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 INTRODUCTION 

In 2020, World Cancer Report published by the International Agency for Research on Cancer, states 

that cancer ranked as the second most prevalent cause of mortality worldwide, responsible for 

approximately 9.6 million deaths in 2018 [1]. 

There is inevitably a radical change in the approach to patient care which is increasingly directed 

towards a personalization of medicine based on imaging. The quantification of the data present in 

the images has in fact a great impact in the treatment of certain pathologies such as the increase in 

the accuracy of the diagnosis and the differentiation of the treatment. 

In recent years, there has been a great deal of technological effort by manufacturers in the field of 

imaging diagnostics and radiant therapies to provide imaging tools such as ultrasound, computed 

tomography (CT), positron emission tomography (PET) and resonances nuclear magnetic (NMR), 

increasingly performing and at the same time capable of producing a high quality and quantity of 

images while minimizing the dose to the patient. 

In this context, the physicist and in particular the medical physicist possesses the skills of acquisition, 

analysis and modeling of the data necessary to support the clinician in identifying, measuring, and 

quantifying possible mathematical descriptors of a given pathology. These descriptors extracted from 

the images (features) aim to become real specific biomarkers for that type of imaging and pathology 

(imaging biomarkers). 

This science, called radiomics, cannot be implemented except through a new and dedicated 

multidisciplinary approach of the various professionals involved, and must make use of a dedicated 

infrastructure that is able to make complex patient databases containing large quantities ordered, 

interrogable and manageable of multimodal images (imaging biobanks). 

DATA MINING AND QUANTITATIVE IMAGING IN ONCOLOGY 

The scientific justification of radiomics in oncology comes from genomics and as you can see in 

Figure 1 the biopsy of a tumor is shown with the gene expression profiling sites indicated (left) and 

the relative results (right). It is evident from the figure that a tumor does not present itself as a single 

genetic organism but is characterized by a set of heterogeneous genetic organisms [2]. The 

microenvironments that induce this genetic heterogeneity (main cause of resistance to modern 

molecular therapies) can be visualized through clinical imaging techniques (CT, PET, NMR). 

The extraction of quantitative information from tumor images therefore allows to identify these 

microenvironments and thus quantify their genetic heterogeneity. With this we expect to find a 

connection between the mathematical descriptors extracted from the images, the patient's 

prognosis and more specifically with the tumor phenotype taken into consideration [3]. 

 



In the patient care process, radiomics data integrate with genomics and clinical data as shown in 

Figure 2. From the figure it is evident that the cycle is interrupted if it is not supported by an 

appropriate technology (data warehouse) that manages in structured the different sets of images 

and go to extract useful information for the construction of predictive and personalized models [4]. 

 

 

Figure 1 Biopsy of a kidney tumor with the gene expression profiling sites indicated (left) and related results where the 

genetic mutations present are evident compared to normal kidney tissue (right) from [1]. 

 

 

Figura 2 Integration of different kind of data for Data Mining and Decision Support (From a slide of plenary session of 

Radiological Society of North America 2015) 

 

 

 

 



AIM OF THE THESIS 

The objective of this PhD thesis is the establishment and the development of a so-called “Romagna 

Imaging Biobank” as a data mining and radiomics laboratory with the consequent study and 

application of radiomic descriptors to some clinical-oncological pathologies of primary interest in the 

IRCCS, Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori” (IRST), (i.e. testicular, prostate 

and adrenal cancer). In particular, it is expected to:  

- demonstrate the effective link between tumor phenotype and quantitative descriptors 

extracted from the imaging of the tumor for the pathologies considered. 

 

- improve the stratification of patients with the identified descriptors and obtain feedback on 

the personalization of anti-cancer therapies 

To acquire further development capabilities for the establishment of the laboratory we are 

collaborating with the working group of the Italian Association of Medical Physics (AIFM) called "Big 

Data and Artificial Intelligence": analysis of a survey (FM4AI) of AI and Machine Learning methods 

and areas used at medical physics services and in activities clinics and research [5], [6]. 

 

OUTLINE OF THE THESIS 

This Chapter 1 presents an introduction and a general overview. 

The feasibility study and the development of a “Romagna Imaging Biobank” for the optimization of 

procedures and the implementation of the application of quantitative imaging presented in this 

thesis, is divided into the following two points: 

1 - Development of a software platform capable of extracting, segmenting and analyzing radiomics 

descriptors from images from any clinical imaging instrument interfaced with IRCCS, IRST, starting 

from open-source and commercial software (i.e. Sophia DDM© Radiomics) and comparison of 

themselves through the use of digital and dedicated phantom as suggested by the Image Biomarkers 

Standardization Initiative (IBSI), is presented in Chapter 2. A multicentre study is conducted with 

digital and dedicated phantoms to test the effectiveness of the descriptors in controlled conditions 

(preprocessing parameters defined by set of images) to assess the agreement among different 

radiomic tools. In Chapter 3 is presented a recent extension of the concept of data mining and 

extraction from classic structural and functional imaging: a multicentre evaluation of “dosiomics” 

features extracted from radiotherapy dose distribution converted in gray-scale level. This study 

derives from a first validation of predictive radiomic models with "real world data" in locally 

advanced rectal cancer through the Working Group Radiomics of the Alliance Against Cancer [7,8], 

then the WG Radiomics subgroup called "Dosiomics" aims to identify and standardize the extractors 

linked to the dose distributions delivered in clinical radiation oncological to predict the patient's 

clinical outcome (Dose Marker Standardization Initiative, DoMSI ) [9]. 



2- Retrospective applications of radiomics to patients imaging with different pathologies and 

consequent identification of descriptors useful for improving the accuracy of the diagnosis, are 

presented in the next chapters of the thesis. In Chapter 4 we present the potential role of MR-based 

radiomic biomarkers in the characterization of focal testicular lesions to investigate signatures for the 

preoperative prediction of testicular neoplasm histology. Chapter 5 presents preliminary results of 

the Biopstage Trial, evaluating the ability of MRI-ADC and [68Ga]Ga-PSMA-11-based quantitative 

analysis to help differentiate low-risk prostate cancer patients (ISUP 1) from higher risk patient 

classes (ISUP>1) and aim to evaluate the benefits of the two imaging techniques combined. In 

Chapter 6, Radiomics in the characterization of lipid-poor adrenal adenomas at unenhanced CT is a 

retrospective observational study with a relevant clinical impact. Including more radiomic features in 

the identification of adenomas may improve the accuracy of not-enhanced CT and reduce the need 

for additional imaging procedures and clinical workup, according to this and other recent radiomics 

studies that have clear points of contact with current clinical practice.  

A work under preparation [10] will have the aim of investigating the current state of adrenal tumors 

in order to further improve the study done in this chapter. 

 

GENERAL DISCUSSION AND OUTLOOK OF THE RADIOMICS LABORATORY 

Finally, Chapter 7 is dedicated to a general discussion and conclusion, presenting a summary of the 

principal results of each chapter and a potential outlook for the future of the laboratory. 
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ABSTRACT 

 

Background: The translation of radiomic models into clinical practice is hindered by the limited 

reproducibility of features across software and studies. Standardization is needed to accelerate 

this process and to bring radiomics closer to clinical deployment.   

Purpose: The aim of the study was twofold: 1) to assess the standardization level of seven 

radiomic software programs and 2) to investigate software agreement as a function of in-built 

image pre-processing (e.g. interpolation and discretization), feature aggregation methods and the 

morphology (i.e., volume and shape) of the region of interest (ROI).  

Material and Methods: The study was organized into two phases: in Phase I, the two Image 

Biomarker Standardization Initiative’s (IBSI) phantoms were used to evaluate the IBSI-compliance 

of 7 software programs. In Phase II, the reproducibility of all IBSI-standardized radiomic features 

across tools was assessed on two custom ImSURE digital phantoms that allowed, in conjunction 

with a systematic feature extraction, to observe whether and how feature matches between 

program pairs varied depending on the pre-processing steps, aggregation methods and ROI 

characteristics. 

Results: In Phase I, we found that software programs presented different levels of completeness 

(i.e., the number of computable IBSI benchmark values). However, the IBSI-compliance 

assessment revealed that they were all standardized in terms of feature implementation. When 

considering additional pre-processing steps, for each individual program, match percentages fell 

by up to 30%. In Phase II, we found on the ImSURE phantoms that software agreement was 

dependent on discretization and aggregation as well as on ROI shape and volume factors.  

Conclusion: The agreement of radiomic software varied in relation to factors that had already 

been standardized (e.g. interpolation and discretization methods) and to factors that need 

standardization. Both dependences must be resolved to ensure the reproducibility of radiomic 

features and to pave the way towards the clinical adoption of radiomic models. 
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ABBREVIATIONS 

 ROI: Region of interest 

 IBSI: Image Biomarker Standardization Initiative 

 RFs: Radiomic features 

 FBS: Fixed bin size 

 FBN:  Fixed bin number 

 ImSURE: Italian multicenter Shared Understanding of Radiomic Extractors 

 

KEY RESULTS   

 On IBSI phantoms, radiomic software programs were able to compute different percentages 

(21-100%) of the IBSI benchmark values, however, they were all highly standardized regarding 

feature definition. When considering pre-processing, ‘matching’ values with the IBSI 

benchmark fell by up to 30% for the individual program. 

 On ImSURE phantoms, software agreement was significantly dependent, α=0.05 (Bonferroni-

adjusted α=9e-5), on discretization and aggregation methods, as well as on newly investigated 

factors (i.e., ROI shape and volume). 

 

SUMMARY STATEMENT  

We employed a novel approach to assess radiomic software agreement based on the ImSURE 

phantoms and a systematic feature extraction, finding that discrepancies were still present among 

standardized radiomic programs. 

 

 

 

 

 

 



1. INTRODUCTION  

Radiomics is the high-throughput extraction and analysis of quantitative imaging features 

with the goal of supporting medical decision-making by developing predictive and prognostic 

models (1–4). Radiomics has increasingly gained interest in radiology and oncology in recent years 

for cancer diagnosis, and for the prediction of prognosis or response to treatment (5–7). The lack 

of standardization in the definition and calculation of radiomic features (RFs), their ambiguous 

nomenclature and the limited reproducibility of radiomic studies (8–11) have all impeded the 

adoption of radiomics within clinical practice.  

Some of these concerns were recently addressed by the Image Biomarker Standardization 

Initiative (IBSI) (12) which published a reference manual (13) comprising the definition of 169 

standardized RFs and reporting guidelines on how to perform image pre-processing. Moreover, 

the IBSI shared two digital phantoms (14) with their respective benchmark feature values to assess 

the accuracy of software tools for radiomic analysis. Because of the raised awareness of the need 

for standardization, several radiomic tools have begun to conform to the IBSI-guidelines (15–18). 

However, a number of radiomic studies are based on in-house or public software with an unclear 

level of standardization concerning at least one of the several aspects involved for feature 

extraction (e.g. pre-processing methods, availability of tuning parameters). 

In this context, the present study stems from a collaboration between four Italian clinical research 

institutes, the Italian multicenter Shared Understanding of Radiomic Extractors (ImSURE) group 

(i.e. Azienda Ospedaliero-Universitaria di Bologna, Centro di Riferimento Oncologico di Aviano, 

Veneto Institute of Oncology and Isstituto Romagnolo per lo Studio dei Tumori “Dino Amadori”), 

and aims 1) to assess IBSI-compliance of commonly available software tools for radiomics (Phase I 

of the study) and 2) to investigate the causes of possible discrepancy for a representative set of 

radiomic tools by designing a systematic workflow of RFs extraction performed on two custom 

digital phantoms comprising multiple regions of interest (ROIs) with various volumes and shapes  

(Phase II of the study).  For completeness, we considered the entire set of IBSI-standardized RFs 

and we explored all possible combinations of pre-processing steps/aggregation methods. Finally, 

we exhaustively investigated the causes of discrepancy among the programs under consideration 

and discussed, for each software, whether differences were attributable to the limited or non-IBSI-

compliant implementation of one or more aspects. Limited flexibility in parameter setting, as well 



as software discrepancies, are non-negligible factors for the reproducibility of the RFs and for the 

general validity of the models proposed in the radiomic literature. 

2. MATERIALS AND METHODS  

2.1 Radiomic tools and radiomics features 

Seven radiomic tools were evaluated, of which six were open-source (MIRP, S-IBEX, RaCaT, 

SERA, PyRadiomics, and RadiomiCRO) and one was commercial (SOPHiA DDM for Radiomics, 

SOPHIA GENETICS). The inclusion criteria were: 1) that the software was self-declared IBSI-

compliant and/or IBSI participant and 2) that there was a consolidated experience in the software 

tuning by at least one of the four centers participating in the study. Table 1 reports the salient 

characteristics of these tools. To ensure correctness of their use, the seven software programs 

were picked from the tools readily available at the project’s participating centers and, when 

possible, were assigned to two centers for a consensus extraction of features. 

Software IBSI-compliant Version Language Data 

format 

Characteristic

s 

Documentation Assigned 

centers 

A (28) IBSI-

participant 

v1.0.2 Python DICOM Open source ✘ CRO, IOV 

B (16) self-declared v2 Matlab DICOM Open source ✔ IOV, IRST 

C (29) self-declared v2.2.0 - DICOM Commercial ✔ IRST, IOV 

D (18) IBSI-

participant 

v1.18 C++ DICOM, 

NRRD, 

NIfTI 

Open source ✔ IOV, BO 

E (15) IBSI-

participant 

v2.1 Matlab DICOM Open source ✔ CRO, 

IRST 

F  

(17,30) 

IBSI-

participant 

v3.0.1 Python NRRD, 

NIfTI 

Open source ✔ BO, IRST 

G  (31) self-declared - Matlab DICOM In-house ✘ CRO 

Table 1. Software packages included in the study.  

A=MIRP; B = S-IBEX; C=SOPHiA DDM; D=RaCaT; E=SERA; F=PyRadiomics; G=RadiomiCRO. IBSI-participant: tools that 

participated in IBSI for the standardization of pre-processing and feature calculation; self-declared: software for which 

there are independent works that state their IBSI-compliance. 

 

 



All one hundred and sixty-nine RFs that were standardized by IBSI and grouped into 11 

feature families were considered (13). The corresponding processing requirements for each family 

are summarized in Table 2. 

Feature family Feature Count Discretization Aggregation 

MORPH 25 

none 

none 

LI 2 

IS 18 

IH 23 

FBN or FBS 

IVH 6 

GLCM 25 rotation dependent 

(2D:avg, 2D:mrg, 2.5D:dmrg, 

2.5D:vmrg, 3D:avg, 3D:mrg) GLRLM 16 

GLSZM 16 

rotation independent 

(2D, 2.5D, 3D) 

GLDZM 16 

NGTDM 5 

NGLDM 17 

Table 2. Standardized feature families and required settings  

(MORPH = morphological features; LI = local intensity; IS = Intensity-based statistics; IH = Intensity histogram; IVH = 

Intensity-volume histogram; GLCM = Grey-level co-occurrence matrix; GLRLM = Grey-level run-length matrix; GLSZM = 

Grey-level size-zone matrix; GLDZM = Grey-level distance-zone matrix; NGTDM = Neighborhood grey tone difference 

matrix; NGLDM = Neighboring grey level dependence matrix; FBN = fixed bin number; FBS = fixed bin size; 2D:avg = 

averaged over slices and directions; 2D:mrg = merged directions per slice and averaged; 2.5D:dmrg = merged per 

direction and averaged; 2.5D:vmrg = merged over all slices; 3D:avg = averaged over 3D directions; 3D:mrg = merged 

3D directions; 2D = averaged over slices; 2.5D = merged over all slices;3D = calculated from single 3D matrix).  

 

2.2 Phase I: Assessment of IBSI compliance  

To quantify the level of IBSI-compliance of the seven software packages, RFs were 

extracted from two digital phantoms proposed by IBSI (13,14). In this context, a digital phantom is 

typically made up of an image containing intensity values and one or more regions of interest 

(ROIs), which enclose the image voxels to be used for feature calculation.  The IBSI digital phantom 

consists of 5x4x4 isotropic voxels with one ROI, while the IBSI radiomic phantom is a CT image 



from a patient with lung carcinoma where the gross tumor volume was used as the region of 

interest (19). RFs were extracted using the configuration settings proposed in the IBSI reference 

manual (13). We considered all five IBSI parameter configurations for the radiomic phantom, 

labeled A to E, and characterized by either 2D or 3D feature aggregation and either fixed bin size - 

FBS or fixed bin number - FBN discretization. In total, 482 feature values were extracted for the 

digital phantom applying neither interpolation nor discretization, whereas 1322 radiomic feature 

values were computed using all five configurations for the radiomic phantom. The calculated RFs 

were compared with the corresponding IBSI benchmark values and classified into ‘matching’ 

(differences ≤ IBSI-reported tolerance), ‘partial matching’ (differences ≤ three times the IBSI-

reported tolerance) or ‘no matching’ (otherwise), accordingly to the evaluation criteria proposed 

by the initiative (12). Features that were not implemented within a tool were labeled as ‘missing’. 

 

2.3 Phase II: Software comparison on the ImSURE digital phantoms 

The reproducibility of features across software programs was assessed for different pre-

processing choices (e.g. interpolation and discretization) (20), feature aggregation methods (e.g. 

2D, 2.5D, or 3D) and ROI characteristics (e.g. volume and shape). With this aim in mind, we 

designed two digital phantoms and a systematic feature extraction that included all possible 

combinations of the factors under investigation. 

 

2.3.1 ImSURE phantoms 

The ImSURE digital phantoms were designed with ROIs containing the texture of a medical 

image in order to mimic the content of a clinical ROI, and with geometrically defined 

morphologies, to control for ROI shape and volume. 

A computed tomography (CT) image was selected from a pool of individuals who signed 

informed consent at one of our institutes and whose data had been previously used in studies 

approved by the Institutional Review Board. The image, that was artifact-free, was retrieved from 

the PACS and anonymized.  

 

 



The CT scan was acquired from the skull base to mid-thigh with anisotropic voxel dimensions of 

0.98x0.98x3.00 mm. The original image was used to create the ImSURE ‘anisotropic phantom’. An 

IBSI-compliant trilinear interpolation was then applied to the CT to generate a second image with 

voxel dimensions of 1.00x1.00x1.00 mm, to be used for the ImSURE ‘isotropic phantom’. 

Nine different ROIs were obtained by combining three possible volumes (i.e., small, 

medium, and large) with three different shapes (i.e., bean, cube, and sphere). Ten different 

instances for each shape-volume combination were positioned in the space of each CT image, 

obtaining a total of 90 ROIs. Figure 1 depicts the spatial arrangement of the ROIs, whereas 

Supplemental Table E1 summarizes each phantom’s characteristics. 

 

Figure 1. (a-b) Spatial arrangement of the 90 ROIs for the ImSURE anisotropic and isotropic phantoms, respectively. 

The 9 different shape-volume ROI configurations are visible: the spheres are in red, the beans in light blue, and the 

cubes in green. The ROIs were axially positioned from the apex of the lung upper lobe to the femoral head. The first 

letter of each ROI label indicates the shape (i.e., C = cube, S = sphere, and B = bean), the second indicates the size (i.e., 

S = small, M = medium, L = large), while the number indicates the specific instance (from 1 to 10); (c) Three 

representative slices of the phantoms. The texture of the underlying CT image was maintained within and around the 

ROIs, while the surrounding voxels were censored by setting their intensity to -1024 Hounsfield Units (black area). The 

ImSURE phantoms are available from the corresponding author upon request. 

 

 



2.3.2 Extraction of radiomic features 

The IBSI standardized RFs were extracted for each phantom by varying the configuration 

parameters reported in Table 2. All possible combinations were considered for the feature families 

that needed both grey-level discretization and feature aggregation. A total of 919 feature values 

were obtained from each phantom (Supplemental Figure S1, online). Table 3 shows the image 

processing parameters used to harmonize feature extraction across the software. 

Finally, for each tool, ‘no matching’ features on the IBSI digital phantom were excluded 

from the analysis, and the remaining feature values were rounded up to the third significant digit. 

Pre-processing step Isotropic phantom Anisotropic phantom 

Trilinear Interpolation   

    resampled voxel spacing [mm] none 1.00x1.00x1.00 

Re-segmentation   

    range [HU] [-1000 400] [-1000 400] 

Discretization   

    texture and IH FBS: 25 HU; FBN: 32 bins FBS: 25 HU, FBN: 32 bins 

    IVH FBS: 2.5 HU; FBN: 1000 bins FBS: 2.5 HU; FBN: 1000 bins 

Table 3. Pre-processing settings used for the isotropic and anisotropic phantom.  

(FBN = fixed bin number; FBS = fixed bin size; HU = Hounsfield units; IH = Intensity histogram; IVH = Intensity-volume 

histogram) 

 

2.3.3 Performance metrics and statistical analysis 

We used the percentage of matching features between pairs of programs and their level of 

agreement to assess and compare software performances. For a pair of software        the 

percentage of matching features, P, was calculated as: 

                   
                                 

                                      
 

where          number of programs and    . For each feature,  , agreement across all software 

tools, A, was defined as: 



  
 

  
     

    
  

 

 

where   is the set of unordered program pairs (       with    ) that are able to calculate the 

feature  , and    is the dimension of  . Squared brackets represent the Iverson brackets, that is: 

    
    

    
         

    
 

           
    

The non-parametric Kruskal-Wallis test (21) was used to investigate whether   was 

significantly influenced by the factors being considered, under the null hypothesis that all groups 

came from populations with the same median. The significance level, α = 0.05, was corrected with 

Bonferroni’s method (adjusted α of 9e-5). The statistical analysis was performed in MATLAB 

(version 2018b, The MathWorks, Natick, 2018). 

 

3. RESULTS  

3.1 Phase I  

For each software program, the resulting percentage of ‘matching’, ‘partial matching’, ‘no 

matching’ and ‘missing’ features, both for the IBSI digital and radiomic phantoms, are shown in 

Figure 2a and 2b, respectively. For the latter, the results have been aggregated over the five 

parameter configurations proposed in the reference manual, while the outcomes stratified by 

configuration are reported in Supplemental Figure S2 (online). On the digital phantom MIRP, S-

IBEX, RaCaT, SERA and SOPHiA all achieved percentages of matches above 94%, while PyRadiomics 

and RadiomiCRO had 52% and 25% of ‘matching’ features, respectively, due to ‘missing’ feature 

values. RaCaT, SERA and RadiomiCRO all exhibited a slight decrease in the percentage of matching 

features (90%, 85%, and 21%, respectively) on the radiomic phantom, while PyRadiomics showed 

a marked increase in partial matches and no matches. SOPHiA presented 16% missing features as 

config. E is currently not obtainable.  

 



 

Figure 2. Percentages of “matching” (differences below the IBSI-reported tolerance, in green), “partial matching” 

(differences below three times the IBSI-reported tolerance, in yellow), “no matching” (otherwise, in red) feature 

values obtained for each software package on the IBSI digital (a) and radiomic (b) phantoms. The feature values that 

could not be calculated within a tool were labeled as ‘missing’ (white). The percentages for the radiomic phantom 

were averaged across the five IBSI configurations. A = MIRP; B = S-IBEX; C = SOPHiA DDM for radiomics; D = RaCaT; E = 

SERA; F = Pyradiomics; G = RadiomiCRO. 

 

3.2 Phase II 

The ‘no matching’ features that were excluded from Phase II were grouped by feature 

family and by aggregation method for each program (Supplemental Figure S3, online). No features 

were excluded for MIRP, S-IBEX and RadiomiCRO. One and two ‘no matching’ features were found 

for Pyradiomics and SOPHiA, respectively. A total of 21 and 22 features were eliminated for SERA 

and RaCaT, respectively, mostly belonging to the NGLDM 2.5D and LI families for the former and 

MORPH and LI for the latter.  

Figure 3a shows the percentage of comparable features for each pair of programs out of a 

total of 919 possible values, while Figures 3b and 3c compare the percentages of matches of the 

‘isotropic phantom’ (no program-specific interpolation required) with those of the ‘anisotropic 

phantom’ (interpolated within each program before feature calculation). It should be noted that 

the reported match percentages were computed with respect to the total number of comparable 

features shared by each program pair. By comparing Figures 3b and 3c, we observed that 

program-based interpolation had an impact on the overall percentage of matching features. When 

interpolation was applied, the match percentages of PyRadiomics fell below 2.5%, suggesting that 



the interpolation method used in this program may not be compliant with the IBSI guidelines, 

while those of SERA presented a marked decrease. SERA behavior could be ascribed to an 

erroneous interaction between interpolation and 2D/2.5D aggregation methods for FBS 

discretization, rather than to a non-compliant interpolation. Instead, program-specific 

interpolation had no effect on the MIRP, S-IBEX, SOPHiA, RaCaT, and RadiomiCRO values. 

 

Figure 3. Analysis of interpolation effect. (a) Percentage of comparable features between program pairs out of the 

total of 919 features. (b) Percentage of matches between program pairs for the isotropic phantom (no interpolation 

required). (c) Percentage of matches for the anisotropic phantom (requiring program-based interpolation). A = MIRP; 

B = S-IBEX; C = SOPHiA DDM for radiomics; D = RaCaT; E = SERA; F = Pyradiomics; G = RadiomiCRO. 

 

Following these results, in the subsequent analyses, we only focused on the isotropic 

phantom to rule out the discrepancies observed between programs caused by software-based 

interpolation. Consequently, we investigated the effect of the discretization approach on the 

percentage of matches between pairs of programs. Figure 4 shows the results for the cases of no 

discretization (a-b), FBN (c-d) and FBS (e-f). Figure 4a-b only includes the MORPH, LI, and IS 

feature families, which do not require intensity discretization (see Table 2). In this case, all 

programs achieved match percentages higher than 80%. Figures 4c-d and 4e-f aggregate the 

remaining families calculated using the FBN and FBS approaches, respectively, and highlight that 

SERA FBN discretization and RadiomiCRO FBS discretization are not concordant with the other 

programs.  



 

Figure 4. Analysis of the discretization effect. (Top row) Percentages of comparable features. (Bottom row) 

Percentages of matches between program pairs considering feature families without discretization, with FBN or with 

FBS discretization, respectively. FBN = fixed bin number; FBS = fixed bin size; A = MIRP; B = S-IBEX; C = SOPHiA DDM for 

radiomics; D = RaCaT; E = SERA; F = Pyradiomics; G = RadiomiCRO. 

 

This suggests that their implementation is not IBSI-compliant for these programs. Notably, the 

RadiomiCRO discrepancy confirmed the results obtained in Phase I while the SERA discrepancy 

was not visible on the IBSI radiomic phantom. Regardless of the discretization method used, MIRP, 

S-IBEX, and SOPHiA achieved the highest match percentage. PyRadiomics showed greater match 

percentages for FBN discretization than for FBS, while the RaCaT results were complementary, 

with higher percentages for the FBS method. 

 

 



The effect of the aggregation method on the percentage of matching features across 

program pairs, stratified by FBN and FBS approach, was also evaluated. Supplemental Figures S4 

and S5 (online)  illustrate the results in greater detail. PyRadiomics could not calculate the feature 

values associated with 2D aggregation, while RadiomiCRO was only designed to calculate 3D:mrg 

aggregation. The match percentages for MIRP were lower in 2D aggregation than in other 

aggregation methods. This result was observed for some ROI conformations that produced 

undefined results for the 2D aggregation method in the intermediate steps of feature calculation 

(further details can be found in the supplemental material, online). 

Multiple ROIs with varied volumes and shapes were included in the two phantoms 

designed for this study, allowing us to also investigate the differences in program performance 

due to ROI characteristics. The data were stratified by ROI shape and ROI volume, and match 

percentages between software pairs were calculated in the two cases. The results are presented in 

Supplemental Figure S6 and S7, respectively (online). Unlike the other factors, this analysis showed 

no relevant differences between programs due to ROI shape or ROI volume, meaning that ROI 

morphology had no discernible impact on match percentages at the whole-feature level. 

Finally, the non-parametric Kruskal-Wallis test (21) was applied to agreement values for 

insights at the single-feature level, distinguishing four main factors: discretization, aggregation 

methods, both rotation dependent and independent (see Table 2), ROI shape, and ROI volume. 

The test results are shown in Figure 5 for each factor and feature under examination.  This analysis 

showed that discretization was significant for almost every feature family requiring intensity 

discretization. The aggregation factor was significant for most of the features belonging to the 

GLCM and GLRLM classes, as well as for some GLSZM and NGLDM features. The ROI shape was 

only significant for the features belonging to the MORPH and LI families, while the ROI volume was 

significant for almost all the GLCM features, as well as for a portion of the MORPH, IS, IH, and 

NGTDM features. 

 



 

Figure 5. The results of the Kruskal-Wallis test applied to the agreement among programs. The test results are 

presented for each feature family and for four different factors, i.e., discretization, aggregation, ROI shape, and ROI 

volume. In the figure, the yellow color indicates significant differences after Bonferroni correction (p ≤ 9e-5), the blue 

color denotes non-significant results, and the white cells correspond to non-existing combinations of feature families 

and factors. 

4. DISCUSSION 

We analyzed the performance of seven self-declared IBSI-compliant software packages. 

Phase I analysis on the IBSI digital phantom revealed that all programs achieved high percentages 

of ‘matching’ features, indicating a high standardization level in terms of RF implementation. 

However, programs showed different degrees of feature completeness, with PyRadiomics and 

RadiomiCRO having the highest number of non-computable feature values. The IBSI radiomic 

phantom analysis allowed us to consider the effects of multiple factors, such as image 

interpolation and intensity discretization, and highlighted the limited flexibility in the parameter 

settings of some tools.  

By comparing our Phase I results with the ones of the IBSI study (12), we found them in 

accordance for MIRP and RaCaT, whereas SERA showed a higher percentage of ‘matching’ features 

on both the IBSI digital and radiomic phantoms in configurations A-D, but only a partial 

improvement in configuration E. Instead, PyRadiomics presented a lower ‘matching’ percentage 

and higher percentages of ‘no match’ and ‘partial match’ on the radiomic phantom. These 

differences could be the result of a missing update of either the software documentation or the 

version used by the IBSI.  

In Phase II, we systematically investigated the effect of factors related to parameter setting 

(i.e., interpolation, discretization, and aggregation) as well as to ROI characteristics (i.e. volume 

and shape) on software agreement by employing two custom digital phantoms and a systematic 



feature extraction. For the calculation of the percentage of matching features, P, and of software 

agreement, A, we considered all pairwise comparisons among tools instead of comparing them to 

a reference one, as we were unable to justify choosing one tool over the others: even IBSI-

compliance assessed in Phase I was not a reasonable criterion, as in Phase II we explored aspects 

that were not analyzable on the IBSI phantoms. 

The interpolation effect was analyzed by comparing the match percentages between 

isotropic and anisotropic phantoms. The results revealed that for SERA and Pyradiomics, the 

performances were influenced by program-specific interpolation. Notably, interpolation is one of 

the initial steps in the image processing scheme and has an impact on downstream processes as 

well as on final feature values. Thus, it should be a priority of standardization for all programs.  

We subsequently evaluated the effect of intensity discretization, focusing on the isotropic 

phantom. We found that it was only among MIRP, S-IBEX, and SOPHiA that percentages of 

matching features were not impacted by the discretization method. This pre-processing step is 

typically applied to the ROI before the calculation of IH, IVH, and textural features. Therefore, 

correct implementation is also crucial for the reproducibility of these feature values across tools.  

The analysis of the aggregation method allowed the identification of an aspect that still 

needs to be addressed by the IBSI, which caused the programs to calculate different RF values as 

they are currently not aligned in the implementation strategy. 

In contrast to previous studies (22–24), we analyzed the entire set of IBSI-standardized RFs 

rather than only those that were common to all tools. Secondly, we disregarded program-default 

settings and only considered harmonized extraction (i.e. user defined parameter settings) 

because, in practice, users tweak the software to match a desired parameter configuration. 

In literature, digital phantoms range from being purely synthetic (e.g. the IBSI digital 

phantom with artificial texture and arbitrarily-defined ROI) to image-based (e.g. the IBSI radiomic 

phantom with CT-derived pattern and GTV ROI). The ImSURE phantoms were designed with 

intermediate characteristics (textures derived from a CT image and geometrical ROIs) to allow the 

assessment, in a single investigation framework, of the impact on the software agreement of 

factors related to both image pre-processing and ROI morphology. Moreover, by placing multiple 

ROIs over a patient’s image, different texture patterns were sampled, hence augmenting the 



casuistry and heterogeneity (different anatomical regions were tested in the same run) of the ROIs 

that were used in the analysis.  

Regarding the limitations of this study, the ImSURE phantoms used for the analysis were 

made of simplified morphologies arbitrarily positioned on a single image modality (i.e. CT). 

Nevertheless, the choice of the modality does not affect the overall outcome of the work, which 

was designed to assess and compare basic aspects of image processing among radiomic tools. In 

future, phantoms constructed with other modalities will allow for further investigations on 

modality-specific aspects (25,26). Concerning the morphologies, the chosen ROI shapes are less 

complex than clinical ROI, however, this simplification was necessary to systematically study the 

impact of ROI characteristics. Eventually, ROIs may intersect anatomical structures differently with 

respect to a ROI defined for clinical studies. However, multiple textural patterns were derived 

from different anatomical districts, which ensured covering of the feature range obtainable from 

clinical ROIs imaged with CT. In these terms, we are reasonably confident that the software 

concordance tested on our phantom could be translated into software concordance calculated for 

clinical targets in several districts. 

The results we obtained are relative to a selected number of radiomic software programs 

and future studies might include additional packages to strengthen the present findings. However, 

we are reasonably confident that the considered packages are a representative set of the high-

standardized radiomic tools available in the literature. Moreover, some of our findings are 

software-independent and have general validity. 

It is important to note that the differences observed in extracted feature values might limit 

radiomic model reproducibility (9–11). Therefore, when building a model, it is recommended that 

the stability of selected features is checked by comparing the values obtained with at least two 

different tools. However, future studies are needed to assess the impact of software differences 

on clinical endpoint prediction (22,27). 

In conclusion, we designed a new investigation scenario in which we demonstrated that, 

despite the ongoing efforts of both IBSI and software developers to standardize radiomic tools, 

additional efforts are needed to achieve full concordance. This would hasten the use of radiomic 

models in clinical practice and their application to improve cancer prognosis. 
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SUPPLEMENTAL TABLE 

 

Feature family Isotropic phantom  Anisotropic phantom  

Total Number of ROI 90 90 

Pixel spacing [mm] 1.00x1.00 0.977x0.977 

Slice Thickness [mm] 1.00 3.00 

Volumes [mm3] 
  

    Bean - Small 120 125.89 

    Bean - Medium 998 881.20 

    Bean - Large 7964 7896.43 

    Sphere - Small 123 120.16 

    Sphere - Medium 1020 975.61 

    Sphere - Large 8025 7990.85 

    Cube - Small 125 143.05 

    Cube - Medium 1000 858.31 

    Cube - Large 8000 8010.87 

Table E1. Characteristics of the 9 different ROI types defined for both the isotropic and the anisotropic phantom. 

The volumes reported in the Table correspond to the number of ROI voxels multiplied by voxel dimension.  

SUPPLEMENTAL MATERIAL 

2D:avg – 2D:smrg aggregation discrepancies 

When dealing with ‘bean small’ and ‘sphere small’ ROIs, match percentages for 2D:avg and 

2D:smrg aggregations for GLCM features produced discordant results among the software 

applications (Figure S8). 

2D GLCM features are calculated by aggregating information from four different directional 

matrices calculated over each slice, that is, along the (x, y) directions (1, 0), (1, 1), ( -1, 1), and (0, 

1).  

It is worth recalling that: 1) for 2D:avg aggregation, GLCM features are computed from each 2D 

directional matrix and averaged over directions and slices; 2) for 2D:smrg, features are computed 

from a single matrix after merging the four 2D directional matrices per slice and then averaged 

over slices. 



To explain the discrepancies obtained in the computation of 2D aggregation, we need to look at 

the top and bottom slices of the ROIs reported in Figure S8 (i.e., slices B1, B5 for ‘bean small’, and 

slices S1, S7 for ‘sphere small’). It is not possible to calculate all four directional matrices on these 

slices. In the case of ‘bean small’ for 3 directions over 4, GLCM matrices cannot be defined as there 

are no adjacent voxels in the mask along those directions (Figure S9a), while for ‘sphere small’, no 

directional matrices can be calculated as there are no adjacent voxels in the mask for all four 

directions (Figure S9b).  

The observed discrepancies across software for 2D aggregation methods are due to the different 

handling of these undefined matrices in the calculation of GLCM features. 

 

SUPPLEMENTAL FIGURE LEGENDS (ONLINE) 

Figure S1. Flowchart of the feature extraction performed in Phase II on the isotropic phantom. The Figure also shows 

the 919 radiomic features extracted with each program. 

Figure S2. Percentages of “matching” (differences below the IBSI-reported tolerance, in green), “partial matching” 

(differences below three times the IBSI-reported tolerance, in yellow), “no matching” (otherwise, in red), and 

“missing” (cannot be calculated within a tool, in white) feature values obtained for each software package on the IBSI 

radiomic phantom in the five different parameter configurations (A, B, C, D, and E).  

Figure S3. Cases of matching (green), partial matching (yellow), no matching (red), and missing (white) features for 

each software tool, feature family, and type of aggregation method on the digital phantom. For each program, only 

matching and partial matching features were maintained for the analysis on the isotropic and anisotropic phantom.  

Figure S4. Effect of the aggregation method for the FBN discretization approach (FBN = fixed bin number). 

Figure S5. Effect of the aggregation method for the FBS discretization approach (FBS = fixed bin size). 

Figure S6. Effect of the ROI shape. 

Figure S7. Effect of the ROI volume. 

Figure S8. Slice per slice visualization of the masks for (a) ‘bean small’ and (b) ‘sphere small’ ROIs.  

Figure S9. (a) ’Bean small’ top/bottom slices (B1, B5). Only one direction results in a definite directional matrix for the 

top/bottom slice of the ‘bean small’ mask (in green). For the other directions, no adjacent voxels are available to 

calculate the GLCM matrices. (b) ’Sphere small’ top/bottom slices (S1, S7). No voxels are available in all four directions 

to calculate the GLCM matrices for the top/bottom slice of the ‘sphere small’ mask. 
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A Multicentre Evaluation of Dosiomics Features  

Reproducibility, Stability and Sensitivity 
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Simple Summary: Dosiomics is born directly as an extension of radiomics: it entails extracting 

features from the patients’ three-dimensional (3D) radiotherapy dose distribution rather than 

from conventional medical images to obtain specific spatial and statistical information. Dosiomic 

studies, in a multicentre setting, require assessing the features’ stability to dose calculation 

settings and the features’ capability in distinguishing different dose distributions. This study 

provides the first multicentre evaluation of the dosiomic features in terms of reproducibility, 

stability and sensitivity across various dose distributions obtained from multiple technologies and 

techniques and considering different dose calculation algorithms of TPS and two different 

resolutions of the dose grid. Harmonisation strategies to account for a possible variation in the 

dose distribution due to these confounding factors should be adopted when investigating a 

correlation between dosiomic features and clinical outcomes in multicentre studies. 

Abstract: Dosiomics is a texture analysis method to produce dose features that encode the spatial 

3D distribution of radiotherapy dose. Dosiomic studies, in a multicentre setting, require assessing 

the features’ stability to dose calculation settings and the features’ capability in distinguishing 

different dose distributions. Dose distributions were generated by eight Italian centres on a shared 

image dataset acquired on a dedicated phantom. Treatment planning protocols, in terms of 

planning target volume coverage and dose–volume constraints to the organs at risk, were shared 

among the centres to produce comparable dose distributions for measuring 

reproducibility/stability and sensitivity of dosiomic features. In addition, coefficient of variation 

(CV) was employed to evaluate the dosiomic features’ variation. We extracted 38,160 features 

from 30 different dose distributions from six regions of interest, grouped by four features’ 

families. A selected group of features (CV < 3 for the reproducibility/stability studies, CV > 1 for the 

sensitivity studies) were identified to support future multicentre studies, assuring both stable 

features when dose distributions variation is minimal and sensitive features when dose 

distribution variations need to be clearly identified. Dosiomic is a promising tool that could 

support multicentre studies, especially for predictive models, and encode the spatial and statistical 

characteristics of the 3D dose distribution. 

Keywords: dosiomics; dose distribution texture analysis; multicentric study; reproducibility; 

stability; sensitivity; radiation dosimetry; radiotherapy  

 

 



1. INTRODUCTION 

In the era of personalised medicine and targeted therapy, one of the most promising 

methods introduced in clinical practice is radiomics [1]. The key idea behind radiomics is that we 

can mine images by extracting image descriptors, called radiomic features, which can provide rich 

information about the tumour or healthy tissue and can be used to build predictive or prognostic 

models. This method allows quantitative analysis of different  

Image modalities and identification of patterns and correlations among voxels that can be 

of interest for improving diagnosis, prognosis and prediction of treatment outcomes [2–4]. Clinical 

outcomes can be therefore predicted employing radiomics features, potentially changing the 

treatment paradigm. Nevertheless, several studies highlight the importance of providing robust 

and unbiased descriptors. Objective quantification of reproducibility, stability and redundancy of 

features is a prerequisite for radiomics. This kind of process has been performed widely in 

radiomics [5–12], and it is even more meaningful when performed in a multicentric setting [13,14]. 

Dosiomics is born directly as an extension of radiomics; it entails extracting features from the 

patients’ three-dimensional (3D) radiotherapy dose distribution rather than from conventional 

medical images [15] [16] to obtain specific spatial and statistical information. Furthermore, it can 

parameterise the dose distribution in particular regions of interest (ROIs) by intensity, textural      

and shape-based features allowing the description of the dose distribution at a high complexity 

level, distinct from those obtained from dose–volume histograms (DVHs) [17]. Indeed, 3D dose 

distribution optimisation and evaluation are still mostly based on DVH endpoints, dose distribution 

visual inspection and DVH-based metrics. Nevertheless, the well-known drawback of DVH is to 

collapse the 3D dose information in 2D metric, losing the information on its spatial and statistical 

distribution. The integration of dosiomics with the DVH could constitute an advanced tool to 

evaluate the radiotherapy plan quality [18] by identifying new dose distribution metrics based on 

dosiomic features. A second appealing development is introducing dosiomic features into Tumour 

Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) models, thus 

overcoming the current limitation of these models [19]. Some authors recently employed 

dosiomics to improve the prediction of side effects [20–22] or local control after radiotherapy [23], 

including preliminary multicentre experiences [24]. The proposed dosiomic signatures must be 

highly stable and reproducible and need validation before being used in clinical practice. 

Developing robust models requires ample training and validation datasets with radiotherapy data 

from many patients for any specific cancer site. These needs settle dosiomics in the framework of 



“big data” and push towards multicentre studies. Possible sources of variation for radiomic 

features include different radiotherapy techniques, treatment planning systems (TPSs), dose 

calculation algorithms and dose grid resolutions. The variability due to these sources may hide any 

potential variability associated with the dose–response, making at least some of the dosiomic 

models unreliable and preventing the generalization of results. In this frame, Placidi et al. 

evaluated the robustness of dosiomic signatures across grid resolution and algorithm for dose 

calculation [25] in a monocentric setting. The results of that study highlighted the not negligible 

variation in dosiomic features, especially for target region and for dosiomic textural features; 

therefore, dosiomic studies should always provide a reporting of grid resolution and algorithm 

dose calculation. We here propose to investigate the stability of dosiomic features in a multicentre 

setting with two main aims: (a) to provide an assessment of the stability of dosiomic features to 

dose calculation settings and (b) to assess the dosiomic features capability in discriminating dose 

distributions that are generated with different radiation therapy devices. This study provides the 

first multicentre evaluation of the dosiomic features in terms of reproducibility, stability and 

sensitivity across various dose distributions obtained from multiple technologies and techniques 

and considering different dose calculation algorithms of TPS and two different resolutions of the 

dose grid. 

 

2. MATERIALS AND METHODS 

The evaluation of dosiomic features’ extraction from different dose distributions was 

performed by several centres, which participate in the Dosiomics Team of the Radiomics Working 

Group of “Alliance Against Cancer” (Alleanza Contro il Cancro, ACC), a national oncology network 

founded in 2002 by the Italian Ministry of Health. Specifically, nine centres have contributed to 

this analysis. Dose distributions were generated by eight out of the nine centres involved in the 

study on an image dataset acquired on a dedicated phantom (see the specific section below) 

shared among the centres. Each of these centres could provide more than one dose distribution 

based on the availability of technologies and delivery techniques. 

 

 

 



2.1. Phantom 

A computed tomography (CT) scan of a cylindrical heterogeneous phantom was acquired 

for treatment planning and dose calculation. In particular, the ArcCheck [26] PMMA insert 

(ArcCHECK MR Sun Nuclear Melbourne Florida, US) was modified by substituting 4 PMMA 

rectangular sub-inserts with the following equivalent densities: lung, bone, muscle and adipose. 

The planning CT (GE. Optima CT580 W HiSpeed DX/I Spiral) had a slice thickness of 1.25 mm, 140 

kV, pixel size of 1.269 mm2, as shown in Figure 1.  

 

Figure 1. Planning CT of the phantom employed in the study and the countered Regions of Interest (ROIs). Six 

different ROIs were contoured: planning target volume (PTV), left parotid, right parotid, spinal canal, trachea and 

RING. Ring structure is the expansion of 3 cm from the PTV and cropped of 0.0 cm from the PTV edge. 

 

On the acquired planning CT, the regions of interest (ROIs) simulating the tumour and 

organs at risk (OARs) of a head and neck radiotherapy treatment were contoured. These included 

a planning target volume (PTV), left parotid, right parotid, spinal canal, planning organ-at-risk 

volume for the spinal canal (PRV, i.e., isotropic 4 mm expansion of spinal canal) and trachea. 

Moreover, we added a RING structure defined as an expansion of 3 cm from the PTV and cropped 

of 0.0 cm from the PTV edge to ensure a high dose gradient outside the PTV. The planning CT and 

its ROIs were exported in DICOM format and shared among the centres. In terms of PTV coverage 

and dose–volume constraints to the OARs, two different planning protocols, including minimum 



and maximum dose to the PTV and dose–volume constraints to the OARs, were followed by 

participants to produce comparable dose distributions, which were used to evaluate dosiomic 

features in terms of reproducibility, stability and sensitivity. Dose distribution computation was 

performed from eight different centres, named A, B, C, D, E, F, G, H.  

2.2. Plan and Dose Prescription: Same Techniques, Technology and TPS 

To evaluate the reproducibility and stability of dosiomic features, we planned a series of 

Intensity Modulated Radiation Therapy (IMRT) treatments with dose distributions as equivalent as 

possible, employing the same delivery technique, a unique dose distribution optimisation protocol 

and identical or similar LINACs. With reproducibility, we mean that a result obtained by an 

experiment should be achieved again with a high degree of agreement when the study is 

replicated with the same methodology by different researchers. A stable measure, on the other 

hand, is one in which the sources of variation are consistent over different inputs and conditions; 

here it is TPS and Technologies. This means that the process does not exhibit unpredictable 

variation for this purpose. We chose almost similar LINACs and the same photon energy, gantry 

angles, TPS and planning objectives. We considered only IMRT 6MV FF Varian machines (Trilogy, 

TrueBeam, TrueBeam Edge and Clinac) with the Eclipse-Aria TPS for this study phase. The normal 

tissue objective (NTO) tool was employed with the default setting, and dose grid resolution 

(optimisation and calculation) was set to 1 mm. Table 1 reports the details of the IMRT protocol.  

Table 1. Details of the IMRT protocol used to study the stability of the features when derived from almost equivalent 

plans: beam setup, dose prescription and constraints for organs at risk.  

Beam 
settings 

Gantry Angles Energy Dose Rate 
Collimator 

Angles 
Dose Calculation  

Algorithm 
Iteration 

0°, 40°, 80°, 
120°, 160°, 200°, 
240°, 280°, 320° 

6 MV FF 300 MU/min 
15 for all the 

fields 
AAA At least 700 

Planning 
objectives 

Upper: Vol(%) = 0, Dose(Gy) = 68, Priority = 140 Lower: Vol(%) = 100, Dose(Gy) = 66, Priority = 140 

OARs 
constraints 

Trachea Parotid L Parotid R PRV SC Spinal canal RING 

Dmean = 49.5 Gy 
Priority = 80 

Dmean = 5.0 Gy 

Priority = 50 

Dmean = 23.0 Gy 
Priority = 100 

Dmax = 40.0 Gy 

Priority = 90 

Dmax = 62.0 Gy 

Priority = 110 

Dmax = 39.96 Gy 

Priority = 90 

FF = flattening filter; OARs = Organs at Risk; MU = monitor units; Dmean = mean dose; Dmax = max dose; AAA = anisotropic analytical algorithm; 

Vol = volume; Parotid L = left parotid; Parotid R = right parotid; PRV SC = planning organ-at-risk volume for the spinal canal. 



Eight IMRT dose distributions provided by different centres were included in the “stability” 

dataset. Table 2 summarises the Varian (Varian Medical Systems) Linacs used, while all the other 

plan parameters, equal for all the centres, are shown in Table 1.  

Table 2. List of centres that computed the IMRT dose distribution for the reproducibility and stability studies. 

Centre_Plan LINAC 

G_1 CLinac 

E_1 TrueBeam 

E_2 Edge 

B_1 TrueBeam 

B_2 Edge 

D_1 TrueBeam 

D_2 Trilogy 

A_1 TrueBeam 

 

Figure 2 shows the eight dose distributions included in the studies. A reproducibility study (smaller 

green rectangle) was conducted on the dose distribution obtained by plans E_1, B_1, D_1 and A_1 

(all TrueBeam Linac), while stability study (red rectangle) includes all eight dose distributions listed 

in Table 2. 

 

Figure 2. The four IMRT dose distributions included in the reproducibility study (within the green rectangle), and the 

eight IMRT dose distributions included in the stability study (within the red rectangle). 



 

 

2.3. Plan and Dose Prescription: Different Techniques, Technologies and TPSs 

To evaluate the sensitivity of the dosiomic features extraction to different techniques, 

technologies and TPSs, each centre planned one or more treatments using a range of different 

technologies among those available to the centres involved. Sensitivity is defined as the smallest 

absolute amount of change that can be detected by a measurement. The different delivery 

techniques, accelerators, TPS and dose calculation algorithms considered in this study are 

reported in Table 3.  

Table 3. List of the eleven plans generated by the centres involved in the study, type of particle, beam energy, delivery 

technique, kind of Linac, treatment planning system and dose calculation algorithm 

Centres_Plan Particle Energy (MV) Technique Accelerator Devices TPS 
Dose Calculation 

Algorithm 

A_S1 photon 6 FF VMAT TrueBeam. Varian Eclipse AAA 

B_S2 photon 6 FF VMAT TrueBeam. Varian Eclipse AAA 

C_S3 proton 
62.3–226.9 

MeV/u 
IMPT Synchrotron (CNAO) [27] RayStation MC 

D_S4 photon 6 FF VMAT TrueBeam. Varian Eclipse AAA 

E_S5 photon 6 FF VMAT TrueBeam. Varian Eclipse 15.6 Acuros 

F_S6 photon 6 FF VMAT Synergy. Elekta Pinnacle CC 

F_S7 photon 6 FF VMAT Synergy, Elekta RayStation CC 

G_S8 photon 6 FF VMAT Clinac, Varian Eclipse AAA 

H_S9 photon 6 FFF TOMO Tomotherapy, Accuray 
Tomotherapy HT 

2.1.6 
CC 

H_S10 photon 6 FF DWA Vero, Brainlab-Mitsubishi Raystation 9B SP2 MC, CC 

H_S11 photon 6 FF VMAT Trilogy, Varian Eclipse 15.6 AAA 

DWA = dynamic wave arc; TPS = treatment planning system. FF = flattening filter; VMAT = Volumetric Modulated Arc 

Therapy; IMPT = Intensity Modulated Proton Therapy; TOMO = Tomotherapy; AAA = anisotropic analytical algorithm; 

MC = MonteCarlo; CC = collapsed cone. 

 



Eleven dose distributions provided by different centres were included in the dataset. Each 

dose distribution was calculated and optimised with two different dose grid resolutions: 1 mm and 

2 mm, always keeping the dose to PTV and the OARs within prescription and constraints. No 

limitation was imposed in terms of beam setup and geometry. The dose prescription simulated a 

theoretical head and neck mono-lateral treatment plan with a prescribed dose to the PTV of 66 Gy 

and dose per fraction of 2.2 Gy. Dose prescription and OARs constraints are summarised in Table 

4. Figure 3 shows the resulting eleven dose distributions with 1 mm dose grid resolution. 

Table 4. Dose prescription and constraints to organs at risk employed for the generation of the dose distributions for 

the sensitivity study. 

ROIs Dose Prescription and Constraints 

PTV D98% > 95% V105% < 10% 

Spinal canal Dmax < 45 Gy 

PRV spinal canal Dmax < 45 Gy 

Trachea Dmean < 50 Gy 

Parotids Dmean < 25 Gy 

RING Dmax < 95% = 62.7 Gy 

PTV = Planning Target Volume; PRV SC = planning organ-at-risk volume for the spinal canal; Dmean = mean dose; 

Dmax = maximum dose; D98% = minimum dose to the 98% of the volume; V105% = percent of volume receiving at 

least 105% of the prescribed dose. 

 

 

Figure 3. The eleven dose distributions obtained by different techniques, technologies and treatment planning 

systems, with 1 mm dose grid resolutions 

 



2.4. Extraction of Dosiomic Features 

The extraction of dosiomic features was centralised and carried out by a specific routine in 

the MODDICOM library, a free software package developed in R language optimised for automatic 

loading of DICOM images and radiomic analysis [28]. A specific routine for dose distribution 

texture analysis was realised for the purpose of this study, loading and processing the required 

DICOM dataset (planning CT, RT-Structure and RT-Dose). The features definition, nomenclature 

and extraction methodology following the one used for radiomic studies based on medical images, 

as accurately described by Zwanenburg et al. [29]. In dosiomics, the “image” is constituted by 

voxels with their grey level corresponding to the absolute dose in Gy. The absolute dose levels 

were binned in 100 discrete levels from zero to max dose before performing feature extraction. A 

total of 212 dosiomics features defined in the Image Biomarker Standardisation Initiative (IBSI) 

[29] were extracted from the selected ROIs (PTV, left parotid, right parotid, spinal canal, trachea 

and RING) belonging to the following families: 17 intensity-based statistics (STAT), 100 features 

from grey level co-occurrence matrix (GLCM), 63 from grey level run length matrix (GLRLM) and 32 

from grey level size zone matrix (GLSZM). Morphological features were not included in this study 

since not considered relevant for dosiomic analysis.  

 

2.5. Data Analysis 

The analysis mirrored the two main goals of the study: to assess (a) the stability of 

dosiomic features to dose calculation settings and (b) the sensitivity to a change in dose 

distribution, that is, the ability of dosiomic features in distinguishing dose distributions generated 

with different radiation therapy devices.  

As a preliminary test, we evaluated the software reproducibility for the computation of 

dosiomic features by extracting them in two different centres, both employing the MODDICOM 

library. We considered the complete set of 212 dosiomic features extracted from the same dose 

distribution (from centres A) computed with 1 mm and 2 mm calculation grid resolution and from 

all the contoured ROIs for this check. Differences in values for single features were then analysed. 

The expected differences are zero since dosiomic features extraction should not depend on the 

same software employed in different centres.  



We used the coefficient of variation (CV) to evaluate the stability of the dosiomic features 

to dose calculation settings, i.e., when dosiomic features are derived from equivalent plans 

(“IMRT-Linac reproducibility”). The CV is a standardised measure of the dispersion of a distribution 

leading to the degree of intra-features variability. It is defined as the ratio of the standard 

deviation σ concerning the mean value μ (or to its absolute value |μ|). CV, to respect to standard 

deviation, is recommended when datasets with different units or widely different means were 

considered. 

For assessing reproducibility, we computed the CV for the dosiomic features extracted by 

four IMRT dose distributions with the same technique, technology, TPS and Linac version (Varian, 

TrueBeam, Eclipse, AAA). This analysis investigates reproducibility as the features are extracted 

after the experiment (here, dose calculation) was replicated with the same methodology (here, 

same plan, same TPS, same LINAC) by different researchers (here, different centres). All ROIs were 

considered individually.  

In the stability analysis, we still computed CV among the dosiomic features extracted by 

the entire set of eight IMRT dose distributions derived from the same technique, technology and 

TPS version. In this case, we considered different Linac Technologies (see Table 4). This analysis 

investigates stability as features are considered for their possible variation over different inputs 

and conditions (here, different TPSs and LINACs) to prove that the process does not exhibit 

unpredictable variation. Awareness and quantification of these variations should always be taken 

into account to avoid misinterpretation of results from studies, including dosiomic features.  

The sensitivity of dosiomic features to dose distributions generated with different radiation 

therapy devices, TPSs and algorithms was also evaluated in terms of CV (see Table 5). In this case, 

CV describes how a dosiomic feature can change due to different dose distributions due to 

different techniques, technologies, TPSs, dose calculation algorithms, energies and beam quality.  

 

 

 

 

 



Table 5. List of the percentage of common dosiomic features among different studies and different CV thresholds.  

ROIs 
Repr. (CVTH <0.3) 

   
Stab. (CVTH <0.3) 

Sens. 1 mm (CVTH >1)   

   
Sens. 2 mm (CVTH >1) 

Stab. (TH < 0.3)  

  
Sens. 1 mm (TH >1) 

Stab. (CVTH < 0.3)  

   
Sens. 2 mm (CVTH >1) 

PTV 63.2% 5.7% 9.4% 1.9% 

Left parotid 49.5% 14.2% 2.4% 1.4% 

Right parotid 46.2% 5.7% 9.0% 2.8% 

Spinal canal 68.9% 12.7% 3.3% 2.8% 

Trachea 58.5% 16.5% 2.8% 2.8% 

RING 82.5% 1.4% 0.0% 0.5% 

Repr. = Reproducibility (green), Stab. = Stability (red), Sens. 1 mm= Sensitivity 1 mm (light blue), Sens. 2 mm= 

Sensitivity 2 mm (dark blue). 

We adopted a common guideline of thresholding CV value as a strategy to select stable, 

reproducible and sensitive features. With a view to future multicentric studies concerning tumour 

control and/or OARs toxicity, it is crucial to select dosiomic features with a small CV, for example, 

with a CV < 0.3, when dose distributions are expected to be stable and reproducible. 

Simultaneously, it would also be desirable to identify dosiomic features able to recognise true 

differences in the dose distributions, so with a large CV, e.g., with a CV > 1, which classifies the 

sensitivity of the dosiomic features to the dose distribution variation. Since the proposed 

threshold values are a completely arbitrary choice, the CV > 0.8 threshold was also employed to 

investigate further and evaluate the variation in the dosiomic feature’s sensitivity on the selected 

threshold. Dosiomic features that are both stable (CV < 0.3) and sensitive (CV > 1 or CV > 0.8), i.e., 

that constitute an optimum set for modelling purposes, were described through Venn diagrams.  

 

3. RESULTS 

We extracted a total amount of 38,160 dosiomic features from 30 different dose 

distributions from six ROIs, grouped by four features’ families. In terms of reproducibility of 

dosiomic features extraction using the same software, two centres extracted 212 dosiomic 

features for each calculation grid resolution size (1 mm and 2 mm), resulting in a comparison of 

424 features between the centres. Single feature value differences, both for 1 mm and 2 mm 



calculation grid resolutions, were found to be equal to zero for all the considered dosiomic 

features. This result confirms the reproducibility of the dosiomic features when extracted using 

the MODDICOM software package (version 0.52). 

We evaluated 5088 and 10,176 dosiomic features to assess the reproducibility and stability 

of the extracted dosiomic features, respectively. Tables S1 and S2 show the CV values grouped by 

ROIs and features’ family for reproducibility and stability studies, respectively.  

Concerning the sensitivity study, we extracted 27,984 dosiomic features from the entire set 

of 11 dose distributions and six ROIs. Tables S3 and S4 depict the CV values grouped by ROIs and 

feature’ family, respectively, for the 1 mm and 2 mm dose grid calculation sensitivity studies.  

Results are also summarised in Figures 4 and 5 in terms of box plots for the left parotid and 

PTV, respectively. The black horizontal line within the box display for each box the median CV 

value. All the other ROIs (right parotid, spinal canal, trachea and RING) are reported in Figures S1–

S4 in the Supplementary Materials. Additionally, Table S5 lists the mean CV values for all the 

studies, ROIs and family’s features.  

Figure 4. Box plots of the CV values for the sensitivity (1 mm and 2 mm), stability and reproducibility 
studies, grouped for the four different features’ families (STAT, CM, RLM and GSZ) for the left parotid. 



 

Figure 5. Box plots of the CV values for the sensitivity (1 mm and 2 mm), stability and reproducibility studies 
grouped for the four different features’ families (STAT, CM, RLM and GSZ) for the PTV. 

The Venn diagrams in Figure 6 highlight the features that are both stable and sensitive after 

the choice of specific CV threshold (CVTH) values. For example, results for the set of stable AND 

sensitive features for the ROIs PTV and left parotid are given in Figure 3 for two different CVTH 

values for the sensitivity, CV > 1 and CV > 0.8, while the CV threshold for stability is kept to 0.3. 

 

Figure 6. Venn diagrams showing the dosiomic features that are both stable and sensitive between the 
stability and sensitivity study for the PTV and left parotid. The sensitivity CV threshold was set to two 
different values: CVTH > 1 and CVTH > 0.8 for the PTV. 



The Supplementary Materials (Tables S6–S10) report Venn diagrams highlighting dosiomic 

features that are both stable and sensitive for the other ROIs considered in this analysis. Table 5 

summarises the percentage of features that are both stable and sensitive (CV threshold = 1 and 

different resolution of the grid for dose calculation, 1 mm vs. 2 mm) across all the ROIs, and the 

details are shown in Tables S6–S11 in the Supplementary Materials. 

 

4. DISCUSSION 

Dosiomic is increasingly used in clinical studies aiming to improve the prediction of clinical 

outcomes, e.g., locoregional recurrence after IMRT for head and neck cancer [23] or local control 

after carbon-ion radiotherapy in skull-base chordoma [21]. Dosiomic features were analysed by 

machine learning for the prediction of acute-phase weight loss in lung cancer patients treated with 

radiotherapy [30]. Among preliminary multicentre experiences, Adachi et al. [24] aimed at 

predicting radiation pneumonitis after lung stereotactic body radiation therapy using dosiomics. In 

both single and, especially, multicentre studies, consistent reporting of dose distribution to 

provide a robust setting for the study is a key point to ensure stronger validation of the use of 

dosiomic features in the clinical routine. 

The presented study provided the first assessment of the variation in dosiomic features to 

dose calculation environments in a multicentre setting and the sensitivity of dosiomic features in 

distinguishing dose distributions generated with different radiation therapy devices. 

If considered reproducibility and stability studies, dosiomic features’ families with higher 

mean CV are always SZM apart from the RING and left parotid ROIs where STAT family shows the 

higher CV mean value. In terms of capability in describing and evaluating 3D dose distribution to a 

higher level than DVHs and employing dosiomic features in predictive modelling, CV mean values 

could not provide any useful information. Nevertheless, this study can describe a peculiar 

behaviour of the single dosiomic features (listed in Tables S1–S4) and families that could be 

representative for further studies.  

The box plots in Figures 1, 2 and Figures S1–S4, highlight how dosiomic features depend on 

dose distribution, ROIs and feature families. As expected, larger CV variations were observed in 

the sensitivity studies (with a dose calculation grid of 1 mm and 2 mm). It is difficult to generalise 

these results due to the dose distribution dependency, but, in terms of ROIs, it is visible that ROIs 



that lay in the gradient region (RING and right parotid) show lower CV values on average (Table 

S5). Concerning the dosiomic features’ families, GLCM has almost always the lowest value for all 

the studies and all the ROIs except for the right parotid in the sensitivity study using a dose 

calculation grid of 1 mm, PTV and spinal canal in the sensitivity study using a dose calculation grid 

of 2 mm. Even though the mean value of a single feature is considered, these results highlight how 

the GLCM features families show the lowest variation in terms of CV. Dosiomic features’ families 

with higher mean CVs in the sensitivity studies (both with1 dose calculation grid of 1 mm and 2 

mm) are RLM and SZM in the 87.5% of the cases for the RING, left parotid, right parotid and PTV 

ROIs, while STAT for spinal canal and trachea. 

Of note, reproducibility and stability of features can also be evaluated in terms of intraclass 

correlation coefficient (ICC), as is customary in most studies in which radiomic and dosiomic 

characteristics are evaluated. ICC is defined as the ratio of the subject variance by the sum of the 

subject variance, the rater variance and the residual, where a lower rater variance implies a 

reliable scale. ICC expresses how strongly the components in the same group resemble each other 

[10]. The peculiar analysis presented in this study forces the TPSs/Linacs/RT techniques/RT 

Technologies to be the “raters” of the dose distributions, while the different ROIs would be the 

“subjects”. Nevertheless, the ROIs present with very different dose distributions (high doses vs. 

low doses, almost uniform dose distribution vs. high gradient dose distribution), which means high 

variation between-subjects (possibly larger than variation among raters) that could lead to biases 

in ICC calculations. For these reasons, we chose to stick to the coefficient of variation that does 

not require an evaluation across different “subjects” and only needs evaluation across different 

“raters”. Nevertheless, an example of ICC evaluation is reported in the Supplementary Materials 

(Figure S5) considering the STAT dosiomic features’ family and the three possible ROIs groups: all 

ROIs, high dose region ROIs and low dose region ROIs. 

The main aim of this study was to provide suggestions on a set of dosiomic features that 

are at the same time reproducible, stable and sensitive, i.e., robust across variations that are not 

related to true differences in the dose distribution and able to pick up even subtle true differences 

in the dose distributions. To achieve this result, a specific guideline of thresholding CV values was 

defined to filter out reproducible, stable and sensitive features. 

The choice of CV thresholds, i.e., CV < 0.3 to define reproducibility and stability and CV > 1, or CV > 

0.8, to define sensitivity, is somehow arbitrary. To date, there are no specific and shared reference 



threshold values; our choice was driven by some statistical considerations. A CV < 0.3 means that 

the standard deviation of the value distribution for the single feature is less than 30% of the mean 

value of the same distribution, which means a reasonably low variation across the distribution, 

with 68% of values in the interval “mean value ±30%”. A CV > 1 (or > 0.8) means that the standard 

deviation of the value distribution for the single feature is (almost) the same “size” as the mean 

value, which entails a high possibility that values sampled from such a distribution can be 

identified as significantly different after a statistical test, which would be desired in outcome 

modelling.  

This approach allowed identification of dosiomic features that are both stable and 

sensitive, as depicted in Figure 3 for PTV and left parotid, summarised in Table 1 for all the ROIs 

and dosiomic features’ families and detailed in Tables S6–S11 for all the dosiomic features. As an 

example, identifying features that overlap between sensitivity study with 1 mm and 2 mm dose 

calculation grid is potential information that could be useful retrospective multicentre studies 

where different dose grid resolutions were employed, or for prospective studies to evaluate the 

possible need of guidelines on the dose calculation grid settings. 

We would like to emphasise once more that the CV threshold values selected to filter out 

and define reproducible, stable and sensitive dosiomic features are not absolute suggested values 

to take as completely “a priori” reference in future dosiomics studies. Our choice was grounded on 

some statistical considerations, and results are possibly associated with the peculiar nature of our 

study, i.e., a phantom study, fixed centralised contouring of ROIs, common dose calculation 

protocol including fixed-dose prescription, planning objectives and OARs constraints. Other 

thresholds on CVs could be selected for other studies considering different features distributions, 

e.g., a possible clear bimodal distribution which derives from “merging” of two separated 

distributions for patients with/without a selected clinical outcome.  

The employment of dosiomic in clinical practice could represent a powerful tool to handle 

better the 3D dose spatial and statistical information if compared with conventional tools, such as 

DVH and DVH metrics. Potentially, the granularity and quantity of the information provided by the 

dosiomic features, and above all the usability of such information, could better support the clinical 

decision than standard parameters, such as DVH, DVH metrics and visually assessment of the 3D 

dose distribution. Obviously, what is still needed is a clinical translation of the meaning of each 

dosiomic feature both within the use of full 3D dose distribution as a new metric to better assess 



plan quality during the optimisation phase as well as during the plan evaluation, but also to finally 

include dosiomics in the predictive models. Dosiomic features could represent additional 

parameters to be employed in the predictive models: this could lead to identifying some disomic 

features that, both during the plan optimisation and evaluation, could be considered to prevent or 

limit acute toxicities, as well as to improve local control. 

Additionally, to exploit the full benefits of big data, machine and deep learning, multicentre 

trials are needed [31]. Multicentre studies (both retrospective and prospective) are strongly based 

on the quality of the selected parameters. How do we best use the parameters we have been 

using so far? Are there any other parameters that could support future studies? Dosiomics 

features could be one of these, being potentially much more sensitive to dose distribution 

variation. Moreover, in a multicentre trial, a priori selection of the optimal dosiomic features to be 

employed in the study would lead to more robust and unbiased studies. According to the present 

analysis, it is essential to highlight how even just the variation in different dosiomic features 

underlines a possible use of the dosiomics to select dose distribution within multicentric studies to 

avoid bias during the further clinical outcome correlation analysis. 

The first limitation of the present study is related to the pool of the considered 

radiotherapy techniques and technologies. They are pretty diverse and representative but do not 

describe all the possible techniques and technologies available in clinical practice. Despite this, we 

believe that the employed number of radiotherapy techniques and technologies used by the eight 

centres are enough to support the message that a substantial number of dosiomic features are 

stable, and at the same time, they can distinguish or recognise dose distributions generated with 

different radiation therapy devices.  

A second possible limitation is related to the number of considered features. We 

considered 212 dosiomic features, other dosiomic features of the second-order could indeed have 

been considered. Nevertheless, the selected features represent a robust dataset, internationally 

validated in the radiomics setting [29], available to proceed in the clinical implementation of the 

dosiomics, both in clinical outcome predictive models and in the 3D dose distribution description, 

optimisation and evaluation processes.  

As a further study, dosiomic feature extraction analysis on different software [32] should 

also be considered to evaluate the possibility of employing different software to extract dosiomic 

features in multi-institutional studies. 



5. CONCLUSIONS 

The present study has assessed the stability of dosiomic features and their capability in 

distinguishing dose distributions generated with different radiation therapy devices in a 

multicentre setting. These results suggest that being dosiomic features sensitive to changes in 

dose calculation parameters, a consistent reporting of the TPS, dose calculation algorithms and 

pixel spacing used to calculate dose distributions is required. Harmonisation strategies to account 

for a possible variation in the dose distribution due to these confounding factors should be 

adopted when investigating a correlation between dosiomic features and clinical outcomes in 

multicentre studies.  
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ABSTRACT 

How to diferentiate with MRI-based techniques testicular germ (TGCTs) and testicular non-germ 

cell tumors (TNGCTs) is still under debate and Radiomics may be the turning key. Our purpose is to 

investigate the performance of MRI-based Radiomics signatures for the preoperative prediction of 

testicular neoplasm histology. The aim is twofold: (i), diferentiating TGCTs and TNGCTs status and 

(ii) diferentiating seminomas (SGCTs) from non-seminomatous (NSGCTs). Forty-two patients with 

pathology-proven testicular neoplasms and referred for pre-treatment MRI, were retrospectively 

enrolled. Thirty-two out of 44 lesions were TGCTs. Twelve out of 44 were TNGCTs or other 

histologies. Two radiologists segmented the volume of interest on T2-weighted images. 

Approximately 500 imaging features were extracted. Least Absolute Shrinkage and Selection 

Operator (LASSO) was applied as method for variable selection. A linear model and a linear 

support vector machine (SVM) were trained with selected features to assess discrimination scores 

for the two endpoints. LASSO identifed 3 features that were employed to build fvefold validated 

linear discriminant and linear SVM classifers for the TGCT-TNGCT endpoint giving an overall 

accuracy of 89%. Four features were employed to build another SVM for the SGCT-SNGCT 

endpoint with an overall accuracy of 86%. The data obtained proved that T2-weighted-based 

Radiomics is a promising tool in the diagnostic workup of testicular neoplasms by discriminating 

germ cell from non-gem cell tumors, and seminomas from non-seminomas. 
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1. INTRODUCTION 

Over the last decades, there has been a steady worldwide increase in the incidence of 

testicular cancer (1). The majority of these tumors are the germ cell tumors (TGCTs), which are 

then divided into two broad classes: seminomatous germ cell tumors (SGCTs) and 

nonseminomatous (NSGCTs). On this categorisation depend both the treatment and the prognosis 

(2). For istance, SGCT is more sensitive to radio and chemotherapy and thus a better prognosis. 

Although ultrasonography (US), including conventional grey-scale and color-Doppler US, still 

maintains the primary role in the diagnostic workup of scrotal pathology, magnetic resonance 

imaging (MRI) (3) has emerged as a supplemental imaging modality, which is mainly 

recommended as a problem-solving tool in challenging cases (4). Hence, MRI may provide 

additional information and help to clarify inconclusive or equivocal US findings in order to reduce 

the incidence of unnecessary surgery (4, 5). Albeit MRI may facilitate the differentiation between 

benign and malignant tumors (6), imaging alone is sometimes insufficient in making a clear 

distinction among testicular lesions. Previous studies have underlined the role of qualitative 

radiological assessment based on T1- and T2-weighted MR images that helps to differentiate 

between seminomas and non-seminomatous tumors (7). These studies have been further 

supported by quantitative investigation on diffusion weighted imaging (DWI) which have reported 

similar accuracy in discriminating SGCT – NSGCT status (8, 9); however, current existing data do 

not unequivocally support the role of DWI in being able to differentiate TGCT from non-germ cell 

tumors (TNGCT) (10). Given the rarity of these tumors, these results were obtained from small 

cohorts and still require validation. However, in the past decade, the breakthroughs in artificial 

intelligence and high-throughput computing have accelerated the application of radiomic analysis 

to medical imaging with the aim of guiding clinical decision-making. 

The drive behind the spread of Radiomics is the attempt to derive quantitative features from 

digital images in order to provide information which is not obvious to human interpretation alone 

(11, 12). Radiomics appears to supply diverse imaging biomarkers in different medical fields, 

although medical oncology represents the main area of research, since such image analysis may be 

of help in tumor detection, diagnosis, prognostication and prediction of response to treatment 

(11, 13). Indeed, in most recent publication, Zhang et al (14), developed a radiomic signature to 

quantitatively discriminate seminomas from non-seminomatous tumors obtaining higher 

classification rate compared to the other standard MRI-based techniques (e.g. visual inspection, 

ADC and DWI value).   



Therefore, this study extends and improves the work of Zhang et al by investigating the 

diagnostic performance of internally validated radiomic models in characterizing testicular 

neoplasms and more specifically differentiating between TGCTs and TNGTCs where classification is 

still under debate. Our findings show that in this field, MRI and Radiomics together allow an 

accurate characterization of testicular lesions, successfully guiding clinical decision-making. 

 

2. METHODS 

Patient selection 

In this observational retrospective study, approved by our institutional review board of the 

Azienda USL della Romagna (informed consent is published in integral part on the website of 

Azienda USL della Romagna prot. N. 1683), a dataset of   MR images of 42 patients who were 

referred for pathology has been analyzed. All research was performed in accordance with 

relevant regulations and informed consent was waived by the IRB. 

After biopsy or orchiectomy, the Pathology Department of our hospital provided us 

with confirmation of histological diagnosis, in all testicular tumors which had undergone 

surgery from January 2006 to February 2019. All patients who had a scrotal MRI available in 

our imaging archive system (Carestream VuePACS, Carestream Health, Rochester, NY, USA) 

were consequently selected. Exclusion criteria were the following: (a) patients who 

underwent MRI after surgical or radiotherapy and/or chemotherapy treatment; (b) poor 

quality of the MR images due to movement artifacts; (c) no visible lesion on MRI; (d) not 

primary testicular tumor (Figure 1). MRI was perfomed in clinical practice as a second-level 

problem-solving tool when sonographic findings were equivocal or inconclusive, or following 

a request from the urology department to obtain a detailed local staging of a testis mass 

previously identified with US. The patient cohort was aged from 7 to 79 years old (average 

39,3 ± 14,3 yrs). One of the patients had a bilateral classic seminoma and one had two 

different neoplasms years apart. We excluded 2 patients with testicular lymphoma and 1 with 

testicular localization of myeloma because of the uncertain metastatic origin; 1 more patient 

with classic seminoma was discarded due to bad image quality, so the final dataset consisted 

of 42 patients. Therefore, we analyzed MR studies of 44 testicular lesions (patient and lesion 

features are summarized in Table 1). Time difference between MRI and histologic final 

diagnosis was 25 ± 15 days. Thirty-two out of 44 were histologically classified as TGCTs, 



including 23 classic seminomas and 9 NSGCTs (7 mixed germ cell tumors and 2 embryonal 

cell carcinomas). Twelve lesions out of 44 were TNGCTs or other histological types: 7 Leydig 

cell tumors, 2 Sertoli cells tumors, 2 adenomatoid tumors and 1 epidermoid tumor. For each 

lesion, laterality (left/right) and size have been considered; germ cell tumors were staged 

according to the 8th Edition of the American Joint Committee on Cancer (AJCC) Staging 

Manual. For a more detailed description of the lesions, also several visual features were 

analyzed in Supplementary Table S1, created by following indications found in (7). These 

features included signal intensity of the lesion compared to normal parenchyma, presence of 

necrotic or hemorrhagic areas, presence of tumor capsule. Furthermore, bandlike structures 

on T2w images were considered fibrovascular septa and the contrast of these septa was also 

analyzed.  

 

Table 1: Patient demographics and lesion features 

Germ cell tumors 

AGE (yr) Average ± standard deviation 36,8 ± 9 

LATERALITY Right/Left 19/13 

SIZE (maximum diameter -cm) Average ± standard deviation 3,2 ± 2,4 

STAGING (T)  pT1/pT2/pT3/pT4 17/13/2/0 

      

Non germ cell tumors 

AGE (yr) Average ± standard deviation 39,1 ± 18,6 

LATERALITY Right/Left 4/8 

SIZE (maximum diameter - cm) Average ± standard deviation 0,94 ± 0,46 

 

 



 

Figure 1. Flowchart summarizing patient accrual. 

 

MR imaging protocol and radiomic analysis 

MR studies were acquired in our department on the same 1,5 T MR Scanner (Achieva Philips, 

Philips Healthcare, Best, Netherlands) by using a surface coil (Philips Sense Flex Medium coil).  

The patient was placed in the scanner in the supine position, feet first. After adequate 

support and positioning of the scrotum, elevated by placing a towel between the thighs with 

the penis raised and fixed to the lower abdominal wall, the surface coil was placed over a 



second towel covering the scrotum. A peripheral venous access (19-gauge) was obtained in an 

antecubital fossa vein. All the MRI study protocols included T1-weighted (T1w) sequences 

before and after paramagnetic contrast agent administration and T2w sequences in the axial, 

coronal and sagittal plane; some of the examinations also included DWI sequences and 

derived Apparent Diffusion Coefficient (ADC) maps. T2w sequences were selected for 

radiomic analysis since they are the most complete imaging set for each patient and are the 

best for lesion detection, localization and characterization, providing essential information on 

neoplastic tissue and anatomic detail (4). MRI parameters for T2w at our institution are 

summarized in Table 2. Spatial resolution varied from 0.3 to 0.7 mm in the axial direction and 

from 3 to 4 mm in the z direction. Resampling of the images was performed prior to 

contouring and radiomic analysis in order to uniform dataset to an average resolution of 

0.5/0.5/3.5 mm. Contouring of the patient lesions was performed on the T2w sequences 

(Figure 2A and 2B) through consensus between two expert radiologists. First, second and 

higher order features were extracted with the open source MATLAB (The MathWorks, Inc., 

MA, USA) based software CGITA version 1.3. A quick guide on setting up and run CGITA for 

feature extraction is present in Supplemental Material S2. First order features were derived 

from the histogram of voxel intensities. Second and higher order features were calculated 

from Intensity size-zone, co-occurrence and run-length based matrices. Detailed description 

of the 72 imaging features extracted can be found in (15). Grey level quantization was fixed to 

64 bins between minimum and maximum value inside the Region Of Interest (ROI). 

 

 

 

 

 

 

 

 

 

 

 



 

Table 2: Turbo Spin-Echo T2-weighted image acquisition parameters 

Acquisition Parameter Value 

Slice thickness 3.5 mm 3-4 mm 

Min. slice gap 0 

Repetition time 5899 ms 

Echo time 120 ms 

Flip angle 90° 

 

Field of View 

 Right/Left dimension 160 mm 

Anterior/Posterior dimension 90 mm 

Foot/Head dimension 160 mm 

        (A)                                                                           (B) 

Figure 2. MR images showing the segmentation process in a 27-year-old man with testicular seminoma (A) and 

a 31-year-old man with Leydig cell tumor (B), axial and coronal T2-weighted images, respectively. Testicles are 

contoured in blue, whereas neoplasms are contoured in violet. 



Statistical analysis 

The endpoint of this study was to investigate the diagnostic performance of textural 

features against two different biopsy responses. The first response was to discriminate 

between germinal and non-germinal lesions, whereas the second was to assess whether the 

tumor was a seminoma or not. Mann-Whitney test was used for the germinal-non germinal 

(TGCTs-TNGCTs) test, with TGCTs labelled as 0 and TNGCTs labelled as 1. Features that 

showed a p-value < 0.01 were further analyzed applying again Mann-Whitney test for SGCTs 

(labelled as 0) vs NSGCTs (labelled as 1) endpoint alone leaving benign tumors outside from 

the dataset and labelled as 2. Features that had a p-value < 0.01 in every test were further 

investigated. A correlation test was performed among significant features to remove 

redundancy through Spearman-Rho correlation coefficient. Features which correlated with 

each other were discarded and the features with the lowest p were kept in order to build a 

diagnostic model. Logistic regression was performed by employing R and the open source 

software RStudio (16) to assess imaging biomarkers prediction significance together with  

patient age and lesion volume for both the endpoints in order to unveil potential confounders. 

MATLAB R2018a statistical toolbox (17) was employed to generate a validated classifier and 

evaluate its performance. All the designed scripts are provided on request. In order to reduce 

overfitting of the classifiers 5- fold cross validation has been performed. A linear model and a 

Support Vector Machine (SVM) were trained to assess discrimination scores of statistical 

models.  

 

3. RESULTS 

From the 44 lesions fnally identifed, a total of 487 features were extracted. LASSO 

algorithm was independently applied for the two endpoints of this study. In the pool of 

features identifed by LASSO and afer evaluating the correlations with spearman ρ we fnally 

identifed 3 features for the association with TGCT-TNGCT discrimination endpoint and 4 

features for the SGCT-NSGCT status. Zone percentage (ZP) calculated from the Gray Level Size 

Zone Matrix was the strongest predictor with a p-value < 0.001 for TGCT-TNGCT and p-value 

< 0.01 for SGCT-NSGCT discrimination endpoint employing Mann-Whitney U in both cases. 

Detailed description of ZP calculation is available in Supplemental Material S3.  .  



Figure 3A and 3C show the box plot of ZP against the two endpoints, whereas Figure  

3B and 3D present the same for lesion volume. 

 

Figure 3. In A we show Zone Percentage (ZP) calculated values for germinoma(TGCT) and non germinoma 

(TNGCT) tumor cell cancers. TGCT is labeled as 0 whereas TNGCT is labeled as 1. The same applies for tumor 

volume in B. In C we show Seminoma (SGCT) vs non-seminoma (NSGCT). SGCT is labelled as 0, NSGCT as 1 and 

other histology as 2. The same labelling is used in D  for tumor Volume 

Figure 4 illustrates the ROC curves of ZP and volume in discriminating TGCT and 

TNGCT showing an AUC of 88% and 78%, respectively. The AUCs for the SGCT vs NSGCT 

endpoints were 83 % and 73% respectively. Furthermore, a logistic regression together with 

age as demographic data was performed. Results of linear regression for TGCT-TNGCT 

endpoint are shown in Table 3. ZP is the only statistically significant index associated to 

TGCT-TNGCT with a Hazard Ratio of 1.608. Volume is correlated with TGCT-TNGCT endpoint 

but with no statistical significance. The same results hold for SGCT-NSGCT status prediction as 

shown in Table 3. ZP was able to discriminate between both TGCT-TNGCT and SGCT-NSGCT. 

B A 

D C 



We trained and tested through 5-fold cross validation one linear discriminator and one linear 

SVM employing ZP and volume as separated predictors. 

 

Figure 4. Zone percentage and Volume Receiver Operating Curve for TGCT-TNGCT endpoint showing an Area 

Under the Curve (AUC) of 0.88 and 0.78, respectively 

 

 

Table 3. Logistic Regression of clinical and imaging variables for discriminating germ cell from non-germ cell 

tumors and seminomas from nonseminomatous ones excluding benign tumors.  

TGCT-

TNGCT Coef. p-value 

95.0% CI for Coef. 
SGCT-

NSGCT Coef. p-value. 

95.0% CI for Coef. 

Lower Upper Lower Upper 

AGE 0.001 0.814 -0.008 0.011 AGE -0.005 0.580 -0.023 0.013 

ZP 1.608 0.000 0.814 2.402 ZP 3.121 0.000 1.612 4.631 

Volume 0.000 0.916 -0.004 0.005 Volume 0.000 0.980 -0.009 0.009 

TGCT/TNGCT – Testicular Germ Cell / Non Germ Cell Tumor 

SGCT/NSGCT  – Seminoma Germ Cell Tumor / Non Seminomatous Germ Cell Tumor 

Coef. – Coefficient of logistic regression 

CI – Confidence Interval 

ZP – Zone Percentage 



For TGCT-TNGCT endpoint the two models gave a final accuracy of 84% and 86%, 

respectively. Confusion matrix and the ROC curve of the best model (linear SVM) to 

discriminate TGCT-TNGCT are shown in Figure 5A. SVM accuracy in predicting SGCT-NSGCT 

status was 81% for both models, confusion matrix and ROC curve are similarly shown in 

Figure 5B. Training the same models with volume we obtained a 72.9% and 66% accuracy for 

TGCT-TNGCT status, and 63% and 61.4% for SGCT-NSGCT. 

 

 

Figure 5. At the top (A), Confusion matrix and ROC curve of ZP based Support Vector Machine (SVM) trained and 

cross-validated for TCGT-TNGCT endpoint. Below (B), we show the ZP based SVM model performance for SGCT-

NSGCT endpoint 

 

 

 

 

 

 



4. DISCUSSION 

This study evaluated the ability of T2w MR-based quantitative analysis to help 

differentiate germinal from non-germinal tumors and seminomas from non-seminomas. In 

the United States, testicular cancer represents the most common malignancy among men aged 

15–44, with almost 9600 new cases estimated in 2019 (19); In young men, germ cell-derived 

tumors constitute by far the vast majority of testis neoplasms (almost 95%), with benign sex 

cord–stromal tumors representing approximately the remaining 5% (20); moreover, germ 

cell tumors are almost equally composed of seminomas and non-seminomas (21), with 

differences in treatment strategies and prognosis (22). Advances in multimodality treatments, 

including surgery, chemotherapy and radiation, have yielded a noticeable decline in mortality 

rates of testis cancer, particularly when the diagnosis is made early in the clinical course; The 

preoperative diagnosis with US has been shown to have a 92-98% sensitivity and a 95-99,8% 

specificity (21)) but cannot be use to accurately  predict tumor histology and to differentiate 

benign from malignant types. MRI for scrotal pathology has proved to be a valuable second-

level imaging modality that could help to elucidate diagnostic dilemmas found at US. Indeed, 

characterization of scrotal lesions at US may sometimes be difficult as a result of several 

limitations of this technique compared with MRI, which include the small field of view, 

operator dependence, and limited tissue characterization (23). In selected cases MR could 

represent a useful adjunct for patients with inconclusive clinical and US findings, since it could 

modify and direct treatment strategies towards more conservative approaches, including 

biopsy, tumor enucleation and testicular-sparing surgery, or even clinical and imaging follow-

up when deemed possible (6, 24). Nevertheless, a confident characterization of the nature of 

scrotal masses is not always achievable even with MRI. Not surprisingly, Radiomics 

represents a rapidly-growing translational field of research that has been applied to cancer 

care in an effort to find imaging biomarkers as decision support tools for clinical practice, 

given the increased number and availability of imaging data in oncology. Lung, breast, 

colorectal, renal cell, pancreatic, brain cancer and sarcoma have all been previously 

investigated through medical image processing and analysis (25, 26), whereas only one study 

(27) has applied radiomic analysis to retroperitoneal nodal masses from germ cell testis 

cancer after chemotherapy. 

 



In the literature, a previous study has tested the ability to discriminate between 

seminomas and non-seminomas through qualitative observation by the radiologist examining 

on MRI images morphologic features, including tumor volume, infiltrative margins, 

fibrovascular septa, necrosis (7). This study reported high inter-radiologist agreement and an 

accuracy of MRI findings in predicting histologic diagnosis of 91%. However, the number of 

patients was limited to 21 cases and the interpretation of MRI findings will always be 

dependent on radiologist expertise. Other studies have focused on quantitative MRI imaging, 

such as DWI with Apparent Diffusion Coefficient (ADC) values giving promising results in 

discriminating SGCT-NSGCT status with an AUC of 0.906 (9, 10, 28, 29). The robustness of 

these results was also proven against different ROI definitions (28). Furthermore Dynamic 

Contrast Enhanced (DCE) – MRI has been also proven to be a valuable semi-quantitative 

method to discriminate TGCT and TNGCT lesions with a maximum AUC of 0.89; however, 

these methods do not provide numerical data for a standardized assessment (10). Recently 

Zhang et al proposed a radiomic signature based on multiple features able to discriminate 

quantitatively SGCT-NSGCT status with high reproducibility scoring an AUC of 0.979.  

Unfortunately, a radiomic signature comparison is hard to assess due to the complexity and 

high number of features employed for its development and it is beyond the scope of this 

study.   Here we propose a simplified classifier based on a single feature, namely ZP, which is 

able to discriminate germinoma from non-germinoma cancers and seminomas from non-

seminomas. ZP quantitatively depicts the coarseness of the texture of the lesion and high 

values indicate a large portion of the ROI having a fine texture and thus higher homogeneity. 

In our results benign lesion have the highest value of ZP whereas seminoma have the lowest 

as can be seen in Figure.3A and 3C. This seems to be informative of the more heterogeneous 

nature of malignant lesions. Volume informative contribution was also investigated, but ZP 

has proven to be a far stronger predictor of histopathological status at logistic regression. 

Internal 5-fold cross-validation was employed to build a stable SVM model and avoid 

overfitting; this represents a limitation, as an external validation will be required to confirm 

the results. However, the data supporting the conclusions of this manuscript may be available 

under request for additional. 44 lesions were included in the models and SVM gave a final 

accuracy of 86% in discriminating TGCT-TNGCT status. The model correctly identified 29 

malignant lesions out of 32 (91%). Another SVM ZP- based model had a final accuracy of 81% 

in differentiating SGCT from other histologies, with 19 seminomas correctly classified out of 

23 (83%). Following these promising results, we strongly believe that radiomics can be 

integrated with other quantitative techniques such as ADC and DCE to improve testicular 



mass classification accuracy. We acknowledge that another limitation of this study lies in its 

retrospective nature and in the relatively low number of patients. Furthermore, dependency 

of ZP on contouring method and scanner vendors was not explored in this study. 

In conclusion, our preliminary study shows that the radiomic measures obtained by 

scrotal MR image analysis may be useful in the diagnostic workup of testicular lesions, since 

they could add valuable information and help to discriminate among testicular neoplasms by 

differentiating germ cell from non-gem cell tumors, and seminomas from other histologies. 

Further independent validation is required to assess whether quantitative imaging features, 

possibly in conjunction with standard clinical markers and other quantitative techniques, may 

allow more accurate characterization of testicular lesions. 

 

DATA AVAILABILITY  

The datasets during and/or analysed during the current study available from the 

corresponding author on reasonable request. 
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Simple Summary: Radiomics analysis is used on MRI-ADC maps and [68Ga]Ga-PSMA-11  PET 

uptake maps to assess unique tumor traits not visible to the naked eye and to predict histology-

proven ISUP grades in a cohort of 28 patients. Our study's main goal is to report imaging features 

that can distinguish low ISUP grades patients from higher grades (ISUP 1+) employing logistic 

regression statistical models based on MRI-ADC and 68Ga-PSMA data, as well as to assess the 

features' stability under small contouring variations. Our findings reveal that MRI-ADC and 

[68Ga]Ga-PSMA-11 PET imaging features based models are equivalent and complementary to 

predict low ISUP grade patients. These models can be employed in broader studies to confirm 

their ISUP grade prediction ability and eventually impact clinical workflow in reducing 

overdiagnosis of indolent, early-stage PCa. 

Abstract: Prostate Cancer (PCa) risk categorization based on clinical/PSA results in a substantial 

number of men being overdiagnosed with indolent, early-stage PCa.Clinically non-significant PCa is 

characterized by the presence of ISUP grade 1 where PCa is found in no more than two prostate 

biopsy cores. Mp-MRI and [68Ga]Ga-PSMA-11 have been proposed as tools to predict ISUP 1 

grade patients and consequently reduce overdiagnosis. In this study radiomics analysis is applied 

on MRI-ADC and [68Ga]Ga-PSMA-11 PET maps to quantify tumor characteristics to predict 

histology-proven ISUP grades. ICC was applied with a threshold of 0.6 to assess features’ stability 

for  variations in contouring. Logistic regression predictive models based on imaging features were 

trained on 31  lesions to differentiate ISUP 1 from ISUP 2+ patients. The best model based on 

[68Ga]Ga-PSMA-11 PET returned a prediction efficiency of 95% in the training phase and 100% in 

test phase whereas the MRI-ADC best model had an efficiency of 100% in both phases. Employing 

both imaging modalities, prediction efficiency was 100% in the training phase and 93% in test 

phase. Although our patient cohort was small, it was possible to assess that both imaging 

modalities add information to build the prediction models and show promising results for further 

investigations. 

Keywords: prostate cancer; retrospective studies; MRI-ADC Scans; [68Ga]Ga-PSMA-11 PET; 

radiomics 

 

 

 



1. INTRODUCTION 

Prostate cancer (PCa) is the second most frequent cancer diagnosis made in men and the 

fifth leading cause of death worldwide with an ever-increasing incidence [1]. 

Current clinical-/PSA-based risk stratification for PCa still leads to a large number of men 

being overdiagnosed with indolent, early-stage PCa that may only require active surveillance 

rather than immediate treatment with unjustified comorbidities. According to pertinent societal 

guidelines clinically non-significant PCa (cns-PCa) is characterized by the presence of ISUP grade 

group 1 where PCa is found in no more than two prostate biopsy cores, each affected by less than 

50% of its length, with a total PSA inferior to 10ng/ml[2], [3].  At the same time systematic trans-

rectal ultrasound-guided 12-core biopsies may fail to detect the most aggressive components of 

PCa and their real size underestimating clinically-significant PCa (cs-PCa) in up to 30% of cases, 

delaying active treatments. Noninvasive determination of the real ISUP grade group would be of 

great help in informing biopsy targeting and treatment decision [4]–[6].  In this scenario, there is 

an emerging need of non-invasive methods that better correlate with histology proven ISUP grade. 

Multi parametric magnetic resonance (mp-MRI) combining T1, T2 weighted sequences with 

Diffusion Weighted MRI and [68Ga]Ga-PSMA-11 PET have proven to be  good candidates to bridge 

this gap [7]–[10]. For instance, the PROMIS trial demonstrated that mp-MRI triage might avoid 

unnecessary biopsies in 27% of cases and allowing for 18% increased detection of clinically 

significant cancer for TRUS biopsies guided by mp-MRI compared to standard TRUS biopsies[7]. In 

subsequent studies also Kasivisvanathan et al [11] and Ahdoot et al [8] found out that MRI 

targeted biopses are superior to standard transrectal ultrasonography–guided biopsy in men at 

clinical risk of prostate cancer. Furthermore, quantitative parameter extracted from Apparent 

Diffusion Coefficient maps (calculated from DWI sequences of mp-MRI) showed a negative 

correlation with histology proven ISUP grade (former Gleason score) [12]–[14]. However, the 

positive predictive value of mp-MRI is still poor, ranging from 20% to 68% [12] resulting in 

needless biopsies [11] and a need for improvement, particularly for individuals classified as 

intermediate risk. Despite these new findings, the analysis of the MRI-ADC maps' histogram alone 

leaves many grey areas in the discrimination of low ISUP grade patients (1 vs 2+), which is critical 

in treatment guidance, such as deciding between active surveillance, surgery, or radiotherapy 

according to NICE guidelines [15]. 



Prostate-specific membrane antigen (PSMA) is a type II transmembrane glycoprotein 

overexpressed on PCa epithelial cells surface. PSMA degree of overexpression is associated with 

higher aggressive biology (Gleason Score / ISUP grade group), luminal subtype, high androgen 

receptor activity and with higher serum PSA and it is related to tumor progression and disease 

recurrence[16]–[22]. Pioneering studies evaluating the potential of [68Ga]Ga-PSMA-11 PET  to 

detect intraprostatic tumour foci have documented proportionality between the intensity of PSMA 

tumour uptake and pathology ISUP grade group, the size of tumor foci, tumor growth pattern 

(infiltrative versus expansive), serum PSA and higher D’Amico score[23]–[32]. A recent meta-

analysis carried out on 389 patients with clinical/biochemical suspicion of PCa documented for 

[68Ga]Ga-PSMA-11 PET  an overall sensitivity and specificity of 97% and 66%, respectively. 

Despite[68Ga]Ga-PSMA-11 PET  returned a poor specificity similar to that of mpMRI, its negative 

likelihood ratio was found to be 0.05 leading to a 20-fold decrease in the odds of PCa being 

present in patients with negative  PET  findings. Also, [68Ga]Ga-PSMA-11 PET diagnostic accuracy 

for detecting clinically significant PCa returned pooled sensitivity and negative likelihood ratio of 

0.99 and 0.02, respectively, potentially implying a role as a non-invasive risk stratifier[33]. 

Thus, PSMA-targeted PET imaging has been proposed in recent years to increase the 

mpMRI diagnostic accuracy in defining the malignant potential of lesions detected and scored 

according to PIRADS version 2.1. Studies evaluating the added value of [68Ga]Ga-PSMA-11 PET 

and mpMRI to detection of clinically-significant PCa documented a significantly increased 

diagnostic accuracy of the multimodality approach compared to individual modalities.  PSMA 

uptake (SUVmax) and DWI MRI (ADCmax and ADCmin) were found to be distinct biomarkers able 

to differentiate between clinically significant PCa and and normal prostatic tissue in naïve prostate 

cancer patients with Gleason Score ≥ 7 [34], [35]. In this study texture analysis, which applies 

advanced mathematical functions to medical images, will be employed both in MRI-ADC maps and 

[68Ga]Ga-PSMA-11 uptake maps to quantify peculiar tumor characteristics, not visible to naked 

eye, in order to predict histology proven ISUP grade. Therefore their application to MRI-ADC maps 

has been reported to be helpful in reducing grey areas in ISUP grade prediction [36] and employed 

together with [68Ga]Ga-PSMA-11 PET  they may show even more promising results. Despite this 

evidence, radiomics features are strongly affected both by acquisition parameters and contouring 

methods [37]–[39]. 



The primary objective of our study is to report features able to discriminate low ISUP grade 

patients from higher grades (ISUP 1+) employing both MRI-ADC and [68Ga]Ga-PSMA-11 data and 

to test the stability of the features under small contouring variations. 

2. MATERIALS AND METHODS 

2.1. Patient Selection 

We retrospectively analyzed a dataset of mp-MRI and [68Ga]Ga-PSMA-11 PET images from 

28 patients with biopsy-proven prostate adenocarcinoma enrolled in our institutional prospective 

multi-cohort study BIOPSTAGE (EudraCT number: 2017-002651-28) in the time span between May 

2018 and May 2020. In this prospective study, patients with high-risk prostate cancer are staged 

by pelvic mp-MRI and [68Ga]Ga-PSMA-11 PET prior to radical prostatectomy and pelvic lymph 

node dissection to rule out metastases and for correlation of pelvic imaging findings with axial 

step section histopathology analysis. Both mp-MRI and [68Ga]Ga-PSMA-11 PET scans were 

performed in patients fulfilling the following cohort-specific inclusion criteria: 

(a) patients 18 years of age or older, able to express informed consent for study 

participation and compliant with BIOPSTAGE on-protocol imaging; 

(b) biopsy evidence of prostate cancer with any of the following high-risk characteristics: 

(1) clinical T stage ≥ T2c; 

(2) clinical stage N1; 

(3) ISUP grade group ≥ 4; 

(4) serum PSA > 20 ng/mL; 

(c) biopsies performed at least 4 weeks prior to mp-MRI and [68Ga]Ga-PSMA-11 PET; 

(d) patients opting for radical prostatectomy and pelvic lymph node dissection. 

Exclusion Criteria included: 

(a) ongoing hormone therapy at the time of screening and within the previous six months;  

(b) previous pelvic radiation therapy; 



(c) any medical condition incompatible with MRI scanning or with the administration of 

MRI contrast medium or any condition that impairs the quality of pelvic MRI imaging;  

(d) history of allergic reactions attributed to compounds of similar chemical or biological 

composition to [68Ga]Ga-PSMA-11; 

(e) other known malignant neoplastic disease in the patient's medical history with a 

disease-free interval of less than 5 years; chemotherapy or radiation therapy in the 4 weeks prior 

to study entry;  

(f) a history of other malignant neoplastic disease in the patient's medical history with a 

disease-free interval of less than 5 years. 

 An outline of the workflow prior to statistical analysis employed to obtain the results 

described below is given in Figure 1. 

 

Figure 1. Detail of prostate contouring for the two imaging modalities performed by Nuclear Physician and 

Radiologist respectively (Left). In the center it is represented an example of  anatomo-pathology reporting with 

details about ISUP grading. In the right side [68Ga]Ga-PSMA-11 PET and MRI-ADC are being fused with MIM 

maestro software with respective contouring superimposed. 

 

 

 

 



2.2. MR Imaging Protocol and Lesion Contouring 

Mp-MRI studies were acquired at our department on a 3 Tesla MR Scanner (Philips  Ingenia 

3.0T, Philips Healthcare, Best, Netherlands) by using a Philips Sense Flex Medium surface coil. 

The patient was placed in the scanner in the supine position, feet first. T1- weighted (T1w), 

T2-weighted (T2w) and ADC maps generated by AXIAL Diffusion-Weighted Imaging (DWI) 

sequences for prostate / small pelvis were acquired. 

Four b-values were used (b100, b800, b1000, b2000) to provide more accurate ADC 

calculations. Echo time (TE) and repetition time (TR) were ≤90 msec and ≥3000 msec respectively. 

The field of view (FOV) was 16-22 cm with an in-plane dimension of 2.5mm . Slice thickness was 

set to 3 mm without gap. 

ADC maps were selected for radiomic analysis since they are the most informative for 

lesion detection, localization, and characterization, providing essential information on neoplastic 

tissue and anatomic detail (25). Contouring of the 28 patient lesions was performed on mp-MRI 

through Watson Elementary software (Watson Medical, Nijmegen, Netherlands) by an expert 

radiologist employing T1w, T2w, and ADC maps for a total of 37 lesions contoured. 

2.3. [68Ga]Ga-PSMA-11 PET/CT Imaging Protocol and Lesion Contouring 

[68Ga]Ga-PSMA-11 was prepared according to national regulations, good 

radiopharmaceutical practices (GRP) as outlined in specific EANM guidelines (26). All patients were 

intravenously injected with a mean activity of 159MBq of [68Ga]Ga-PSMA-11 (activity range: 112 - 

202 MBq) via an indwelling catheter in an antecubital vein according to patient weight. A whole-

body PET/CT scan was performed 60-80 min after i.v. administration of [68Ga]Ga-PSMA-11 

covering a volume from the skull vertex through the mid-thigh in 3D flow motion. Whole-body PET 

acquisitions were corrected for attenuation and scatter and adjusted for system sensitivity and 

providing parametric images in terms of Standardized Uptake Values (SUVbw: KBq found / gm 

tissue / KBq injected / gm body mass). PET reconstruction matrix was 400x400 (Hi-REZ processing), 

achieving an axial resolution of 2.5 mm and a slice thickness of 4 mm. The CT component of the 

studies was performed using the CARE Dose4D protocol for CT dose adaptation (mAs weighed on 

z-axis, patient’s dimensions, and x-y axis) HDFOV 512 x 512 matrix, slice thickness 3mm for PET 

attenuation correction and co-registration. [68Ga]Ga-PSMA-11 PET images were contoured by an 



expert Nuclear Physician on MIMmaestro software employing as minimum positivity threshold an 

arbitrary maximum SUVbw of 3 g/ml and outlining 62 positive lesions. 

2.4. Histopatological Reporting and ISUP Grade Assignment 

The post-surgical histopathology results are considered the standard of truth for ISUP 

grade determination of the lesions. The anatomo-pathology specimens were sectioned serially 

from apex to base and submitted as 12 whole-mount sections for examination. After detailed 

microscopic revision, the ISUP grade pattern present in each section was determined. Then each 

lesion detected with mp-MRI or [68Ga]Ga-PSMA-11 PET was compared with histopathology 

results and consequently, an ISUP grade was associated. In case an imaging-detected lesion had 

negative correspondence on histopathology this same lesion was classified as false positive and 

consequently discarded from the analysis. All the lesions with tumour correspondence on 

histopathology were classified as true positives. 

2.5. Images Pre-Processing and Radiomic Analysis 

[68Ga]Ga-PSMA-11 PET and MRI-ADC images were resampled to a resolution of 1/1/1 mm 

to uniform the dataset. 

For radiomics feature stability assessment, physicians' contours were isotropically 

expanded by 1 and 2 mm and contracted by 1 mm. Contraction of 2 mm was not considered in the 

analysis due to the small size of many lesions that may cause failure in the subsequent radiomics 

analysis 

Lesions subset visible both in MRI-ADC and [68Ga]Ga-PSMA-11 PET were further contoured 

according to the following rules: a) if [68Ga]Ga-PSMA-11 PET Lesion contour is included in MRI-

ADC lesion contour – [68Ga]Ga-PSMA-11 PET contour is chosen and vice versa b) In case of partial 

overlapping (> 80% of the volume) intersection between lesion contours was performed c) in 

other scenarios association between lesions was not considered. 

First, second and higher order features were extracted with the Image Biomarker 

Standardisation Initiative (IBSI) [40] compliant tool, SOPHiA DDM™ For Radiomics (2021 SOPHIA 

GENETICS s.p.a., Boston, MA 02116, USA), for MRI-ADC and [68Ga]Ga-PSMA-11 PET images. First 

order features were derived from the histogram of voxel intensities. Second and higher order 

features were calculated from Intensity size-zone, co-occurrence and run-length based matrices. 



Detailed description of the 218 imaging features extracted can be found in the IBSI Reference 

manual [40]. Grey level quantization was fixed to 32 bins between the minimum and maximum 

value inside the Region Of Interest (ROI). Features extracted from physicians’ contours were 

compared with isotropically expanded and contracted ROIs (+1 and +2 mm -1 mm) through Intra 

Class Correlation coefficient (ICC) to select stable features under small variations in contouring 

with ICC>0.6. 

2.6. Statistical Analysis 

The endpoint of this study was to investigate the diagnostic performance of radiomics 

features extracted from multimodality imaging (MRI-ADC and [68Ga]Ga-PSMA-11 PET) against 

ISUP grade obtained from histology evaluation. In particular the ability of radiomic features to 

discriminate ISUP 1 from higher grades in order to help treatment stratification. In Figure 2 it is 

summarized the entire process of statistical analysis from feature extraction to final model 

evaluations. 

 

 

 

 

 

 
Figure 2. Detail of the workflow employed from the features extraction to the selection of the final 
statistical models. 

Five independent ISUP Grade predictive logistic models were developed based on: 

a) lesions visible only through [68Ga]Ga-PSMA-11 PET 

b) lesions visible only with MRI-ADC 

c) lesions visible with [68Ga]Ga-PSMA-11 PET and MRI-ADC but only employing 68-

[68Ga]Ga-PSMA-11 PET imaging features 

d) lesions visible with [68Ga]Ga-PSMA-11 PET and MRI-ADC but only employing mp-MRI 

imaging features 



e)lesions visible both with [68Ga]Ga-PSMA-11 PET and MRI-ADC with features extracted 

from both imaging modalities 

The models were built through a stochastic cross-validation process to evaluate their 

performance. 

The modeling process followed this procedure: 

Lesion feature datasets were divided into a training (2/3) and test (1/3) set. Subsequently, 

a logistic regression model was trained on the training set, employing features selected by a least 

absolute shrinkage and selection operator (LASSO) algorithm with internal 3-fold cross validation. 

The predictive ability of the model was then calculated on the test set. This operation was 

repeated 30 times and subsequently receiver operating curves (ROC) and their area under the 

curve (AUC) of each iteration were recorded both for the training and test set. 

Models’ quality was reported by averaging AUC across iterations. ROC and AUC were 

reported for the best-performing iteration to evaluate the model’s prediction power and to 

compare the performances of mixed imaging features model e) with standalone imaging models c) 

and d). The most frequently selected features across iterations were reported as the most 

informative features for ISUP Grade prediction. 

All statistical analyses were carried out with R and the open-source software RStudio[41]. 

The raw data of this study ([68Ga]Ga-PSMA-11 PET, MRI-ADC and Pathology records) are available 

as supplementary material. 

3. RESULTS 

Patients were aged between 44 and 72 years (mean age: 62 years). The median total PSA 

at time of prostate cancer diagnosis was 6.8ng/ml (IQR: 4.4 - 8,7). Eleven patients had ISUP 1 

prostate cancer on post-prostatectomy pathology, eight patients had ISUP2, three patients had 

ISUP3, five patients had ISUP4, and 1 one patient had ISUP5 prostate cancer. The median time 

between [68Ga]Ga-PSMA-11 PET and mp-MRI was 8 days whereas the median time between 

advanced imaging and prostatectomy was 45 days. On post-prostatectomy pathology, organ-

confined disease (pT2a to pT2c) was documented in 21 patients; seven patients were found with 

locally advanced disease (pTa to pT3b). Table 1 provides an overview of the patient's features, 

while Supplementary Table S1 provides a more detailed description of the patient's characteristics. 



Table 1. Summary of patients’ characteristics. 

Patients Characteristics Value 

mean age (years), age range 62.0 [44 - 72] 

median age (years), IQR 63.0 [58.5 - 66.5] 

median total PSA (ng/ml), IQR 6.8 [4.4 - 8.7] 

median PSA density (ng/ml/g), IQR 0.15 [0.11 - 0.23] 

median prostate volume (ml), IQR 48 [37.3 - 59.3] 

overall ISUP grade group (post-prostatectomy pathology)   

1 n = 11 

2  n = 8 

3 n = 3 

4  n = 5 

5 n = 1 

pathology T stage 
 

T2a - T2b  n = 6 

T2c  n = 15 

T3a  n = 4 

T3b  n = 3 

median time between [68Ga]Ga-PSMA-11 PET and mpMRI (days), IQR 8 [4 - 13] 

median time between imaging and surgery (days), IQR 45 [24 - 86] 

 

In this cohort of high-risk prostate cancer patients candidates for surgery, MRI-ADC and 

[68Ga]Ga-PSMA-11 PET yielded similar sensitivity (71.5% and 72.3%, respectively) and a specificity 

of 99.5% and 90.5%, respectively, in detecting prostate cancer foci. 

For the purpose of this study, we analyzed only true positive lesions on MRI-ADC imaging 

(n= 37) and on [68Ga]Ga-PSMA-11 PET imaging (n = 49 lesions) that is all those lesions that had 

positive correspondence on histopathology and that were used to build model a) and b). The small 

unbalance in the number of discovered lesions between imaging modalities is due to the fact that 

in 4 patients multiple PET lesion had correspondence with only one big lesion in MRI-ADC maps 

and for 3 patients MRI-ADC was low quality or unreadable. Among these lesions, 31 were 

topographically paired at fusion and employed to build models c), d) and e). 



We extracted 218 imaging features with the Radiomics software Sofia from MRI-ADC and 

[68Ga]Ga-PSMA-11 PET imaging. The extraction was performed on the original images and on 

expanded lesion contours. Subsequently, ICC was applied with a threshold of 0.6 to assess features 

stability for small variation in contouring. Twenty-nine and 87 features successfully passed the ICC 

test for [68Ga]Ga-PSMA-11 PET and MRI-ADC imaging respectively. These features were further 

investigated and employed to build the 5 logistic models described in ”Materials and Methods” 

section. Table 2 summarizes the performances of the models in train and test phase and the 

overall best performing model for each cathegory whereas details are described below. On 

[68Ga]Ga-PSMA-11 PET features a) the average models performance in terms of area under the 

curve (AUC) on training and test sets was 0.58 and 0.53, respectively. One iteration out of the 30 

showed a very good predictive power with an AUC of 0.90 on training set and of 1.00 on test set. 

MRI-ADC based models b) exhibited higher performance with an average AUC of 0.91 in the train 

phase and 0.67 in the test set. Furthermore, 8 of 30 iterations showed a high predictive 

performance both on training and test set with an AUC higher than 0.80. The average performance 

of model c) based on [68Ga]Ga-PSMA-11 PET features but trained on lesions visible also for mp-

MRI, was 0.80 and 0.60 on training and test set, respectively. One iteration returned an AUC of 

0.95 on the training set and an AUC of 1.00 on the test set. The most frequently selected features 

for models’ development were area density, inverse elongation, zone size non uniformity, flatness 

and volume fraction difference between intensity fractions. 

Table 2. Summary of trained and tested imaging biomarkers based models. 

MODEL Type. 
# of Lesions TRAIN mean AUC  TEST mean AUC  TRAIN best AUC TEST best AUC 

 a) PET 49 0.58 0.53 0.9 1 
 

b) MRI 37 0.91 0.67 0.92 1 
 

c) PET (MRI-visible) 31 0.8 0.6 0.95 1 
 

d) MRI (PET-visible) 31 0.74 0.45 1 1 
 

e) MRI+PET 31 0.75 0.49 1 0.93 
 

 

The average performance of models d) based only on MRI-ADC features and trained on 

commonly detected lesions was 0.74 and 0.45 on the training and test set, respectively. Two 

iterations scored an AUC higher than 0.80 and the most selected features were joint maximum, 

zone distance non-uniformity, 90th discretized intensity percentile, compactness, information 

correlation, and skewness. Models e) based on both [68Ga]Ga-PSMA-11 PET and MP-MRI features, 



showed a mean performance of 0.75 on the training set and of 0.49 on the test set. Two iterations 

had AUC higher than 0.80 and the most informative features were normalized inverse difference 

([68Ga]Ga-PSMA-11 PET), zone distance non uniformity (MRI-ADC), joint maximum (MRI-ADC), 

large zone low grey level emphasis ([68Ga]Ga-PSMA-11 PET), 90th discretized intensity 

percentile(MRI-ADC), area density ([68Ga]Ga-PSMA-11 PET). 

In Figure 3 we report the ROC curves of the best performing iterations of models c) d) and 

e), both on training and test set. 

 

Figure 3. Logistic regression (L.R.) models performance in the training and test phase in terms of area 
under the curve (AUC). 

 

 

 

 

 

 

 

 



4. DISCUSSION 

Biopsy ISUP grade differs from the final ISUP determined after surgery in around one-third 

of patients, with biopsies tending to underestimate cancer aggressiveness. The differences 

between the two ISUPs can have a big impact on how patients are managed. As a result, 

incorporating pre-therapeutic imaging characteristics to accurately determine PCa aggressiveness 

is of great clinical importance. 

This study evaluated the ability of MRI-ADC and [68Ga]Ga-PSMA-11-based quantitative 

analysis to help differentiate low-risk prostate cancer patients (ISUP 1) from higher risk patient 

classes (ISUP>1) and aimed to evaluate the benefits of the two imaging techniques combined. 

However, the results of this paper can be only intended as proof of concept as the number of 

concordant lesions on MRI-ADC and [68Ga]Ga-PSMA-11 PET is low, and this represents the major 

limitation of this study. To overcome this limitation, we employed a stochastic cross-validation 

approach and run LASSO-logistic modelling process on 30 partitions of the datasets into training 

and test set. Another limitation is represented by the laborious and time-consuming process 

required to contour, fuse and evaluate lesions on different imaging modalities. Furthermore, 

Radiomics feature variability due to imaging acquisition and reconstruction is another 

disadvantage that to date limits the widespread in clinical practice of this approach. The average 

predictive power in terms of AUC for the training phase is very variable across models a-e) and 

reaches a maximum of 0.91 for model b). In the test phase, the performances are quite low 

ranging from 0.45 of model d) to 0.65 of model b). From these average AUC, it is difficult to 

speculate about the benefits of employing both [68Ga]Ga-PSMA-11 PET and MRI-ADC for ISUP 

predictions and these low performances can be justified by the small datasets and mild class 

imbalance involved in the analysis that may compromise the training of the majority of the 

models. For model e) we had a performance drop in the test phase probably caused by the 

augmented number of features involved in the analysis together with a reduction of the number 

of lesions. Following these results, we are convinced that models’ predictive power is strongly 

influenced by the data repartition in the train and test phase and thus it is our opinion only in 

higher AUC models the datasets were correctly balanced to give an idea of the real benefit of 

imaging features. For these reasons, we should take a closer look at every single model to give 

further details about the contribution of the two imaging modalities. Best performing [68Ga]Ga-

PSMA-11 PET models “a-c” have very high accuracies (>90%) both in training and test phase and 

outperforms similar models models reported by Solari et al [42] for PCa ISUP grade prediction. 



 It’s interesting to point out that in “b” models the MRI-ADC mean value that is the imaging 

predictor currently employed in clinical practice to assess patient risk was not selected by LASSO. 

This evidence suggests that Radiomics approach can provide a significant improvement to patient 

classification for MRI-ADC sequences. Furthermore, the performances of the best trained models 

“b” are in line with previously reported performances of mp-MRI Radiomics based analysis [43] in 

particular in the work of Fehr et al [44] combining ADC and T2w mean values with textural 

features they achieve an accuracy higher than 90% in differentiating low Gleason (6) prostate 

lesions from higher scores(>7). 

Building the predictive models “c” and “d”, including the lesions visible both in MRI-ADC 

and [68Ga]Ga-PSMA-11 PET, we can assess that the two imaging modalities are equivalent in 

discriminating low risk patients from higher risk ones with an AUC of the best performing iteration 

of 1.00 for test phase as visible from Figure. 3a,b. Finally combining the 29 features of [68Ga]Ga-

PSMA-11 PET and the 87 of the MRI-ADC imaging we obtained model “e” where performances are 

slightly lower and a maximum AUC of 0.93 (Figure 3c). It is important to point out that in this 

model, LASSO algorithm always chooses as most informative features both MRI-ADC- and 

[68Ga]Ga-PSMA-11-based features to build the logistic regression prediction model indicating that 

the two modalities contribute to adding unique information for lesion classification. However, 

with our dataset it is difficult to observe statistically significant improvements in the performances 

given by the integration of the two modalities due to the restricted number of lesions and further 

investigations will be required to confirm our hypothesis. 

5. CONCLUSIONS 

Among developed models each imaging modality seems to provide similar results in ISUP 

grade prediction.. Preliminary results suggests that aside of MRI-ADC average value, currently 

employed in clinical practice to assess lesion severity, other imaging biomarkers may provide 

complementary information for ISUP grade prediction but further broader studies are necessary to 

confirm these findings. 

Both [68Ga]Ga-PSMA-11 PET and MRI-ADC imaging biomarkers showed to be 

complementary about ISUP grade assessment when employed together to build prediction 

models. 
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ABSTRACT 

 

Objectives: In this study, we developed a radiomic signature for the classification of benign lipid-

poor adenomas, which may potentially help clinicians limit the number of unnecessary 

investigations in clinical practice. Indeterminate adrenal lesions of benign and malignant nature 

may exhibit different values of key radiomic features. 

 

Methods: Patients who had available histopatology reports and a non-contrast enhanced CT scan 

were included in the study. Radiomic feature extraction was done after the adrenal lesions were 

contoured. The primary feature selection and prediction performance scores were calculated 

using the Least absolute shrinkage and selection operator (LASSO). To eliminate redundancy, the 

best performing features were further examined using the Pearson correlation coefficient, and 

new predictive models were created. 

 

Results: This investigation covered 50 lesions in 48 patients. After LASSO-based radiomic feature 

selection, the test dataset's 30 iterations of logistic regression models produced an average 

performance of 0.72. The model with the best performance, made up of 13 radiomics features, 

had an AUC of 0.99 in the training phase and 1.00 in the test phase. The number of features was 

lowered to 5 after performing Pearson correlation to prevent overfitting. The final radiomic 

signature trained a number of machine learning classifiers, with an average AUC of 0.93. 

 

Conclusions: Including more radiomic features in the identification of adenomas may improve the 

accuracy of NECT and reduce the need for additional imaging procedures and clinical workup, 

according to this and other recent Radiomics studies that have clear points of contact with current 

clinical practice. 

 

Clinical relevance statement: The study developed a radiomic signature using unenhanced CT 

scans for classifying lipid-poor adenomas, potentially reducing unnecessary investigations. After 

feature selection and correlation, a final signature using 5 radiomic features had an average AUC 

of 0.93. The study suggests that incorporating more radiomic features may improve accuracy and 

reduce the need for additional imaging procedures. 

 



Key points 

● Radiomics has potential for differentiating lipid poor adenomas and avoiding unnecessary 

further investigations. 

● Quadratic mean, strength, maximum 3D diameter, volume density and area density are 

promising predictors for adenomas. 

● Radiomics models reach high performance with average AUC of 0.95 in training phase and 

0.72 in test phase. 
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Abdomen; Adrenocortical Adenoma; Adrenal incidentaloma; X-Ray Computed Tomography; 

Artificial Intelligence. 
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1. INTRODUCTION  

An adrenal incidentaloma is defined as an asymptomatic adrenal mass discovered on 

imaging that was not performed to investigate a suspected adrenal disease [1]. In most cases, 

adrenal incidentalomas represent benign non-functioning adenomas, but they may also 

correspond to different conditions requiring full clinical attention and therapeutic intervention 

(e.g. adrenocortical carcinoma, pheochromocytoma, hormone-producing adenoma or metastasis). 

As a consequence of the burgeoning use of advanced diagnostic imaging in daily medical practice, 

in the last decades, we have observed a constantly increasing incidence rate of incidentally 

discovered adrenal nodules. Indeed, adrenal incidentalomas are common, estimated to occur in 

approximately 3% to 7% of adults [2, 3]. 

Incidental adrenal masses represent diagnostic challenges for both radiologists and 

referring clinicians, particularly when the initial imaging features are equivocal or non-diagnostic. 

The main challenge is correctly identifying the infrequent unexpected malignant lesions (or 

hyperfunctioning adenomas), while sparing the vast majority of patients with clinically insignificant 

disease from unnecessary further examinations. 

Diagnostic imaging is crucial in the classification of adrenal masses, since the precise 

etiology can be determined on both computed tomography (CT) and magnetic resonance imaging 

(MRI) for several entities without the need for further tests [1, 4].  

In particular, CT could aid the diagnosis of adrenal adenomas in two ways, namely density 

measurement and contrast washout. A density lesser than 10 HU on non-enhanced CT (NECT) is 

almost always diagnostic of a lipid-rich adenoma, regardless of size [2]. By contrast, if there are 

not benign diagnostic imaging features (for instance, macroscopic fat, adrenal density <10 HU), a 

dedicated adrenal CT protocol including a 15-minutes delayed acquisition after contrast media 

administration is advisable, in order to assess the absolute - or relative - percentage washout. 

However, pheochromocytomas and adrenal metastases from hypervascular primary  extra-adrenal  

malignancies could sometimes exhibit a  washout  pattern  similar  to  that  of  adrenal adenomas 

[5–8]. 

Other imaging modalities may be useful to clarify the nature of the nodule, in particular 

MRI, in which a signal loss between in- and opposed-phase images at chemical-shift imaging is 

diagnostic of adenoma, or positron emission tomography (PET)-CT,  in which most adenomas show 

FDG uptake less than 3.1 [9]. 



However, the need for additional tests puts patients at risk of anxiety and unnecessary 

harm from diagnostic procedures; additionally, the costs incurred can be significant. 

Radiomics refers to a rapidly emerging discipline based on the extraction of mineable data 

from medical imaging. It has been used in oncology to support the diagnosis, prognostication, and 

clinical decision making, with the goal of delivering precision medicine [10–13].  

In recent research, O'Shea A. et al. and Cao L. et al. [14, 15] demonstrated that early-stage 

metastases may be differentiated from lipid-poor adenomas using contrast-enhanced CT and 

NECT radiomic features-based models with high performances. In other research, radiomics was 

used to distinguish lipid-poor adenomas from paragangliomas, phrochromocytomas or carcinomas 

[16, 17]. 

To discriminate lipid-poor adenomas from other adrenal lesions, Zhang et al.[18] recently 

developed three prediction models using conventional, Radiomics, and combined feature 

nomograms. However, there was no significant difference in performance between the radiomic 

and traditional models. 

In this study, we retrospectively assessed a dataset of adrenal masses with pathological 

confirmation that had been classified at NECT as indeterminate and that had not been 

distinguished by standard clinical demographic or radiological characteristics. 

We hypothesized that indeterminate adrenal lesions of benign and malignant nature may 

exhibit different values of key radiomic features, and we developed a radiomic signature for the 

classification of benign lipid-poor adenomas, which may potentially help clinicians limit the 

number of unnecessary investigations in clinical practice. 

 

2. MATERIALS AND METHODS  

This retrospective study was conducted according to the Declaration of Helsinki; local 

Ethics Committee approval for data collection was obtained (Ethics Committee of Area Vasta 

Emilia Centrale (AVEC); protocol code: 146/2022/Oss/AOUFe, approved on 17/02/2022). All 

investigations were performed by routine clinical practice and retrospectively retrieved. 

 

Population 

Hospital discharge form (Scheda di Dimissione Ospedaliera – SDO) database of Sant’Anna 

University Hospital of Ferrara was searched to find all ICD-9-CM (International Classification of 

Diseases, Ninth Revision, Clinical Modification) coded interventions that included surgical 



resection of unilateral or both adrenal glands, between January 2003 and December 2018, 

independently by clinical suspicion or diagnosis. 

A total of 251 patients that underwent adrenalectomy were identified.  

All histopathology reports were reviewed, aiming to exclude patients with large infiltrating 

lesions (adrenalectomy done as “en-bloc” resection with other near tissues and organs during 

large retroperitoneal tumour debulking) or adrenal cortical hypertrophy, thus including only focal 

adrenal lesions. Subjects who were missing a complete histopathologic electronic report in our 

Institutional Pathology Database were excluded from further evaluation. Lesions with a maximum 

diameter less than 1 cm were not included in this study. 

Preoperative radiologic imaging data were retrieved by querying the institutional 

Radiological Information Systems - Picture Archiving and Communication system (RIS-PACS; Philips 

VuePACS, Philips Medical Systems), and only the patients for whom a non-enhanced CT (NECT) 

scan was available were included.  

 

CT data 

Each CT examination was reviewed independently by two abdominal radiologists, with 3 

and 10 years of experience respectively, who were blinded to the patients’ pathological data, in 

order to exclude the lesions with gross fat component or showing median attenuation less than 10 

HU, by applying a single region of interest (ROI) encompassing more than 50% of the target lesion 

in the axial plane demonstrating the maximal lesion extent. Disagreements between the readers 

were resolved through consensus. 

The CT studies analysed after application of the inclusion and exclusion criteria were 

acquired on 4 different multidetector scanners: Philips Brilliance 64 (Philips Medical Systems), GE 

Lightspeed VCT (GE Healthcare), Philips iCT 256 (Philips Medical Systems), Siemens Biograph 64 

(Siemens Medical solutions). 

The CT examinations were acquired using standard acquisition parameters adjusted to 

patients’ biometrics and accordingly to the purpose of the investigation (10–400 effective mAs, 

120 kVp, 1.375-1.75 pitch and 1.5-3mm slice reconstruction thickness). Images were reconstructed 

using a standard soft tissue kernel used in clinical practice (namely for GE – standard, Philips – B. 

Siemens – Qr40).   

 

 



Imaging analysis and segmentation 

A last-year radiology resident retrieved the CT images from the RIS-PACS database, fully 

anonymized and de-identified, in DICOM (Digital Imaging and Communications in Medicine) 

format. First-pass segmentations were manually performed by the same radiology fellow who 

contoured the adrenal lesions using 3DSlicer software with SlicerRT extension [19] on each axial 

image, finally obtaining a three-dimensional contoured volume of interest (VOI). 

The contoured volumes had to contain the whole adrenal mass, including the edges but 

avoiding the peri-adrenal soft tissues (fat, vessels, and the parenchyma of adjacent organs) (Figure 

1). 

The appropriateness of the contouring process was determined by the same two 

experienced abdominal radiologists. 

The segmented VOIs were subsequently exported as DICOM files with the RT option 

enabled from the SlicerRT extension. 

 

Image Pre-Processing and Radiomic Analysis  

Following manual segmentation, images were exported to the Image Biomarker 

Standardisation Initiative (IBSI) [16] compliant software SOPHiA DDMTM Radiomics (Sophia 

Genetics). The patients’ CT images were resampled to a resolution of 1/1/1 mm to standardize the 

dataset, and grey-level quantization was performed at 32 bins prior to radiomic analysis. 

Radiomics analysis software extracted 209 imaging features for each segmented volume. 

Features included first-, second- and higher-order features. The histogram of voxel 

intensities was employed to calculate first-order features. Intensity size-zone, co-occurrence, and 

run-length based matrices were used to calculate second- and higher-order features. The IBSI 

Reference Handbook contains a detailed description of the 209 imaging features extracted [20].  

 

Statistical analysis 

The endpoint of this study was to investigate the diagnostic performance of radiomic 

features extracted from patients’ CT images to differentiate between pathologically proven 

adenomas (labelled from now on as 0) and other adrenal histotypes (labelled from now on as 1). 

Clinical and demographical characteristics of the cohort were analysed with a multivariable logistic 

regression for the endpoint of this study.  We summarize the entire process of Radiomics analysis 

from feature extraction to statistical model evaluations in Figure 2. 



(A) 

(B) 

(C) 

Figure 1: Segmentation process performed on a nodule in the right adrenal gland showed respectively in the 

axial (A), sagittal (B) and coronal planes (C). 

 



 

Figure 2: Radiomics and statistical workflow from features extraction to selection of the best performing 

machine learning models. 

 

To assess the models' performance, we employed a stochastic cross-validation technique. 

The lesion feature datasets were separated into a training (2/3) and test (1/3) set during the 

modelling process. The training set was then used to train a logistic regression model using 

features picked using a least absolute shrinkage and selection operator (LASSO) technique with 

internal 3-fold cross validation with the objective of maximizing the distinction between adenomas 

and non-adenomas. 

On the test set, the predictive ability of the model was calculated. This procedure was 

repeated 30 times, with each iteration's receiver operating curves (ROC) and area under the curve 

(AUC) being recorded for both the training and test sets. The average value of the latter ones was 

then used to assess the overall diagnostic performance of the model. The features that performed 

better in the best model of the test phase were further processed with Pearson ρ correlation 

coefficient to remove redundancy setting a threshold of 0.80. As final feature selection method, 

we employed the selection frequency of LASSO in the 30 repetition. In the end, we built four 

machine learning models (logistic regression, linear discriminant, support vector machine, and 

decision tree) with a fixed number of lesions per feature (10 lesions per feature included in the 

model) to avoid overfitting on the whole lesion dataset. The performance of the best model was 

evaluated with calibration and decision curve to assess the consistency of the classification and its 

clinical usefulness. 

 

Data availability 

Radiomics features extracted from the 50 lesions and corresponding status (adenoma/non-

adenoma) that were used to develop the models are available in supplementary material 1. CT 

images of the patients are available upon reasonable request to the corresponding author. 



3. RESULTS 

 

Patients’ selection workflow is shown in Figure 3. 

 

 

Figure 3: flowchart of patients’ selection. 

 

The final study population consisted of 48 patients (26 males, 22 females) accounting for 

50 lesions (24 in the female population, 26 in male). The age of patients ranged between 27 and 

86 years old, with an average age of 72 for woman and 70 for men.  

In details, from the initial dataset of 251 patients who underwent adrenalectomy in our 

Institution we excluded from further analysis: 95 patients for missing histopathologic digital 

report; 85 patients due to missing NECT before surgery; 4 patients for cortical adrenal hyperplasia; 

10 patients for infiltrating masses; 4 because of other benign conditions (i.e. haematomas, cysts); 



only 5 patients were ineligible because their NECT scans could reliably diagnose adenomas with a 

mean density lower than 10 HU.  

The histopathological classification of the lesions was the following: 19 adenomas (38%), 9 

pheochromocytomas (18%), 5 adrenal carcinomas (10%), 7 myelolipomas (14%), 8 metastases 

(16%), 1 mesothelioma and 1 cavernous hemangioma (4%). Patients had an average lesion 

diameter of 5.5 cm with a minimum diameter of 1.5 cm and a maximum of 14.7. The 

characteristics of the patients and lesions included in the final analysis are summarized in Table 1.  

 

Patients (n) 48 

   females; males (n) 22; 26 

   age (average; range, y) 61; 27 - 86 

Lesions (n) 50 

   diameter (average; range, cm) 5.5; 1.5 - 14.7 

   laterality   

monolateral (n; %) 46; 92% 

bilateral (n; %) 4; 8% 

   histology (n; %)  

adenoma 19; 38% 

pheocromocytoma 9; 18% 

metastasis 8; 16% 

adrenal carcinomas 5; 10% 

myelolipoma 7; 14% 

other histology 2; 4% 

Table 1: characteristics of patients and lesions included in the final analysis. 

 

Multivariable logistic regression on clinical, demographical, and radiological characteristics 

of the patients is shown in Table 2 demonstrating that none of these parameters are associated 

with the outcome. 



  Multivariate Logistic regression 

  p-Value HR 95% C.I. of HR 

inf. Sup. 

Max3Ddiameter 0.189 1.230 0.903 1.673 

MeanHU 0.900 1.002 0.976 1.028 

Age 0.382 1.020 0.975 1.067 

M/(F) 0.564 0.688 0.193 2.454 

 

Table 2: Multivariable logistic regression of clinical (Age, Sex) and standard radiological characteristics (maximum 3D 

diameter and mean HU). HR – Hazard ratio. 

 

The 30 logistic regression models trained by LASSO resulted in an average AUC of 0.95 

(0.81-1.00) (excluding repetitions when the algorithm didn’t reach convergence (5 times). On the 

test set, the models had an average AUC of 0.72 (0.48-1.00). The best performing logistic 

regression model had an AUC of 0.99 in the training phase and 1.00 in the test phase and was 

composed of 13 features.  

In Figure 4, we show Pearson correlation coefficient results and features with a Rho > 0.80 

were eliminated. To prevent overfitting, only the top 5 informative features from the 30 LASSO 

iterations (quadratic mean, strength, maximum 3D diameter, volume density, and area density) 

were retained for further analysis. 

In the end, we trained the 4 final models on the entire lesion dataset employing logistic 

regression, linear discriminant, support vector machine, and decision tree as classifiers, obtaining 

an AUC of 0.95, 0.94, 0.91 and 0.96, as can be seen in Figure 5. True Positive Rates and False 

Negative Rate and other classification performances can be appreciated in the confusion matrices 

of the models reported in Figure 6. Calibration and decision curves of the logistic regression model 

with the comparison with standard clinical parameters are available as supplementary material 2.  

 

 

 

 

 



 

 

Figure 4: Pearson ρ correlation coefficient of the 13 features selected by LASSO in the best performing model among 

the 30 iteration. 

 

4. DISCUSSION 

 

Physicians' desire for diagnostic certainty and, on the other hand, discomfort with 

diagnostic uncertainty when faced with an unexpected or unexplained imaging finding can lead to 

an increase in test ordering. As a result, further imaging and clinical evaluation are often 

performed when an adrenal incidentaloma is discovered and when imaging findings are equivocal 

or inconclusive [2, 21, 22]. 



 

(a) (b) 

(c) (d) 

Figure 5: Model performances in terms of ROC curves and AUC for (a) Logistic regression, (b) Linear Discriminant, (c) 

Linear SVM, (d) Coarse Tree 

 

In the present study, a radiomic signature composed of first- and higher-order features, 

namely quadratic mean, strength, maximum 3D diameter, volume density, and area density, 

showed a very good average performance with AUC = 0.94 (0.91-0.96) among the four final 

classifiers to discriminate adenomas from other adrenal lesions at NECT. 

The performances of our machine learning models did not differ significantly, with logistic 

regression showing the best results with an AUC of 0.96 (Figure 5a). The True Positive Rate for 

adenomas, according to the model, was 79%, whereas it was higher (93.5%) for non-adenomas, as 



shown in Figure 6a. The decision tree performed better for both classes, with a True Positive Rate 

of 84.2% and 90.3% (Figure 6d).  

(a) 

 

(b) 

 

(c) 

 

 (d) 

 

Figure 6: Model performances in terms of confusion matrices and TPR and FNR for (a) Logistic regression, (b) Linear 

Discriminant, (c) Linear SVM, (d) Coarse Tree. 

 

Our signature's performance is comparable to that of the three models developed by 

Zhang et al. [18] for differentiating lipid-poor adenomas using conventional, radiomic, and 

integrated conventional-radiomic CT features. These models had an AUC of 0.94, 0.93, and 0.96, 

respectively. However, in their cohort, conventional parameters such as gender, age, mean HU, 

and tumor diameter were strong predictors of the outcome at both univariable and multivariable 

logistic regression. As a result, their radiomic signature did not significantly improve the 



performance of the conventional model, i.e. employing standard radiological features and 

demographic data, thereby diminishing the scientific impact of their results. 

Conversely, the net benefit of using our radiomic signature in comparison to standard 

parameters is clearly visible from the decision curves shown in supplementary figure 2. In our 

opinion, these differences are easily addressed by the different cohorts of patients used to train 

and test the models in the two studies, which may have led to some selection biases while 

considering broader inclusion criteria for eligible lesions in the aforementioned work. As shown in 

table 2, indeed, no standard parameters in our cohort were statistically significant predictors of 

the outcome using multivariable regression. 

The composition of the radiomic signature reveals additional distinctions. Indeed, our 

signature is composed of quadratic mean, strength, maximum 3D diameter, volume density, and 

area density. Quadratic mean is a first-order feature derived from histogram that has fair 

correlation to the HU median (or mean) value, which is found in the work of Zhang et al., Cao et 

al., and O’Shea et al. for the differentiation of lipid-poor adenomas from other histotypes.  

Strength is a more complex second order feature that is related to the texture of the 

image; in particular, it can be correlated to the concepts of coarseness, as specifically described by 

Amadasun and King [23]. In this context, a high strength means that the patterns that composes 

the texture of the tumor appears more large with broader areas of uniform pixel intensities 

whereas a low strength would correspond to a finer texture leading to higher variations in local 

pixel intensities. To our knowledge, this predictor has not been investigated in any other published 

study.   

Maximum 3D diameter is a parameter already employed in clinical practice and reported in 

previous studies cited above. In the end, area and volume density are related to the shape and 

extent of the tumors and may provide additional information on their morphological appearance. 

In fact, adenomas present more frequently as well-demarcated round or oval lesions [9]. These 

two parameters likely reflect and quantify these visual characteristics of the tumor that were not 

quantified in previous studies or were only partially considered when the greatest or shortest 

diameters and tumor volume were used [15]. Our findings suggest that additional metrics, beyond 

the mere measurement of the mean density, should be considered for inclusion in routine 

radiological evaluation of adrenal lesions to reduce the number of incidentalomas regarded as 

indeterminate at NECT examination, thus avoiding unnecessary clinical workup and follow-up 

examinations. 



It is known that imaging has a significant impact on the clinical management of patients 

and is crucial in determining whether an adrenal tumour is benign or malignant. The use of a 

radiomic signature in clinical practice, particularly in the case of an incidental adrenal nodule 

discovered in a non-dedicated CT examination, such as a chest high-resolution CT, may be 

extremely useful in reducing the number of unnecessary tests and, as a result, in containing health 

costs. Indeed, one of the biggest challenges in medicine is the development of accurate, cost–

effective tools with the end goal of personalized patient management.  

At NECT, adenomas present more frequently low attenuation (less than 10 HU) due to a 

microscopic fat component. This cut-off is highly specific (sensitivity 71%, specificity 98%) [4, 6], 

widely accepted in the scientific literature, and routinely employed in radiological practice [24, 

25]. However, NECT alone is not always diagnostic, since 15–30% of adenomas are lipid-poor, 

namely contain insufficient intracytoplasmic lipid to conform to the non-contrast features 

previously described, thereby demonstrating higher attenuation values [26]. Previous works have 

shown that decreasing the HU threshold for the identification of adenomas could improve the 

specificity but reduce the sensitivity, whereas increasing such a threshold could result in improved 

sensitivity but reduced specificity [27, 28]. 

In a study by Yi and colleagues [17], aiming to differentiate histology-confirmed lipid-poor 

adenomas from pheochromocytomas, the authors built two radiomic nomograms using NECT and 

contrast-enhanced CT data respectively, and concluded that the additional contrast-enhanced 

adrenal CT may not be necessary. Indeed, the drawbacks of a second scan can include additional 

cost, radiation risks, and potential harms associated with contrast media administration, including 

allergy and potential renal injury. A dedicated adrenal CT protocol including a 15-minute delayed 

acquisition and considering a 60% threshold for contrast washout) has been shown to properly 

classify 96% of adrenal masses, with 98% sensitivity and 92% specificity for discriminating 

adenomas from non-adenomas [29]. However, it should be noted that the additional role of 

dedicated CT protocols in characterizing incidental adrenal masses, based on washout calculation, 

is still being debated in the literature, particularly in the case of suspected pheochromocytomas or 

metastases from hypervascular tumors which frequently demonstrate rapid contrast washout 

[22]. Hypervascular metastases from renal cell carcinoma and hepatocellular carcinoma are 

examples that may include intracellular lipid and have washout values similar to adenomas [30]. 



Furthermore, the patient is required to return for the dedicated adrenal imaging if the 

initial NECT, in which the lesion had been incidentally detected, was inconclusive; this will 

obviously lengthen the diagnostic process and cause psychological distress to the patient. 

There are several limitations to this study that should be considered. One major limitation 

is the small sample size of the final cohort. This was inevitable because our efforts to find patients 

who had adrenal nodules that were indeterminate at NECT, with the necessity of histological 

confirmation, resulted in a relatively small number of lesions meeting the inclusion criteria. 

Another limitation is the retrospective nature of the image data acquisition: in this observational 

study, the type of scanner used for each patient was not controlled. When considering the 

robustness of radiomic applications in the clinical setting, the potential impact of variation in CT 

data acquired from different scanners should not be understated. However, our radiomic 

signature is based on 1 histogram-based feature, 1 second-order feature, and 3 shape features 

that have been shown to be robust in previous Radiomics studies [31, 32]. 

 

5. CONCLUSIONS 

 

Including additional imaging indicators for the identification of lipid-poor adenomas can 

increase the accuracy of NECT and reduce the need for additional imaging and clinical workup, 

according to this and other recent studies focusing on Radiomics that have distinct points of 

contact with current clinical practice. 

Our radiomic signature based on 1 histogram-based feature, 1 second-order feature, and 3 

shape features could be considered for integration in routine radiological assessment of adrenal 

lesions, beyond the mere measurement of median density. This may serve as a method of 

enhancing the diagnostic power of NECT in order to substantially limit the number of adrenal 

incidentalomas initially regarded as indeterminate. 
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GENERAL DISCUSSION 

The establishment of the "Romagna Imaging Biobank" and the application of radiomics in 

clinical radiation oncology mark a significant step forward in the field of personalized medecine. 

The comprehensive journey outlined in this thesis presents several important points for 

consideration and discussion. 

This thesis has highlighted the potential for quantitative imaging to transform cancer 

diagnosis and treatment, emphasizing the importance of multidisciplinary collaboration and 

robust data management. The "Romagna Imaging Biobank" and the research conducted herein 

have the potential to pave the way for more personalized and effective cancer care in the future. 

IMAGING BIOMARKERS – PHANTOMS 

In Chapter 2 we analyzed the performance of seven self-declared IBSI-compliant software 

packages. Phase I analysis on the IBSI digital phantom revealed that all programs achieved high 

percentages of ‘matching’ features, indicating a high standardization level in terms of Radiomic 

Features implementation. In Phase II, we systematically investigated the effect of factors related 

to parameter setting (i.e., interpolation, discretization, and aggregation) as well as to ROI 

characteristics (i.e. volume and shape) on software agreement by employing two custom digital 

phantoms and a systematic feature extraction. The results we obtained are relative to a selected 

number of radiomic software programs and future studies might include additional packages to 

strengthen the present findings.  

However, we are reasonably confident that the considered packages are a representative 

set of the high-standardized radiomic tools available in the literature. Moreover, some of our 

findings are software-independent and have general validity. 

In conclusion, we designed a new investigation scenario in which we demonstrated that, 

despite the ongoing efforts of both IBSI and software developers to standardize radiomic tools, 

additional efforts are needed to achieve full concordance. 

In Chapter 3 we presents a study that provides the first multicentre evaluation of the 

dosiomics features in terms of reproducibility, stability and sensitivity across various dose 

distributions obtained from multiple technologies and techniques and considering different dose 

calculation algorithms of treatment planning systems and two different resolutions of the dose 



grid. The study has assessed the stability of dosiomic features and their capability in distinguishing 

dose distributions generated with different radiation therapy devices in a multicentre setting. 

A limitation of the present study is related to the pool of the considered radiotherapy 

techniques and technologies. They are pretty diverse and representative but do not describe all 

the possible techniques and technologies available in clinical practice. Despite this, we believe that 

the employed number of radiotherapy techniques and technologies used by the eight centres are 

enough to support the message that a substantial number of dosiomic features are stable, and at 

the same time, they can distinguish or recognise dose distributions generated with different 

radiation therapy devices.  

IMAGING BIOMARKERS - PATIENTS 

The study of Chapter 4 evaluates the ability of T2w MR-based quantitative analysis to help 

differentiate germinal from non-germinal tumors and seminomas from non-seminomas. This 

preliminary study shows that the radiomic measures obtained by scrotal MR image analysis 

may be useful in the diagnostic workup of testicular lesions, since they could add valuable 

information and help to discriminate among testicular neoplasms by differentiating germ cell 

from non-gem cell tumors, and seminomas from other histologies. Further independent 

validation is required to assess whether quantitative imaging features, possibly in conjunction 

with standard clinical markers and other quantitative techniques, may allow more accurate 

characterization of testicular lesions. 

Biopsy International Society of Urological Pathology (ISUP) grade differs from the final 

ISUP determined after surgery in around one-third of patients, with biopsies tending to 

underestimate cancer aggressiveness. The differences between the two ISUPs can have a big 

impact on how patients are managed. As a result, incorporating pre-therapeutic imaging 

characteristics to accurately determine Prostate Cancer (PCa) aggressiveness is of great 

clinical importance. This study in Chapter 5 evaluates the ability of MRI-ADC and [68Ga]Ga-PSMA-

11-based quantitative analysis to help differentiate low-risk prostate cancer patients (ISUP 1) from 

higher risk patient classes (ISUP>1) and aimed to evaluate the benefits of the two imaging 

techniques combined. Both [68Ga]Ga-PSMA-11 PET and MRI-ADC imaging biomarkers showed to 

be complementary about ISUP grade assessment when employed together to build prediction 

models. 

 



In the study contained in Chapter 6, we developed a radiomic signature for the 

classification of benign lipid-poor adenomas, which may potentially help clinicians limit the 

number of unnecessary investigations in clinical practice. Indeterminate adrenal lesions of benign 

and malignant nature may exhibit different values of key radiomic features. Including additional 

imaging indicators for the identification of lipid-poor adenomas can increase the accuracy of not-

enhanced CT (NECT) and reduce the need for additional imaging and clinical workup. Our radiomic 

signature could be considered for integration in routine radiological assessment of adrenal lesions, 

beyond the mere measurement of median density. This may serve as a method of enhancing the 

diagnostic power of NECT in order to substantially limit the number of adrenal incidentalomas 

initially regarded as indeterminate. 

A review on radiomic studies for lipid-poor adrenal adenomas is in preparation to further 

investigate and stress the scenario to create a first multicentre study and to increase the small 

sample size of the final cohort, one of major limitation. 

 

OUTLOOK OF THE RADIOMICS LABORATORY 

In the coming years, radiomics will continue to evolve. 

 Modern medicine requires large amounts of data, particularly in the domain of cancer 

care. The future of personalized medicine lies with ‘‘genomic medicine’’, ‘‘precision medicine’’, 

but also with ‘‘data medicine’’ (DM) (big data, data mining). This requires far-reaching 

changes, to establish four essential elements connecting patients and doctors: biobanks, 

databases, bioinformatic platforms and genomic platforms as shown in Figure.1. Molecular 

tumor boards (MTB) are one response to these changes [1], an evolution from classical Tumor 

Board Model or Multidisciplinary Team (Figure 2). 



 

Figure 1 Model of the data medicine process. Biological sample flows and biobanks are shown in green. Data flows and 

databases are shown in light blue. Information flows are shown in dark blue [1] 

 

 

Figure 2 a The tumor board model, versus b the molecular tumor board model [1] 

Collaborating with the working group of the Italian Association of Medical Physics 

(AIFM, WG FM4AI),  Alliance Against Cancer (Alleanza Contro il Cancro, ACC, WG Radiomics, 

WG Dosiomics) who pursue clinical and translational research in order to bring state of the 

art diagnostics and advanced therapeutics to patient care [2] and working with a joint AIFM-

INFN Italian initiative for a dedicated cloud-based computing infrastructure to enhancing the 

impact of Artificial Intelligence in Medicine [3], this thesis represents a critical experience to 



the evolving landscape of clinical oncology, where the union of technology and clinical insight 

paves the way for a brighter data-driven future in cancer management. 

Another potential outlook for the future of the laboratory will also be the “RIS-PACS 

Romagna”, that will be installed to standardize the flows of digital images within the different 

hospitals within the Intercompany Program of “COMPREHENSIVE CANCER CARE NETWORK” 

for the activation of the Onco-hematology Network of Romagna [4]. 

Finally, here is a step-by-step guide on how to set up a radiomics laboratory: 

 Define Your Goals and Research Focus: 

● Clearly define the objectives of your radiomics laboratory. What specific clinical 

oncology problems do you intend to address? What are your research goals? 

 Secure Funding: 

● Establish a budget for your laboratory, which includes costs for equipment, software, 

personnel, and ongoing operation. Seek funding from government grants, private foundations, 

or institutional sources. 

 Build a Team: 

● Assemble a multidisciplinary team with expertise in radiology, oncology, data science, 

and computational biology. Your team should include radiologists, oncologists, data scientists, 

and IT specialists. 

 Infrastructure and Equipment: 

● Acquire the necessary imaging equipment, such as CT and MRI scanners. Ensure they 

are up-to-date and capable of high-resolution imaging. 

● Invest in high-performance computing infrastructure to process and analyze the large 

amount of data generated. 

 Data Management and Storage: 

● Develop a secure data management and storage infrastructure. Ensure compliance 

with patient data privacy regulations.. 

 Software and Tools: 



● Identify and acquire radiomics software tools, such as 3D Slicer, PyRadiomics, or 

proprietary solutions, depending on your research needs. 

● Consider using machine learning and deep learning libraries (e.g., TensorFlow, 

PyTorch) for data analysis. 

 Image Data Collection and Preprocessing: 

● Establish protocols for image data acquisition, storage, and preprocessing. 

● Develop standard operating procedures (SOPs) for image acquisition, including 

calibration and quality control. 

Feature Extraction: 

● Implement radiomics feature extraction algorithms to extract quantitative features 

from medical images. 

● Standardize the feature extraction process to ensure consistency and reproducibility. 

 Data Mining and Analysis: 

● Apply data mining and machine learning techniques to analyze radiomics data. 

● Develop predictive models for cancer diagnosis, prognosis, and treatment response. 

 Quality Control and Validation: 

● Implement quality control measures to ensure data accuracy and reliability. 

● Validate your radiomics models using independent datasets and clinical studies. 

 Collaborate and Publish: 

● Collaborate with clinical partners to apply radiomics in real patient cases. 

● Publish your research findings in scientific journals and present at conferences to 

contribute to the field's knowledge. 

 Ethical and Regulatory Considerations: 

● Ensure that your research adheres to ethical guidelines and regulatory requirements, 

especially those related to patient privacy and data handling. 



 Education and Training: 

● Train your team in radiomics methodologies and stay updated with the latest 

advancements in the field. 

 Continual Improvement: 

● Continually assess and improve your laboratory's processes, software, and research 

methodologies. 

 Outreach and Collaboration: 

● Collaborate with other radiomics laboratories and research institutions to share 

knowledge and resources. 
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Abstract 

This thesis focuses on the field of data mining and radiomics and its application in clinical radiation 
oncology from cancer diagnosis to therapies.  

One of the thesis objective is to establish a "Romagna Imaging Biobank" and apply radiomics to 
specific oncological pathologies. The goals are to establish a link between tumor phenotype and 
quantitative image descriptors, enhance patient stratification, and personalize anti-cancer 
therapies. 

First the thesis outlines a software platform development and a multicentre study for radiomic 
tools testing, investigating their reproducibility, sensitivity and stability in terms of features 
extraction. 

We examine the use of imaging biomarkers, both through phantom-based testing and patient-
focused studies: 

In the first study, software packages compliant with the Image Biomarkers Standardization 
Initiative (IBSI) were assessed, revealing high standardization in feature implementation. However, 
the study also indicates the necessity for additional efforts to achieve full concordance among 
radiomic tools. Then we present a multicentre evaluation of dosiomics features, emphasizing their 
stability and effectiveness in distinguishing dose distributions across various radiation therapy 
technologies and techniques. 

Patient-focused studies explore the potential of radiomic analysis in patient diagnosis. The 
former investigates the use of MR-based quantitative analysis to differentiate testicular tumors, 
while the latter assesses the complementary roles of MRI-ADC and [68Ga]Ga-PSMA-11-based 
quantitative analysis in distinguishing prostate cancer patients of varying risk levels. The last 
patient-focused study introduces a radiomic signature for the classification of benign lipid-poor 
adrenal adenomas, with potential applications in reducing unnecessary investigations and 
enhancing the accuracy of not-enhanced CT scans. A review on radiomic studies for lipid-poor 
adrenal adenomas is in preparation. 

In conclusion, the outlook of the radiomics laboratory is rooted in the ever-evolving field of data-
driven medicine. Collaboration with various medical physics associations and research initiatives, 
including artificial intelligence, promises to drive progress in clinical oncology. The integration of 
digital image flows within hospitals and the implementation of standardized practices further 
enhance a comprehensive cancer care network and strengthen the establishment of a “Romagna 
Imaging Biobank”. 

 

 

 

 

 

 


