Gandhi, Yogesh
(2024)
Geometry projection for additively manufacture variable stiffness continuous fiber-reinforced polymer structures—A unified topology optimization approach for multi-layered composite laminates, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Scienze e tecnologie aerospaziali, 36 Ciclo.
Documenti full-text disponibili:
|
Documento PDF (English)
- Accesso riservato fino a 2 Gennaio 2025
- Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (17MB)
| Contatta l'autore
|
Abstract
Continuous fiber fused filament fabrication (CF4) is a layer-by-layer technique used to print carbon fiber-reinforced polymers (CFRPs) with a spatial in-plane variation of the fiber orientation, thus offering great flexibility in fabricating variable-stiffness CFRP laminates (VS-CFRP-Ls). However, not only is the design of VS-CFRP-Ls unintuitive, but the material directionality also introduces a nonconvex design space further amplified by the various VS-CFRP-Ls' design parameters. Designing multi-layered VS-CFRP-Ls, therefore, requires advanced computational design tools---such as topology optimization based on the geometry projection method---to take full advantage of the design freedom compatible with CF4.
This thesis addresses these challenges by developing computational tools for optimizing multilayered VS-CFRP-Ls. Unlike constant stiffness composites, VS-CFRP-Ls lack analytical formulations, necessitating discretization techniques like finite element analysis. The research develops and investigates several topology optimization formulations to streamline the design process, considering CF4's manufacturing constraints and material distribution strategies. The method reduces design variables by employing geometry projection within TO while ensuring manufacturability. Extensions of this approach cater to additive manufacturing requirements, yielding multilayered VS-CFRP-L designs with enhanced mechanical properties. Numerical examples demonstrate the efficacy of the proposed methodology in achieving stiffness-driven VS-CFRP-Ls designs, which can be manufactured using conventional and additive manufacturing processes.
Abstract
Continuous fiber fused filament fabrication (CF4) is a layer-by-layer technique used to print carbon fiber-reinforced polymers (CFRPs) with a spatial in-plane variation of the fiber orientation, thus offering great flexibility in fabricating variable-stiffness CFRP laminates (VS-CFRP-Ls). However, not only is the design of VS-CFRP-Ls unintuitive, but the material directionality also introduces a nonconvex design space further amplified by the various VS-CFRP-Ls' design parameters. Designing multi-layered VS-CFRP-Ls, therefore, requires advanced computational design tools---such as topology optimization based on the geometry projection method---to take full advantage of the design freedom compatible with CF4.
This thesis addresses these challenges by developing computational tools for optimizing multilayered VS-CFRP-Ls. Unlike constant stiffness composites, VS-CFRP-Ls lack analytical formulations, necessitating discretization techniques like finite element analysis. The research develops and investigates several topology optimization formulations to streamline the design process, considering CF4's manufacturing constraints and material distribution strategies. The method reduces design variables by employing geometry projection within TO while ensuring manufacturability. Extensions of this approach cater to additive manufacturing requirements, yielding multilayered VS-CFRP-L designs with enhanced mechanical properties. Numerical examples demonstrate the efficacy of the proposed methodology in achieving stiffness-driven VS-CFRP-Ls designs, which can be manufactured using conventional and additive manufacturing processes.
Tipologia del documento
Tesi di dottorato
Autore
Gandhi, Yogesh
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
36
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
topology optimization, continuous fiber, fused-filament-
fabrication, variable-stiffness, composite laminates
URN:NBN
Data di discussione
24 Giugno 2024
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Gandhi, Yogesh
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
36
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
topology optimization, continuous fiber, fused-filament-
fabrication, variable-stiffness, composite laminates
URN:NBN
Data di discussione
24 Giugno 2024
URI
Gestione del documento: