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Abstract

Observing the Universe at large scales, a stately fraction of its volume is dominated by
almost empty space. Alongside the luminous filamentary structures of the Universe, char-
acterised by energetic astrophysical phenomena, there are vast and smooth regions that
have remained outside Cosmology spotlight during the past decades: cosmic voids. Al-
though essentially devoid of matter, voids enclose fundamental information about the
cosmological framework. Thanks to their large sizes and low-density interiors, voids con-
stitute unique laboratories to study dark energy and modified gravity theories, as well as
models including massive neutrinos, primordial non-Gaussianity and physics beyond the
Standard Model.

The number density of voids as a function of their radius, as known as void size
function, has been modelled from first principles by Sheth & van de Weygaert (2004) with
the subsequent contribution of Jennings, Li & Hu (2013). The resulting theoretical model
is commonly named Vdn and its high accuracy in the prediction of the abundance of voids
identified in the total matter distribution has been largely demonstrated, provided that
the observed sample of voids is analysed following the same assumptions adopted by the
model. Specifically, this means that the voids are defined as spherical, non-overlapping
regions with internal densities below a given threshold.

To this purpose, we improved an already existing algorithm for void cleaning, aimed at
removing spurious underdensities and shaping voids following the prescriptions given by
the theory. Moreover, we extended the applicability of the Vdn model to voids identified in
the distribution of biased tracers, such as dark matter haloes, galaxies and galaxy clusters.
In particular, we parametrised the model as a function of the large scale bias, building an
efficient methodology to predict the abundance of voids traced by different types of mass
tracers.

Afterwards, we applied the methodology previously developed to study cosmic voids
in alternative cosmological scenarios, characterised by modified gravity and the inclusion
of massive neutrinos. So we analysed a set of simulations specifically designed for these
studies with the aim of investigating the degeneracies between cosmological models that
simultaneously feature a modification of General Relativity – in the form of f(R) gravity
(Hu & Sawicki, 2007) – and the presence of massive neutrinos. We studied the cosmic
void density profiles and abundances in the distribution of both dark matter particles and
dark matter haloes, investigating the requirements to be addressed in order to maximise
the discriminating power of cosmic voids. We found a clear evidence of the enhance-
ment of gravity in the void density profiles measured in f(R) cosmologies, especially at
z ∼ 1. However, any peculiar trend in the shape of void profiles has revealed to be almost
completely overridden by the presence of massive neutrinos because of their thermal free-



streaming. On the other hand, we found that the void size function, measured at high
redshifts and for large void radii, will possibly represent an effective probe to disentangle
these degenerate cosmological scenarios, which is key in the perspective of the upcoming
wide-field redshift surveys.

Furthermore, we investigated the constraining power of different void statistics ex-
pected for the upcoming medium-class ESA mission, Euclid (Laureijs et al., 2011; Amen-
dola et al., 2018; Euclid Collaboration: Blanchard et al., 2020). We mainly focused on the
exploitation of the void size function, studying the abundance of voids in the official Eu-
clid mock galaxy light-cone, prepared to match the features of the upcoming spectroscopic
survey. We found an excellent agreement between the predictions of the Vdn model and
the measured mock void abundances, providing reliable void number estimates to serve as
a basis for further cosmological applications using voids. Then we computed the forecasts
on the cosmological constraints achievable on different dynamical dark energy models, in-
cluding in the analysis the modelling of both geometrical and redshift-space distortions.
In particular, we considered the wCDM and w0waCDM scenarios. The first implements
a constant dark energy equation of state parameter, w, and the second parametrises dy-
namical dark energy models with the popular Chevallier-Polarski-Linder (Chevallier &
Polarski, 2001; Linder, 2003) equation of state. We showcased the impressive constraining
power of the void size function on the main cosmological parameters, estimating the ex-
pected dark energy figure of merit and comparing the obtained confidence contours with
those coming from different void statistics and different cosmological probes. Moreover we
highlighted how the confidence contours derived from the void size function are in some
cases almost independent of and orthogonal to those obtained with standard probes (e.g.
weak lensing and galaxy clustering), demonstrating the potential of the combination of
these cosmological constraints.

Further studies on voids finalised at providing forecasts for the Euclid mission are
reported in Hamaus et al. (2022) and Bonici et al. (2022, in preparation). In the first work
we derived the constraining power from the modelling of the observed void-galaxy cross-
correlation function for the Euclid spectroscopic survey, while in the second we analysed
the combination of angular void clustering, galaxy weak lensing and their cross-correlation,
in the perspective of the Euclid photometric survey. In both works we derived cosmological
forecasts extremely competitive with those of the Euclid main probes and we proved the
strong contribution of voids in constraining several cosmological parameters.

As a first exploration of the synergy of the void size function with primary probes,
we studied the combination between void and galaxy cluster number counts. The results,
which will be presented in Pelliciari et al. (2022, in preparation), highlighted the excep-
tional orthogonality of the two probes and the significant enhancement provided by cosmic
voids thanks to combination techniques.

As future development of this work, we will apply our void size function modelling
pipeline to real galaxy surveys, starting in particular with the final SDSS-III Baryon
Oscillation Spectroscopic Survey (BOSS) Data Release 12 (Dawson et al., 2013) dataset
and other state-of-the art catalogues.





Introduction

The Universe has recently entered a phase of accelerated expansion. This revolutionary
discovery goes back to more than two decades ago and was originally achieved thanks
to distant type Ia supernovae (Riess et al., 1998; Perlmutter et al., 1999; Schmidt et al.,
1998). The following observations of the cosmic microwave background anisotropies and
the large scale structure (e.g. Eisenstein et al., 2005a; Komatsu et al., 2011; Bennett
et al., 2013; Planck Collaboration et al., 2020a), have then supported this scenario, which
is now widely accepted among the scientific community. The standard paradigm of modern
cosmology, the Λ-cold dark matter (ΛCDM) model, interprets the accelerating expansion
of the Universe as due to the existence of an extra component called cosmological constant,
Λ. Thanks to its simplicity and its concordance with the majority of current cosmological
observations, the ΛCDM is nowadays the most popular and widespread cosmological model
(Shafieloo & Clarkson, 2010; Heavens et al., 2017).

However, this scenario has been often questioned, since it clashes with both some
theoretical and observational issues. The first concerns for instance the coincidence and
the fine-tuning problems (Weinberg, 1989; Carroll, 2001; Martin, 2012, but see Bianchi &
Rovelli (2010) for an alternative perspective), while the latter is raised in particular by
the recent discordant measurements of the Hubble constant, H0, together with other well-
known anomalies and tensions (see e.g. Bernal, Verde & Riess, 2016; Moresco & Marulli,
2017; Verde, Treu & Riess, 2019, and references therein). Hence, new ideas and different
theoretical approaches have been proposed to solve or alleviate these possible fundamental
inconsistencies.

Among the presented solutions, there are models that interpret the dark energy compo-
nent as a dynamical variable slowly varying with the cosmic time, or as exotic new forms of
energy that would cause the observed late time accelerated expansion of the Universe (see
e.g. Frieman, Turner & Huterer, 2008; Wen, Wang & Luo, 2018, and references therein).
There are also alternative explanations which involve a modification of General Relativity
in a manner that leads to accelerating solutions. The overall picture is made even more
uncertain by the observational degeneracies arising when including in these models the ef-
fects caused by massive neutrinos (Howlett et al., 2012; He, 2013; Motohashi, Starobinsky
& Yokoyama, 2013; Baldi et al., 2014; Wright, Winther & Koyama, 2017; Giocoli, Baldi
& Moscardini, 2018)

Therefore, the efforts of the scientific community are now focused on testing these
alternative cosmological scenarios through precision observations. In this challenge, a
number of different cosmological probes come to our aid, among which we highlight: the
modelling of the cosmic microwave background (CMB) temperature anistropies (see e.g.
Fixsen et al., 1996; Komatsu et al., 2011; Planck Collaboration et al., 2020b), the study
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of galaxy clustering, particularly effective thanks to the baryonic acoustic oscillations
(BAO) imprints (see e.g. Crocce & Scoccimarro, 2008; Percival et al., 2010; Beutler et al.,
2011; Anderson et al., 2014) and the observation of the weak lensing effect by large scale
structures (see e.g. Hildebrandt et al., 2017; Abbott et al., 2018a, and Bartelmann &
Schneider, 2001 for a review). Despite the effectiveness of these probes in constraining the
cosmological model, some of its aspects remain still poorly determined and many issues
still unsolved.

To shed light on the fundamental laws and components of the Universe, acting behind
the scenes of the cosmological scenario, we must move the Cosmology spotlight to novel
and orthogonal probes. Their complementarity with the standard probes allows us in-
deed to break the degeneracies afflicting different cosmological parameters, and to achieve
more precision in discerning the cosmological model that is most in agreement with the
observations.

Among these additional probes, we want to focus our attention on the Universe darkest
regions, that is on those vast areas where the luminous matter is almost absent and only
emerges along the edges. These objects, called cosmic voids for they intrinsic underdense
nature, are characterised by sizes up to hundreds of megaparsec (Gregory & Thompson,
1978; Tikhonov & Karachentsev, 2006; Thompson & Gregory, 2011; Szapudi et al., 2015)
and dominate the large-scale structure (LSS) of the Universe in terms of volume (Platen,
van de Weygaert & Jones, 2007), playing a fundamental role in the formation of its fila-
mentary pattern (de Lapparent, Geller & Huchra, 1986; Zeldovich, Einasto & Shandarin,
1982; Sheth & van de Weygaert, 2004; van de Weygaert & Schaap, 2009), the so-called
cosmic web. Voids constitute a unique cosmological probe: their interiors, spanning a large
range of scales and featuring low matter density, make them particularly suited to study
dark energy and modified gravity (Lee & Park, 2009; Biswas, Alizadeh & Wandelt, 2010;
Li & Efstathiou, 2012; Clampitt, Cai & Li, 2013a; Spolyar, Sahlén & Silk, 2013a; Cai,
Padilla & Li, 2015; Pisani et al., 2015; Zivick et al., 2015; Achitouv, 2016; Pollina et al.,
2016; Sahlén, Zubeld́ıa & Silk, 2016; Falck et al., 2018; Sahlén & Silk, 2018; Paillas et al.,
2019; Perico et al., 2019; Verza et al., 2019), as well as massive neutrinos (Massara et al.,
2015; Banerjee & Dalal, 2016; Kreisch et al., 2019a; Sahlén, 2019; Schuster et al., 2019;
Kreisch et al., 2021), primordial non-Gaussianity (Chan, Hamaus & Biagetti, 2019), and
physics beyond the standard model (Peebles, 2001; Reed et al., 2015; Yang et al., 2015;
Baldi & Villaescusa-Navarro, 2016).

Nevertheless, studying voids requires sky surveys of very large volume, deep enough
to measure an extremely high number of redshifts also for low-mass galaxies, and to map
in detail significant contiguous fractions of the observable Universe. This is why, only in
recent years, thanks to the advent of wide-field redshift surveys, cosmic voids have started
to gain popularity as cosmological probes. However, the way will be probably downhill
for voids in the next future, since we expect a huge amount of data to come from the
upcoming sky surveys such as the ESA Euclid mission1 (Laureijs et al., 2011; Amendola
et al., 2018), the NASA Nancy Grace Roman Space Telescope2 (NGRST, formerly called
WFIRST) Green et al., 2012) and the Vera C. Rubin Observatory3 (LSST, LSST Dark
Energy Science Collaboration, 2012).

1http://www.euclid-ec.org
2https://roman.gsfc.nasa.gov/
3Legacy Survey of Space and Time; http://www.lsst.org
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With this Thesis work we accompany the reader on a journey into these deep and ob-
scure regions of the Universe, to mainly study their abundance (i.e. the void size function),
but also their internal density (i.e. the void-galaxy cross-correlation function) and their
clustering (i.e. the void auto-correlation), with the ultimate goal of fully exploiting voids
as cosmological probes. However, before venturing in this exploration, we need to equip
us with all the necessary tools (i.e. the theoretical background and the computational
instruments) to understand the cosmological framework we are going to explore. Let us
review the main stages of our trip:

• In Chapter 1 we provide the fundamentals for the mathematical description of the
modern cosmological models. We supply the main elements of the General Theory
of Relativity, passing through the derivation of the Friedmann Equations, and we
eventually illustrate the main features of the currently adopted standard model of
Cosmology.

• In Chapter 2 we review the Jeans theory, which provides the modelling of structure
formation, and we present the theoretical description of the linear and nonlinear
statistics of the Universe. Lastly, we introduce the reader to the cosmological sim-
ulations, fundamental to test the predictions of the proposed cosmological models
and produce different realisations of our Universe.

• In Chapter 3 we expose the issues and the tensions of the ΛCDMmodel and we review
some of the popular alternatives to this scenario, focusing in particular on models
implementing dynamical dark energy, modified gravity and massive neutrinos.

• In Chapter 4 we finally take the path to cosmic voids. We start learning about their
statistics, their observable features, and their potential as cosmological probes. Here
we provide the theory of the size function, density profiles and clustering of cosmic
voids.

• In Chapter 5 we introduce the numerical tools necessary to perform void analysis,
i.e. the void finding and void cleaning algorithms, strictly necessary to build the
catalogue of voids we will analyse.

• In Chapter 6 we start presenting our analyses, studying the number counts of voids
identified in simulated catalogues of biased mass tracers. To model this statistic,
we propose an extension of the void size function models already present in the
literature and we prove its effectiveness in modelling cosmic void counts.

• In Chapter 7 we test the methodology introduced in the previous chapters with
alternative cosmological scenarios, i.e. analysing voids identified in simulations im-
plementing both modified gravity and massive neutrinos. We focus in particular on
the cosmic degeneracies between these scenarios and the standard ΛCDM model,
assessing the disentangling power of void density profiles and number counts.

• In Chapter 8 we study the void size function in the perspective of the Euclid spectro-
scopic survey. We model the observed void number counts by means of galaxy mock
catalogues and we forecast the expected constraining power from this statistic, with
a preliminary exploration of its combination with different cosmological probes.
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• In Chapter 9 we present three additional studies, complementary to the main ones
on the void abundance. We compute forecasts from the observed void-galaxy cross-
correlation function, and from a combination of void clustering and weak lensing,
for the spectroscopic and photometric Euclid surveys respectively. Then, we present
a first approach to the probe combination technique, focusing on the constraints
deriving from the cluster mass function and the void size function.

• In the end, in Chapter 10, we sum up the presented results, preparing the path for
future works, in which will apply all the acquired knowledge and methodologies to
exploit voids with real data catalogues.

Now that everything is settled, we are ready to embark on this journey.

12



Chapter 1

Cosmological framework

The study of the physical properties of our Universe is a very wide subject of research,
going from planets in our Solar System, to the birth and death of stars in the Milky Way,
to the orbits of galaxies grouped in clusters. Cosmology in particular focuses on the largest
scales of our Universe, considering the latter as a whole.

In this chapter we provide a summary of the cosmological framework on which this
Thesis work is built, focusing on the mathematical structure of the modern cosmological
models based on the General Theory of Relativity (GR). In particular, we define the
Friedmann-Robertson–Walker metric, which models the curvature of the space-time in
homogeneous and isotropic universes. Then we introduce the Hubble-Leimâıtre’s law
together with the definition of redshift, and we derive the Friedmann Equations as solutions
to the Einstein’s Field Equation. Moreover we illustrate the main features of the currently
adopted Standard Cosmological model.

1.1 Fundamentals of General Relativity

On very large scales the predominant interaction between massive bodies such as galaxies
and clusters of galaxies is the force of gravity. The cosmological models, aiming at describ-
ing the Universe as a whole, are therefore mainly based on the description of the action
of this force. Nowadays the most powerful and widespread theory of gravity is the GR,
introduced by Einstein (1915) in order to combine his former theory of Special Relativity
with the gravitational interaction. This model is based on the notion that space-time can
be warped by mass and energy. As a consequence, gravity is defined not as a force per se
but as the direct result of a non-Euclidean space-time geometry.

In this context, the space-time is a four-dimensional differentiable manifold, in which
every point on it is called event and has four coordinates, i.e. three space-like and one time-
like. The properties of the space-time geometry are described by the metric tensor gµν ,
which accounts for the intrinsic curvature of the manifold and characterises the distance
relations between events. We can express the distance ds2 between two infinitesimally
close events as:

ds2 = gµνdx
µdxν (µ, ν = 0, 1, 2, 3) , (1.1)

where xµ = (ct, x, y, z) and xν = xµ + dxµ = [c(t+ dt), x+ dx, y + dy, z + dz]; xµ repre-
sents the spatial coordinates, with µ = 1, 2, 3, then c the speed of light and t the proper
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time. This displacement can be explicitly separated as:

ds2 = g00dt
2 + 2g0νdx

νdt+ gµνdx
µdxν , (1.2)

where g00dt
2 is the time component, gµνdx

µdxν the spatial components and 2g0νdx
νdt

the mixed components. The shortest path between any two events is called geodesic, and
extends the concept of straight lines, characteristic of flat Minkowski space, to curved
spaces. We can derive it simply by minimising ds2:

δ

∫
ds = 0 . (1.3)

Any free particle moves along these geodesics. These paths can be obtained by solving
the so-called geodesic equation:

d2xµ

dλ2
+ Γµ

αβ

dxα

dλ

dxβ

dλ
= 0 , (1.4)

where λ is a generic scalar parameter of motion (e.g. the proper time) which monotonically
increases along the particle’s path, Γ are the Christoffel’s symbols which contain the metric
tensor

Γµ
αβ =

1

2
gµν
[
∂gαν
∂xβ

+
∂gβν
∂xα

− ∂gαβ
∂xν

]
, (1.5)

and
gµνgαν = δµα (1.6)

is the Kronecker delta, which is equal to the unity if µ = α, and 0 otherwise. According
to GR, the metric tensor itself is influenced by the distribution and by the motion of the
matter.

We can now introduce the energy-momentum tensor Tµν , which describes the density,
the flux energy and the momentum of matter. For a perfect-fluid with pressure p and
density ρ, the energy-momentum tensor can be expressed as:

Tµν = (p+ ρc2)UµUν − pgµν , (1.7)

where Uµ = gµνU
ν = gµν

dxν(λ)
dλ is the 4-velocity of the fluid and xν(λ) is the world line

of a fluid element. In differential geometry, the energy conservation law can be found by
imposing the covariant derivative to be null:

T ν
µ ; ν = 0 , (1.8)

where, conventionally, the semicolon indicates the covariant derivative. Einstein demon-
strated that from Eq. (1.8) it is possible to derive the Poisson’s equation in the classical
limit:

∇2ϕ = 4πGρ , (1.9)

which relates the gravitational potential, ϕ, to the density of the source of the gravitational
field, ρ. This implies that the metric tensor is connected to the energy-momentum tensor
with an equation which contains only the first two derivatives of gµν , and has zero covariant
derivative. From the expression of the Riemann–Christoffel tensor:

Rµ
αβν =

∂Γµ
αν

∂xβ
+
∂Γµ

αβ

∂xν
+ Γµ

γβΓ
γ
αν − Γµ

γνΓ
γ
αβ , (1.10)
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we can assess the curvature of the space-time manifold by defining the so-called Ricci
tensor, Rµν , and Ricci scalar, R:

Rµν = Rα
µαν and R = gµνRµν , (1.11)

where the scalar curvature comes from the contraction of the Ricci tensor with the metric
gµν . From these Einstein defined his own tensor:

Gµν ≡ Rµν −
1

2
gµνR , (1.12)

and built his equation of gravity, fundamental pillar of modern Cosmology:

Gµν =
8πG

c4
Tµν , (1.13)

where G is the Newtonian gravitational constant. The quantity 8πG/c4 ensures to obtain
the Poisson’s equation in the weak gravitational field limit (i.e. Newtonian gravity).

1.1.1 The cosmological constant

In order to recover static-Universe solutions from his field equation, Einstein introduced in
1917 a constant Λ, called the cosmological constant, to balance gravity’s attractive action
on matter and match the general consensus of the time. In fact, as we will demonstrate
in Sect. 1.4, the Einstein’s field equation only admits collapsing- or expanding-Universe
solutions, while it was commonly believed at that time that the Universe was static (i.e.
neither contracting nor expanding) and both spatially and temporally infinite. With a
suitable choice of Λ, which has to be small enough to ensure the recovery of Newtonian
theory in the weak field approximation, we can indeed obtain a static model for our
Universe:

Rµν −
1

2
gµνR− Λgµν =

8πG

c4
Tµν . (1.14)

Historically, the addition of the Λ term is marked as “Einstein’s greatest blunder” not only
because he inserted the cosmological constant to recover, erroneously, a static universe,
but also because (i) the value of Λ required to his purpose should have been extremely
fine-tuned and (ii) the solutions of Eq. (1.14) would have led to an unstable equilibrium
(Bianchi & Rovelli, 2010).

Nowadays we know from the observations of the flux of distant type Ia supernovae
(SNIa) (Riess et al., 1998; Perlmutter et al., 1999) that our Universe is not only expanding,
but that it is currently in an accelerated expansion. Therefore, even if the historical reason
for the introduction of the cosmological constant was different, it has now been re-included
in Einstein’s field equation thanks to its repulsive effect. In particular, Λ takes different
meanings depending on its position in the Einstein’s field equation:

• left-hand side: interpretation of Λ as a geometrical modification of gravity, as de-
scribed by GR;

• right-hand side: interpretation of Λ as an additional energy component called dark
energy (DE).
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It was then Alexander Friedmann the first who studied the dynamical solutions of the Ein-
stein’s field equation modified with the addition of the cosmological constant, describing
the expansion or contraction of an isotropic homogeneous Universe as a function of time
(Friedmann, 1922). We will present the main results of his theoretical studies in Sect. 1.4.

1.2 The Friedmann-Leimâıtre-Robertson-Walker metric

Most of the models developed in modern Cosmology are based on the so-called cosmological
principle (CP), which is the assumption of isotropy and homogeneity of the Universe
on sufficiently large scales (i.e. hundreds of Mpc nowadays, where 1 Mpc = 106pc ≃
3.09 ·1013 km). Homogeneity is the property of looking identical everywhere, and isotropy
in every direction. These assumptions are observationally confirmed today on sufficient
large scale, i.e. over hundreds of Megaparsecs (see e.g. Yadav, Bagla & Khandai, 2010;
Scrimgeour et al., 2012; Nadathur, 2013; Kim et al., 2021, for a different estimations of
this scale). Once assumed the validity of this hypothesis, the goal is to build a model of
the Universe satisfying the CP. We can define a universal time such that the spatial metric
is the same at each position in space. Thanks to the assumption of isotropy, the mixed
components g0i of the equation (1.2) have to be null. Thus we can obtain the general form
of the metric:

ds2 = c2dt2 − gijdx
idxj = (cdt)2 − dl2 . (1.15)

Any point of the Universe can be described with a set of three spatial coordinates xi
(i = 1, 2, 3), called comoving coordinates, and one temporal coordinate, t, called proper or
cosmic time, which are defined in a reference system at rest with the Universe expansion.
To determine gij we have to find a spatial 3D metric which follows the requirements of
homogeneity and isotropy.

As shown in Sect. 1.1, the geometrical properties of the space-time are described by
the metric. Thanks to the assumption of the CP, the tensor Rijkl does not depend on
the derivatives of the metric gij . For the symmetry properties of the deriving form of the
Riemann tensor, we can introduce the most general form of Eq. (1.15), in the Friedmann-
Leimâıtre-Robertson-Walker (FLRW) metric:

ds2 = c2dt2 − a2(t)

[
dr2

1− κr2
+ r2(sin2 θ dϕ2 + dθ2)

]
, (1.16)

where a(t) is the cosmic scale factor (or the expansion parameter), having the dimensions
of a length, and κ is the curvature parameter. Equation (1.16) expresses the metric in
spherical polar coordinates (ρ, ϕ, θ), related to the Cartesian ones by the transformation:





x1 = ρ sin θ cosϕ

x2 = ρ sin θ sinϕ ,

x3 = ρ cos θ

(1.17)

where the ranges of these values are 0 ≤ ρ < ∞, 0 ≤ θ < π and 0 ≤ ϕ < 2π and ρ is
considered dimensionless.

Given an energy-momentum tensor, the value of κ and the function a(t) can be derived
by the Einstein’s Field Equations. In particular, the curvature of the space-time can be
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positive, zero or negative. This is determined by the value of the parameter κ, which has
only three possible solutions and shapes the geometry of the Universe:

• κ = 1 → hyper-spherical geometry: space is closed but with no boundaries, in
analogy to the surface of a sphere in two dimensions;

• κ = 1 → flat geometry: space is Euclidean and infinite;

• κ = −1 → hyperbolic geometry: space is open and infinite, in analogy to the
surface of a saddle in two dimensions.

1.3 The Hubble-Leimâıtre’s law and the definition of red-
shift

The proper distance, Dpr, is defined as the physical distance between a point P0, which
can be located at the origin of the coordinate system (r, θ, ϕ), and another point P. This
quantity depends on time through the scale parameter a(t) and can be expressed as:

Dpr = a(t)

∫ r

0

dr′√
1− κr′2

= a(t)F (r, κ) . (1.18)

At time t, the proper distance is related to the present one (t = t0) by the following
relation:

DC ≡ Dpr(t0) = a0F (r) , (1.19)

where a0 ≡ a(t = t0). Hereafter if a variable has the subscript “0”, it will indicate that
it is calculated at the present time, t = t0. The quantity DC, already introduced in
Sect. 1.2, is the so-called the comoving distance and by definition it remains constant with
the expansion of the Universe. The direct connection between the two definitions is given
by the equation:

Dpr =
a(t)

a0
DC . (1.20)

The expansion of the Universe causes a continuous drifting apart between any two
points in the space. We can compute the radial velocity between these points as the
derivative of Dpr with respect to t:

vr =
d

dt
Dpr =

d

dt
[a(t)F (r)] = ȧ(t)F (r) + a(t)Ḟ (r) . (1.21)

Given the time-independence of the term F (r), the previous relation yields:

vr = ȧ(t)F (r) =
ȧ(t)

a(t)
Dpr = H(t)Dpr , (1.22)

which is the well-known Hubble-Leimâıtre’s law, where the Hubble parameter is defined as
H(t) ≡ ȧ/a. H(t) is a function of time and has the same value across the Universe at a
given cosmic time. Its value at the present time H(t0) = H0, called the Hubble constant,
describes the isotropic expansion rate of the Universe and is constant for all space for a
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fixed cosmic time. Moreover, it is conventional to introduce a dimensionless parameter,
h, redefining the Hubble parameter as:

H0 ≡ 100h km s−1 Mpc−1 . (1.23)

The value of the Hubble constant is still not known with extremely great precision.
Some the latest estimates give values of around 70 km s−1 Mpc−1, for example: H0 =
69.13 ± 2.34 km s−1 Mpc−1, obtained by modelling the BAO measurements from galaxy
surveys (Wang, Xu & Zhao, 2017), H0 = 74.03 ± 1.42 km s−1 Mpc−1, by using distance
ladders as Cepheids or SNIa (Riess et al., 2019), H0 = 67.4± 0.5 km s−1 Mpc−1, from the
CMB angular spectrum (Planck Collaboration et al., 2020a), H0 = 67.7+4.3

−.42 km s−1 Mpc−1,
from the analysis of gravitational waves (Mukherjee et al., 2020) and H0 = 73.9 ±
3.0 km s−1 Mpc−1, from geometric distance measurements to Megamaser-hosting galaxies
(Pesce et al., 2020).

Being H0 expressed in units of s−1, the inverse of the Hubble parameter may provide
a rough estimate of the age of the Universe, by taking the simplified assumption that
for all its history the Universe has expanded with the same rate. We call the global
motion of objects in the Universe with respect to each other the Hubble Flow. One of
its consequences is that the observed spectrum of very distant objects is reddened, i.e.
shifted towards longer wavelengths. This phenomenon, similar to the Doppler effect of
sound waves, is called the redshift of the electromagnetic spectrum. Let us consider an
electromagnetic source that emits light at a specific monochromatic wavelength λem, in
the reference system of the source. Let us indicate the shifted wavelength of the radiation
which arrives to the observer as λobs. The relative difference from the two electromagnetic
radiations

z ≡ λobs − λem
λ(t)

=
∆λ

λ
, (1.24)

can in principle be less than zero (blueshift), when the source is approaching the observer,
or greater than zero (redshift), when the source is receding.

Let us now consider an observer located at a distance d from an emitting source. By
definition photons move along null geodesics (ds2 = 0 for massless particles) during the
expansion of the Universe. Taking once again the FLRW metric in polar coordinates
expressed in Eq. (1.16), and considering dϕ = dθ = 0 for simplicity, we have:

c2dt2 − a2(t)
dr2

1− κr2
= 0 . (1.25)

Integrating the metric along the path, the previous equation becomes:

∫ tobs

tem

c dt

a(t)
=

∫ r

0

dr′2√
1− κr′2

= F (r) . (1.26)

We suppose now that a second photon is emitted from the source at t′em = tem + δtem
and reaches the observer at t′obs = tobs + δtobs. F (r) is independent of the Universe’s
expansion because of the assumption of comoving coordinates, so the difference between
the two photon paths is given only in terms of time:

∫ t′obs

t′em

c dt

a(t)
= F (r) . (1.27)
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If the time intervals δtem and δtobs are small, a(t) can be considered almost constant, so
the equivalence between Eqs. (1.26) and (1.27) implies:

δtobs
a(tobs)

=
δtem
a(tem)

. (1.28)

Now, since δt = 1/ν and λ = c/ν, for an observer located at present time and an emitting
source at a generic instant t, we have:

1 + z =
a0
a(t)

. (1.29)

Thanks to this relation, the measure of the redshift can be used to infer the distance of
extragalactic sources, and is nowadays commonly exploited thanks to the development
of spectroscopy and photometry techniques. However, it is important to remind that
the light’s frequency (and the redshift) is also affected by gravitational fields and other
relativistic effects, therefore it is not strictly correct to consider the frequency shifts from
very distant sources due to the Doppler effect alone (Weinberg, 1972).

1.3.1 Other distance definitions

We have shown how the comoving coordinates are connected to the concept of proper
distance, Dpr. The latter represents the distance between events happening at the same
proper time, so it is easily understandable that this kind of measure is physically impossible
to take. It is therefore useful to define other kinds of distances that are, at least in principle,
directly measurable from astronomical objects, exploiting their observational properties
as in the case of the redshift.

One option is to use the standard candle method, assigning to the observed object a
luminosity distance, DL. A standard candle object is an object with known luminosity
L. An example of this kind of objects are SNIa, whose light curves are characterised by
a fairly consistent peak in luminosity given by the fixed critical mass of their progenitors.
In principle, assuming to have an object with the same intrinsic luminosity throughout
the space-time, we can compute its luminosity distance by measuring its flux, f , i.e. their
luminosity per unit of area:

DL =

(
L

4πf

)1/2

. (1.30)

The flux of the source, measured by the observer placed at P0 at time t0, can be expressed
as:

f =
Lobs

4πD2
C

. (1.31)

The denominator is the surface area of a sphere centred in P0. However, this sphere is
inflated by the Universe expansion, so we have to take into account both the scale factor on
the measured distance, 4πD2

C = 4πa20r
2, and the Doppler effect on the received emission

light. The emitted luminosity is defined as the rate of change of the energy of the source:

L ≡ dE

dt
. (1.32)
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From Eq. (1.28) we can see that photons emitted by the source in a small interval δt arrive
to the observer in an interval δtobs = δt a0/a(t), where t = tem, i.e. the time of photon
emission. Considering these two effects we can re-write Eq. (1.32) as:

L = Lobs

[
a0
a(t)

]2
, (1.33)

so that the flux f becomes:

f =
Lobs

4πa20r
2
=

L

4πa20r
2

[
a(t)

a0

]2
. (1.34)

Since the luminosity distance is defined by conserving the flux, preserving the inverse
square law of decrease in luminosity from a point source we obtain:

DL ≡ a20r

a(t)
= a0r(1 + z) . (1.35)

Another method to measure the distances of cosmological objects from their properties
is the standard ruler method. It is based on the observation of objects with a known
intrinsic dimension. An example of standard rulers are the BAO, i.e. the fluctuations
visible in the distribution of baryonic matter on large scales: their characteristic length is
given by the path travelled by acoustic waves in the primordial plasma before the Universe
cooled down, stopping the expansion of the plasma density waves. Let us consider a
standard ruler of size ℓ, with a proper distance from the observer r, and subtending an
angle ∆θ, as shown in Fig. 1.1. So, assuming the small-angle approximation, we can
compute the so-called comoving angular diameter distance, DM, as:

DM ≡ ℓ

∆θ
= a(t)r (1.36)

in which t is the time corresponding to the emission of the radiation from the source.
By comparing the luminosity distance with the angular diameter distance, we obtain the
Etherington’s reciprocity theorem (Etherington, 1933):

DL

DM
= (1 + z)2 , (1.37)

from which we can derive that having objects representing both a standard ruler and a
standard candle, their angular-diameter distance will be always smaller than their lumi-
nosity distance. Eq. (1.37) provides a powerful probe to test the validity of the FLRW
metric, in particular the assumptions of homogeneity and isotropy (e.g. Li, Wu & Yu,
2011), and consequently plays an important role in the validation of current cosmological
models.

As a final note we point out that, by definition, all the cosmological distance definitions
are coincident for r → 0 and t→ t0

Dpr ≃ DC ≃ DL ≃ DM , (1.38)

recovering the Euclidean behavior at the small distances.
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Figure 1.1: An object (standard ruler), aligned perpendicularly to the line of sight, emits photons
at time t = tem at distance z. At the time of observation t = tobs, the body appears to subtend an
angle ∆θ, though the space in-between the observer and the standard ruler has expanded during
the photons’ travel by a factor of (1+z). Credits to: http://www.astro.wisc.edu/~waligorski/
index.html.

1.4 Friedmann Equations

Assuming the validity of the CP and considering the energy-momentum tensor to be that
of a perfect-fluid, we can apply the FLRW metric to solve the Einstein’s field equation.
The resulting system of equations, proposed by Friedmann in 1922, provides the time
evolution of a(t) and describes the dynamic evolution of the Universe. These equations
are called the first and the second Friedmann Equations and can be expressed as follows:

ä = −4π

3
G

(
ρ+

3p

c2

)
a , (1.39)

ȧ2 + κc2 =
8π

3
Gρa2 . (1.40)

Each of these two equations can be recovered from the other one by applying the adiabatic
condition:

dU = −pdV , (1.41)

where U and V represent the internal energy and the volume of the Universe, respectively.
The validity of Eq. (1.41) persists as long as the Universe is considered as a closed system,
which expands and evolves without energy losses. This equation can be also expressed as:

d
(
ρc2a3

)
= −pda3 , (1.42)

from which it follows:

ρ̇+ 3
(
ρ+

p

c2

) ȧ
a
= 0 . (1.43)
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The density, ρ, and the pressure, p, in these equations have to be considered as the sum
of all the densities and all the pressures of the Universe’s components, respectively.

A general approach to develop Friedmann Equations is to introduce a generic equation
of state (EoS) for the fluid composing the Universe. Adopting once again the perfect-fluid
approximation, the equation of state of such fluid can be expressed in the form:

p = wρc2 , (1.44)

where w is defined so that the sound speed is:

cs ≡
(
∂p

∂ρ

)1/2

s

= c
√
w . (1.45)

To have physically meaningful w, this parameter must belong to the so-called Zel’dovich
interval :

0 ≤ w < 1 . (1.46)

These limits ensure to have a positive (or null) value for the sound speed, which at the
same time is smaller than the speed of light.

The value of w depends on the type of component of the Universe. In particular,
the “ordinary” components can be divided into two big main families: relativistic and
non-relativistic. The first case is represented by dust, characterised by w ≃ 0, i.e. with
negligible pressure, while a non-degenerate and ultra-relativistic fluid is described by an
EoS with w = 1/3. This is the case for a radiative fluid or, more generally, for photons
and relativistic particles like neutrinos. The cosmological constant Λ is instead defined
to behave as a perfect-fluid with w = −1 and it follows the Eq. (1.14), in analogy to the
other components.

With these definitions it is now possible to express the energy-momentum tensor as
the sum of all the components i:

Tµν ≡
∑

i

T (i)
µν . (1.47)

Moreover, from the combination of Eqs. (1.42) and (1.44), we can derive the relations
describing the variation of Universe’s different components with the cosmic time:

ρw ∝ a−3(1+w) ∝ (1 + z)3(1+w) . (1.48)

As a direct consequence of the previous relations, we can assert that different components
have dominated through the succession of the cosmic epochs, prevailing one over the
others.

We can re-write Eq. (1.40) to derive the curvature of the Universe previously inserted
in the FLRW metric:

κ

a2
=

1

c2

(
ȧ

a

)2( ρ

ρc
− 1

)
, (1.49)

where we introduced the critical density parameter:

ρcrit(t) ≡
3

8πG

(
ȧ

a

)2

=
3H2(t)

8πG
, (1.50)
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which by definition represents the density requested to obtain a universe with flat geometry
(κ = 0). The cases in which ρ < ρcrit correspond to the scenarios in which the Universe
is subject to an eternal expansion, while the case ρ > ρcrit implies an slowdown of the
expansion followed by a contraction. The value of the critical density calculated today
(t = t0) depends on the Hubble constant H0. The value for ρcrit,0 ≡ ρcrit(t0) is:

ρc,0 ≃ 1.9× 10−26 h2 kg m−3 . (1.51)

From the critical density we can define the dimensionless density parameter :

Ω(t) ≡ ρ(t)

ρc(t)
, (1.52)

which can be expressed for each component, Ωwi . By definition the total density parameter
is the sum of all of them:

Ωtot ≡
∑

i

Ωwi , (1.53)

In a flat universe we have Ωtot = 1, while in open or closed universes Ωtot < 1 and Ωtot > 1,
respectively.

Using the definition of Ω, the second Friedmann equation can be rewritten as:

1− Ω(t) = − κc2

a2(t)H(t)2
. (1.54)

Note that the right hand side of this equation cannot change its sign during the expansion
of the Universe, so neither can the left hand side. From this fundamental relation follows
that a universe governed by the Friedmann equations cannot change its geometry during
its evolution.

Now it is useful to express Eq. (1.40) in terms of Ω, H and z, which are more rep-
resentative parameters of the observable Universe. To do this we use the definitions of
the density parameter (Eq. 1.52), of redshift (Eq. 1.29) and the Hubble’s law (Eq. 1.22),
obtaining:

H2(z) = H2
0 (1 + z)2

[
Ω0,κ +

∑

i

Ω0,wi(1 + z)1+3wi

]
≡ H2

0E
2(z) , (1.55)

in which Ω0,κ ≡ 1−∑iΩ0,wi is the so-called curvature density parameter.

1.4.1 The Einstein-de Sitter model

Let us now develop Eq. (1.40) by applying Eq. (1.14) for a universe with a single compo-
nent. The resulting relation is:

ä = −4π

3
Gρ(1 + 3w)a . (1.56)

From the latter it results clear that, if w belongs to the Zel’dovich interval (Eq. 1.46), i.e.
for ordinary cosmological components like matter (w = 0) and radiation (w = 1/3), then
the corresponding mono-component universe is characterised by a decelerated expansion
(ä < 0). From the Hubble’s law we can conclude that a(t) grows monotonically, given
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the positive sign of H(t). This implies that, going back in time, there must be an instant
at which a(t) is equal to zero, at some finite time in the past. This event is called Big
Bang and implies that the Universe’s initial state was as an infinitely small, hot and
dense singularity. All possible cosmological models assuming a single-fluid component
with −1/3 < w < 1, have necessarily an instant at which a(t) vanishes, while the density
and the expansion speed diverge:

lim
t→0

ρ(t) = lim
t→0

(a0
a

)−3(1+w)
→ ∞ . (1.57)

A generic model that includes the hypothesis of mono-component fluid and that assumes
a flat geometry (κ = 0) is called Einstein-de Sitter Model (EdS). In this model Eq. (1.55)
reduces to:

H(z) = H0(1 + z)
3(1+w)

2 . (1.58)

Since we have already demonstrated that different components of the Universe (mat-
ter, radiation and Λ) can become dominant at different cosmic epochs, we can assume that
our Universe is entirely composed by only one type of fluid, at any time. So we can divide
the history of the Universe into epochs based on which component was the dominant in
that time interval, as shown in Fig. 1.2. It is easy to derive the time dependence of each
component’s density by developing the adiabatic condition expressed in Eq. (1.43) with
Eq. (1.44). From this it is possible to conclude that the matter and radiation densities
change during the Universe’s expansion with different rates. In particular, at early times
the radiation results the dominant component (radiation-dominated era) while at late
times the matter component becomes the most relevant (matter-dominated era). More-
over, interpreting the DE component as fluid with w = −1, we can demonstrate that its
density is independent of the time and starts to be dominant only at very recent epochs
(DE-dominated era). We point out that the single-component approximation is accurate
only in periods far from the moments of equivalences, i.e the transitions in which one
component starts to prevail on the others. In Table 1.1 we report a list of useful relations
derived assuming the EdS model and expressing the behaviour of the main quantities
characterising this type of universe. These dependencies are expressed for a generic fluid
with parameter w, and then computed for both the matter-dominated epoch (w = 0) and
the radiation-dominated epoch (w = 1/3). From these relations we can derive for the
matter component (w = 0):

ρm = ρ0,m(1 + z)3 , (1.59)

while for the radiation component (w = 1/3):

ρr = ρ0,r(1 + z)4 . (1.60)

By equalising these relations we can find the redshift at which the matter and radiation
components have the same density. Considering the measured density values, we can
calculate the time in which this event, called matter-radiation equivalence, took place:

zeq =
ρ0,m
ρ0,r

− 1 ≃ 3 · 104 . (1.61)
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Figure 1.2: Trends with time of the three main Universe’s components: radiation, matter, DE.
With the time evolution different components start to predominate on the others because of the
relative change in density. Credits to: https://pages.uoregon.edu/jimbrau/astr123/Notes/

Chapter27.html.

Generic w w = 0 w = 1/3

a(t) = a0

(
t
t0

) 2
3(1+w)

a(t) ∝ t2/3 a(t) ∝ t1/2

t = t0(1 + z)
−3(1+w)

2 t ∝ (1 + z)−3/2 t ∝ (1 + z)−2

H(t) = 2
3(1+w) t

−1 H(t) = 2
3t H(t) = 1

2t

t0 =
2

3(1+w)
1
H0

t0 =
2

3H0
t0 =

1
2H0

ρ = 1
6πG(1+w)2

1
t2

ρ = 1
6πG

1
t2

ρ = 3
32πG

1
t2

Table 1.1: Dependencies obtained for the EdS Universe in three different cases: for a generic fluid
component (first column), for a matter-dominated universe, (second column) and for a radiation
dominated universe (third column).
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1.5 The Standard Cosmological model

From the beginning of the 21st century, the most commonly accepted model describing
our Universe is the so-called ΛCDM model. This model is supported by a large set of
observational data and provides us with a reasonable framework for structure formation.
It describes an almost flat Universe, which is characterised by the CP and whose evolution
is governed by the Friedmann Equations and therefore also by the GR.

According to the ΛCDM model, our Universe experienced a thermal history, i.e. its
evolution is tightly related to its temperature, which initially was much higher than to-
day. At the present time the temperature of the photons permeating the Universe is
T = 2.7255± 0.0006 K (Fixsen et al., 1996; Planck Collaboration et al., 2020a). This is
the value of the CMB temperature, the relic radiation from the surface of last scattering
happened only about 3.8 · 106 years after the Big Bang (z ≃ 1100). Before the last scat-
tering, the Universe was filled by a hot plasma composed by protons and electrons fully
ionised. In this context, electromagnetic radiation was continuously scattered by baryonic
matter, so that the Universe was completely opaque and in thermal equilibrium. Because
of its continuous expansion, the Universe cooled down until electrons recombined with
protons, at z ≃ 1500, allowing the photons to freely propagate. Thanks to the succeeding
prevalence of the matter component, gravitationally bound objects started to form, giving
rise to the formation of the currently observed large-scale structures.

The ΛCDM model provides for a present-day universe made up of DE (or vacuum
energy, with a density energy Ω0,Λ ≃ 0.7), associated with a cosmological constant, a
non-ordinary matter component (that we will present later as cold dark matter, with
Ω0,cdm ≃ 0.25) and ordinary, observable matter component (i.e. formed by baryons,
Ω0,b ≃ 0.05) and radiation component (Ω0,r ≃ 10−5). These components’ energy density
values are in agreement with the condition of flatness: Ω0,tot = Ω0,Λ+Ω0,cdm+Ω0,b+Ω0,r ≃
Ω0,Λ+Ω0,m ≃ 1. By using the first Friedman equation (Eq. 1.39) it is easy to demonstrate
that a multi-component universe composed by the cosmological constant and matter leads
to:

ä = −aH(t)2
Ωm

2
+ aH(t)2ΩΛ , with ΩΛ ≡ Λc2

3H(t)2
. (1.62)

In order to obtain an accelerated expansion, we have therefore to impose the condition
ΩΛ > Ωm/2, which is indeed satisfied by the present-day density values.

In Sect. 1.4.1 we stated that the early Universe is well described by an EdS model
characterised by ä < 0. However, having now established that in recent cosmic times the
Universe is experiencing an accelerated expansion, so with ä > 0, we must include a flex in
the function a(t). It can be easily demonstrated that, given the present-day values of the
densities, this inversion in the expansion rate occurs at zf ≃ 0.7. With additional math-
ematical derivations, we can find the moment corresponding to the equivalence between
matter and cosmological constant, i.e. Ωm(zeq,Λ) = ΩΛ(zeq,Λ). This event takes place at
zeq,Λ ≃ 0.33, an epoch very close (from the cosmological point of view) to the present time.
This result implies that DE and matter are currently of the same order of magnitude and
that the contribution of Λ became relevant only at recent times.

A robust characterisation of ΛCDM scenario involves the definition of six fundamental
parameters:

• Ωm: total matter density parameter,
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• Ωb: baryonic matter density parameter,

• H0: Hubble constant,

• As: primordial power spectrum amplitude,

• ns: spectral index of the primordial power spectrum,

• τ : reionisation optical depth,

where Ωm and Ωb are usually expressed with their present-day values, respectively, so
we take for granted from now on the subscript “0”. The strongest constraints on this
set of parameters derives from the analysis of the CMB power spectrum in combination
with lensing measurements. The values for these fundamental parameters, as reported in
Planck Collaboration et al. (2020a), are Ωmh

2 = 0.143 ± 0.001, Ωbh
2 = 0.0224 ± 0.0001,

ln
(
1010As

)
= 3.04 ± 0.01, H0 = 67.4 ± 0.5 km s−1 Mpc−1, ns = 0.965 ± 0.004 and

τ = 0.054± 0.007.
The ΛCDM model is currently broadly accepted, but despite the refinements and the

remarkable successes it achieved, some of its theoretical roots remain poorly understood.
For example, we do not have yet a physical description of the major component of the
matter, called for its obscure1 nature dark matter (DM), and the very existence of DE is
even more mysterious. As we presented in Sect. 1.1.1, the latter was theorised to account
for the accelerated expansion of the Universe, but it cannot be associated with any known
form of energy. Moreover, its density is extremely low compared to the other components
of our Universe, around ρ0,Λ ≃ 7 · 10−27 kg m−3.

Similarly, the DM was introduced by Zwicky (1937) to make sense of observed gravita-
tional effects that could not be explained by the known theories of gravitation without an
excess of non-visible mass. DM can be interpreted as particles or small objects interact-
ing only with matter (this includes also the self-interaction) through gravity and possibly
the weak force. The existence of the DM is nowadays confirmed by several evidences,
and some of the most valid probes to quantify its effects are the gravitational lensing by
galaxy clusters, the redshift-space distortions on the large-scale mass distribution and the
fluctuations of the density spectrum due to BAO. The DM can be classified into two main
types:

• hot dark matter (HDM) made of low mass relativistic particles, for which the best
candidates are massive neutrinos;

• cold dark matter (CDM) made of massive non-relativistic particles, for which the
best candidates are currently the weakly interacting massive particles (WIMPS).

In the last decades, several particle candidates have been proposed and tested. As we
will see in Chapter 2, the structure formation and evolution models imply that the great
majority of the DM component must be cold.

1Here the adjective has not the meaning of unknown only. According to the standard ΛCDM model
indeed, DM does not interact with the electromagnetic field, i.e. it does not absorb, reflect or emit light,
therefore is only detectable thanks to its gravitational effects on visible matter.
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Chapter 2

Structure formation

Looking at the Universe at the Mpc scales, its matter distribution appears to be quite
inhomogeneous, showing the characteristics of a highly nonlinear evolution. On scales
of collapsed objects, density contrast fluctuations are indeed of the order of hundreds.
However, from the temperature fluctuations in the CMB maps it is possible to derive the
amplitude of the density perturbations in the cosmic fluid at the time of recombination.
In particular:

δT

T
≈ 10−5 ,

where T is the mean black body temperature of the CMB. We expect the same order
of magnitude for the density contrast at that epoch, assuming the perturbations to be
adiabatic. Therefore we can conclude that the Universe was almost homogeneous at this
epoch since the amplitude of the density fluctuations was very small. Nevertheless, the
effect of gravity must have been such as to make the already existing perturbations grow
with a sufficient rate. Already in 1902, Jeans had developed a theory that would later
be applied to provide an analytical description of this phenomenon. As we will see in
Sect. 2.1.1, Jeans theory predicts that the small inhomogeneities present in the primordial
fluid are amplified during the Universe evolution, giving rise to the currently observed
collapsed structures. However, the description provided by this model results accurate
as long as the structures analysed remain in the linear regime. The latter breaks down
for gravitational bound objects, in which the DM reaches the nonlinear stage and the
baryonic component become dynamically important. The analytical description of the
matter evolution in the nonlinear regime is achievable only for few and extremely simple
models, e.g. the spherical evolution model and the Zel’dovich approximation, which we
will introduce in Sect. 2.2.1 and Sect. 2.2.2. Nowadays the treatment of structure evolution
in the nonlinear regime is mostly done with numerical N-body simulations, which we will
present in Sect. 2.3.

2.1 Linear theory

The aim of the Jeans theory is to describe how fast initial density perturbations have to
grow to reproduce the inhomogeneities observed today. This model can be applied to non-
relativistic matter and on scales not exceeding the cosmological horizon, which represents
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the sphere that comprehends all the volume of the Universe that is in causal connection
with the observer. The cosmological horizon is defined as:

Rh ≡ a(t)

∫ t

tBB

c dt′

a(t′)
, (2.1)

where time tBB = 0 identifies the instant of the Big Bang, i.e. the beginning of the Universe
expansion. The cosmological horizon separates the Universe in two different regions:

• the scales r > Rh, where gravity is the only force in action and the growth of the
perturbations has to be treated with the relativistic theory. On these scales the
density fluctuations can always grow, giving birth to collapsed structures;

• the scales r < Rh, where the microphysical processes become important and different
components behave in different manners. On these scales the Jeans theory provides
a reliable description of these phenomena in linear theory.

On scales r > Rh the gravitational interaction is the only force acting on the density
perturbations. In absence of radiative processes these perturbations can grow indefinitely.
To derive the rate of their growth, density fluctuations can be treated as small closed
universes evolving in a background EdS universe. From the second Friedmann equation
we obtain the following relations:

H2
B =

8π

3
GρB, H2

P =
8π

3
GρP − c2

a2
, (2.2)

where the subscripts B and P refer to the background and the perturbed universe, re-
spectively. Being the perturbation universe totally enclosed in the background one, their
corresponding scale factors are initially the same and we can impose the equivalence of
their Hubble parameters, which yields:

δ =
ρP − ρB
ρB

=
3c2

8πG

1

ρBa2
∝ ρ−1

B a−2 . (2.3)

From Sect. 1.4.1 we know the evolution of the background perturbation follows the one of
the component resulting dominant at a given epoch. Therefore we can use the relations
reported in Table 1.1 and divide the behaviour of the density perturbation in two regimes,
according to the matter-radiation equivalence time (see Eq. 1.61):

ρB ∝ a−4 → δ = δr ∝ a2 ∝ t, for z > zeq

ρB ∝ a−3 → δ = δm ∝ a ∝ t2/3, for z < zeq .
(2.4)

As anticipated, the density perturbations on scales larger than the cosmological horizon
are destined to always grow.

The analysis of the perturbations on scales r < Rh will instead be treated in details in
the next section. In particular, in the following we will study their dynamic and evolution
by applying the Jeans theory to a collisional and self-gravitating fluid embedded in an
expanding background.
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2.1.1 Jeans instability in an expanding universe

Let us assume a homogeneous and isotropic background, composed by a fluid having a
constant matter density ρ(x, t) and enclosed in an expanding universe. The equations of
motion of such a fluid, in the Newtonian approximation, are:

∂ρ

∂t
+∇ · (ρv) = 0 continuity equation (2.5a)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇ρ−∇Φ Euler equation (2.5b)

∇2Φ = 4πGρ Poisson Equation (2.5c)

dS

dt
= 0 adiabatic condition (2.5d)

p = p(ρ, S) = p(ρ) equation of state (2.5e)

where v is the velocity vector of a fluid element, Φ is the gravitational potential, S
the entropy and p the pressure. The last equation has been introduced to neglect any
dissipative terms, i.e. viscosity or thermal conduction.

These equations are satisfied by a background (subscript “B”) solution in which the
continuity equation gives us the relation:

ρ̇B + 3H(t)ρB = 0 . (2.6)

The velocity is formed by the sum of two components, namely the Hubble flow and the
peculiar velocity vp of the fluid:

V ≡ ẋ = H(t)x+ vp , (2.7)

where x indicates the fluid position vector.
Using the definition of the dimensionless density perturbation, the so-called density

contrast :

δ(x, t) ≡ δρ(x, t)

ρB
, (2.8)

we can introduce a small perturbation (δ ≪ 1) in each variable of the set of equations
(2.5) and obtain a hydrodinamic system for a fluctuation in the density field that can be
linearised.

The solving relation for the density contrast is a differential equation, which in Fourier
space has the form:

δ̈k + 2H(t)δ̇k + (k2c2s − 4πGρB)δk = 0 , (2.9)

where k = |k| is the absolute value of the wavenumber, δk = δk(t) is the amplitude of
the Fourier transform of δ(x, t) and cs =

√
∂p/∂ρ the sound speed. The last equation is

the so-called dispersion relation, where the term 2H(t)δ̇k is related to the Hubble friction
and the term k2c2δk accounts for the characteristic velocity field of the fluid. Both these
terms tend to dissipate the fluctuations, hampering their growth. Equation (2.9) is a
second-order differential equation for δk and its solutions can be separated depending on
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the value of the wavelength λ = 2π/k, in relation to the characteristic scale called Jeans
length:

λJ ∝ cs

(
π

GρB

)1/2

, (2.10)

which is expressed in physical units.
For λ < λJ the perturbation propagates as a sound wave with constant amplitude and

with a phase velocity cph = ω/k, where ω(k) =
√
k2c2s − 4πGρB. This velocity tends to

become equal to cs for λ≪ λJ.
On the other hand, for λ > λJ the dispersion relation has growing and decaying mode

solutions:
δ(x, t) = A(x)δ+(t) +B(x)δ−(t) , (2.11)

where A and B are two functions depending on the comoving coordinates, and δ+ and δ−
represent the time-dependent growing and decaying modes, respectively. Applying now
the dependencies for an EdS universe with Ωm = 1 (see Table 1.1) we obtain the following
trends:

δ+(t) ∝ t2/3 ∝ a(t) (2.12)

and
δ−(t) ∝ t−1 ∝ a−3/2 . (2.13)

Since the decaying solution does not give rise to gravitational instability (i.e. collapsed
structures), we are interested only in the growing one. For a generic universe, the growing
solution has an integral form given by the following equation:

δ+(z) = H(z)

∫ ∞

z

dz′(1 + z′)

H3(z′)
, (2.14)

which has no analytical solution. However, we can provide a parametric solution to ap-
proximate its trend:

f ≡ d log δ+
d log a

≃ Ωγ
m +

ΩΛ

70

(
1 +

1

2
Ωm

)
. (2.15)

This is called the linear growth rate and its exponent γ is predicted to have a value
approximately of 0.545 according to GR (Coles & Lucchin, 2002). This relation implies
that, while the matter energy density plays a crucial role for the growth of the fluctuations,
the cosmological constant Λ has a more negligible impact on it. The estimate of the linear
growth rate through observations represents a powerful method to search for deviations
from GR on cosmological scales. We show an example of this technique in Fig. 2.1.
Here we report the analysis of Moresco & Marulli (2017), who have tested alternative
models to the standard ΛCDM scenario by comparing their corresponding theoretical
values of fσ8(z) with different measurements on growth rate of cosmic structures. In
particular, the model predictions are computed by allowing the variation of one single
cosmological parameter at a time: besides the reference flat ΛCDM model, computed with
the cosmological parameters of Planck Collaboration et al. (2016a), fσ8(z) is evaluated
for cosmological models with a different value of Ωm, wde (see also Sect. 3.1.1 in the next
chapter),

∑
mν (see also Sect. 3.1.3 in the next chapter) or γ.
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Figure 2.1: Measurements of growth rate of cosmic structures at different redshifts compared with
the fσ8(z) predictions, computed for the cosmological models listed in the plot legend. Constraints
on fσ8(z), especially when combined to those of H(z), are key to testing gravity models and
discriminate between alternative cosmological frameworks. Credits to Moresco & Marulli (2017).

2.1.2 Statistical properties of the Universe

In Sect. 2.1.1 we analysed the linear evolution of a single perturbation of the density field,
whose growth is defined by δ(x, t) = δ+(t)δ(x). However, in more realistic cases we expect
the density fluctuations to exist on a variety of mass and spatial scales, so the final collapsed
structures will depend on the growth of different perturbations covering different scales.
For a realistic description of the growth of the structures we have therefore to represent
the density perturbation as a superposition of plane waves, which evolve independently of
each other.

Let us introduce the spatial Fourier transform of δ(x):

δ(k) =
1

(2π)3

∫
d3x−ik·xδx . (2.16)

We can now define the power spectrum of the density field as the variance of the amplitudes
at a given value of the wavenumber k:

⟨δ(k)δ∗(k′)⟩ = (2π)3P (k)δ
(3)
D (k− k′) , (2.17)

where δ
(3)
D represents the 3-dimensional Dirac delta function. We also have δ∗(k) = δ(-k)

because of the reality of δ, where the “∗” indicates the complex conjugate operation. We
obtain the analogous quantity of the power spectrum in real space, i.e. the two-point
correlation function (2PCF), ξ(r), by Fourier-transforming Eq. (2.17):

ξ(r) =
1

(2π)3

∫
d3kP (k)eik·x . (2.18)

The 2PCF quantifies the spatial clustering of cosmic matter and it can be also defined
with a statistical approach:

⟨δ(x)δ(x′)⟩ = ξ(|x− x′|) = ξ(r) = ξ(r) , (2.19)

where r is the comoving distance between x and x′, and ξ(r) = ξ(r) is due to the CP.
Using a discretised representation of the density field, we can interpret ξ(r) also as the
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probability excess dP12 of finding a pair of objects separated by a comoving distance r,
in two independent volume elements dV1 and dV2, with respect to a random uniform
distribution of objects:

dP12 = n2[1 + ξ(r)]dV1dV2 . (2.20)

According to the inflation1 theory, the primordial density perturbations are generated
by stochastic quantum fluctuations in a scalar field (i.e inflaton) (Guth & Pi, 1982),
therefore their amplitudes are accurately described by a Gaussian distribution. With this
assumption, the power spectrum describes completely the distribution of fluctuations.
Given the absence of any preferred scale during the creation of the perturbations, the
initial spectrum follows a power law given by:

P (k) = Akn , (2.21)

where the spectral index, n, is generally assumed to be close to unity (Zeldovich, 1972).
While the shape of the power spectrum can be considered fixed, its amplitude A has to
be constrained with observations. In particular, the most reliable and precise measure
of A is obtained from the analysis of the temperature fluctuations in the CMB (Planck
Collaboration et al., 2020a).

Since the amplitudes of the fluctuations have a Gaussian distribution in real space,
their mean value is statistically null by definition. Instead, the fluctuation amplitude
variance σ2 is defined by:

σ2 = ⟨|δ(x)2)|⟩ =
∑

k

⟨|δk|2⟩ =
1

Vu

∑

k

δ2k , (2.22)

where the average is taken over an ensemble of the Universe realisations of volume Vu. By
assuming the validity of the CP and considering the limit Vu → ∞, it yields:

σ2 → 1

2π2

∫ ∞

0
P (k)k2dk . (2.23)

According to Eq. (2.22), to compute σ2 we would need to evaluate the density for each point
of the space, and this would require the reconstruction of the entire density field, which
is obviously not possible in practice. A convenient method is to represent the fluctuation
field by “filtering” on some resolution scale R, instead of using a punctual variance. With
this approach we can recover the density fluctuation from a discrete distribution of tracers
as:

δM =
M − ⟨M⟩

⟨M⟩ , (2.24)

where ⟨M⟩ is the mean mass present inside a spherical volume of radius R. Using this
definition in combination with equation Eq. (2.22), we obtain the mass variance:

σ2M = ⟨δ2M ⟩ = ⟨(M − ⟨M⟩)2⟩
⟨M⟩2 , (2.25)

1The inflation is defined as a phase of exponential expansion of the Universe, set in the early stages
after the Big Bang. See Guth (1981) for a detailed description.
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which represents the variance of the convolution of the punctual density with a window
function W of radius R:

δM (x) = δ(x)⊗W (x, R) . (2.26)

From the last two equations, using the convolution theorem and in the limit Vu → ∞, we
have:

σ2M =
1

(2π)3

∫
P (k)Ŵ 2(k, R)d3k , (2.27)

where Ŵ is the Fourier-transform of the window function and is a function of R (and
therefore of M). Though the normalisation of the power spectrum is not predicted by
inflation theory, an equally valid approach is to fix the value of the mass variance computed
with a filtering of R = 8 h−1 Mpc at the present time:

σ28 =
1

2π2

∫
P (k)k2W 2(R = 8 h−1 Mpc)dk . (2.28)

The square root of this quantity, i.e. σ8, besides representing the mass fluctuation in
spheres with radius 8 h−1 Mpc, is a free parameter representing the normalization of the
power spectrum and is key in predicting the phenomenology of the low-redshift Universe.

2.1.3 Evolution of the power spectrum

The density perturbations entering the cosmological horizon in an epoch before the
radiation-matter equivalence, th < t < teq, are damped by an effect called stagnation,
or Mészáros effect (Mészáros, 1974). This effect is a manifestation of the fact that the
Hubble drag term during the radiation dominated era is larger than during the matter
dominated era. Indeed, comparing the free-fall time (τff ∝ 1/

√
Gρm), i.e. the character-

istic time that would take a perturbation to collapse under its own gravitational force,
and the Hubble time (see Table 1.1), i.e. the characteristic time for the expansion of the
Universe, we find:

τH
τff

∝ (ρm/ρrad)
1/2 ≫ 1 for t < teq , (2.29)

otherwise
τH
τff

∼ 1 for t > teq . (2.30)

Being in Eq. (2.29) the free-fall time larger than the expansion time the density perturba-
tions cannot grow and this effect affects the primordial shape of the perturbations power
spectrum.

Now, since the cosmological horizon expands with time (see definition in Eq. 2.1), we
can conclude that larger perturbations will enter the cosmological horizon at later times,
hence they will undergo less stagnation (or zero stagnation, if they do not enter the horizon
before teq). On the other hand, the perturbations on scales bigger than the horizon, so
having λ > λh (where λh ≡ Rh), continue to grow at the same rate independently of the
scale or wavenumber, following the trends we saw in Eq. (2.4). As a consequence, the
power spectrum at the moment of the equivalence has a peak in correspondence of kh,eq,
i.e. the wavenumber associated with the cosmological horizon at the equivalence time.
This value mostly depends on Ωmh

2 and Ωrh
2, so on the matter and radiation densities

and the Hubble parameter.
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The shape of the observed power spectrum P (k) depends on the amount and on the
nature of the matter in the Universe, providing powerful constraints for Cosmology. We
can indeed define two types of DM particles according to their nature at the time of
their decoupling from radiation: hot dark matter, i.e. particles still relativistic at the
decoupling, and CDM, i.e. particles non relativistic before the decoupling. As simple
consequence of their nature, CDM particles are supposed to be more massive than HDM
particles. As shown in Fig. 2.2, for a matter component consisting entirely of HDM
particles the matter power spectrum falls off sharply to zero to the right of the peak.
Modern observations based on CMB, galaxy clusters, lensing and Lyα forest confirm with
great accuracy a scenario in which the Universe matter component is mainly cold (see
Tegmark et al., 2004, and references therein).

The shape of the power spectrum P (k) at the equivalence time can be reproduced
defining a transfer function, T (k). This function gives us the fraction of the primordial
power spectrum that is not affected by the microphysical effects inside the horizon. Con-
sidering a generic cosmological time represented by ti, the transfer function is defined as
follows:

P (k, teq) = P (k, ti)T
2(k) . (2.31)

For the CDM scenario, we have:

T (k) =

{
1 for k < kH,eq,

∝ k−2 for k > kH,eq .
(2.32)

This function therefore acts as a filter that smooths larger wavenumbers.

Figure 2.2: The power spectrum at the equivalence time for a matter component entirely formed
by CDM (solid line) or HDM (dotted line). The dashed line represents the primordial Zel’dovich
power spectrum, having a spectral index n = 1. Credits to Ryden (2016).
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2.1.4 The bias parameter

A fundamental problem in Cosmology is to understand how the spatial distribution of
tracers (i.e. luminous objects) is related to that of the total underlying distribution of
mass. Let us consider the number counts of whatever mass tracer (subscript “tr”) in a
volume V , defining an overdensity field as:

δtr ≡
Ntr(V )− N̄tr(V )

N̄tr(V )
, (2.33)

where Ntr and N̄tr are the number of tracers and the mean number of tracers, respectively.
Some of the commonly used mass tracers in Cosmology are galaxies, galaxy clusters and
DM haloes. However, we cannot expect the distribution of galaxies or cluster of galaxies to
reflect the distribution of the total matter in the Universe (subscript “m”). The simplest
approach to parametrise the relation between δtr and δm is the linear, local, non-stochastic
bias model:

δm = bδtr , (2.34)

where b is the linear bias factor, which depends on the cosmological scenario and epoch,
and on tracer properties such as luminosity, colour and redshift. Equation (2.34) was
proposed by Kaiser (1984) to describe objects in the linear regime and does not hold
for small scales, where the relation becomes very complex due to the nonlinear evolution
related to hydrodynamic phenomena.

An analytical parametrisation of the bias was proposed by Mo & White (1996a) for
the DM halo bias, which was found applying the so-called excursion-set formalism (that
we will introduce in Sect. 4.2):

b(M, z) = 1 +
1

δc

( δ2c
σ2Mδ

2
+(z)

− 1
)
, (2.35)

where δ+ is the growing mode of the density perturbation. Equation (2.35) implies that
for DM haloes the bias factor is positive and grows with the redshift and mass, as also
confirmed by simulations (e.g. Hu & Kravtsov, 2003).

Another convenient definition of bias is based on the 2PCF: it can be measured by
computing the square root of the ratio of the tracer 2PCF and that of the total matter
component:

b =

√
ξtr
ξm

. (2.36)

While ξtr has to be inferred from the distribution of tracers, ξm can be derived analytically
from the theory.

2.1.5 Clustering estimators

The estimation of the 2PCF (Eq. 2.18) of a data sample is usually performed by comparing
the number of pairs of objects in the considered sample to those taken in a random
distribution, generated with the same geometry and number density trend of the selected
data sample. Let us assume a catalogue of ND objects and its the associated random of
NR objects.
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We define the number of data pairs as a function of the separation between the pairs,
dd(r), normalised by the total number of pairs, as:

DD(r) =
dd(r)

ND
, (2.37)

and the corresponding quantity for the random catalogue:

RR(r) =
rr(r)

NR
, (2.38)

with rr(r) being the number of random pairs at distance r. Then we can count the pairs
data-random cross-correlating the two catalogues. Using an analogous notation, we have:

DR(r) =
dr(r)

NDNR
, (2.39)

Now, the 2PCF in one of its simplest form can be written as:

ξ̂N(r) =
DD(r)

RR(r)
− 1 . (2.40)

This is the so-called Peebles-Hauser, or natural, estimator (Peebles & Hauser, 1974). This
estimator is affected by low accuracy at large scales, due to the discreteness of the sample.
Thus, more accurate estimators are generally adopted, which consider also the cross terms
between the data and random catalogue. One widely-used estimator of this type is the
following:

ξ̂LS(r) =
DD(r)− 2DR(r) + RR(r)

RR(r)
. (2.41)

This is called the Landy-Szalay estimator (Landy & Szalay, 1993) and it is characterised
by a nearly Poissonian variance. It provides an unbiased estimate of the 2PCF in the
limit NR → ∞, with minimum variance. The Landy-Szalay estimator is one of the most
commonly used for astrophysical and cosmological applications, and is also the one that
will be used in this Thesis work.

2.2 Nonlinear theory

The cosmic structures that we observe in today Universe, such as galaxies, clusters and DM
haloes, are the result of gravitational instabilities occurred throughout the cosmological
history. To describe the formation of these objects characterised by a strongly nonlinear
regime (δ ≫ 1), the small-perturbations approximation can not be applied anymore.
After the linear regime breaks down, therefore when δ becomes comparable to unity, the
weakly-nonlinear regime sets in. Already in the weakly nonlinear stage, the fluctuation
distribution function starts to deviate from the Gaussian shape. Moreover, we have to take
into account that the evolution of the baryonic component is different from the DM one.
Baryons are indeed subject to hydrodynamical effects, like star formation, SNe explosion,
and the feedback of active galactic nuclei (AGN). All of these phenomena make even
more difficult the description of the whole scenario with a full and solid theory. Even
if some approximated analytical models have been proposed to describe what happens
during this phase, we generally rely on N-body simulations to reproduce accurately the
weakly-nonlinear and NL perturbation growth.
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2.2.1 Spherical evolution

Though numerical simulations are needed to study in details the nonlinear growth of
cosmic structures, we can study the evolution of perturbations in the nonlinear regime by
making use of some assumptions. In particular, the analytical model that we present here,
the so-called spherical evolution model (Gunn & Gott, 1972), is sufficiently accurate to
describe the isolated formation of spherical collapsed overdensities (i.e. DM haloes) and
underdensities (i.e. cosmic voids). Considering an initially spherical perturbation, which
can be positive or negative, we can represent it as a closed or open universe, respectively,
that evolves in an EdS background. We consider an initial time ti > teq, where teq is
the matter-radiation equivalence time, thus we study the evolution of perturbations in
the matter-dominated cosmic epoch, but at redshifts high enough for assuming an EdS
model for the background. Assuming again the validity of the CP, we can suppose that
each perturbation can be treated as an independent Friedmann universe until it evolves
adiabatically. The only interaction we have to take into account is therefore only the
gravitational one. In this model we consider a spherical top-hat perturbation and model
it as a set of concentric shells. As stated in Sheth & van de Weygaert (2004), the evolution
of the considered perturbation only depends on the total energy embedded in the shell,
on its peculiar velocity, and not on the radial distribution of the density field inside it.

Overdensities

Let us consider the evolution of an initially overdense shell in an EdS Universe. We know
from Sect. 2.1.1 that for a matter perturbation in an expanding universe the growing and
decaying mode of perturbation scale as δ+ ∝ t2/3 and δ− ∝ t−1, respectively. Therefore
the density contrast can be expressed as the combination of these two modes:

δi = δ+(ti)
( t
ti

)2/3
+ δ−(ti)

( t
ti

)−1
. (2.42)

Assuming a null initial velocity for the perturbations, we can compute the derivative of
the latter relation with respect to the time considering t = ti, finding:

2

3
δ+(ti)− δ−(ti) = 0 =⇒ δ−(ti) =

2

3
δ+(ti) . (2.43)

Therefore, Eq. (2.42) can be written, for t = ti, as:

δi =
5

3
δ+(ti) . (2.44)

Hence 3/5 of the initial perturbation is represented by the growing mode, while the re-
maining 2/5 decays with time, tending to become negligible.

Now, let us consider the density parameter of the perturbation universe, ΩP. This
perturbation can be described in terms of a closed universe, which we know from Sect. 1.4.1
that will undergo to a collapse. Consequently, we can impose the relation ΩP > 1:

ΩP(ti) ≡
ρP(ti)

ρc(ti)
=
ρB(ti)(1 + δi)

ρc(ti)
= Ω(ti)(1 + δi) > 1 , (2.45)

where Ω is the initial density parameter of the background universe, and ρc is the critical
density. So we find that for a closed Universe, it is necessary that (1 + δi) > Ω(ti)

−1. By
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considering a mono-component Universe with w = 0, we can use Eq. (1.54) to find the
threshold for δ(ti) that will lead to the collapse:

δ(ti) =
3

5
δi >

1− Ω0,B

(1 + z)Ω0,B
. (2.46)

From this equation we can see that for closed or flat background universes (i.e. for Ω0,B ≥
1) the collapse is achieved for any positive value of the initial density contrast, while for
open universes (i.e. for Ω0,B < 1) the expansion inhibits the collapse if δi is not sufficiently
large.

What we expect for an overdense perturbation growing in our Universe is therefore
an initial expansion, slower than the Hubble flow, followed by a gradual halting until
the reaching of a maximum radius rmax. After this moment, called turn around, the
perturbation reverses its motion and decouples from the Hubble flow towards its final
collapse. It is possible to show that the density of the perturbation at the turn around
(i.e. for t = tmax) is:

ρP(tmax) =
3π

32Gt2max

. (2.47)

We can calculate the density contrast of the perturbation at the turn around by computing
the background density at tmax from the equations in Table 1.1. This yields:

δ(tmax) ≃
ρP(tmax)

ρB(tmax)
− 1 =

(3π
4

)2
− 1 ≃ 4.6 . (2.48)

The last relation suggests that, at the moment of the turn around, the collapsing region is
already in the nonlinear regime and is nearly 5 times denser than the background universe.
The same quantity obtained using the linear theory, would be instead:

δ(tmax) = δ(ti)
( tmax

ti

)2/3
≃ 1.06 . (2.49)

After the turn around, the physical scale of the perturbation decreases until t = 2tmax,
time at which the full collapse would be reached, forming a singularity. Nevertheless,
even though a strictly gravitational description implies that the comoving radius of the
overdensity shrinks to zero, in reality the matter in the collapsing region will eventually
virialise. The hydrodynamical interactions (for the baryonic matter) or the increase of
the dispersion velocity of the particles (for the DM) within the shell will lead towards a
dynamical equilibrium. Therefore, it is usual to assume that the final size of a collapsed
spherical object corresponds to its virial radius. From numerical simulations we know that
the virialisation is reached at a time tvir = 3tmax, at which the size of the perturbation
becomes stable, at the virialisation radius Rvir.

Let us assume that the perturbation system has kinetic energy T (or internal thermal
energy, associated with motions of particles) and gravitational potential energy V. The
final result is a system which satisfies the virial theorem, which states that:

2T + V = 0 . (2.50)

Considering the potential energy of a self-gravitating sphere of mass M

V = −3

5

GM2

R
, (2.51)
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the total energy of the system becomes:

E = T + V =
1

2
V = − 3

10

GM2

R
. (2.52)

Let us also assume the absence of any mass or energy loss since the turn around, E(tvir) =
E(tmax), which leads to 2Rvir = Rmax. From the fact that ρp(tvir) ∝ R−3

vir , it follows that

ρP(tvir) = 8ρP(tmax). (2.53)

Therefore we can now compute the density contrast at tcoll = 2tmax and tvir = 3tmax:

δ(tcoll) =
8ρP(tmax)

ρb(tmax)

(
tcoll
tmax

)2

≃ 180 ,

δ(tvir) =
8ρP(tmax)

ρb(tmax)

(
tvir
tmax

)2

≃ 400 .

(2.54)

While the same quantities extrapolated from the linear theory are:

δ(tcoll) = 1.06

(
tcoll
tmax

)2/3

≃ 1.69 ,

δ(tvir) = 1.06

(
tvir
tmax

)2/3

≃ 2.2 .

(2.55)

The quantities in Eq. (2.54) depend strongly on the cosmological model assumed for the
background universe, hence on its curvature. On the other hand, the dependence of their
linearly extrapolated counterpart is much weaker (Jenkins et al., 2001; Kitayama & Suto,
1996).

Underdensities

The evolution of an underdense spherical region is different from that of its overdense
counterpart. We can generally define these regions as voids. In this case, the net radial
acceleration is directed outward with respect to the centre of the sphere and it is directly
proportional to the mean density contrast ∆(r, t) of the void. Since the inner shells are
more underdense, they are affected by a stronger outward acceleration than the outer
shells.

Let us consider an inverse top-hat spherically symmetric underdense perturbation as
a set of concentric shells with respective radii ri. The mass M contained within the
perturbation radius r determines the acceleration experienced by each shell, which in the
Newtonian regime (i.e. ṙ ≪ c and r ≪ c/H) is:

d2r

dt2
= −GM

r
= −4πG

3
ρB(1 + ∆)r , (2.56)

where ρB represents the density of the background universe. At the initial time we have:

M =
4π

3
ρBr

3
i (1 + ∆i) ,

∆i =
3

r3i

∫ ri

0
δi(r)r

2dr ,

(2.57)
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where ∆i is the average value of δi within ri. Equation (2.56) can be solved analytically
giving, in the case of an EdS model for the background Universe, the following parametric
form for the evolution of the density deficit:

1 + ∆(r, t) =
ρ(r, t)

ρB(r, t)
=

9

2

(sinh θ − θ)2

(cosh θ − 1)3
, (2.58)

in which we introduced the dimensionless conformal time:

dθ =
ri
r

√∣∣∣∣
5

3
∆i(t)

∣∣∣∣Hi(t)dt . (2.59)

From these equations it is possible to derive the linear initial density deficit:

∆L
i (θ) = −

(
3

4

)2/3 3

5
(sinh θ − θ)2/3 . (2.60)

We make explicit the superscripts L to underline that the density contrast is computed in
linear theory. We will indicate with the NL the nonlinear counterpart and, in absence of
any superscript, we take for granted the reference to the nonlinear theory unless indicated
otherwise. As matter streams out of the voids, the value of density decreases asymptot-
ically to δ = −1. Since the density gradually decreases going towards the centre of a
void, the matter near the centre moves outward faster than matter in proximity of the
external boundaries. Shells that were initially close to the centre will ultimately catch
up the shells further outside, until they eventually pass them. This phenomenon is called
shell-crossing2, and brings to the tendency of astrophysical objects to accumulate around
voids, leading to the formation of sheets and filaments. Fig. 2.3 shows the evolution of an
underdensity profile up to the shell-crossing event, which leads to the formation of a high-
density ridge. From the shell-crossing on, the evolution of the void can be described by a
self-similar outward moving shell (Suto, Sato & Sato, 1984). The solutions in Eq. (2.58)
represent a family of trajectories labeled by ri and parametrised by θ. We can find out
when and where shell-crossing phenomenon first occurs by differentiating the parametrised
solutions with respect to r and θ, and requiring that dr and dt vanish. From these solu-
tions we can show that, at the shell-crossing event, the void has a precisely determined
excess Hubble expansion rate (Sheth & van de Weygaert, 2004):

Hsc =
4

3
H(tsc) , (2.61)

where H(tsc) is the Hubble parameter of the background Universe. Therefore the low-
density environment expands faster than the Hubble flow, thus more rapidly with respect
to the background Universe.

Now, substituting θsc in Eq. (2.60) we find that at the shell-crossing event, the void
interior has a relative density

1 + δNL
v ≃ 0.205 , (2.62)

2In principle, the shell-crossing phenomenon can be associated to the formation of an ideal void (spher-
ical, isolated and without substructures) and marks the transition from a quasi-linear towards a mildly-
nonlinear stage.
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Figure 2.3: Spherical model for voids represented by a top-hat profile evolving up to the
epoch of shell-crossing, marked by a blue line. Credits to van de Weygaert & Platen
(2011).

which implies that the void has expanded by a factor of (1+δNL
v )−1/3 = 1.697 in comoving

radius. Note that these numbers do not depend on the size of the void. Moreover, from the
latter relation we see that voids are only nearly nonlinear objects, since |∆sc| ≃ 0.795 < 1.
The linear extrapolated quantity of Eq. (2.62) is:

δLv ≃ −2.71 . (2.63)

This is the underdense counterpart of the critical density contrast δ(tcoll) found in
Eq. (2.55).

We can conclude that in the evolution of spherical voids, an expansion occurs, in
contrast with the collapse for the overdensities. During this evolution, void borders become
denser and the central parts reach lower density contrasts. Icke (1984a) demonstrated
that voids are likely to assume a spherical form, differently from collapsing objects, which
tendentially evolve into filamentary or sheet-like structures. Moreover, since the expansion
of a void can be considered as the time reversal of the collapse of an overdensity, for the
underdensities any eventual initial asphericity tends to be cancelled.

2.2.2 The Zel’dovich approximation

The transition between linear and nonlinear regimes can be described analitically for the
density contrast by means the Zel’dovich approximation (Zel’Dovich, 1970) (see Shandarin
& Zeldovich, 1989 for an exhaustive review). The Zel’dovich approximation is particularly
suitable in comoving coordinates r⃗ = x⃗/a(t), where a(t) is the scale factor and x⃗ are
physical coordinates. It relates r⃗ to the initial Lagrangian coordinates q⃗ at t→ 0 with an
explicit relation:

r⃗(q⃗, t) = q⃗ + δ+(t)s⃗(q⃗) , (2.64)
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where the vector field s⃗(q⃗) is called the initial displacement field and it is determined by
the initial density perturbations, while δ+(t) (often indicated with the notation D(z)) is
the amplitude of the growing mode, dependent only on the cosmological parameters. The
Zel’dovich approximation assumes that s⃗(q⃗) is a potential vector field:

s⃗(q⃗) = −∇qΨ(q⃗) . (2.65)

The main limit of this approach is that it considers only the displacement caused by initial
forces. Therefore particles are not subject to additional interactions at later times. This
implies that two particles can cross each other without causing any deviation in their
motion. This is called shell-crossing problem and affects mainly the modelling of the small
scales, where nonlinearity develops first.

An additionally important aspect of the Zel’dovich approximation, is the deformation
of mass elements. This deformation is described by the following tensor:

dij = − ∂2Ψ

∂qi∂qj
. (2.66)

From Eq. (2.64) we can infer an explicit expression for the density as a function of La-
grangian coordinates and time. Considering the conservation of mass in differential form
we obtain:

ρ(r⃗, t)d3r⃗ = ρ̄(t)d3q⃗ , (2.67)

and consequently the density evolution becomes:

ρ(x⃗, t) = ρ̄
[
δij + δ+(t)dij

]

= ρ̄[1− δ+(t)λ1]
−1[1− δ+(t)λ2]

−1[1− δ+(t)λ3]
−1 ,

(2.68)

where λi (i = 1, 2, 3) are the eigenvalues of the symmetric deformation tensor dij , defined
with the relation λ1 > λ2 > λ3. On the basis of the second equation of Eq. (2.68),
we can immediately infer two key features about the structure formation described
by the Zel’dovich approximation. The first is that the density becomes infinite when
δ+(t)λi = 1. The second is that the collapse is anisotropic unless the eigenvalues are
exactly λ1 = λ2 = λ3. Therefore, the structure generally collapses along a preferential
axis, i.e. the one associated to the largest λi. On the other hand, if the eigenvalues are
negative, the brackets in the second equation of Eq. (2.68) can not be null at any time,
so a dilatation takes place instead of a collapse. Different combinations of positive and
negative eigenvalues will lead therefore to different evolutionary outcomes.

2.3 Numerical simulations

The formation of cosmic structures can be approximated as the dynamical evolution of
a system of particles, tracers of the total mass distribution. Given the large number of
particles required to mimic the Universe with sufficient accuracy, the treatment of this
system is generally too complicated to be studied analytically. For this reason, numerical
simulations are employed by cosmologists to analyse the LSS of the Universe also in
the nonlinear regime, without the necessary simplifications adopted to reach analytical
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solutions. Once the cosmological scenario has been fixed by selecting an underlying theory
and a set of cosmological parameters, the simulation is run to make the initial system
evolve. Consequently, the final outcome can be compared with observations.

The most important effect to consider to mimic the evolution of density perturbations
is the gravitational interaction, which is dominant on large scales and influences the ma-
jority of the matter component of the Universe (i.e. DM). Simulations in which only the
gravitational force is considered are called N-body simulations. To obtain a more realistic
description of the LSS, the hydrodynamic effects resulting from the presence of the bary-
onic matter have also to be taken into account. Simulations in which also the baryonic
component is evolved are called hydrodynamic simulations.

The first studies in which numerical simulations were employed are Aarseth (1963),
Peebles (1970) and Press & Schechter (1974), treating simple N-body problems with few
hundred particles. Thanks to the advancement both of the technology and the computa-
tional techniques, nowadays we can make reliable predictions about a very large range of
phenomena, using simulations having billions of particles. Despite the incredible successes
of this branch of research, some strong limits in the creation of cosmological simulations
are still present. Once that the number of particles has been fixed by the computational
capability, the spatial resolution of the simulation is fully determined by the covered vol-
ume. Small volumes allow us to study galaxy formation models that resolve the physical
processes, given the high resolution of the analysed portion of the universe. Big volumes
allow us to study in more detail the LSS, treating statistically the properties of the uni-
verse. Simulations characterised by both high resolution and large volume are currently
still difficult to achieve.

Let us now briefly introduce the theory on which all the numerical simulations are
based. The simplest kind of N-body simulations, which considers only gravitational effects,
solves the following differential equation system:





Fi = GMi
∑

i ̸=j
Mj

r2ij
r̂2ij

ẍi =
dvi
dt = Fi

Mi
.

ẋi =
dxi
dt = vi

(2.69)

In this equation, for each i-th particle, we have that Fi is the gravitational force, Mi is
the mass, xi is the comoving coordinates, vi the velocity components. Then rij is the
comoving distance between the i-th and j-th particles, and r̂ij is the related versor. Given
the system of equations (2.69), the Euler equation of motion reported in the system (2.5)
can be re-written as:

dxi

dt
+ 2

ȧ

a
vi = − 1

a2
∇Φ = −G

a3

∑

i,j ̸=i

mj
xi − xj

|xi − xj |3
=

Fi

a3
, (2.70)

where a is the scale factor. Applying the Second Friedman Equation reported in Eq. (1.40),
the Poisson Equation of the system (2.5) it becomes:

∇2Φ = 4πGρ̄(t)a2δ =
3

2
H2

0Ω0
δ

a
, (2.71)

where ρ̄(t) is the average non-relativistic matter density, δ the local density contrast, H0

is the Hubble parameter and Ω0 the non-relativistic matter density parameter.
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A N-body simulation consists in the integration of the dynamical equations over dis-
cretised time steps, δt. At every time interval, the total gravitational force of the system,
Fi, is calculated. The simplest method to calculate the gravitational force acting on the
i-th particle is the particle-particle method, which is the most accurate but also the most
expensive in terms of computational time: for each time step it requires the computation
of the N(N − 1)/2 distances between the particles, so the number of operations scales as
O(N2). More efficient methods to compute the gravitational interaction are the so-called
hierarchical tree and particle-mesh, see Barnes & Hut (1986) and Hockney & Eastwood
(1981) for the details.

Then, the motion equation is evaluated by numerical integration and the new positions,
xi(t± δt), and velocities, vi(t± δt), are obtained. So the time is updated, t = t+ δt and
the process repeated. The value of δt can be chosen following different criteria, which
can be suitable for different approaches. They can be divided into three main categories:
(i) total energy conservation, (ii) convergence of final positions and velocities and (iii)
reproducibility of the initial conditions (Bagla & Padmanabhan, 1997).

2.3.1 Halo finding algorithms

The final output of a N-body simulation is a set of snapshots, which provides the con-
figuration of the system of particles for a sequence of instants, reproducing the evolution
the total matter density field. A possible approach to link these particle distributions to
the biased mass tracer field is to employ halo finding algorithms, which aim at group-
ing DM particles into DM haloes and and sub-haloes. Two standard techniques for halo
identification are the spherical overdensity (SO, Press & Schechter, 1974) and the Friends-
of-Friend (FoF, Davis et al., 1985), which have provided the basics for the development
of subsequent and more refined finding algorithms.

The SO method is based on the definition of a spherical overdensity regions around
density peaks, which are found by sorting particles by local density. Given a density peak,
a DM halo is identified by growing a sphere around it, stopping when the mean density
within this sphere, ∆, reaches the condition ∆(z) = ∆c · ρcrit(z), where ∆c is the selected
overdensity threshold and ρcrit(z) the critical density of the Universe at a given redshift
(see Eq. 1.50). This yields to:

4

3
πR3

c ∆c ρcrit =Mc , (2.72)

providing the definition for the halo virial radius, Rc, and viral mass, Mc.
The FoF algorithm defines instead as haloes those groups of DM particles separated

by distances lower than a given linking length, ℓ = b d, where d is the mean inter-particle
separation of the DM particle catalogue, and b is a free parameter of the code. This
algorithm will be employed to build the halo catalogues used in Chapter 6.

Closely related to the presented halo finding techniques is the SUBFIND algorithm
(Springel et al., 2001; Dolag et al., 2009), which will be used in the context of Sect. 9.2. This
algorithm identifies gravitationally bound structures by associating a spherical overdensity
virial mass to locally overdense regions, usually pre-identified by FoF group finder. Other
popular examples of more refined halo finding algorithms are Denhf (Tormen, Moscardini
& Yoshida, 2004; Giocoli, Tormen & van den Bosch, 2008) and Robust Overdensity Calcu-
lation using K-Space Topologically Adaptive Refinement (ROCKSTAR) (Behroozi, Wechsler
& Wu, 2013), which will be used for the preparation on the data analysed in Chapter 7

45



Figure 2.4: Left : scheme of the procedure performed in the Denhf algorithm to identify halos as
spherical overdensities with internal density equal to a given value ∆c = ρ/ρcrit. Credits to Despali
et al. (2016). Right : main steps followed by the ROCKSTAR algorithm to build a hierarchy of haloes
and sub-haloes. Credits to Behroozi, Wechsler & Wu (2013).

and Chapter 8, respectively. As we will describe in the following, these finders use differ-
ent approaches to assign the mass and other structural properties to the identified haloes:
while Denhf aims for a definition of the halo mass more linked to observational data sets,
ROCKSTAR focuses on an accurate reconstruction of halo merging histories and physical
properties.

As SUBFIND, Denhf is based on the SO methodology. For each particle in the snapshot,
the algorithm estimates the local DM density, ρi, by using the distance of the 10-th nearest
neighbour, di,10. Then the particles are sorted according to the local density: the first halo
is located at the position of the densest particle. Now a sphere is grown around this centre
until the embedded mean density surpasses a desired critical value. In particular, the halo
virial radius and viral mass are defined according to Eq. (2.72), choosing a specific value
for the density contrast ∆c, as 200, 500 or 1000. At this point all the DM particles within
the sphere are assigned to the newly identified halo, and the procedure is repeated for
the remaining densest particles that do not belong to an already identified halo. A visual
representation of this procedure is reported on the left side of Fig. 2.4.
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ROCKSTAR is a phase-space halo finder (i.e. it operates in 6 dimensions, given by the
3D values of positions and velocities) based on adaptive hierarchical refinement of FoF
groups, which allows a robust identification of haloes and sub-haloes. In particular, this
algorithm first identifies particle groups with a FoF variant with a linking length larger
than the usual3. Then, for each FoF group, ROCKSTAR builds a hierarchy of subgroups
in phase space by progressively and adaptively reducing the value of the linking length:
the 70% of the particles (fraction that can also be tuned by the user) of the main FoF
group are gathered in sub-groups. The procedure is repeated to form a hierarchy of FoF
sub-groups. Finally all the particles in the base FoF group are assigned hierarchically in
phase space, starting from the lowest substructure levels. At the end of this procedure all
the bounded particles will constitute a single halo, for which the main properties are then
computed. A schematic visualisation and description of this process is reported on the
right side of Fig. 2.4. Thanks to the accuracy checks performed across multiple time-steps,
the ROCKSTAR algorithm allows an accurate tracking of histories and properties of haloes,
recovering e.g. their expected mass accretion, merger events and shapes.

Many other halo finding algorithms have been proposed during the years and can be
exploited according to characteristics required for a given analysis, e.g. computational
performances, halo identification accuracy and predicted halo observational proprieties.
We refer the reader to Knebe et al. (2011) for a detailed comparison between different
halo finders.

2.3.2 Building a mock catalogue

Once we identified the DM haloes in the distribution of DM particles, we need to simu-
late the luminous astrophysical objects (i.e. galaxies and cluster of galaxies) in order to
reproduce real survey data. A possible strategy is to follow the evolution of the baryonic
matter, beside that of the DM. This requires to simulate, in addition to the effects of
the gravitational force, all the known physical processes involved during galaxy formation
and evolution, like radiative cooling, re-heating, turbulence, shocks, ecc. The modelling
of these processes is a very complex task for a twofold reason: firstly because of our lack
of knowledge about the micro-physics involved, and secondly because of the expensive
computational resources required to handle the calculus of all forces acting on DM and
baryonic particles. However, it is important to underline that baryonic interactions be-
come relevant only on relatively small scales, therefore LSS on sufficiently large scales
(larger than few Mpc) can be considered unaffected by these processes. Simulations in
which the baryonic physics is taken into account to reproduce the feedbacks from stellar
radiative processes, supermassive black holes and active galactic nuclei are called hydro-
dynamic. An example of hydrodynamic simulations is given by the Magneticum4 (Dolag
et al., in preparation), which will be analysed in Sect. 9.2.

Other approaches aimed at reproducing the clusters and the galaxies embedded in the
DM haloes exploit instead semi-analytic methodologies, making use of both numerical
and analytic techniques to approximate the physics involved in baryonic processes, with
a degree of approximation that depends on the complexity of the physical phenomena

3Common values for building halo catalogues range from b = 0.15 to b = 0.2 (More et al., 2011), but
in this case the algorithm uses b = 0.28 to have more bounded particles and consequently model properly
also the most ellipsoidal haloes.

4http://www.magneticum.org/
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modelled. Moreover, different type of algorithms have been proposed to have an higher
accuracy in reproducing galaxy observable properties but a lower understanding of the
physical processes involved in galaxy formation and evolution. Among these, we first in-
troduce the halo-occupation distribution (HOD) method. In one of its simplest forms,
this algorithm associates a number of galaxies (divided in central and satellites) to each
halo of the catalogue according its total mass, and assigns observable properties (e.g. stel-
lar mass or luminosity) to the galaxies, relying on some statistical conditional functions.
Then we have the halo-abundance matching (HAM) and the sub-halo-abundance match-
ing (SHAM): with this approach we assign the generated galaxies to an hosting structure
(halo or sub-halo) assuming a monotonic relation between the galaxy properties and the
host halo or sub-halo mass, respectively for the HAM and the SHAM method. The HOD
and the SHAM algorithms will be involved in the preparation of the galaxy catalogue
employed in Chapter 8. An honorable mention goes to the sub-halo clustering and abun-
dance matching (SCAM) technique, which aims at applying both the HOD and SHAM
approaches in sequence, providing a parametrised model to fit both the abundance and
the clustering properties of a target population (see e.g. Ronconi et al., 2020).

As final remark, we underline that objects in a snapshot, whether we consider DM
haloes or galaxies, are all characterised by the same cosmological age. However, to have a
direct comparison with observations, we need to mimic the time evolution characterising
astrophysical objects distant from the observer. This is obviously a direct consequence of
the finite value of the light speed. The catalogues characterised by this feature are called
light-cones and are generally build by stacking sequentially different slices of cosmological
snapshots relative to different cosmic epochs. See Fig. 2.5 for a visual representation.
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Figure 2.5: Upper : set of cosmological snapshots taken at different times: from billions of years
after the Big Bang to current structures. Looking at each box separately it is possible to appreciate
the evolution in the formation of the LSS. Credit: CXC/MPE/V.Springel. Lower : schematic
representation of the light-cone construction from the simulation. The slices in colour show the
portion of the matter extracted from each simulation snapshot with comoving distance between
Di and Di+1, within the aperture of the field of view. Credit: Giocoli et al. (2016).



Chapter 3

Tensions in the standard
cosmological model

In the last decades the ΛCDM model (see Sect. 1.5) has filled up a rather impressive
trophy case thanks to its remarkable successes in explaining a wide range of cosmological
observations. Among these, the present-day accelerated expansion of the Universe (Riess
et al., 1998; Perlmutter et al., 1999), the observed abundances of different types of light
nuclei (i.e. hydrogen, deuterium, helium, and lithium, see e.g. Schramm & Turner, 1998;
Steigman, 2007; Iocco et al., 2009; Cyburt et al., 2016), the angular power spectrum and
statistical properties of the CMB anisotropies (Planck Collaboration et al., 2020b), and
statistical properties of the LSS of the Universe (Bernardeau et al., 2002; Bull et al.,
2016). However, despite its widespread popularity, this scenario is currently under intense
investigation, since it clashes with both some theoretical and observational issues.

For what concerns the theoretical issues, we first underline that the ΛCDM model does
not provide a physical description for the CDM nature1 (see also Sect. 1.5). Moreover,
cosmological models based on Einstein’s classical theory result unreconciled to quantum
theory and imply a cosmological singularity in the Universe past life. Then, the two
(historical) arguments against the validity of the cosmological constant are the so-called
coincidence and fine-tuning problems (Weinberg, 1989; Martin, 2012; Burgess, 2013; Solà,
2013; Velten, vom Marttens & Zimdahl, 2014, but see also Bianchi & Rovelli, 2010 for an
alternative perspective). The first problem is related to the coincidence of living in the
precise era of transition between the matter domination and the late time acceleration
one, i.e. when ΩΛ ≈ Ωm (see Sect. 1.5), which can be considered statistically unlikely
given the dramatically different evolution histories of these components (Sect. 1.4.1). The
second problem is associated with the large discrepancy between theoretical expectations
and the observations on the value of the cosmological constant Λ. Indeed, on one hand,
we expect from the quantum field theory that particles in the Standard Model contribute
to the value of the cosmological constant in a non negligible amount (Weinberg, 1989):

|Λth| ≲ 10−26 kg m−3 ≃ 10−47GeV4 . (3.1)

On the other hand, the value of the cosmological constant inferred from observation

1In the case of models that assume further degrees of freedom other than the cosmological constant
also the very nature of the DE remains unexplained.
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(Planck Collaboration et al., 2016a) is:

Λobs ≃ 1095 kg m−3 ≃ 10−74GeV4 , (3.2)

which is roughly 120 order of magnitude larger than the observed value. Another formu-
lation of this problem also inquiries the profound explanation of the extremely low, but
non null, value of the cosmological constant.

For what concerns the observational issues, the increasing precision of modern cos-
mological and astrophysical measures, as well as the more accurate theoretical modelling
of the data, has brought to statistically relevant tensions on the cosmological parameter
values derived with different probes. These discrepancies arise in particular when consid-
ering probes covering different ranges of redshift: those related to local measurement (late
or low-redshift probes) and those related to the measure of CMB anisotropies (early or
high-redshift probes). Among the today most puzzling tensions we find (see Di Valentino
et al., 2021a,b,c, for a review):

• the Hubble parameter tension (see also Sect. 1.3), i.e. local direct measurements of
H0, exploiting the distance ladder approach (see e.g. Freedman et al., 2001; Riess
et al., 2011, 2016; Freedman et al., 2019), are in about 4.4σ tension with CMB
indirect measurements, inferring the value of the Hubble constant assuming the
ΛCDM model (Planck Collaboration et al., 2020a);

• the growth of structures tension, i.e. direct measurements of the growth rate of
cosmological perturbations from weak lensing and clustering (Heymans et al., 2012;
Erben et al., 2013; Joudaki et al., 2017, 2018; Abbott et al., 2018b; Troxel et al.,
2018; Hildebrandt et al., 2020) indicate a lower growth rate than that indicated
by the Planck data at a level of about 2 − 3σ. This tension is often quantified
using the parameter S8 ≡ σ8

√
Ωm/0.3 (along the main degeneracy direction of weak

lensing measurements) and can also be related to fσ8(z = 0) (measured by galaxies’
redshift-space distortions), where f is defined in Eq. (2.15);

• the curvature tension, i.e. the Planck data lead to a preference at 3.4σ for a closed
Universe (Planck Collaboration et al., 2020a; Di Valentino, Melchiorri & Silk, 2020;
Handley, 2021), in disagreement with the concordance flat ΛCDM scenario, which
implies a flat space geometry. This tension with the flat ΛCDM model predictions
is connected with the oddly higher lensing contribution in the CMB power spectra,
characterised by the AL parameter (Calabrese et al., 2008; Planck Collaboration
et al., 2020a), which is strongly degenerate with Ωκ;

• the Universe age tension, i.e. the age of the Universe obtained from local measure-
ments using very old-dated objects (e.g. the first stars in the Milky Way or popula-
tions of stars in globular clusters, see Bond et al., 2013; Schlaufman, Thompson &
Casey, 2018; Jimenez et al., 2019; Valcin et al., 2020) appears to be marginally larger
than the corresponding age obtained using the CMB Planck data, in the context of
the ΛCDM cosmology (Planck Collaboration et al., 2020a).

These tensions and the other significant issues of the ΛCDM model may reflect a break-
down of the assumed standard scenario and may hint towards undiscovered physics.
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3.1 Alternatives to the standard ΛCDM model

Among the alternatives to the standard ΛCDM model proposed to face the issues exposed
above, we will provide a brief introduction on the two categories of models in which the
physical scenarios of accelerating cosmologies are usually separated: DE and modified
gravity (MG) models (see e.g. Yoo & Watanabe, 2012; Amendola et al., 2013; Joyce,
Lombriser & Schmidt, 2016, for a review). Essentially, DE models modify the right-
hand side of the Einstein’s field equation (Eq. 1.14), i.e. the stress-energy content of the
Universe, adding a component with an equation of state parameter w ≃ −1, which may
also be time-dependent. Instead, the MG category considers the left-hand side of the
Einstein equation, modifying the Einstein–Hilbert action, i.e. GR itself. However, we
underline that not all the models in the literature belong unambiguously to one category
or the other, in fact while the modifications of the Einstein’s field equation (i.e. the
physical interpretations) may look different, the overall effect on the cosmological scenario
can coincide.

Additionally, we will present the degeneracies between the effects of some of these
models and those including massive neutrinos. Neutrinos are indeed another elusive com-
ponent of the ΛCDM cosmology, and although the Standard Model of particle physics
assumes they are massless, the evidence of solar neutrino oscillations proved they in fact
possess a mass (Becker-Szendy et al., 1992; Fukuda et al., 1998; Ahmed et al., 2004).
Many works have have pointed out that the presence of massive neutrinos causes im-
prints on the observable Universe LSS strongly degenerate with DE and MG theories (He,
2013; Motohashi, Starobinsky & Yokoyama, 2013; Upadhye et al., 2014; Baldi et al., 2014;
Lorenz, Calabrese & Alonso, 2017; Giocoli, Baldi & Moscardini, 2018) and can also help
reducing the tensions related to the standard ΛCDM cosmology (Lesgourgues & Pastor,
2006; Costanzi et al., 2014; Poulin et al., 2018; Sakstein & Trodden, 2020; Lambiase et al.,
2019).

3.1.1 Dynamical DE models

The first category of theories we describe follows the approach of parametrising the
Universe background quantities only, deriving consequently the associated Hubble rate
(Eq. 1.55). We can follow the strategy to choose minimally-coupled scalar field models
(Wetterich, 1988; Ratra & Peebles, 1988), also known as quintessence, which corresponds
to consider a rest-frame sound speed2, cs, and a cosmic fluid with a null anisotropic stress3,
σ. The name “quintessence” refers to a fifth element, other than baryons, DM, radiation
and neutrinos, which is identified as the missing cosmic energy density component with
negative pressure, responsible for the accelerated expansion of the Universe. The basic
idea of quintessence models is that DE is in the form of a time-varying scalar field, ϕ, that
is slowly rolling down toward its potential minimum. In these theories the evolution of

2In practise, we impose the sound speed to be equal to the speed of light (cs = 1 in natural units, i.e.
c = ℏ = 1), causing the smoothing of DE perturbations on sub-horizon scales. An example of popular
models beyond the simple quintessence are the so-called k-essence models, which are defined by an arbitrary
sound speed in addition to a free equation of state parameter w.

3The anisotropic stress quantifies how much the pressure of the fluid varies with the direction and the
study of its perturbation is crucial to understand the evolution of inhomogeneities in the early, radiation-
dominated Universe (Hu, 1998; Koivisto & Mota, 2006).
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the scalar field, assumed to be spatially homogeneous, is governed by:

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0 , (3.3)

where V (ϕ) is the potential energy and the overdots denote the derivative with respect to
the time while the prime with respect to the scalar field ϕ, respectively. Then, from the
the energy density and the pressure of the scalar field we can derive the equation of state:

w ≡ p

ρ
=

1
2 ϕ̇

2 − V (ϕ)
1
2 ϕ̇

2 + V (ϕ)
, (3.4)

where 1
2 ϕ̇

2 is the kinetic energy. The parameter w can vary in the range [−1, 1], but since
we want to recover accelerating Universe solutions we must impose w < −1/3. If the scalar
field evolves very slowly with time then the kinetic energy term will be much smaller than
the potential energy term and w will tend to −1. In this case the scalar field behaves like
the cosmological constant.

We will now introduce some DE models, which assume a generic quintessence-like
component with an equation of state w (Eq. 3.4) expressed by means of simple parametri-
sations:

• the wCDM cosmology, which implements a constant (i.e. time independent) DE
equation of state;

• the Chevallier-Polarski-Linder (CPL) (Chevallier & Polarski, 2001; Linder, 2003)
parametrisation, in which the equation of state follows the equation

wCPL(z) = w0 + wa
z

z + 1
; (3.5)

• the Jassal-Bagla-Padmanabhan (Jassal, Bagla & Padmanabhan, 2005) (JBP)
parametrisation, in which w takes the form

wJBP(z) = w0 + wa
z

(z + 1)2
; (3.6)

• the logarithmic (LN) parametrisation introduced by Efstathiou (1999)

wLN(z) = w0 + wa ln

(
1

z + 1

)
. (3.7)

Finally, among the most popular DE models used in the literature, we report also a more
complex alternative, which is an unified DM and DE model that avoids the potential
energy fine-tuning of the quintessence. This scenario implements an exotic background
fluid, i.e. a generalised Chaplygin gas (GCG) (Kamenshchik, Moschella & Pasquier, 2001;
Dvali & Turner, 2003), described by the following equation of state:

p = − A

ρα
, (3.8)
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where A is a positive constant and 0 < α ≤ 1. Inserting this equation of state into the
energy conservation equation (Eq. 1.43) yields:

ρ(t) =

[
A+

B

a3(1+α)

] 1
1+α

, (3.9)

where B is an integration constant. From this relation we can see that, in early epochs
(a≪ 1) the Chaplygin gas energy density follows the trend ρ ∝ a−3, while in late epochs

(a ≫ 1) its trend is ρ ≈ A
1

1+α = const. Thus this single fluid behaves as DM or DE
according to the cosmic time (see Sect. 1.4.1). Introducing now As = A/ρ1+α

0 , with ρ0
representing the today’s value of the energy density of the GCG, we can derive the DE
equation of state:

wGCG = − As

As + (1−As)(1 + z)3(1+α)
. (3.10)

Since at low redshift the speed of sound for the Chaplygin gas model becomes approxi-
mately proportional to α, we generally impose the upper bound |α| ≤ 10−5 to avoid the
growth of inhomogeneities at late epochs (Sandvik et al., 2004).

In Chapter 8 we will focus on the analysis of two of the presented DE equation of state
parametrisations: the constant w parametrisation and the CPL parametrisation. The first
is the simplest case for a dynamical DE and it is in fact considered only for its simplicity
(only one additional degree of freedom with respect to the ΛCDM model). The second
model is one of the most employed in the literature thanks to its statistical agreement
with most of the observational data (see e.g. Zhao et al., 2007; Shi, Huang & Lu, 2012;
Planck Collaboration et al., 2016b; Ebrahimi, Monemzadeh & Moshafi, 2018; Tamayo &
Vázquez, 2019). The direct motivation of proposing such a parametrisation form is to
overcome the issue of the divergence at high redshifts of the linear form w(z) = w0+waz.
Other advantages have been pointed out by Linder (2003), such as a simple physical
interpretation (the parameters w0 and wa represent indeed the equation of state’s present
value and its overall time evolution, respectively), a manageable 2D-phase space, a well
behaved and bounded behavior for high redshifts (but see Ma & Zhang, 2011 for the
problems related to the description of the future evolution, i.e. approaching to z = −1)
and high accuracy in reconstructing many scalar field equations of state.

3.1.2 Modified gravity models

MG models affect in general both the background and the perturbation equations, thus,
besides leading to a cosmic acceleration, these models also introduce new physics on small
scales. Having new degrees of freedom in the gravitational sector, MG theories must
employ some screening mechanism in order to evade the very constraining local tests of
gravity (Le Verrier, 1859; Bertotti, Iess & Tortora, 2003; Will, 2005).

As already mentioned, one of the simplest ways to modify the GR equations is to
modify the left-hand side of the Einstein’s field equation (Eq. 1.14). We can write the
Einstein-Hilbert action, S, as the following:

S =

∫
d4x

√−g
(
M2

PR

2
− 1

2
ϕ̇2 − V (ϕ)

)
+ Sm[A2(ϕ)gµν , ψ] , (3.11)
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Figure 3.1: Chameleon effective potential in regions of low and high density. Left : the curvature
of the potential is shallow in large regions at low density, consequently the scalar field becomes
light and mediates a long range fifth force. Right : the scalar field acquires a large mass on small
scales featuring high density, therefore leads to the suppression of the additional fifth force around
matter overdensities. Credits to Elder et al. (2016).

where M2
P = 1

8πG is the reduced Planck mass and Sm is the action of the matter field ψ.
According to this formulation, the gravitational interaction is mediated by the scalar field
as well as the tensor field of GR. These are the bases of the so called scalar-tensor theories,
of which one of the most common representative is the Brans–Dicke theory (Brans & Dicke,
1961). In this specific case the potential and the coupling of the scalar field in Eq. (3.11)

become V (ϕ) = 0 and A2(ϕ) = exp
[
−ϕ/(MP

√
3/2 + ω)

]
, respectively, with ω being a

constant parameter. Thanks to Solar System tests we can place a constraining limit to
the latter, i.e. ω ≳ 4 × 104 (Clifton et al., 2012; Will, 2014), which implies a very weak
coupling of the field to the matter, making the Brans–Dicke theory essentially equivalent
to a DE model.

In more general scalar-tensor theories it is possible to choose V (ϕ) and A(ϕ) suitably to
evade Solar System constraints and having at the same time an interesting phenomenology
for the scalar field. The trick is in the exploitation of the scalar field’s response to the
effective potential, which depends on the external matter sources. This allows us to
build scenarios where the field behaves differently according the matter density of the
environment. A well-known example of this scenario is the so-called Chameleon field
(Khoury & Weltman, 2004b,a), in which the effective mass of the scalar field:

m2
eff(ϕ) =

d2Veff
dϕ2

=
d2V

dϕ2
+

d2A

dϕ2
ρ (3.12)

is shaped to acquire a high value in proximity of high-density regions and a smaller one in
low-density regions, as represented in Fig. 3.1. One potential that satisfies this requirement
is Ratra–Peebles (Ratra & Peebles, 1988) inverse power-law potential:

V (ϕ) =
M4+n

ϕn
, (3.13)

where n is a positive constant. See e.g. Khoury & Weltman (2004b,a); Hinterbichler
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& Khoury (2010) for other popular examples of potentials and couplings implementing
screening mechanisms like the one just described.

We will now provide some details on one of the most-studied scalar-tensor theories in
order to provide the theoretical background required for Chapter 7. This class of models,
called f(R) gravity, consists of higher-curvature corrections to the Einstein–Hilbert action:

S =
M2

P

2

∫
d4x

√−g
(
R+ f(R)

)
+ Sm[gµν , ψ] , (3.14)

where f(R) is a function only of the Ricci scalar, chosen to become significant in the low-
curvature regime, i.e. R → 0. In this class of MG theories, GR is recovered by imposing
f to be proportional to the cosmological constant f = −2ΛGR and more general cosmic
acceleration solutions can be obtained by following Capozziello & Fang (2002); Capozziello,
Carloni & Troisi (2003); Carroll et al. (2004). However, the original formulation of the
proposed models leads to predictions in disagreement with precision tests of gravity, as
demonstrated by Erickcek, Smith & Kamionkowski (2006). This is due to the fact that
f(R) models are actually scalar-tensor theories in disguise (Barrow & Cotsakis, 1988;
Chiba, 2003). A possible strategy to demonstrate it was given e.g. by Joyce et al. (2015),
who performed the following field redefinition and conformal transformation:

V (ϕ) =
M2

P

2

(
ϕdf
dϕ − f

)
(
1 + df

dϕ

)2 , A2(ϕ) = e

√
2
3

ϕ
MP (3.15)

which is equivalent to the Brans–Dicke with ω = 0 and a non-null potential.
A well-studied f(R) model, compatible with both local tests of gravity and the observed

expansion of the Universe on large scale, is the one introduced by Hu & Sawicki (2007):

f(R) = −m2
c1

(
R
m2

)n

c2

(
R
m2

)n
+ 1

, (3.16)

where m2 ≡ H2
0Ωm defines the mass scale m, while c1, c2 and n are non-negative free

parameters of the model. In particular we want to focus on the case in which c1/c2 =
6ΩΛ/Ωm, where ΩΛ and Ωm represent the present vacuum density and matter density
parameters, respectively. Indeed, under this specific condition, the background expansion
history is consistent with the one predicted by the ΛCDM model. Moreover, imposing
c2(R/m

2)n ≫ 1 the scalar field fR ≡ df(R)/dR can be approximated by:

fR ≈ −nc1
c22

(
m2

R

)n+1

. (3.17)

In Chapter 7 we will restrict our analysis to the case n = 1. With this choice the scalar
field can in fact be expressed by means of the parameter c2 only and the model at the
present epoch can be represented by the parameter fR0:

fR0 ≡ − 1

c2

6ΩΛ

Ωm

(
m2

R0

)2

, (3.18)
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where R0 indicates the background value of the Ricci scalar at the present time. Now
we can derive the modified Einstein equations by varying the action defined in Eq. (3.11)
with respect to the metric gµν :

fRRµν −
1

2
fgµν −∇µ∇νfR + gµν□fR = 8πGTµν , (3.19)

where ∇ is the covariant derivative and □ is the D’Alembert operator defined as □ ≡
gµν∇µ∇ν . Here fR turns out to be the responsible for the modification of the GR theory
and plays the role of a new dynamical scalar degree of freedom. From the trace of Eq. (3.19)
we can obtain the equation of motion for this scalar field:

∇2δfR =
a2

3
[δR(fR)− 8πGδρm] , (3.20)

where a is the scale factor of the metric. To obtain the equivalent of the Poisson equation
for the scalar metric perturbation 2ψ = δg00/g00, we extract the time-time component
from Eq. (3.19):

∇2ψ =
16πG

3
a2ρm − a2

6
δR(fR) , (3.21)

assuming small perturbations on a homogeneous background4 and a slow variation for fR
(quasi-static field).

From Eqs. (3.20) and (3.21) it is possible to derive the exact solution for the extreme
cases |fR0| ≫ |ψ| and |fR0| ≪ |ψ|. It can be demonstrated that, when the field is large,
thus in the former case, the Compton wavelength of the scalar field µ−1 = (3 dfR/dR)

1/2

determines the interaction range of an additional fifth force, which can enhance the gravity
field up to a factor of 4/3 for k ≫ µ. Standard gravity is instead restored for scales k ≪ µ.
In the latter case, instead, the value of fR0 is small and Eq. (3.21) can be approximated
by the standard Poisson equation, leading to the recovery of GR in regions of high space-
time curvature thanks to the effect of the Chameleon-screening mechanism. By solving
Eq. (3.20) under the assumption of small perturbations in the homogeneous background,
δfR ≤ f̄R, we can obtain the screening condition for an ideal spherical source of mass M
causing the fluctuation of the scalar field:

|fR| ≤
2

3
ψN (r) , (3.22)

where ψN = GM/r is the Newtonian potential of the overdensity. In this approximation,
the enhancement of gravity is carried out only by the distribution of mass outside the radius
for which ψN (r) = 3/2 |fR|, that constitutes the transition point between the screened and
un-screened regimes.

We can now assess valid estimations for the free parameter fR0. The case in which
fR0 ≪ ψN has no relevant cosmological interest since the fifth force is always screened,
hence the resulting scenario is indistinguishable from GR even on large scales. On the
other hand, for fR0 ≫ ψN , we would face the implausible situation in which gravity is
always enhanced. Therefore the parameter fR0 should be settled around the same order
of magnitude of the Newtonian potential ψN , that in turn typically shows values in the
range 10−5 ≤ ψN ≤ 10−6.

4δfR ≡ fR − f̄R, δR ≡ R − R̄ and δρm ≡ ρm − ρ̄m, where the barred values represent the background
quantities.
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3.1.3 Massive neutrinos

Neutrinos are massive particles contributing to the total matter content of the Universe
and to the growth of cosmic structures. Given their small masses, neutrinos decouple
from high relativistic particles at the early stages of the Universe, when their thermal
energy drops below their mass. Precision cosmology allows nowadays to put strong con-
straints on their physics and especially on the sum of their mass eigenstates Mν ≡∑mν .
The total neutrino mass is indeed constrained by several astronomical observations to
be Mν ≲ 0.1− 0.3 eV (see e.g. Seljak, Slosar & McDonald, 2006; Riemer-Sørensen et al.,
2013; Lu et al., 2015, 2016; Cuesta, Niro & Verde, 2016; Kumar & Nunes, 2016; Yèche
et al., 2017; Poulin et al., 2018), and their contribution to the total amount of energy in
the Universe at late cosmological epochs can be computed as (Mangano et al., 2005):

Ων ≈ Mν

93.14 h2 eV
. (3.23)

Given their weak interaction cross-section, neutrinos can be considered as a DM compo-
nent. However, contrary to CDM particles, neutrinos can free-stream from high density
perturbations of matter thanks to their high thermal velocity. Indeed we can derive the
typical scales travelled by neutrino perturbations, described by the free-streaming length:

λFS(z,Mν) = a(z)
2π

kFS
= 7.7(1 + z)

H0

H(z)

(
1eV

Mν

)
h−1 Mpc , (3.24)

where kFS is the associated free-streaming wavenumber, which during the neutrino non-
relativistic transition, znr, reaches the minimum value (Lesgourgues et al., 2013):

kFS(znr) ≃ 0.0178

(
Ωm

Mν

1eV

)1/2

h−1 Mpc . (3.25)

Therefore modes with k < kFS evolve as CDM perturbations since neutrino velocities can
be neglected, while on small scales (k ≫ kFS) free-streaming leads to the slowdown of
the neutrino perturbation growth. Besides suppressing the clustering below their thermal
free-streaming scale, neutrinos also affect the shape of the matter auto-power spectrum
(Brandbyge et al., 2008; Saito, Takada & Taruya, 2008, 2009; Brandbyge & Hannestad,
2009, 2010; Agarwal & Feldman, 2011; Wagner, Verde & Jimenez, 2012), the halo mass
function (Brandbyge et al., 2010; Marulli et al., 2011; Villaescusa-Navarro et al., 2013),
the scale-dependent bias (Chiang, LoVerde & Villaescusa-Navarro, 2019), the clustering
properties of CDM haloes and redshift-space distortions (Viel, Haehnelt & Springel, 2010;
Marulli et al., 2011; Villaescusa-Navarro et al., 2014; Castorina et al., 2014, 2015; Zennaro
et al., 2018; Garćıa-Farieta et al., 2019).

Moreover, it has been demonstrated that the observable footprints predicted by MG
theories are strongly degenerate with the signatures induced by the presence of massive
neutrinos. Indeed, the typical range of the fifth force for f(R) models, determined by
the Compton wavelength µ−1, can reach a few tens of Mpc (see e.g. Cataneo et al.,
2015) depending on the value of the parameter fR0, and it is comparable with the free-
streaming scale of neutrinos, which can be estimated with Eq. (3.24). The neutrinos
free-streaming can have thus a counteractive effect on the enhanced growth of the cosmic
structures, causing a compensation on the cosmological statistical variations given by MG
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theories. This poses a notable challenge for cosmology, since robust methods and different
cosmological probes are required to achieve tight constraints on both massive neutrinos
and MG, and especially to disentangle their combined effects.

In Chapter 7 we will evaluate the contribution of cosmic voids – which we will formally
introduce in Chapter 4 – in this context. Indeed, thanks to their peculiar underdense
nature and exceptional spatial extension, comparable to the ranges covered by the fifth
force of f(R) models and by the neutrino free-streaming, voids are particularly sensitive
to both these components. We will demonstrate how their statistics may play the role of
key probes in the disentangling of the presented degenerate scenarios.
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Chapter 4

Statistical properties of cosmic
voids

We can describe cosmic voids as those large and underdense regions that emerge between
the filaments and the walls of the cosmic web, filling most of the volume of the Universe.
What we learnt from Sect. 2.2.1 is that voids originate from the evolution of underdensities
in the primordial matter density field, growing in size with an expansion rate that is
inversely proportional to the density they enclose. As they expand, the density within these
objects decreases mainly as consequence of the redistribution of mass over the expanding
volume and secondarily due to the mass lost to the surrounding overdensities. Since matter
from the inner parts accumulates near the boundary, a ridge develops around the void, as
shown in Fig. 4.1.

Analogously to galaxy clusters, their positive counterparts in the density field, voids
number counts and density profiles provide powerful cosmological probes. However, the
identification of cosmic voids is not trivial, since their shape and position have to be
reconstructed starting from the distribution of luminous tracers arranged mostly on their
boundaries. Despite these major problems, cosmic voids gained increasingly popularity
in the last decades thanks to some really intriguing features: voids are for their nature
only mildly nonlinear (nonlinear effects occur only near the edges) and tend to become
more spherical as they evolve, which suggests that their evolution should be easier to
reconstruct than that of positive perturbations. These characteristics allow us to predict
the void statistical distribution as a function of their size. This property is particularly
important to constrain cosmological parameters and makes voids fundamental probes that
can be exploited to improve upon current constraints on DE and to discriminate between
the competing cosmological models introduced in Chapter 3 (more details will be provided
in Sect. 4.7).

In this section, we will discuss the specific void definition adopted in this Thesis work.
Then we propose a brief review of the excursion-set formalism that, in combination with
the spherical collapse model, provides insights into many aspects of halo formation and
can be used to predict the DM halo abundances and clustering. The analogous spherical
expansion model can likewise be used to make excursion-set predictions for voids (Sheth
& van de Weygaert, 2004), leading to the statistical distribution of voids as a function
of their size. Finally, we overview the main features associated to the density profiles of
cosmic voids.
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Figure 4.1: Simulation of an evolving void in a ΛCDM scenario, shown at six different epochs:
a = 0.05, 0.15, 0.35, 0.55, 0.75 and 1.0. The simulation slice shown in these images is 50 h−1 Mpc
wide and is 10 h−1 Mpc thick. Credits: van de Weygaert & Platen (2011).



4.1 Void definition

Despite the increasing usage of cosmic void statistics in the recent literature, a widespread
and unique definition of cosmic voids has not yet been provided, and this fact represents
one of the main issues in their cosmological usage. For instance, there is not a common
set of values (or, at least, range of values) to classify voids according to their internal
density, size and shape. Given the focus of this Thesis work on the void size function,
we will define voids in agreement with the theoretical size function prescriptions, which
we will introduce in Sect. 4.3. Thus, we consider voids as ideal, non-overlapping spheres,
embedding a fixed negative density contrast δNL

v . We will see in the next chapters which
values of internal density contrast are more appropriate for cosmological analyses.

Beyond the void definition adopted in this work, other methods to define and detect
cosmic voids have been proposed by the scientific community. In particular, voids can
be simply identified as regions empty of mass tracers, or at least with densities lower
than a given fraction of the mean cosmic density (Elyiv et al., 2013; Micheletti et al.,
2014). Alternatively, voids can be defined based on their geometry, such as as underdense
geometrical structures, composed by polyedra, spheres or tessellations (Platen, van de
Weygaert & Jones, 2007; Neyrinck, 2008; Sutter et al., 2015). Otherwise, we can rely
on dynamical criteria in which mass tracers are used to reconstruct the velocity density
field (Forero-Romero et al., 2009; Lavaux & Wandelt, 2010; Elyiv et al., 2015). In the
latter case, the void centres are defined as the points from which particles escape with the
maximal velocity. These different definitions have all been employed in the development
of void finder algorithms during the last decades. An analysis of the different classes of
void finders will be presented in Sect. 5.2.

4.2 Excursion-set formalism

The excursion-set formalism is an analytical framework to study the LSS of the Universe.
This approach allows us to predict the number density of structures by relating the cos-
mological linear perturbation theory to its nonlinear counterpart at late time. In this
section we will introduce the general concepts needed to formulate the theoretical model
describing the abundance of voids as a function of their sizes.

In real space, the linear density fluctuation field smoothed on a scale R is given by:

δ(x, R) =
1

(2π)3

∫
δ(k)W (k, R)e−ik·xd3k , (4.1)

where δ(k) is the Fourier transform of the density perturbation δ(x) ≡ [ρ(x) − ρm]/ρm,
ρ(x) is the local density at the comoving position x, ρm is the background matter density
and W (k, R) is a window function in Fourier space. It is common to relate the smoothing
scale R to the corresponding variance of the linear density field, computed in terms of the
size of the considered region:

σ2(R) ≡ S(R) =
1

2π

∫
k2P (k)|W (k,R)|2dk , (4.2)

where P (k) is the matter power spectrum in linear perturbation theory that we introduced
in Sect. 2.1.2. We can refer to a trajectory δ(x, S) as a sequence of overdensities given
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by subsequent increases in the smoothing scale by increments ∆S. When a top-hat filter
in k-space is used then δ(x, S) executes a random walk. Given an underlying Gaussian
distribution for the linear density field, the excursion-set formalism allows us to associate
probabilities to random walks that satisfy a given set of criteria for the smoothing scale at
which they cross various density thresholds. For the collapse of perturbations, the spherical
evolution model in combination with the excursion-set provides a good description of the
statistics of DM haloes. As discussed in Sect. 2.2.1, a collapse occurs when the linear
density fluctuation reaches a critical value or barrier δLc , whose value is computed in
linear theory. We can then use the excursion-set formalism to determine the fraction of
trajectories that cross this barrier for the first time (i.e. solving the so-called one-barrier
problem), accounting also for the cloud-in-cloud process. The cloud-in-cloud problem
consists in counting as haloes only those objects which are not embedded in larger ones,
i.e. when a trajectory pierces the δLc barrier more than once only the crossing with the
smallest value of σ(M) has to be considered.

To extend the model to underdense regions we must first specify a threshold related to
void formation. One possibility is to select the value of the shell-crossing phenomenon, δLsc,
(see Sect. 2.2.1), but in this case we prefer to choose a generic negative density contrast
value, δLv , to keep the treatment more general. Contrary to the overdense case, the hier-
archical clustering of voids implies more complex phenomena and then it is not sufficient
to replace the quantity δLc with δLv to obtain a description of the void distribution. We
need in this case to consider a two-barrier problem. In addition to avoiding the double
counting associated with the void-in-void process, associated to the merger of voids and
analogous to the cloud-in-cloud process, we need to take into account the possibility for
a small-scale void to be embedded in a sufficiently large-scale overdensity: the collapse of
the larger surrounding region will eventually squeeze and vanish the underdense region it
surrounds. This is called void-in-cloud problem and leads to avoid the counts of voids lo-
cated inside collapsing regions. Finally, the opposite situation in which a large-underdense
region embeds a small-overdense one is irrelevant for the formation of high-density col-
lapsed structures, since DM haloes within voids are not likely to be torn apart as the
void expands around them. The asymmetry between the void-in-cloud and cloud-in-void
processes leads to a symmetry breaking between the emerging halo and void populations:
although they evolve out of the same symmetric Gaussian initial conditions, over- and
underdensities are expected to evolve towards a distribution with different characteristics.

We show in Fig. 4.2 a summary of the four processes of halo and void formation de-
scribed by the excursion-set formalism. This approach provides the basics to the modelling
of the theoretical void size function, which we describe in the next section.

4.3 Size function

The comoving number density of cosmic voids as a function of their size, i.e. the void
size function, has been modelled for the first time by Sheth & van de Weygaert (2004)
(hereafter SvdW model), with the same excursion-set approach used for the mass function
of DM haloes (Peacock & Heavens, 1990; Cole, 1991; Bond et al., 1991; Mo & White,
1996b). As we saw in the previous section, the distribution of fluctuations that become
voids, i.e. the multiplicity function, is obtained as the conditional first crossing distribution
of the matter density contrast filtered at decreasing Lagrangian radius in a double barrier
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Figure 4.2: Four modes of the excursion-set formalism. Each row illustrates one of the four
basic processes of hierarchical clustering: the cloud-in-cloud, cloud-in-void, void-in-void and void-
in-cloud (from top to bottom). Each mode is illustrated using three frames. The leftmost panels
show the trajectory associated to a local density perturbation δ0(x) as a function of the mass
resolution scale Sm. For the sake of clarity, we point out that increasing values of Sm corresponds
to decreasing cosmological scales. In each leftmost sub-plots the dashed horizontal lines indicate
the collapse barrier δLc and the void-formation barrier δLv . The boxes in the two columns on the
right show how the corresponding particle distribution evolves when each barrier is pierced: on
small scales first (second column, central panels) and on large scales later in time (third column,
rightmost panels). Credits: Sheth & van de Weygaert (2004).



problem: a fluctuation becomes a void at a radius Rv if the filtered density contrast first
crosses the void formation threshold δLv at Rv, without having crossed the threshold for
collapse δLc at any larger scale. Let us stress the fact that the multiplicity function of Sheth
& van de Weygaert (2004) is derived for spherical fluctuations in Lagrangian space, i.e.
the initial density field linearly evolved to the epoch of interest, while the observed voids
live in the fully nonlinear evolved density field in comoving coordinates, i.e. the Eulerian
space. Nevertheless, the spherical approximation allows us to easily go back and forth
from Lagrangian to Eulerian space in all the computations. The void size function probes
the inner region of cosmic voids and in contrast to the collapsing case, i.e. halo formation
(Monaco, 1995; Sheth & Tormen, 2002), the spherical approximation is accurate enough
for this purpose, at least for voids of scales detectable by modern redshift surveys (Icke,
1984b; Verza et al., 2019).

The excursion-set theory applied to underdensities (Sheth & van de Weygaert, 2004)
predicts that the fraction of the Universe occupied by cosmic voids is given by:

flnσ = 2
∞∑

j=1

jπx2 sin(jπD) exp

[
−(jπx)2

2

]
, (4.3)

where

x ≡ D
|δLv |

σ , (4.4)

and

D ≡ |δLv |
δLc + |δLv |

. (4.5)

In the previous equations σ is the square root of the mass variance and δLc represents
the critical value for the collapse of an overdense shell in an EdS universe. The latter is
expected to vary within 1.06 ≤ δLc ≤ 1.686, since both the turn-around or the collapse
density contrast value can be considered acceptable assumptions (see Sect. 2.2.1).

Equation (4.3) can be simplified by applying the approximation (used in the
CosmoBolognaLib libraries, see Sect. 5.1) proposed by Jennings, Li & Hu (2013), which is
accurate at the 0.2% level or better everywhere:

flnσ(σ) =





√
2
π
|δLv |
σ exp

(
− δLv

2

2σ2

)
, x ≤ 0.276

2
∑4

j=1 jπx
2 sin(jπD) exp

[
− (jπx)2

2

]
x > 0.276 .

(4.6)

With the kernel probability distribution given in Eq. (4.3), it is straightforward to
obtain the number density distribution of voids as a function of their size in linear theory
by applying:

dnL

d ln rL
=
flnσ(σ)

V (rL)

d lnσ−1

d ln rL
, (4.7)

where V (rL) = 4π(rL)3/3 is the volume of the spherical fluctuation of radius rL. We recall
that the superscript L indicates a value derived in linear theory. In order to derive the
void size function in the nonlinear regime, a conservation criterion has to be applied. The
model of the void size function developed by SvdW relies on the assumption that, when
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going from linear to nonlinear, the total number of voids is conserved. While reaching
shell-crossing, underdensities are expected to have expanded by a factor a ∝ (δLv )

−3, thus
a correction in radius by this factor is required:

dn

d ln r

∣∣∣∣
SvdW

=
dn

d ln(a rL)
, (4.8)

for which we can explicit the relation:

r

rL
=

(
ρ

ρv

)1/3

, (4.9)

where ρ is the mean density of the Universe and ρv is the average density within the void.
The SvdW size function takes into account the void-in-cloud process, affecting mostly
voids on small scales. This is considered by defining D in Eq. (4.3) as a function of
both the overdensity and the underdensity threshold. On the other side, the void-in-void
side effect is not considered in the SvdW model. Jennings, Li & Hu (2013) argued that,
since multiple countings of voids in the same region leads to a volume fraction occupied
by underdensities which is larger than the total volume of the Universe, the SvdW was
unphysical. So they introduce a volume conserving model (hereafter Vdn model) which
embeds a prescription to account for this: it is assumed that the total volume occupied
by cosmic voids is conserved in the transition from the regime of linearity to that of
nonlinearity. Its final expression is:

dn

d ln r

∣∣∣∣
Vdn

=
dn

d ln rL
V (rL)

V (r)

d ln rL

d ln r
. (4.10)

A comparison between the theoretical void size functions computed with the models de-
scribed above is reported in Fig. 4.3.

The SvdW model has been tested on both simulated DM particle and halo catalogues,
finding that it systematically overpredicts the comoving number density of cosmic voids,
as we can see in Fig. 4.4. To overcome this mismatch the underdensity threshold δLv
was commonly left as a free parameter, tuned on simulations. This severely affects the
possibility of using the void size function as a cosmological probe. Jennings, Li & Hu (2013)
have shown that the Vdn model does not require such a fine-tuning of the size function
parameters, as long as the void catalogue is appropriately cleaned from spurious voids.
However their results are limited to the case of cosmic voids detected on simulated DM (i.e.
unbiased) distributions. In Chapter 6 we will extend their study to the case of samples
of biased tracers, such as simulated DM halo catalogues, which are more representative of
the realistic case of galaxy surveys.

4.4 Void density profiles

Another fundamental quantity to describe the structure of cosmic voids in a statistical
sense is their density contrast profile. To simplify the notation, let us assume in this
section and in the following that the considered voids are traced by galaxies. We define
the void density profile as the spherically averaged relative deviation of mass density
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Figure 4.3: Comparison between different void size function models. The Vdn model is represented
in grey, the linear model in blue, and the SvdW model in orange. The shaded or hatched regions
are obtained by varying δc in the range 1.06 ≤ δLc ≤ 1.686. We can note that this variation changes
the abundances significantly only at Reff ≲ 1 h−1 Mpc. These results are obtained by exploiting
the CosmoBolognaLib (that we will introduce in Sect 5.1) assuming a ΛCDM model characterised
by Ωm = 0.26, h = 0.715, σ8 = 0.8, Ωb = 0.044 and ns = 0.96.
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Figure 4.4: Comparison of the void abundance in simulations with respect to predictions. The
results refer to the DM distribution in simulations for the ΛCDM model with different box sizes:
64 h−1 Mpc (green), 128 h−1 Mpc (purple), 256 h−1 Mpc (red) and 500 h−1 Mpc (cyan). The error
bars represent the scatter on the mean from 8 different realisations of the cosmology reported in
Fig. 4.3, for each box size. The range in predictions covers the parameter interval δLc = [1.06, 1.686]
with δLv = −2.7 and are consistent with simulations for the Vdn model (grey shaded), but not for
the SvdW model (orange hatched). Credits: Jennings, Li & Hu (2013).



computed around a void centre from the mean value of galaxies in the universe:

uv(r) ≡
nvg(r)

⟨ng⟩
− 1 =

ρv(r)

ρ
− 1 , (4.11)

where nvg(r) is the galaxy number density in a sphere of radius r centred on a void and ⟨ng⟩
the overall mean number density of galaxies; ρv and ρ are their corresponding mass density
quantities, respectively. Void density profiles have been studied in detail in the recent
literature (see Hamaus et al., 2020, and references therein). Void profiles typically exhibit
a few very characteristic features: a deep underdense core with central density increasing
with void size, and an over-dense ridge (compensation wall) that exceeds the mean density
of the Universe and then stabilises around δ ≃ 0. The height of the compensation wall
decreases with void size, causing internal slope to become smaller and the wall to flatten
along the profile.

Different functional forms have been proposed for the void density profile in the liter-
ature. These can be divided into two main categories: phenomenological models aiming
at finding a suitable form to fit the void density profile (Paz et al., 2013; Nadathur et al.,
2015), and theoretically motivated models (see e.g. Finelli et al., 2016). Let us present
the most popular example of void profile equation belonging to the first category, i.e. the
functional form proposed by Hamaus, Sutter & Wandelt (2014):

uv(r) = δLc
1− (r/rs)

α

1 + (r/rLv )
β
, (4.12)

where δLc is the central density contrast (i.e. at r = 0), rs is a scale radius at which the
density equals the galaxy mean density ⟨nt⟩, and α, β describe the inner and outer slopes
of the profile, respectively. We show in Fig. 4.5 the accuracy of Eq. (4.12) in fitting the
void stacked density profiles. This functional form reproduces indeed very well the profile
shapes for voids with different mean effective radii, especially when avoiding the most
central regions of the underdensities.

4.5 Void-galaxy cross-correlation function

Let us now introduce a quantity closely related to the void density profile: the void-galaxy
cross-correlation function, ξvg(r). The latter is associated to the probability of finding a
galaxy at a comoving distance r from a void centre. It can be expressed in terms of the
integrated void density contrast profile, computed in a void-centred sphere of radius r and
volume V :

ξvg(r) =
1

3r2
d

dr
[r3∆(r)] , (4.13)

where

∆(r) =
3

r3

∫ r

uv(r
′) r′

2
dr′ , (4.14)

and uv(r) is the quantity defined in Eq. (4.11). At the first order, we can relate the
void-galaxy cross-correlation function to the galaxy auto-correlation function (or 2PCF,
see Sect. 2.1.2), ξgg(r), as:

ξvg(r) = bvbg ξgg(r) , (4.15)
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Figure 4.5: Stacked real-space density profiles of voids traced by mock galaxies at z = 0. The
mean effective radii and void counts, Nv, are indicated in the inset. The shaded regions represent
the standard deviation σ within each of the stacks (scaled down by 20 for visibility), while the
error bars show standard errors on the mean profile σ/

√
Nv. The solid lines represent the individual

best-fit solutions of the form reported in Eq. (4.12). Credits: Hamaus, Sutter & Wandelt (2014).



where bg and bv are the galaxy and void biases, respectively. Analogously to bg, we
can compute bv as in Eq. (2.36), using the auto-correlation function of voids, ξvv(r), in
the numerator. The latter can be estimated with the same methods adopted for ξgg(r),
described in Sect. 2.1.5, using the positions of void centres as input data catalogue.

A different way to compute bv is by using the peak background split (PBS) formalism
(Sheth & van de Weygaert, 2004; Chan, Hamaus & Biagetti, 2019). We first define:

bv(rv) = 1 +
ν2 − 1

δLv
+

δLv D
4 δLc

2 ν2
, (4.16)

where ν ≡ |δLv |/σv. Now we can obtain the (effective) void bias by weighting Eq. (4.16)
with the void size function defined in Sect. 4.3:

bv,eff =

∫
dn

drv
bv(rv) drv

∫
dn

drv
drv

, (4.17)

where the integration is performed over the radii covered by the measured void size func-
tion. We will make use of these theoretical prescription in Chapter 9 in order to model
the void power spectrum Pvv(k), i.e. the Fourier transform of ξvv(r).

4.6 Observational tests

A relatively novel approach aimed at extracting cosmological constraints from voids is the
study of these objects as standard spheres. In analogy to what described for standard rulers
(see Sect. 1.3.1), we can assume the average shape of voids to obey spherical symmetry. Let
us stress the fact that, even if single void shape may appear elongated along a preferential
axis or show strong irregularities near the edges, the average of a sufficiently high number
of cosmic voids suppresses any individual asphericity. Therefore, we can consider stacked
voids as standard spheres with which to probe the expansion history of the Universe: only
if we assume the correct fiducial cosmological model in converting observed coordinates
into comoving, then the stacked voids will appear spherically symmetric. This technique
is commonly known as the Alcock-Paczyński (AP) test (Alcock & Paczynski, 1979). As
we will see in Sect. 4.6.1, deviations of the mean shape from the spherical geometry can be
physically modelled and are cosmology dependent, so their study constitutes a powerful
method to test the cosmological model.

Nevertheless, dealing with real data, the peculiar motions of mass tracers (e.g. galaxies)
lead to the breaking of the spatial symmetry along the line of sight of the observer. In
particular, since the measured tracer redshifts deviate from the true ones, the derived
shape of voids results modified by the so-called redshift-space distortions (RSD hereafter).
Therefore, in order to successfully apply the AP test to voids, we need to accurately model
the RSD affecting underdensity regions. Despite the complexity of this phenomenon on
intermediate and small scales, i.e. where the nonlinear clustering is stronger, its modelling
inside voids is in principle straightforward. Indeed, it has been shown that voids interiors
are characterised by a laminar, single-stream outflow of mass tracers that is well described
by linear theory (Hamaus, Sutter & Wandelt, 2014; Hamaus et al., 2014, 2015; Pisani,
Sutter & Wandelt, 2015; Hamaus et al., 2016; Paz et al., 2013). We will provide in
Sect. 4.6.2 the bases for the theoretical modelling of the RSD inside voids.
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4.6.1 Geometric distortions

Let us consider a cosmic void formed by a number of mass tracers, neglecting for the
moment their peculiar velocities. We can express the comoving separation, s, between the
void centre and a mass tracer by decomposing it in parallel and transverse components:

s|| =
c

H(z)
δz and s⊥ = DM(z)δθ , (4.18)

where δz and δθ represent the redshift and the angular separations, respectively, while
DM is the angular-diameter distance we introduced in Eq. (1.36). Let us notice that when
assuming space flatness (i.e. Ω0,κ = 0), the angular-diameter distance coincides with the
comoving distance DC at z = 0 (see Eq. 1.19). Now the main point is that these quantities
depend on H(z), so we need to assume a fiducial cosmological model to compute their
values. Following the approach of e.g. Sánchez et al. (2017a), we can introduce two
parameters that inherit the dependence on cosmology:

q|| ≡
s||

s∗||
=
H∗(z)

H(z)
and q⊥ ≡ s⊥

s∗⊥
=
DM(z)

D∗
M(z)

, (4.19)

where the starred quantities are those evaluated with the assumed fiducial cosmology. In
the case where the latter coincides with the true cosmology, q|| and q⊥ are trivially both
equal to unity. From the quantities in Eq. (4.19) we can derive the void-tracer separation:

s =
√
q2||s

∗2
|| + q2⊥s

∗2
⊥ . (4.20)

In order to exploit the AP effect through the symmetry of stacked voids it is convenient
to introduce the parameter:

ε ≡ q⊥
q||

=
DM(z)H(z)

D∗
M(z)H∗(z)

. (4.21)

Indeed, in absence of an absolute scale (such as the BAO one) to compare with s, the
parameters q|| and q⊥ remain degenerate while their ratio can be determined. However,
void-centric distances are commonly expressed in units of the effective void radius, defined
as the radius of a sphere having the same volume of the void. Since the observed void
volume is proportional to s∗||s

∗2
⊥ , the true value of void radius can be related to the fiducial

one through the relation (Ballinger, Peacock & Heavens, 1996; Eisenstein et al., 2005b;
Xu et al., 2013; Sánchez et al., 2017a; Hamaus et al., 2020; Correa et al., 2020):

R = q
1/3
|| q

2/3
⊥ R∗ . (4.22)

We will make use of these fundamental relations to correct the values of the void radii as
a function of the assumed cosmology and thus extract unbiased cosmological constraints
from the void size function (in Chapter 8) and from the void-galaxy cross-correlation
function (in Sect. 9.1.1).
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4.6.2 Dynamic distortions

As we introduced in Sect. 1.3, the main contribution on the observed redshift is given
by the cosmological Hubble expansion, zh. However, this quantity is affected also by the
Doppler effect, which is caused by the peculiar motions of the cosmic tracers along the
line of sight, zd = v||/c. Therefore we can express the total observed redshift, z, as:

1 + z = (1 + zh)(1 + zd) . (4.23)

Then, since for cosmological distances zd is much smaller than zh, we can re-write the
angular-diameter distance as in the following:

DM(z) ≡
∫ z

0

c

H(z′)
dz′ ≃ DM(zh) + czd

1 + zh
H(zh)

. (4.24)

Now, assuming the observer to be located at the origin of the coordinate system (z, θ, ϕ),
we can transform DM(z) into the comoving space vector x using:

x(z, θ, ϕ) = DM(z)




cos θ cosϕ
sin θ cosϕ

sinϕ


 . (4.25)

Then, using zd = v||/c, Eq. (4.24) yields:

x(z) ≃ x(zh) + v||
1 + zh
H(zh)

, (4.26)

where v|| is the projection of the velocity vector v along the line-of-sight, as represented
in Fig. 4.6. Following the notation adopted in this figure, we indicate with lower-case
letters the quantities related to the mass tracers and with upper-case letters those related
to void centres. Therefore we denote with X and Z the void centre position and redshift,
while with x and z the tracer position and redshift, respectively. To simplify the system
we also assume the void centre to be along the observer line-of-sight and we use the
distant-observer approximation to assume X and x to be parallel.

First, we consider the system in real space, i.e. the left-side part of Fig. 4.6. By
definition, the peculiar motion of the mass tracers does not contribute to the value of
observed positions, so x(z) = x(zh). We call r the vector connecting the void centre and
the mass tracer positions, r ≡ x−X, and analogously the relative velocity u between the
two objects, u ≡ v −V. Now, we analyse the system in redshift space, i.e. the right-side
part of Fig. 4.6. In this case the Doppler effect is not neglected, so zd ̸= 0, and we can
derive the observed spatial separation s between the void centre and the tracer by using
Eq. (4.26):

s ≡ x(z)−X(Z) ≃ x(zh)−X(Zh) +
1 + zh
H(zh)

(v|| −V||) = r+
1 + zh
H(zh)

u|| . (4.27)

Here we have adopted the approximation (zh) ≃ (Zh), which is accurate to the O(10−3)
on scales of |r| ∼ O(10) h−1Mpc and velocities of |u||| ∼ O(102) km s−1 Mpc−1 (Hamaus
et al., 2020). This approximation becomes exact when we perform a void-stacking proce-
dure, averaging on different voids. Indeed, assuming the cosmological principle, we expect
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Figure 4.6: Void translation and deformation from real (left side) to redshift (right side) space.
The comoving separation in real space, r, between the void centre and the mass tracer can be
converted in redshift space, s, by considering the different velocity components of the system.
Being the velocity displacements represented in units of (1 + zh)/H(zh), the resulting relation
between real- and redshift-space separations can be approximated as s = r+u||. Credits: Hamaus
et al. (2020).



statistical homogeneity and isotropy such that ⟨u⟩ = ⟨u||⟩ = 0 (see Ruiz et al., 2015; Lam-
bas et al., 2016; Ceccarelli et al., 2016; Wojtak, Powell & Abel, 2016, for detailed studies
on void inner and bulk dynamics).

Similarly to what happens for galaxy clusters, voids can be considered coherent ex-
tended objects moving with the background Hubble flow together with the mass tracers
defining these systems. As represented in Fig. 4.6, this results in a translation of the ob-
served centre of the system. However, the relative separation s between the mass tracers
belonging to the void is not affected by their individual motion, but only by their relative
velocity u||. Then, given the tendency of mass tracers to flow towards the outskirts of
voids, their relative velocities with respect to the void centre lead to an observed stacked
shape that results elongated along the line-of-sight.

In Chapter 8 we will introduce a semi-analytical methodology to account for the ap-
parent elongation of voids in redshift space by rescaling consistently the void size function
expected for the Euclid mission. Another approach is to follow the prescriptions of Hamaus
et al. (2020) to model theoretically the RSD: we impose local mass conservation and con-
sequently express the mass tracer velocity field with respect to the void centre as given by
Peebles (1980):

u(r) = −f(zh)
3

H(zh)

1 + zh
∆(r) r , (4.28)

where f(z) is the linear growth rate defined in Eq. (2.15) and ∆(r) is the average density
contrast inside a spherical region defined in Eq. (4.14). We will adopt this methodology
in Sect. 9.1.1 to relate the observed void-galaxy correlation function to its value in real
space and extract cosmological forecasts for the Euclid mission.

4.7 Voids as cosmological probes

Redshift surveys (past, present and upcoming) have been designed to optimize the analyses
of statistics related to overdensity regions, but leave on the other side cosmic depressions
still under-explored. This is due to the demanding resources necessary to carry out a
survey favorable to void science. Analogously to numerical simulations (see Sect. 2.3),
the building of a redshift survey is a compromise between sky coverage and depth, which
translates into large volumes and high tracer density. Voids exploitation would in principle
require both these features: big volumes contribute in reaching a good statistic also for
large voids, while high tracer density allows us to achieve an accurate reconstruction of void
interiors together with the precise identification of the smallest underdensities. Having a
deep survey would also imply the mapping of high-redshift regions, but for the study of
cosmic voids this attribute is in fact less important since voids result shallower and harder
to identify at high redshifts.

Despite the scarcity of large and complete void catalogues, in the last decades voids
have started to become effective and competitive probes of Cosmology. Indeed, thanks
to their formidable spatial extension and extremely low-density interiors, voids represent
unique laboratories to perform astrophysical and cosmological tests. In particular, void
inner parts are by definition almost devoid of matter, so the DE results dominant in these
objects and regulates their expansion throughout the cosmic history. Therefore void sizes
(Bos et al., 2012; Pisani et al., 2015; Pollina et al., 2016; Sahlén, Zubeld́ıa & Silk, 2016;
Verza et al., 2019, and see also Chapter 8 and Section 9.1.2) and observed shapes (Lee
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& Park, 2009; Biswas, Alizadeh & Wandelt, 2010; Lavaux & Wandelt, 2012, and see also
Sect. 9.1.1) represent high-sensitive statistics to the DE equation of state (see Sect. 3.1.1).

Moreover, voids constitute the perfect environment for investigating the implications
of MG theories (see Sect. 3.1.2). Indeed, screening mechanisms operate weakly within
cosmic voids, making them potentially more affected by the possible deviations from GR
(Clampitt, Cai & Li, 2013a; Barreira et al., 2015; Voivodic et al., 2017; Falck et al.,
2018; Sahlén & Silk, 2018; Sahlén, 2019; Perico et al., 2019, see also Chapter 7). These
deviations are expected to modify void matter density profiles with respect to GR and can
be revealed by measuring the lensing signal around voids (Spolyar, Sahlén & Silk, 2013b;
Melchior et al., 2014; Cai, Padilla & Li, 2015; Barreira et al., 2015; Clampitt & Jain, 2015;
Sánchez et al., 2017b; Baker et al., 2018; Davies et al., 2021). MG also enhances void
expansion, which results in stronger RSD around voids (see e.g Achitouv et al., 2017).
Finally, MG imprints are captured in environmental differences that can emerge in the
comparison of the properties of galaxies belonging to over- and underdense regions (see
e.g Hui, Nicolis & Stubbs, 2009; Zhao et al., 2010; Jain & VanderPlas, 2011; Jain, 2011;
Cabré et al., 2012).

Voids are also particularly sensitive to neutrinos (see Sect. 3.1.3): the density fraction
of neutrinos is more prominent in underdense regions compared to the high-density ones
and the typical void size spans the range of neutrino free-streaming scale, which in turn
depends on the neutrino mass (see Eq. 3.25). Indeed, both the void density profiles and
void abundances have been shown to possess a great potential in constraining the neutrinos
species total mass (see e.g. Massara et al., 2015; Sahlén, 2019; Kreisch et al., 2019b, 2021,
and also Chapter 7).

Another strong point of cosmic voids is their complementarity to standard probes
(Nadathur et al., 2020; Kreisch et al., 2021; Paillas et al., 2021). Voids represent indeed
the negative density counterpart of galaxy clusters and feature those regions of the Universe
that remain unexplored by other probes. This entails two important aspects: void statistics
are almost independent of those of standard probes and lead to constraints that show
high degrees of orthogonality with respect to other cosmological contours. These aspects
are fundamental in the perspective of a joint analysis between voids and other probes,
which represents a fundamental tool to disentangle the degeneracies between the estimated
cosmological parameters. We will provide some insights on the potential of the synergy
between voids and other cosmological probes in Chapter 8 and Sect. 9.2.
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Chapter 5

Numerical tools to build cosmic
void catalogues

In this chapter, we introduce the numerical tools employed for the preparation of the data
analysed in this Thesis work. In particular, we will present the set of libraries used for
all the cosmological calculations and the statistical treatment of the data. Finally, we will
describe the numerical algorithms used to build and clean the samples of cosmic voids.

5.1 CosmoBolognaLib

The CosmoBolognaLib1 is a large set of free software C++/Python libraries, that pro-
vide an efficient numerical environment for cosmological investigations of the LSS of the
Universe (Marulli, Veropalumbo & Moresco, 2016). This software is particularly suited to
handle with catalogues of astronomical objects, both real and simulated. Thanks to the
large amount of functions implemented, the CosmoBolognaLib offers the necessary tools
to analyse large data sets and to perform statistical analyses with optimised performances.
In particular, in this Thesis work we make use of these libraries to manage catalogues in
different formats, to measure and model the cosmic tracer bias and the void size function,
as well as to perform Bayesian statistical analyses.

5.2 Void finders

Since there is not general concordance on the definition of voids yet, many different void
finders have been proposed and exploited in the last decades (see Colberg et al. (2008)
for a cross-comparison of the different techniques). Following the strategy of Lavaux &
Wandelt (2010) we can classify void finding algorithms in three main classes, on the basis
of the type of criterion applied:

• Density criterion. These algorithms define voids as regions empty of tracers or with
local density below a fixed value (Elyiv et al., 2013; Micheletti et al., 2014). In this
case tracers are divided in wall tracers and field tracers depending on the density

1https://gitlab.com/federicomarulli/CosmoBolognaLib
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of the region in which they are located (“strongly overdense” regions and “mildly
underdense” regions, respectively).

• Geometrical criterion. This class includes void finders that identify voids as geo-
metrical underdense structures like spherical cells or polyhedra (Sutter et al., 2015;
Platen, van de Weygaert & Jones, 2007; Neyrinck, 2008). In particular, these al-
gorithms reconstruct a continuous 3D density field and search for the local density
minima to obtain the void distribution.

• Dynamical criterion. These void finders are based on dynamical criteria in which
tracers are not exploited to reconstruct underlying mass distribution but are used
as test particles of the cosmic velocity field. Therefore, in these algorithms, a void is
defined as a region from which the matter is evacuated (Forero-Romero et al., 2009;
Lavaux & Wandelt, 2010; Elyiv et al., 2015).

Other algorithms are instead classified as “2D void finders” (Sánchez et al., 2017b; Cautun
et al., 2018) since they operate on the distribution of mass tracers projected along the line
of sight of the observer. They can be based on the three aforementioned methodologies
and particularly suited for the study of weak lensing around void (see Davies et al., 2021,
for a comparison between void finders applied to weak lensing analyses).

For the main analyses of this Thesis work we will make use of the Void IDentification
and Examination toolkit (VIDE) (Sutter et al., 2015) to construct our void catalogues.
VIDE belongs to the class of algorithms based on geometrical criteria and it implements
an enhanced version of the ZOnes Bordering On Voidness (ZOBOV) algorithm (Neyrinck,
2008). ZOBOV is a popular publicly available code that finds density depressions in a 3D
set of points, without any free parameter or assumption about the void shape. The void
finding procedure consists of three main steps:

1. As a first step, the finder reads the tracer positions and associates to each tracer
a cell of volume that is closer to it than to any other tracer. This technique is
referred to as Voronoi tessellation, and the resulting cells are denoted Voronoi cells.
Then the algorithm associates a density to each Voronoi cell that is, assuming equal
weights for all particles, the inverse of the Voronoi cell volume. In this way we obtain
a continuous and well-defined density field.

2. As a second step, local density minima are found and their surrounding basins iden-
tified. Density minima are defined as the cells whose density is lower than the
density of every other adjacent cell (i.e. natural neighbours). A representation of
this procedure is reported in Fig. 5.1. Then, starting from these density minima,
the surrounding Voronoi cells are merged consecutively if their individual density is
above the one of the previously merged cell. The process of merging is stopped once
a cell of lower density is encountered. The result of this procedure is the creation of
local density basins, called zones.

3. Finally, zones are merged to become voids making use of the so-called watershed
algorithm (e.g. Platen, van de Weygaert & Jones, 2007). This method, illustrated in
Fig. 5.2, consists of rising a density threshold starting from each zone local density
minimum. During the raising, all the surrounding regions, that have a value of
density lower than the threshold, are added to the basin of a starting minimum. As
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Figure 5.1: Natural neighbours of a local density minimum. The black dot represents the centre
of a local density basin, while the open circles its natural neighbours, associated with higher
density regions. The solid edges mark the Voronoi cell surrounding the central point, along with
the connecting Voronoi edges. The dashed lines delineate instead the corresponding Delaunay
triangles, whose centres are by definition the vertices of the Voronoi diagram. Credits: Platen, van
de Weygaert & Jones (2007).

Figure 5.2: Principle of the watershed technique represented in three panels. The left panel
shows the shape of the density field. Starting from the local minima, the surrounding basins of
the surface start to flood as the water level continues to rise (dotted plane initially below the
surface). Where two basins meet up near a ridge of the density surface, a “dam” is erected (central
frame). Ultimately, in the right frame the entire surface is flooded, leaving a network of dams
which defines a segmented volume and delineates the corresponding cosmic web. Credits: Platen,
van de Weygaert & Jones (2007).



long as shallower zones are added to the original zone, the final void consists of all
such merged zones, which are still recorded as its sub-voids. When a deeper zone is
encountered, the process is stopped.

Therefore, the set of voids created with this technique is naturally organised with a hierar-
chical structure of nested voids. Each of the voids found with VIDE has its centre defined
as volume-weighted barycentre, X, of the N Voronoi cells that define the void,

X =

∑N
i=1 xiVi∑N
i=1 Vi

,

where xi are the coordinates of the i-th tracer of that void, and Vi the volume of its
associated Voronoi cell. The void radius, rv, is calculated from the total volume of the
void, Vv. The latter is defined as the radius of a sphere having the same volume of the
void:

Vv ≡
N∑

i=1

Vi =
4π

3
r3v .

We underline that this centre does not necessarily coincide with the position of a tracer.
We briefly describe also the void finder based on dynamical criteria that will be pre-

sented in Sartori et al. (2022, in preparation), which is based on that presented in Elyiv
et al. (2015) and is already implemented in the CosmoBolognaLib. We report in the
following the main steps of the code.

1. The aim of the first step is to reconstruct dynamically the displacement field of cosmic
tracers. This is performed exploiting the Zel’dovich Approximation (see Sect. 2.2.2),
to reconstruct the initial tracers Lagrangian positions by randomising the Eulerian
coordinates. In fact, the tracers positions are paired to the random ones such as
the total action of the system is minimised. We obtain in this way the displacement
field, which approximates the velocity field of cosmic structures.

2. The second step consists in converting the displacement field in a continuous diver-
gence field by smoothing it with a Gaussian filter. Then the code finds the local
minima in the divergence field, corresponding to density minima and also to the
sources of maximum displacement. Therefore, cosmic voids are considered as sinks
in the reverse streamlines of tracers.

3. Finally, once all the minima in the density field are identified, the algorithm provides
a void catalogue, reporting their centres and radii.

In this algorithm the void centre is identified as the absolute minimum value of the diver-
gence field within a void:

rv = min(∇ · v)v (5.1)

This type of procedure has the advantage of employing Lagrangian coordinates, which
considerably reduces the shot noise problem, caused by the discrete mass tracers. Indeed,
this algorithm does not need to perform the reconstruction of the density field. In Fig. 5.3
we show an application of this void finder. The code is applied on a box of DM particles at
z = 0, from which the displacement is reconstructed. As expected, the tracer position is
aligned with the maxima of the divergence field and the particle displacement is directed
from the overdensities towards the underdensities.
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Figure 5.3: Example of reconstruction of the divergence field performed with the algorithm that
will be presented in Sartori et al. (2022, in preparation). Left : superimposition with the tracer
position. Right : superimposition with the reconstructed displacement field.

5.3 Cleaning algorithm

As already said, many different definitions of cosmic voids have been proposed during
the years. It is thus particularly important to adopt the same definition when detecting
voids and modelling their statistics or, alternatively, to clean properly the void catalogues
detected with standard methods. This latter approach is the one that we choose to follow.
As widely described in Ronconi & Marulli (2017), a new algorithm has been recently
implemented in the CosmoBolognaLib environment to clean void catalogues and make
them directly comparable to model predictions. It is important to highlight that the
cleaning procedure is almost independent of the void finder adopted to build the catalogue,
since only the positions of void centres are required. The cleaning algorithm can be divided
in three main steps:

• The spurious voids are removed from the catalogue, with the following criteria: (i)
voids whose effective radius does not belong to a selected range [Rmin, Rmax] and (ii)
voids whose central density is higher than (1+δNL

v )ρ, where δNL
v is a given non-linear

underdensity threshold, and ρ is the mean density of the sample. The last criterion
is necessary to take into account the cloud-in-void phenomenon.

• The radius of voids is re-scaled: the algorithm considers the density profile of each
void and, treating the void as a sphere located at its centre, the value of the radius
is increased or decreased until the sphere reaches the selected density contrast δNL

v .

• Check for overlaps: when two voids do overlap, i.e. when the sum of their radii is
greater than the distance between their centres, the one of them with higher density
contrast is rejected, avoiding double countings. This step is necessary also to account
for void-in-void phenomenon.
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Figure 5.4: The effect of the different steps of the cleaning algorithm on the void size function. The
blue dots show the size distribution of voids detected by VIDE from a ΛCDM N-body simulation.
The green triangles, the red upside-down triangles and the orange squares are the size distribution of
voids after the application of the first, second and third steps of the cleaning procedure, respectively.
The theoretical void size function is reported as a black solid line and represents the Vdn model
predictions for the considered cosmological model. Credits: Ronconi & Marulli (2017).

The effect of these steps on a void catalogue built with VIDE is reported in Fig. 5.4. The
sample of voids is extracted from a ΛCDM N-body simulation with 2563 DM particles
and box side of length 128 h−1 Mpc. This procedure provides a set of spherical voids
that enclose the shell-crossing density contrast, δNL

v = −0.795 (see Sect. 2.2.1). The same
value, in its linear expression, is used also to compute the theoretical predictions of the
Vdn model (see Sec 4.3). This is crucial in order to standardize the outcome of void
finders of different types, aligning the definition of voids to the one employed to derive the
theoretical size function.

This cleaning procedure has been tested systematically by Ronconi et al. (2019), apply-
ing it on a set of N-body simulation snapshots at different redshifts. The DM simulations
analysed have different resolution and boxside length. The results of these tests are shown
in Fig. 5.5. The coloured symbols mark the void size distribution measured in the simula-
tion snapshots, while the grey shaded region represents the model predictions for different
values of the overdensity threshold δc

2. We can see that the size distribution of voids is in
agreement with the theoretical predictions.

2As we mentioned in Sect. 4.3, this value may in principle assume both the value of the turn-around
or the collapse density contrast for overdensitities, so here is left to vary in the range 1.06 ≤ δLc ≤ 1.686.
From Fig. 5.5 we can appreciate that this threshold plays a major role only on very small scales, where
the phenomenon of the cloud-in-void becomes important.
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Figure 5.5: Upper part of each panel : Void size function prediction (grey shaded region) at four
different redshifts (different panels) compared to the distribution of cosmic voids after applying
the cleaning method described in Sect. 5.3 (different markers correspond to different simulations
with box side Lbox). Lower part of each panel : Logarithmic differences between the measured
distribution and the Vdn model prediction. For the largest simulation (Lbox = 1000 h−1 Mpc)
only z = 0 and z = 1 are available, thus the corresponding abundances are missing from the z = 0.5
and z = 1.5 panels.



Chapter 6

Voids in biased tracers

To exploit cosmic voids as cosmological probes, their statistical properties have first to
be modelled reliably (Nadathur & Hotchkiss, 2015a). In this chapter and in the following
(Chapter 7 and Chapter 8) we will focus mainly on void abundances, i.e. on the void size
function (see Sect. 4.3). As we have seen in Chapter 5, the theoretical model proposed by
Sheth & van de Weygaert (2004) and lately modified by Jennings, Li & Hu (2013) allow
us to accurately reproduce the number function of voids identified in unbiased simulated
tracer catalogues as long as the void sample is properly prepared (see Sect. 5.3). However,
when dealing with biased tracers of the density field, e.g. galaxies, galaxy clusters or DM
haloes, this pipeline does not work anymore (see e.g. Jennings, Li & Hu, 2013). Indeed,
it has been shown that the tracer bias plays a crucial role in determining the void profiles
and size distributions (Sutter et al., 2014b; Nadathur & Hotchkiss, 2015a,b; Pollina et al.,
2016, 2017, 2019). Having a solid model to account for the effect of the tracer bias is thus
mandatory to extract robust cosmological constraints from void statistics.

In this chapter, we present the work we published in Contarini et al. (2019). Firstly,
we propose and test an extension of the popular Vdn model (Eq. 4.10) to the case of voids
identified in the distribution of biased tracers, providing a new parametrisation of the
underdensity threshold of the Vdn model as a function of the large-scale linear bias of the
tracers. This represents a crucial ingredient to extract cosmological constraints from the
statistical distribution of voids detected from real galaxy or cluster catalogues, when no
direct information on the DM field is available. Secondly, we investigate the cosmological
constraints that can be inferred from the void size function at different redshifts and for
different mass tracer selections.

6.1 CoDECS simulations

In this chapter we make use of simulated halo catalogues extracted from a set of the COu-
pled Dark Energy Cosmological Simulations (CoDECS, Baldi, 2012). The selected snap-
shots derive from high resolution N-body simulations of the standard ΛCDM cosmology,
performed with the C-GADGET module (Baldi et al., 2010). In particular, these simulations
are built assuming a model consistent with seven-year Wilkinson Microwave Anisotropy
Probe (WMAP7) constraints (Komatsu et al., 2011), with ΩΛ = 0.7289, Ωm = 0.2711,
Ωb = 0.0451, h = 0.703, ns = 0.96 and As = 2.194 × 10−9, corresponding to σ8 = 0.809.
The CoDECS followed the dynamical evolution of 2 ·10243 particles: half of them are DM

84



particles, while the other half is composed by non-collisional gas particles. Specifically, the
catalogue covers a volume of 1 (h−1 Gpc)3, with a mass resolution of ∼ 6× 1010 h−1 M⊙
for the DM particles.

To test the procedure described in Sect. 6.3, we built a set of DM halo cata-
logues using a FoF algorithm1 (see Sect. 2.3.1), applying five different mass selection
cuts: 2× 1012, 2.5× 1012, 5× 1012, 7.5× 1012, 1013 h−1 M⊙, at three different redshifts
z = 0, 0.55, 1. These mass cuts2 are applied to the FoF mass in order to inspect a
sufficiently wide range of values for tracers’ bias. The redshifts are chosen instead to
span a significant fraction of cosmic time over which FoF haloes with masses greater than
1012 h−1 M⊙ are resolved. This range allows us to test the method on haloes correspond-
ing to common density peaks (low redshifts, low masses) and on newly forming haloes
corresponding to rare density peaks. The results obtained for the halo catalogues with
Mmin = 2.5 and 7.5 × 1012 h−1 M⊙ are consistent with the ones of the other catalogues,
and do not add any relevant information to the overall outcome of the chapter. Thus, we
will not show them in the figures of this chapter, with the only exception of Fig. 6.6.

6.2 Data preparation

We build the void catalogue by means of the void finder VIDE, described in Sect. 5.2.
Then we apply the pipeline introduced in Ronconi & Marulli (2017) (Sect. 5.3) to the
candidate list of underdensities identified by VIDE to make them directly comparable to
the Vdn model predictions. In particular, the effect of the cleaning procedure is to reshape
the selected voids as spherical non-overlapping regions, centred on density depths of the
tracer density field, embedding a fixed density contrast δNL

v (see Sect. 4.1). Our choice
of modelling the underdensity regions as spheres is aimed at comparing void statistics
directly to theoretical models based on the spherical evolution (see Sect. 2.2.1). We stress
the fact that we do not need to reconstruct accurately the real shape of individual voids.
Although real voids are not spherical objects, the mean void ellipticity is small in standard
cosmological frameworks (see e.g. Verza et al., 2019). We can thus reasonably assume that
the voids’ geometry is spherical on average (Lavaux & Wandelt, 2012).

As a consequence of the cleaning procedure, the void number counts result lower with
respect to the original output of VIDE. Moreover, as it can be seen from Table 6.1, (i)
the total number of void counts tends to decrease for tracer catalogues with higher mass
selections due to the lowering of the resolution, and (ii) the void radii are shifted towards
higher values because of the consequent reduction of the mean mass density.

Another important step in the data preparation is the removal of the spatial scales
affected by the low resolution of the tracer catalogue. Tracer sparsity leads to a drop of
counts for small voids in the measured void size function (Sutter et al., 2014a; Jennings,
Li & Hu, 2013; Ronconi et al., 2019; Verza et al., 2019). In particular, the incompleteness
depends on the mean separation of the tracers used to identify the voids, therefore on the
spatial resolution of the catalogue, as we saw in Figs. 4.4 and 5.5. This scale selection

1The algorithm makes use of a linking length ℓ = 0.2 d, gathering the DM particles as primary tracers of
the local mass density, and then attaching baryonic particles to the FoF group of their nearest neighbour.

2Other methods to measure halo masses were applicable in this case, e.g. using spherical overdensity
masses (see Sect. 2.3.1). Anyway, the mass-cut criterion, as well as the redshift selection, are not relevant
in our work and do not influence the outcomes of this chapter.
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Table 6.1: Void counts in 5 logarithmic bins of void effective radii, Reff , in the range [18–
60] h−1 Mpc, for DM halo catalogues with different mass and redshift selections, after the cleaning
procedure has been applied.

z = 0.00

Reff [h−1 Mpc]

20.5 26.0 33.1 42.1 53.6

Mmin [h−1 M⊙] Ntot N(Reff)

2× 1012 1063 719 288 53 3 0
5× 1012 1007 544 333 115 15 0
1013 803 291 309 160 39 4

z = 0.55

Reff [h−1 Mpc]

20.5 26.0 33.1 42.1 53.6

Mmin [h−1 M⊙] Ntot N(Reff)

2× 1012 1053 690 301 56 6 0
5× 1012 943 444 356 120 22 1
1013 693 196 256 176 49 7

z = 1.00

Reff [h−1 Mpc]

20.5 26.0 33.1 42.1 53.6

Mmin [h−1 M⊙] Ntot N(Reff)

2× 1012 1090 698 314 72 6 0
5× 1012 850 370 301 146 33 0
1013 557 140 170 156 77 14



therefore is a fundamental requirement when exploiting the void size function for deriving
cosmological constraints: it is crucial to avoid contamination from poorly sampled spatial
scales to obtain unbiased results but, at the same time, it is important to preserve the
void number counts to avoid loss of signal and maximise the constraining power of this
statistics. Nevertheless, modelling the drop of counts for small voids is not trivial. To
avoid falling in this regime, we conservatively exclude from the analysis voids with radii
falling in the range of scales affected by incompleteness.

In this chapter we adopt the conservative choice to reject voids with Reff < 2.5 times
the mean separation between the tracers of the corresponding tracer catalogue. We will
call this quantity the mean particle separation (MPS), meaning with “particle” whatever
time of mass tracers. The factor 2.5 is chosen empirically based on the drop of void
counts and on the steep departure from the theoretical model. In future works, different
approaches will be explored to improve the void selection also at small radii: among these,
the application of machine learning techniques (Cousinou et al., 2019) is promising to
carefully remove only spurious voids and consequently enhance the performance of the
void size function as a cosmological tool.

6.3 A new extension of the Vdn model

Dealing with mass tracers, the effect of the tracer bias has to be taken into account to
extract accurate cosmological constraints from the void number counts (see e.g. Pollina
et al., 2017, 2019). Let us assume a cosmic void whose profile can be traced by both
DM particles and biased mass tracers. Looking at the density contrast inside a void-
centred sphere we have, at least in the internal parts of the void, a deeper density profile
measured with biased tracers with respect to the one measured in the DM particle field.
This is illustrated in Fig. 6.1, which shows the spherically-averaged void density profiles3

as traced by either DM or DM haloes with different biases, at three different redshifts.
We can also notice that, rescaling the sample of voids identified in different biased tracer
field to the same density contrast, the corresponding mean effective radius increases with
the minimum mass of the sample (i.e. with the tracer bias).

After these observations, a possible solution to predict the abundance of voids in biased
tracer fields seems to be a bias-dependent underdensity threshold: we can find the internal
density contrast δNL

v,tr at which the void radii have to be rescaled to match the threshold

δNL
v,DM, converted in linear theory, imposed in the void size function model. Given that
the DM density field within voids is linearly related to the density field traced by biased
tracers (Pollina et al., 2019), we find:

δNL
v,tr = b δNL

v,DM . (6.1)

However, it is evident that for b > 1 the density contrast may assume values too low to
be reached, unless we rescale the radii to the very central parts (usually excluded because
of the minimum spatial resolution required to not be dominated by Poisson noise), as we
can see in Fig. 6.1. For large values of the tracer bias and deep underdensity thresholds,

3All the void profiles with effective radii, Reff, larger than 2MPS are stacked in these plots. As a result
of the cleaning procedure, which rescales every void radii at the same level of density contrast, the profiles
do not show a clear dependence on the void effective radius and they are therefore averaged together.
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Figure 6.1: Spherically-averaged density profiles measured from the centres of voids identified in
the tracer distribution at redshifts z = 0 (left), z = 0.55 (centre), z = 1 (right). The red lines
represent the median of the profiles computed in the DM particle distribution, while the blue ones
indicate the profiles in the DM halo catalogues with different mass-cuts. The horizontal dashed
line indicates the value of the density contrast threshold (δNL

v,tr = −0.7) selected in the cleaning
procedure. All the profile radii are rescaled to the mean effective radius of the catalogue with
Mmin = 2 × 1012 h−1 M⊙, in order to show the effect of the rescaling procedure of the cleaning
algorithm. The shaded areas represent 2σ confidence regions, that is 2 times the standard deviation
of the distribution of the mean values.

the rescaling may even imply a nonlinear void internal density < −1, which is physically
unreachable.

We conclude that is not possible to perform this technique to rescale the void radii
in the case of biased tracers. For this reason, we adopt the opposite approach to select
a value of density contrast in the rescaling procedure, fixing the threshold in the tracer
distribution, and derive from it the correspondent threshold in the DM field to be used in
the theoretical model. We describe below the guidelines of our procedure.

First, we rescale all the voids found in the tracer catalogues to an effective radius such
that the spherically-averaged density contrast they contain is equal to a fixed value δNL

v,tr.
It is important to notice that the choice to rescale the void radii to this specific density
contrast is not universal. Every negative density threshold −1 < δNL

v < 0 is allowed in
principle, provided that the same value, converted to linear theory, is used in the theoretical
size function. The selection of the void threshold is based on the following reasoning: on
the one hand the more negative the threshold, the more the identified underdensities are
free of contamination by Poisson noise (see also Neyrinck, 2008; Cousinou et al., 2019, for
a discussion on spurious voids and possible treatments) and the stronger the impact of the
cosmology on the void size function; on the other hand, an excessively negative threshold
entails both a low statistic and a higher uncertainty in the rescaled void radius, caused
by the sparsity of galaxies tracing such extreme underdense regions. For the analysis
described in this chapter, we selected the threshold δNL

v,tr = −0.7, which ensures a good
compromise on the aforementioned effects.

Second, we assume that voids identified in the DM particle and in the biased tracer
field are equal in number (neglecting those scales affected by different spatial resolutions),
and that their centre positions are approximately the same4. Since the Vdn model can

4We tested this hypothesis using a catalogue of voids identified in the DM density field and cleaning
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predict the number of voids with a certain radius, the simplest procedure to apply is to
rescale the theoretical size function dividing the chosen threshold by the bias value:

δNL
v,DM =

δNL
v, tr

b
,with δNL

v,tr = −0.7 . (6.2)

To use the rescaled threshold in the Vdn model, we convert δNL
v,DM to its linear counterpart

with the fitting formula provided by Bernardeau (1994):

δLv,DM = C
[
1− (1 + δNL

v,DM)−1/C] , (6.3)

with C = 1.594. This equation is exact for models with null cosmological constant Λ,
and is a good fit for any values of Λ, especially for the underdense regions. The quantity
obtained, δLv,DM, has to be entered in Eqs. (4.4) and (4.5). We will analyse in details in
the next sections the characteristics of the quantity b reported in Eq. (6.2), representing
the value of the tracer bias measured inside voids.

This procedure is basically equivalent to expand the radii of voids identified in the DM
field (embedding the same density contrast −0.7), predicted by the Vdn model, up to the
same radius of the ones identified in the tracer field. In this way, we are able to compute a
theoretical void size function model that takes into account the effect of the bias5, which
in practise causes a shift in the number count predictions toward higher void radii.

6.4 Bias of tracers in overdensity and underdensity regions

As seen in Sect. 2.1.4, the bias of cosmic tracers is a nonlinear stochastic function described
by the conditional probability of tracer density contrast, δtr, given the mass density con-
trast δDM (see e.g. Desjacques, Jeong & Schmidt, 2018, for an extensive review). This
is shown in Figs. 6.2 and 6.3, where the density contrast of a halo catalogue analysed in
this chapter (Mmin = 2 × 1012 h−1 M⊙ at z = 0) is plotted against the corresponding
DM density contrast, smoothing the density field at 1000 random positions with top-hat
spherical filters with different radii. In Fig. 6.2, we show that the data are well fitted by
a second-order polynomial. However, looking at Fig. 6.3 we can see that a linear model
is accurate enough to describe separately the points in the overdensity and in the under-
density regions. Indeed, fitting all the points with a second-order polynomial the reduced
chi square is χ̃2 = 1.977, while fitting δDM > 0 and δDM < 0 separately with a linear
relation we obtain χ̃2 = 1.758 and χ̃2 = 2.780, respectively. The slope of the former,
b [δDM > 0], represents the linear bias that can be approximately inferred e.g. from the

it using the corresponding distribution of DM haloes as tracer. The results obtained are in agreement
with the ones found with the voids identified in the biased tracer distribution. Therefore this assumption
can be considered statistically valid, even if the correspondence between void centres identified by VIDE

in different mass density fields is not always exact because of the uncertainties related to a sparser tracer
distribution.

5A new algorithm to rescale the void size function model as a function of the tracer bias has been
implemented in the CosmoBolognaLib. The code requires in input the values of the radii at which the
model is computed, the redshift of the sample, the size function model to use (e.g. SvdW, Vdn) and
the effective bias of the catalogue, beff. The latter can be automatically converted to F(beff) using the
relation that will be calibrated in this chapter (see Sect. 6.5). Moreover, a python notebook is provided to
explain, step by step, how to clean a void catalogue, and how to measure and model the void size function,
according to the method described in this chapter.
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Figure 6.2: Relation between the density contrast computed in the DM distribution (δDM) and in
the tracer distribution (δhalo). The data points are computed as the spherically-averaged density
contrast for 1000 random positions in the halo catalogue with Mmin = 2× 1012 h−1 M⊙ at z = 0,
for 6 radius bins. The different colours refer to the different radius sizes of the spheres used to
compute the density contrast. In the upper panel the data are computed as the median of the
values of δhalo in different bins of δDM, with error bars computed as the ratio between the standard
deviation and the square root of the number counts in each bin. The points are fitted with a
second-order polynomial, whose equation is reported in the insert and represents the nonlinear
bias function. In the lower panel are reported the residuals from the quadratic fit.
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Figure 6.3: Same data as the Fig. 6.2, but without binning the quantity δDM. In the upper panel
the points with δDM > 0 and δDM < 0 of each radius bin are fitted separately with a linear relation.
In the lower panel is shown the variation of the slope of each fit as a function of the radius of the
sphere used to compute the averaged density contrast.
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Figure 6.4: The ratio of the stacked density profiles shown in Fig. 6.1, i.e. δNL
v,DM as a function

δNL
v,tr, at redshifts z = 0 (left), z = 0.55 (centre), z = 1 (right). Different colours correspond to the
halo catalogues with Mmin = 2× 1012 h−1 M⊙ (in violet), Mmin = 5× 1012 h−1 M⊙ (in blue) and
Mmin = 1013 h−1 M⊙ (in green). The black error bars represent the 1σ uncertaintiy. As expected,
the slope of the fit becomes steeper (i.e. the value of bias inside voids increases) with the redshift
and with higher mass-cuts.

tracer large-scale 2PCF (see Sect. 2.1.2). The slope of the latter, b [δDM < 0], represents
approximately the bias of the tracers inside cosmic voids, which is the value we actually
need in order to properly rescale the void size function, as we will explain in the next
section. As shown in Fig. 6.3, b [δDM < 0] > b [δDM > 0].

Moreover, the behaviour of b [δDM < 0] computed in void-centred spheres is shown
in Figure 6.4, where different tracer bias values (i.e. different Mmin values of the halo
sample) and redshifts are analysed. In particular, we can further notice that b [δDM < 0]
is well-represented by a linear relation, especially at an intermediate distance from the
void centre, i.e. excluding the innermost and the outermost parts of the void density
profile. Then, it emerges how the value of b [δDM < 0] increases with the tracer large-scale
bias and the redshift of the void sample. These results are consistent with those of Pollina
et al. (2017), who first performed this kind of analysis.

Since b [δDM < 0] is generally not directly measurable, we shall calibrate a relation
between b [δDM > 0] and b [δDM < 0] to be able to model the size function of voids
detected from real tracer catalogues. Specifically, we search for a relation between the
effective linear bias of the tracers used to detect cosmic voids, beff ∼ b [δDM > 0] (that
we measure from the tracer 2PCF at large scales, as described in Appendix A), and the
linear bias of tracers inside the detected voids. A convenient estimate of the latter can
be assessed through the ratio between δNL

v,halo and δNL
v,DM at a distance of Reff from void

centres:

bpunct ≡
〈
δNL
v,tr(R = Reff)

δNL
v,DM(R = Reff)

〉
. (6.4)

The punctual bias given by Eq. (6.4) characterises the relation between the density contrast
measured in the tracer field and in the DM field punctually, i.e. at R = Reff. Since in our
analysis the value of δhalo(Reff) is fixed at −0.7, then δDM(Reff) is exactly the value we
need to rescale the void size function model (see Sect. 6.3).
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6.5 Results: calibration on the data

Figure 6.5 shows the ratio between the density contrast of haloes and DM, δhalo/δDM,
measured at R = Reff and averaged over voids of similar effective radii, together with
their weighted average values (Eq. 6.4), bpunct, for all the considered simulated cata-
logues. In other words, in this figure the points are obtained by computing the ratio
δNL
v,tr(R = Reff)/δ

NL
v,DM(R = Reff) for each void of the catalogues (with Reff being the effec-

tive radius of that specific void) and binning the result as a function of Reff. Then, to
compute the value of bpunct, we perform a weighted fit of these data with a constant. For
comparison, we show also the effective tracer bias, beff, estimated from the 2PCF at large
scales, as explained in Appendix A. As shown in Fig. 6.5, the δhalo/δDM ratio tends to
beff at large radii, in agreement with the results obtained by Pollina et al. (2017, 2019).
Despite some dependencies on the effective void radius, especially at small scales (where
the effects of the spatial resolution start to play a role), we find that an average constant
value of bpunct is sufficient to properly rescale the void size function, as we will show in
Sect. 6.6.

To apply this methodology to real data catalogue we have to consider that, in most of
the cases, it is not possible to infer the underlying DM distribution inside voids. So it is
worth to search for a relation between bpunct and beff, since the latter can be accurately
estimated e.g. from clustering measurements. This relation is displayed in Fig. 6.6. As it
can be seen, the data can be well fitted by a simple linear model.

However, the bpunct values estimated for the halo catalogues with the higher minimum
mass tend to systematically depart from the fit, especially at high redshifts. The reason
of this slight deviation is, at least partially, related to the method used to find the void
centres. In fact, if the detected voids are traced by too few tracers, the VIDE method might
not be sufficiently accurate to localise their centres. This issue becomes more relevant at
high redshift, where the void are shallower and their density minima are more difficult to
identify. Computing the spherically-averaged density contrast starting from a point that is
not a local minimum of the density field causes systematic errors in the bias measurements.
This is a natural consequence of the cleaning procedure: when rescaling the void radii,
the selected threshold might be reached at smaller radii if overdense regions are included
in the measurement, due to a bad centring. This is an issue especially for catalogues with
a high mass selection.

As a possible strategy to alleviate the problem, is to repeat our bias measurements
using in all cases the centre positions of the voids detected in the catalogues with the
lowest mass-cut. We will refer to this method as our best-centring technique, and we will
call bpunct (bc) the corresponding bias. As shown in Fig. 6.6, these bias values (shown
as coloured circles) are in better agreement with a linear model. Therefore we use them
to calibrate the relation between the bias and the one computed inside cosmic voids,
expressed in the following form:

bpunct (bc) = Bslope · beff +Boffset , (6.5)

for which we found the values Bslope = 0.854 ± 0.007 and Boffset = 0.420 ± 0.010, repre-
senting the slope and the offset of the linear fit reported in Fig. 6.6, respectively. This
relation can be used to estimate the bias of the tracers inside voids from the effective bias
of the whole tracer population. Hereafter, the bias obtained using Eq. (6.5) will be called
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Figure 6.5: Measure of the tracer bias estimated as the ratio between the density contrast
computed in the halo (δhalo) and in the DM (δDM) density fields, at a distance of 1 Reff from
the void centres. The different panels show the results obtained from the halo catalogues with
Mmin = 2 × 1012 h−1 M⊙, 5 × 1012 h−1 M⊙ and 1013 h−1 M⊙ (columns from left to right), at
redshifts z = 0, z = 0.55, z = 1 (rows from top to bottom). The dark green points indicate the
median of the ratio for different radius bins, with error bars representing the 1σ uncertainty. The
green lines are the weighted fit of the data, bpunct, while the red dashed lines show the effective
bias, beff. The shaded regions show the 1σ errors on the bias values.
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Table 6.2: The values of the bias with 1σ uncertainties measured in the overdensity, beff, and in
the underdensity regions, bpunct and bpunct (bc), for all halo mass selections and redshifts analysed
in this chapter.

Mmin [h−1 M⊙]
z = 0.00

beff bpunct bpunct (bc)

2× 1012 1.122± 0.006 1.383± 0.006 1.383± 0.006
2.5× 1012 1.140± 0.009 1.390± 0.005 1.397± 0.004
5× 1012 1.256± 0.011 1.497± 0.008 1.491± 0.007
7.5× 1012 1.353± 0.011 1.580± 0.014 1.571± 0.009

1013 1.429± 0.012 1.641± 0.013 1.644± 0.012

Mmin [h−1 M⊙]
z = 0.55

beff bpunct bpunct (bc)

2× 1012 1.507± 0.011 1.702± 0.014 1.702± 0.014
2.5× 1012 1.536± 0.011 1.715± 0.018 1.717± 0.013
5× 1012 1.730± 0.013 1.915± 0.017 1.893± 0.012
7.5× 1012 1.872± 0.015 2.06± 0.03 2.032± 0.017

1013 2.018± 0.019 2.21± 0.03 2.15± 0.04

Mmin [h−1 M⊙]
z = 1.00

beff bpunct bpunct (bc)

2× 1012 1.983± 0.017 2.104± 0.017 2.104± 0.017
2.5× 1012 2.301± 0.017 2.113± 0.017 2.13± 0.04
5× 1012 2.32± 0.02 2.41± 0.02 2.42± 0.03
7.5× 1012 2.57± 0.03 2.75± 0.07 2.62± 0.04

1013 2.76± 0.03 2.88± 0.03 2.82± 0.03



F(beff). The different bias values we computed in this chapter analysis are reported in
Table 6.2.

It is important to notice that the best-centring technique is not employable with real
mocks, since in that case it is not possible to use more numerous tracers to improve the
centre of a void. Nevertheless, in this chapter we choose to rely on this technique to
obtain a better calibration of the relation between bpunct and beff. Indeed, it is convenient
to calibrate the latter with bpunct(bc) to minimise the deviation of the data associated
to the catalogues with higher mass selections from the linear fit. Using the best-centring
technique to alleviate the problem of the sparsity of the tracers, we are able to extend our
pipeline also to catalogues with lower spatial resolution. We will show further analysis on
the dependence of the F(beff) on the tracer characteristics on Chapter 7.

6.6 Results: size function of voids in biased tracers

Now we have all the required tools to measure the void size function of our cleaned
catalogues and compare it with the theoretical predictions given by the extended (or
re-parametrised) Vdn model. To this end, we reject the voids that are too close to the
boundaries of the simulation box, as their radii cannot be accurately rescaled by our
cleaning algorithm, and we correct consequently the effective volume of the box. Then,
the theoretical size function is modelled taking into account the effect of the bias of DM
haloes inside voids, as described in Sect. 6.3.

Figure 6.7 displays our results. The new re-parametrised void size function model
accurately describes all our measurements, in the full range of redshift and mass (thus
bias) selections. We show both the size function models obtained by rescaling with bpunct
and F(beff), that appear fully consistent, especially at low redshift and bias values. The
uncertainty in the identification of void centres in low density tracer catalogues causes
the slight discrepancies that can be seen at high redshifts and biases, which in any case
appear not statistically significant. For comparison, we also show the model obtained by
rescaling the Vdn model with the effective bias of the full DM halo population, beff. As it
is clearly evident in the figure, this case under-predicts systematically the measured size
function at all redshifts and biases.

The final goal of this analysis is to investigate the cosmological constraints that can
be derived from the void size function at different redshifts. To mimic real data analyses,
we suppose to have access only to the tracer density field. With no information about the
underlying total matter distribution, we have to rely on the relation found in Sect. 6.5. We
first estimate the effective bias of the sample, beff, and we consider the coefficients shown
in Eq. (6.5), Bslope and Boffset. These coefficients are necessary to convert beff into F(beff),
which in turn is required to re-parametrise the underdensity threshold of Vdn model, as
shown in Fig. 6.7. Then, we perform a Bayesian statistical Markov chain Monte Carlo
(MCMC) analysis of the measured void size function by sampling the posterior distribution
of the parameters σ8 and Ωm. We assume a Gaussian likelihood and uniform prior distri-
butions for σ8 and Ωm. We leave as free parameters also beff, Bslope and Boffset, assuming
in this case Gaussian prior distributions centred at the corresponding estimated values of
these parameters, with standard deviations equal to their relative 1σ uncertainties. We will
show in Chapter 8 the effect of considering the covariance between the parameters Bslope

and Boffset and the impact of the calibration on the resulting cosmological constraints.
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Figure 6.7: The measured size function of the voids (yellow dots) identified in the DM halo
catalogues with Mmin = 2× 1012 h−1 M⊙, 5× 1012 h−1 M⊙ and 1013 h−1 M⊙ (rows from top to
bottom), at redshifts z = 0, z = 0.55, z = 1 (columns from left to right). Voids with Reff < 2.5MPS
are rejected from the analysis. Upper sub-panels: the blue dashed lines represent the void size
function obtained by rescaling the Vdn model with F(beff), that is the value of the bias computed
from the relation shown in Fig. 6.6. The green solid lines show the model rescaled with the value
of bpunct. The red dashed lines represent the model rescaled with the effective bias, beff. In all
cases, the shaded areas indicate the variation of the model obtained applying 1σ errors on the
value of the tracer bias. Lower sub-panels: the residuals of the void counts, computed as the ratio
between the difference data − model and the data errors, where the data are the measured void
size function and the model is given by the re-parametrisation of the Vdn model with F(beff). The
blue hatched areas indicate the regions in which the discrepancy between the data and the model
is within the data errors.
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Figure 6.8: 1σ (68%) and 2σ (95%) confidence levels in the σ8–Ωm plane, for the halo catalogues
with Mmin = 2× 1012 h−1 M⊙ (top left), 5× 1012 h−1 M⊙ (top right), and 1013 h−1 M⊙ (bottom).
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and Bslope. The projected 1D posterior distributions of σ8 and Ωm are shown in the top and
bottom-right panels of each plot, respectively. The black lines represent the true WMAP7 values
(σ8 = 0.809 and Ωm = 0.2711).



Table 6.3: Mean and standard deviation of the posterior distributions for the parameters σ8
and Ωm. The latter are computed from the Bayesian statistical analysis of the measured void
size functions for the DM halo catalogues with Mmin = 2 × 1012 h−1 M⊙, 5 × 1012 h−1 M⊙ and
1013 h−1 M⊙ at z = 0, z = 0.55 and z = 1. The last line of each table reports the results obtained
by combining the 1D posterior distributions at the three different redshifts.

Mmin = 2× 1012 h−1 M⊙

σ8 Ωm

Mean St. dev. Mean St. dev.

z = 0.00 0.85 0.04 0.321 0.05
z = 0.55 0.87 0.07 0.33 0.06
z = 1.00 0.86 0.12 0.32 0.08
combined 0.85 0.03 0.31 0.03

Mmin = 5× 1012 h−1 M⊙

σ8 Ωm

Mean St. dev. Mean St. dev.

z = 0.00 0.85 0.05 0.30 0.06
z = 0.55 0.90 0.12 0.33 0.09
z = 1.00 1.00 0.2 0.36 0.12
combined 0.86 0.05 0.29 0.04

Mmin = 1013 h−1 M⊙

σ8 Ωm

Mean St. dev. Mean St. dev.

z = 0.00 0.80 0.06 0.23 0.05
z = 0.55 0.91 0.15 0.31 0.09
z = 1.00 1.1 0.3 0.38 0.13
combined 0.82 0.05 0.26 0.04

The results for our simulated catalogues with three different mass-cuts and redshifts
are reported in Fig. 6.8. The corresponding mean values and the related uncertainties are
reported in Table 6.3. We can notice that the true values of the cosmological parameters
are within the 68% level in all cases and that the constraining power is higher for the
low redshifts and minimum halo mass, which are indeed associated to a larger number of
voids.

We perform now a preliminary exploration of the constraining power given by the com-
bination of the parameter 1D (i.e. projected) posterior distributions derived for different
redshifts. We consider the results achieved for halo catalogues with fixed minimum mass
and different redshifts, exploiting the redshift dependence of the degeneracy directions to
infer tighter constraints on σ8 and Ωm. Despite our samples cannot be considered com-
pletely independent, we multiply the 1D posterior probabilities of both σ8 and Ωm

6 at

6For simplicity we do not take into account the covarance between the parameters in this chapter, a
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Figure 6.9: Normalised 1D posterior probabilities of σ8 (left) and Ωm (right) computed for the
halo catalogue with Mmin = 2 × 1012 h−1 M⊙ at redshift z = 0, z = 0.55 and z = 1. The
histograms with black outlines represent the combined distributions achieved by multiplying all
the posterior probabilities relative to different redshifts. The black dashed lines indicate the true
WMAP7 values (σ8 = 0.809 and Ωm = 0.2711).

different redshifts as if they were achieved from independent data, in order to reproduce
the results that would be obtained from separate redshift shells in real surveys. We show
in Fig. 6.9 the results for the halo catalogue with Mmin = 2× 1012 h−1 M⊙, obtained by
multiplying the parameter posterior distributions at z = 0, z = 0.55 and z = 1. Table 6.3
reports the mean values and the standard deviations of the posterior distributions of σ8
and Ωm at these redshifts also for the catalogues with Mmin = 5 × 1012 h−1 M⊙ and
1013 h−1 M⊙, together with the analogous quantities obtained for the combined posterior
probability. As expected, by joining the information at different redshifts, we can achieve
more precise constraints on the cosmological parameters, as shown by the decreasing of
the width of the combined posterior distributions.

We refer the reader to Appendix B for further investigations on the cosmological con-
straints derived within this chapter. These concern in particular the impact of the assump-
tion of a relation F(beff) that is or wrong (i.e. F(beff) = beff) or affected by systematic
errors.

more accurate and realistic statistical treatment of the degeneracies between the cosmological parameters
will be performed in Chapter 8.
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Chapter 7

Voids in modified gravity scenarios
with massive neutrinos

MG models (introduced in Sect. 3.1.2) suppose the standard GR to be inadequate on
certain cosmological scales, implying the introduction of new physical degrees of freedom
in the gravitational theory (see e.g. Dolgov & Kawasaki, 2003; Nojiri & Odintsov, 2006;
Clifton et al., 2012; Joyce et al., 2015; Ishak, 2019). In particular, MG models tend
to closely mimic the effect of the cosmological constant on the expansion history of the
Universe. To satisfy the solar system tests and the local high-precision measurements (Le
Verrier, 1859; Bertotti, Iess & Tortora, 2003; Will, 2005), these models have to introduce
a screening mechanism, that basically recovers the predictions of standard GR on small
scales (Khoury & Weltman, 2004c; Hinterbichler & Khoury, 2010; Brax & Valageas, 2013,
2014). Most viable MG models are quite degenerate at the background level and can
produce discernible features only through their effects on structure formation at linear
and nonlinear scales.

Additionally, it has been recently highlighted the presence of strong observational
degeneracies between the effects of some of these models and those including massive neu-
trinos (He, 2013; Motohashi, Starobinsky & Yokoyama, 2013; Baldi et al., 2014; Wright,
Winther & Koyama, 2017; Giocoli, Baldi & Moscardini, 2018). Neutrinos (presented in
Sect. 3.1.3) are indeed another elusive component of the ΛCDM cosmology and although
the Standard Model of particle physics assumes they are massless, the evidence of so-
lar neutrino oscillations proved they in fact possess a mass (Becker-Szendy et al., 1992;
Fukuda et al., 1998; Ahmed et al., 2004). Of particular interest are degeneracies emerging
from a proper combination of the parameters of the f(R) class of MG models and of the
total neutrino mass

∑
Mν . Indeed, the typical range of the fifth force for f(R) models,

determined by the Compton wavelength µ−1, is comparable with the free-streaming scale
of neutrinos (see Sects. 3.1.2 and 3.1.3). The latter can have therefore a counteractive
effect on the enhanced growth of the cosmic structures, causing a compensation on the
cosmological statistical variations given by MG theories. This poses a notable challenge for
cosmology, since robust methods and different cosmological probes are required to achieve
tight constraints on both massive neutrinos and MG, and especially to disentangle their
combined effects. In particular, Baldi et al. (2014) have demonstrated that many standard
cosmological statistics, as the nonlinear matter power spectrum, the halo abundance and
the halo bias, show a limited discriminating power for some specific combinations of f(R)
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gravity parameters and neutrino mass values, which lead to results statistically consistent
with the ΛCDM predictions.

In this chapter we focus on the possible disentanglement of these degenerate cosmo-
logical scenarios by using cosmic voids. As we saw in Sect. 4.7, thanks to their unique
features, voids constitute indeed excellent laboratories for investigating the implications
of MG theories and the presence of massive neutrinos. Here we report the work presented
in Contarini et al. (2021), which proposes an accurate analysis of void radial profiles and
abundances with the aim of showcasing where the deviations of the f(R) and massive
neutrino models from the standard Λ scenario are more pronounced.

7.1 DUSTGRAIN-pathfinder simulations

In this chapter we use a subset of the cosmological N-body simulations suite called
DUSTGRAIN-pathfinder (Dark Universe Simulations to Test GRAvity In the presence
of Neutrinos). These simulations have been specifically designed with the aim of inves-
tigating the degeneracies between f(R) gravity models and massive neutrinos, and have
been recently exploited in different papers finalised to the study of possible methods to
disentangle these cosmic degeneracies, that is exploiting weak-lensing (Giocoli, Baldi &
Moscardini, 2018; Peel et al., 2018) and clustering statistics (Garćıa-Farieta et al., 2019),
investigating the abundance of massive haloes (Hagstotz et al., 2019), the large-scale ve-
locity field (Hagstotz et al., 2019), and exploring machine learning techniques (Peel et al.,
2019; Merten et al., 2019). The DUSTGRAIN-pathfinder simulations have been carried
out using MG-GADGET, a code based on an updated version of GADGET2 (Springel, 2005)
developed by Puchwein, Baldi & Springel (2013) to include f(R) gravity models. This
code has then been combined with the particle-based implementation described in Viel,
Haehnelt & Springel (2010) to include the effects of massive neutrinos.

The DUSTGRAIN-pathfinder simulations follow the evolution of an ensemble of
(2·)7683 particles of DM (and massive neutrinos) within a periodic cosmological box of
750 h−1 Mpc per side. In the reference ΛCDM simulation (i.e. the one characterised by
GR andMν = 0 eV) the CDM particle mass is equal toMp

cdm = 8.1×1010 h−1 M⊙ and the
gravitational softening is set to εg = 25 h−1 kpc, corresponding to about 1/40 of the MPS.
The cosmological parameters assumed in these simulations are consistent with the Planck
2015 constraints (see Planck Collaboration et al., 2016a) Ωm = Ωcdm+Ωb+Ων = 0.31345,
ΩΛ = 0.68655, h = 0.6731, As = 2.199 × 10−9, ns = 0.9658, which give for the ΛCDM
case σ8 = 0.842. The remaining set of simulations is created to sample the joint f(R)–Mν

parameter space. The |fR0| parameter assumes the values in the range [10−6–10−4], while
Mν belongs to the range [0–0.3] eV. All the parameters characterising the simulations
considered in this chapter are reported in Table 7.1. Note that the total Ωm (including
neutrinos) is kept fixed to compare the density power spectrum between cosmologies with
and without neutrinos. This results in equal positions of the peak of the power spectrum
and ensures that the spectra are identical in the long-wavelength limit. For a more detailed
description of the DUSTGRAIN-pathfinder simulations see Giocoli, Baldi & Moscardini
(2018) and Hagstotz et al. (2019).

Among all the comoving snapshots available for this project, we select the ones at the
redshifts z = 0, 0.5, 1, 2, considering only CDM particles also in the case of simulations
containing massive neutrinos, though this assumption does not have a major impact on the
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resulting halo catalogues (see e.g. Villaescusa-Navarro et al., 2013, 2014; Castorina et al.,
2014; Lazeyras, Villaescusa-Navarro & Viel, 2020). In the following analyses concerning
voids in the DM density fields, we apply a subsampling factor to DM particles to reduce
the computational time, keeping the 25% of the original particle sample.

Then, the collapsed DM structures have been identified for each snapshot following the
approach of Despali et al. (2016). In particular, the halo catalogues have been obtained
by applying the Denhf algorithm (Tormen, Moscardini & Yoshida, 2004; Giocoli, Tormen
& van den Bosch, 2008, and see Sect. 2.3.1 for the details) to the DM particle sample,
finding DM haloes as gravitationally bound structures, without including sub-haloes. The
halo mass is therefore assigned according to Eq. (2.72), in which ∆c is fixed to 200 or 500.
In the analysis presented in this chapter we employ 200c halo catalogues only, thus those
derived imposing ∆c = 200, except for the comparison test that we will show in Fig. 7.9.
The 500c haloes, identified with ∆c = 500, are indeed rarer objects and their sparsity does
not allow to identify a sufficiently large sample of cosmic voids.

Moreover, we reject the haloes with a number of embedded DM particles less than
30, in order to keep only statistically relevant objects and to avoid contamination by
spurious density fluctuations. This mass cut corresponds to Mmin = 2.43 h−1 M⊙ for
the ΛCDM case, and has been chosen to select a complete and, at the same time, dense
enough sample of DM haloes, which is fundamental for identifying a statistically significant
number of cosmic voids. The effect of this assumption has been investigated by repeating
the analysis with different low mass selections, with the requirement of having a good
agreement between the measured effective bias of DM haloes (see Appendix A) and the
theoretical predictions, which we compute using the Tinker et al. (2010) model convolved
with the halo mass function of the simulations (see Eq. A.4).

Two of the most important characteristics of the employed DM halo catalogues are the
volume and the spatial resolution (see Sect. 2.3). The sample volume settles indeed the
statistical relevance of the measured void abundance and affects the probability of finding
large voids, while the spatial resolution determines the smallest scales at which the void
number counts are not affected by numerical incompleteness. Before introducing our
analysis, is therefore fundamental to compare these quantities with those of the upcoming
wide field surveys like Euclid (Laureijs et al., 2011; Amendola et al., 2018), NGRST (Green
et al., 2012) and LSST (LSST Dark Energy Science Collaboration, 2012), in order to put
our results into the context of a future application with real data catalogues.

At first, with a volume of about 0.42 (h−1 Gpc)3, the DUSTGRAIN-pathfinder simula-
tions allow the identification of a relatively small sample of voids. This volume can be easily
compared to the one of WFIRST, Euclid and LSST, that will cover about 17 (h−1 Gpc)3,
44 (h−1 Gpc)3 and 154 (h−1 Gpc)3, respectively. Considering these volumes (two of which
that are more than 100 times larger than the simulation volume considered our analysis),
we expect that the uncertainties related to the void statistics presented in this chapter
will decrease dramatically considering void samples extracted from future real galaxy cat-
alogues. In particular, the Poissonian errors associated to both the stacked density profiles
and void size functions will be reduced of a factor proportional to the square root of the
increasing of the volume size, hence allowing to achieve a precision more than 10 times
better.

Finally, the DM halo catalogues extracted from the DUSTGRAIN-pathfinder ΛCDM
simulations are characterised by a MPS between 8.7 and 12.4 h−1 Mpc, for z = 0 and
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z = 2 respectively. These values are indeed of the same order of the expected MPS for
the Euclid spectroscopic survey that, with a sky area of ∼ 15000 deg2, will sample over 50
million of Hα galaxies, reaching a spatial resolution of ∼ 10 h−1 Mpc. The predictions for
the spatial resolution of the WFIRST survey are even more encouraging, thanks to the 20
million Hα galaxies that are expected to be detected in the redshift range 1.05 < z < 2,
sampled over a sky area of ∼ 2400 deg2. Considering instead the LSST photometric galaxy
surveys, the MPS of the samples would drop to ∼ 3 h−1 Mpc, though with a dramatic
decreasing of the redshift accuracy. On the basis of these data, we can expect that the
methodology presented in this chapter will gain statistical relevance when applied to the
data of the upcoming surveys.

7.2 Data preparation for the unbiased and biased cases

We run VIDE on both the DM particle and DM halo distributions, building a void catalogue
for each of the cosmological simulations and redshift considered in this chapter. Following
the same procedure of Sect. 6.2, we clean the catalogues of voids identified in the DM
halo distribution fixing in the cleaning algorithm (Sect. 5.3) the threshold δNL

v,tr at the
value −0.7. On the contrary, dealing with voids in the DM particle distribution, the value
δNL
v,DM = −0.7 is less appropriate to identify cosmic underdensities. Indeed, only few and
very deep voids could be rescaled to enclose such a low density contrast at high redshifts.
Since the choice of the threshold does not affect the validity of the predictions of the
Vdn model, we decided to use higher density contrasts to clean voids at earlier epochs, in
order to enlarge the sample of voids and reduce the shot noise. For this reason, we adopt
different thresholds depending on the redshift of the DM catalogues, using the growth
factor D(z) to rescale the nonlinear density contrast required in the cleaning algorithm:

δv,DM(z) = −0.8

[
D(z)

D(z = 0)

]2
. (7.1)

Fixing the cosmological parameters to those of the ΛCDM simulations, we obtain the fol-
lowing values: δv,DM(z = 0) = −0.80, δv,DM(z = 0.5) = −0.70, δv,DM(z = 1) = −0.62 and
δv,DM(z = 2) = −0.52. We verified that the values chosen for the underdensity threshold
are effective to maximise the signal and reduce the noise associated to the measured void
abundances. However, we tested different threshold choices, finding equivalent outcomes.
Indeed, it is important to highlight, once again, that the matching between the measured
void abundance and the predictions of the Vdn model is not affected by the specific choice
of the underdensity threshold. As far as the same value is used to reshape voids and is also
inserted, after the conversion to its linear counterpart, in Eqs. (4.4) and (4.5) of the Vdn
model, the results will be in agreement with the model predictions. Therefore the reader
should not be misled by the fact that the cleaning procedure is cosmology dependent. The
usage of the growth factor is just a convenient prescription to select an effective threshold,
depending on the redshift of the sample, and does not introduce any cosmology-driven
bias.

Figure 7.1 shows the voids identified in the distribution of DM particles at z = 0,
obtained following the methodology described in this section. For each cosmological model,
we report the central regions of the simulation box, indicating the spherical underdensities
selected in this analysis with circles traced within a slice of 20 h−1 Mpc along the Z-axis.
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Figure 7.1: Visual representation of the voids identified in the DM distribution of the
DUSTGRAIN-pathfinder simulations. We show a slice of 20 h−1 Mpc of the central part of the
simulation box at z = 0, for each of the cosmological scenarios analysed in this chapter. The DM
particles are displayed in light blue, while the DM haloes have colours from orange to yellow, the
latter indicating the more massive ones. The yellow circles with a darker interior represent the
voids obtained after the application of the cleaner procedure to the void catalogues previously built
by applying the VIDE algorithm.



Any apparent overlapping between voids is a visual effect caused by the projection on the
plane. As expected, the denser zones made up by filaments were not selected during void
identification. On the contrary, some empty regions result not identified as voids, due to
the superimposition with other underdensities not displayed in the figure because their
centre is not included in the simulation slice. It is also interesting to note that the selected
sample of voids is different depending on the cosmological scenario, even if the underlying
distribution of matter looks remarkably similar.

7.3 Results: void profiles

We compute the stacked void density profiles by measuring the density contrast in shells
around void centres. In particular, we calculate the mean of the density profiles com-
puted between 0.3 and 3 times the effective radius Reff , rescaling then each profile by its
correspondent void effective radius. For this specific analysis we make use of the void
catalogues obtained directly with VIDE, without applying the cleaning algorithm. This
is due to the fact that the cleaning procedure is aimed at shaping voids according to
the theoretical model of the void size function, and it is not particularly suitable for the
study of the stacked void profiles. Indeed, using our cleaning prescriptions, the sample
of voids is considerably reduced in number because of the removal of the voids-in-voids
and voids-in-cloud (see Sect. 4.2), as well as of the overlapping cases. Moreover, with the
cleaning algorithm we rescale the void radii to match a specific density contrast, whereas
in the study of the stacked density profiles we aim at modelling voids to enhance the
self-similarity between their shapes. Indeed, the VIDE void catalogues are composed of
a hierarchy of voids separated by high density walls, and the effective radius assigned to
each void is, by construction, in proximity to the compensation wall (see Sect. 4.4). These
voids are therefore characterised by the same shape and their stacking allows to sharpen
their peculiar features (see e.g. Hamaus, Sutter & Wandelt, 2014).

We start analysing the profiles computed in the DM particle distribution, considering
only voids with radii included in the range [5–7]·MPS, which corresponds to 1.55 h−1 Mpc,
for all the sub-sampled catalogues. This range covers the central parts of the interval on
which we perform the analysis of the abundance of voids in the DM density field that we
will present in Sect. 7.4: the lower limit is given by the spatial resolution of the sample,
while the upper limit is chosen to include a sufficient number of voids with large radii.
Since the shape of the density profiles depends on the mean radius of the void sample
(Hamaus, Sutter & Wandelt, 2014), we avoid to select a wider range of sizes to prevent
an excessive mixing of different density profiles during the operation of average.

In Fig. 7.2 we report the results obtained with the ΛCDM simulations, compared to
those with MG models characterised by fR0 = −10−4, with and without massive neutri-
nos having Mν = 0.3 eV (namely, fR4 and fR4 0.3eV). The density profiles in different
cosmologies appear very similar, at all redshifts. We note that the central zones become
deeper with cosmic time, while the compensation wall grows and turns denser, as already
verified in different works (see e.g. Hamaus, Sutter & Wandelt, 2014; Massara et al., 2015;
Pollina et al., 2016). Differences among the cosmological models can be better appreciated
by looking at the residuals, displayed in the lower sub-panels. Here we compute the dif-
ference between the mean density contrast measured in the fR4 or fR4 0.3eV simulations
and the one measured in the ΛCDM simulations, divided by the errors associated to the
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Figure 7.2: Density contrast profiles computed in shells around the centres of cosmic voids, identi-
fied with VIDE in the distribution of DM particles. The results are displayed for each cosmological
model at redshifts z = 0, 0.5, 1, 2. We report the profiles measured considering the ΛCDM, fR4
and fR4 0.3eV simulations. These profiles are so similar that the markers with which they are
represented result superimposed. However, the differences between them are highlighted in the
residuals reported in each sub-panel, computed with respect to the ΛCDM case, in units of the
errors associated to the profiles computed in the non-standard cosmologies. The latter are rep-
resented as a shaded region in the plots. In this case, given the high number of profiles, this
uncertainty is so small to be represented with a simple line between the data points.
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neutrinos. In this case, to highlight the deviations from the ΛCDM void profiles, we show only the
residuals from the standard cosmological model.



former. The errors are evaluated as the standard deviation of all the profiles considered
for each simulation, divided by the square root of their number. The most significant
variation arises around z = 1, where the fR4 model shows an increase of the mean density
in close proximity to the compensation wall and a lowering near the void centres. This is
in agreement with the expected effect of enhancing the growth of structures in MG, which
accelerates the process of void formation and evolution. The presence of emptier voids
and steeper voids profiles has indeed already been observed and predicted by different
authors who studied the behaviour of the fifth force in voids in Chameleon models (see
e.g. Martino & Sheth, 2009; Clampitt, Cai & Li, 2013b; Perico et al., 2019). Nevertheless,
these differences are almost completely cancelled by the effect of the neutrino thermal
free-streaming, nullifying the possibility of disentangling the degeneracy between these
models.

In Fig. 7.3 we present the normalised residuals obtained by comparing the density
profiles measured using the remaining cosmological models to the ones of the ΛCDM
simulation. Note that the y-range is shrunk compared to the previous plot for the sake
of clarity. Also in the case of fR5 models, the most evident deviations from the ΛCDM
profiles appear around z = 1, and they also tend to vanish in the presence of massive
neutrinos. The effect is even milder in fR6 models, and statistically indistinguishable, at
least with the current simulations.

In order to investigate possible trends related to the void mean size, we repeat the
same analysis dividing the stacked void profiles into different bins of effective radii. We do
not report the results of this analysis since we did not find any clear different behaviour
in the profiles computed with the ΛCDM cosmology compared to the other models, at
the same mean radii. Minor differences appear only for voids with large radii at z = 2,
where an early formation of the compensation wall is revealed in the profiles measured in
MG simulations without massive neutrinos. Larger voids manifest also a slightly deeper
profiles at z = 0 in the very central regions of the voids, which is reduced by the presence
of massive neutrinos. These results are not surprising given that larger voids are subject
to a faster evolution compared to the smaller ones. Nevertheless, these deviations do not
show a significance higher than 2σ, for all the redshifts and distances from the void centres
considered.

Now we present the same analysis performed on void density profiles measured in the
distribution of DM haloes with ∆c = 200. In this case we consider voids with radii in the
range [2–5] ·MPS of the ΛCDM simulation tracers, with MPS = 8.67 h−1 Mpc. The choice
of this interval of radii is motivated by the same reasons behind the previous analysis of
DM void profiles. We report the results of this analysis in Figs. 7.4 and 7.5.

In the Fig. 7.4 we present the density profiles for the ΛCDM, fR4 and fR4 0.3eV models,
while in Fig. 7.5 we show the residuals computed for the set of 6 simulations of the fR5
and fR6 models, with and without massive neutrinos. The residuals are computed as the
difference between the profiles measured in non-standard cosmological models and the ones
measured in the ΛCDM cosmology, divided by the uncertainty associated to the former.
Compared to the stacked density profiles traced by DM particles, the profiles obtained
using DM haloes result steeper and the compensation wall is clearly well developed also
at early epochs, reaching more positive values of density contrast (in agreement with the
results obtained by Massara et al., 2015). However, in this case the data are noisier
because of the decreasing of void statistics, and it is hard to distinguish any significant
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Figure 7.4: The same as Fig. 7.2, but for the cosmic voids identified with VIDE in the distribution
of DM haloes with ∆c = 200.
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Figure 7.5: The same as Fig. 7.3, but for the cosmic voids identified with VIDE in the distribution
of DM haloes with ∆c = 200.

trend. Since we expect to find the strongest deviations in the most extreme MG models,
we focus now on the analysis of the density profiles computed using the simulations with
fR0 = −10−4 and Mν = 0.3 eV.

Looking at the residuals shown Fig. 7.4 it is possible to note a slight trend of the
fR4 profiles towards lower values of the density contrast, which is almost completely can-
celled by the effect of massive neutrinos, especially at high redshifts. The origin of these
deviations is the shift of the mean radii of voids identified in MG scenarios by biased
tracers. Indeed, being these voids more evolved due to the effect of the enhanced gravity,
their average radii result larger. In turn, as demonstrated by Hamaus, Sutter & Wandelt
(2014), the density profiles computed with larger voids have shallower interiors and lower
density contrast values in the outer parts. We also tested the subdivision of the sample
in different bins of void radii, but the increase of the noise does not allow us to discern
any characteristic behaviour associated with voids of different sizes. We can conclude that
the degeneracies between the considered models cannot be disentangled by the analysis of
the void stacked profiles carried on in this chapter, especially making use of DM haloes
as tracers of the matter distribution. Nevertheless, we underline that larger simulations
could lead to slightly different results, since they would provide better void statistics and
smaller errors, possibly allowing us to disentangle the models.
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7.4 Results: void size function in the DM field

We focus now on the study of the abundance of cosmic voids as a function of their effective
radius. In this analysis we compare the measured void size function with the predictions of
the Vdn model, making use of samples of voids identified in the DM particle distribution.
We analyse the simulations with different fR0 parameters and neutrino masses to build
the catalogues of voids, exploiting the same pipeline described Sect. 6.2. To minimise
the effect due to the spatial resolution of simulations, we apply the conservative choice of
rejecting voids with radii smaller than 5.5 h−1 Mpc, corresponding to about 3.5MGS.

When dealing with voids traced by the DM distribution, no bias prescription is required
to rescale void radii. To include in the theoretical model the variations caused by both
MG and massive neutrinos on the void size function, we make use of MGCAMB1 (Zhao et al.,
2009; Hojjati, Pogosian & Zhao, 2011; Zucca et al., 2019), a modified version of the public
Einstein-Boltzmann solver CAMB2 (Lewis, Challinor & Lasenby, 2000), which computes the
linear power spectrum for a number of alternative cosmological scenarios, including the
Hu & Sawicki f(R) model studied in this chapter.

In Fig. 7.6 we show the results for the ΛCDM, fR4 and fR4 0.3eV models at redshift
z = 0, 0.5, 1, 2. First of all, we notice that the overall trend of the void size functions
measured in the simulations is well reproduced by the models. We considered Poissonian
errors, thus the uncertainty on the void counts might be slightly underestimated. In the
bottom panels we report the residuals evaluated with respect to the Vdn model computed
for ΛCDM case. In particular, the residuals are calculated as the difference between the
measured void abundance and the corresponding predicted one for a given model and the
theoretical value of the ΛCDM void size function at the same radius, divided by the latter.
Then, as expected, at low redshifts the fR4 model predicts a larger number of voids with
larger sizes. The modification of gravity induces indeed a faster formation and evolution
of cosmic structures, including cosmic voids.

Figures 7.7 and 7.8 show the results of the analysis performed for the remaining cosmo-
logical models, given by the set of simulations with fR0 = −10−5 and fR0 = −10−6. Also
in these cases, the predictions of the Vdn model computed with MGCAMB are fully consistent
with the measured void abundance. The deviations from the ΛCDM model are weaker
in these cases, given the lower values of the fR0 parameter. As expected, the departure
from the ΛCDM model are the more severe the stronger is the intensity of the fifth force,
resulting more evident for large voids, in agreement to what found by Clampitt, Cai & Li
(2013b) and Voivodic et al. (2017).

It is interesting to note that, despite at low redshifts the effect of massive neutrinos is
effective in bringing the void size function towards the one computed in ΛCDM, this trend
starts to revert at higher redshifts. In particular, it is evident that at z = 2 the presence
of massive neutrinos makes the fR4 0.3eV void size function to depart from the ΛCDM
one, causing a weakening of the growth of structures, more evident for voids with larger
radii. This is a clear hint of the possibility of disentangling the degeneracies between the
standard ΛCDM cosmology and MG with massive neutrino models. However, to achieve
this task, it is required to explore the void abundance at high redshifts and in wide areas,
in order to collect a sufficiently high number of large voids.

1https://github.com/sfu-cosmo/MGCAMB
2https://github.com/cmbant/CAMB
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Figure 7.6: Measured and theoretical void size function computed for the ΛCDM, fR4 and
fR4 0.3eV models, at redshifts z = 0, 0.5, 1, 2. The measured void abundances for each cosmo-
logical model are represented by different markers and colours, as described in the label. The
errorbars are Poissonian uncertainties on the void counts. The predictions are instead displayed
as lines with different colours and styles, according to the model to which they refer. The bottom
sub-panel of each of the 4 plots reports the residuals calculated as the difference from the ΛCDM
Vdn model divided by the value of the latter, for both the measured and the predicted void abun-
dance.
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7.5 Results: void size function in the biased tracer field

As shown in Chapter 6, we need to properly convert the underdensity threshold of the Vdn
model to take into account the effect of the tracer bias on the predicted void abundances.
We report here the re-parametrisation of the nonlinear threshold we already introduced:

δNL
v,DM =

δNL
v,tr

F(beff)
, (7.2)

with
F(beff) = Bslope · beff +Boffset , (7.3)

The computation of the large-scale linear bias beff from the tracer 2PCF will be not
discussed in this chapter, since it is estimated with a methodology analogous to the one
described in details in Appendix A.

In Sect. 6.5 we calibrated the linear function F(beff) by fitting the values of beff
and bpunct computed at different redshifts, using FoF halo catalogues extracted from the
CoDECS simulations. We apply now the same procedure using the catalogues described in
Sect. 7.1, focusing on those characterised by the ΛCDM cosmology. We consider both the
halo catalogues obtained by applying the Denhf algorithm with ∆c = 200 (200c hereafter)
and ∆c = 500 (500c hereafter) to make a comparison between the relations calibrated
with halo samples identified by means of different methods.

Figure 7.9 shows the results of this analysis. We report here the linear relations for the
200c and 500c haloes, obtained by fitting the value of bpunct (see Eq. 6.4) as a function of
beff at z = 0, 0.5, 1, 2. The fit obtained in Sect. 6.5 is also displayed as reference. We note
that going from FoF to 200c and 500c haloes, the objects we are considering become more
compact and denser. This results in a departure from the bisector of the plane beff–bpunct,
representing the relation for matter tracers with an identical behaviour of the bias factor
on all the regions of the density field. We find the following results from the fitting of the
data at different redshifts:

F(beff) = (0.87± 0.02) beff + (0.36± 0.03) , for 200c (7.4)

and
F(beff) = (0.82± 0.02) beff + (0.37± 0.02) , for 500c . (7.5)

The linear function F(beff) shows a lowering of the slope related to the increase of the
central density selection. We can conclude that the relation required to convert the large-
scale effective bias has a slight dependence on the selection criteria applied to define the
mass tracers, and that it has therefore to be calibrated according to the type of objects
used to identify the voids.

We test also the possible dependence of the function F(beff) on the cosmological model.
In Fig. 7.10 we report the linear relations found using the 200c haloes to compute both the
values of beff and bpunct of the ΛCDM, fR4, fR5 and fR6 models. In this case, considering
tracers with the same mass selection, the relation F(beff) obtained for the ΛCDM case re-
sults statistically indistinguishable from the ones computed for non-standard cosmological
scenarios.
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We finally test the universality of the F(beff) relation analysing also the models with
massive neutrinos, comparing the values of beff and bpunct measured for these scenarios
using 200c haloes with those previously shown. As displayed in Fig. 7.11, the linear
relation calibrated with the ΛCDM model is fully consistent with the data obtained for all
analysed cosmological scenarios. For this reason, in the following analysis we will apply
the calibration obtained for the ΛCDM standard scenario to obtain the theoretical void
size function for every cosmological model, that is assuming that the F(beff) relation is
universal, for a specific type of tracers.

In the last part of this section we make use of the 200c halo catalogues only, since the
higher number of tracers and the lower bias factor ease the identification of voids. However,
we tested the validity of the following methods considering also the 500c haloes as tracers,
finding consistent, though less precise, results. After obtaining the linear function F(beff)
from the analysis of both the DM particle and 200c halo density distribution, we can now
use the coefficients shown in Eq. (7.4) to properly convert the threshold δNL

v,tr = −0.7. This
density contrast is used during the cleaning procedure of voids identified in the DM halo
field and has to be properly converted to take into account the effect of the bias factor
on the theoretical void size function. To this purpose, as explained in Sect. 6.3, we first
apply Eq. (7.2) to obtain the nonlinear density contrast in the DM distribution. Then
we evaluate its corresponding value in linear theory by means of Eq. (6.3), inserting this
quantity in the theoretical expression of the Vdn model.

We repeat this pipeline to compute the theoretical void size function for each cosmo-
logical scenario, using MGCAMB to obtain the matter power spectrum, required to evaluate
both the tracer effective bias, beff , and the square root of the mass variance, σ(z). To min-
imise numerical incompletenesses in the void sample, we discard the regions with Reff less
than [2.75, 2.5, 2.5, 2.25] ·MPS of the ΛCDM halo catalogues for the redshifts [0, 0.5, 1, 2],
respectively (see also Sect. 6.2). In this case we did not apply a fixed cut at small radii to
reject the voids affected by sparsity of the tracers. Indeed, contrary to what happens with
the DM particles, the MPS of the DM haloes depends on the redshift and the interplay
between the spatial resolution of the tracers and the incompleteness of the void number
counts is not trivial. Therefore we prefer to apply these conservative selections relying on
the drop observed at small radii in the measured void size function at different redshifts.
We tested different minimum radius cuts and we verified that lower values would lead to
a discrepancy between the measured and the predicted void counts, while higher values
would cause a dramatic reduction of the void statistics.

Before starting the analysis of the size function of voids in biased tracers, we want to
stress the fact that not only the void size function, but also beff depends on the presence
of the fifth force and massive neutrinos. They are indeed both strongly correlated to the
growth of cosmic structures, which is in turn influenced by modification of gravity and
neutrino thermal free-streaming. Therefore the rescaling of the underdensity threshold δNL

v,tr

by means of the large-scale effective bias can lead to degenerate effects on the resulting void
abundance. A rigorous study of the interplay between these effects on the size function of
voids identified using different types of matter tracers is left to future works.

In Fig. 7.12 we report the comparison between the measured void abundance for the
ΛCDM, fR4 and fR4 0.3eV models, showing also the corresponding predictions of the
extended Vdn model computed for each cosmological scenario. The shaded region around
each curve represents the uncertainty derived from the propagation of the error associated
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Figure 7.11: Values of beff and bpunct measured using 200c haloes at z = 0, 0.5, 1, 2, for all the
cosmological models analysed. The colorbar on the right reports the colours associated to each
cosmological model. The black line indicates the linear relation obtained by fitting the ΛCDM
data only, while the shaded grey region shows its associated uncertainty.

to the value of beff computed for each case, converted by means of Eq. (7.4), and used
to compute the theoretical models. The residuals reported in the bottom sub-panels are
computed as the difference from the theoretical void size function of the ΛCDM model, in
units of the latter, for both the measured and the predicted abundances. We find a good
agreement between the predictions of the extended Vdn model and the measured void size
functions. Nevertheless, the cosmic voids found in the DM halo simulations are so rare that
the Poissonian noise does not allow us to distinguish a specific trend for the abundances
measured in MG and massive neutrinos scenarios. This was previously verified also in
other works analysing voids identified in biased tracers using cosmological simulations in
MG gravity scenarios or with massive neutrinos (Voivodic et al., 2017; Kreisch et al.,
2019b).

In Figs. 7.13 and 7.14 we show the results for the remaining cosmological models.
Even more in these cases, the void abundances derived in different cosmologies are hardly
discernable from the ΛCDM ones. The signal is stronger at higher redshifts due to the
fact that the underdensity threshold used to rescale the voids moves towards values closer
to 0 for higher values of beff (see Eq. 7.2). This causes the growth of the population of
large voids and can lead to an overall increase of the number of voids with radii belonging
to the range considered in this analysis. However, since this method implies the selection
of shallower voids, it will be important to verify the purity of the void sample when it
derives from real galaxy surveys, and thus to take into account the possible contamination
by Poissonian noise. The accuracy of the measured void counts at high redshifts can
be in fact compromised by systematic uncertainties still not parameterised in the model.
Nevertheless, in our case the prescriptions adopted to prepare the void samples are proven
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Figure 7.12: Measured and predicted abundances of cosmic voids identified in the distribu-
tion of the 200c haloes, extracted from the ΛCDM, fR4 and fR4 0.3eV simulations, at redshifts
z = 0, 0.5, 1, 2. We represent with different colours and markers the abundances computed for each
cosmological scenario, with Poissonian errorbars. The theoretical predictions computed for the
considered models are reported with lines of the corresponding colours. The shaded region around
each curve represents the uncertainty given by the propagation of the errors during the rescaling of
the Vdn underdensity threshold by means of the function F(beff). The bottom sub-panels report
the residuals computed as the difference from the ΛCDM theoretical predictions, divided by the
value of the latter, for both the measured and the predicted void abundances.
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Figure 7.13: Measured and predicted abundances of cosmic voids identified in the distribution
of 200c haloes, extracted from the fR5, fR5 0.1eV and fR5 0.15eV simulations, compared to the
theoretical void size function for the ΛCDM model. In the bottom sub-panels we report the
residuals with respect to the latter. The symbols and the styles are analogous those reported in
Fig. 7.12.



125

−8

−7

−6

−5

lo
g(

d
n
/d

ln
R

eff
)

[h
3

M
p

c−
3 ]

z = 0.00

−1

−0.5

0

0.5

1

∆
[Λ

C
D

M
]

z = 0.50

−8

−7

−6

−5

lo
g(

d
n
/d

ln
R

eff
)

[h
3

M
p

c−
3 ]

z = 1.00

20 25 30 35 40 45 50

Reff [h−1 Mpc]

−1

−0.5

0

0.5

1

∆
[Λ

C
D

M
]

z = 2.00

fR6

fR6 0.06eV

fR6 0.1eV

ΛCDM

20 25 30 35 40 45 50 55

Reff [h−1 Mpc]

Figure 7.14: Measured and predicted abundances of cosmic voids identified in the distribution
of 200c haloes, extracted from the fR6, fR6 0.06eV and fR6 0.1eV simulations, compared to the
theoretical void size function for the ΛCDM model. In the bottom sub-panels we report the
residuals with respect to the latter. The symbols and the styles are analogous those reported in
Fig. 7.12.



to be compliant with the theoretical predictions and do not require further procedures of
removal of spurious voids.

We also point out that, although from these plots the void counts could appear reduced
in MG cosmologies, this is true in fact only for the large sizes. Looking at the Figs. 7.12
to 7.14, we note that the void size functions in the different cosmological models considered
are significantly different only for large radii, an effect that is stronger for higher values of
the fR0 parameter. While at z = 0 the predictions of the Vdn model for MG cosmologies
with and without massive neutrinos are statistically indistinguishable, at intermediate
redshifts the presence of massive neutrinos causes a shift of the void size function towards
the one obtained for the standard ΛCDM model. This trend results even more relevant
at z = 2, where the effect of the neutrino thermal free-streaming brings the theoretical
curve above the one of the ΛCDM case. This outcome might seem counterintuitive, since
the presence of massive neutrinos leads effectively to a slow down of the evolution cosmic
voids. Nevertheless, this trend has been identified also in Kreisch et al. (2019b) using a
methodology similar to the one reported in this Thesis work to select and characterise the
void sample. This phenomenon is in fact due to the effect of the adopted bias-dependent
threshold, that causes a rescaling of the detected underdensities toward greater radii and
appears more evident for larger voids.

This is an obvious indicator of the possibility to use cosmic void abundances to dis-
entangle the degeneracies between MG and massive neutrinos models. However, we recall
that the effect of the tracer bias on the void size function may be partially compensated
by the one of massive neutrinos and MG models, therefore the trends found in this anal-
ysis may be different using other simulations or different tracers (see also Kreisch et al.,
2019b).

To facilitate the comparison of these results and maximise the signal obtained from
the measured void abundance, we compare now the total void number counts with the
abundance computed by integrating the theoretical void size function over the same range
of radii. Even if the total void counts is not commonly used to derive cosmological con-
straints, it can constitute in this case a useful quantity to analyse. Indeed, it allows to
perform a simple validation of the predictions of the void size function models, collapsing
the information on void number counts related to different spatial scales and sharping the
signal achieved from the measured abundances.

We present in Table 7.2 the comparison between the integrated values of the void num-
ber counts inferred from the theoretical void size function models and our measurements,
for each of the cosmological models and redshifts explored in this analysis. We report also
the value of the tracer effective bias, used to re-parametrise the characteristic threshold of
the Vdn model. We also show, for completeness, the measured abundance derived from
the VIDE void catalogues before performing the cleaning procedure3. The abundances
extracted from the raw VIDE void catalogues are significantly larger than those obtained
after the cleaning procedure, but they are clearly not in agreement with the Vdn model
predictions. This outcome is not surprising since these voids are not defined according to
the theory described in Sect. 4.3.

3Since the VIDE void radii are systematically larger than the ones rescaled by means of the cleaning
algorithm (see Sect. 5.3), we applied a more severe cut to discard the voids affected by the sparsity of the
tracers. In particular, to minimise the numerical incompleteness for small radii, we increase the minimum
radius of the accepted voids by a factor of 1.5 with respect to the selection adopted for the cleaned
catalogues.
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Now we focus on the comparison of the total counts of cleaned voids with the predic-
tions achieved with the extended Vdn model. The errors associated with the latter are
evaluated by propagating the uncertainties related to beff and bpunct during the calibration
of the function F(beff), while those associated with the measured void abundances are
assumed to be Poissonian. We can see that the theoretical void abundances are overall
consistent with the observed ones, considering the uncertainties on both the values. As
expected from the results shown in Figs. 7.12 to 7.14, a significant differentiation between
the analysed cosmological models is reached at z = 2, despite the scarcity of void counts
makes their distinction challenging. Nevertheless, despite the simulations considered in
this analysis do not allow us to have enough statistics for large voids at high redshifts, we
can conclude that this approach will lead to a relevant contribution in discerning between
degenerate cosmological scenarios in wide-field surveys.
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Chapter 8

Void size function forecasts for the
Euclid mission

As already introduced in Chapter 1, the Universe is in a phase of accelerated expansion that
we explain mathematically by introducing new component, dominant in terms of energy
density, called DE for its unknown nature. The full understanding the origin of Universe’s
expansion is one of the most compelling challenges of the next decades. The Euclid mission
is exactly designed to this purpose. Euclid ’s main goal is the (indirect) study of the nature
of DE through the analysis of the observable structures of the Universe. In particular, it
aims at determining the DE equation of state (see Sect. 3.1.1) by constraining its constant
and time varying terms to a 1σ precision of 0.02 and 0.1 respectively. Moreover, Euclid will
test the validity of GR by measuring the rate of cosmic structure growth to a 1σ precision
of 0.02, sufficient to distinguish GR from a wide range of MG theories (see Sect. 3.1.2).
Additionally, Euclid will map the DM distribution with unprecedented accuracy, allowing
us to reveal also the feeble features produced by the presence of massive neutrinos, whose
total mass is expected to be constrained with a 1σ upper limit of 0.03 eV (see Euclid
Collaboration: Blanchard et al. (2020) for further details and updated data).

Whether the acceleration is produced by a new scalar field or by modified laws of
gravity, its effect will have a different impact on the LSS, leaving imprints that can be
effectively discerned by using several orthogonal methods. The Euclid mission is indeed
optimised for two independent primary cosmological probes: weak gravitational lensing
and galaxy clustering. However, given the necessity of breaking the degeneracies between
the parameters of the assumed cosmological model, Euclid will rely on a large set of
secondary and additionally probes. Among these, we have cosmic voids, which has been
demonstrated not only to be especially suited for constraining DE and MG theories, as
well as the neutrino mass (see Sect. 4.7), but also to show great complementary with the
Euclid standard probes (see e.g. Biswas, Alizadeh & Wandelt, 2010; Kreisch et al., 2021,
and also Sect. 9.2).

In this chapter we introduce the work that will be presented in Contarini et al. (2022,
in preparation), which has been carried on within the Euclid “Working Package 8: Voids”.
The main goal of this work is to provide forecasts on the cosmological constraining power
of the void size function from the Euclid survey. In this analysis we identify voids in the
largest Euclid -like light-cone, the Flagship simulation (Potter, Stadel & Teyssier, 2017).
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The latter mimics, although for reduced sky area, the spectroscopic1 galaxy distribution
expected for Euclid. We aim at measuring and theoretically modelling the void size func-
tion from the Flagship simulation, providing a state-of-the-art forecast for void number
counts to be expected from the Euclid survey.

8.1 Flagship simulation

In this analysis we employ the version 1.8.4 of the Euclid Flagship mock galaxy catalogue.
This catalogue is created by running a simulation of two trillion DM particles in a periodic
box of L = 3780 h−1 Mpc per side, with a flat ΛCDM cosmology characterised by the
parameters Ωm = 0.319, Ωb = 0.049, ΩΛ = 0.681, σ8 = 0.83, ns = 0.96 and h = 0.67, as
obtained by Planck in 2015 (Planck Collaboration et al., 2016a). The simulation box has
been converted into a light-cone and the dark matter haloes have been identified using
the Rockstar halo finder (Behroozi, Wechsler & Wu, 2013, see Sect. 2.3.1 for the details).
These haloes have been populated with central and satellite galaxies using a combination of
the HOD and HAM methods (see Sect. 2.3.2) to reproduce all the observables relevant for
Euclid ’s main cosmological probes. Specifically, the HOD algorithm has been calibrated
exploiting several local observational constraints, using for instance the local luminosity
function for the faintest galaxies (Blanton et al., 2003; Blanton et al., 2005) and the galaxy
clustering as a function of luminosity and colour (Zehavi et al., 2011). This galaxy sample
is composed of more than two billion objects and presents a cut at magnitude H < 26 or
equivalently on the Hα flux fHα > 2× 10−16 ergs s−1 cm−2, which mimics the observation
range expected for Euclid. To match the completeness and the spectroscopic performance
expected for the Euclid survey, we uniformly downsample the galaxy catalogue to consider
only 60% of the galaxies originally included in it. Furthermore we associate a Gaussian
error of σz = 0.001 to the redshift of each galaxy (Euclid Collaboration: Blanchard et al.,
2020). The full catalogue spans a large redshift range, up to z = 2.3, and covers one octant
of the sky (close to 5157 deg2).

The Euclid satellite will observe ∼ 15 000 deg2 of the sky with patches that extend
up to ∼ 6000 deg2. The total area covered by the satellite will be significantly larger
than the available Flagship area. By rescaling it, we can approximately compute the full
predicting power from Euclid. The larger Euclid survey coverage will allow us to increase
statistics, reducing the size of the error bars in particular for the high radius end of the void
size function, and to better account for super-sample covariance. On the other hand, the
Euclid survey is expected to have a less regular pattern than the Flagship box, which might
affect the void statistics. Conversely to galaxies, voids are strongly sensitive to survey area
specifics because of their extended nature: while contiguous regions are a great advantage
for void search, as they provide larger voids, void statistics can be reduced in the case of
patchy survey coverage, because voids touching survey edges must be excluded from the
analysis. However, we expect these effects, not included in our analysis, to not impact
significantly the precision of our cosmological forecasts.

We focus our analysis on the expected sub-sample corresponding to Euclid spectro-
scopic data, selecting galaxies from redshift 0.9 to 1.8. We obtain a resulting mock cat-

1Despite the spectroscopic galaxy sample is characterised by lower number of objects and redshift
coverage with respect to the photometric one, it allows us to achieve a particularly accurate and reliable
identification of cosmic voids thanks to its small galaxy redshift errors.
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Figure 8.1: Galaxy distribution in the Flagship simulation octant projected on the three coor-
dinate axes (left) and represented in 3D (right). In different colors the galaxies from z = 0.9 to
z = 1.8.

alogue composed of about 6.5 × 106 galaxies, having the spatial distribution of a shell
of sphere octant. We report in Fig. 8.1 the distribution of the objects belonging to the
selected sample.

8.2 Void catalogues

We build void catalogues using VIDE from the galaxy sample both with real and redshift-
space coordinates, given by true and observed redshifts respectively. Note that the redshift-
space catalogue is identical to the one used by Hamaus et al. (2022) (see also Sect. 9.1.1).
As we saw in Sect. 4.6.2, in the true redshift catalogue, the galaxy redshift corresponds
to the cosmological one only, while in the observed redshift catalogue it corresponds to
the cosmological plus Doppler shift due to the peculiar velocity. VIDE takes into account
the presence of a survey mask, and prevents voids from including volumes outside the
survey extent. We apply the mask following the simulated ∼ 5000 deg2 octant. While the
actual Euclid data will be more complex (due to e.g. more elaborate survey mask and
survey-related systematic effects), this methodology partially accounts for mask effects in
our pipeline, preparing the analysis of future Euclid data.

We further process the void catalogues following the same pipeline reported in Sect. 6.2.
In this case, the cleaning algorithm is applied to a light-cone so the entire procedure is
performed by taking into account the variation of the tracer density with redshift. In
Fig. 8.2 we report some properties of the galaxy and void catalogues considered. We show
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Figure 8.2: Properties of the Euclid -like galaxies of the Flagship simulation and of the void samples
built. Left : MPS as a function of the redshift computed for the sample of galaxies extracted with
the same specifics expected for the Euclid mission. We represent with a grey line the 3rd-order
polynomial used to reproduce the trend of this quantity. Right : number density of galaxies (in red)
and voids (in blue) of the Flagship sample. We show the values relative to the void catalogue built
with VIDE and after the cleaning procedure, both with a minimum void radius R > 2MPS, with
a solid and a dashed line respectively. The two bands on the sides represent the ranges of redshift
excluded from the analysis due to the uncertainty of voids identified near the survey edges.

the variation of the galaxy catalogue MPS2, in the left and we use a 3rd-order polynomial
to reproduce this trend: the coefficients of this fit can be used in the cleaning algorithm
to prepare the sample of voids identified in the same distribution of galaxies. The public
version of the cleaning algorithm we developed (see Sect. 5.3) incorporates also this tool.
In right plot of Fig. 8.2 we report the number density of the galaxy and the void catalogue,
the latter considered both before and after the cleaning procedure. Here, we can notice the
strong impact of the preparation of the void sample to make it suitable for the exploitation
of the number counts.

Aiming to a very conservative void selection at the edges of the survey’s footprint,
we apply an additional cut to ensure the mask is not affecting the cleaning procedure:
we remove all voids whose centre is closer than 30 h−1 Mpc to the edge and correct the
model accordingly for the selected volume. We then prune voids at low and high redshifts
to further avoid selection effects given by redshift boundaries of the light-cone, and we
divide the sample in 6 redshift bins. This number is found as the optimal compromise
between maximising the number of redshift shells and keeping void numbers in bins high
enough to avoid falling in the shot-noise dominated regime. In order to have shells with
roughly the same number of cleaned voids identified in redshift space and to avoid border
effects at the light-cone redshift boundaries, we selected the following redshift bin edges:
zi = [0.950, 1.035, 1.126, 1.208, 1.318, 1.455, 1.700]. Each shell contains at least 340 voids,
within the range of effective radii considered in the analysis of the measured void size
function described below.

2We computed the value of the mean inter-galaxy separation as MPS = (Vshell/Ngal)
1/3, where Vshell is

the volume of the redshift shell analysed and Ngal is the number of galaxies present in it.
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To exclude the spatial scales affected by void number count incompleteness (see
Sect. 6.2) we remove voids with radii smaller than MGS · f(z), where f(z) is a factor
dependent of the redshift of the sample. The factor f(z) is chosen empirically based on
the departure of void number counts from the trend given by the theoretical model. We
find that values spanning from 2.3 (lowest redshift bin) to 2 (highest redshift bin) for f(z)
ensure the exclusion of spatially unresolved voids in redshift space. Since we expect the
resulting void size function in redshift space to be shifted towards greater effective radii
due to the effects of RSD (Pisani, Sutter & Wandelt, 2015; Zhao et al., 2016; Nadathur,
2016; Correa et al., 2020), we extend the minimum radius for the real-space case, adding
an extra bin at small radii while keeping the same binning of the redshift-space case for
higher bins. We verified that these choices allow us to be outside of the number count
incompleteness regime, for both the void size function in real and redshift space.

In Table 8.1 we show the number counts of voids selected from the redshift-space mock
galaxy catalogue. For each of the redshift bins with edges zi we report the volume occupied
by the shell and the MGS of the tracers, together with the factor f(z) used to compute
the minimum void radius considered in this analysis. For completeness, we show the void
number counts both before and after the cleaning procedure. The sharp decrease of the
void number is an expected outcome of the cleaning procedure, which selects the largest
and deepest underdensities identified by VIDE and rescales their sizes towards smaller
values, causing a more severe rejection of voids during the removal of the spatial scales
affected by the incompleteness of counts. Although this conservative approach leads to a
loss of the void size function constraining power, it ensures the selection of an high-purity
void sample and a robust treatment of void number counts.

8.3 Calibration methodology

To extract cosmological constraints from void number counts we follow a procedure analo-
gous to the pipeline described in Sect. 6.5. We aim therefore at calibrating the parameters
of the Vdn model (see Sect. 4.3) extended by means of a linear function of the large-scale
effective bias, F(beff) (see Eq. 7.2). However, in this case the coefficients of this relation,
Bslope and Boffset, cannot be calibrated exploiting the ratio of void profiles measured in
the DM particle and in the mass tracer field as in Chapters 6 and 7. Indeed, the sim-
ulations we employed do not provide information on the total matter density field, but
only on observable objects (galaxies in our case). The alternative approach we follow is
to calibrate Bslope and Boffset by fitting the void number counts measured with Flagship
simulation, both in real and in redshift space. This methodology allow us to calibrate the
size function model directly from cosmic void data expected for Euclid.

Aside from the measured number counts, the other ingredient we need to calibrate the
void size function model the large-scale effective bias, beff. We compute this quantity in
the redshift shells presented in Sect. 8.2 applying the technique described in Appendix A.
We underline that the relative error associated to beff is expected to be smaller than the
real one because of the strategy used to compute it, i.e. relying on the galaxy catalogue
in real space and assuming the true cosmological parameters of the simulation. A more
complete and realistic treatment will be performed in the future, including in the analysis
the modelling of the multipoles of the 2PCF, which will allow us to take into account the
effects of redshift-space and geometrical distortions (see e.g. Scoccimarro, 2004; Taruya,
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Nishimichi & Saito, 2010; Beutler et al., 2017; Pezzotta et al., 2017). Additionally, an
alternative methodology to extract the Flagship galaxy bias is to follow e.g. Tutusaus
et al. (2020), who parametrised the Flagship galaxy bias as a function of z, albeit for the
photometric redshift selection.

At this point, we can extract the value of Bslope and Boffset by leaving them as free
parameters with uniform priors of the extended Vdn model: we fit simultaneously all the
measured void number counts at different redshifts, considering also a Gaussian prior for
beff at each redshift. We notice that, since the error on the effective bias only corresponds
to a few percent of its value, the variation allowed for this parameter during the fit is small.
All the remaining cosmological parameters are kept fixed to the Flagship simulation values
during this calibration.

8.4 Bayesian statistical analysis

In this chapter we use a reliable method to forecast the sensitivity of the void size function
in constraining the cosmological model, based on a parameter extraction from Bayesian
likelihood analysis with MCMC (Perotto et al., 2006; Wang et al., 2009; Lahav et al., 2010;
Martinelli et al., 2011; de Bernardis et al., 2011; Wolz et al., 2012; Hamann, Hannestad &
Wong, 2012; Khedekar & Majumdar, 2013; Audren et al., 2013).

In order to forecast the sensitivity of the void counts in Euclid, we have first to consider
that the Flagship simulation covers about 1/3 of the Euclid survey. So w obtain the Euclid
predicted void number counts relying on the theoretical void size function model validated
on the Flagship simulation. In particular, we consider a fiducial ΛCDM cosmology having
the cosmological parameters of the Flagship (see Sect. 8.1) and the calibration of the
extended Vdn model with redshift-space void abundances (which results will be presented
in Sect. 8.6). Then we assume the same binning of void radii employed in our Flagship
analysis but we extend the void number count prediction to a survey area matching the
one expected for Euclid (roughly 3 times the Flagship area), by rescaling the Poissonian
errors of the void number counts consistently by a factor

√
3.

This allows us to use an MCMC analysis to explore the posterior distribution in the
parameter space without any assumption on the Gaussianity of parameter distributions
and local approximations around the fiducial values, as in Fisher forecasts (Fisher, 1935).
Moreover, according to the Cramér-Rao inequality, the Fisher matrix gives a lower bound
on the parameter errors (Kendall, Stuart & Ord, 1987), while the MCMC is proven to
be more realistic, in particular in the presence of degeneracies (Perotto et al., 2006; Wolz
et al., 2012; Audren et al., 2013; Sellentin, Quartin & Amendola, 2014). Finally, this
kind of approach allows us to compute unbiased constraints, with confidence contours
centred on the Flagship simulation cosmological parameters and on the calibrated nuisance
parameters Bslope and Boffset.

According to Bayes’s theorem, given a set of data D, the distribution of a set of
parameters Θ in the cosmological model considered is given by the posterior probability:

P(Θ|D) ∝ L(D|Θ) p(Θ) , (8.1)

where L(D|Θ) is the likelihood and p(Θ) the prior distribution. Since in this chapter
we consider the number counts of cosmic voids, the likelihood can be assumed to follow
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Poisson statistics (Sahlén, Zubeld́ıa & Silk, 2016):

L(D|Θ) =
∏

i,j

N(ri, zj |Θ)N(ri,zj |D) exp{[−N(ri, zj |Θ)]}
N(ri, zj |D)!

, (8.2)

where the product is over the radius and redshift bins, labeled as i and j respectively.
The N(ri, zj |D) quantity corresponds to the number of voids in the i-th radius bin and
j-th redshift bin, while N(ri, zj |Θ) corresponds to the expected value in the cosmological
model considered, given a set of parameters Θ. In our case, the former is obtained from the
Flagship analysis (with the void size function model validated on the Flagship simulation,
but considering that the Euclid area will be 3 times larger), while the latter is given by the
predictions of the void size function model varying the considered cosmological parameters
Θ.

In performing the MCMC analysis, the mapping between redshift and comoving dis-
tance changes with the cosmological parameters assumed at each step of the chain. As
we saw in Sect. 4.6.1, this introduces geometrical distortions for all the considered sets of
cosmological parameters (different from the true one). We used a fiducial cosmology to
build up the void catalogue, and, in computing the likelihood, we theoretically account for
the distortion effects on the quantities we measured. In particular, geometrical distortions
can be modelled with two effects: they vary the inferred survey comoving volume and
introduce the AP effect (see Sect. 4.6.1). The effect on the survey volume impacts the
number of voids expected in the survey. Therefore, to obtain the total number of voids,
the theoretical number density of voids given by the Vdn model has to be multiplied by
the volume, which is impacted by the cosmology. On the other hand, the AP distortion
affects the size of voids and introduces an anisotropy between the orthogonal and the par-
allel direction with respect to the line-of-sight. As we saw in Sect. 4.6.1, these quantities
can be expressed through Eq. (4.19) and consequently the true effective void radius can
be derived as reported in Eq. (4.22). In this case the true cosmology is assumed in each
MCMC step and is used to computed the expected void size function, which is shifted as
a function of the fiducial cosmology via the AP correction. We checked the validity of
the method varying the cosmology used to get the comoving distances from redshifts and
consequently correcting the radius Reff at which voids reach the underdensity threshold
δNL
v,tr.

With this approach we are implicitly assuming the void centres to remain at the same
locations at different cosmologies. Indeed, while void shapes can suffer from symmetric
geometrical distortions, this marginally affects the identification of void centres, and the
effect is even smaller since the void size function is an averaged quantity. Furthermore,
the variation caused by the change of the cosmological parameters on void radii is taken
into account by the modelling of the AP effect, therefore the cleaning procedure is applied
only once to the void sample, considering a fiducial ΛCDM cosmology. We finally note
that the combination of the two effects – volume effect acting on the expected number
density, and the AP effect acting on the void sizes – enhances the constraining power of
the void size function.
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8.5 Cosmological forecast models

In this chapter we aim at investigating the constraining power of the void number count
statistic on cosmological parameters, focusing in particular on the DE equation-of-state
parameters. We consider two cosmological models, extending the standard ΛCDM with
different DE equation of states. The first model, wCDM, implements a constant DE equa-
tion of state w; the second one, w0waCDM, parametrises dynamical DE models with the
popular CPL equation of state (Chevallier & Polarski, 2001; Linder, 2003) (see Sect. 3.1.1).
Both cosmological models consider a flat universe. The MCMC analysis of each cosmolog-
ical model is performed focusing on different sets of free cosmological parameters: together
with the DE equation of state parameters (i.e. w or w0 and wa, depending on the cosmo-
logical model) the density parameter Ωm or the sum of neutrino masses Mν are allowed
to vary. Moreover, both the cases are analysed with two different approaches:

(i) fixing the parameters of the extended Vdn model, Bslope and Boffset, to the median
values obtained from the calibration performed with Flagship data (label: “fixed
calibration”);

(ii) allowing Bslope and Boffset to vary in the parameter space described by a 2D Gaussian
distribution centred on their median values and given by the calibration with the
Flagship mock catalogue (label: “relaxed calibration”).

The two adopted approaches are meant to demonstrate the impact of the calibration
that will be performed in Sect. 8.6 on the cosmological forecasts. In this Thesis work
the constraints on the parameters Bslope and Boffset are indeed limited to the statistical
relevance of the number counts of voids identified by means of the Flagship galaxies. The
case in which the cosmological forecasts are computed fixing Bslope and Boffset to their
exact calibrated values represents therefore an optimistic evaluation of the results that we
may obtain in the future thanks to the usage of larger mock catalogues, or by means of a
fully theoretical modelling of the tracer bias inside cosmic voids (see Sect. 6.4).

The cosmological model considered for the analysis is characterised by a primordial
comoving curvature power spectrum amplitude fixed to the Flagship simulation value,
As = 2.11 × 10−9. We follow the strategy to fix this parameter in order to mimic the
future application to real data, which will be supported by the impressive constraints
obtained from the study of CMB anisotropies by Planck Collaboration et al. (2020a).
Thanks to this approach, for each MCMC step we can derive σ8, i.e. the root mean
square mass fluctuation in spheres with radius 8 h−1 Mpc. We rely on CAMB to compute
this quantity as a derived parameter, which depends on all the cosmological parameters
involved in the evolution of the matter power spectrum Pm(k).

The density parameter Ωm is computed as the sum of CDM, baryon and neutrino en-
ergy densities, Ωm = Ωcdm +Ωb +Ων , and its variation in the Bayesian statistical analysis
is balanced by the changing of the DE density parameter, Ωde, to keep flat the universe’s
geometry, Ωde = 1− Ωm.

The implementation of massive neutrinos in the MCMC analysis is performed consid-
ering the sum of the mass of neutrinos as a free parameter in the cosmological model.
Neutrinos are modelled with one massive eigenstate and two massless ones, assuming an
effective number of neutrino species Neff = 3.04 (Froustey, Pitrou & Volpe, 2020; Ben-
nett et al., 2020) and relating the neutrino mass to the neutrino density parameter as
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Figure 8.3: Posterior distribution of the parameters of the extended Vdn model, calibrated with
Flagship simulation. 1σ (68%) and 2σ (95%) confidence levels in the Bslope–Boffset plane for the
void catalogues built both in real (blue) and in redshift space (orange).

Eq. (3.23), in analogy to what we did in Chapter 7. We include the variation of the
neutrino density parameter, Ων , in the MCMC analysis, by keeping the value of the total
matter density Ωm fixed (see Sect. 8.1), thus rescaling consistently the CDM parameter
Ωcdm. We rely on CAMB for the computation of the total matter power spectrum used to
predict the theoretical model of the void size function.

8.6 Results: calibration and comparison with mock data

In this section we use the Flagship mock catalogues to perform the calibration of the free
parameters of the extended Vdn model and consequently we compare our theoretical pre-
dictions with measured void number counts. With the prescriptions described in Sect. 8.3
we obtain the confidence levels reported in Fig. 8.3, for the void size function measured
in both real and redshift space. The resulting coefficients for the calibrated relations are:

F(beff) = (0.96± 0.04) beff + (0.44± 0.07) , (8.3)

F(beff) = (0.96± 0.03) beff + (0.26± 0.06) , (8.4)

for the redshift-space and the real-space void abundance, respectively.
We show in Fig. 8.4 the corresponding linear relations obtained with these calibrations,

with a shaded area representing an uncertainty of 2σ. As a comparison, we present in the
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same plot the 6 values computed for bpunct, leaving it as the only free parameter of the
model and fitting separately the measures at different redshifts. In other words, we fit the
measured void number counts for each redshift bin using the Vdn model and rescaling its
underdensity threshold (expressed in nonlinear theory) as:

δNL
v,DM =

δNL
v,tr

bpunct
, (8.5)

making bpunct free to vary in the MCMC model. This analysis is aimed at testing the
precision of the calibrated relations for each redshift: in Fig. 8.4 the markers with the
best match with the linear relations correspond in Fig. 8.5 to the redshift bins for which
the calibrated model more accurately reproduces the measured void number counts, while
points that depart from the linear relationship in Fig. 8.4 will lead to a slightly worse
agreement between theory and model in Fig. 8.5.

Finally, in the plot (Fig. 8.4) we report also the calibration obtained in Sect. 6.5, rep-
resented in grey in Fig. 8.4. At lower redshifts the calibration we measured in this chapter
is in good agreement with the calibration from the CoDECS simulation, characterised by
a WMAP7 cosmology (Komatsu et al., 2011), but it slightly deviates from the latter at
higher redshift values. The reason for this minor deviation is twofold. Firstly it is linked
to the kind of cosmic tracers (i.e. DM haloes or galaxies) and the selection criteria (i.e.
minimum mass or magnitude) used to identify the voids (see Sect. 7.5). Secondly it is
related to the fact that in Sect. 6.5 the calibration was performed for redshift from 0 to
1, while here we are testing this relationship beyond this range. The physics underlying
the function F(beff) and its relation with the cosmological objects used to trace the voids
will be investigated in future works.

More importantly, since the void size function will be measured on real data from
the Euclid survey, we have to deal with voids detected in redshift space. As we saw in
Sect. 4.6.2, the overall effect of RSD on voids, relevant for the void size function, is an
apparent enlargement of the volume of voids, due to the elongation along the line of sight.
This is reflected in a mean shift of the measured void size function towards greater radii.
Even if this effect can in principle be theoretically modelled3 (Pisani, Sutter & Wandelt,
2015; Correa et al., 2020), we decide to parametrise it empirically as described below.

We found that the parametrisation of F(beff) can be exploited to encapsulate also the
modifications on the void sizes caused by the enlargement of cosmic voids in redshift space.
This approach has the advantage of being both simple to model and robust, allowing us to
take into account, with the same parameter, both the impact of tracer bias in voids and of
the RSD. Moreover, this approach is fully agnostic and does not require any assumption
about the void density profile, nor any other modelling, making it particularly suited to
survey analyses.

It is worth noting that the relation obtained for voids in redshift space shows a greater
offset but almost the same slope with respect to its analog in real space. This difference
reflects the increase of void sizes in redshift space. It also opens the way to test theoretical
implementations in future works, indicating that a simple modelling of those effects should
suffice to extract robust constraints.

3This theoretical approach would require the knowledge of the void matter density profile for the
entire void population, which can be characterised by using simulations but may introduce some model
dependencies.
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Equipped with these calibrated relations, we now have all the elements necessary to
compare the measured void size function with the theoretical predictions given by the
extended Vdn model, in which the underdensity threshold is converted as described in
Sect. 8.3. Figure 8.5 provides the main results of our Flagship analysis. We show the
comparison between the measured void number counts and the corresponding theoretical
void size functions, both in real and redshift space, for the 6 equi-populated bins in redshift.
The Poissonian errors related to the data are represented by the error bars, while the
uncertainty related to the theoretical model is shown as a shaded region. The latter is
computed associating an error to F(beff) given by the interval delimited by the colored
bands in Fig. 8.4. The residuals are reported at the bottom of each sub-plot and are
calculated as the difference from the theoretical model, in units of the data errors. Looking
at the residuals we can appreciate the excellent agreement between simulated data and
theoretical models, both for real and redshift space. The measured void number counts
are indeed within an uncertainty of 2σ, shown by the hatched colored bands in the bottom
panels, represented in units of the data errors. To test the goodness of the fits shown in
Fig. 8.5 we compute the reduced χ2 using the weighted sum of squared deviations of the
two data sets from their corresponding models and dividing the results by the degrees of
freedom, ν, of the two systems. The results are χ2

ν = 1.60 and χ2
ν = 1.02 for real and

redshift space, respectively.

8.7 Results: forecasts on the void size function constraining
power

In this section we provide the cosmological forecasts obtained using the void size function in
redshift space in the perspective of the Euclid mission. We apply the statistical analysis
described in Sect. 8.4 to derive constraints on the parameters of the two cosmological
models analysed, labelled as wCDM and w0waCDM, following the two approaches decribed
in Sect. 8.5. For the wCDM model we assume a flat prior for all the free cosmological
parameters of the model; for the w0waCDMmodel we assume a Gaussian prior distribution
with standard deviation σ = 5 for w0 and σ = 15 for wa, both centred on the true values
of the Flagship simulation cosmology (w0 = −1, wa = 0). We preferred to use very
wide Gaussian priors instead of uniform ones to improve the numerical stability of the
whole pipeline, but we tested that uniform priors yield consistent results. The remaining
cosmological parameters analysed in this chapter (Ωm and Mν) are included in the void
size function modelling with uniform prior distributions.

In Figs. 8.6 and 8.7 we present the 1σ and 2σ confidence levels of the constraints on the
model wCDM. In Fig. 8.6 we show the Euclid forecasts from a void size function model
characterised by w and Ωm as free cosmological parameters. We represent with different
colours and borders the results obtained with the two approaches described in Sect. 8.5:
by fixing the extended Vdn parameters Bslope and Boffset, and by relaxing the calibration
constraints by means of a 2D Gaussian prior on Bslope and Boffset, which distribution is
represented in Fig. 8.3. In Fig. 8.7 we display the same forecasts but considering a void
size function model with the neutrino total mass Mν as free parameter instead of the
matter density Ωm. In all the presented cases σ8 is computed as a derived parameter. As
expected, the effect of relaxing the calibration constraints is to broaden the confidence
contours.
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Figure 8.6: Cosmological forecasts for the Euclid mission from the void size function for the wCDM
model, characterised by a DE component described by a constant w. The contours represent the
1σ (68%) and 2σ (95%) confidence levels obtained by means of the Bayesian statistical analysis
described in Sect. 8.4. The forecasts are computed for a cosmological model with w and Ωm as free
cosmological parameters. We report the constraints obtained by fixing the calibration parameters
with blue contours marked by a solid line and the results obtained by relaxing the calibration
constraints with light-blue contours marked by a dashed line (see Sect. 8.5). For each plot we show
also the constraints on σ8, computed as a derived parameter. The true values of the cosmological
parameters are shown by a black dashed line.
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wCDM model - fixed calib.

wCDM model - relaxed calib.
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Figure 8.7: The same as Fig. 8.6 but for a cosmological model with w andMν as free cosmological
parameters. We represent the results of the fixed calibration case as red confidence contours having
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w0waCDM model - fixed calib.

w0waCDM model - relaxed calib.
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Figure 8.8: The same as Fig. 8.6 but for the cosmological model labelled as w0waCDM, having a
dynamical DE component described by the CPL parametrisation (see Sect. 8.5).
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w0waCDM model - fixed calib.

w0waCDM model - relaxed calib.
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Figure 8.9: The same as Fig. 8.7 but for the cosmological model labelled as w0waCDM, having a
dynamical DE component described by the CPL parametrisation (see Sect. 8.5).



In Figs. 8.8 and 8.9 we show the same contours represented in Figs. 8.6 and 8.7 but
considering the w0waCDM scenario. Here the free cosmological parameters of the void
size function model are the coefficients of the DE equation of state, w0 and wa, together
with Ωm (Fig. 8.8) or Mν (Fig. 8.9). Also in this case, the relaxation of the constraining
condition of the calibration parameters causes an enlargement of the confidence contours.
In this scenario however, the strongest impact of the calibration constraints is on the
w0–wa parameter plane, in particular along the diagonal where these parameters become
degenerate. The effect of the calibration constraints on Ωm and Mν has instead a lower
impact.

In Tables 8.2 and 8.3 we report the values, with relative 1σ errors, of the cosmological
constraints derived for the wCDM and w0waCDM scenario, respectively. The constraints
on the sum of neutrino masses Mν are expressed as a 1σ upper limit. For each table we
show the results for the two approaches followed in this analysis: fixing and relaxing the
calibration constraints on the void size function model. The calibration parameters are
reported in the columns Bslope and Boffset for completeness. Notice that each quantity
reported without any uncertainty is considered fixed in the specific scenario presented in
that table row.

For the w0waCDM scenario, in order to evaluate the constraining power of the void
size function on the DE equation of state, we derive the FoM for the coefficients of the
CPL parametrisation w0 and wa. We compute this value by following the prescription
of Wang (2008) (also in agreement with the Euclid Collaboration: Blanchard et al., 2020
adopted methodology):

FoMw0,wa =
1√

det Cov(w0, wa)
, (8.6)

where Cov(w0, wa) represents the covariance matrix of the DE equation of state parame-
ters. We report the FoM values in the last column of Table 8.3.

We can summarise our results as follows. In the wCDM scenario we forecast relative
percentage errors on the constant DE component, w, below the 10% for each analysed case.
In the w0waCDM scenario, with the optimistic approach of fixing the model calibration
parameters, we compute a FoMw0,wa equal to 4.9 or 17, in the case of leaving Ωm or Mν ,
respectively, as additional free cosmological parameters of the model. The marginalised
constraints on the derived parameter σ8 are lower than 5% in every analysed case, while
the relative errors on Ωm are of the order of 2% in the wCDM scenario and of 3% in the
w0waCDM scenario. The 1σ upper limit onMν is instead of 0.03 eV in the most optimistic
case of the wCDM scenario and of 0.08 eV in the w0waCDM scenario. We recall that,
in the cosmological models with free neutrino mass, the total matter energy density is
fixed to the Flagship simulation true value, therefore the degeneracy of Ων with Ωm is not
explored in the results.

8.8 Results: study on the complementarity of the forecasted
cosmological constraints

As a preliminary exploration of the cosmic void statistics combined power, we now compare
the forecasts from the void size function provided in this chapter with those provided by
other Euclid probes. We present as a first comparison the forecasts on the parameters
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Figure 8.10: Comparison between the 1σ (68%) and 2σ (95%) confidence levels computed in
this chapter with the void size function and the void-galaxy cross-correlation Euclid forecasts.
Specifically, the cosmological constraints on the Ωde–w plane provided by our analysis (in blue)
considering a wCDM scenario with fixed calibration parameters and in Hamaus et al. (2022) (in
magenta), modelling the void-galaxy cross-correlation function in redshift space, with a model-
calibrated approach.
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Figure 8.11: Comparison between the 1σ (68%) and 2σ (95%) confidence levels computed in this
chapter with the void size function and IST forecasts. Specifically, the cosmological constraints
on the Ωm–σ8 plane provided by our analysis considering a w0waCDM scenario (in blue) with
fixed calibration parameters and the marginalised IST Fisher forecasts computed in the optimistic
setting with spectroscopic galaxy clustering (in purple) and weak lensing (in orange).



Ωde and w obtained in Hamaus et al. (2022) (and described also in Sect. 9.1.1). This
analysis is performed by modelling, via RSD and the AP effects (Sect. 4.6), the observable
distortions of average shapes, for voids to be measured in the Euclid spectroscopic galaxy
distribution. To have an appropriate comparison, we consider our results for the wCDM
scenario with fixed neutrino mass and we focus on the Ωde–w parameter space. Given
the assumption of flat spatial geometry, to compute the corresponding Ωde forecasts, we
converted Ωm obtained in the MCMC analysis as Ωde = 1− Ωm.

As a second comparison, we take the results of the Fisher analysis reported in the IST
forecasts (Euclid Collaboration: Blanchard et al., 2020) obtained for the single probes weak
lensing and galaxy clustering. We consider in this case the flat w0waCDM scenario with
fixed neutrino mass and we focus on the Ωm–σ8 degeneracy. To compute the IST confidence
contour we make use of the publicly available Fisher matrices4 and we marginalise over
the parameters not reported in the plot with the code CosmicFish (Raveri et al., 2016).
We recall that the amplitude of density fluctuations at z = 0, σ8, is computed as a derived
parameter in our analysis and its variation is given by the modifications caused by the free
cosmological parameters of the model to the total matter power spectrum. We also stress
the fact that a larger set of cosmological parameters is used in IST forecasts. This includes
in particular the baryon matter energy density, Ωb, the dimensionless Hubble parameter,
h and the spectral index of the primordial density power spectrum, ns. The impact on the
forecasts when including these parameters in the model will be tested in future works.

In Figs. 8.10 and 8.11 we compare the forecasts computed in this analysis from the
void size function model with fixed calibration parameters (see Sect. 8.5) with the results
of aforementioned analyses. In particular, in Fig. 8.10 the comparison is with the forecasts
obtained in Hamaus et al. (2022) with a model-calibrated approach, i.e. calibrating the
nuisance parameters of the model with the Flagship data (we will provide further details
in Sect. 9.1.1). In Fig. 8.11 we show instead the comparison with the confidence contour
provided by the IST forecasts, considering the optimistic setting for weak lensing and
galaxy clustering (see Euclid Collaboration: Blanchard et al., 2020, for the details).

Additionally, we show in Figs. 8.12 and 8.13 the same forecast comparison presented in
Figs. 8.10 and 8.11 but using less optimistic settings for the analyses. The confidence con-
tours we represent in these plots are those computed in our analysis by considering relaxed
calibration parameters (see Sect. 8.5). In Fig. 8.12 we compare with the Euclid forecasts
computed with the void-galaxy cross-correlation function with a model-independent ap-
proach. Finally, in Fig. 8.13, we present the comparison with the IST forecasts for the weak
lensing and galaxy clustering probes, which are in this case computed with the pessimistic
setting described in Euclid Collaboration: Blanchard et al. (2020).

In all the presented comparisons we can appreciate the comparable extension of the
presented contours and notice, especially in the Ωm–σ8 plane, the strong complementarity
of the void size function forecasts with those of the Euclid primary probes. While a
more accurate analysis would require a proper accounting for the covariance between
analysed cosmological constraints, Figs. 8.10 to 8.13 show how the presented probes explore
the parameter space differently and motivates investigations on probe combination to be
performed in future works.

4See https://github.com/euclidist-forecasting/fisher_for_public.
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Figure 8.12: Same as Fig. 8.10 but for different forecast settings. In this case the confidence
contours obtained in this chapter from the void size function model (light-blue contours with
dashed lines) are derived relaxing the constraints given by calibration parameters, while the Euclid
forecasts computed by Hamaus et al. (2022) with void cross-correlation are computed with a model-
independent approach.
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Figure 8.13: Same as Fig. 8.11 but for different forecast settings. The contours from the void size
function are computed relaxing the constraints given by calibration parameters (light-blue contours
with dashed lines), while IST forecasts are computed with the pessimistic setting described (Euclid
Collaboration: Blanchard et al., 2020).



Chapter 9

Further studies with voids as
cosmological probes

In this chapter we will present an overview on some of the researches carried on comple-
mentarily to the main PhD project, on which we want to bring the reader’s attention. We
will first explore the impressive Euclid forecasts computed exploiting the stacked void-
galaxy cross-correlation function (Hamaus et al., 2022, Sect. 9.1.1) and the void-lensing
cross-correlation (Bonici et al., 2022, in preparation, Sect. 9.1.2). Then we will introduce
the work that will be presented in Pelliciari et al. (2022, in preparation), in which we will
provide a first exploration of the possible synergy between the void size function and the
mass function of galaxy clusters.

9.1 Further Euclid forecasts with voids

In the following subsections we will show the main results obtained in two other projects
belonging to the Euclid “Working Package 8: Voids”, which are complementary to the
work presented in Chapter 8. Despite we will provide an accurate overview on the method-
ology adopted for both the analyses, together with the main results obtained, we highly
recommend the reader to refer to the corresponding papers for more details.

The first work (Sect. 9.1.1) has been published in Hamaus et al. (2022). In this
study, we investigate the imprints of geometric (Sect. 4.6.1) and dynamic (Sect. 4.6.2)
distortions of average void shapes, and we make use of the same sample of galaxies and
voids employed in Chapter 8: the Flagship mock galaxies prepared according to the Euclid
spectroscopic survey specifics, and the void sample identified with VIDE in the distribution
of these galaxies. The second work (Sect. 9.1.2) will be presented in Bonici et al. (2022,
in preparation), where we predict the constraining power of the angular void clustering,
galaxy weak lensing and their cross-correlation from the Euclid photometric survey1.

1The Euclid photometric survey will provide a galaxy catalogue characterised by a surface density of
ng = 30 arcmin−2 (Laureijs et al., 2011). The redshift of these galaxies will be measured in photometric
mode, i.e. using the Near Infrared Spectrometer Photometer (NISP) instrument (Costille et al., 2018),
complemented by ground-based observations. This survey will also provide the shapes of about one billion
galaxies, observed in the visible range with the VIS instrument (Cropper et al., 2018).
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9.1.1 Void-galaxy cross-correlation cosmology

In the work of Hamaus et al. (2022) we forecast the constraining power on cosmological
parameters for a combined analysis of the AP and RSD effects on the void-galaxy cross-
correlation function. We provided the theoretical background required for this analysis
in Sects. 4.5 and 4.6. However, to get to the full void-galaxy cross-correlation function
modelling used in this work we need to further develop the theory explained up to here.
First of all, we need Eqs. (4.27) and (4.28) to determine the mapping between the real, r,
and redshift-space, s, coordinates of galaxies inside voids:

s = r− f(z)

3
∆(r) r|| . (9.1)

This allows us to express the void-galaxy cross-correlation function in redshift space as:

ξs(s) ≃ ξ(r) +
f

3
∆(r) + fµ2[δ(r)−∆(r)] , (9.2)

where µ ≡ r||/r is the cosine of the angle between r and the line-of-sight (see also Fig. 4.6)
and the superscript s is used to indicate quantities computed in redshift space. In this
relation the real-space quantities ξ(r), δ(r) and its integral ∆(r) can be derived from
observables with some basic assumptions. First, ξ(r) can be obtained via deprojection
of the projected void-galaxy cross-correlation function ξsp(s⊥) in redshift space that, by
construction, is insensitive to RSD (Pisani et al., 2014; Hawken et al., 2017). Second, the
matter density contrast inside voids can be related to ξ(r) assuming the linear relation seen
in Eq. (2.34). Using the same tracer bias used in Chapter 8, this yields to ξ(r) = b δ(r)2.
With these assumptions, Eq. (9.2) becomes:

ξs(s) ≃ ξ(r) +
1

3

f

b
ξ̄(r) +

f

b
µ2[ξ(r)− ξ̄(r)] , (9.3)

where

ξ̄(r) ≡ 3r−3

∫ r

0
ξ(r′) r′2 dr′ . (9.4)

We underline that the model in Eq. (9.3) is accurate only at the linear order since the
RSD are modelled with simplified assumptions (as in Kaiser, 1987) and the deprojection
procedure is itself approximate.

Therefore, two additional nuisance parameters are necessary to account for systematic
effects: one to correct for potential inaccuracies arising from the deprojection technique
and from the contamination of the void sample (Cousinou et al., 2019), and the other
to account for possible selection effects during the identification of voids in redshift space
(Pisani, Sutter & Wandelt, 2015; Correa et al., 2020, 2021). These parameters are denoted
as M and Q, respectively, and lead to the model form:

ξs(s⊥, s||) = M
{
ξ(r) +

f

b
ξ̄(r) + 2Q f

b
µ2
[
ξ(r)− ξ̄(r)

]}
. (9.5)

2We highlight that here the value b is the bias measured on large scales, and not the one computed
inside cosmic voids, so we expect this relation to be approximate.
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Figure 9.1: Stacked void-galaxy cross-correlation function in redshift space. Left : projected
void-galaxy cross-correlation function, ξsp(s⊥), in redshift space (red wedges, interpolated with
dashed line) and its real-space counterpart inferred from a 3D deprojection, ξ(r) (green triangles
interpolated with dotted line). The redshift-space monopole, ξs0(s) (blue dots) and its best-fit
model based on Eqs. (9.5) and (9.6) (solid line) are shown as comparison. On the top-right corner
of each panel we report the mean redshift, Z̄, and the mean effective radius, R̄, of the void sample
analysed. Right : 2D representation of ξs(s⊥, s∥) (color map with black contours) and its best-fit
model from Eqs. (9.5) and (9.6) (white contours). The reduced χ2 value computed for the 4 redshift
bins is reported in the bottom-right corner of the corresponding panel.



The mapping from the observed separations s⊥ and s|| to r and µ is obtained by using
Eq. (9.1) together with Eq. (4.19) for the AP effect. This yields to the following relations
between real and redshift-space coordinates:

r⊥ = q⊥s⊥ , r∥ = q∥s∥

[
1− 1

3

f

b
M ξ̄(r)

]−1

. (9.6)

These coordinate transformations can be solved via iteration to determine r =
(
r2⊥+r2||

)1/2
and µ = r||/r, starting assigning r = s as initial value (Hamaus et al., 2020). Now,
expressing all the void-centric distances in units of the effective void radius in redshift
space by using Eq. (4.22), only the ratio of q⊥ and q|| appears in Eq. (9.6). Therefore
the quantities r⊥ and r|| result dependent on the parameter ε ≡ q⊥/q|| (Eq. 4.21). The
latter, together with f/b and the nuisance parameters M and Q, will be constrained by
modelling the stacked void-galaxy cross-correlation function with Eq. (9.5).

The measurement of ξs(s⊥, s||) is done in 4 bins of redshifts equi-populated in voids
by exploiting the Landy & Szalay (1993) estimator (see Sect. 2.1.5), and calculating the
associated uncertainty as the diagonal elements of the covariance matrix estimated with
Jackknife (see Hamaus et al., 2022, for the details). A comparison between the measured
stacked void-galaxy cross-correlation function and its modelling, for the 4 bins of redshift
analysed, is reported in left-column plots of Fig. 9.1. For the sake of completeness, in
these plots we also report the monopole of the redshift-space correlation function, ξs0(s),
which nicely follows the shape of the deprojected ξ(r) (see Hamaus et al., 2020, 2022, for
further details). Moreover, we can notice how the model from Eqs. (9.5) and (9.6) provides
a very accurate fit to this monopole everywhere apart from its innermost bins, implying
that any residual errors in the model are negligible in that regime. In the right-column
plots of Fig. 9.1 we show instead the stacked void-galaxy cross-correlation projected along
the directions s⊥ and s||. For each redshift bin, the agreement between the model and the
data is quantified by the reduced χ2 that, being extremely close to unity, proves the great
accuracy of the theoretical modelling reported in Eqs. (9.5) and (9.6) in reproducing the
observed data.

A MCMC analysis is then performed to sample the posterior probability distribution
of all model parameters. For each redshift, the obtained precision on f/b ranges from 7.3%
and 8.0%, while the one on ε is between 0.87% and 0.91%. These results are computed with
the Flagship mock data so we can expect the achieved precision to increase by a factor

√
3

when extrapolated to the volume of the Euclid survey. The attainable precision can also be
improved by relying on the calibration of the nuisance parameters M and Q. Nevertheless,
we underline this technique introduces a priori dependence on the cosmological parameters
assumed in the mocks, so it underestimates the final uncertainty and may lead to biased
results. With this approach, the computed constraints for the Euclid survey are roughly of
1% on f/b and 0.4% on ε per each redshift bin. From now on, we will refer to the analysis
performed by fixing the M and Q nuisance parameters to their Flagship best-fit values as
“model-calibrated” analysis, while to the one with free M and Q as “model-independent”
analysis.

From the posterior distributions on f/b and ε we compute constraints on fσ8 and
DMH. The first is derived by assuming ξ(r) ∝ bσ8 and hence multiplying f/b by bσ8,
considering this factor fixed to the value computed with the Flagship mock, assuming the
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Figure 9.2: Measured values of fσ8 and DMH from VIDE voids in the Flagship catalogue as a
function of redshift z. The green circles indicates the results for the model-independent analysis
and the red triangles for the model-calibrated one. The markers are slightly shifted horizontally
for visibility. The dotted lines represent the predictions for the Flagship input cosmology. These
results are computed for the Flagship octant, so the expected precision for the 3 times larger Euclid
sky area is a factor of about

√
3 higher.

simulation true cosmology3. The second is derived from εmultiplying by the value ofDMH
computed for the assumed cosmological model parameters (see Eq. 4.21). The results for
fσ8 andDMH achieved for both the independent- and calibrated-model analyses are shown
in Fig. 9.2. Comparing the results of the independent- and calibrated-model techniques,
we can notice here the larger errors associated to the former that, however, appear to
be more in agreement with the predictions computed with the true underlying Flagship
cosmology, when considering all the redshift bins. This outcome is evident especially for
fσ8 and is a direct consequence of the model-calibration technique, which improves the
precision but may introduce biased results.

We now exploit the achieved constraints for fσ8 and DMH to further test the cos-
mological model. Assuming a flat ΛCDM scenario, the quantity DMH results dependent
only on ΩΛ = 1−Ωm (see Eqs. 1.55 and 4.24). So, from the measured values of DMH, we
derive the joint posterior distribution of all redshift bins combined. In order to compute
forecasts for the Euclid mission, we also consider these measures with errors rescaled by
a factor 1/

√
3 and we centre their mean values to the input cosmology of Flagship. The

resulting sampled posterior yields ΩΛ = 0.6809 ± 0.0048, for the independent analysis,
and ΩΛ = 0.6810 ± 0.0039, for the calibrated one. In the left plot of Fig. 9.3 we show a

3This procedure is meant to provide a comparison with other results in the literature. We underline
that the operation of multiplying by b and σ8 is performed assuming the true cosmological model and both
the quantities without errors.
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Figure 9.3: Forecasts on the DE constraints from the void-galaxy cross-correlation function for
the Euclid survey. Left : comparison of the constraining power on ΩΛ in a flat ΛCDM cosmology
from different probes and surveys. We show the constraints computed by Planck Collaboration
et al. (2020a) with CMB lensing alone and when combined with BOSS BAO data (Alam et al.,
2017). Below, the constraints achieved with BOSS voids via RSD and AP (Hamaus et al., 2020),
as expected from Euclid voids (this analysis), and as expected from the combination of Euclid ’s
main cosmological probes (Euclid Collaboration: Blanchard et al., 2020), for both the pessimistic
and optimistic settings. The constraints from the model-calibrated analysis presented here are
indicated by the abbreviation “cal.” Right : 1σ (68%) and 2σ (95%) confidence contours from
Euclid voids on Ωde and the equation-of-state parameter w in a flat wCDM cosmology. We show
both the model-independent (green) and the model-calibrated results (red), indicating with grey
dashed lines the values of the Flagship input cosmology. The marginalised posterior distributions,
together with the corresponding mean parameter values and their 1σ errors, are reported in the
upper and right sub-plots.

comparison of our results with those obtained by Planck in 2018 (Planck Collaboration
et al., 2020a) with CMB lensing only and with the combination with BOSS BAO data
(Alam et al., 2017). In the same plot we report also the constraints forecasted for the Eu-
clid main probes, for both a pessimistic and optimistic scenario (see Euclid Collaboration:
Blanchard et al., 2020), and the results previously obtained in Hamaus et al. (2020) by
applying the same methodology presented here but to the BOSS survey voids.

Then, to explore cosmological models beyond the standard ΛCDM, we repeat the anal-
ysis just presented but considering a flat wCDM scenario (see Sect. 3.1.1). Now the cosmo-
logical dependence of the quantity DMH is on the parameter pair (Ωde, w). The inferred
posterior distribution is reported in the right plot of Fig. 9.3 for both the independent-
and the calibrated-model analysis; the obtained constraints on the DE equation of state
parameters are w = −1.01+0.12

−0.10 (i.e. 9% precision) w = −1.01+0.10
−0.08 (i.e. 11% precision),

respectively. These results are extremely competitive with those of Planck Collaboration
et al. (2020a) and remarkably in agreement with those Fisher forecasts early provided by
Lavaux & Wandelt (2012) by exploiting the AP test with voids.
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As we saw in Sect. 8.8, the already impressive constraining power forecasted from
void RSD and AP for the Euclid survey will be considerably improved thanks to the
combination with other void statistics and other cosmological probes. This will allow the
exploration of a larger scope of parameters and so the testing of different cosmological
models, leading towards a full cosmological exploitation of the cosmic void potential.

9.1.2 Void-lensing cross-correlation cosmology

As anticipated, the forecasts that will be provided with this analysis, contrary to those
found in Chapter 8 and Section 9.1.1, are computed for the Euclid photometric survey.
Therefore in this case the Flagship catalogue has been prepared to have galaxy redshifts
spanning from 0.001 to 2.5, with associated Gaussian photometric errors of ∆z = 0.05(1+
z). Moreover, cosmic voids have been identified in this catalogue by applying the 2D
void finder of Sánchez et al. (2017b) and Vielzeuf et al. (2019) (see also Sect. 5.2). The
resulting void radii span from a minim of rv,min ∼ 25 h−1 Mpc to a maximum of rv,max ∼
300 h−1 Mpc. We show in the left panel of Fig. 9.4 the void projected number density for
10 equi-spaced redshift bins, computed as the ratio between the void number in each bin
and the bin width.

The forecasts presented in this work are based on the exploitation of the angular power
spectrum, C(ℓ), which is defined as the spherical harmonic transform of the 2PCF (see
Eq. 2.18) and is a function of the multipole ℓ. In particular, in this analysis we focus
on three kinds of statistics: the void-void auto-correlation Cvv(ℓ), the lensing-lensing
auto-correlation Cγγ(ℓ) and the void-lensing cross-correlation Cvγ(ℓ). We estimate these
quantities with a tomographic approach (Hu, 1999), by computing their value, CAB(ℓ)4,
over two bins (i − j). For example, Cvγ

i,j (ℓ) is the spherical harmonic transform of the
correlation function between the void and the lensing signal in the i-th and j-th redshift
bins. In particular, we express the tomographic C(ℓ) by using the Limber approximation
(Limber, 1953). This leads the power spectrum PAB(k, z) to enter into the integral form:

CAB
i,j (ℓ) ≃ c

H0

∫ zmax

zmin

WA
i (z)WB

j (z)

E(z)r2(z)
PAB

[
ℓ+ 1/2

r(z)
, z

]
dz , (9.7)

where E(z) is the function introduced in Eq. (1.55), r(z) is the comoving distance (we

notice that here the notation is different with respect to Eq. 1.19 andW
A/B
i (z) are suitable

weight functions for the probes A and B, which will be introduced in the following.
The void weight function is defined as:

W v
i (z) =

H(z)

c
niv(z) b

i
v,eff , (9.8)

where nvi (z) is the projected void density distribution represented (in its normalised ver-
sion) in the left panel of Fig. 9.4, and biv,eff is the void effective bias defined in Eq. (4.17),
both evaluated at the centre of the i-th tomographic bin. Following Euclid Collaboration:
Blanchard et al. (2020), we express the lensing weight function as:

W γ
i (z) =

3

2

(
H0

c

)2

Ωm (1 + z) r(z) W̃ γ
i (z) , (9.9)

4We use the subscripts/superscripts A and B to refer to both voids and lensing and are left generic to
indicate all the three possible combinations of these probes.
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Figure 9.4: Left : dimensionless normalised projected void density distribution, nv(z), in 10 equi-
spaced bins of redshift. Right : dimensionless normalised projected galaxy distribution, nig(z),
over 10 bins labelled with the index i = [1, 10] equi-populated in galaxies. The black dashed line
represents a rescaling of the galaxy distribution function, ng(z).

where W̃ γ
i (z) is the lensing efficiency, defined as:

W̃ γ
i (z) =

∫ zmax

z
nig(z

′)

[
1− r(z)

r(z′)

]
dz′ . (9.10)

Here nig(z) is the observed galaxy distribution in the i-th tomographic bin; it is computed
as the convolution of the galaxy distribution, ng(z), and the photometric instrument re-
sponse. A detailed description of these functions is provided in Bonici et al. (2022, in
preparation). The results of this convolution for the different redshift bins are reported in
the right plot of Fig. 9.4, together with a rescaled version of the function ng(z).

Now, in order to evaluate the angular power spectra of Eq. (9.7) we need to compute
the void auto-power spectrum, Pvv(k, z), the void-matter cross-spectrum Pvm(k, z) and
the matter auto-power spectrum Pmm(k, z). The latter is estimated, once again, with the
Boltzmann solver CAMB (Lewis, Challinor & Lasenby, 2000). Pvv(k, z) is instead estimated
adopting the following relation:

Pvv(k, z) = b2v(z) P̂mm(k, z) + 1/n̄v(z) , (9.11)

where bv(z) is the void bias introduced in Eq. (4.16), n̄v(z) is the void number density,
and P̂mm(k, z) ≡ [1− SN(k)]Pmm(k, z) is the nonlinear matter power spectrum filtered at
small scales with the function SN(k). The low-k pass filter, SN(k), is necessary to suppress
the inaccuracies arising from the 1-void (or shot noise) term (Hamaus et al., 2014), which
makes Pvv(k, z) deviate at small scales from the linear modelling reported in Eq. (9.11)
(see Bonici et al., 2022, in preparation, for further details). Analogously, the void-matter
cross-spectrum can be expressed as:

Pvm(k, z) = bv(z) P̂mm(k, z) + 1/n̄v(z) . (9.12)

The power spectra Pmm(k), Pvv(k) and Pvm(k) are reported in Fig. 9.5, together with
the angular power spectra Cγγ

i,j (ℓ), C
vv
i,j (ℓ) and Cvv

i,j (ℓ) with i = j = [1, 10]. Here we can
appreciate the effect of the filter SN(k), which cuts the large values of the wavenumber

162



163

Figure 9.5: Nonlinear power spectra and angular power spectra computed at redshift z = 0.001
with the Flagship input cosmology. In the top-left panel we report the nonlinear matter auto-power
spectrum Pmm (red solid line), the void auto-power spectrum Pvv (blue dashed line) computed
assuming bv,eff ≈ −11.9, and the absolute value of the void-matter cross-power spectrum Pvm

(black dot-dashed line). We show the void angular auto-power spectra, Cvv
i,j (ℓ), the lensing auto-

power spectra, Cγγ
i,j (ℓ), and the void-lensing angular cross-spectra Cγγ

i,j (ℓ) computed for the diagonal
(i = j) of the 10 tomographic bins (equi-populated in the photometric galaxy catalogue), in the
top-right, bottom-left, bottom-right panels, respectively.



Table 9.1: Marginalised 1σ errors computed for two different cosmological scenarios and three
probes: galaxy weak lensing (WL), angular void clustering (V) and their combination including
the cross-correlation (WL+V+XC).

Probe h Ωm Ωb σ8 ns Mν [eV] w0 wa FoMw0,wa

w0waCDM

WL 0.14 0.0095 0.024 0.010 0.030 - 0.12 0.43 54
V 0.064 0.093 0.018 0.11 0.17 - 0.39 1.6 5.1
WL+V+XC 0.011 0.0065 0.0035 0.0065 0.0043 - 0.079 0.25 106

νw0waCDM

WL 0.14 0.0095 0.025 0.012 0.031 0.23 0.12 0.43 54
V 0.068 0.099 0.018 0.12 0.17 0.66 0.41 1.7 4.6
WL+V+XC 0.011 0.0065 0.0051 0.0093 0.0046 0.18 0.079 0.25 105

k and so the large multipoles ℓ, in the void power spectra and angular power spectra
respectively.

To obtain the cosmological forecasts for Euclid we adopt in this analysis the Fisher ma-
trix formalism (Fisher, 1935): we compute the matter auto-correlation spectrum Pmm(k, z)
for a set of input cosmological parameters, which are varied with respect to the fiducial
cosmology, given by the Flagship build-in parameters (see Sect. 8.1). This variation affects
the computation of the C(ℓ) derivatives, the growth factor D(z)5, the Hubble parameter
H(z) and the comoving distance r(z). We provide further details on the Fisher forecast
computation in Appendix C.

Now we report the main results of this analysis. We will show the forecasts computed
for the two most extreme scenarios considered in Bonici et al. (2022, in preparation): the
flat w0waCDM and νw0waCDM cosmologies, i.e. implementing a CPL parametrisation
of the DE equation of state (w0 and wa parameters), with the addition of a free neutrino
mass (Mν parameter) in the latter case. Moreover, we will present only the results for
the optimistic scenario: the void size function and the void bias are both supposed to be
cosmology-dependent, with a dependency on the cosmology given by the growth factor
entering in the redshift evolution of the mass variance σ (see Sect. 4.3). Also, in this sce-
nario the angular power spectra are evaluated with ℓ ∈ [10, 5000]. We refer the interested
reader to Bonici et al. (2022, in preparation) for the additional forecasts on the ΛCDM
and νΛCDM cosmologies and for the corresponding results computed with the pessimistic
settings6.

In Figs. 9.6 and 9.7 we report the results for the w0waCDM and the νw0waCDM
cosmologies, respectively. We also report a summary of the corresponding cosmological
parameter constraints in Table 9.1. The first thing to notice is that the galaxy weak

5The growth factor D(z) enters in the effective void bias definition, and in particular in the void size
function used to weight the void bias (see Eq. 4.17).

6In this scenario the redshift evolution of the bias is supposed to be known from the linear theory, but
not its absolute normalisation. In particular, we suppose the void bias to have a today fiducial value of
bv,eff(z = 0) = −11.9 and we evolve it with the growth factor of the fiducial cosmology, marginalising over
it as a nuisance parameter. Moreover in this case the angular power spectra are computed for a tighter
monopole range, i.e. ℓ ∈ [10, 1500].
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Figure 9.6: Fisher matrix contours for the flat w0waCDM cosmological model for the galaxy weak
lensing (WL, in red), the angular void clustering (V, in blue) and their combination including the
cross-correlation (WL+V+XC, in green)
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Figure 9.7: The same as Fig. 9.6 but for the νw0waCDM scenario.



lensing has a larger constraining power than the photometrc void clustering, except for h
and Ωb. This is due to the form of the weak lensing kernel and the integration along the
line-of-sight, and to the presence of the BAO in the Cvv(ℓ) and Cγv(ℓ), which are instead
completely washed out in the Cγγ(ℓ) (see Fig. 9.5). We also underline that the major
improvements due to the void clustering and galaxy lensing combination with cross-terms
are not only on the h and Ωb parameters but also on ns, thanks to the orthogonality of
the ns–Ωb contours. Then, we can see that the addition of Mν as free parameter mainly
impacts the constraints on σ8 and Ωb. This, however, allows the void clustering to impact
positively on the neutrino mass constraints: when cross-combining with the void statistic
the error on Mν decreases of ∼ 20% with respect to the galaxy lensing case alone. Then,
for both the analysed cosmologies, the FoMw0,wa (see Eq. 8.6) reaches a value of ∼ 105
when cross-combining the two probes. This represents an enhancement in the constraining
power of ∼ 49% with respect to galaxy lensing case alone.

Additional analyses are presented in Bonici et al. (2022, in preparation) to (i) evaluate
the impact of void-lensing cross-signal, by assuming the two probes to be independent
and (ii) further combine the cross-correlated void-lensing contours with the spectroscopic
galaxy clustering. Once again, we refer the interested reader to the aforementioned paper
for a full description of these analyses.

As a final consideration, we point out how these results are very competitive with other
kinds of probe combination (e.g. galaxy lensing, photometric galaxy clustering, and their
cross-correlation Tutusaus et al., 2020) and extremely promising in the perspective of the
Euclid mission. Indeed, the inclusion of the void clustering and the void-lensing cross-
correlation in the galaxy weak lensing analysis will lead to a considerable improvement of
the Euclid performances, gaining important constraints on the neutrino mass and the DE
equation of state parameters.

9.2 Probe combination: void and cluster number counts

In this section we describe the methodology and the preliminary results of the work that
we will present in Pelliciari et al. (2022, in preparation). In this work we investigate
the synergy between the number counts of galaxy clusters and cosmic voids, which is
expected to be particularly effective for these probes. Clusters and voids map indeed
complementary aspects of the matter density field, i.e. its peaks and depths, so their joint
study is expected to provide orthogonal constraints on the growth of cosmic structures.

For this analysis we use the Magneticum cosmological simulations (Dolag et al., in
preparation), one of the largest set of hydrodynamical simulations (Sect. 2.3.2) performed
to date. These simulations follow a wide range of physical processes (see Hirschmann et al.,
2014; Teklu et al., 2015, for details), which are important for the study of the formation
of galaxies, galaxy clusters and AGN. They are built assuming ΛCDM cosmology, with
parameters fixed to the WMAP7 data (Komatsu et al., 2011), i.e. Ωm = 0.272, h = 0.704,
ΩΛ = 0.728, ns = 0.963 and σ8 = 0.809. Among the Magneticum suite boxes available
we selected the one denoted “Box1a”, with side 896 h−1 Mpc and 15123 particles of gas
and DM (see also e.g. Marulli et al., 2017). In particular, we employ four snapshots with
redshifts z = 0.2, 0.52, 1, 2, exploiting the information on the galaxy stellar mass, M∗, and
the galaxy cluster mass M500c. The latter has been assigned by identifying clusters in the
distribution of DM particles with the SUBFIND algorithm (see Sect. 2.3.1) and imposing a
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threshold ∆c = 500. To mimic the range of masses sampled by real surveys and avoid those
objects affected by number count incompleteness, we selected galaxies and galaxy cluster
with a minimum mass value: M∗ ≥ 1010 h−1 M⊙ and M500c ≥ 1014 h−1 M⊙, for galaxy
and galaxy clusters respectively. This selection precludes the usage of the galaxy cluster
catalogue at z = 2 due to the small number of massive objects already formed at that
epoch. Cosmic voids are then identified running VIDE (see Sect. 5.2) on the distribution of
galaxies, for each of the four redshifts. The obtained void sample is then cleaned following
the same procedure described in Sect. 6.2, rescaling all the underdensities to an internal
density threshold of δNL

v,gal = −0.7 and selecting voids with Reff > 3MPS, being here MPS
the mean separation of the selected galaxies.

Figure 9.8: Evolution of the LSS in the Magneticum simulations (Box1a) in a 50 h−1 Mpc wide
slice of the Z-axis, from redshift z = 0.2 to z = 2. The yellow dots represent galaxy clusters with
mass M500c ≥ 1014 M⊙ h−1, while the blue dots galaxies with stellar mass M∗ ≥ 1010 h−1 M⊙.
The latter trace the distribution of matter used to identify cosmic voids, which have been prepared
by means of the cleaning procedure (see Sect. 5.3) and further selected by imposing Reff > 3MPS,
with MPS the mean galaxy separation. Voids are represented here by yellow circles having sizes
corresponding to the effective radius.

A visual representation of the three selected samples (galaxy clusters, galaxies and
voids) is reported in Fig. 9.8. We represent the central regions of each snapshot, extracting
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a slice of 50 h−1 Mpc along the Z-axis of the simulation box. As expected, the number
of the selected objects (galaxy, galaxy clusters and voids) dramatically decreases with the
redshift. As we stated for Fig. 7.1, any apparent overlapping between voids is a visual
effect caused by the projection on the X-Y plane. Some mostly empty regions may result
not marked as voids due to the superimposition with other underdensities not displayed
in the figure, or because composed of voids rejected from our analysis.

The first statistics we want to explore is the halo mass function, i.e. the comoving
number density of haloes as a function of their mass. We assume here our clusters to be
modelled with accuracy by the same theory used for the DM haloes (see Castro et al.,
2021, for a targeted study on the impact of baryons on the halo mass function). In this
analysis we rely on the theoretical model provided by Despali et al. (2016), in which the
halo mass function is parametrised by means of the variable ν (firstly proposed by Sheth
& Tormen, 1999):

ν =
δLc (z)

2

σ2M (M)
, (9.13)

where δLc (z) is the critical overdensity threshold computed in the linear theory, rescaled at
different redshift using the growth factor D(z). With this parametrisation the halo mass
function can be written as:

νf(ν) =
M2

ρ̄

dn

dM

d lnM

d ln ν
, (9.14)

where:

νf(ν) = A

(
1 +

1

ν ′p

)(
ν ′

2π

)1/2

e−ν′/2 , (9.15)

with ν ′ = aν. This form is determined by the parameters (a, p,A), which define the mass
function cut-off at high masses, its form in the low-mass range and its normalisation,
respectively. Their values have been calibrated as a function of the overdensity ∆(z)
used to define DM haloes, making use of simulations with different cosmologies, volumes
and resolutions. In particular, Despali et al. (2016) performed a fit of the measured halo
number counts by expressing the parameters (a, p,A) as a function of the quantity x,
defined as:

x ≡ log[∆(z)/∆vir(z)] , (9.16)

where ∆vir(z) is the virial overdensity7, obtaining the following relations:

a = 0.4332x2 + 0.2263x+ 0.7665

p = −0.1151x2 + 0.2554x+ 0.2488

A = −0.1362x+ 0.3292 .

(9.17)

Since the Magneticum simulation clusters have been identified following a different mass
definition with respect to the DM haloes analysed by Despali et al. (2016) (we recall also
that our clusters are partially affected by the effects of baryonic physics), we perform a
new calibration of the coefficients reported in Eq. (9.17). In this procedure, we fixed the

7This value derives from the solution to the collapse of a spherical top-hat perturbation under the
assumption that the cluster has just virialised (Peebles, 1980, see also Sect. 2.2.1). It depends on the
redshift and the cosmological model and can be approximated following e.g. the prescriptions of Bryan &
Norman (1998) and Eke et al. (1998).
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Figure 9.9: Measured mass function of galaxy clusters (blue dots) identified in the Magneticum
simulations, having M500c ≥ 1014 h−1 M⊙, at redshifts z = 0.2, 0.52, 1. Upper sub-panels: the red
dashed line represents the theoretical halo mass function computed with the parameters provided by
Despali et al. (2016), while the green solid line shows the predictions of the same model after the re-
calibration performed in this analysis. Lower sub-panels: residuals of the measured cluster number
counts from the models, expressed in units of the Poissonian error associated to the measures.
The different colours indicate the residuals with respect to the two models considered in the upper
sub-panels. The grey dotted lines delimit a region of 1σ, useful to evaluate the agreement of the
data with the two represented models.



parameter p to its best-fit value, provided in Despali et al. (2016), since its variation af-
fects only the low-mass range of the halo mass function and not relevant for our analysis.
For the remaining coefficients, we leave them as free parameters of the halo mass function
model, computed with Magneticum simulations true cosmology, and we sample their pos-
terior distribution by performing a Bayesian MCMC analysis. The resulting 5D Gaussian
distribution provides a new calibration for the halo mass function given in Eq. (9.14); we
report in the following the new derived expressions for the parameters in Eq. (9.17):

a = (7± 4) x2 − (7± 4) x+ (3± 1)

A = (−0.2± 0.4) x+ (0.3± 0.2)

p = 0.2536 .

(9.18)

These coefficients show a high degenerate behaviour and, also because of their large in-
ferred uncertainties, they result consistent within 2σ with the values calibrated by Despali
et al. (2016). This re-calibrated model, based on the Magneticum cluster abundance, is
shown in Fig. 9.9, where we also report the comparison with the halo mass function model
computed with the coefficient reported in Eq. (9.17). As it clearly appears in this figure,
the re-calibrated halo mass function model fits accurately the measured cluster number
counts at all redshift and, as expected, is slightly more in agreement with these data with
respect to the model as originally calibrated by Despali et al. (2016).

For what concerns the analysis of the void size function, we chose to follow the same
procedure reported in Sect. 8.3: we use the measured abundance of cosmic voids to cali-
brate the parameters Bslope and Boffset of the extended Vdn model presented in Sect. 6.3.
So, we measure the effective bias of the galaxies used as mass tracers, beff , at different
redshifts, following the methodology reported in Appendix A, then we use these values in
Eq. (7.3), used to re-parametrise the underdensity threshold of the Vdn model given by
Eq. (4.10). We perform a Bayesian MCMC analysis to fit the void number counts with the
extended Vdn model computed with the Magneticum simulation true cosmology, leaving
Bslope and Boffset as free parameters and marginalising over beff . The resulting calibration
yields:

F(beff) = (0.77± 0.02) beff + (0.36± 0.04) . (9.19)

We show the re-calibrated void size function model in Fig. 9.10, where we also report
the comparison with the model calibrated in Chapter 6 by means of FoF DM haloes. As
studied in Chapters 6 to 8, the number counts of voids identified in the distribution of
cosmic tracers with different mass selections are expected to be reproduced by different
coefficients of the function F(beff) (Eq. 7.3). So we are not surprised to see significantly
different predictions between the two models represented in Fig. 9.10: only the one cali-
brated with voids identified in the Magneticum galaxies accurately fits the number counts
of the analysed data sample.

We are now ready to extract cosmological constraints from the number counts of both
galaxy clusters and cosmic voids. We chose to focus on the parameters Ωm and σ8,
which are highly degenerate and so very important to constrain. Moreover, both the halo
mass function and the void size function are expected to be particularly sensitive to the
variations of these parameters.

We run once again the MCMC on the measured number counts, using this time uni-
form priors for Ωm and σ8, and multivariate Gaussian priors for the calibration parameters
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Figure 9.10: The measured size function of voids (blue dots) identified in the distribution of
the Magneticum simulations galaxies with M∗ ≥ 1010 h−1 M⊙, at redshifts z = 0.2, 0.52, 1, 2.
The selected sample is composed of voids with Reff > 3MPS, with MPS the mean separation of
the selected galaxies. Upper sub-panels: the red dashed line represents the theoretical void size
function computed with the parametrisation of the Vdn model proposed in Chapter 6, while the
green solid line shows the predictions of the same model after the re-calibration performed in this
analysis. Lower sub-panels: the description is analogous to the one provided for Fig. 9.9 but for
the void number counts.
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Figure 9.11: 1σ (68%) and 2σ (95%) confidence contours from the halo mass function (in red),
the void size function (in blue) and their combination as independent probes (in purple). The
values of the underlying cosmological parameters of the Magneticum simulations, i.e. Ωm = 0.272
and σ8 = 0.809, are reported with black dashed lines.

of the presented theoretical models. In particular, we use as prior the 5D Gaussian dis-
tribution derived for the coefficients in Eq. (9.18) for the halo mass function model, and
the 2D Gaussian distribution derived for the parameters Bslope and Bslope for the void size
function model. Then, to combine the two probes, we compute the product of the their
posteriors assuming cluster and void number count to be independent. This hypothesis has
been tested by estimating the cross-covariance matrix of the data sets analysed, verifying
the negligibility of the off-diagonal blocks8. The code we use for this analysis has been
implemented in the CosmoBolognaLib (see Sect. 5.1), together with others that exploit
different combination techniques and that we verified providing fully consistent results.

Figure 9.11 shows the cosmological constraints derived in our analysis. We firstly point
out the strong orthogonality of the confidence contours presented for the halo mass func-
tion and the void size function. Thanks to their nearly perpendicular intersection, their
combination results indeed extremely effective: the precision on the constraints increases
roughly by a factor of 2 and 3 with respect to those derived using the halo mass function
alone, for Ωm and σ8 respectively. The median values and the 1σ errors inferred for the

8We refer the reader to the Pelliciari et al. (2022, in preparation) for details on this analysis.
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Table 9.2: Median and the 1σ errors of the constraints derived for the parameters Ωm and σ8
exploiting as cosmological probes the halo mass function, the void size function and their joint
analysis.

Probe Ωm σ8

Halo mass function 0.27± 0.01 0.810+0.009
−0.010

Void size function 0.26+0.02
−0.01 0.80± 0.02

Combination 0.271+0.005
−0.004 0.809+0.003

−0.004

marginalised posterior distributions are reported in Table 9.2.
The analysis presented in this section further supports the promising results found in

Sects. 8.8 and 9.1.2. It clearly emerges that the study of cosmic voids allows the explo-
ration of methods orthogonal to those of the standard probes and is key in the prospective
of future wide-field surveys, because of its fundamental contribution in breaking the de-
generacies between the cosmological parameters.
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Chapter 10

Conclusions and future
perspectives

With this chapter our journey comes to an end. We have gone through the main aspects of
the standard cosmological scenario and its possible extensions, exploring different aspects
of the observed Universe and venturing then into its largest and darkest regions: cosmic
voids. We have studied in particular the constraining power achievable with the study of
their abundance, with a keen eye on its future exploitation in Cosmology. Finally, we are
ready to sum up the results gathered in this Thesis work.

We first provided the reader a wide overview on the currently accepted standard cos-
mological model, describing its mathematical fundamentals and predictions, as well as its
theoretical and observational issues and possible modifications. Then, we brought our
attention on void statistics, i.e. abundance, density profiles and correlation functions.

We focused on the theory to model the number counts of cosmic voids as a function of
their radius, i.e. the void size function (Sect. 4.3). We presented the so-called Vdn model,
proposed by Jennings, Li & Hu (2013) and initially developed by Sheth & van de Weygaert
(2004), and we tested it with voids identified in cosmological simulations of DM particles.
We verified the accuracy of this model in predicting the size function of voids specifically
prepared for this study, i.e. rescaled and selected by means of a cleaning procedure (see
Sect. 5.3). Then we extended the study to voids identified in the distribution of biased
tracers, namely DM haloes. This step is obviously a fundamental requirement in the
perspective of exploiting the void abundance with real data.

To this end, we introduced in Chapter 6 a new parametrisation of the Vdn model to
take into account the effect of the tracer bias on cosmic voids. In particular, we rescaled
the characteristic underdensity threshold used in this model by means of a function of the
large-scale tracer bias, F(beff), which we calibrated using simulated catalogues at different
redshifts and biases. We also performed a first exploration of the constraining power of the
void size function on the parameters Ωm and σ8, finding quite promising results especially
when combining the statistics at different redshifts.

Afterwards, in Chapter 7 we tested our model on simulations built with alternative
cosmological models. In particular, we analysed the degeneracies arising from a proper
combination of MG, in the form of f(R) gravity (Hu & Sawicki, 2007), and massive
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neutrinos. We first tested the disentangling power of the stacked density profiles of voids
identified in both the distribution of DM particles and DM haloes. This analysis revealed
the presence of deviations of the MG model profiles from those computed in a ΛCDM
cosmology, more evident for the most extreme scenarios. These differences are particularly
strong at z = 1, when the growth of cosmic structures shows an enhancement given by the
effect of the fifth force. Nevertheless, we showed that the neutrino thermal free-streaming
almost completely erases any peculiar trend of the density profiles, making void profiles
predicted by these models almost indistinguishable from the ΛCDM ones.

Secondly, we studied the number counts of voids identified in the same cosmological
simulations. Using voids traced by the DM particles we found an excellent agreement
between the measured abundances and the theoretical predictions obtained with the Vdn
model for the different cosmological scenarios analysed. We also noticed a significant
reduction in the void abundance at high redshifts for the models characterised by both
MG and massive neutrinos, with respect to the ΛCDM scenario. This trend is caused
by the different redshift dependence of MG and massive neutrinos imprints on structure
formation: the effect of massive neutrinos to damp the evolution of voids is already in
place at early epochs when MG effects are still negligible.

Aiming at analysing the number counts of voids identified in the DM halo distribution,
we firstly re-calibrated the coefficients of the linear function F(beff) to match the selection
criteria used to build the samples of DM haloes. By calibrating this relation with DM
haloes characterised by different compactness, we found a slight dependence of F(beff) on
the type of objects used to identify the voids. We have also tested the universality of this
relation by comparing the calibration obtained for the ΛCDM model with those computed
using non-standard cosmologies, finding statistically consistent results.

Equipped with the parametrisation of Vdn model we obtained for our halo samples
we finally compared the measured and predicted abundances of voids identified in the
DM halo catalogues, finding a good agreement in the full range of void radii probed by
our simulations. However, all the cosmological models considered in our analysis predict
statistically indistinguishable void abundances. We therefore concluded that larger sim-
ulations are required to increase the statistical relevance of our measures, especially at
large scales, where the differences in the void size function are expected to be stronger,
thus allowing to break the cosmic degeneracies.

Then, in Chapter 8 we extended our analysis to the forecasts from the void size function
to be expected from the ESA medium-class mission Euclid (Laureijs et al., 2011; Amen-
dola et al., 2018). We measured the void number counts from the Euclid mock galaxy
spectroscopic light-cone in redshift bins, with which we calibrated the relation F(beff),
used in our extension of the Vdn model. We exploited this new parametrisation also to
account for the modifications on the void sizes caused by the volume change of cosmic
voids in redshift space. We obtained a remarkable agreement between the measured and
predicted void size functions, both in real and redshift space, for all the redshift bins and
the spatial scales considered in our analysis.

We performed a MCMC analysis, estimating the constraints expected for the Euclid
spectroscopic survey from void number counts on two main cosmological models: assuming
in one case a scenario characterised by a constant equation-of-state parameter, wCDM, and
in the other a scenario with a dynamical DE component described by the CPL parametri-
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sation (Chevallier & Polarski, 2001; Linder, 2003), w0waCDM. In the wCDM scenario
we forecasted a 10% precision on w, while in the w0waCDM scenario we computed a
FoMw0,wa equal to 17 for the most optimistic scenario considered. For each case analysed,
the achieved precision on σ8 (as derived parameter) and Ωm is instead of about 5% and
3%, respectively. An optimistic estimate of the upper limit on the neutrino mass Mν is
instead of 0.03 eV and 0.08 eV, for the wCDM and the w0waCDM scenario respectively.

Finally, we presented a first exploration of the combination of our results with other
cosmological probes, i.e. galaxy clustering and weak lensing (Euclid Collaboration: Blan-
chard et al., 2020), on the Ωm–σ8 parameter space, and void-galaxy cross-correlation func-
tion (Hamaus et al., 2022), on the Ωde–w one. We showed that our results are competitive
and highly orthogonal to those provided by these probes, proving the strong constraining
power that will derive from their combination.

Additionally, in Chapter 9 we reported the results achieved in projects complementary
to the main PhD one. We presented the analysis performed in Hamaus et al. (2022), where
we forecasted the constraining power from the void-galaxy cross-correlation function for
the Euclid spectroscopic survey. The methodology we applied is based on the observ-
able distortions of average void shapes caused by RSDs and the AP effect (introduced
in Sect. 4.6): we modelled the (anisotropic) void-galaxy cross-correlation function in red-
shift space by exploiting a deprojection technique and assuming linear mass conservation.
We predicted the constraining power for Euclid assuming two flat cosmological models –
ΛCDM and wCDM – finding results extremely competitive with that achieved with main
probes as the CMB lensing and BAO data. In particular, we predicted a precision of
0.6%-0.7% on ΩΛ and 9%-11% on w, depending on the possible calibration of the model.

Furthermore, we reported the analysis that will be presented in Bonici et al. (2022, in
preparation), where we provide forecasts for the Euclid photometric survey from the com-
bination of galaxy lensing, void angular two-point correlation and their cross-correlation.
We used the Euclid photometric mock galaxy catalogue to evaluate the abundance and
the void radius range expected for the mission, together with the void and galaxy mean
densities, nv(z) and ng(z). With this information we computed the angular power spec-
tra tomographically (Hu, 1999) in a set of redshift bins. Then we used a Fisher matrix
approach to compute the expected constraints on different cosmological scenarios. The
results we found are extremely encouraging as they allow the improvement of the con-
straints on several cosmological parameters, in particular the neutrino mass and the DE
equation of state.

Finally we introduced the work that we will present in Pelliciari et al. (2022, in prepa-
ration), where we explored the synergy of cluster mass function and void size function
using hydrodynamical simulations. We measured the abundance of galaxy clusters and of
voids identified in the distribution of galaxies, and then we performed a re-calibration of
both the mass function model (Despali et al., 2016) and of the extended Vdn model on
these data. We performed a MCMC analysis to evaluate the respective constraints on the
parameters Ωm and σ8, proving once again the complementarity of voids with the standard
probes. To conclude, we tested the cosmological combination of cluster and voids number
counts, assuming these probes as independent. Thanks to the orthogonality of the two
derived confidence contours, we found their combination to provide an improvement up
to a factor of 3 in the constraining power with respect to the mass function alone.
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Figure 10.1: Visual representation of the BOSS survey galaxies, composed of the target selections
LOWZ (0.2 < z < 0.4) and CMASS (0.4 < z < 0.75). We show a slice of 50 h−1 Mpc of the Z-axis
and the voids identified and selected in this sample of galaxies.

The natural extension of this journey implies the application of our pipeline to real
galaxy surveys. The first step in this direction has been already taken with a first explo-
ration of the final SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) Data Release
12 (Dawson et al., 2013). An example of this work is shown in Fig. 10.1, where we repre-
sent the sample of voids identified in the BOSS survey galaxy, and cleaned to match the
void definition used in the void size function model. To this end, we will also test our
void size function modelling pipeline with a number of analyses that will include e.g.: the
usage of different void finding algorithms, the inclusion in the model of more cosmological
parameters, the extension to different cosmological scenarios, and finally the assessment
of the contribution of realistic observational uncertainties, such as more complex errors on
the tracer redshifts and survey mask effects. These analyses will allow us to build a robust
and strictly validated methodology to be applied in the near future to study the voids that
will be identified by the upcoming wide field surveys like Euclid, NGRST (Green et al.,
2012) and LSST (LSST Dark Energy Science Collaboration, 2012).

We expect the results we presented in this Thesis to pave the way towards a full
cosmological exploitation of cosmic voids and to encourage the future exploitation of this
novel and promising cosmological probe.
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Dear future historians,
I’ll never experience the world you inhabit.
I fret not, I fret not,
for I’ve made my own discovery.
Just put your weight on my shoulders.
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Appendix A

Measuring the linear bias

In this appendix, we describe the methods employed in this work to estimate the large-
scale effective linear bias of the tracers used to identify the voids. We followed the same
prescriptions as in Marulli et al. (2013, 2018), exploiting the 2PCF of the DM haloes of our
simulated catalogues, and performing a Bayesian statistical analysis to infer the effective
bias, beff.

The angle-averaged 2PCF is computed using the Landy & Szalay (1993) estimator
(see Sect. 2.1.5). Then, we computed the covariance matrix Ci,j , which measures the vari-
ance and correlation between the different bins of the 2PCF, with the Bootstrap method,
dividing the original catalogues in 125 sub-catalogues, and constructing 100 realisations
by resampling from the sub-catalogues, with replacement. We constructed the random
catalogue by extracting the object coordinates randomly, preserving the same 3D cover-
age and the same geometry of the initial catalogue. In particular, we build the random
catalogue to be 4 times larger than the DM halo sample, since this proportion allows to
have sufficiently small Poissonian errors in the DR counts, compared to the errors in DD.
We also performed tests with different sizes of the random catalogue, finding consistent
results.

The covariance matrix is defined as follows:

Ci,j = F
NR∑

k=1

(ξki − ξi)(ξ
k
j − ξj) , (A.1)

where the subscripts i and j run over the 2PCF bins, while k refers to the 2PCF of the
k-th of NR catalogue realisations, and ξ is the mean 2PCF of the NR samples. F is the
normalisation factor, which takes into account the fact that the NR realisations might not
be independent (Norberg et al., 2009), and is F = 1/(NR−1) in the case of the Bootstrap
method.

Finally, we performed a full MCMC analysis of the 2PCF, using a Gaussian likelihood
function L, defined as:

− 2lnL =
N∑

i=1

N∑

j=1

(ξdi − ξmi )C−1
i,j (ξ

d
j − ξmj ) , (A.2)
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Figure A.1: The halo bias for the catalogues withMmin = 2×1012 h−1 M⊙, 5×1012 h−1 M⊙
and 1013 h−1 M⊙ (rows from top to bottom), at redshifts z = 0, z = 0.55, z = 1 (columns
from left to right). The black points represent the square root of the ratio between the
auto-correlation function of the haloes and the DM particles (see Eq. 2.36). The error
bars are the diagonal elements of the covariance matrix estimated with Bootstrap. The
red shaded areas show the 1σ uncertainties on the best-fit bias values estimated with the
MCMC modelling, fitting in the range of radii of [20–40] h−1 Mpc. The dashed grey lines
show the theoretical predictions given by the Tinker et al. (2010) model.



where C−1
i,j is the inverse of the covariance matrix, N is the number of comoving separation

bins at which the 2PCF is estimated, and the superscripts d and m stand for data and
model, respectively. The 2PCF model, ξm(r), is computed as follows:

ξm(r) = b2eff ξDM(r) , (A.3)

where ξDM(r) is the DM 2PCF, which is estimated by Fourier transforming the power
spectrum, PDM(k), computed with the CAMB. An accurate estimate of the effective bias
parameter, beff, and its uncertainty are assessed by sampling its posterior distribution.

Figure A.1 shows the results of this analysis. The data points are the square root of
ratio between the tracer and matter 2PCFs (see Eq. 2.36), while the dashed red lines show
the best-fit values and uncertainties of beff, estimated from the median and quartiles of
the posterior distribution sampled with the MCMC analysis.

We compared these values to the theoretical effective bias of DM haloes, computed as
follows:

beff(z) =

∫ Mmax

Mmin

dM b(M, z)Φ(M, z)

∫ Mmax

Mmin

dM Φ(M, z)

, (A.4)

where Φ(M, z) is the halo mass function of the catalogue, and Mmin and Mmax are the
lowest and largest masses in the sample, respectively. To compute the linear bias b(M, z),
we relied on the theoretical model developed by Tinker et al. (2010).
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Appendix B

Testing systematic uncertainties deriving from the calibrated
bias relation

In this appendix we first test the effect of using the value of beff instead of F(beff) to
recover the cosmological parameters. In particular, we repeat the MCMC analysis of the
measured size functions performed in Sect. 6.6 employing a wrong theoretical model, i.e. a
Vdn model re-scaled with the linear bias inferred from the tracer large-scale 2PCF, which
is equivalent to setting the parameters Bslope = 1 and Boffset = 0. As demonstrated in
Fig. 6.7, the model obtained using the tracer bias beff cannot fit properly the measured void
abundances, unless it is previously converted in its corresponding value computed inside
voids by means of the linear relation F(beff). As shown in Fig. B.1, the contour levels
achieved with the effective bias are on average smaller with respect to the ones presented
in Fig. 6.8. In fact, the uncertainties associated to the theoretical model re-parametrised
directly with beff are smaller, since the errors of Arel and Brel are not included in the
model. As expected, the contour levels obtained using the wrong bias value tend to shift
from the real values of σ8 and Ωm, especially for low redshifts and mass-cuts. Indeed, in
these cases the values of beff and brel are significantly different from each other, whereas at
higher redshifts and mass-cuts they tend to be more similar, as showed in Fig. 6.5.

We secondly assess the systematic errors on the cosmological constraints caused by
uncertainties in the estimation of the coefficients of the conversion relation, calibrated
in Sect. 6.5. This is particularly useful in the perspective of a future application on real
surveys. To propagate a possible systematic error on the Eq. (6.5) to the final cosmological
constraints, we repeated the MCMC analysis described in Sect. 6.6 assuming different
values for the coefficient Bslope and Boffset. In particular, to test the cases with the major
discrepancy from the calibrated relation, we increased or decreased both the parameters
by 1σ, where 1σ is the uncertainty derived by the weighted fit of the data in Fig. 6.6.
Specifically, we set B′

slope = 0.854 + 0.007 and B′
offset = 0.420 + 0.010 in the first case,

whereas B′′
slope = 0.854 − 0.007 and B′′

offset = 0.420 − 0.010 in the second case. In Fig.

B.2 we report the results for the catalogue with Mmin = 2 × 1012 h−1 M⊙ at z = 0. As
shown in this figure, the real values of σ8 and Ωm are within the 68% confidence levels
obtained in both cases. Moreover, the posterior distribution of Ωm is almost unchanged,
while σ8 results shifted towards greater values using a conversion relation with B′′

slope and
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Figure B.1: 1σ (68%) and 2σ (95%) confidence levelsin the σ8–Ωm plane, for the halo catalogues
with Mmin = 2×1012 h−1 M⊙ (top left), 5×1012 h−1 M⊙ (top right), and 1013 h−1 M⊙ (bottom),
obtained by re-parametrising the Vdn model directly with beff, thus without converting this value
by means of the Eq. (6.5). The colour of ellipses corresponds to different redshifts: red for z = 0,
green for z = 0.55 and blue for z = 1. The prior distributions are uniform for σ8 and Ωm, and
Gaussian for beff. The 1D distributions (top and bottom right subpanels) show the marginalised
posterior probability of σ8 and Ωm, respectively. The black lines represent the true WMAP7 values
(σ8 = 0.809 and Ωm = 0.2711).
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Figure B.2: 1σ (68%) and 2σ (95%) confidence levels in the σ8–Ωm plane, for the halo catalogue
withMmin = 2×1012 h−1 M⊙ at z = 0. 1D curves (top and bottom right panels) show the posterior
distributions of σ8 and Ωm, respectively. The grey filled contours represent the confidence levels
obtained using Eq. (6.5), while the blue and red contours indicate the results obtained by converting
the value of beff shifting both the values of Bslope and Boffset by +1σ and −1σ, respectively. The
black lines represent the true WMAP7 values (σ8 = 0.809 and Ωm = 0.2711).

B′′
offset and towards lower values for the case with B′

slope and B
′
offset. We obtained the same

results also for the catalogue with higher redshift and mass selections. The larger is the
tracer bias, the larger is the discrepancy of the modified relation from the one calibrated
in Eq. (6.5). Indeed, shifting both the values of Bslope and Boffset by +1σ and −1σ, the
resulting linear equations tend to move even further away from the calibrated relation
with beff . This causes a systematic error that has more impact on the theoretical size
functions associated to the catalogues with higher beff . Nevertheless, we verified that even
in these cases the constraints are still consistent with the real values of σ8 and Ωm. We can
conclude that, even with a systematic error of ±1σ on the values of the coefficients in the
calibrated relation, the void size function still provides reliable cosmological constraints.
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Appendix C

The void-lensing Fisher matrix

In this appendix we summarise the Fisher matrix formalism (Fisher, 1935) and we provide
details on its application to predict the constraining power of void clustering, galaxy
weak lensing and their combination (including their cross-correlation) on the cosmological
parameters (see Sect. 9.1.2).

The Fisher matrix is computed as the expectation value of the second derivatives of
the logarithm of the likelihood L:

Fαβ =

〈
∂2 lnL
∂α∂β

〉
, (C.1)

where α and β are the considered model parameters. The expected error covariance matrix
is defined as the inverse of the Fisher matrix F :

Cαβ = (F−1)αβ . (C.2)

The diagonal elements of Cαβ are then given by square root of the marginalised 1σ errors
on the parameters:

σα =
√

Cαα . (C.3)

Let us now introduce the matrix for the angular power spectra, ΣAB
i,j , which is associated

to a given CAB
i,j (ℓ) (see Eq. 9.7) as:

ΣAB
i,j (ℓ) =

√
2

(2ℓ+ 1)∆ℓfsky
[CAB

i,j (ℓ) +NAB
i,j (ℓ)] , (C.4)

where ∆ℓ is the multipole bin width, fsky the sky fraction covered by the survey, and
NAB

i,j (ℓ) the shot noise matrix. The latter depends on the particular probe we want to use.
For the void clustering, galaxy lensing, and void-lensing angular power spectrum we have:

Nvv
i,j =

1

niv
δi,j , Nγγ

i,j =
σ2ϵ
nig
δi,j , Nγv

i,j = Nvγ
i,j = 0 , (C.5)
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where δi,j is the Kronecker delta, σ2ϵ is the galaxy shape noise, and nig and niv are the
unnormalised average galaxy and void surface densities in the i-th tomographic bin com-
puted with the fiducial cosmology, respectively. We refer the reader to Bonici et al. (2022,
in preparation) for the survey specifications used to compute the covariances.

When considering a single probe, i.e. (A = B), the C(ℓ) covariance matrix is simply
given by Eq. (C.4). Instead, to combine two or more probes we need to construct the full
covariance matrix, ΣXC, composed of the matrix blocks defined in Eq. (C.4). For the void
clustering and the galaxy weak lensing we have in particular:

ΣXC(ℓ) =

(
Σγγ(ℓ) Σγv(ℓ)
Σvγ(ℓ) Σvv(ℓ)

)
, (C.6)

which yields to the associated error covariance matrix:

CXC(ℓ) =

(
Cγγ(ℓ) Cγv(ℓ)
Cvγ(ℓ) Cvv(ℓ)

)
. (C.7)

Assuming the coefficients of the spherical harmonic 2D decomposition to follow a mul-
tivariate Gaussian distribution, we get the following analytical expression for the Fisher
matrix elements:

Fαβ =

ℓmax∑

ℓ=ℓmin

Tr

{
[Σ]−1 δ∂C(ℓ)

∂α
[Σ]−1 δ∂C(ℓ)

∂β

}
, (C.8)

where Tr indicates the matrix trace. This formula applies both to the single- and two-
probe correlation cases, provided that the C(ℓ) and the covariance matrices are chosen
accordingly.
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