Contarini, Sofia
(2022)
Towards a full cosmological exploitation of cosmic voids, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Astrofisica, 34 Ciclo. DOI 10.48676/unibo/amsdottorato/10346.
Documenti full-text disponibili:
|
Documento PDF (English)
- Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (15MB)
|
Abstract
A stately fraction of the Universe volume is dominated by almost empty space. Alongside the luminous filamentary structures that make it up, there are vast and smooth regions that have remained outside the Cosmology spotlight during the past decades: cosmic voids. Although essentially devoid of matter, voids enclose fundamental information about the cosmological framework and have gradually become an effective and competitive cosmological probe.
In this Thesis work we present fundamental results about the cosmological exploitation of voids. We focused on the number density of voids as a function of their radius, known as void size function, developing an effective pipeline for its cosmological usage. We proposed a new parametrisation of the most used theoretical void size function to model voids identified in the distribution of biased tracers (i.e. dark matter haloes, galaxies and galaxy clusters), a step of fundamental importance to extend the analysis to real data surveys. We then applied our built methodology to study voids in alternative cosmological scenarios. Firstly we exploited voids with the aim of breaking the degeneracies between cosmological scenarios characterised by modified gravity and the inclusion of massive neutrinos. Secondly we analysed voids in the perspective of the Euclid survey, focusing on the void abundance constraining power on dynamical dark energy models with massive neutrinos. Moreover we explored other void statistics like void profiles and clustering (i.e. the void-galaxy and the void-void correlation), providing cosmological forecasts for the Euclid mission. We finally focused on the probe combination, highlighting the incredible potential of the joint analysis of multiple void statistics and of the combination of the void size function with different cosmological probes. Our results show the fundamental role of the void analysis in constraining the fundamental parameters of the cosmological model and pave the way for future studies on this topic.
Abstract
A stately fraction of the Universe volume is dominated by almost empty space. Alongside the luminous filamentary structures that make it up, there are vast and smooth regions that have remained outside the Cosmology spotlight during the past decades: cosmic voids. Although essentially devoid of matter, voids enclose fundamental information about the cosmological framework and have gradually become an effective and competitive cosmological probe.
In this Thesis work we present fundamental results about the cosmological exploitation of voids. We focused on the number density of voids as a function of their radius, known as void size function, developing an effective pipeline for its cosmological usage. We proposed a new parametrisation of the most used theoretical void size function to model voids identified in the distribution of biased tracers (i.e. dark matter haloes, galaxies and galaxy clusters), a step of fundamental importance to extend the analysis to real data surveys. We then applied our built methodology to study voids in alternative cosmological scenarios. Firstly we exploited voids with the aim of breaking the degeneracies between cosmological scenarios characterised by modified gravity and the inclusion of massive neutrinos. Secondly we analysed voids in the perspective of the Euclid survey, focusing on the void abundance constraining power on dynamical dark energy models with massive neutrinos. Moreover we explored other void statistics like void profiles and clustering (i.e. the void-galaxy and the void-void correlation), providing cosmological forecasts for the Euclid mission. We finally focused on the probe combination, highlighting the incredible potential of the joint analysis of multiple void statistics and of the combination of the void size function with different cosmological probes. Our results show the fundamental role of the void analysis in constraining the fundamental parameters of the cosmological model and pave the way for future studies on this topic.
Tipologia del documento
Tesi di dottorato
Autore
Contarini, Sofia
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
34
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
cosmic voids cosmology Euclid
URN:NBN
DOI
10.48676/unibo/amsdottorato/10346
Data di discussione
30 Giugno 2022
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Contarini, Sofia
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
34
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
cosmic voids cosmology Euclid
URN:NBN
DOI
10.48676/unibo/amsdottorato/10346
Data di discussione
30 Giugno 2022
URI
Statistica sui download
Gestione del documento: