Study of molecular mechanisms in cardio- and neuroprotection and possibility of modulation by nutraceutical phytocomponents

Fabbri, Daniele (2014) Study of molecular mechanisms in cardio- and neuroprotection and possibility of modulation by nutraceutical phytocomponents, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Scienze biochimiche e biotecnologiche, 26 Ciclo. DOI 10.6092/unibo/amsdottorato/6477.
Documenti full-text disponibili:
[img]
Anteprima
Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Download (6MB) | Anteprima

Abstract

Ischemic preconditioning is a complex cardioprotective phenomenon that involves adaptive changes in cells and molecules. This adaptation occurs in a biphasic pattern: an early phase which develops after 1-2 h, and a late phase that develops after 12-24 h. While it is widely accepted that reactive oxygen species (ROS) are strongly involved in triggering ischemic preconditiong, it is not clear if they play a major role in the early or late phase of preconditioning and which are the mechanisms involved. Methylglyoxal, a metabolic compound formed mainly from the glycolytic intermediate glyceraldehyde-3-phosphate., is a precursor of advanced glycation end product (AGEs) .It is more reactive than glucose and shows a stronger ability to cross-link with protein amino groups to form AGEs. Methylglyoxal induced cytotoxicity may be at least partially responsible for cardiovascular and Alzheimer diseases. Methylglyoxal omeostasis is controlled by the glyoxalase system that consists of two enzyme, glyoxalase 1 (GLO1) and glyoxalase 2. In a recent study it was demonstrated that the transcriptional levels of GLO1 are controlled by NF-E2-related factor 2 (Nrf2). The isothiocyanate sulforaphane, derived from the hydrolysis of glucoraphanin abundantly present in broccoli, represents one of the most potent inducers of phase II enzymes through the Keap1–Nrf2 pathway. The aim of this thesis was evaluated molecular mechanisms in cardio- and neuroprotection and the possibility of modulation by nutraceutical phytocomponents This thesis show to one side that the protection induced by H2O2 is mediated by detoxifying and antioxidant phase II enzymes induction, regulated, not only by transcriptional factor Nrf2, but also by Nrf1; on the other side our data represent an innovative result because for the first time it was demonstrated the possibility of inducing GLO1 by SF supplementation.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Fabbri, Daniele
Supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze biologiche, biomediche e biotecnologiche
Ciclo
26
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
oxidative stress, carbonyl stress,ischemic preconditioning,sulforaphane, cardiomyocytes, SHSY-5Y,
URN:NBN
DOI
10.6092/unibo/amsdottorato/6477
Data di discussione
11 Aprile 2014
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^