, with potential applications in reducing unnecessary investigations and enhancing the accuracy of not-enhanced CT scans. A review on radiomic studies for lipid-poor adrenal adenomas is in preparation. In conclusion, the outlook of the radiomics laboratory is rooted in the ever-evolving field of data-driven medicine. Collaboration with various medical physics associations and research initiatives, including artificial intelligence, promises to drive progress in clinical oncology. The integration of digital image flows within hospitals and the implementation of standardized practices further enhance a comprehensive cancer care network and strengthen the establishment of a “Romagna Imaging Biobank”

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Menghi, Enrico
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
36
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Radiomics, Cancer Diagnosis, Cancer Therapies, Imaging Biobank
DOI
10.48676/unibo/amsdottorato/11151
Data di discussione
21 Marzo 2024
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^