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                 CHAPTER 1  

 

1. OXIDATIVE STRESS 

 

1.1 Definition 
Oxidative stress reflects an imbalance between the systemic 

manifestation of reactive oxygen species and a biological system’s 

ability to readily detoxify the reactive intermedies or to repair the 

resulting damage. 

Living organisms carry out their vital functions in an oxygen-rich 

environment  and the majority of them suits and lives thanks to this.  

In a paradoxical way, oxygen should cause damage to important 

biological macromolecules of great importance.  In biological systems 

a series of reactions that require energy occurs and cells use oxygen as 

an electron acceptor to produce energy. During these reactions , in 

physiological conditions, the production of free radicals occurs. The 

reason of  the production of free radicals can be understood by 

studying how chemical reactions occur and the particular structure of 

molecular oxygen, which is essential for our metabolism. The 

production of free radicals is useful for the functioning of the cells, 

subcellular  organelles, enzymes and for the synthesis and metabolism 
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of  biomolecules. When they are not opposed by the organic defenses 

that their reactive potential becomes harmful.  

Molecular oxygen is a di-radical  with two unpaired electrons in its 

outer orbitals. These electrons are at their lowest level of energy and 

occupy separate orbitals, but with spin oriented in the same direction. 

Each of these orbitals can accommodate another electron, but the 

acquisition of electrons by another molecule and the formation of a 

bond is prevented by the fact that the spins are parallel (spin-

restriction). Therefore, the spin reversal appears to be necessary for 

the formation of a bond. Molecular oxygen because of its status of  di-

radical and the phenomenon of spin-restriction, can not react with 

other free radicals. Chemically, a radical is a molecule containing a 

single unpaired electron in the orbital outermost, therefore tends to 

react with molecules of the surrounding environment and to which, by 

coming in contact, can subtract the electron needed to complete its 

orbital and achieve a steady state. The spin-restriction can be 

overcome with the assistance of catalyst such as, for example, the 

transition metals ions (iron and copper)  that transfer an electron to 

time with the correct spin from the molecule that is to be oxidized to 

the oxygen that is reduced. Redox reactions will generate free radicals, 

such as superoxide anion or hydroxyl radical, but also other molecular 

species that are not free radicals but possess a similar reactivity as 

hydrogen peroxide and singlet oxygen. The term “reactive oxygen 

species (ROS)“ was coined to indicate all radicals with this reactivity. 

ROS are naturally formed because of normal oxygen metabolism. 

However these free radicals are potentially able to create oxidative 
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damage via-interaction with biomolecules. Obviously, ROS are not 

only always bad for normal physiology but sometime useful. For 

instance, lower amounts of ROS produced during mitochondrial 

activity in normal cells acts as the signaling molecules. The level of 

antioxidants and normal biological antioxidants must be in balance. If 

the mentioned balance is interrupted, then toxic oxidative stress may 

happen. This imbalance usually happens during aging (as an axample) 

or it can be involved in some diseases and also appears as a 

consequence of the diseases. The role of ROS in cellar damage is well 

documented with implications in a broad range of degenerative 

alterations (tissue degradation, carcinogenesis, ageing and other 

oxidative stress relate diseases). 

 

1.2 Reactive oxygen species (ROS) 

 

1.2.1 Superoxide anion 

The superoxide anion is considered a free radical because it has an 

unpaired electron, although it not presents a particularly high 

reactivity. It is formed through the univalent reaction of a single 

electron. The superoxide radical can be formed at the level of two 

precise points of the mitochondrial respiratory chain: at the level of 

Complex I (NADH dehydrogenase) and Complex III (ubiquinone: 

cytochrome C reductase). In normal metabolic conditions, the 

Complex III is the main site of ROS production (Turrens 1997). In 

physiological conditions, high concentration of manganese superoxide 

dismutase enzyme in the matrix ensures that the basal level of 
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superoxide is neutralized before it can damage the cell. The overall 

redox balance of the cell turns out to be decisive as to what will 

happen to superoxide anion; in biological tissues, in non pathological 

conditions, it undergoes dismutation by superoxide dismutase (SOD) 

to generate O2, according to the reaction: 

2O2
-. + 2H+   H2O2 + O2                                             [1] 

 

1.2.2 Hydrogen peroxide 

 Hydrogen peroxide (H2O2) is a reactive oxygen species and is 

produced by SOD depend dismutation reaction or is generated for 

direct production in some enzymatic reactions, as those catalyzed by 

L-amino acid oxidase or monoamine oxidase at the level of 

microsomes, peroxisomes and mitochondria. In physiological 

conditions, also H2O2 does not represent a particular risk for the cell, 

since it is rapidly neutralized by the action of catalase, a ubiquitary 

heme protein and glutathione peroxidase according to the reactions: 

H2O2 + 2e- + 2H+    2H2O                                          [2] 

 

H2O2 + 2GSH       2H2O + GSSG                                [3] 

 

Even though hydrogen peroxide can control cell signaling and 

stimulates cell proliferation at low levels, in higher concentrations it 

can initiate apoptosis in very hight levels it may create necrosis 

(Abdollahi et al. 2012; Saeidnia et al. 2013). 
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1.2.3 Hydroxyl radical 

The free radical produced in higher quantities is the superoxide anion. 

It may react with H2O2 to form the dangerous and powerful hydroxyl 

radical OH • (Haber-Weiss’s reaction): 

 

O2
-• + H2O2   O2 + OH• + OH-                                            [4] 

 

The hydroxyl radical is formed especially in the redox reaction of 

H2O2 with iron or other transition metals according with Fenton 

reaction [5]. 

 

H2O2 + Fe2+    Fe3+ + OH• + OH-                                [5] 

 

Fe3+ so formed may, in turn, interact with a superoxide radical 

according to the reaction [6]: 

 

Fe3+ + O2
-•   Fe2+ + O2                                               [6] 

 

regenerating Fe2+ which can again react according to [5] with a new 

molecule of H2O2.  

The production of OH• occurs only in the presence of free iron. Iron, at 

physiological pH, in plasma and tissues, is always present in bound , 

non-toxic form (Fe-hemoglobin, Fe-myoglobin, Fe-citochrome etc.) 
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but just a slight shift in pH toward acidosis promotes the separation of 

the metal from the protein and the initiation of radical reactions. 

The hydroxyl radical OH• is the agent responsible for the initial phase 

of many peroxidative processes in our tissues. Actually, in the 

presence of transition metals, hydrogen peroxide can be converted to 

the hightly reactive idroxyl radical, which is responsible for most of 

the oxidative damages to proteins, lipids, sugars and nucleic acids. 

Hydroxyl radical is also a a hallmark signaling molecule that is able to 

inactivate NF-kB, an important transcription factor involved in 

infiammatory response.  

 

1.2.4 Singlet oxygen 

A highly reactive form of molecular oxygen is singlet oxygen (1O2). It 

has the ability to oxidize the organic molecules damaging living 

systems. In vitro studies it showed that 1O2 oxidizes many organic 

molecules, including membrane lipids, proteins, amino acids, nucleic 

acids, nucleotides, carbohydrates and thiols. Singlet oxygen can be 

formed during the action of phagocytes when they are acting as agents 

of non-specific immunity. It has been hypothesized that 1O2  is a by-

product of lipid peroxidation and recent studies have shown that it can 

also be formed as the primary product of Haber-Weiss’s reaction [7] 

O2
-•  + H2O2    1O2 + OH• + OH-                                    [7] 

 

Mitochondrial respiration generates a proton gradient and singlet 

oxygen perhaps as a signaling element that might be involved in 

oxidative stress and alkaline-induced cell death (Mates et al. 2012). 
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The creation of O2
-•  following irradiation seems to be a main character 

of cell injury (Tominaga et al. 2012). Since manganese superoxide 

dismutase (Mn-SOD) removes extra O2
-•  in the mitochondria to 

preserv them from oxidative damage, thus over-espression of Mn-

SOD reduce the levels of intracellular ROS and protects against cell 

death. 

  

1.3 Endogenous ROS formation  

 

The transformation of molecules in free radicals occurs through a 

chemical or physical reaction. In fact it is well known that many 

external agents such us UV rays and  X-rays are able to generate free 

radicals within biological systems. ROS can be also generated by the 

cell at the level of the mitochondrial respiratory chain. Experimental 

tests in vitro indicate that mitochondria convert 1-2% of the molecules 

of oxygen consumed in superoxide anion. Molecular oxygen is the  

ideal final acceptor of electrons in the mitochondrial respiratory chain,  

presenting high affinity for electrons, combined with a low reactivity 

in the absence of a catalyst. 

 

 

1.4 Reactive nitrogen species 

 

Nitric oxide and peroxynitrite, which is formed by the reaction 

between nitric oxide and superoxide, represent the reactive nitrogen 
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species that have attracted most interest. Class of enzymes belonging 

to the family of nitric oxide synthetase or synthase (NOS), using L -

arginine as a substrate, is assigned to the synthesis of nitric oxide 

(NO). The nitric oxide synthase are a family of  NADPH-dependent 

enzymes that oxidize the amino acid L-arginine to L-citrulline. NOS 

can be found in three different forms: neuronal, endothelial and 

inducible (iNOS). While the first two are calcium/calmodulin-

dependent, the iNOS is calcium independent and is expressed in 

response to different stimuli. The cell has the ability to produce large 

amounts of nitric oxide as it is able to regulate the expression of 

iNOS. NO exists in different chemical forms, with high chemical 

reactivity and has different biological roles. NO is produced by 

epithelial cells and this amount, if remains at physiological levels, 

appears to be essential for the proliferation, regolation and relaxation 

of vascular smooth muscle cells, for leukocyte adhesion and 

aggregation of platelets (Knowles et al. 1992). NO has different 

functions according to the  produced levels: at low levels, produced by 

neuronal constitutive NOS, serves as a neurotransmitter (Moncada et 

al. 1991), while produced at high levels  by activated macrophages 

and neutrophils it is an important mediator of the immune response 

(Bogdan 2001). 

 

1.6 ROS-producing enzymes contributing to  

      oxidative stress 

Several enzymes systems that can produce ROS  have been identified. 

Four seem to be of major importance: namely, NADPH oxidase, 
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xanthine oxidase, enzymes of the mitochondrial respiratory chain and 

dysfunctional eNOS. 

 

1.6.1 NADPH oxidases 

NADPH oxidase produces O2
-• by transferring electrons from NADPH 

inside the cell across the cell membrane and reducing molecular 

oxygen. Several isoform of  NADPH oxidase (Nox) are found in 

various cell types of the vascular wall, including endothelial cells, 

smooth muscle cells and fibroblasts (Drummond et al. 2011). NADPH 

oxidase comprises multiple protein components that must be 

assembled in the cell membrane for the enzymes to become 

active(Drummond et al. 2011). In various animal model vascular 

disease, activation and/or upregulation of NADPH oxidase has been 

demonstrated in the vessel wall. Mice with a disrupted Nox1 gene 

exhibit smaller blood pressure increases in response to angiotensin II 

(Matsuno et al. 2005), whereas mice overespressing Nox1 in vascular 

smooth muscle exhibit increased O2
-• production and greater blood 

pressure in response to angiotensin II (Dikalova et al. 2005). 

Disruption of the gene for the regulatory subunit p47phox reduces 

blood pressure responses to angiotensin II and diminishes 

atherogenesis in apolipoprotein E (ApoE) -/- mice (Barry-Lane et al. 

2001). 

 

1.6.2 Xanthine oxidase (XO) 

The main source of XO is the liver. It primarly synthesizes xanthine 

dehydrogenase, which is then converted to XO by proteolysis. The 
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release of XO from the liver is increased in hypercholesterolemia 

(White et al. 1996). The circulating XO can then adhere to endothelial 

cells by assiociating with endothelial glycosaminoglycans. XO 

donates electrons to molecular oxygen, thereby producing O2
-•  and 

hydrogen peroxide. Allopurinol and oxypurinol are inhibitors of XO. 

Oxypurinol has been shown to reduce O2
-•  production and improve 

endothelial function in blood vessels from hyperlipidemic animals 

(Ohara et al. 1993). This suggest a contribution of XO to endothelial 

ROS production, at least in hypercholesterolemia. There is evidence 

that endothelial cells themselves can express xanthine dehydrogenase 

and that this expression is upregulated in a redox-sensitive way when 

the activity of endothelial NADPH oxidase in increased. 

 

1.6.3 Enzymes of mitochondrial respiratory chain   

Mitochodria produce substantial amounts of O2
-• in  ETC complex I 

and III. Complex I releases O2
-•  into the mitochondrial matrix and is 

considered the main producer of O2
-• due to reverse electron flow from 

complex II under low-ADP conditions. The matrix-localized 

mitochondrial SOD2 dismutates O2
-•  to H2O2, which in turn is 

reduced to water by GPx or catalse. The importance of  SOD2 thus 

lies in the detoxification of O2
-•  to prevent generation of ONOO- or 

oxidative damage of ETC proteins and mitochondrial DNA, which 

may otherways compromise mitochondrial function. Complex III also 

releases  O2
-•  to the mitochondrial intermembrane space, where it is 

dismutated by SOD1, Mitochondrial ROS (Mito-ROS) production 

varies depending on several factors. Surprisingly, mitochondria 
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themselves are remarkably ROS sensitive. Oxidative damage lowers 

their activity and increases their ROS production (Davidson et al. 

2007). Mito-ROS promote the activity of other ROS sources (Schulz 

et al. 2012). Enhanced levels of mito-ROS are known to stimulate the 

release of mitochondrial apoptotic factors, with vascular cells showing 

differential sensitivity to stress conditions (Zeini et al. 2007). In the 

atherosclerotic process, an increase in cell death contributes to the 

formation of a necrotic core in plaque, which renders it unstable, 

favoring atherothrombosis (Madamanchi et al. 2007). This hightlights 

the role of oxidative stress in vascular diseases, a phenomen 

exemplified by the fact that elevated mito-ROS levels cause 

cardiomyopathy in SOD2-/- mice (Li et al. 1995). 

 

1.6.4 Dysfuntional uncoupled eNOS 

A key regulator of the vasoprotective function of the endothelium is 

generated by eNOS. Endothelial NO induces vasodilation, inhibits 

platelet aggregation and adhesion, and prevent atherogenesis 

(Forstermann 2008; Forstermann et al. 2011). Endothelial dysfunction 

is largely equivalent to the inability of the endothelium to generate 

adequate amounts of bioactive NO. Oxidative stress contributes 

markedly to endothelial dysfunction, primarily due to rapid oxidative 

inactivation of NO by excess O2
-• . In a second step, persisting 

oxidative stress renders eNOS dysfunctional, such that it no longer 

produces NO, but rather O2
-• . Evidence for eNOS uncoupling has 

been obtained in various animal models and in patients with 

endothelial dysfunction (Forstermann et al. 2011). Mechanistically, 
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depletion of BH4, an essential cofactor for the eNOS enzyme, is likely 

to be the major cause for eNOS uncoupling and endothelial 

dysfunction. ONOO-, the direct reaction product of NO and O2
-•, is 

capable of oxidizing BH4, leading to BH4 deficiency (Forstermann 

2008) 

 

1.7 Relationship between oxidative stress and  

     cardiovascular diseases  

 

Oxidative stress plays a a central role in cardiovascular diseases (Li 

2013, Salari-abdollahi 2012). There are some risk factors of 

cardiovascular diseases including hypertension , hypercholesteremia, 

diabetes mellitus and cigarette smoking, as well as cardiovascular 

diseases that itself causes significant augmentation of ROS in the 

vascular wall, a situation that eventually culminates with oxidative 

stress. In the state of oxidative stress, enzymatic production of ROS 

exceeds the avaible antioxidant defence system. The ROS produced 

include free oxygen radicals, oxygen ions, and peroxides. Superoxide 

reacts with nitric oxide and lead to loss NO bioactivity.  The resulting 

peroxynitrite may cause dysfunction of eNOS and thus reduce NO 

production.  The reduced bioavailability  of vascular NO is the major 

mechanism of endothelial dysfunction observed in cardiovascular 

diseases.  In addition, vascular oxidative stress promotes atherogenesis  

througt numerous different mechanisms including the activation of 

redox-sensitive transcription factors and induction of lipid 
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peroxidation, protein oxidation, and mitochondrial and nuclear DNA 

damage (Forsterman 2010).     

 

1.7.1 Oxidative stress and hypertension 

Numerous studies in hypertensive patients have shown high levels of 

free radicals (Lacy et al. 1998). Endothelial cells are critical in 

combating hypertension as they play a key role in arterial relaxation. 

No is one of the agents that  with its vasodilatory action, helps to fight 

hypertension (Vallance 1998). In the presence of superoxide anion, 

NO has a very short half life as it is degraded by it. Therefore, the 

superoxide anion has the ability to modify endothelial function being a 

major determinant of nitric oxide (NO) biosynthesis and 

bioavailability. It acts therefore as a vasoconstrictor. eNOS can 

generate superoxide rather than NO in response to a variety of stimuli. 

As a result, eNOS may become a peroxynitrite generator, leading to a 

dramatic increase in oxidative stress, since peroxynitrite formed by the 

NO-superoxide reaction has additional detrimental effects on vascular 

function. So oxidative stress is evident in different types of 

hypertension, including angiotensin II-induced hypertension, 

spontaneously hypertensive rats (SHrs) – tha animal model of genetic 

hypertension, and deoxycorticosterone acetate (DOCA)-salt 

hypertension, which is  a low –renin/angiotensin hypertension model. 

In all three types of hypertension NADPH oxidase is likely to 

represent  the major and primary ROS source. Genetic deletion or 

inibhition of NADPH oxidase lowers blood pressure in hypertension 

models (Matsuno 2005, Landmesser 2003, Chalupski 2005). eNos 
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encoupling has been documented in all three and contributes 

significantly to vascular oxidative stress. eNOS encoupling in 

hypertension seems to be secondary to NADPH oxidase activation and 

mainly attributable to NADPH oxidase –mediated BH4 oxidation 

(Landmesser 2003). In angiotensin II-induced eNOS encoupling, BH4, 

deficiency  is additionally caused by reduced BH4, recycling from BH2 

due to downregolation of endothelial dihydrofolate reductase 

(Chalupski 2005).   

 

1.7.2 Oxitadive stress and diabetes 

Studies on animals and men suggest that oxidative stress plays an 

important role in the pathogenesis of both types of diabetes mellitus 

(Maritim et al. 2003). The increased production of ROS seems to be 

the main cause of the pro-inflammatory state and endothelial 

dysfunction which stands at the origin of vascular injury.  

Hyperglycemia stimulates cellular ROS production by different 

sources, with the mitochondrial ETC acting as the initial O2
-• producer 

(Giacco et al. 2010). Overproduction of mitochondria derived  

O2
-•  leads to activation of protein kinase C (PKC) and formation of 

advanced glycation end-products (AGEs). PKC and AGEs can, on the 

hand, activate NADPH oxidase and, on the other hand, inhibit eNOS 

activity through post-translational modifications (Funk et al. 2012). 

Uncoupling of eNOS has been demonstrated in streptozotocin induced 

type diabetes (Hink et al. 2001). BH4 oxidation and BH4 deficiency 

due to oxidative stress is likely to be a major cause of eNOS 

uncoupling under these conditions. Insulin resistance in type 2 
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diabetes may decrease GTP cyclohydrolase 1 activity and thus reduce 

BH4 de novo synthesis. The increased levels of angiotensin II in 

patients with diabetes may additionally reduce DHFR expression and 

thus BH4 recycling from BH2 (Chalupsky et al. 2005).  

 

 

1.7.3 Oxidative stress and atherosclerosis 

Atherosclerosis involves LDL entrapment in the arterial wall and an 

inflammatory response to the local LDL. The complexity of this 

process precludes a thorough discussion here. Nevertheless, common 

features of atherosclerosis include LDL oxidation, endothelial 

dysfunction, and inflammation (Stocker et al. 2004). Importantly, 

these 3 features of atherosclerosis all involve ROS in their 

pathophysiology. The oxidation of LDL is a well-described 

phenomenon in atherosclerosis. A number of enzyme systems have 

been proposed to contribute to LDL oxidation in vivo, and there are a 

number of reviews available on this topic (Levitan et al.). The most 

complete data concerning ROS-mediated LDL oxidation in vivo 

involve the contributions of NADPH oxidases and mitochondria. 

Human atherosclerotic coronary arteries contain increased 

immunostaining of p22phox (Azumi et al. 1999), an NADPH oxidase 

subunit. This protein is principally associated with Nox2 in lesional 

macrophages, and the p22phox expression level is positively 

associated with atherosclerosis severity (Sorescu et al. 2002). Animal 

studies using the ApoE-null atherosclerosis model indicate that mice 

lacking the Nox2 isoform of NADPH oxidase exhibit a 50 % 
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reduction in lesions, along with a marked decrease in aortic ROS 

production, suggesting that inhibition of Nox2 NAPDPH oxidase 

could limit atherosclerosis(Judkins et al. 2010). Humans express an 

NADPH oxidase isoform (Nox5) that is not found in rodents, and this 

oxidase may also contribute to blood vessel ROS as coronary arteries 

with atherosclerosis exhibit an increased expression level and activity 

of Nox5 (Guzik et al. 2008). Mitochondrial ROS have been implicated 

in many chronic diseases, including atherosclerosis (Corral et al. 

1992). Emerging data now link mitochondrial ROS production to the 

control of inflammation. For example, mitochondrial ROS are 

important for signaling events critical to innate immunity(West et al.) 

and activation of the NLRP3 inflammasome (Zhou et al. 2011) that is 

known to contribute to both animal and human atherosclerosis 

(Duewell et al.). As atherosclerotic lesions mature, they develop a 

fibrous cap overlying a lipid core. Acute vascular events are often 

caused by weakening of this fibrous cap and plaque necrosis is a key 

mechanism for fibrous cap weakening and rupture (Virmani et al. 

2000). The apoptosis of macrophages and the inability to clear these 

apoptotic cells are key contributors to plaque necrosis. When 

macrophages become apoptotic, they also stimulate a process known 

as autophagy in which the cells consume their own cellular 

components in an organized manner. It turns out that autophagy is an 

important adaptive mechanism for oxidative stress and without 

autophagy, ROS production (via Nox2 NADPH oxidase) is increased, 

and plaques become more prone to rupture. Thus, oxidative stress is 
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dependent upon autophagy, and recent data suggests that stimulating 

autophagy could have beneficial effects for atherosclerosis. 

 

1.7.4 Oxidative stress and myocardial injury 

ROS are the main cause of myocardial injury during 

ischemia/reperfusion (Duilio et al. 2001). In numerous studies 

conducted on infarcted animal models it was observed that the levels 

of ROS are very high (Cargnoni et al. 2000). It has been reported that 

the development of myocardial ischaemia/reperfusion injury is 

associated with an increase in the population of apoptotic cells in the 

peri-necrotic area (Zhao et al. 2002). Neutrophils are the primary 

source of ROS during reperfusion. Also endothelial cells and 

cardiomyocytes can generate ROS. ROS are produced from xanthine 

oxidase in endothelial cells, mitochondrial electron transport chain 

reactions in cardiomyocytes, and NADPH oxidase in inflammatory 

cells (Waypa et al. 2002). Even in the correlation between oxidative 

stress and myocardial injury a key role is attributed to the action of 

NADPH oxidase. In fact, it has been observed that the activity of this 

enzyme is increased in the tissue of the left ventricle in animals with 

heart failure (Li et al. 2002). In studies in rats suffering from 

myocardial infarction an increase in the production of ROS was 

observed, with a  decrease in the formation and bioavailability of 

endothelial NO (Wiemer et al. 2001). 
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1.7.5 Oxitadive stress and acute ischemia 

In recent decades myocardial ischemia is the leading cause of death 

worldwide. The major cause is the reduction of blood influx to the 

heart  due to the presence of atheromatous plaques in the arteries. In 

order to limite the damage due to this phenomenon, the reperfusion 

should be performed immediately after the ischemic insult, although 

reperfusion occuring after itself would be responsible for the 

formation of ROS (Bolli 1992). The increase in intracellular 

production of  ROS and therefore the increase of oxidative stress is 

not the only phenomenon that is found in the hearts subjected to 

damage of myocardial ischemia/reperfusion injury, but in addition 

cardiac dysfunction, reduction of antioxidant potential, increase of 

lipid peroxidation are present. It has been observed that exposing the 

heart or the sub-cellular organelles to oxidative stress, the same 

deleterious effects observed in hearts affected by I/R are detected 

(Siveski-Iliskovic et al. 1995; Dhalla et al. 1996). One aspect that can 

not be omitted is the fact that a small amount of ROS is produced 

during mitochondrial respiration; instead, during ischemia, the 

mitochondrial transporters are in a reduced state (Freeman et al. 

1982). An increased production of superoxide anion due to increase in 

the loss of electrons by the respiratory chain is observed. In 

reperfusion there is a further loss of electrons which causes an 

increase in the production of superoxide anion (Schmid-Schonbein 

1982).  
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1.7.6 Oxidative stress and smoke 

Compounds contained in cigarette smoke have been shown to activate 

endothelial NADPH oxidase (Jaimes et al. 2004) and impair 

mitochondrial function, threby elicitng mitochondrial oxidative stress 

(Csiszar et al. 2009). The increased O2
-• and ONOO- production 

induces vascular inflammation and DNA damage and accelerates 

vascular ageing (Csiszar et al. 2009). Moreover, compounds from 

cigarette smoke may potentiate the pro-oxidative activity of LDL by 

inducing oxidative modifications of LDL (Steffen et al. 2012). The 

endothelial dysfunction seen in smokers is largely attributable to BH4 

deficiency due to oxidative degradation. Supplementation by BH4 can 

correct endothelial dysfunction in smokers (Heitzer et al. 2000).  

 

1.7.7 Oxidative stress and physical activity 

Physical activity increases the generation of free radicals in several 

ways. Two to 5% of oxygen used in the mitochondria forms free 

radicals. As oxidative phosphorylation  increases in response to 

exercise, there will be a concomitant increase in free radicals. 

Catecholamines that are released during exercise can lead to free 

radical production. Other sources of free radical increase with exercise 

are xanthine oxidase, NAD(P)H oxidase, and several secondary 

sources, such as the release of radicals by macrophages recruited to 

repair damaged tissue. This increase, even  if is required to meet the 

energy requirements on the other side leads to an increased production 

of free radicals. The amount of free radicals produced is directly 

proportional to the duration and intensity of exercise and inversely to 
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the degree of  trainingof those who practice it. In fact, training 

improves the antioxidant capacity of the organism and allows trained 

athletes  to more efficiently counteract the  produced free radicals. 

Conversely, the greater risk may be that, in an untrained individual, 

high intensity  physical exercise can lead to the production of free 

radicals not counteracted by the antioxidant defenses of the organism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 

 

 

 

 

CHAPTER 2 

 

2. Ischemic preconditioning   

 

2.1.  Ischemia and reperfusion of the    

       myocardium 

Myocardial ischemia is the leading cause of death in the modern 

world. The main risk factors responsible for the onset of this disease 

are hypertension, ventricular hypertrophy, hyperlipidemia, 

atherosclerosis, diabetes, heart failure and aging. These factors can 

affect the development of ischemia and interfere with responses to 

cardioprotective interventions. A significant improve in the treatment 

of acute ischemic heart disease can be obtained by using procedures 

that enable the rapid restoration of blood flow in the ischemic area of 

the myocardium affected by the insult. These procedures are called of 

therapy of reperfusion. Although reperfusion is essential for the 

survival of the organ,it is, especially in the early stages, the cause of 

an aggravation of the injuries caused by the initial ischemic insult. The 

damageat the cardiac level induced by an ischemic event are not 
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solely due to ischemia, but also reperfusion (I/R damage). The 

complications of reperfusion include myocardial stunning and 

arrhythmias. The term stunning refers to a loss of contractility 

immediately following a sub-lethal ischemic insult. If the reperfusion 

and revascularization of the infarct zone are carried out promptly, 

myocardial contractility recover completely even though the recovery 

may take several hours or days. Contrary to an infarcted heart, the 

stunned myocardium recovers fully its activities. The identification of 

cardioprotective agents is very important to improve myocardial 

function and reduce the incidence of arrhythmias, delay necrosis and 

limit infarct size. 

In recent years, several studies have shown that the heart is capable of 

triggering mechanisms of adaptation to counteract the damage caused 

by I /R. These mechanisms are the main target of scientific research. 

Ischemia of short duration (2–10 min) protects the heart against 

damage that may arise with a next ischemic insult. This important 

phenomenon, known as ischemic preconditioning (PC), is an adaptive 

response, in which exposure to a brief  I/R significantly increases the 

heart's ability to support a next sequence of ischemic injury. 

Unfortunately,  the limitation of this mechanism is that it has a limited 

effect in time and in most cases ischemic attacks can not be predicted. 

This limitation is not present in the high-risk angioplasty where 

ischemic PC may have some practical utility. Recent studies 

conducted “in vivo” and in isolated hearts have demonstrated that we 

can achieve significant reductions in reperfusion damage, making a 

series of very brief re-thrombosis and coronary reperfusion at the 
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beginning of reperfusion. This phenomenon has been referred to by 

the term “ischemic postconditioning”. 

 

2.2 Reperfusion injury 

Irreversible ultrastructural changes occurr in the infarcted 

myocardium. If reperfusion of the tissue is carried out in a short time, 

changes may be considered reversible. Coronary occlusion lasting 20-

30 minutes leads to a transition from a state of reversible changes to a 

state of tissue injury and necrosis of cardiac cells (Jennings et al. 

1981). It has been shown that a diversified number of risk factors, 

influencing the onset of irreversible lesions such as the size of the 

affected area, the extent of collateral blood flow or the residual arterial 

flow, the ischemic duration (Miki et al. 1998). 

Reperfusion is a fundamental process for the recovery, as in the 

absence of reperfusion, no intervention is able to limit the 

development of infarction. In acute myocardial infarction, 

revascularization and reperfusion are the main therapies that  can save 

the organ which can be irreversibly damaged, limiting the extent of 

necrosis. Mortality for myocardial infarction, is linked to the duration 

of coronary occlusion (Bishopric et al. 2001). In the myocardium 

subjected to I /R, cell death can occur either by necrosis and by 

apoptosis; while the necrosis can be caused both by ischemia and  

reperfusion, apoptosis is induced mainly by reperfusion. The first 

experimental studies on apoptosis using  permanent coronary 

occlusion in rats, have shown that apoptosis is the principal cause of 

death of myocytes. Subsequently, most of the experimental tests, have 
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suggested that the number of cells undergoing apoptosis is probably 

less than the number of necrotic cells. It is not yet clear how these two 

processes are linked. The restoration of blood flow in the coronary 

artery branch, perfusing the ischemic myocardium, leads to the 

production of superoxide anion by different enzyme complexes. The 

superoxide anion, along with other ROS, exerts a strong oxidizing 

action on the myocardial fibers already damaged by ischemia. This 

situation leads the cells to apoptosis. Furthermore, the superoxide 

anion formed can react with nitric oxide to formed peroxide nitrite 

(NOOO-). The production of NOOO- reduces the bioavailability of  

NO but also participates with O2
-• to tissue injury, being also equipped 

with oxidizing power. The deleterious action of O2
-• is reduced due to 

its conversion to hydrogen peroxide by SOD. However, as in the 

presence of Fe2+ or Cu3+, the hydrogen peroxide can be converted into 

hydroxyl anion HO-•, that is more reactive than  superoxide anion  and 

hydrogen peroxide. An apparent initial decrease may be followed by 

an increase in toxicity. The cellular calcium overload contributes to 

myocardial reperfusion injury. This phenomenon, which manifests 

itself  under conditions of anoxia, is due to the malfunctioning of  

specific Ca2+ pumps, that are  situated on the  sarcolemma and on 

longitudinal tubules and  sodium pump with consequent entry of  Ca2+ 

and activation of the Na+/Ca2+  exchanger. The Ca2+ overload  also 

promotes the expression of pro-apoptotic genes. The nuclear factor 

NFkB plays a key role in reperfusion. NFkB accentuates the 

myocardial injury recalling inflammatory reactions. Its activation is 

induced by various agents, including hydrogen peroxide. Furthermore, 
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the reduced  NO availability , induced by I/R, causes an up-regulation 

of cell adhesion molecules that promotes the adhesion of leukocytes to 

the endothelium and their eventual migration to the myocardial fibers. 

NF-kB is also involved in activation of  gene transcription  coding for 

cell adhesion molecules. The cellular Ca2+ overload, ROS production,  

NFkB activation and cell adhesion molecules, can lead to the 

phenomenon of "no-reflow". This phenomenon increases the damage 

of the myocardium induced by the preceding ischemic insult. Until a 

few years ago,  ischemia was considered the cause of cell death that 

occurs basically due to the depletion of ATP. In these conditions the 

reperfusion appears to be essential to restore the synthesis of ATP,  

and thus to save the not damaged cells Reperfusion accelerates cell 

death of all those cells that are already irreparably damaged and 

sentenced to death. It is only in the last 10 years that some studies 

have identified the importance of mitochondria in this context. 

Mitochondria play a decisive role in determining cell fate during and 

after cellular stress (Kroemer et al. 2007). A fundamental component 

of the mitochondrial response to stress is the formation of 1- methyl-

4-phenyl-1,2,3,6-tetrahydropyridine (mPTP), a multimeric structure 

ranging from the inner membrane to the outer membrane of the 

mitochondria (Halestrap et al. 2003). The only known component of 

the channel is cyclophilin  D, an isomerase that binds to and is 

inhibited by cyclosporin A (Crompton et al. 1988). The mPTP are non 

selective voltage dependent channels which are closed in normal 

physiological condition, when the mitochondrial membrane is 

impermeable to most solutes. Under conditions of cellular stress, the 
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opening of pores in the inner membrane, leads to loss of 

impermeability of the membrane and the rapid collapse of 

mitochondrial potential. The factors that determine whether and when 

the mPTP  open during I/R and the evidence that their openness can 

contribute to I/R, have been extensively studied over the past decades. 

The most recent hypothesis suggests that the opening of the pores 

does not occur during ischemia but during the early stages of 

reperfusion  and that inhibition of the opening of the pores protects the 

cell from necrotic death. The formation or inhibition of mPTP during 

reperfusion is the primary determinant of cell death or survival. Some 

studies show that the opening of the mPTP leads to cell die by 

necrosis, while others indicate that, depending on the extension of the 

opening of the mPTP, death occurs by apoptosis or necrosis (Bernardi 

et al. 2006). The corollary of this new vision is that specific 

manipulations, during reperfusion  offer the potential to attenuate cell 

death through cardioprotective strategies implemented during 

reperfusion. Therefore, PC, pharmacological treatments that mimic PC 

the postconditioning and  selected agents administered during 

reperfusion may protect the cell by attenuating the opening and 

extension of  mPTP during reperfusion. In conclusion, reperfusion is 

essential to save the infarcted organ. However, it can cause further 

irreversible damage. These damages are closely related to the previous 

ischemia that is related to the opening of mPTP in the first moments 

of reperfusion. Further researches are needed to evaluate the potential 

of reperfusion as a therapeutic intervention in order to maximize its 

benefits in acute myocardial infarction. 
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2.3 Preconditioning 

Preconditioning is the phenomenon whereby brief episodes of 

ischemia and reperfusion protect the heart from ischemic injury due to 

a subsequent ischemic insult. Thus, ischemic PC is a protective and 

adaptive mechanism obtained by short periods of ischemic stress 

rendering the heart resistant against another similar or greater 

ischemic event. PC was described by (Murry et al. 1986). In this 

experiment, authors exposed a group of open-chest dogs to a four 

cycles of 5 min coronary occlusions followed by 5 min of reperfusion 

and then exposed them to a 40 min coronary occlusion followed by 4 

day of reperfusion. Controls received only 40 min coronary 

occlusion., The result was that the dogs receiving 4 cyclic events of 5 

min occlusion, followed by 5 min reperfusion before extended 

ischemic episode, had a much smaller myocardial infract size 

compared with control group. This cardioprotective effect of 

preconditioning was attributed to a rapid metabolic adaptation of the 

ischemic myocardium. Any studies have highlighted the transient 

nature of this phenomenon. It has been demonstrated in rabbit heart 

that  protection against infarction, obtained by a single period of 5 min 

preconditioning , is ineffective if the interval between the PC stimulus 

and myocardial infarction protocol exceeds 60 min (Liu et al. 1991). 

In 1993, PC has been demonstrated to have a biphasic pattern (Kuzuya 

et al. 1993; Marber et al. 1993): an early phase, starting within 1h 

from preconditioning and ending after about 2h, and a late phase, 

developing after 24 hours of preconditioning and lasting up to 72 

hours. Since 1990 numerous articles have been published on various 
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aspects of PC in the myocardium and other tissues; most of them 

turned their attention to the classical preconditioning. 

 

2.4 Late preconditioning 

The late phase  develops 12 to 24h after the first PC stimulus and last 

72 to 96h, although the importance of protection may be somewhat 

less than in the early phase . Unlike the early phase, the late PC phase 

has an effect against myocardial infarction but also against myocardial 

stunning (Bolli 1996). Because of its 30- to 50-fold longer duration 

and the broader protection it provides many studies have  been 

focused on the late phase and its clinical exploitation (Bolli 2000). 

The late PC  was initially considered an adaptive phenomenon 

mechanistically distinct from the classic PC. Merber et all in their 

early studies examined the hypothesis that a transient stress (Marber et 

al. 1993), caused by I/R, could lead to the de novo synthesis of a 

cytoprotective protein. This protein is the 72kDa  heat shock protein  

or HSP72. They demonstrated a correlation between the increase of 

expression of this protein and the decrease of myocardial infarction 

damage, after 24 hours of ischemic preconditioning in rabbit hearts. A 

stress response is the induction of cytoprotective factors, such as 

cellular antioxidants and HSP. However, the factors influencing the 

induction of cytoprotective components, have not yet been well 

defined in mammals (Hoshida et al. 1993). The phenomenon of late 

PC can be induced by broad multiplicity of stimuli, which can be 

divided in non pharmacological and pharmacological. The first group 

includes exercise, hypoxia, ischemia, rapid ventricular pacing and heat 
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stress (Bolli 2000); the second consist of naturally occurring and often 

noxius agents, including endotoxin, ROS (Tang et al. 2005), tumor 

necrosis factor-α (TNF-α), TNF-β, leukemia inhibitory factor and of 

clinically applicable drugs including endotoxin derivates such as 

monophosphoryl lipid, adenosine receptor (AR) agonists (Takano et 

al. 2001), NO-releasing agents, opioid receptor agonists and α1-

adrenoceptor agonists. As mentioned above, late PC is the result of a 

complex cascade of signaling events that ultimately results in 

cardioprotection. Brief events of myocardial I/R, hypoxia, and heat 

stress are associated with metabolic perturbation that results in the 

generation of a wide variety of metabolites and ligands. Among these, 

adenosine, ROS, catecholamines, endogenous opioids and NO  act as 

chemical signals that trigger the development of the late PC. These 

agents can induce pharmacological PC in the absence of ischemia. 

Among these, NO has a key role in late PC. NO, formed in the early 

PC, is essential to induce this cardioprotective effect. Another study 

demonstrated that NO is also necessary to trigger late PC against 

myocardial infarction . It was observed that late PC is also induced by 

exposure to exogenous NO, because the treatment with NO donors in 

the absence of ischemia induces a loss of  protective effect against 

both myocardial stunning and infarction. Chemical signals trigger the 

development of late PC by inducing a series of complex signaling 

events. The signaling pathways involved in these mechanisms are 

protein kinase C (PKC), Src protein tyrosine kinases (Src PTKs), 

mitogen-activated protein kinases (MAPKs), JNKs, NFkB and signal 

transducers and activators of trascription (STATs). The general 
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pattern can be described starting from the interaction of NO derived 

from eNOS with the superoxide anion to form peroxynitrite, which 

activates PKC. This signaling pathway activates Src and Lck. The 

NFkB activation occurs thanks to the double phosphorylation of a 

serine and a tyrosine on the inhibitory protein IKB – α by PKC and 

tyrosine kinases. Cytoprotective proteins are induced, at the gene 

level, by NFkB. Among these are the inducible form of NOS (iNOS) 

and cyclooxygenase 2 (COX -2). NO produced by iNOS seems to 

regulate the activation of COX -2 in the preconditioned myocardium, 

inducing the generation of prostanoids, which is critical for the 

establishment of the cardioprotective phenotype (Bolli et al. 2002). 

The dependence of late PC by upregulation of iNOS and COX-2 is 

clearly demonstrated by several pharmacological and functional 

genomics studies, that involve pharmacological inhibition and genetic 

deletion of iNOS and COX-2 (Bolli et al. 2002). It is not yet known 

how prostanoids derived from COX-2 play their cytoprotective action 

and their relationships with other cytoprotective mechanisms, such as 

antioxidant enzymes (Ockaili et al. 2005), HSP, and inhibition of 

mPTP. Studies using microarrays have observed that PC is able to 

change the pattern of gene expression in rat heart. This suggests that 

complex cellular mechanisms are involved in the evolution of 

cardioprotection afforded by PC (Onody et al. 2003). 
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2.5 Postconditioning 

The main limitation of ischemic PC is  the not predictability of 

ischemic events except in special cases such as heart transplants or 

heart surgery. For this reason the identification of therapies that can be 

executed in the presence of heart infarction or in successive moments 

is of primary importance. The first studies on cardiac conditioning 

performed during the reperfusion were carried out for this aim. The 

results obtained led to the definition of a therapeutic treatment, 

ischemic postconditioning.  In anesthetized dogs subjected to 

prolonged myocardial ischemia, three occlusions of 30 seconds each 

from 30 seconds after the start of reperfusion, led to a significant 

reduction of the infarct zone, tissue edema and post-ischemic 

endothelial dysfunction, compared with dogs that had not undergone 

coronary occlusions. This technique allowed to obtain a protective 

effect almost equal to that obtained with ischemic preconditioning. 

Postconditioning  protocol reduces infarct extension only when 

performed in the early stage of reperfusion. Recently, the 

postconditioning has also been successfully applied in humans. In 

isolated rats hearts,  cardioprotection by postconditioning is mediated 

by inhibition of  ROS formation  and the first few minutes of 

reperfusion are critical for cardioprotective effects, due to the peak in 

ROS production. It should however be noted that, depending on the 

animal species and the duration of ischemia, the time at which the 

peak of ROS production appears is different. In fact, while in the 

rabbit heart subjected to 10 minutes global ischemia, the maximum 
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release of  ROS takes place 10 seconds after the start of reperfusion; 

in the hearts of dogs subjected to 90 minutes of ischemia, the 

maximum concentration was observed after 10 minutes. Recent data 

have shown that the postconditioning can reduce the subsequent ROS 

production and lipid peroxidation in isolated myocardial cells. In 

addition to this, the postconditioning leads to an increase in NO 

formation, which plays an important role in myocardial protection.  
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CHAPTER 3 

 

3. CARBONYL STRESS 

A common factor of degenerative diseases is oxidative stress, which is 

a serious imbalance between the production of reactive oxygen 

species and antioxidant defenses resulting in damage to the main 

biological macromolecules. In recent years there is a growing interest 

in carbonyl stress, a condition in which there is an imbalance between 

the production of glycant applies and the body's defenses against 

glycation. This condition is considered to negatively contribute to the 

onset and course of senescence (Xue et al. 2009) and of various 

diseases, among which diabetes and vascular complications associated 

with it (Ahmed et al. 2005), renal dysfunction (Agalou et al. 2005) 

Alzheimer's disease and cardiovascular disease. Protein glycation in 

recent years is one of the main targets of multiple studies. 

 

3.1 Nomenclature and classification 

 

In 1985, the Nomenclature Committee of the International Union of 

Biochemistry and the International Union of  Pure and Applied 

Chemistry chose  the term glycation to denote all those non-enzymatic 

and enzymatic reactions that bind a sugar to a protein or a peptide 

(Sharon 1986). Subsequently, the enzymatic modifications of proteins 
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and non-enzymatic modification of proteins by saccharides in 

processes of protein glycation forming glycated proteins (Lis et al. 

1993). This eventually led to selective use of the term glycation for 

non enzymatic modification of proteins by saccharides such that it is 

now accepted nomenclature. In older scientific literature, one of the 

most prominent glycated proteins, haemoglobin, has been called 

glycosylated haemoglobin, non-enzymatic glycosylated haemoglobin, 

glycohaemoglobin, glucosylated haemoglobin and other variants. 

Protein glycation involves the non-enzymatic attachment of a reducing 

sugar or sugar derivative to a protein. The term ‘‘reducing’’ related to 

the classical activity of saccharides with free aldehyde or ketone 

groups which reduced Benedict’s solution (Benedict 2002). Glycation 

is not available to non-reducing oligosaccharides where aldehyde or 

ketone groups of component monosaccharides have been converted to 

ketal and acetal groups of glycosidic bonds—such as in sucrose. In its 

earliest development, protein glycation was thought to be restricted to 

modification of amino groups of lysine residue side chains and N-

terminal amino acid residues. In more recent times, glycation of 

arginine residues by dicarbonyl metabolites has emerged as a major 

feature of protein glycation in physiological systems. There is also 

involvement of cysteine residues. Glycation of proteins occurs by a 

complex series of sequential and parallel reactions called collectively 

the Maillard reaction—named after the leading pioneer of glycation 

research, Louis Camille Maillard (1878–1936). Many different 

adducts may be formed. In the physiological setting, one of the 

important saccharides participating in glycation of mammalian 
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metabolism is glucose, and some of the most important saccaride 

derivatives are the reactive dicarbonyl metabolites such as 

methylglyoxal (MG) and glyoxal. 

Reactions involved in the process of glycation are classified  into early 

and advanced. In the early phase, glucose reacts with the amino 

residues of proteins to form initially glycosylamine which then was 

dehydrated to form a  Schiff base. Subsequently, the Schiff base 

undergoes an Amadori rearrangement to form fructosamine (Hodge 

1955). In the next phase, fructosamine is degraded to multiple stable 

adducts that are called advanced glycation end products (AGEs) 

 (Fig. 3-1). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1: Early protein glycation and AGE formation 

 

Numerous studies have shown that glucose can be converted into  

extremely reactive dicarbonyl species, such as α-oxoaldehydes. The α-
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oxoaldehydes have the ability to react with proteins forming directly 

AGEs; it has been observed also that the Schiff bases can be degraded 

directly in α-oxoaldehyde using a different process excluding the 

Amadori rearrangement. AGEs are  directly  formed by spontaneous 

modification of proteins by reactive dicarbonyl species.These are 

generated by the degradation of glycolytic intermediates and lipid 

peroxidation. AGEs are grouped under the name of all the adducts that 

are produced in the Maillard reaction. Important α-oxoaldehyde or 

dicarbonyl glycating agents are glyoxal, MG, and 3-deoxyglucosone 

(3-DG). Therefore, AGEs may be formed in glycation by glucose in 

pre- and post-Amadori product reactions, and indeed in processes 

where an Amadori product is not a precursor. AGEs may be formed in 

both the early and late stages of glycation processes. The term 

‘‘advanced glycation endproducts’’ is a misnomer in that AGEs are 

formed in both early and later, advanced stages of the Maillard 

reaction. 

 

3.2 Importance of protein glycation  

 
In biology, protein glycation is implicated in the low level endogenous 

damage to the proteome.  

The enzymatic  defenses of the organism against glycation consist of  

enzymes that repair the early glycated proteins and prevent glycation 

by metabolizing dicarbonyl glycating  agents responsible for this 

process at the physiological level : fructosamine 3- kinase (Delpierre 

et al. 2000), aldoketo reductase (Baba et al. 2009), and the glyoxalase 

system (Thornalley 2003). The imbalance between glycating species 



38 

 

and enzymatic defenses against glycation, in favor of the first, is 

called carbonyl stress. Itis considered in the same way of oxidative 

stress, and is believed to contribute negatively to aging and  diseases 

(Xue et al. 2009), for example diabetes and its vascular complications 

(Ahmed et al. 2005), renal dysfunction (Agalou et al. 2005), 

Alzheimer's and cardiovascular diseases (Ahmed et al. 2005; Rabbani 

et al. 2005). 

 

 

3.3 Methylglyoxal: an important glycant agent 

At the beginning, methylglyoxal was considered as a toxin or a 

environmental and/or bacterial metabolite (Cooper 1984). To date, we 

know that methylglyoxal is formed by spontaneous degradation in 

physiological systems of triosephosphates, glyceraldehyde 3- 

phosphate (GA3P) and dihydroxyacetone phosphate (DHAP) in all the 

organisms that have an anaerobic glycolytic metabolism. The GA3P is 

approximately 8 times more reactive of  DHAP in the degradation to 

methylglyoxal, but as the ratio between the concentrations of  DHAP 

and GA3P in the cell is about 20, both of these compounds are  

physiological important sources  for the formation of methylglyoxal in 

situ (Phillips et al. 1993). Other sources of methylglyoxal are 

considered to be the oxidation of acetone, this reaction is catalyzed by 

cytochrome P450 2E1 in the catabolism of threonine (Lyles et al. 

1992),  the degradation of glycated proteins by glucose and the 

degradation of monosaccharides (Thornalley et al. 1999). In addition 

to methylglyoxal, another dicarbonyl compound is glyoxal derived 
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from lipid peroxidation, and from degradation of monosaccharides 

(Thornalley et al. 1999). The quantification of physiological 

concentrations of glyoxal and methylglyoxal has been a big issue. 

Both compounds can be formed through multiple processes such as 

the degradation of monosaccharides, of glycated proteins and also 

during the preparation of the samples for the determination of their 

concentrations. For these reasons, the concentrations are often 

overestimated. To overcome this reason now methods for α-

oxoaldehyde analysis that involve the use of chemical derivatives of 

such substrates, thus improving the sensitivity of the method are 

applied. The more recent method involves the use of 1,2- 

diaminobenzene , to derivatize the substrate,  and the detection system 

with a gas chromatograph associated to mass spectrometer (GC-MS) 

(Selicharova et al. 2007). Recent studies have shown that the 

concentrations of glyoxal and methylglyoxal in  human plasma are 

around 100-120 nM, while at the cellular level are 1-5 µM for 

methylglyoxal  and 0.1-1 µM for glioxal (Dobler et al. 2006). In 

several studies in cell cultures and tissue, concentrations of 

methylglyoxal used to verify the effect of this metabolite are ten times 

higher than those considered cytotoxic. Using millimolar 

methylglyoxal concentrations in the has no relevance to the 

physiological level (Riboulet-Chavey et al. 2006). The rate of total 

cellular formation of MG was estimated to be ca. 125 µmol/kg cell 

mass/day (Thornalley 1988) which for an adult human of 25 kg body 

cell mass (Ellis et al. 2000) equates to a predicted whole bodyrate of 

formation of ca. 3 mmol MG/day. As total MG derived glycation 
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adduct excreted in urine of healthy human subjects was typically <10 

µmol/day (Thornalley 2003; Ahmed et al. 2005), it can be inferred 

that less than 1% MG formed endogenously modifies the proteome. 

Most of the formed MG (<99%) is metabolised by glyoxalase 1 

(Glo1) and aldo–keto reductase (AKRd) isozymes, which thereby 

constitute an enzymatic defence against MG glycation (see below). 

MG modifies proteins to form advanced glycation endproduct (AGE) 

residues. The major AGE formed is the arginine-derived 

hydroimidazolone Nd-(5-hydro-5-methyl- 4-imidazolon-2-yl)-

ornithine (MG-H1) formed via anintermediate 

dihydroxyimidazolidine. MG-H1 accounts for typically[90% 

adductstypically 2–4 µM (Phillips et al. 1993; Dobler et al. 2006; 

Nicolay et al. 2006) and the concentration of MG in human plasma is 

ca. 100 nM (Beisswenger et al. 1999; Nicolay et al. 2006). Estimates 

of MG concentrations that are markedly higher than this cannot be 

sustained given the reactivity of  MG with the proteome, the level of 

MG derived glycation adducts in the steady state and protein turnover 

(Thornalley 2005; Thornalley 2008). Overestimates are likely due to 

interferences in analytical methodology particularly degradation of 

derivatising agent and/or other sample components other than MG 

during pre-analytic processing. Although the concentration of MG in 

plasma is ca. 50,000- fold lower than glucose, MG has much higher 

intrinsic reactivity towards glycation than glucose, 10,000–50,000- 

fold higher (Thornalley 2005). It is, therefore, predicted that the 

formation of glycation adduct residues in proteins by MG in vivo 

occurs at fluxes approaching those of glucose. For the major glycation 
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adduct of glucose, Fructosyl-Lysine (FL) residues, there is a pathway 

of de-glycation and thereby repair of FL modified proteins catalysed 

by fructosamine 3-phosphokinase (Delpierre et al. 2000). Currently, 

there is no known mechanism of de-glycation of hydroimidazolone-

modified proteins. There is, however, slow dynamic reversibility of 

hydroimidazolone formation with de-glycation half-life of 12 days 

(Ahmed et al. 2002; Thornalley 2003). This implies that when there is 

a sustained decrease of the MG concentration, e.g. by induction of 

increased expression of GLO1, there is expected to be a later 

commensurate decrease in hydroimidazolone content of proteins. MG-

H1 adduct residues are released from proteins by cellular proteolysis. 

The MG-H1 free adduct thereby formed was the major quantitative 

glycation free adduct excreted in human and rat urine (Karachalias et 

al. 2000; Thornalley 2003). Proteins containing MG-H1 residues were 

predicted to have distorted or damaged structures (Ahmed et al. 2005; 

Dobler et al. 2006) and therefore may be targeted for proteolysis by 

the proteasome (Grune et al. 1996; Dudek et al. 2005; Hernebring et 

al. 2006). Lysosomal proteolysis is also important for degradation of 

long-lived cellular proteins, endocytosed extracellular proteins 

(Goldberg et al. 1997) and chaperone- mediated autophagy of cellular 

proteins (Franch et al. 2001). Release of MG-H1 free adduct from 

cells and tissues (Thornalley 2003) and decrease of glycated proteins 

with increased cellular 20S proteasome activity (Hernebring et al. 

2006) are consistent with targeting of MG-H1-modified proteins for 

proteasomal degradation. 
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3.4 Protein damage by glyoxal and methylglyoxal 

 

Glyoxal and methylglyoxal are considered two powerful reactive 

species involved in the process of glycation of proteins. The initial 

state of the process of  proteins glycation by glucose leads to the 

formation of FL and other residues of fructosamine. The final stage of 

the glycation process provides terminal stable adduct formation 

(Thornalley 2008). FL slowly  degrades to form AGEs; but glyoxal 

and methylglyoxal  may also derive from FL (Thornalley et al. 1999). 

Owever glyoxal and methylglyoxal directly and quickly react with 

proteins to form AGEs. For example, by adding 1 µM [C14]   

methylglyoxal to human plasma “in vitro”  and incubating at 37°C an 

irreversible binding of methylglyoxal to plasma proteins is obtained 

by 24 h (Thornalley 2005). The most important AGE proteins, from a 

quantitative point of view, are hydroimidazolones that are obtained by 

modification of arginine residues by glyoxal and methylglyoxal 

respectively Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-

H1) and N
δ-(5-hydro-4-imidazolon-2-yl)-ornithine (G-H1) 

(Thornalley et al. 2003) (Fig.3-2). Simultaneously also other minor 

adducts are formed by the modification of lysine residues by the 

action of glyoxal and methylglyoxal respectively: Nɛ-(1-

carboxyethyl)lysine (CEL) and Nɛ-(1-carboxymethyl)lysine (CML) 

and bis(lysil)crosslinks (GOLD e MOLD) (Ahmed et al. 2002). For 

glyoxal we can include also another adduct derived by modification of 
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arginine residues (Odani et al. 2001), the corresponding adduct 

derived from methylglyoxal Nω-carboxylmethyl-lisine (CMA) is 

unstable and not detectable. (fig.3-2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2: main AGE protein formed by glyoxal and methylglyoxal 

 

Protein glycation was originally seen as a post-translational 

modification that primarily affected the extracellular proteins. In 

particular, it was thought that AGEs were formed slowly during the 

course of the life and that the AGE concentration was the 

accumulation of glycation products in the course of existence. 
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For example, the accumulation of  CML and CEL residues was found 

in the skin (Verzijl et al. 2000). Hydroimidazolones have a lower life 

span in physiological conditions and their concentration depends on 

the balance between the amount of adducts that are formed and those 

that are degraded. The glycated proteins are also formed from short 

half-life cellular and extracellular proteins . The turnover of these 

proteins, governed by cellular proteolysis, leads to the release of the 

so-called glycation free adducts found in urine (Thornalley et al. 

2003). The damage caused by protein glycation results in structural 

changes, these proteins will be degraded by the proteasome (Goldberg 

2003). This is an efficient defense process since only a irrelevant 

portion of these adducts can be found at plasma level. Foods high in 

sugar and processed at high temperatures are a source of AGEs (Henle 

2003). But AGEs present in food proteins have a low bioavailability, 

in fact less than 10% of these is absorbed (Ahmed et al. 2005). This is 

due to the resistance of highly glycated food proteins to the 

proteolysis (Thornalley 2008) and to the fact that some AGEs inhibit 

intestinal proteases (Oste 1989). The highest concentration of 

foodborne AGE  is in the portal venous blood (Ahmed et al. 2004). 

AGEs are probably absorbed from foods as free AGEs or  glycated 

peptides. These are easily degradable when absorbed. The most 

common hydroimidazolones AGE (G-H1, MG-H1, CEL, CML) have 

a high renal clearance (Thornalley et al. 2003). Therefore, until renal 

function is optimal, glycation adducts and oxidated proteins absorbed 

with food, may represent only a minimal risk for the organism, being 

easily excreted via the urine (Thornalley 2005) (Fig.3-3). 
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Figure 3-3: Biodistribution scheme illustrating flows of formation and removal of  

glycation adducts  

                     
The harmful effects of the glycation process are caused by covalent 

crosslinks between proteins which confer a resistant effect against 

proteolysis (DeGroot et al. 2001). The biological impact of protein 

crosslink can lead to many different effects. Crosslinks of collagen 

causes a hardening of the vessels and of the joints, while the formation 

of cataracts is due to a crystalline damage. The proteasome is 

responsible for the elimination of glycated proteins. The accumulation 

of damage at the level of the proteasome causes a non-removal and 

accumulation of damaged proteins, with a consequent negative impact 

on the body's tissues.  

The modification of proteins is detrimental when the amino acid 

residues are located in sites of protein-protein, enzyme-substrate and 
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protein-DNA interaction. The most important modification of proteins 

by methylglyoxal and glyoxal concern the arginine residues. 

 

3.5 The glyoxalase system 

 

The glyoxalase system is present in the cytosol of all the cells and 

catalyses the conversion of α-oxoaldehydes  into the corresponding α-

hydroxyacids. Itis composed  of two enzymes, glyoxalase 1 (GLO1) 

and glyoxalase 2 (GLO2) and a catalytic amount of reduced 

glutathione. In particular, GLO1 catalyses the isomerization of the 

hemithioacetal, spontaneously derived from the reaction of the α-

oxoaldehyde, mehylglyoxal (CH3COCHO) and GSH, to S-D-

Lactoylglutathione. 

 

RCOCHO + GSH            RCOCH(OH)-SG            RCH(OH)CO-SG 

 

The Km value is 71-130µM and the Kcat is 7-11x 104 min-1. 

GLO2 catalyzes the conversion of  S-D-Lactoylglutathione in D-

Lactate  recostituting the GSH consumed in the GLO1-catalyzed 

reaction.  

 

RCH(OH)CO-SG + H2O               RCH(OH)COO
-
 + GSH + H

+
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Figure 3-4: The glyoxalase system 

 

The major physiological substrates for GLO1 are glyoxal and  

methylglyoxal; the last one  markendly  accumulates when GLO1 is 

inhibited in situ by cell permeable GLO1 inhibitors, by depletion of 

GSH and by gene silencing of gene encoding for GLO1 (Thornalley et 

al. 1996; Thornalley et al. 1999). Other substrates are 

hydroxypyruvaldehyde (HOCH2COCHO) and 4-5-dexovalerate  

H-COCOCH2CH2CO2H, formed during the reduction of α-

ketoglutarate and during the oxidative catabolism of a hee precursor 

(Grillo et al. 2008). The glyoxalase system, but particularly the action 

of GLO1 enzyme prevents the increase of these reactive  

α-oxoaldehydes in cells and thereby suppress the glycation process 

reactions. 
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3.5.1 Molecular properties of GLO1 

GLO1 enzyme is present in all human tissues, even if his activity in 

fetal tissues is 3 times higher than this of corresponding adult tissues, 

where is present at 0,2µg/mg protein concentration. Human GLO1 

enzyme is a dimer, expressed at a diallelic genetic locus which 

encodes  for two similar subunits in heteroygotes, and the three 

isoenzymes are called GLO1-1, GLO1-2 and GLO2-2. All the 

isoenzymes have molecular mass of 42 kDa (sequence) and 46 kDa 

(gel filtration) and pI values of 4,8-5,1. The human GLO1 is 

considered a Zn2+ metalloenzyme because each subunits contains one 

Zn2+ ion (Thornalley 1993). GLO1 from Escherichia coli is a 

 Ni2+-metalloenzyme (Clugston et al. 1998). 

 

3.5.2 Structure and functioning of GLO1 

184 amino acids are included in the post translation product of the 

human GLO1 gene. The N-terminal methionine in the post-

trascritional mechanism and the N-terminal alanine is stopped by an 

as-yet-unknown modification. The are 4 sites of phosphorylation. The 

structure of the complex GLO1 S-benzylglutathione was determined 

at the  2.2 Å resolution (Cameron et al. 1997) (Fig. 3-5). 
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Figure 3-5: representation of the crystal structure of  the human in a)monomeric 

b) dimeric form 

 

Each monomer countains two structurally equivalent domains. The 

active site is situated at the dimer interface, with the inhibitors and 

essential Zn2+ ion interacting with side chains of both subunits. The 

zinc binding site involves two structurally equivalent residues from 

each domain [Gln-33A, Glu-99A, His-126B, Glu-172B] and two 

water molecules in octahedral co-ordination (Cameron et al. 1997). 

The reaction catalyzed by GLO1 occurs with a mechanism that 

involves the proton transfer from C-1 to C-2 of the hemithioacetal, 

bound to the active site, to form an ene-diol intermediate, followed by 

a rapid ketonization to the thioester as the final product (Fig.3-6). 
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Figure 3-6: Catalytic mechanism of human GLO1 in the isomerization of    

                     R- hemithioacetal  (Himo et al. 2001) 

 

 

Both R- and S-forms of the hemithioacetal are bound in the active site 

of GLO1 and so both are deprotonated; the subsequent reprotonation 

of the putative ene-diol intermediate occurs stereospecifically to form 

the R-2-hydroxyacylglutathione derivate. It has been suggested that 

Glu-99 is the catalytic base for the R-substrate enantiomer and Glu-

172 the catalytic base for the S-substrate enantiomer. These two 

mechanisms lead to the formation of a cis-ene-diol intermediate co-

ordinated directly to  Zn2+ which then reprotonates C-2 
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stereospecifically to form the R-2-hydroxyacylglutathione (Himo et al. 

2001). 

methylglyoxal, glyoxal, and hydropyruvaldehyde produces 

respectively, S-D-lactoylglutathione, S-glycolylglutathione and S-L-

glyceroyglutathione, and are hydrolyzed to D-lactate, glycolate and L-

glycerate respectively by the GLO2 enzymes (Clelland et al. 1993). 

 

3.5.3 Role of GLO1 in anti-glycation defenses 

The formation of methylglyoxal is an intrinsic characteristic of the 

Embden-Meyerhof pathway or glycolysis; a direct consequence of the 

presence of triosephosphate, GA3P and DHAP, intermediates in 

glycolysis. The production of this dycarbonyl metabolite can be 

minimized by maintaining low triose phosphates concentration. 

Therefore, the production of methylglyoxal accounts for only 0,1-0,4 

% of glucotriose flux. 

A peculiarity of methyolglyoxal is the hight reactivity in glycation 

reactions in vivo, forming AGEs of protein and nucleotides. 

Methylglyoxal-derivate proteins AGEs are: Nɛ-carboxyethyl-lysine 

(CEL), from lysine and the hydroimidazolone derivative of arginine 

MG-H1 [Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)ornithine] and 

related structural isomers, among with is the predominat 

argpyrimidine. Nucleotide derived AGEs are: CEdG [N2-

1carboxyethyl)deoxyguanosine], dG-MG {6,7-dihydro-6,7-dihydroxy-

6-methyl-imidazo-[2,3-b]purine-9(8)one}, dG-MG2 [N2-(1-hydroxy-2-

oxopropyl)deoxyguanosine] (Thornalley 2003). Probably glyoxal and 

other GLO1 substrates may give rise to similar adducts. The 
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glyoxalase system is an efficient enzymatic detoxification system 

suppressing the formation of AGEs originated by methylglyoxal and 

glyoxal. Recently,  glycation adducts of cellular and extracellular 

proteins were quantified. These studies have shown that 0,1-2% of 

total cellular arginine is modified by methylglyoxal, the highest 

estimate being in human lens proteins of elderly subjects with low 

GLO1 activity (Ahmed et al. 2003). 

The experimental evidence that have allowed  to demonstrate the role 

of GLO1 in preventing the formation of AGEs derived from studies of  

normoglycaemic and hyperglycaemic endothelial cells culture. 

Hyperglycaemia increases concentration of methylglyoxal, D-lactate 

and cellular protein AGEs.  GLO1 overexpression   counteracted the 

increase in methylglyoxal and cellular protein AGEs, and increased D-

lactate concentration. This indicated that GLO1 has an important role 

in suppressing the formation of protein AGEs (Shinohara et al. 1998), 

preventing cell dysfunction and cell aging. GLO1 is a GSH-dependent 

enzyme. Under physiological conditions, the rate of hemithioacetal 

hydrolysis to GSH and methylglyoxal is of 103 times faster than the 

rate of isomerization by GLO1. This implies that “in vivo” there is a 

rapid pre-equilibrium between GSH, methylglyoxal and the 

hemithioacetal, and the activity of GLO1 is proportional to the amount 

of available GSH level. Cytotoxic effects caused by the accumulation 

of methylglyoxal and to a lesser extent of glyoxal, are due to the 

depletion of GSH  by oxidative and non-oxidative mechanisms. This 

indicates that methylglyoxal predominantly accumulates in conditions 

of oxidative stress and has the ability to contribute to the cytotoxicity 
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induced by oxidants (Abordo et al. 1999). The other accumulation of 

the highly reactive metabolites must be limited. For this reason it is 

capital the role of GLO1 that serves as a detoxification system toward 

these dycarbonilyc compounds  and therefore acts as an integral part 

of the defenses of the organism against enzymatic glycation. In 

diseases states, such as microbial infections and cancer the target is  to 

induce apoptosis of microbial organisms and tumour cells . In these 

conditions, the antitumor and antimicrobial activity were obtained 

through the use of cell-permeable GLO1 inhibitors. S-p-

bromobenzylglutathione (SpBrBzGSH) is a potent inhibitor of human 

GLO1. Diesterification of this inhibitor protects  this GSH conjugate 

against extracellular degradation by γ-glumyl transpeptidase and 

makes it cell permeable, therefore able to cross biological membranes. 

In the cell cytosol, SpBrBzGSH diesters are de-esterified and GLO1 is 

inhibited. S-p-bromobenzylglutathione-cyclopentyl diester showed a 

potent antitumor effect both “in vitro” and “in vivo” (Thornalley et al. 

1996). 

 

 

3.5.4 Role of methylglyoxal in the GLO1 regulation  

GLO1 substrates, methylglyoxal and glyoxal, leading to modifications 

of proteins, nucleotides and other biological macromolecules are very 

harmful to the organism. Our organism to counteract these damaging 

effects presents the glyoxalase system, composed by GLO1 and 

GLO2, that catalyzes the conversion of α-oxoaldehydes to the 

respective α-hydroxyacids (Thornalley 2003). Recent studies show 
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that GLO1 activity is regulated by GLO1 substrates and the process of 

glycation may have a functional role in the signal transduction 

pathway. A high  GLO1 activity is required, in conjunction with a 

high flow of methylglyoxal associated with an intense flow of triose 

phosphates and anaerobic glycolytic activity, to protect the proteome 

and the genome respectively  from functional and mutational damage.  

Secondly, the activation of the AGEs receptors (RAGE) by S100 

proteins found in increasing concentration in human plasma in 

inflammation, is associated with the decrease of the GLO1 expression.  

The induction of diabetes in wild type mice decreased the expression 

of GLO1, while the induction of diabetes in RAGE-deficient mice had 

no effect on the expression of the enzyme (Bierhaus et al. 2006).  The 

reduction of the GLO1 expression leads consequently to an increase of 

glycation (Thornalley 2003). AGEs  were co-localized mainly at the 

level of RAGEs. This may be due to the activation of  RAGEs by 

S100 proteins, by the local reduction of the  GLO1 expression and 

therefore by  the increase in AGE formation at the tissue level. This 

can be part of an inflammatory response that leads tomodify proteins 

with dicarbonyl-hydroimidazoline residues and route them to the 

proteasome for destruction.  

The proteins modified by MG then become the target for the 

destruction by the proteasome (Du et al. 2006). Finally,  GLO1 can be 

phosphorylated and the glycation of proteins may increase in case of 

apoptosis induced by tumor necrosis factor (αTNF). The regulation of 

GLO1 by methylglyoxal suggest a possible signaling role carried out 

by the glycation of proteins and nucleotides. 



55 

 

This role includes the development of malignant transformation 

(Thornalley 2003), cell death through the activation of apoptotic 

processes, erythrocyte apoptosis (Dobler et al. 2006) and activation of 

acute and/or chronic inflammatory processes. 

 

3.6 Effect of glycation in pathological conditions 

The accumulation of the adducts of glycation is associated with 

enzyme inactivation, protein denaturation and cell-mediated immune 

response. The excessive glycation of nucleotides is related to 

mutagenicity and apoptosis, whereas the excessive glycation of 

membrane phospholipids in lipid peroxidation and destruction of the 

phospholipid bilayer (Thornalley 2008). The body has a detoxification 

system that protects against cell and tissue damage induced by 

glycation (Thornalley 2003). This system is imperfect ; under normal 

physiological conditions, the adducts of glycation of proteins, 

nucleotides and phospholipids are generated spontaneously, but in 

small quantities. 

Imately approx 0.1-1 % of the lysine and arginine residues of proteins, 

one of 105 nucleotides at the DNA level and 0.1% of the basic 

phospholipids of membranes are modified.  Glycation adducts of 

proteins are removed by proteolytic enzymes at the level of 

proteasomes and lysosomes (Westwood et al. 1997). Glycation 

adducts of nucleotides are removed by repair systems DNA to excise 

nucleotides (Murata-Kamiya et al. 1999), and finally the AGEs of the 

phospholipids are removed by the lipid turnover (Requena et al. 

1997). However, the metabolism of these glycation adducts leads to 
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the genesis of additional products that are called glycation free 

adducts that are excreted primarily in the urine, along with glycation 

adducts  taken with food. The enzyme system counteracting the 

glycation is overwhelmed in some disease states, such as diabetes and 

renal dysfunction, resulting in accumulation of glycation products. A 

strong decline of the activity of GLO1 in aging was shown, so as to 

assume its involvement in physio-pathogenesis of senescence (Morcos 

et al. 2008). The main mechanism to remove glycation products from 

blood is the urinary excretion of the resulting metabolites, hence the 

marked accumulation of glycation free adducts in the case of clinical 

or experimental uremia (Rabbani et al. 2007). Even the oxidative 

stress is related to the glycation because of the depletion of GSH and  

NADPH that occur in oxidative stress, leading to a reduction in situ of 

the GLO1 activity (Abordo et al. 1999) and, consequently, an increase 

in the concentrations of glyoxal and methylglyoxal and glycation 

reactions. 

At the same time, also the glycated proteins by α-oxoaldehides may 

contribute to oxidative stress, increasing the proportion of  ROS such 

as superoxide anion, hydrogen peroxide and the hydroxyl radical. 

Glycation contributes to morbidity and mortality associated with high 

social impact diseases such as diabetes, cardiovascular diseases and 

kidney dysfunction, and seems to contribute in a determinant manner 

to the onset and course of others, such as Alzheimer's diseases, 

rheumatoid arthritis and senescence (Thornalley 2008). 
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3.6.1 Glycation in cancer 

Several studies have shown that the use of GLO1 inhibitors as 

SpBrBzGSH leads to an accumulation of methylglyoxal and glyoxal, 

an increase in the nucleotides glycation and induction of apoptosis in 

cancer cells  (Thornalley et al. 1996). It is not yet clear which is the 

mechanism by which these GLO1 substrates induce apoptosis, 

although it has been demonstrated the involvement of JNK and p38 

protein kinases (Sakamoto et al. 2001).  

It has also been shown that fibroblasts, overexpressing GLO1, are 

resistant to treatment with anticancer drugs such as doxorubicin and 

mitomycin C (Ranganathan et al. 1995). The GLO1 overexpression 

can, therefore, confer drug resistance against anticancer therapies. 

Accordingly, the use of inhibitors of GLO1 could have a twofold 

effect: to promote the glycation level of tumor cells by inducing 

apoptosis and reduce drug resistance by increasing the effectiveness of 

anticancer drugs. 

 

 

3.6.2 Role of AGE in ageing 

The increase in protein damage in aging was determined by analysis 

of damage markers to  long biological half-life proteins : typically it is 

absorbed the proteins the crystalline lens, which undergo a limited 

degradation by the proteasome  (Bloemendal et al. 2004), and skin and 

joints  collagen. These have respectively a 14.8 and 115 years half-life 

(Verzijl et al. 2000). The AGEs content in the crystalline lens 

increases significantly with the age increase of the subject (Ahmed et 
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al. 2003). Furthermore, an increase in the amount of CML and CEL 

was detected in fibroblasts of elderly subjects (Gonzalez-Dosal et al. 

2006). Finally, the content of CML and CEL in skin and joints 

collagen increases with advancing age (Verzijl et al. 2000).  

Studies in rats showed that the content of CML in skin collagen 

increases significantly with age (Cefalu et al. 1995). 

The immunoblotting analysis of skeletal muscle tissue of rats with 

 anti -AGE 6D12 able to recognize residues of CML and CEL shows 

an increase of the immunoreactivity of the β-enolase enzyme with 

aging (Snow et al. 2007);. Ageing in Wistar rats increases the content 

of the CML  residues of, but in the same animals, a similar increase of 

CEL residues in cardiac mitochondrial proteins was not found 

(Pamplona et al. 2002). The amount of CEL and CML in proteins of 

Drosophila melanogaster increases with age and is significantly 

higher in insects kept at 27 °C compared to those maintained at 18 °C, 

in which the mortality was significantly lower (Jacobson et al. 2010). 

In the C. elegans nematode, an accumulation with advancing age of 

the MH- H1 residues in mitochondrial proteins was abserved, and this 

process was, however, opposed and prevented by the overexpression 

of the GLO1 enzyme. GLO1 overexpression was able to decrease the 

glycation proteins induced by reactive species as methylglyoxal and 

glyoxal, reducing the amount of  MG -H1, G-H1 and CEL and helping 

to maintain lower levels of markers of oxidative damage. The 

prevention of oxidative stress induced by GLO1 overexpression is 

associated with a reduction of the structural changes of mitochondrial 

proteins by AGEs and thus prevent potential mitochondrial 
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dysfunction and concomitant increase in the formation of  ROS in 

aged nematodes (Morcos et al. 2008). 

 

 

3.6.3 Role of AGE in cardiovascular diseases 

Increased concentrations of methylglyoxal in hypertension were first 

suggested by studies of aortic smooth muscle cells (VSMCs) obtained 

from Wistar-Kyoto rats clinically hypertensive and from normotensive 

control rats. The concentrations of methylglyoxal measured in the 

aortic VSMCs and in the kidney (Wang et al. 2004), have appeared in 

all cases overestimated of about 10-100 times compared to the 

expected data. This can be attributed to the intrinsic formation of 

methylglyoxal during the processing of the samples; assaying the 

amount of this compound with the most reliable methods were found 

to be significantly lower MG values, 2 µM in rat blood  and 5 pmol / 

mg of protein in rat liver (Phillips et al. 1993). The “in vivo” 

accumulation of AGEs over time contributes to changes in the 

structure and function of the cardiovascular system and causesarterial 

stiffening, myocardial relaxation abnormalities, atherosclerotic plaque 

formation and endothelial dysfunction. One of the proposed 

mechanisms includes additional cross-linking of collagen by glycation 

of its free amino acids. The collagen-AGEs cross-linking will produce 

stiffness of blood vessels. Sims et al. in a histological study on 27 

samples of post-mortem aortas from people with diabetes,  found a 

relationship between AGEs accumulation and aortic stiffness (Ahmed 

et al. 2005). AGEs have also the ability to damage the cardiovascular 
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system through the reduction of LDL uptake by cell receptors. This 

mechanism involves the glycation of the LDL particle on the 

apolipoprotein B and in the phospholipid components of LDL. The 

glycated LDL is more susceptible to cross-linking with collagen on 

the arterial wall than non-glycated LDL, and it is not taken up into the 

cell and accumulates. Macrophages uptake of these modified LDL 

lead to foam cell formation, and the development of atheroma (Agalou 

et al. 2005; Hambsch et al. 2010). Another important study showed 

the role of increased androgens during and after menopause as a risk 

factor for cardiovascular damage  in women, with an associated 

increase in AGEs. A study in 106 postmenopausal women found 

significant correlations between testosterone and free androgen levels 

and AGEs after adjustment for age, body mass index, insulin 

resistance indices, and fasting glucose and insulin levels (Phillips et al. 

1993). 
In a patient with renal dysfunction and a rare GLO1 deficiency 

frequent CVD events occured, although no risk factors for these 

diseases were present (Miyata et al. 2001).  

In patients undergoing hemodialysis, the A419C polymorphism for 

the GLO1 gene was associated with an increased risk of  CVD 

complications (Kalousova et al. 2008). In addition, some studies have 

shown a high rate of mortality in patients homozygous for the 419CC 

GLO1 gene mutation  (Kalousova et al. 2010). The analysis of GLO1 

single nucleotide polymorphisms (SNPs) showed that the most 

common SNPs are in -7 (C or T) and 20203 (C or A) positions with 

respect to the start site of translation. 
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3.6.5 Role of AGEs in atherosclerosis and hypertension 

AGEs that are formed at low concentration contribute to the regulation 

of the physiological process of tissue remodeling , but can be 

detrimental when their production becomes abnormal with respect to 

anti-glycant defenses of the organism (Stitt et al. 2004). It was also 

suggested that some AGEs play a role in normal biological functions, 

while others, defined precisely AGE toxic, play a pathological role 

(Takeuchi et al. 2004). While these specific points are still unclear, 

there are more and more confirmations showing that AGEs are 

implicated in diseases such as atherosclerosis and hypertension (Wu 

2006). 

Studies on diabetes, a condition associated with insulin resistance with 

a high incidence of vascular complications, provide substantial 

evidence of the implication of AGEs in atherosclerosis. The 

concentrations of AGEs were elevated in both diabetic patients and in 

animal models of diabetes, and are associated with the changes 

observed in atherosclerosis (Fosmark et al. 2006). The research also 

shows that treatments  reducing AGEs or blocking the RAGE 

attenuate these vascular changes (Alderson et al. 2003). Individuals 

not suffering from diabetes, but with atherosclerosis, have high levels 

of the protein AGE-apo B  in the serum (Stitt et al. 1997), and AGEs 

have been identified in atherosclerotic lesions in animal models of 

rabbit (Palinski et al. 1995) or in humans (Sima et al. 2002). Studies 

conducted “in vivo” on hypertensive rats and on rats having diabetes-

induced hypertension show that MG and AGEs levels are elevated 
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(Wang et al. 2005). MG  administered in the diet to Wistar-Kyoto rats 

(WKY) causes an increase in AGE at the tissue level and is 

responsible for the onset of hypertension (Vasdev et al. 1998). In a 

study conducted in female subjects with pre-eclampsia, a condition of 

high blood pressure in pregnancy, the expression of RAGE is 

increased in vascular tissues  (Cooke et al. 2003). In patients with 

essential hypertension, the levels of soluble RAGE, which neutralize 

AGEs, are inversely correlated with blood pressure levels (Geroldi et 

al. 2005). AGEs tend to form crosslinks in the proteins and in 

particular bind to the long-lived proteins such as collagen or elastin 

(Aronson 2003). This contributes to vascular stiffening. Recently it 

has been shown that the increase of AGE concentration in plasma is 

associated with an increase of vascular stiffness in patients suffering 

of not treated essential hypertension (Brownlee 2001). Such an 

increase in vascular stiffness and the resulting systolic hypertension 

dramatically increase cardiovascular risk  (Safar 2001). This situation 

is very common in aging, but can be accelerated in diabetes or in other 

conditions where the formation of AGEs is increased (Schram et al. 

2005). Agents that contribute to the breaking of crosslinks formed by 

AGE proteins showed the ability to reduce the cross-linking and 

hardening of the arteries in animal models of diabetes (Wolffenbuttel 

et al. 1998), to improve vascular compliance in elderly subjects with 

atherosclerosis (Kass et al. 2001), to improve endothelial function 

(Zieman et al. 2007) and lower blood pressure in patients with systolic 

hypertension (Bakris et al. 2004). The role of AGEs in hypertension 

was also corroborated by animal studies showing that treatments that 
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target AGEs are able to reduce blood pressure (Midaoui et al. 2003). 

Other research on AGEs show that such glycation adducts not only 

alter  the structure but also the functionality of proteinaa which bind 

irreversibly, leading to changes typical of hypertension and 

atherosclerosis, including increased oxidative stress (Zhang et al. 

2006), endothelial cells disfunctions (Wautier et al. 2004), alteration 

of the reserves of calcium (Jan et al. 2005), onset of inflammatory 

processes (Kislinger et al. 2001) and changes in signal transduction 

pathways (Cohen et al. 2003).  

 

3.6.5 AGE and neurodegenerative diseases 

The processes underlying neurodegeneration are complex and may 

involve several aspects, such as excitotoxicity, mitochondrial 

dysfunction, abnormal protein aggregation and inflammation (Nicole 

et al. 1998). It has been hypothesized that the formation of ROS is a 

primary consequence only in certain aspects of the progression of 

neurodegeneration. In fact, numerous studies have shown that, in 

addition to ROS, reactive carbonyls as MG could contribute to 

neurodegeneration (Picklo et al. 2002), subjecting the cells to carbonyl  

stress characterized by an imbalance between accumulation and 

detoxification AGEs  

Glycation and AGEs, as noted in previous chapters, contribute to post-

translational modification of proteins. AGEs have been linked to the 

development of degenerative diseases including cataracts, and diabetic 

complications and AD. In AD, AGEs are accumulated in a age 

dependent manner  and  according to the stage of disease  in neurons 
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and microglia, and β -amyloid plaques, indicating that under these 

conditions there is an imbalance between the formation and 

degradation of proteins modified by AGEs (Luth et al. 2005). 

Among the various reactive carbonyl compounds and precursors of 

AGEs,  MG is probably the major  contributor to the intracellular 

formation of AGEs, as it is extremely consistently produced by the 

degradation of triosephosphates. MG concentration increases in 

specific pathophysiological conditions, for example, when the levels 

of triosi phosphates are high, when GSH concentration, 

cofactordetermining the speed of gliossalasi I, or is low, when the 

levels of  GLO1 expression are reduced, as it has been described in 

neurons and microglia in people older than 55 years (Kuhla et al. 

2007). 

Although the exact intracellular  MG concentration in neurons is not 

yet known, concentrations up to 300 mM were measured in CHO 

(Chinese hamster ovary ) cell culture (Chaplen et al. 1998). 

The AD  brain is characterized by two types of protein aggregates : 

extracellular plaques, which consist mainly of β-amyloid ( Aß ), and 

intracellular neurofibrillary tangles (NFTs), predominantly  composed 

of tau protein, protein associated with the microtubule (MAP-tau). 

Both proteins, Aβ and MAP-tau, are modified by AGEs (Yan et al. 

1994). Other proteins, not yet identified, are modified by AGEs, and 

gradually accumulated in the cortical areas of the brain in the 

advanced stages of AD (Luth et al. 2005). As a result of the formation 

of  AGEs, the proteins are heterogeneously modified in their side 
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chains, polymerize, thus becoming more insoluble and resistant to the 

action of proteases.  

Although several studies have shown that MG induces apoptosis in 

neuronal cells and not, probably through the activation of the family 

of the mitogen-activated protein kinase kinase or c-jun NH2-terminal 

(Kuhla et al. 2006), the molecular mechanisms underlying MG 

cytotoxicity  remain poorly understood. In a study of proteomics in the 

human neuroblastoma cell line SH-SY5Y , it has been shown that MG 

modifies the expression of several proteins that probably play a role in 

neurodegeneration . Another study examined samples of cerebrospinal 

fluid (CSF) from six AD patients, assessed by the Mini-Mental State 

Examination (MMSE), and six CSF samples from healthy controls. 

Weak increases in the mean values of free MG (22.1 ± 20.2 nM) in the 

group of patients compared to healthy controls (10.1 ± 5.2 nM) were 

observed but without statistical significance. Differences in the 

concentration of glyoxal between the two groups were not found 

(Kuhla et al. 2005). However, the concentrations of both compounds 

were about 5 to 7 times higher than that of human plasma samples 

(Odani et al. 1999), probably because the protein content in the CSF is 

much lower than in plasma, and then CSF proteins does not react 

completely with MG.  

Although the degree of protein modification by AGEs in senile 

plaques has not been quantified, it is probably much higher than that 

of plasma proteins, given that the half-life of proteins in senile plaques 

is estimated to be about 30 years compared to the much shorter-half 

of1-2 months of most of the plasma proteins.  
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It has been proposed that AGEs transmit their signals through the 

RAGE (Schmidt et al. 1994), which is a member of  the cell surface 

receptors of the immunoglobulin superfamily (Schmidt et al. 2000). 

Its series of ligands include AGEs,  anfoterine, the S100 calgranuline 

and fibrillar peptides including Aβ in the brain suffering from AD 

(Yan et al. 1998). Both AGE and Aß are present in senile plaques 

(Wong et al. 2001) and has been shown to up-regulate 

proinflammatory cytokines through RAGE and via NFkB-dependent 

pathway (Schmidt et al. 2000). This led to the conclusion that the Aβ-

RAGE interaction plays an important role in the pathophysiology of 

AD.  

It has been shown that both AGEs and Aß lead to a reduction of ATP 

levels in a dose dependent manner. Because ATP is important for 

many neuronal functions, including the maintenance of gradients of 

Na + / K +, low levels of ATP in the neurons of AD patients (caused 

by AGE and Aß) may directly influence the synaptic transmission and 

create the clinical picture of dementia (Kuhla et al. 2004).  
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CHAPTER 4 

 

4. Glucosinolates and Sulforaphane  

 

4.1 Chemical structure and properties 

Glucosinolates (GLS), an important phytocomponent group, are  

present at high levels in plants of the Cruciferae family, particularly 

Brassica, such as broccoli, cabbage and Brussels sprouts. Although 

abound 120 molecules have been identified, each plant contains up to 

4 different GLS in significant quantities (Fahey et al. 2001). In plants, 

the GLS and their metabolites have fungicidal  and bactericidal  

properties. Their composition in plants varies due to many factors: the 

climate, the type of crop, the various treatments to which they are 

subjected in different stages of collection, storage,  the preparation and 

consumption. From the biological point of view, they are a class of 

inactive compounds until they have been enzymatically hydrolysed to 

various bioactive break down products by the endogenous plant 

enzyme myrosinase. GLSs are (Z)-N-hydroximinosulfate esters, 

possessing a sulfur-linked β-D-glucopyranose moiety and an amino 

acid-derived side chain (Fig. 4-1). Side chain and sulfate group have 

an anti stereochemical configuration across the C =N double bond. 

The structure of the side chain is highly variable and may possess 

aliphatic (alkyl, alkenyl, hydroxyalkenyl, ω-methylthioalkyl, ω-
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sulfinyl-, and ω-sulfonylalkyl), aromatic (benzyl, substituted benzyl) 

or heterocyclic (indolyl) groups. The majority of the currently known 

GLSs may be subdivided according to their hydrolysis products into 

aliphatic and aromatic, terminally-unsaturated, β-hydroxy-, and 

indolyl GLSs, in which the first group includes a wide range of 

homologues (n = 3 to n = 11). A chemical classification of all so far 

discovered GLSs is reviewed by (Fahey et al. 2001). The presence of 

the sulfate group in the molecule confers strongly acidic properties on 

intact GLSs (Fig.4-2). Thus, they are non-volatile and occur as salts 

with the GLS anion usually counterbalanced by potassium. 

 . 
 

 

Figure 4-1: General structure of the GLS 

 

Many of the biological effects at the base of the health properties of 

these vegetables are attributed not to the GLS but to their hydrolysis 

products. The hydrolysis reaction is catalyzed by myrosinase enzyme 

which is located in separate compartments within the plant tissues, 

and takes place when, due to the disintegration of the tissues, the 

enzyme is in contact with the substrate (Cottaz et al. 1996). The GLS 

are present in all parts of the plant, but with quantitative and 

qualitative differences, for example in the flowers the total amount 
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may be 10 times higher than in other plant tissues and represent 10% 

of the total (Holst et al. 2004) 

Myrosinase is a thioglucoside glucohydrolase that hydrolyzes the 

glucosinolate molecule, leading to the formation of glucose, sulfate 

and unstable aglycone, thyohydroximate-O-sulfonate. The last one 

undergoes a spontaneous rearrangement which leads to a wide variety 

of products, whose chemical structure depends on the initial side chain 

of the GLS and the reaction conditions (Ludikhuyze et al. 2000) 

(Fig.4-2). At pH 6-7 the most common products are isothiocyanates 

(ITC). Among  them there is a compound that has attracted the 

attention of researchers. This compound is sulforaphane (SF) [4 - 

(methylsulfinyl) butyl - isothiocyanate], produced by the hydrolysis of 

the corresponding glucosinolate, the glucoraphanin, which has been 

studied for its anti-inflammatory and chemopreventive properties. 
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Figure 4-2: Products of  GLS hydrolysis  

 

4.2 Metabolism of glucosinolates 

Understanding of factors, that limit the release of phytochemicals 

from the food matrix, the degree of absorption and their fate in the 

body,  is essential to determine their mechanisms of action and their 

role in maintaining health. The term "bioavailability" describes all 

these aspects. It was coined by the Food and Drug Administration 

(FDA) as the amount to which a functional group with therapeutic 

action is absorbed and becomes available at the site of action. The 

concept of bioavailability includes:  
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1. The release and dissolution of a compound to be subsequently 

absorbed (bioaccessibility)  

2. The absorption  

3. The tissue distribution  

4. The metabolism  

5. The excretion 

These phases are represented in figure 4-3. 



72 

 

Figure 4-3: Path of  phytocomponents through the organism 

 

4.2.1 Release and absorption 

The term release means the release of the compound from the food 

matrix and its dissolution in biological fluids. These steps are crucial 

for the mixture arrives to the surface of the intestinal epithelium in the 

most appropriate form to be absorbed by enterocytes or to cross the 

epithelial layer through the cell junctions. 
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The release from the food matrix and the formation of hydrolysis 

products of GLS depends on several factors : 

1. GLS Concentration in plants 

2. Hydrolysis due to the damage of plant tissues 

3. Physical and chemical characteristics of the GLS and the 

corresponding ITC and their stability 

4. Level of rupture of the tissues during mastication 

5. Digestion 

In addition to the concentration of GLS and food treatments also the 

matrix affects the release and absorption (Conaway et al. 2000). 

The dissolution of a compound is determined by its solubility in an 

aqueous environment, by the ionization (pKa) and the lipophilicity 

that is defined by log P. This is the octanol-water partition coefficient, 

which is a crucial factor for the partition to the side of the plasma 

membrane. To obtain optimal absorption at the intestinal level the 

value of log P should be in a range from 0.5 to 2.0. The GLS would be 

able to cross the cell membrane  through a carrier or through aqueous 

pores. The value log P value, for the GLS degradation products, not 

depends on the structure of the side chain and varies from 0:23 to 4:37 

(Cooper et al. 1997). The presence of a glucoside group in the 

molecule can indicate an active transport through the glucose 

transporter, but in vitro studies have shown that this does not happen. 

A facilitated transport could be used. The  GLS degradation products, 

compared to the parent compounds, are much more lipophilic and 

have a lower molecular weight, so their absorption can take place, at 

least in part, by passive diffusion. SF has a log P value of 0.72 and a 
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molecular weight of 177 g / mol (Cooper et al. 1997).The ITC are 

conjugated with GSH by the glutathione-S-transferase enzyme. It was 

observed that hight amounts of GSH within the cell leads to an 

increase in ITC cell uptake.  

 

 

4.2.2 Distibution 

The term distribution means the path of a compound from the site of 

administration to the vessels and tissues. The parameters that 

influence the distribution of a compound in the body are: blood flow, 

the presence of membranes, the affinity for tissues and binding to 

plasma proteins, such as albumin and glycoproteins. Only the 

unbound  fraction to these proteins can pass through the membranes. 

Recently, some researchers  have developed a sensitive and 

appropriate method which allows the determination of low 

concentrations of ITC and metabolites in biological fluids and tissues 

(Ye et al. 2002). They observed that following a rapid absorption and 

appearance in plasma, the ITC peak levels (0.94 ± 2.27 mol L-1) from 

broccoli sprouts (especially sulforaphane), decrease. These data 

demonstrate a rapid distribution, which follows a first order kinetics 

with a half-life of 1.77 ± 0:13 hours (Ye et al. 2002).  ITC are 

transported in the blood bound to plasma proteins to which they bind 

strongly presumably by interaction with -SH groups, and only in small 

part, in free form. The distribution to tissues involves the passage of 

the compounds through the membranes and this follows the same 

uptake mechanism described for intestinal absorption. The driving 
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force for ITC passive diffusion across membranes is its conjugation 

with GSH. A study, carried out by administering to rats 14C ITC, 

revealed high levels of ITC in the stomach and intestine, intermediate 

concentrations are found in the pancreas and spleen and very low at 

the level of heart and brain (Conaway et al. 1999) .  

 

4.2.3 Metabolism 

The bioavailability of a compound, even if absorbed in high 

concentrations, may be limited by a rapid and extensive metabolism. It 

is therefore important to determine which are the metabolites of this 

compound and in what concentrations they are found in blood, urine 

or faeces.The GLS are not present in the faeces, therefore these 

compounds are subjected to an extensive metabolism. As already said, 

the GLS are hydrolyzed to ITCs by the myrosinase enzyme in the oral 

cavity as a result of liberation of the enzyme from the vegetable 

matrix, or at intestinal level by the microbiota. The first step in the 

metabolism of ITCs is the conjugation with GSH. It is not clear if this 

conjugation occurs in the duodenum during absorption, or in the liver, 

which is the site with the highest GST. Subsequently, the ITC 

conjugates are metabolized by different enzymes such as the 

glutamyltranspeptidase (GTP), the cysteinylglycinase (CGase) and N- 

acetyltransferase (NAT) that lead to the formation of the different 

metabolites shown in Figure 4-4.This sequence of reactions usually 

leads to the formation of mercapturic acid, a hydrophilic metabolite 

that can easily be excreted in the urine. 
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Figure 4-4: GLS metabolites 

The main metabolites of urinary excretion in humans are  N-acetyl 

cysteine conjugates (NAC) that are currently used as reliable 

biomarkers of exposure to GLS (Shapiro et al. 2001). 

 

4.3 Absorption of dietary ITC 

 

In agreement with the observation that ITC are readily absorbed and 

metabolized in vivo mainly through the way of the mercapturic acid 

and then excreted in the urine as NAC, numerous studies have shown 

that dietary intake of ITC can be assessed by measurement of the 

NAC conjugates in urine, which are then to be a reliable marker of 

exposure. 
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Ye et al.(2002) demonstrated in a study conducted on volunteers, that 

the intake of a single dose of broccoli extract sprouts containing 200 

µmol ITC, in which all  glucosinolates had been hydrolyzed and the 

majority of the ITC were constituted by SF. ITC were absorbed 

rapidly and reached a peak plasma concentration of 0.94-2.27 µmol/l, 

1 h after ingestion. The cumulative excretion of ITC equivalents at 8 h 

represented to 58.3 ± 2.8 % of the ingested dose (Ye et al. 2002). In a 

similar experiment the cumulative excretion of ITC equivalents after 

72 h was 88.9 + / -55 % of the dose. 

 

4.4 Bioavailability of dietary ITC 

Understanding of factors, affecting  the release of phytochemical 

components from the food matrix, their absorption and their fate in the 

body, is essential to determine the mechanism of action and biological 

effect. 

There are several factors that can influence ITCs and  GLSs : the plant 

variety, (Kushad et al. 1999; Mithen et al. 2001), agronomic and 

environmental factors such as soil and climatic conditions (Ciska et al. 

2000; Pereira et al. 2002; Vallejo et al. 2003), but also plant storage 

and technological processes before consumption and cooking. Cold  

storage can cause the loss of nearly 50 % of GLSs, while cutting 

promotes the hydrolysis only on the cut surface. So in intact broad 

leaves or in broccoli or cauliflower inflorescences there is  minimal 

GLS loss before cooking. If these vegetables are eaten raw, both intact 

GLS and active myrosinase are assumed simultaneouslyin the 

hydrolysis of GLS, occurs in the gastrointestinal tract. Some of the 
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GLS ingested are hydrolyzed in the colon by bacterial myrosinase, 

anyway myrosinase contained in the plant is the dominant factor. 

Assuming that there is a large loss of GLS in the cooking water 

(between 30 and 60%), due to their hydrophilicity, it is evident that 

the preparation method can make a big difference on the assumption 

of GLS and on bioavailability of their hydrolysis products. An 

important factor in determining levels of ITCs intake is the combined 

influence of the cooking and the microbiota in the intestinal tract : 

mild cooking conditions (less than 75-80 ° C) cause an increased 

production of ITCs allowing the release of myrosinase, but the 

myrosinase rapidly denaturates when the temperature reaches 90 ° C . 

The content of ITC in the initial preparation was about the same (1.1 

and 1.0 micromol /g wet weight), however, the urinary  ITCs 

excretion in 24h was 32.3 % for raw broccoli and 10.25 % for cooked. 

These results indicate that ITCs bioavailability  in raw vegetables, 

where the myrosinase had not been inactivated by heat, was three 

times higher (Conaway et al. 2000). Following  administration of 

broccoli sprouts extract containing only ITC (after complete 

hydrolysis) or GST alone (in which myrosinase had been completely 

inactivated), the cumulative urinary excretion of  ITC equivalents was 

to 80 % and 12 % of the dose  respectively in 72h (Shapiro et al. 

2001). These studies clearly show that plants in which myrosinase is 

still functional purchase  a quantity of  ITC amount much larger than 

those in which myrosinase is inactive. On the other hand different 

types of  Cruciferous vegetables including broccoli and cabbage form 

nitriles (no anticarcinogenic properties known) as hydrolysis products 
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of GLS (Bones et al. 2006; Matusheski et al. 2006).These Cruciferous 

vegetables contain a ESP-like protein (ESP) that appears to be 

responsible for the formation of epithionitriles. ESP a not only 

catalyzes  GLS hydrolisis, but also acts as a cofactor of myrosinase 

directing unstable products of hydrolysis to epithionitriles rather than 

to  ITC. The ESP is more thermolabile than myrosinase and therefore 

a bland and short heat treatment can lead to a high ITC production, 

since this renders inactive ESP leaving a certain amount of active 

myrosinase (Bones et al. 2006). It is also clear that the myrosinase 

activity , employed by the intestinal microbiota, can hydrolyze only a 

small fraction of ingested GLS. Nevertheless when the microbiota is 

reduced by a combination of mechanical removal and antibiotic 

therapy, there is a further reduction in the ITC urinary excretion in 

from 11.3 ± 3.1 % to 1.3 ± 1.3 % of the dose.  

 

 

4.5 Biological activities of sulforaphane 

SF induces a phase II detoxification response promoting a disruption 

of nuclear factor E2-factor related factor (Nrf2)-Kelch-ECH-

associated protein (Keap1) intereactions and mitogen-activated protein 

kinase activation. As a result, Nrf2 modulates gene expression via 

antioxidant response element (ARE). ARE-driven targets include 

NQO1, HO-1 and γ GCL and the induction of these enzymes has been 

observed both, “in vivo” and “in vitro” experiments after SF tratment. 

As we mentioned aboe, SF in contained in broccoli and this is the 

reason why several experiments have been done with dietary 
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ingenstion of this cruciferous vegetable. For example, dried broccoli 

sprouts (200mg/day) were able to attenuate oxidative stress, 

hypertension and inflammation in stroke-prone  spontaneusly 

hyertensive rats (Wu et al. 2004). In addition, the antihypertensive 

effect of broccoli sprouts was accompanied by an enhancement in the 

GSH concentration and in the activities of GPx and GR in hearts, 

kidney, aorta and carotid, and by decreasing the macrofage infiltration 

in inner intimal layers of the aorta, carotid artery and endocardium of 

the heart, as well as in the kidney medullary interstitium and 

tubules.These beneficial effects were associated to the supression of 

the NF-kB pathway (Wu et al. 2004). Later, a cardioprotective effect 

was found after feeding broccoli for 30 days to rats in isolated heart 

preparations submitted to ischemia and reperfusion (Mukherjee et al. 

2008). Rats feed with broccoli had an increased postischemic 

ventricular function and reduced myocardial infarct size along with 

reduced cardiomyocytes apoptosis. These protective effets were 

associated with a prevention in the decrease of thioredoxin, 

glutaredoxin and peroxiredoxin, HO-1, SOD1, SOD2 and Nrf2 as well 

as enhanced induction of the survival signalling proteins including 

Bcl-2, Akt, extracellular signal-regulated kinase ½, and down-

regulation of the proteins (Bax, Jnk, p38) of the death signalling 

pathways.  
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4.6 Protective effects of SF 

 

 4.6.1 Brain and neuronal injury 

Sulforaphane has a neuroprotective effects in several experimental 

paradigms. (Zhao et al. 2006) showed that a single SF administration 

was able to reduce the infarct size in rats induced by ischemia and 

reperfusion by increasing HO-1 espression in brain. It is important to 

noticethat HO-1 is an inducible enzymes that catabolizes free heme 

into carbon monoxide, iron and biliverdin, which is converted to 

bilirubin by biliverdin reductase. The same protective effect was 

observed in a neonatal hypoxia-schemia brain injury model (Ping et 

al. 2010) in which SF decreases malondialdehyde and 8-hydroxy-2-

deoxyguanosine levels. In addition, a model of oxugen and glucose 

deprivation in immature neurons and in astrocytes (Danilov et al. 

2009; Soane et al. 2010).  SF protects the cells activating  the 

Nrf2/ARE pathway, increases the gene trasciption protein levels and 

activity of antioxidant enzymes including NQO1, HO-1 and γGCL 

modifier subunit. Interestingly, SF also protects blood brain barrier 

after brain injury which was accompanied by the enhanced expression 

of Nrf2-driven genes (Zhao et al. 2007). SF njection protected against 

cerebral damage induced by instriatal injection of autologous blood 

(Zhao et al. 2007) and also activated Nrf2 brain tissue and reduced 

neutrophile count, oxidative damage, and behavioral deficits. Nrf2-

deficient mice showed more severe neurologic deficits and did not 

benefit from the protective effect of SF. The above described 

protection was not observed in mice lacking by Nrf2 gene and 
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suggesting that this protection was dependent of Nrf2 (Zhao et al. 

2007). In another brain experimental model, lipopolysaccharide-

induced inflammation was attenuated by SF pre treatment with Nrf2 

induction and HO-1 espression in the hippocampus of these animal 

brain (Innamorato et al. 2008). The role of Nrf2 in this protective 

effect was confirmed by using Nrf2 deficient mice. To add strength, 

“in vitro” studies have been done using SF and results also 

corroborate the protective SF effect and add more information about 

the mechanism of protection. For example, in BV2 microglial cells, 

the protective effect of SF against oxidative effect of 

lipopolysaccharide was associated with HO-1 induction (Innamorato 

et al. 2008). In another cell culture the dopaminergic cell death, 

induced by a compound that produces dopamine quinone: 6- 

hydroxydopamine and tetrahydrobiopterin, was also attenuated by SF 

preincubation (Han et al. 2007). These experiment demonstrated that 

SF pretreatment prevented membrane damage, DNA fragmentation, 

and ROS formation. SF, increased mRNA levels and enxymatic 

activity of NQO1 in a dose-dependent manner (Han et al. 2007). In 

another experiment model, SF protects cortical neurons against the 

neurotoxin 5-5-cysteildopamine damage, because SF induces the 

expression and the activation of Nrf2 and therefore increases the 

espression and activity of GST, GR and NQO1 (Vauzour et al. 2010). 

Interestingly, SF increases in time-concentration manner reduced GSH 

levels in dopaminergic-like neuroblastma SHSY-5Y cell line which is 

associated with its protective effect againsy hydrogen peroxide 

(Tarozzi et al. 2009). 
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4.6.2 Liver damage 

Baek et al.(2008) demostrated the protective effect of SF on carbon 

tetrachloride-induced liver injury in mice. They showed that SF 

ameliorated the carbon tetrachloride induced increase in the serum 

level of alanine amnotransferase, lipid peroxidation and necrosis. This 

hepatoprotective effect was associated with liver phase II enymes 

induction. In this sense Li iet al. (2010) have shown that SF 

upregulated the expression of the π class of GST through the Nrf2 

pathway in rat Clone 9 liver celle. Moreover Razis et al. (2010) also 

demonstrated that R-SF is more effective a an inducer of the 

detoxifying enzymes system, in bothliver and lung, compared with the 

S-enatiomer. Finally Zhao et al.(2010) is investigated the effect of SF 

on regulation of  Nrf2/ARE pathway in liver injury induced by 

intestinal ischemia/reperfusion. They showed  that the pretreatment 

with SF ameliorates the ischemia-reperfusion induced intestinal and 

liver injury. This protection was associated to the increase in liver 

expression of Nrf2 and HO-1.  

 

4.6.4 Hyperglycemia 

Xue et al.(2009) demonstrated that treatment with SF in a human 

microvascualar HMEC-1 endothelial cells model incubated in lowand 

hignt glucose concentration can prevent ROS production, 

mitochondrial and biochemical dysfunction induced by hyperglycemia 

which was associated to increased expression of transketolase. Song et 

al.(2009) have found that SF pretreatment was able to ameliorate 
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streptozotocin-induced islet damage in mice. SF pretreatment was able 

to ameliorate hyperglycemia and decreased insulin blood 

concentration and to preserve the number of islets producing insulin. 

The protective effect of SF in streptozotocin induced diabetes was 

associated to the prevention of the induction of  NF-kB in islets of 

thee mice. Similar “in vitro” results were presented in rat pancreatic β-

cell line RINm5F, where SF preincubation was able to induce Nrf2 

traslocation into the nucleus and subsequnce gene expression of 

several cytoprotective enzymes including  γGCL (Song et al. 2009). In 

addition, preincubated pancreatic β cells with SF are resistant to the 

toxic effect of citokynes preventing H2O2 formation. SF also 

suppressed the increae in inducibile nitric oxide synthase induction 

and cyclooxygenase expression (Song et al. 2009). 

 

 

 

4.6.5 Damage to heart and cardiac cells 

Zhu et al.(2008) showed that the incubation of rat aortic smooth 

muscle A10 cells with different concentrations of SF induced in 

concentration –dependent manner the level and activity of antioxidant 

and phase II enzymes such as catalase, SOD, GPx, GR, GST, NQO1 

and GSH. SF can also induce the expression and the activity of 

catalase, GSH, SOD and GST in isolated mitochondria of aortic 

smooth muscle cells. In the same study, the pretreatment of SF 

prevented the cell death, ROS production and oxidative cytotoxicity 

by xanthine oxidase/xanthine and H2O2. It’s has been demonstrated  



85 

 

that SF increased the gene expression, protein expression and enzyme 

activity of phase II enzymes including GR, GST, NQO1, TRr in 

cultured rat neonatal cardiomyocytes model (Angeloni et al. 2009). 

These increases were in time-concentration manner. SF pretreatment 

was able to avoid the cell death, ROS production and DNA 

fragmentation induced by H2O2 in cardiomyocytes. On the other hand, 

SF prevented the ischemia-repurfusion injury in hearts (Piao et al. 

2009). The protective effect was observed by an inhibition of the 

increase in the post-ischemic left ventricular end-diastolic pressure 

and improved the post-ischemic left ventricular developed pressure 

coronary flow  reduction in the infracted area and decreased lactate 

dehydrogenase levels during reperfusion. SF prevented the decrease in 

protein expression of some antioxidants enzymes including catalase, 

Mn-SOD and HO-1. 
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CHAPTER 5 

 

5. Aim   

 
Chronic degenerative diseases represent the main cause of mortality in 

the industrialized world. A common determiner of these pathology is 

oxidative stress, a great imbalance between reactive oxygen species 

and antioxidant defences with resulting damages to biological 

macromolecules. In the last years, many studies have directed their 

attention to carbonyl stress, a condition wherein there is an imbalance 

between pro-glycant species production and organism defences to 

glycation. Carbonyl stress is probably responsible of Alzheimer 

disease, renal dysfunctions and cardiovascular diseases. It was 

observed that after ischemic stroke there is an increase of oxidative 

stress, to which are associated several troubles. It’s very important to 

remember that the antioxidant enzymes activity in the heart is lesser 

than other organ. For this reason the heart is more susceptible to 

oxidative stress. Therefore, any mechanisms, able to increase 

antioxidant defences, result fundamental to protect cardiac cells from 

damages induced by oxidative stress. In 1986 Murry et al. (Murry et 

al. 1986) described ischemic preconditioning (PC) as a phenomenon 

whereby myocardium exposed to brief episodes of ischemia and 

reperfusion develops protection against irreversible injury during a 
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subsequent ischemic insult. This phenomenon has been recognized as 

the strongest form of in vivo protection against myocardial ischemic 

injury (Kloner et al. 1998). In experimental animals, a brief period of 

ischemia usually produces two windows of protection: an early phase 

which develops very quickly and lasts only 1-2 h, and a late phase that 

develops after 12-24 h but lasts 3-4 days (Kloner et al. 2001; Eisen et 

al. 2004). The early phase develops by rapid post-translational 

modification of pre-existing protein through a series of signaling 

cascades, while late (or delayed) ischemic PC is mediated by 

cardioprotective gene expression and by synthesis of new 

cardioprotective proteins (Rizvi et al. 1999; Das et al. 2008).  

The ischemic PC concept has also been extended to PC triggered by 

non-ischemic stress, such as stretch, some chemicals (Shattock et al. 

1993), and reactive oxygen species (ROS) (Leon et al. 1998). Redox 

signaling in PC is still not completely understood, but it is widely 

accepted that transient, low concentrations of ROS and/or reactive 

nitrogen species (RNS) may trigger protective mechanisms. Some 

ROS (i.e. O2
− and H2O2) and RNS (i.e. NO, HNO, ONOO−) may be 

included among the triggers of PC, and it is likely that they 

collaborate in inducing cardioprotection (Penna et al. 2009). Recently, 

the role of H2O2 as PC inducer in the protection against different 

forms of damage has received attention. Sharma et al. (2001) have 

observed that H2O2 induced PC may provide cardioprotection, similar 

to ischemic PC, against ischemia–reperfusion injury in isolated rat 

heart. In a mouse L-cell model, H2O2 PC protected cells against 

apoptosis induced by subsequent oxidative stress via MAPK and 
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PI3K/Akt pathways (Han et al. 2001). In addition, H2O2 PC has been 

shown to protect human proximal tubular cells against lethal oxidant 

insult via p38 MAPK and heme oxygenase-1 (Lee et al. 2003). In 

more recent studies, it has been demonstrated that H2O2 PC protects 

PC12 cells against apoptosis induced by oxidative stress through 

different mechanisms: blockade of reductions in mitochondrial 

membrane potential, overexpression of Bcl-2 (Tang et al. 2005) and 

inducible nitric oxide synthase and cyclo-oxygenase-2 (Tang et al. 

2006), and activation of the Janus kinase (JAK)-signal transducer and 

activator of transcription (STAT) pathway (Yu et al. 2006), and 

increase in the DNA binding activity of NF-kB p65, as well as its 

nuclear translocation (Zhang et al. 2009).  

Another strategy to protect cardiac cells from oxidative damage is an 

up-regulation by natural or synthetic chemical inducers, of 

endogenous antioxidants and phase II enzymes of xenobiotic 

metabolism (Cao et al. 2006). The main effect of this induction would 

be a reinforcement of antioxidant cellular capacity.  Among them, 

sulforaphane is one of the most promising diet-derived indirect 

antioxidant agents. SF is produced by the breakdown of 

glucoraphanin, a glucosinolate abundantly present in some 

Cruciferous vegetables, especially broccoli.  It has been reported that 

broccoli protects hearts against I/R injury through the redox cycling of 

the thioredoxin superfamily (Mukherjee et al. 2008). We have 

demonstrated that SF protects cardiomyocytes against apoptosis 

induced by oxidative stress (Angeloni et al. 2009). In a recent study 

we have also identified that SF modulate other molecular targets such 
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as GLO1. GLO1, GLO2 enzymes and a catalytic quote of reduced 

GSH  form the glyoxalase system. This system catalyze the 

conversion of  α-ossoaldeidi in α-idrossiacidi. This allow the 

biotransformation of toxic compound for the cell, such as 

methylglyoxal, in no toxic compound, D-lactate.  Glyoxalase system 

represent a detoxifying system to dicarbonyl species, and so, as an 

integral part of organism antioxidant defences. This is also 

fundamental to limit the toxicity induced by carbonyl stress, apoptosis 

and AGEs formation. AGEs are an heterogeneous group of molecules 

that are generated through a non-enzymatic glycation and oxidation of 

proteins, lipids and nucleic acids (Thorpe et al. 2003).  A great 

presence of AGEs at cellular level, is related with Alzheimer 

,Parkinson and cardiovascular  disease.  Previous studies have been 

shown that the glycation generate the AGEs production on β-amyloid 

plaque (Chen et al. 2006), that MG is the main glycant agent in this 

process (Webster et al. 2005). These observations have  suggested that 

AGEs can promote the depositing of  β-amyloid and plaques in brain 

with AD.  The glyoxalase system was related with chronic pathology 

induced by oxidative stress or hyperglycemias. In particular a decrease 

of GLO1enzymtic activity in situ caused by ageing and oxidative 

stress increase the glycation. The oxidative stress is bound  glycation 

because the depletion of GSH cause a decrease of GLO1 enzymatic 

activity and an increase of methylglyoxal and glyoxal. 

The aim of this thesis was evaluated molecular mechanisms in 

cardio- and neuroprotection and the possibility of modulation by 

nutraceutical phytocomponents.   
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CHAPTER 6 

 

6. Materials and Methods  

 

6.1 Materials 

PhosSTOP was purchased from Roche Diagnostics (Mannheim, 

Germany). CelLytic M, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-

tetrazolium bromide (MTT), 2’,7’-dichlorodihydrofluorescein 

diacetate (DCFH-DA), H2O2, fetal bovine serum (FBS) , mammalian 

protease inhibitor mixture,  glucose-6-phosphate, glucose-6-phosphate 

dehydrogenase, bovine serum albumin, NADP, dimethyl sulfoxide 

(DMSO), 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) 

(ABTS), glutamine, penicillin-streptomycin,  reduced glutathione 

(GSH), 2 LY 294002 (LY), PD 98059 (PD), SB 203580 (SB), DMEM 

F12, DMEM, fetal caw serum (FCS), horse serum (HS), Gentamicin, 

Amphotericin B, acetyl-Asp-Glu-Val-Asp-7-amido-4-methylcoumarin 

(Ac-DEVD-AMC), 7-amino-4-Methylcoumarin (AMC), trypsin, and 

all other chemicals of the highest analytical grade were purchased 

from Sigma Chemical Co. (St. Louis, MO, USA).  3,8-

phenanthridinediamine, 5-(60-triphenylphosphoniumhexyl)-5,6 

dihydro-6-phenyl (MitoSOX) was purchased from Invitrogen (Paisley, 
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UK). Dihydroethidium (DHE) was purchased from Molecular Probes 

(Eugene, OR,USA). 

6.2 Cells line 

Neonatal Wistar rat cardiomyocytes were isolated as reported (Hrelia 

et al. 2002). Briefly, cells were obtained by isolation of 

cardiomyocytes from the ventricles of 2–4 days old Wistar rats, 

seeded at a density of 1x105 cells/cm2 and grown until confluence in 

DMEM F12 supplemented with 10% v/v FCS, 10% v/v HS, 1% v/v 

gentamicin, 1% v/v Amphotericin B and 1% v/v sodium pyruvate and 

incubated at 37C° in 5% CO2 humidified atmosphere. 

The human neuroblastoma cell line SHSY-5Y was purchased from 

Sigma Chemical Co. (St.Louis, MO, USA). The cells  were grown in 

DMEM medium supplemented with 10% v/v heat inactivated FBS, 

1% v/v 200mM gentamicin and 1% v/v penicillin-streptomycin. 

 

6.3 Preconditioning, oxidative stress, carbonyl  

      stress and SF treatment 

PC was simulated with different concentration of H2O2 (1µM, 5µM, 

10µM, 50µM and 100µM) for 10 minutes.  

Oxidative stress was induced by exposing the cells to H2O2 100µM for 

30 minutes. 

Carbonyl stress was induced by exposing cardiomyocytes to MG 

1mM for 24 hours and SHSY-5Y to MG 0.5mM for 24 hours 
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Cells were treated with 5 µM SF for different time points, and control 

cells were treated with equivalent concentrations of DMSO alone. SF 

concentration utilized in this study is readily achievable in rat and 

human plasma (Hu et al. 2004; Gasper et al. 2005). 

 

6.4 Cell viability assay 

Cell viability was evaluated by measuring MTT reduction. At the end 

of each experiments, MTT was added to the cell medium (final 

concentration 0.5 mg/mL) and incubated for 1 h at 37° C. After 

incubation, MTT solutions were removed, DMSO was added and the 

absorbance was measured using a microplate spectrophotometer 

(VICTOR3 V Multilabel Counter, Perkin Elmer e Wellesley, MA, 

USA) at a wavelength of 595 nm.  

 

6.5 Caspase-3 activity assay 

The activity of caspase 3 was measured by hydrolysis of the peptide 

substrate Ac-DEVDAMC by caspase 3, resulting in the release of the 

fluorescent 7-amino-4-methylcoumarin moiety (Nicholson et al. 

1995). Cells were lysated in lysis buffer (50 mM Tris, 0.1% Triton X-

100, 150mM NaCl, 2mM EGTA/EDTA, 1mM sodium pyrophosphate, 

10 mg/mL phenylmethylsulfonyl fluoride, 1 mM sodium vanadate, 50 

mM sodium fluoride, 1 mg/mL aprotinin and then centrifuged 5 min at 

5000 g. From each sample, 5µl was transferred to a 96-well plate and 

200µl of reaction mix (20 mM HEPES pH 7.4, 0.1% CHAPS, 5mM 

DTT and 2mM EDTA) containing Ac-DEVDAMC (final 
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concentration 16 µM), was added to each well. Fluorescence intensity 

was recorded every 5 min for 1 h by amicroplate spectrofluorometer 

(λex/em= 360/460 nm). Caspase activity was calculated using a AMC 

standard curve and results were expressed as nmol AMC/min/mg 

protein. 

 

6.6  Detection of intracellular ROS production  

• Confocal microscopy: ROS formation in cardiomyocytes was 

visualized as follows. Cells were incubated with 5 µM SF for 24 

h, exposed to1 mM MG for 24 h, and then washed twice with 

warm PBS, and DHE and MitoSOX were added to cells at a 

final concentration of 5 µM. After incubation with DHE 

(20min) and MitoSOX (10 min), cells were fixed with 4% 

paraformaldehyde for 10 min, mounted onto glass slides with 

Mowiol, and observed under a confocal microscope with 

excitation and emission wavelengths set to 490 and 590 

nm,respectively (Marella et al. 2007; White et al. 2008). All 

images were taken under identical exposure conditions in order 

to evaluate the intensity of the probe fluorescence accurately. 

Confocal imaging was performed on a Nikon A1 confocal laser 

scanning microscope as previously described (Resca et al. 

2013). The confocal serial sections were processed with ImageJ 

software to obtain three-dimensional projections, as previously 

described (Maraldi et al. 2013). The image rendering was 

performed by Adobe Photoshop software. 
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• Spectrofluorimetric assays: ROS production was evaluated 

using different fluorescence probe: DCFH-DA, DHE and 

MitoSOX. At the end of treatment cells were washed with PBS 

and then incubated with 5 µM DCFH-DA for 30 min. Next, 

cells were incubated with 1mM MG. Cell fluorescence was 

measured using a microplate spectrofluorometer (VICTOR3 V 

Multilabel Counter) (λex/em=485/535nm) as previously 

reported (Bradford 1976). Cells were treated with 5 µM SF for 

24 h and then exposed to 1 mM MG. Cells were washed with 

PBS and incubated with 5 µM DHE for 20 min or 5µM 

MitoSOX for 10 min at 37 °C. Cell fluorescence was measured 

using a microplate spectrofluorometer (VICTOR3 V Multilabel 

Counter) (λex/em=485/590nm). 

 

• Total antioxidant activity (TAA): TAA assay, performed as 

previously reported (Bordoni et al. 2005), was used as an 

indirect index of intracellular ROS production. Briefly, at the 

end of each experiment, cardiomyocytes were washed 3 times 

with cold PBS. Cells were lysated in PBS using a potter 

homogeniser and centrifuged at 1000g to remove cell debri. 

TAA was determined by the decoloration of the radical cation 

ABTS, in terms of quenching of absorbance at 740nm. Values 

obtained for each sample were compared with the 

concentration– response curve of a standard Trolox solution, 

and espresse as µmol of Trolox Equivalent Antioxidant Activity 

per mg of protein (TEAA µmol/mg protein). 
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6.8 Western blotting 

Preparation of nuclear and cytoplasmic fractions were performed 

according to the method of  (Bahia et al. 2008) and whole-cell extracts 

with CelLytic TMM Cell lysis reagent, with mammalian protease 

inhibitor mixture and PhosSTOP. Samples were boiled for 5 min prior 

to separation on 10% SDS-PAGE. The proteins were transferred to a 

nitrocellulose membrane (Hybond-C; GE Healthcare, 

Buckinghamshire, UK) in Tris-glycine buffer at 110 V for 90 min. 

Membranes were then incubated in a blocking buffer containing 5% 

(w/v) skimmed milk and incubated with anti-GST (Alpha Diagnostic 

International, San Antonio, TX, USA), anti-GR (AbFrontier, Seoul, 

Korea), anti-TRred (Upstate, Lake Placid, NY, USA), anti-GPX1 (Lab 

Frontier, Seoul, Korea), anti-NQO1, anti-SOD1, anti-SOD2, anti-

CAT, anti-Nrf1, anti-Nrf2, anti-GLO1 (Santa Cruz Biotechnology, 

Santa Cruz, CA, USA), anti-phospho-p38, anti-phsopho-ERK1/2, 

anti-phosho-Akt, anti-Bcl2, anti-Caspase 3 (Cell Signaling 

Technology, Beverly, MA, USA), and anti-β-actin (SIGMA) and anti-

Histone H3 (Cell Signaling Technology), as internal normalizers, 

overnight at 4°C on a three-dimensional rocking table. The results 

were visualized by chemiluminescence using ECL® Advance reagent 



96 

 

according to the manufacturer's protocol (GE Healthcare). 

Semiquantitative analysis of specific immunolabeled bands was 

performed using a Fluor S image analyzer (Bio-Rad, Hercules, CA, 

USA). 

 

6.9 Enzymatic activity assays 

NAD(P)H quinone oxidoreductase 1 (NQO1) enzymatic activity was 

measured according to the procedure of  Prochaska et al. (1988). 

Glutathione S-transferase (GST) activity was assayed according to the 

procedure of  Habing et al. (1974). Thioredoxin reductase (TRred) 

activity was assayed according to the procedure of Holmgren and 

Bjornstedt (1995). Glutathione reductase (GR) activity was measured 

according to the method of  Smith et al. (1988). Glutathione 

peroxidase (GPX) activity was assayed according to the method 

described by Flohe et al. (1984). Catalase (CAT) activity was 

determined according to the method of Johanssonet al. (1988). 

Superoxide dismutase (SOD) activity was measured according to the 

method of  Peskin et al.(2000). Glyoxalase 1 (GLO1) activity was 

measured according to the method of Mclellan anf Thornalley  (1989). 
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6.10 AGE assay 

AGE protein adducts were quantified by the OxiSelect™ AGE ELISA 

Kit (Cell Biolabs, San Diego, CA, USA) according to manufacturers’ 

instructions 

 

6.11Detection of reduce GSH level 

Reduce GSH level was evaluated using a thyole reactive dye 

monochlorobimane (MCB) which is essentially non-fluorescent until 

it reacts with GSH to form a fluorescent GSH-MCB conjugate (Rice 

et al. 1986). At the end of treatments, cells were incubated with 50µM 

MCB in HBSS for 30 minutes. Cell fluorescence was measured using 

355 excitation and 460nm emission with a microplate 

spectrofluorometer  (VICTOR 3 VTM Multilabel Counter) 
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6.12 Small-interfering RNA transfection  

Cardiomyocyteswere transfected with 50 nM Nrf1- and Nrf2-annealed 

small interfering (si)RNA (Invitrogen, Pisley, UK) using 

Lipifectamine 2000 for 12 h according to manufacturer’s 

recommendations. The siRNA sequences utilized targeted the 

following rat Nrf1 coding sequences: 5’-

GACUUCUUGGACAAGCAGAUGA-3’ and 5’-

UCAUCUGCUUGUCCAAGAAGUCAGC-3’ and the following rat 

Nrf2 sequences: 5’-UGGAGCAAGACUUGGGCCACUUAAA-3’ 

and 5’-UUUAAGUGGCCCAAGUCUUGCUCCA-3’. Control 

expriments were formed using equivalent amounts of the StealthTM 

RNAi Negative Control Med GC (Invitrogen).. 

 

6.13 Protein concentration 

The protein concentration of the cell lysates was determined by the 

Bio-Rad Bradford protein assay (Bio-Rad Laboratories, Hercules, CA, 

USA). 

 

6.14 Statistics 

Each experiment was performed at least three times, and all values are 

represented as means ± SD. One-way analysis of variance (ANOVA) 

was used to compare differences among groups followed by Dunnett’s 

or Bonferroni’s test (Prism 5, GraphPad Software Inc., San Diego, 

CA, USA). Values of p<0.05 were considered as statistically 

significant. 
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CHAPTER 7 

 

7 RESULTS 

 

7.1 Protective effects of H2O2 preconditioning 

     Against oxidative stress in cardiomyocytes 

 

7.1.1 Preconditioning protective effect 

First objective of this thesis was to determine the concentrations of  

H2O2 able to simulate ischemic preconditioning (PC) in vitro. 

Cardiomyocytes were treated with different concentrations of  H2O2 

(1, 5, 10, 50, 100 µM ) for 10 min (preconditioning) and after 24 h 

were subjected to oxidative stress induced by hydrogen peroxide 100 

µM for 30 min. Cell viability was assessed by MTT assay 24 h after 

oxidative stress. 

In cells not preconditioned, oxidative stress determined a significant 

reduction of cell viability of about 50 % (Fig.7-1). Treatments with 1-

10 µM H2O2 did not show any protective effects against oxidative 

stress, meanwhile 50 and 100 µM H2O2 were able to significant 

increase cell viability in respect to cells exposed to oxidative stress. 

Interestingy, treatment with 100 µM H2O2 increased cell viability to 

values comparable to control cells. 
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Figure 7-1: Effect of H2O2 preconditioning (PC) on cell viability in 

cardiomyocytes exposed to oxidative stress. Cells were treated with  increasing 

concentrations of H2O2 (1-100 µM) for 10 min. After 24 h, cells were stressed 

with 100 µM H2O2 for 30 min and cell viability was assessed by the MTT assay 

and reported as %cell viability compared with controls .Each bar represents 

means ± SD of 4 independent experiments. Data were analyzed by one-way 

ANOVA followed by Bonferroni’s test: *p< 0.05 vs Control; °p< 0.05 vs 0 

(Stressed cells) 
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Ischemic PC is a phenomenon that has a biphasic pattern characterized 

by two different time windows of protection: a first phase of 

protection ( or first window of protection) that develops immediately 

and disappears within 1-2 hours after the induction of PC (VanWinkle 

1991) and a second phase of protection (or second window of 

protection) that occurs 12 hours later by the induction of the PC and 

lasts for 72-96 hours (Marber et al. 1993). To understand if the main 

contribute of H2O2 PC is in the early or delayed PC, cells were 

preconditioned with H2O2 and stressed after different time from the 

induction of PC (1–72 h). Data reported in figure 7-2 show that after 1 

and 2 h from PC cell viability was significantly higher than that 

measured in not preconditioned cells. After 24 h from PC, cells are 

able to counteract oxidative stress damage with the highest efficiency 

maintaining cell viability at value comparable to control cells.After 48 

and 72 h from PC, H2O2 is still able to counteract oxidative stress 

injury but to a lesser extent than after 24 h from PC. These results 

suggest that H2O2 PC exerts its cardioprotectivea ction mainly in the 

late phase of PC. 
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Figure 7-2: Cell viability of cardiomyocytes subjected to H2O2  PC and 

oxidative stress at different times. Cells were treated with 100 µM H2O2 for 10 

minutes and recovered for different times periods (1-72 h) before the induction of 

oxidative stress. Cell viability was assessed by the MTT assay and reported as % 

cell viability compared with controls. Each bar represent  means ± SD of 4 

independent experiments. Data were analyzed by one-way  ANOVA followed by 

Bonferroni’s test: *p< 0.05 vs Control cells; °p< 0.05 vs 0 (Stressed cells) 
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To better understand  the role of  H2O2-PC against oxidative stress, we 

evaluated its effect against apoptosis. Apoptosis was assessed by flow 

cytometry, caspase-3 activity  and Bcl2 protein levels (Fig.7-3).  

Cell were preconditioned with H2O2 100 µM and after 24 h were 

exposed to oxidative stress. 

Cytofluorimetric assay (figure 7-3 A) revealed that H2O2-PC protected 

cardiomyocytes against apoptosis induced by oxidative stress. H2O2-

PC alone did not influence the percentage of apoptotic/necrotic cells 

in respect to controls, while oxidative stress induced a marked shift of 

the population from viable cells to early and late apoptotic cells. 

Preconditioning before oxidative stress was able to reduce the shift of 

cells from the viable to the apoptotic region in respect to oxidative 

stress alone. 

To further demonstrate the protection of 100 µM H2O2-PC against 

apoptosis, the activity of caspase-3, a key enzyme required for the 

execution of apoptosis, was measured. The activation of this enzyme 

represents a consolidated biomarker of apoptotic death. Cell were 

preconditioned with 100 µM H2O2 and after 24 h were exposed to 

oxidative stress (Fig.7-3 B). PC alone had no significant effect on 

caspase-3 activation. Oxidative stress significantly increased caspase-

3 activity in cardiomyocytes, while H2O2-PC significantly reduced 

caspase-3 activity induced by oxidative stress. 

One of the major genes responsible for regulating apoptosis is the 

proto-oncogene Bcl-2 localized to the nuclear membrane, endoplasmic 

reticulum and the outer mitochondrial membrane. It has been 



104 

 

demonstrated that Bcl-2 protein plays an anti-apoptotic role in  cardiac 

cells. We evaluated the expression of Bcl2 in preconditioned 

cardiomyoctytes after different time points from PC (figure 7-3 C). 

Immediately after H2O2 PC induction, Bcl2 expression was 

significantly increased compared with control cells and this induction 

lasted until 24 h from H2O2 PC. At 48 and 72 h from PC, Bcl2 

expression was comparable to control cells.  
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Figure 7-3: Effect of H2O2-

PC on apoptosis. Apoptosis 

was assessed by flow 

cytometry (A), caspase-3 

activity (B), and Bcl2 

protein levels (C). A: 

cardiomyocytes were 

preconditioned with 100 

µM H2O2 for 10 min and 

after 24 h were exposed to 

oxidative stress and flow 

cytometry was assesd using 

annexin  

V-phycoerythrin (PE)/7-

amino-actinomycin D (7-

AAD) described in the 

Materials and Methods 

chapter. B: caspase-3 

activity was measured 

spectrofluorimetrically in cell lysates as reported in METHODS. Each column represents 

the means ± SD of 4 independent experiments. Data were analyzed by one-way ANOVA 

followed by Bonferroni’s test. *P _ 0.05, with respect to control; °P _ 0.05, with respect to 

stress. Cardiomyocytes were exposed to H2O2 100 µM  for 10 minutes and lysates were 

obtained at different times after induction of the PC. Proteins were subjected to SDS-PAGE 

electrophoresis,s separated on the gel and transferred to nitrocellulose, incubated with anti-

Bcl2 antibody and detected by chemiluminescence as described in the Materials and 

Methods chapter. Anti β-actin were used as controls charcing. Densitometric analysis was 

performed on three separate nitrocellulose membranes. The data are reported as an 

increase compared to the control ± SD. The statistical analysis was performed with the test 

one-way ANOVA followed by Dunnet test: *p< 0.05 vs Control cells 
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7.1.4 Effect of H2O2 PC on intracellular ROS production 

Intracellular ROS production was measured to study the involvement 

of PC in modifying intracellular redox state. Cardiomyocytes were 

treated with different concentrations of  H2O2 and after 24 h were 

exposed to oxidative stress (Fig.7-4). Treatment with 1-10 µM H2O2 

did not influence ROS levels compared to cells not treated and 

exposed to oxidative stress (control+). On the contrary, 50 and 100 

µM H2O2 were able to significantly reduce ROS production compared 

to control+, in agreement with the data obtained with the MTT assay. 
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Figure 7-4: Preconditiong effect on the intracellular ROS production.  Cells 

were preconditioned with 1-100 µM H2O2  and after 24 h recovery were exposed 

to oxidative stress. Iintracellular reactive oxygen species was assessed by DCFH-

DA assay and values  represent  means ± SD  of 6 independent experiments. Data 

were analyzed by one-way ANOVA followed by Dunnet test: *p< 0.05 vs 

Control+ 
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7.1.5 Effect of H2O2 PC on antioxidant/phase II enzyme  

         induction and activity 

As H2O2 can not act as an antioxidant and its major protective effect is 

after 24 h from PC, we assumed that H2O2 PC antioxidant capacity 

could be ascribed to its ability to enhance the endogenous antioxidant 

defense system through the synthesis of new cardioprotective proteins. 

We therefore analyzed protein expression and activities of the main 

antioxidant and phase II enzymes: glutathione reductase (GR), 

thioredoxin reductase (TR),  NAD(P)H quinone oxidoreductase 1 

(NQO1), glutathione S-transferase (GST), glutathione peroxidase 

(GPX),catalase (CAT) and superoxide dismutase (SOD).  

Cardiomyocytes were preconditioned with different concentrations of 

H2O2 (1-100 µM) for 10 minutes and protein expression was evaluated 

after 24 h by immunoblotting.  

SOD1, SOD2, GPX, and GST expressions were not influenced by 

H2O2 PC at any tested concentrations (data not shown). On the other 

hand, GR, NQO1, and TRred expressions were significantly increased 

by 50 and 100 µM H2O2 PC, while CAT expression revealed a 

significant increase only at the highest H2O2 concentration (Fig.7-5). 

1-10 µM H2O2 did not modify protein level in respect to controls . In 

contrast, the concentration of 50 µM induces significantly GR, TR and  

NQO1, while the concentration 100 µM was able to induce , in 

addition to GR, TR and NQO1 also CAT, GST, GPX, while SOD was 

not affected PC. 
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To evaluate whether protein expression modifications were related to 

functional effects, enzyme activities were measured in the same 

experimental conditions. SOD, GPX, and GST activities were not 

modulated by H2O2 PC in respect to control cells (Table 7.1). In 

agreement with expression data, GR, NQO1, and TRred activities 

were significantly increased by 50 and 100 µM H2O2 treatment, while 

CAT activity was increased only by100 µM H2O2 PC.   
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Figure 7-5: Preconditiong effect on the induction of antioxidant phase II 

enzymes.  Cardiomyocytes were preconditioned with H2O2 1-100 µM  for 10 

minutes. Cell lysates (20µg) were immunoblotted with antibodies that detect 

endogenous levels of glutathione reductase (GR), catalase (CAT), thioredoxine 

reductase (TRred), and NAD(P)H quinone oxidoreductase 1 (NQO1). Results of 

scanning densitometry analysis permorfed on 3 independent antoradiograph are 

presented. Relative amounts (means ± SD) were normalized to the intensity of the 

same β-actin blot and represented as fold increase in respect to control. Data 

were analyzed by  one-way ANOVA followed by Dunnet’s test: *p< 0.05 vs 

Control cells 
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Table 7.1: Effects of different concentrations of H2O2 for 10 min on SOD, GPX, 

GST, GR, TRred, CAT, and NQO1 activities. 

µµµµM 

H2O2 

SOD  

(U/mg 

protein) 

GPX 

(mU/mg 

protein) 

GST 

(nmol/min

/mg 

protein) 

GR 

(mU/mg 

protein) 

TRred  

(mU/mg 

protein) 

CAT 

(nmol/min/

mg 

protein) 

NQO1 

(noml/min/

mg 

protein) 

0 2.20±0.17 48.70±3.06 11.29±0.68 10.92±1.18 52.72±1.22 39.12±2.73 10.17±1.54 

1 2.23±0.16 54.98±3.43 10.96±0.64 10.98±0.47 53.47±5.98 41.93±4.80 10.30±1.30 

5 2.22±0.19 54.80±5.72 11.02±0.47 11.40±0.68 50.46±2.73 40.17±3.75 9.86±2.42 

10 2.30±0.14 53.13±10.11 10.03±0.54 10.43±0.26 53.84±6.07 37.17±5.44 12.99±3.98 

50 2.33±0.16 51.06±5.00 11.07±1.11 14.19±0.78* 60.65±2.83* 43.37±1.88 18.16±2.85* 

100 2.35±0.05 53.58±1.43 11.89±0.63 14.48±0.36* 76.77±5.94* 63.87±5.54* 20.38±2.85* 

 

*Value represents the mean ± SD of four independent experiments. 

Cardiomyocytes were preconditioned with 1-100 µM H2O2 for 10 min, and after 

24 h cells were lysed for enzymatic activity measures. GPX, glutathione 

peroxidase; GST, glutathione S-transferase; GR, glutathione reductase; TRred, 

thioredoxine reductase; CAT, catalase; NQO1, NAD(P)H quinone oxidoreductase 

1. Data were analyzed by one-way analysis of variance (ANOVA) followed by 

Dunnett’s test. * p<0.05 with respect to 0 µM H2O2 (Control) 

 

 

7.1.6 Effect of H2O2 PC on Nrf1 and Nrf2 activation. 

It has been shown that the expression of antioxidants and phase II 

enzymes is modulated by Nrf1 and Nrf2 thorugh the ARE/keap1 

pathway (Brigelius-Flohe et al. 2006; Purdom-Dickinson et al. 2007; 

Zhu et al. 2008) . Therefore,  we evaluated the effect of PC on Nrf1 
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and Nrf2 nuclear traslocation after different times from PC induction 

by analyzing both cytosolic and nuclear fractions (Figure 7-6 and 7-7). 

Results showed that PC induces Nrf2 translocation from the cytosol to 

the nucleus (Fig. 7-6). Indeed, Nrf2 expression in the nuclear fraction 

after 2 h from PC is significantly higher than that observed in control 

cells. In contrast, Nrf2 protein level in the cytosolic fraction decreases 

significantly after 0-3 h after PC, reaching levels similar or higher 

than those observed in control cells 6-24 h after PC induction. 

In a similar way, Nrf1 is translocated from the cytosol to the nucleus 

following PC (Figure 7-7). Nrf1 protein level in the nuclear fraction is 

significantly higher than that observed in control cells already after 1 

h after PC, while Nrf1 protein level in the cytosolic fraction decreases 

slightly after 2 h from the PC. 
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Figure 7-6: Preconditioning effect on the Nrf2 activation. Proteins were 

extracted at the indicated time points following H2O2 PC treatment. Crude 

homogenates (20µg) were immunoblotted with antibodies that detect endogenous 

Nrf2 levels in the cytosolic and nuclear fractions. Results of scanning 

densotometry analysis permormed on 3 independent autoradiograph are 

presented. Relative amounts (means ± SD) were normalized to the intensity of  β-

actin (cytosolic fraction) or histone H3 (nuclear fraction) and represented as fold 

increase in respect to control. Data were analyzed by  one-way ANOVA followed 

by Dunnet’s test: *p< 0.05 vs Control cells 
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Figure 7-7: Preconditioning effect on the Nrf1 activation. Proteins were 

extracted at the indicated time points following H2O2 PC treatment. Crude 

homogenates (20µg) were immunoblotted with antibodies that detect endogenous 

Nrf1 levels in the cytosolic and nuclear fractions. Results of scanning 

densotometry analysis permormed on 3 independent autoradiograph are 

presented. Relative amounts (means ± SD) were normalized to the intensity of  β-

actin (cytosolic fraction) or histone H3 (nuclear fraction) and represented as fold 

increase in respect to control. Data were analyzed by  one-way ANOVA followed 

by Dunnet’s test: *p< 0.05 vs Control cells 
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7.1.7 Effect of Nrf1 and Nrf2 silencing on H2O2 PC 

         induction of phase II enzymes. 

To clarify the role of Nrf1 and Nrf2 in the induction of phase II 

enzymes in preconditioned cardiomyocytes, cells were transfected 

with  Nrf1-siRNA and Nrf2 -siRNA, and scrambled control siRNA, 

and protein expression levels were determined 48 h posttransfection 

by Western blot analysis. Both Nrf1-siRNA and Nrf2-siRNA were 

able to strongly downregulate Nrf1 and Nrf2 (Figure 7-8 A) 

In cells transfected with Nrf1-siRNA and Nrf2 -siRNA was evaluated 

the effect of PC on the induction of phase II enzymes (Figure 7-8 B). 

Cells were transfected and after 48 h were preconditioned with H2O2 

100 µM. Proteins were extracted 24 hours after PC induction. It’s 

interesting to note that  the down-regulation of both Nrf1 and Nrf2  

determines a marked reduction NQO1, CAT, GR and TRred protein 

level compared to non- silenced and preconditioned cells. 
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Figure 7-8: Role of Nrf1 and Nrf2 in H2O2 PC-induction of phase II enzyme.  

A)effect of Nrf1-small interfering (si)RNA and Nrf2-siRNA on Nrf1 and Nrf2 

expression. Cardiomyocytes were transfected with 50 nM Nrf1-siRNA and Nrf2-

siRNA and after 48 h cell lysates were immunoblotted with antibodies for Nrf1 

and Nrf2 and β-actin. Representative immunoblots of 3 differentexperiments are 

reported. B) effect of Nrf1-siRNA and Nrf2-siRNA on NQO1, CAT, GR and TRred 

expression. Cardiomyocytes were transfected with 50 mM Nrf1-siRNA and Nrf2-

siRNA 48 h before H2O2 PC. Cell lysates were immunoblotted with antibodies for 

NQO1, CAT, GR, TRred and β-actin. Representative immunoblots of 3 different 

experiments are reported. 

 

A 

B 
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7.1.8 Role of ERK1/2, p38 MAPK, and PI3K/Akt    

         signaling in H2O2 PC.  

In accordance with the widely accepted role of protein kinases in 

cardioprotection against many stimuli like oxidative stress, we 

evaluated, by immunoblot analysis, the phosphorylation, i.e. the 

activation, of three fundamental protein kinases: ERK1/2, p38 MAPK, 

and PI3K/Akt. Figure 7-9 A reports representative immunoblots of 

cardiomyocytes preconditioned with 1-100 µM H2O2 for 10 min. 

Phospho-ERK1/2 MAPK expression was significantly increased at 

any H2O2 concentrations, while p38 MAPK and Akt were 

significantly activated only by 50 and 100 µM H2O2. To investigate 

the role of these protein kinases in mediating the cardioprotection 

afforded by PC, we pre-treated cardiomyocytes with specific 

inhibitors of Akt-phosphorylation (20 µM LY), ERK1/2-

phosphorylation (20 µM PD) and p38-phosphorylation (20 µM SB) 

for 1 h, before PC. Cell viability in the absence or presence of the 

different inhibitors is reported in Fig. 7-9 B. The three inhibitors alone 

did not influence cell viability. LY and SB significantly reversed the 

cardioprotective effects of PC, while PD did not modify PC protective 

effect against oxidative stress, suggesting a role of p38 MAPK and 

Akt in the cardioprotection elicited by H2O2-PC. To investigate the 

role of p38 MAPK and Akt in the induction of antioxidant and phase 

II enzymes, cardiomyocytes were pre-treated with LY or SB for 1 h 

before H2O2 PC and GR, TRred, CAT, and NQO1 protein level was 

evaluated by immunoblot analysis (Figure 7-10). LY and SB 

significantly inhibited the induction of  GR, CAT and TRred due to 
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PC. Surprisingly, p38 and Akt inhibitors were not able to reduce the 

induction of NQO1, indicating a role of the two kinases only in the 

induction of GR, CAT and TRred. Enzyme activities, measured in the 

same experimental conditions, are in agreement with the 

immunoblotting data (Table 7-2). DMSO, the vehicle of PD, LY and 

SB, did not influence any parameters (data not shown). 
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Figure 7-9: Role of ERK1/2, Akt, and p38 MAPK in H2O2 cardioprotection.  

A: cardiomyocytes were preconditioned with 1–100 µM H2O2 for 10 min. Cell 

lysates were immunoblotted with antibodies specific for phospho-ERK1/2, 

phospho-p38, and phospho-Akt. Representative immunoblots of 3 different 

experiments are reported. B: cardiomyocytes were incubated with PD-98059 

(PD), LY-294002 (LY), and SB-203580 (SB) before H2O2-PC and after 24h were 

exposed to oxidative stress. Cellular damage was assessed by MTT assay and 

reported as %cell viability compared with control_. Each bar represents the 

means ± SD of 4 independent experiments. Data were analyzed by one-way 

ANOVA followed by Bonferroni’s test. *P < 0.05, with respect to control -;  

°P < 0.05, with respect to stress (control +); ^P < 0.05, with respect to H2O2-PC. 
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Figure 7-10: Role of Akt and p38 MAPK in H2O2-PC induction of phase II 

enzymes. Cardiomyocytes were incubated with LY or SB before H2O2-PC. Cell 

lysates were immunoblotted with antibodies for GR, TRred, CAT, and NQO1. 

Representative immunoblots of 3 different experiments are reported. White line 

inserted in NQO1 blot represents a skipped line. Results of scanning densitometry 

analysis performed on 3 independent autoradiographs are presented. Relative 

amounts (means ± SD) were normalized to the intensity of the same β-actin blot 

and represented as fold increase in respect to controls. Data were analyzed by 

one-way ANOVA followed by Bonferroni’s test. *P < 0.05, with respect to 

control; °P < 0.05, with respect to PC.  
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Table 7-2: Effects of LY and SB on GR, TRred, CAT, and NQO1 activities after 

H2O2-PC 

 GR (mU/mg 

protein) 

TR 

(nmol/min/mg 

protein) 

CAT 

(nmol/min/mg 

protein) 

NQO1 

(mU/mg 

protein) 

Control 10.92±1.18 52.72±1.22 39.12±2.73 10.17±1.54 

PC 14.48±0.36* 76.77±5.94* 63.87±5.54* 20.38±2.85* 

LY 10.421±0.62° 54.54±2.01° 40.10±1.45° 10.00±1.10° 

SB 10.14±0.79° 49.19±6.96° 38.41±3.39° 19.56±0.26° 

LY+PC 10.87±1.32° 64.25±3.59*° 49.62±1.34*° 20.54±2.75* 

SB+PC 11.78±1.04° 65.13±7.53*° 49.95±4.95*° 19.87±1.42* 

 

Value represent means ± SD of 4 independent experiments. Data were analyzed 

by one-way ANOVA followed by Bonferroni’s test. Cardiomyocytes were 

incubated with LY-294002 (LY) or SB-203580 (SB) before H2O2 preconditioning 

(PC), and after 24 h cells were lysed for enzymatic activity measures. *P < 0.05, 

with respect to control; °P < 0.05, with respect to PC. 
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7.2 Effects of SF on carbonyl stress induced by  

     MG in cardiomyocytes 

 

7.2.1 Effects of methylglyoxal on cell viability in 

          cardiomyocytes    

The first point was to evaluate the potential cytotoxicity of 

methylglyoxal (MG) and to determine the IC50 value in  primary 

cultures of neonatal rat cardiomyocytes.  

Cells were treated with increasing MG concentrations (0.1-5 mM) and 

the MTT cell viability assay was assessed after 24 h (fig 7-11).  

At the lowest MG concentrations (0.1-0.5 mM) cell viability was 

comparable to those of control cells, while 0.75-5 mM MG 

siginficantly reduced cell viability compared to control cells. In 

particular, at 1.0 mM cell viability was 50% lower than control cells. 

We decided to choose the concentration of 1.0 mM as an IC50 value in 

subsequent experiments. 
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Figure 7-11: Effect of MG on cell viability of cultured cardiomyocytes. Cells 

were treated with MG (0.1-5 mM) for 24 h. Cell viability was assessed by the 

MTT assay and reported as % cell viability compared with Control. Each bar 

represents means ± SD of 4 independent experiments. Data were analyzed by one-

way ANOVA followed by Dunnett’s ttest: *p< 0.05 vs Control 

 

 

7.2.2 SF protection against MG-induced damage 

Subsequently, we evaluated the possible protective effect of SF 

against carbonyl stress induced by MG. Cardiomyocytes were pre-

treated with 5µM SF for 24 h, exposed to MG 1 mM and after 24 h 

cell viability was determined by MTT assay (figure 7-12). 5 µM SF 

was chosen because it has been previously shown that this is the 

minimum concentration able to evoke the maximum protective effect 
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against oxidative stress in (Angeloni et al. 2009). Treatment with SF 

significantly increased cell viability compared to cells exposed only to  

MG (Fig. 7-12); although cell viability was significantly lower 

compared to that measured in control cells. 

 

 

 

Figure 7-12: Protective effect of SF against carbonyl stress induced by MG. 

Cells were pre-treated with  5µM SF for 24 h before the addition of 1mM MG. 

Cell viability was assessed by the MTT assay and reported as % cell viability in 

comparison to control. Each bar represent means ± SD of  3 independent 

experiments. Data were analyzed by one-way ANOVA followed by Bonferroni’s 

test: *p< 0.05 vs Control cells; °p< 0.05 vs MG 
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To better understand the fate of cells exposed to MG, we evaluated the 

activation and activity of caspase-3. Cells were pre-treated with 5 µM 

SF for 24 h, exposed to 1 mM MG and after 24 h cells were lysed and 

proteins extracted for immunoblotting or caspase 3 activity (Figure 7-

13). Results indicate that MG increase protein content of caspase 3 

active form (17 kDa fragment) and concurrently decrease caspase 3 

pro-inactive form in respect to Control. In agreement with MTT data, 

pre-treatment with SF reduces the formation of the low molecular 

weight fragment in MG exposed cells, indicating that this compound 

is able to counteract apoptotic cell death induced by MG. To confirm 

these results, caspase 3 activity has been evaluated in the same 

experimental conditions (Fig. 7-13 B). Exposure to MG causes a 

significant increase in the activity of the enzyme compared to control 

cells, meanwhile pre-treatment with 5 µM SF significant decrease 

caspase 3 activity in MG treated cells compared to cells exposed to 

MG but not pre-treated with SF. 

 

 

 

 

 

 

 

 

 

 



126 

 

a) 

 

 b) 

          

Figure 7-13: SF protective effects against MG-induced apoptosis in 

cardiomyocytes Cells were pre-treated with  5µM SF for 24 h before the addition 

of 1mM MG. a) Cell lysates were immunoblotted with caspase-3 antibody that 

detects both full length caspase-3 (35kDa) and the large fragment of caspase-3 

resulting from cleavage (17 kDa). b) Caspace-3 activity was measured 

spectrofluorimetrically by hydrolysis of the peptidesubstrate Ac-DEVD-AMC. 

Each bar represent means ± SD of  3 independent experiments. Data were 

analyzed by one-way ANOVA followed by Bonferroni’s test: *p< 0.05 vs Control 

cells; °p< 0.05 vs MG 
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7.2.3  SF effect against MG-induced ROS production in 

cardiomyocytes 

 

GLO1 is a GSH-dependent enzyme and excess MG presents serious 

toxic effects since it depletes GSH via a covalent bond. As GSH is one 

of the most important endogenous antioxidant molecules, its depletion 

could be related to an increase in ROS. To verify if SF is able to 

counteract oxidative stress in MG exposed cardiomyocytes we used 3 

different probes, DCHF-DA, DHE, and MitoSOX to measure 

intracellular ROS production. Representative confocal fluorescent 

micrographs of cardiomyocytes pre-treated with 5 µM SF for 24 h, 

exposed to 1 mM MG and stained with DHE or MitoSox are shown in 

figure 7-14. MG induced a marked increase in DHE and MitoSox 

fluorescence intensity, while SF was able to maintain fluorescence 

intensity to value comparable to control cells. SF alone had no effect 

on fluorescence intensity of cells stained with DHE and MitoSox. 
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Figure 7-14: Confocal microscopy analysis of SF effect on MG-induced ROS 

production. Cardiomyocytes were treated with 5 µM SF for 24 h before the 

addiction of 1mM MG. Cytosolic ROS production was measured using DHE and 

mitochondrial ROS production by MitoSOx staining. Scale bar 10 µm 
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Semi-quantitative measurements by fluorescent plate reader of DCHF-

DA, DHE and MitoSox stained cardiomyocytes are reported in figure 

7-15. MG exposure induced a significant increase in intracellular ROS 

levels. In particular, the highest increase was obtained with DCHF-

DA, the less specific probe able to detect non only H2O2 but also 

several one-electron-oxidazing species (Kalyanaraman et al. 

2011)(Fig.7-15a). In agreement with the results obtained by confocal 

microscopy, MG treatment significantly increased the fluorescence 

intensity of DHE and MitoSox that more specifically target 

superoxide (Fig.7-15b and c). SF was able to counteract the 

intracellular ROS level increase induced by MG, maintaining 

fluorescence intensity of the 3 probes to level comparable to control 

cells. 
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Figure 7-15: Fluorimetric assays of SF effect on MG-induced ROS generation. 

Cardiomyocytes were treated with 5µM SF for 24 h before addition of 1 mM MG. 

A)Intracellular ROS levels were determined with the peroxide-sensitive probe 

DCHF-DA. B)Cytosolic ROS levels were determined with DHE. C)Mitochondrial 

ROS levels were determined with MitoSox. Each bar represent means ± SD of  4 

independent experiments. Data were analyzed by one-way ANOVA followed by 

Bonferroni’s test: *p< 0.05 vs Control cells; °p< 0.05 vs MG 
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To better elucidate SF role in counteracting oxidative stress, total 
antioxidant activity (TAA) was evaluated by ABTS assay (Fig.7-16). 
SF alone was able to significantly increase TAA in respect to control 
cells, while MG significantly reduced this value. Interestingly, SF was 
able to restore TAA levels of MG treated cardiomyocytes to values 
comparable to control cells. 

 

 

 

Figure 7-16: SF effects on cardiomyocytes total antioxidant activity. 

Cardiomyocytes were treated with 5 µM SF for 24 h before addition of 1 mM MG. 

Cell lysates were submitted to the ABTS radical cation decolorization assay and 

the antioxidant activity of the cells were expressed as mean ± SD of µmol of trolox 

antioxidant activity per mg of protein. Data were analyzed by one-way ANOVA 

followed by Bonferroni’s test: *p< 0.05 vs Control cells; °p< 0.05 vs MG 
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7.2.4 Modulation of GLO1 by SF  

Recently it has been shown that the upregulation of GLO1 enzyme is 

modulated by Nrf2, in a manner similar to what happens for the 

antioxidant / detoxifying phase II enzymes. Since SF is able to induce 

the translocation of Nrf2 from the cytosol to the nucleus, thereby 

regulating phase II enzymes, we hypothesized that it might be also 

able to up-regulate GLO1 . To test this hypothesis, we evaluated the 

effect of SF on GLO1 expression and activity. 

Cells were treated with 5 µM SF for different time points (Figure 7-

17). GLO1 protein expression significantly increases compared to that 

measured in control cells after 6 h SF treatment, and this induction 

becomes even more pronounced after 24-48 hours of treatment  

(Figure 7-17a). To relate GLO1 overexpression to its functional 

activity, cardiomyocytes were treated with 5 µM SF and GLO1 

enzymatic activity was measured at different time points (1-48h) 

(Figure 17-7 b). After 1 and 6 h GLO1 activity was slightly increased 

but not significantly different from control cells. After 24 and 48 h SF 

was able to significantly increase GLO1 activity with respect to 

untreated cells.  
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b) 

 

 

 

 

 

 

 

 

 

 

Figure 7-17: Effects of SF on protein expression and enzymatic activity of 

GLO1 in cardiomyocytes exposed to MG. Cells were treated with 5 µM SF for 

different time (1, 6, 24, 48 h). a)protein expression was assessed by 

immunoblotting analyses. Results of scanning densitometry analysis performed on 

3 independent autoradiographs are presented. Relative amounts (means ± SD) 

were normalized to the intensity of the same β-actin blot and represented as fold 

increase in respect to controls. b) enzymatic activity of GLO1 was assessed by 

spectrofotometric assay. Each bar represent means ± SD of  three independent 

experiments. Data was analyzed by one-way ANOVA followed by Dunnet’s test: 

*p< 0.05 vs Control cells 
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7.2.5 Effects of SF on AGEs formation in cardiomyocytes   

         exposed to MG 

Finally, we evaluated the effect of SF on the production of AGEs. 

Cells were pre-treated with 5 µM SF for 24 hours and subsequently 

exposed to 1 mM MG for 24 hours and AGE levels were measured 

with an ELISA assay able to identify the main AGEs. In cells not 

treated with SF the exposure to MG caused a significant increase in 

the production of AGEs compared to control cells (Fig.7-18). Pre-

treatment with SF, in contrast, significantly reduced the formation of 

AGEs compared to cells exposed to MG, with values very similar to 

control cells 
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Figure 7-18: Effects of SF on AGEs formation in cardiomyocytes exposed to 

MG.  Cardiomyocytes were treated with 5 µM SF for 24 h before addition of 1 

mM MG, and AGE formation was evaluated by AGE-ELISA using a specific anti-

AGE antibody. Each bar represent means ± SD of  3 independent experiments. 

Data were analyzed by one-way ANOVA followed by Bonferroni’s test: *p< 0.05 

vs Control cells; °p< 0.05 vs MG 
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7.3 Effects of SF on carbonyl stress induced by  

     MG in SH-SY5Y cell line 

 

7.3.1 Effects of methylglyoxal on cell viability in  

         SHSY-5Y cell line 

To evaluate the potential cytotoxicit effect of MG, SH-SY5Y cells 

were treated with increasing concentrations (0.1-5 mM) of MG for 24 

h, after which cell viability was assessed by MTT assay (Figure 7-19). 

At the concentrations 0.25-5 mM, MG induced a significant reduction 

of cell viability compared to control cells. In particular, 0.5 mM MG 

reduced cell viability by 50% compared to the control (IC50). 
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Figure 7-19: Effect of MG on cell viability in SHSY-5Y cell line. Cells were 

treated with MG (0.1-5 mM) for 24 h. Cell viability was assessed by the MTT 

assay and reported as % cell viability compared with controls. Each bar 

represents means ± SD of  4 independent experiments. Data were analyzed by 

one-way ANOVA followed by Dunnett’s test: *p< 0.05 vs Control cells 
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7.3.2 SF protective effects against MG-induced damage in  

         SHSY-5Y cell line 

The next step was to evaluate the possible protective effect of SF 

against glycative damage induced by MG in SH-SY5Y neuroblastoma 

cell line. 

Cells were treated with 5 µM SF for 24 h and then exposed to 0.5 mM 

MG for 24 h. Cell viability was assessed by MTT assay (Figure 7-20). 

As previously reported, MG induced a significant reduction of cell 

viability by about 50% compared to control cells. SF treatment 

significantly increased cell viability compared to cells exposed to MG, 

even if cell viability was significantly lower compared to that 

measured in control cells. To confirm these data, LDH release was 

measured evaluating LDH activity in the culture medium (Figure 7-

21). SH-SY5Y were treated with 5 µM SF for 24 h and then exposed 

to 0.5 mM MG for 24 h. As expected, MG treatment induced a 

significant and strong increase of LDH release, while SF treatment 

was able to maintain LDH activity at level comparable to control cells. 

Moreover, to better understand the fate of cells exposed to MG, we 

evaluated the activity of the pro-apoptotic enzyme caspase-3in the 

same experimental conditions (figure 7-22). MG significantly 

increased caspase-3 activity in SH-SY5Y, indicating that at least part 

of the cells undergo apoptotic cell death, while SF treatment 

significantly reduced caspase-3 activity compared to cells exposed to 

MG. Interestingly, in MG treated cells SF was able to maintain both 

LDH release and caspase 3 activity to value comparable to control 

cells. 
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Figure 7-20: Protective effect of SF against carbonyl stress induced by MG in 

SHSY-5Y cell line. Cells were treated with 5µM SF for 24 h before the addition 

of 0.5 mM MG. Cell viability was assessed by the MTT assay and reported as % 

cell viability in comparison to control. Each bar represent means ± SD of  3 

independent experiments. Data were analyzed by one-way ANOVA followed by 

Bonferroni’s test: *p< 0.05 vs Control cells; °p< 0.05 vs MG 
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Figure 7-21: Effects of SF on LDH activity in cardiomyocytes exposed to MG. 

Cells were treated with 5µM SF for 24 h before the addition of 0.5 mM MG. LDH 

activity was assessed by spectrometric assay and reported as mU/mg of protein 

Each bar represent means ± SD of  3 independent experiments. Data were 

analyzed by one-way ANOVA followed by Bonferroni’s test: *p< 0.05 vs Control 

cells; °p< 0.05 vs MG 
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Figure 7-22: SF protective effects against MG-induced apoptosis in SH-SY5Y 

cell line. Cells were treated with 5µM SF for 24 h before the addition of 0.5 mM 

MG. Caspace-3 activity was measured spectrofluorimetrically by hydrolysis of the 

peptide substrate Ac-DEVD-AMC. Each bar represent means ± SD of 3 

independent experiments. Data were analyzed by one-way ANOVA followed by 

Bonferroni’s test: *p< 0.05 vs Control cells; °p< 0.05 vs MG 
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7.3.3  SF effects against MG-induced ROS          

production in SH-SY5Y 

Since it has been demonstrated that MG induces oxidative stress in 

neuronal cells (Angeloni et al. 2013) and that SF exerts its protective 

action through the induction of antioxidant/ detoxifying phase II 

enzymes, we investigated SF ability to counteract MG-induced 

intracellular ROS production by the DCFH-DA assay. Cells were 

treated with µ5 M SF for 24 hours and then exposed to 0.5 mM MG 

for 6 hours (Fig.7-23).  

In cells not treated with SF, MG exposure resulted in a significant 

increase in intracellular ROS production compared to control cells. SF 

treatment, in contrast, significantly reduced the formation of 

intracellular ROS compared to cells exposed to MG. 
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Figure 7-23: Effects of SF on intracellular ROS formation in SHSY-5Y cell line 

exposed to MG.  Cells were treated with 5 µM SF for 24 h before the addition of 

0.5 mM MG. Intracellular ROS levels were determined with the peroxide-sensitive 

probe DCHF-DA. Each bar represent means ± SD of  4 independent experiments. 

Data were analyzed by one-way ANOVA followed by Dunnets’s test: *p< 0.05 vs 

Control cells; °p< 0.05 vs MG  
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7.3.4 Effects of SF on intracellular levels of reduced  GSH       

         in SHSY-5Y exposed to MG   

A reduction in  intracellular levels of reduced GSH occurs in 

conditions of oxidative stress, so we evaluated the effect of SF on 

intracellular reduced GSH levels by the MCB assay. Cells were 

treated with 5 µM SF for 24 h and exposed to 0.5 mM MG (Fig.7-24). 

SF alone was able to increase reduced GSH levels compared to 

control cells. Exposure to MG caused a significant decrease in  GSH 

levels compared to control cells, meanwhile treatment with SF 

significantly increase the amount of reduced GSH compared to control 

cells. 
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Figure 7-24: Effects of SF on intracellular levels of reduced GSH in SHSY-5Y 

cell line exposed to MG. Cells were treated with 5 µM SF for 24 h before addition 

of 0.5  mM MG. Reduced GSH levels were assessed by spectrofotometric assay 

MCB and reported as % respect to controls. Each bar represents means ± SD of 4 

independet experiments. Data were analyzed by one-way ANOVA followed by 

Bonferroni’s test: : *p< 0.05 vs Control cells; °p< 0.05 vs MG  
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7.3.5 Effects of SF on protein expression of GLO1 in  

         SHSY-5Y cell line exposed to MG 

 

The glyoxalase system is the most important pathway for the 

detoxification of MG. It comprises two enzymes: GLO1 and GLO2. 

The first catalyzes the conversion of the hemithioacetal, formed by the 

nonenzymatic reaction of GSH with MG, to S-D-lactoylglutathione. 

GLO2 converts S-D-lactoylglutathione to D-lactate, which recycles 

GSH in the process (Thornalley 1993). Recently it has been 

demonstrated that GLO1 is up-regulated through the Nrf2/ARE 

pathway (Xue et al. 2011). As previously underlined, numerous 

studies have highlighted the role of SF as a potent natural phase II 

inducer in different cell models. As phase II enzymes are modulated 

thorough Nrf2/ARE pathway, we have hypothesized that SF could 

modulate also GLO1. Cells were treated with 5 µM SF for different 

time points (1, 6, 24, 48 h) and and GLO1 activity was measured with 

a spectrophotometric assay (figure 7-25). After 1 and 6 h GLO1 

activity was slightly increased but not significantly different from 

control cells. After 24 and 48 h SF was able to significantly increase 

GLO1 activity with respect to control cells.  
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Figure 7-25: Effects of SF on GLO1 activity in SH-SY5Y cell line exposed to 

MG. . Cells were treated with 5 µM  SF for different periods (1, 6, 24, 48 h). 

Enzymatic activity of GLO1 was assessed by spectrofotometric assay.  Each bar 

represent means ± SD of  three independent experiments. Data was analyzed by 

one-way ANOVA followed by Dunnett’s test: *p< 0.05 vs Control cells 
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7.3.6 Protein kinases modulation by MG 

Since we observed that MG induces apoptotic death in SH-SY5Y 

cells, we hypothesized that MG could modulate some of the signal 

transduction pathways involved in the induction of apoptotic cell 

death  

To test our hypothesis, cells were treated with 0.5 mM MG and after 

time points, the activation (phosphorylation) of p38 MAPK, JNK and 

Akt was evaluated by immunoblotting analisys (figure 7-26).  

p38 MAPK and JNK phosphorylation was significantly increased 

already at 30 min and lasted until 24 h. On the other hand, the 

phosphorylation of  the anti-apoptotic kinase Akt was strongly 

reduced at 2, 6 and 24 h.  
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Figure 7-26: Effects of SF on protein expression and enzymatic activity of 

GLO1 in cardiomyocytes exposed to MG. Cells were treated with 0.5 mM MG for 

different time (0.5, 1, 2, 6, 24 h). Cell lysates were immunoblotted with antibodies 

for p-p38, p-JNK and p-Akt. 

 

 

As MG was able to modulate these signaling pathways, we 

subsequently investigated the possible SF effect on the 

phosphorylation of these kinases. Cells were treated with SF for 24 h 

and then exposed to MG for 30 min, to evaluate p38 and JNK 

activation, to MG for 2 h to study Akt activation (figure 7-27). SF 

treatment had no effect on the phosphorylation of p38 and JNK in the 

absence of MG, whereas in cells exposed to 0.5 mM MG, SF was able 

to slight reduce the activation of both kinases compared to cells not 

treated with SF and exposed to MG.  
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On the other hand SF significantly increased Akt activation both in the 

presence and in absence of MG. 

 

 

 

 

 

Figure 7-27: SF counteracts MG-induced protein kinase negative modulation. 

Cells were pre-treated with 5µM SF and after exposed to 0.5 mM MG for 24 h. 

Cell lysates were immunoblotted with antibodies for p-p38, p-JNK and p-Akt. 
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CHAPTER 8 

 

8. Discussion  

 
In recent years the incidence of chronic degenerative diseases has 

increased. These diseases have a sneaky and inexorably progressive 

course that is brought to light when the harm to the patient is already 

in an advanced stage precluding, in almost all cases, the possibility of 

an effective treatment that is not only symptomatic. Among them, 

ischemic heart disease represents the leading cause of death and 

disability in the Western world, and projections indicate that this 

record will retain at least until 2030. Great attention has been direct to 

the identification of novel therapeutic and preventive strategies to 

counteract the deleterious effects induced by ischemic heart disease. 

Although nowadays available therapies are good, morbidity and 

mortality are still very high. Recently there has been considerable 

improvement in the treatment of acute ischemic heart disease through 

procedures that enable the rapid restoration of blood flow to the 

affected area of the myocardium. Such treatment is also known as 

reperfusion therapy. However, even if blood flow restoration is 

essential for the viability of the heart, it induces a burst of ROS 

generation that exacerbates ischemic injury. From this point of view, a 

promising therapeutic strategies is ischemic preconditioning (PC) that 
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is recognized as one of the most potent protective mechanisms against 

myocardial ischemic injury. Ischemic PC is a phenomenon in which a 

brief exposure to ischemia renders the heart more resistant to a 

subsequent sustained ischemic insult. Many studies (Schulz et al. 

2004) have supported the hypothesis that ROS might play an 

important role both in ischemic/reperfusion injury and ischemic PC. In 

this thesis, we clearly observed this paradoxical effect; in fact, 100 

µM H2O2 were able to counteract or exacerbated oxidative stress 

depending on the exposure time: 10 min led to a protective pattern, 

whereas 30 min caused a marked cell death. Moreover, we measured a 

substantial reduction of intracellular ROS production in H2O2 PC 

treated cardiomyocytes, postulating that H2O2 PC elicits its 

cardioprotective effect through the modulation of the intracellular 

antioxidant defense system. The capacity of cells to maintain cellular 

homeostasis during oxidative stress resides in rapid activation or 

induction of protective enzymes, which in turn decrease oxidative 

stress by reducing ROS. Interestingly, H2O2 PC was able to induce 

fundamental antioxidant and phase II enzymes like NQO1, GR, TR 

and CAT but failed to induce GST, SOD and GPX. This disjointed 

regulation was unexpected, as it has been reported that all these 

enzymes are regulated by the same transcription factor Nrf2 

(Brigelius-Flohe et al. 2006; Purdom-Dickinson et al. 2007; Zhu et al. 

2008). In agreement with these findings, we observed a marked 

translocation of Nrf2 to the nucleus immediately after H2O2 PC 

induction and its up-regulation after 6 h from H2O2 PC. To better 

clarify this point we evaluated the effect of H2O2 PC on another 
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transcription factor belonging the same Nrf2 Cap’n’Collar 

transcription factorfamily: Nrf1. Although Nrf2 has been shown to be 

crucial in the activation of genes regulated by the antioxidant  

responsive element (ARE), the involvement of Nrf1 in ARE function 

has also been demonstrated through transfection studies and gene 

expression analysis in knockout cells and animals (Biswas et al. 

2009). Gene targets of Nrf1 include genes encoding enzymes involved 

in GSH biosynthesis and other oxidative defence enzymes (Biswas et 

al. 2009). Our data demonstrated that H2O2 PC led to a marked 

translocation of Nrf1 to the nucleus. Interestingly,  It was observed 

that Nrf1 has the potential to play an important role in modulating the 

response to oxidative stress by functioning as a trasdominant repressor 

of Nrf2-mediated activation of ARE-dependent gene transcription. So 

we can hypothesize that H2O2 PC is able to induce both Nrf2 and Nrf1 

and their combined translocation to the nucleus leads to this particular 

pattern of phase II enzymes activation. Further studies will be 

necessary to clarify this point. The role of MAPKs in PC signal 

transduction has been addressed by manyAuthors, but only few 

studies have focused on the role of H2O2  in PC signal pathways and 

data are not conclusive (Nakano et al. 2000; Yue et al. 2000; 

Hausenloy et al. 2006). It is commonly acceptedthat phosphorylation 

of ERK 1/2 in cardiac myocytes during early reperfusion serves as a 

defence mechanism against ischemic stress stimuli (Yue et al. 2000). 

The role of ERK 1/2 as a potential mediator of protection in the 

setting of PC has been controversial, with some studies supporting its 

role (de Silva 2004; Gong et al. 2004) and several studies failing to 
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demonstrate a role of ERK 1/2 (Mockridge et al. 2000; Mocanu et al. 

2002; Button et al. 2005). We observed that ERK 1/2 is markedly 

activated immediately after H2O2 PC and this activation occurred also 

with not cytoprotective H2O2 concentrations. Inhibition of ERK 1/2 by 

PD did not influence H2O2 PC cardioprotection against a subsequent 

oxidative stress, indicating that ERK 1/2 is probably not involved in 

this mechanism. Our data are in agreement with the result of  

Mockridge et al. (2000) that observed a rapid, transient 

phosphorylation of ERK 1/2 after PC, but ERK 1/2 blocked by PD did 

not effect cytoprotection elicited by PC. Mocanu et al. (2002) 

demonstrated that ERK 1/2 cascade is not implicated in ischemic PC 

isolated perfused rat hearts. The role of p38 MAPK in the protection 

provided by PC remains controversial. Many studies confirmed role of 

p38 MAPK as a potential mediator of PC-induced cardioprotection, 

while others have shown that pharmacologically inhibition of p38 

MAPK during ischemia-reperfusion confers cardioprotection in non-

preconditioned hearts (these discrepancies are reviewed in Hausenloy 

and Yellon, 2006). Bell et al. (2008) observed that these different 

views about the role of p38 MAPK in mediating PC could be ascribed 

to an inappropriate use of its pharmacological inhibitor SB. In 

particular, they attributed to DMSO, the common SB vehicle, 

antioxidant properties that can protect also non-preconditioned hearts. 

In our study H2O2 PC was found to induce a significant increase of 

p38 MAPK  phosphorylation and, in the presence of SB, the beneficial 

effect of H2O2 PC was ablated. To ascertain the influence of DMSO, 

this compound was added also in control and stressed cells evidencing 
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no effects. Activation of the PI3K/AKT pathway has been 

demonstrated to play a key role in both early and delayed myocardial 

PC, contributing to the recruitment of multiple endogenous 

cardioprotective pathways to reduce myocardial damage after 

ischemia and reperfusion (Hausenloy et al. 2005; Hausenloy et al. 

2006). In this present studywe demonstrated that H2O2 PC induced a 

significant Akt phosphorylation, and, more important, the 

cardioprotective effect of H2O2 PC was significantly attenuated by the 

inhibition of PI3K/Akt. Tong et al. (2000) demonstrated that ischemic 

PC protects the heart by activating the PI3/Akt cascade during the PC 

protocol, a finding confirmed by subsequent studies. For example, 

Uchiyama et al. (2004) observed that in adult cardiomyocytes the 

antiapoptotic effect of PC against hypoxia/reoxygenation requires Akt 

signaling leading to phosphorrylation of BAD, inhibition of 

cytocrome c release, and prevention of caspase activation. Moreover, 

Mocanu et al. (2002)demonstrated that wortmannin and LY (PI3 

kinase inhibitors) partially blocked PC cardioprotection in isolated 

perfused rat hearts. Many Authors have demonstrated the involvement 

of p38 MAPK and Akt in Nrf2 activation (Zipper et al. 2000; Owuor 

et al. 2002; Kim et al. 2009), but no studies have been undertaken to 

demonstrate their role in the induction of phase II enzymes in 

cardiomyocytes. Here we report that inhibition of both p38 MAPK 

and Akt in H2O2 PC significantly reduced protein expression and 

activity of GR, Tred and CAT while did not modify NQO1, in 

agreement with data obtained by Manandhar et al. (2007) on murine 

keratinocytes in which the pharmacological inhibitors of p38 MAPK, 
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PI3K/Akt, and PKC did not alter 3H-1,2-dithiole-3-thione induction of 

NQO1.  

As it has been widely emphatized in this thesis, more and more studies 

evidencing a role of carbonyl stress, as well as oxidative stress, in the 

development of chronic degenerative diseases. The main reactive 

carbonyl species present in physiological systems, responsible for 

glycation, is methylglyoxal (MG). The enzymatic defenses against 

MG-induced glycation consist of 2 enzymes, GLO1 and GLO2 , that 

forms the glyoxalase system. Recently, it has been observed that 

GLO1 expression is regulated by Nrf2/ARE pathway. Between the 

substances able to modulate this pathway, great attention has been 

dedicated to the natural compound SF, derived from glocoraphanine. 

Based on this observations further aim of this thesis was to study the 

effect of SF in counteracting glycative MG-induced damage in 

cardiomyocytes, moreover, for this time, we demonstrated that SF 

counteracted MG-induced apoptotic cell death, reduced ROS 

generation and AGE production, and induced GLO1 expression and 

functional activity. Likely, SF elicits a multi-target behavior against 

MG-induced damage: it up-regulates GLO1 enhancing the cell ability 

to detoxify MG, and acts as an indirect antioxidant reducing ROS 

produced by MG. Even if the exact role of the glyoxalase system in 

cardiovascular disease has not been fully elucidated, it has been 

observed that in hemodialysis patients, the GLO1 A491C 

polymorphism is associated with a significantly higher prevalence of 

cardiovascular disease and peripheral vascular disease risk (Kalousova 

et al. 2008). Moreover, Wang et al. (2010) demonstrated that 
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thioredoxin inactivation and significantly protected cardiomyocytes 

from I/R injury. These results suggest that any intervention able to 

reduce intracellular MG concentration, like GLO1 induction by SF 

treatment, could attenuate injury endured in myocardial I/R processes. 

More and more scientific evidences are confirming a role of glycation 

also in the onset of diseases such as Alzheimer’s disease (Luth et al. 

2005). AGEs are able to cross-link proteins in Aβ deposits and 

neurofilamentes AD level leanding to tau hyperphosphorylation. It has 

also been observed that MG is a neurotoxic mediators of oxidative 

stress in the progression of AD inducing apoptosis and cellular 

dysfunction. For these reasons it can be reasonably hypothesized that 

AD might be strongly linked to an increase in MG levels due to an 

oxoaldehyde detoxification impairment or an altered endogenous 

oxoaldehyde production. Since we have demonstrated that SF is able 

to counteract MG-induced damage in cardiomyocytes, last aim ofthis 

thesis was to study the ability of SF to counteract glycation in SHSY-

5Y neuroblastoma cell line. The human SHSY-5Y neuroblastoma cell 

line is well characterized and has been widely used as a model system 

to investigate the pathological effects of various neurotoxic 

compounds. In addition, SHSY-5Y cell costitutively express a 

receptor for AGEs. They also are highly sensitive to MG challenge 

due to a defect in thei antioxidant and detoxifying abilities that 

prevent efficient scavenging and that elicits extensive caspase -9-

dependent apoptosis (Li et al. 2011). As already observed, MG 

accumulation is responsible for detrimental effects on neurons 

viability (Di Loreto et al. 2004; Di Loreto et al. 2008). Our data 
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demonstrated that SHSY-5Y death occurs through the induction of 

ROS-mediated cell death. Indeed, MG was as able to increase 

intracellular ROS level and to decrease reduced GSH. SF treatment 

was able to counteract Mg triggered cell death and to reduce ROS 

production. MAPK signaling pathways are activated by many 

extracellular stimuli such as cytokines, growth factors and oxidative 

stress (Seger et al. 1995). It has been indicated that MAPK-signaling 

cascades are involved in the process of apoptosis (Cross et al. 2000). 

In our study, MG was able to phosphorylate the pro-apoptotic kinases 

p38 MAPK and JNK at already 30 min from MG exposure and to 

reduce the phosphorylation of the anti-apoptotic kinase Akt at longer 

exposure time. Our data are in agreement with the results of Huang et 

al. (2008)that observed an increased phosphorylation of JNK and p38 

MAPK after 400 µM MG treatment in neuro-2A cells. Interestingly, 

our data demonstrate that SF treatment is able to revert this pro-

apoptotic MAPK modulation, confirming its ability to counteract MG 

induced apoptosis. Since we have previously demonstrated that SF is 

able to significantly increase GLO1 protein level and activity in 

cardiomyocytes, we tested its effect on GLO1 regulation also n 

SHSY-5Y neuroblastoma cell line. In agreement with the dataobtained 

in cardiomyocytes, Sf increases GLO1activity demonstrating its 

pleiotropic effect in counteracting MG-induced damage: SF is able to 

counteract MG-induced apoptosis both modulating fundamental 

kinases involved in pro-apoptotic signaling cascades and enhancing 

MG detoxifying system.  
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In conclusion this thesis show that it is possible to counteract the 

oxidative and carbonyl stress using different  strategies. To one side 

our data demonstrate that the protection enduced by H2O2 is mediated 

by detoxifying and antioxidant phase II enzymes induction, regulated, 

not only by transcriptional factor Nrf2, but also by Nrf1. These novel 

data contribute to our understanding of the mechanisms of H2O2 in 

triggering ischemic PC, opening new researches on the molecular 

mechanisms at the base of the cardioprotection induced by 

preconditioning. On the other side our data represent an innovative 

result because for the first time it was demonstrated the possibility of 

inducing GLO1 by SF supplementation. This strategy represent an 

efficient approach for the protection from oxidative and carbonyl 

stress. These result pave the way to new and more important studies 

because glycation in involved not only in cardiovascular diseases or in 

Alzheimer pathology but also in other important chronic degenerative 

diseases, in ageing, in diabetes, therefore the SF supplementation 

could represent an efficiency protective/preventive strategy. 
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