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Abstract

Continuous fiber fused filament fabrication (CF4) is a layer-by-
layer technique used to print carbon fiber-reinforced polymers
(CFRPs) with a spatial in-plane variation of the fiber orientation,
thus offering great flexibility in fabricating variable-stiffness CFRP
laminates (VS-CFRP-Ls). However, not only is the design of VS-
CFRP-Ls unintuitive, but the material directionality also introduces
a nonconvex design space further amplified by the various VS-
CFRP-Ls’ design parameters. Designing multi-layered VS-CFRP-
Ls, therefore, requires advanced computational design tools—
such as topology optimization based on the geometry projection
method—to take full advantage of the design freedom compatible
with CF4.

This thesis addresses these challenges by developing compu-
tational tools for optimizing multilayered VS-CFRP-Ls. Unlike
constant stiffness composites, VS-CFRP-Ls lack analytical formu-
lations, necessitating discretization techniques like finite element
analysis. The research develops and investigates several topology
optimization formulations to streamline the design process, consid-
ering CF4’s manufacturing constraints and material distribution
strategies. The method reduces design variables by employing
geometry projection within TO while ensuring manufacturabil-
ity. Extensions of this approach cater to additive manufacturing
requirements, yielding multilayered VS-CFRP-L designs with en-
hanced mechanical properties. Numerical examples demonstrate
the efficacy of the proposed methodology in achieving stiffness-
driven VS-CFRP-Ls designs, which can be manufactured using
conventional and additive manufacturing processes.

Keywords: topology optimization, continuous fiber, fused-filament-
fabrication, variable-stiffness, composite laminates
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1Introduction

1.1 3D printing with continuous fiber—An overview
Designing continuous fiber-reinforced polymer (CFRP) structures
for 3D printing is a complex process involving several levels of
consideration. These levels can be classified into three categories,
each of which has multiple variables that can impact the final
properties of the CFRP structures—manufacturing processes, ma-
terials, and structures. This multi-level design approach allows
for a wide range of applications for 3D-printed CFRP structures,
which has been the subject of increasing interest in recent studies.
By carefully considering each level of design, designers can create
high-quality CFRP structures that meet the specific needs of their
intended applications.

Manufacturing processes At this level, optimizing 3D printing
and slicing parameters can improve the microstructural character-
istics and mechanical properties of the final product while also
minimizing manufacturing defects. This level of consideration
is crucial for ensuring that the CFRP structures are built with
precision and accuracy, resulting in a high-quality final product.

Material level By selecting suitable fibers and matrix materials,
designers can achieve synergistic reinforcement of the composite
material, enhancing structural performance. This level of consider-
ation involves a careful balance of multiple variables, such as fiber
length, orientation, and volume fraction, as well as the choice of
matrix material. Further literature on designing and optimizing
CFRP structures using conventional manufacturing processes can
be utilized and applied at this level.

Structures level The mechanical performance of CFRP structures
can be significantly influenced by the cell geometrics, patterns,
and filling density at the structure level. This consideration
requires a thorough understanding of the final product’s intended
application and the specific mechanical properties needed to meet

1



Introduction 2

the requirements. By carefully selecting the appropriate cell
geometries, patterns, and filling densities, designers can ensure
that the final CFRP structure meets all necessary mechanical
requirements.

1.1.1 Classification of Continuous Fiber-Fused
Filament Fabrication Process

Various techniques have been developed to print composites re-
inforced by continuous fibers. Continuous fiber-fused filament
fabrication (CF4) processes are broadly classified as in-situ or in-
line impregnation methods using dry fiber bundles and applying
pre-impregnated towpregs.

In-situ impregnation The process involves feeding continuous
dry fibers and thermoplastic matrix filament into the print head
simultaneously in designated proportions. The thermoplastic
polymer is then heated above its melting point in the nozzle.
At the same time, the dry fibers are pre-heated before being
impregnated with the molten thermoplastic resin within the nozzle.
The impregnated fibers and molten polymer are then extruded
and deposited directly for 3D printing. This printing method
has been extensively studied and has yielded successful results
in manufacturing various CFRS structures, such as corrugated,
honeycomb, sandwich, diamond cellular, and 4D lightweight
structures. The in-situ impregnation process is a versatile and
efficient method for producing high-quality composites reinforced
by continuous fibers.

Inline impregnation The process uses continuous dry fibers like
the in-nozzle impregnation method. However, the dry fibers were
impregnated before being transported into the print nozzle. This
process was a complex approach in CFRC 3D printing because it
required multiple manufacturing steps to co-occur.

Towpreg Extrusion "Towpreg extrusion" is often referred to as
"fused deposition modeling" in the 3D printing industry. "Fused
filament fabrication" (FFF) is also used interchangeably with FDM,
which involves printing a thin strand of polymer called a filament,
often compared to spaghetti. FFF can be used for printing using
different filaments, such as unreinforced, chopped fiber-filled,
or continuous fiber-reinforced filaments. "Continuous filament
fabrication" (CFF), on the other hand, refers explicitly to 3D printing
using continuous fiber reinforcement. In the Towpreg Extrusion
process, Towpreg filaments provide convenience as they contain
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a polymer matrix and continuous fibers and can be heated and
extruded without any additional material. This process was quite
convenient since it splits the complexity of the filament preparation
from the printing process.

Co-extrusion with Towpreg Instead of dry fiber, Prepreg contin-
uous fibers can be co-extruded using the towering process, which
feeds prepreg filament and matrix material. Both filaments are
heated in a nozzle and co-extruded together, with the matrix in
the prepreg filament identical to that in the co-extrusion polymer.

In-situ consolidation Towpreg or Prepreg filaments are consol-
idated at the nozzle through an external energy source during
deposition. This is a scaled-down version of thermoplastic au-
tomated fiber placement (AFP), where the input thermoplastic
towering/prepreg tape is consolidated when deposited.

1.1.2 Limitations of CF4 process
The strength of 3D-printed carbon fiber reinforced polymer (CFRP)
structures depends on how well the fibers are impregnated with
the matrix material. However, it’s hard to compare impregnation
during 3D printing or towered filament production to traditional
molding processes because of the low pressure and short impregna-
tion time. In-situ impregnation is particularly problematic because
sometimes the matrix material doesn’t fully impregnate the fibers,
exposing them. Even 3D-printed towering filaments can have
defects due to low processing pressure. Size is also a challenge for
3D printing CFRP structures. Printers with fiber-cutting devices
have a minimum unit size based on the distance between the
cutting devices and the nozzle. For printers without fiber-cutting
devices, the cell size can’t be smaller than the diameter difference
between the nozzle and the fiber bundles. Moving nozzles can
cause continuous fibers to be out of place, and the size of the
printing platform determines the maximum size of the structures
that can be made. Achieving the desired shape for CFRP structures
with high-stiffness fibers, large curvature, and small cells without
mold restraint is hard.

1.2 Motivation
The aerospace, automotive, maritime, and wind-energy industries
constantly face challenges in reducing the weight and cost of struc-
tures. Therefore, one approach to reducing the weight of structures
is to use lighter materials than metals, such as CFRP materials.
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These materials offer higher stiffness-to-mass and strength-to-mass
ratios than metallic materials, making them a competitive option
for lightweight structural design. Moreover, CFRP materials pro-
vide additional degrees of freedom in optimization. It is possible
to control the anisotropy of the material and adapt it to attain the
desired stiffness and stress distribution within the structure. Fur-
thermore, CF4 enables the printing of CFRP material with a spatial
variation of the fiber orientation, thus offering great flexibility in
fabricating CFRP structures.

Designing composite structures is a challenging task. Com-
posite structures are intricate to optimize due to various design
variables and non-convex design problems with multiple solutions.
When it comes to variable stiffness laminates, the complexity of the
design increases as the optimization problem is no longer limited
to a single laminate design but essentially involves obtaining an
optimal layup for every point in the structure. The design problem
becomes even more complicated when ensuring fiber continuity
and laminate manufacturability is necessary. There are a large
number of design variables and constraints associated with the de-
sign of composite structures. Therefore, advanced computational
design tools—such as topology optimization—are required to take
full advantage of the design freedom compatible with CF4.

Topology optimization is a technique that involves finding the
optimal layout of material distribution, considering an objective
function and constraints such as total mass or compliance. Topol-
ogy optimization is a well-established research area in the design
of metallic isotropic structures. It is a numerical design tool to gen-
erate structural concepts with optimal load paths to meet specific
functional requirements. This tool has helped design lightweight,
high-performance structures with 1D, 2D, and 3D stress states.
Topology optimization techniques have been extended to design
"3D printed" parts. As confidence in designing and manufacturing
3D-printed parts has increased, so has the complexity of part geom-
etry and dimensionality. However, while topology optimization
yields end-use structural parts that meet functional requirements
for metallic parts, its usefulness is in designing 3D-printed parts.
However, TO tools that tailor the CFRP material properties while
optimizing the structural topology are limited. Therefore, there
is a need to develop topology optimization of spatially CFRP
structures. However, addressing this need poses a significant
challenge.

Designing 3D-printed CFRP parts using topology optimization
techniques is a complex process. One of the biggest challenges
is determining how carbon fibers in parts can improve their stiff-
ness and strength. CFRP materials comprise a reinforcement
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phase embedded in a continuous phase. The fiber provides high-
performance load-carrying properties, while the matrix acts as
a binder, holding the fibers together. However, the matrix has
lower load-carrying properties. This means the composite mate-
rial and the part need accurate models to predict their behavior.
Additionally, the inherent anisotropy of fiber-reinforced composite
materials must be considered during design. This requires the
simultaneous design of both the topology and reinforcement ori-
entation, which is a challenging computational problem. Topology
optimization involves thousands of design variables, and incor-
porating reinforcement orientation adds more variables, making
the situation even more complex. The adoption of topology op-
timization for continuous-fiber additive manufacturing faces a
significant challenge in computational tractability. Additionally,
the limitations of existing manufacturing hardware pose a hurdle.
All these limitations must be incorporated into a single optimiza-
tion framework to understand the correlations of several design
parameters better.

1.3 Thesis Objectives
On the other hand, manufacturing techniques that are compar-
atively restrictive in design, such as automated fiber placement
(AFP) and automated tape laying (ATL), are paving the way for
the increased use of VS-CFRP-Ls [1, 2] at an industrial level. These
techniques allow for the manufacturing of VS-CFRP-Ls with fiber
tows that conform to curvilinear paths [3, 4], providing greater
confidence in their use on a larger-scale application as these tech-
niques are less prone to manufacturing defects and can be further
post-processed using conventional consolation techniques, for ex-
ample, autoclave. These novel manufacturing processes gradually
outdated the subtractive manufacturing approaches because of
their capabilities in tailoring the structures’ mechanical perfor-
mance, being cost-effective and time-efficient, and making it easy
to manufacture large and complex structures. Most importantly,
they prompt a circular economy. Still, manufacturing quality
can be poor compared to conventional techniques, and several
ongoing research studies are pushing both from the simulation
and experimental front. In the same spirit, this thesis is another
step toward addressing the challenges posed by CF4, discussing
adopted strategies to achieve better mechanical performance and
printability, and finally proposing a novel methodology to at-
tain additively manufactured VS-CFRP-Ls demonstrated through
several benchmark problems and concluding with the method
limitation and possible strategies to overcome these limitations.
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The commercially available CF4 process is still limited to a
layer-by-layer technique used to print CFRP structures with a
spatial in-plane variation of the fiber orientation, thus offering
great flexibility in fabricating variable-stiffness CFRP laminates
(VS-CFRP-Ls) that can be either single layer or multilayer.

Our study focuses on VS-CFRP-Ls—an assembly of layers (plies
or laminae) with different fiber orientations tailored to attain the
required mechanical properties, e.g., to maximize the stiffness-
to-weight ratio. In addition to the fiber orientation in each layer,
the stacking sequence, i.e., the order in which individual laminae
are placed on top of one another, determines the overall VSCL’s
mechanical response. Although these parameters provide signifi-
cant design freedom, designing the composite structure to target a
given mechanical response is not straightforward due to the large
number of design variables (fiber orientation, stacking sequence,
and thickness) and several constraints. These constraints include a
requirement to ensure the continuity in the structure, such as a max-
imum ply drop [5, 6] and the 10% rule (namely, that at least 10% of
the layers has a fiber reinforcement in one of the quad orientations,
i.e., 0, 90, 45, and 135) [7], among others. These constraints help
mitigate the effects of membrane-bending, membrane-shearing,
and bending-shearing coupling terms. Exploring the vast design
space of VS-CFRP-Ls thus mandates computational analysis and
design tools, which is the main objective of the thesis.

Moreover, augmenting the design variables space with material
distribution strategies and obtaining autoclave-level mechanical
properties through CF4 is challenging. Studies have reported that
the comparatively high void content (10%-12%) and poor inter-
faces severely affect the mechanical performance of printed CFRP
composites [8, 9]. Thus, adopting computational design tools such
as topology optimization has become a design practice that accom-
modates CF4’s more advanced manufacturing capabilities and
constraints. The third focus is on developing performance-driven
design practice that falls within the realm of design for addi-
tive manufacturing (DfAM), thus attaining ready-to-manufacture
VS-CFRP-Ls. Different from the laminate of constant stiffness
composites [10], optimizing VS-CFRP-Ls is challenging since the
analytical formulations are restricted to simple geometry with
limited variation in fiber orientation [1, 2]. The arrangement of
material in the structure, the orientation, layer count, and thickness
of the layers can vary throughout the VS-CFRP-Ls. Consequently,
VS-CFRP-Ls are analyzed using discretization techniques, such as
the finite element method (FEM), assuming a constant fiber orienta-
tion within each finite element. This discretization enables the use
of analytical methods, such as composite laminate theories, and
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facilitates the representation of variations in material constituents
within the laminate. Thus, the material’s constituents assigned to
these discretized elements constitute the design space. As a result,
optimizing VS-CFRP-Ls must stay within the inordinately large
number of design variables. Therefore, the second goal is to adopt
TO computational design tools, which can dramatically reduce
design variables in the optimization process without sacrificing the
enriched design space offered by CF4’s manufacturing capabilities.

The research is built upon geometry projection—a topology
optimization approach—and adopted to design and optimize
multilayered variable stiffness composite laminates (MUL-VSCLs)
to achieve these objectives. The method uses geometric primitives
such as bars, described by geometric parameters that are then
mapped onto a density field, which is discretized via a fixed
mesh in the thesis, as illustrated in Fig. 1.1. This approach, which
considers both the material distribution and fiber orientation,
has an advantage over density-based methods, as it reduces the
number of design variables and limits the spatial distribution of
the fiber orientations to attain a readily manufacturable design. As
a result, several extensions of the geometry projection method are
formulated for designing additively manufacturable VS-CFRP-Ls,
and numerical examples for minimizing compliance demonstrate
the applicability of the proposed methodology.
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21 Parandoush et al., “A review on
additive manufacturing of
polymer-fiber composites,” 2017.

22 Sano et al., “3D printing of
discontinuous and continuous fibre
composites using stereolithography,”
2018.

Literature review—Topology
optimization approaches for additively
manufacturable continuous
fiber-reinforced polymers.

2.1 Introduction
Continuous Fiber Fused Filament Fabrication: The cost-effective
and commercially available additive manufacturing (AM) tech-
nologies, also known as 3D printing (3DP), eliminate many of the
limitations that previously plagued the manufacturing of highly-
tailored structural performance for multi-functional [11] and multi-
physics [12] applications. Moreover, AM offers unique capabilities
to realize the next-generation lightweight structures with great
potential for several major industries, such as aerospace [13, 14],
automotive [15], and medical [16] sectors. AM techniques can
uniquely fabricate highly complex shapes without substantially
increasing fabrication costs. In addition, reducing manufactur-
ing preparation time makes these technologies viable for large-
scale industries. Moreover, it offers lattice structures, which are
lightweight designs compared to solid-filled parts. Thus, AM
provides diversification of design to meet the requirements of
multifunctional materials, such as weight reduction [17] and the
ability to dissipate energy [18], heat [19], and vibrations [20].

Additive manufacturing (AM) encompasses various assem-
bling processes, including material extrusion, vat polymerization,
powder bed fusion, material jetting, binder jetting, and sheet
lamination. Fused filament fabrication (FFF) is a type of material
extrusion that offers low costs and short production cycles, mak-
ing it advantageous over others. However, FFF-printed polymer
parts reinforced with short fibers fall short in mechanical strength
compared to those manufactured using conventional tools and con-
tinuous fiber-reinforced composite laminate 21,22. To address this
issue, continuous fiber filament fabrication (CF4) was developed
to reduce distortion warping and fiber tension to prevent nozzle

9

https://dx.doi.org/10.1016/j.compstruct.2017.08.088
https://dx.doi.org/10.1016/j.compstruct.2017.08.088
https://dx.doi.org/10.1016/j.compstruct.2017.08.088
https://dx.doi.org/10.1016/j.addma.2018.10.033
https://dx.doi.org/10.1016/j.addma.2018.10.033
https://dx.doi.org/10.1016/j.addma.2018.10.033
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design,” 2010.

31 Xu et al., “A review on the design
of laminated composite structures:
constant and variable stiffness design
and topology optimization,” 2018.

clogging and automatically endowed with greater control of the
anisotropic properties of the fabricated structures, maximizing
their strength and stiffness.

The categorization of CF4 (continuous fiber-fused filament
fabrication) can be based on impregnated fiber filaments, such as
out-of-nozzle impregnation, in-nozzle impregnation, and semi-
impregnated FRC filaments [23]. This process involves accommo-
dating a coaxial or dual extruder system where fiber filaments
are impregnated during printing. The thermoplastic filaments
commonly used in this process are amorphous, with acrylonitrile
butadiene styrene (ABS), poly-lactic acid (PLA), and PEEK (poly-
ether-ether-ketone) being the most common—continuous fibers
can be carbon, glass, natural fibers, etc. Several studies [8, 9, 24]
compare the mechanical performance of CF4 printed parts to the
same structure manufactured by traditional processes. The stud-
ies show that the CF4 printed part exhibits a higher mechanical
performance than the traditional one. However, the limitation of
existing CF4 is the inability to ensure strong interlamellar adhesion
between adjacent layers in the build direction, leading to a higher
delamination tendency due to poor inter-layer adhesion. Voids are
intrinsic structural defects that can form for several reasons, such
as the heterogeneous diameters of the filament, uneven matrix
distribution, poor filament impregnation, and fiber-rich regions.
The layer-by-layer process and the printed bead’s shape also cause
imperfect overlapping of the beads and void formation between
the adjacent beads and layers. These voids are responsible for
prospective structural failure. Lastly, a critical review of CF4,
including its mechanisms, investigations of CF4 materials, and
process parameters, is detailed in the review by Kabir et al. .

CF4 technology, despite its limitations, enables the fabrication
of continuous fiber-reinforced polymers (CFRP) with continu-
ous spatial variations 26 in fiber angle and volume fraction, thus
expanding the design space compared to traditional laminate struc-
tures [10]. Additionally, this technology allows for out-of-plane
variations in fiber angle due to the self-supporting characteristics of
the composite material. Studies have shown that optimizing fiber
orientation can significantly improve the structural performance
of FRC materials such as stress concentration [27], stiffness [28],
buckling load [29], and natural frequency [30]. Therefore, the de-
sign of FRC structures requires optimization methods that reflect
the design freedom offered by CF4 technology while considering
its constraints 31. Such performance-driven design practice falls
within the realm of design for additive manufacturing (DfAM) [32].

https://dx.doi.org/10.1016/j.compstruct.2010.06.001
https://dx.doi.org/10.1016/j.compstruct.2010.06.001
https://dx.doi.org/10.1016/j.compstruct.2010.06.001
https://dx.doi.org/10.1016/j.compstruct.2010.06.001
https://dx.doi.org/10.1007/s42114-018-0032-7
https://dx.doi.org/10.1007/s42114-018-0032-7
https://dx.doi.org/10.1007/s42114-018-0032-7
https://dx.doi.org/10.1007/s42114-018-0032-7
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Topology optimization approaches: Topology optimization (TO),
one of the DfAM methods, is an iterative design tool to optimize
a quantifiable objective while sustaining loads, constraints, and
boundary conditions. In isolation, TO is frequently adopted to
design structurally sound parts and has subsequently surpassed
design tools, such as shape and size optimization. The seminal
work of Bendsøe and Kikuchi[33] introduced the concept of TO for
the homogenization method; since then, TO has developed rapidly.
TO approaches can be summarized as follows: the homogenization
method [33], the Solid Isotropic Material with Penalization (SIMP)
method 34,35, the level set method 36,37, the Evolutionary Structural
Optimization (ESO) method 38, and the Phase Field 39. The details
of these approaches are discussed in the review papers [40–42],
and some emerging TO methods for smooth boundary representa-
tion include the ’Metamorphic Development Method’ (MDM) [43]
and the ’Moving Morphable Method’ (MMM) 44. The general
architecture of TO starts with the definition of maximizing or min-
imizing a single or multi-target objective function to fulfill a set of
constraints such as volume, displacement, or frequency [45]. Then,
as part of an iterative process, design variables, finite element
analysis, sensitivity analysis, regularization, and optimization
steps are repeated until convergence is achieved [46], as depicted
in Fig(2.1). Interested readers can find comprehensive studies on
topology optimization, including extensive reviews of topology
optimization approaches [41, 47–49]. These studies cover the
ability to utilize them in various applications and their feasibility
for additive manufacturing technologies [32, 50].

Topology optimization of fiber-reinforced composite/polymers
(FRC/Ps) structures is a complex process that involves several
variables, including material distribution, fiber orientation, and
material volume fractions—these attributes for the FRC structures
are either optimized simultaneously or sequentially. However,
sometimes only one or a few of these attributes are selected for
optimization, given the numerous parameters involved in the
process and extensive research on optimizing composite structures
over the last few decades [52, 53]. Therefore, to construct and
understand the TO approach for continuous FRP (CFRP), this chap-
ter briefly introduces the commonly used topology optimization
approach, which includes density-based and level-set methods
and gradient-based schemes. It focuses on critical works that
have been carried out to develop topology optimization methods
for additively manufacturable Fiber-Reinforced Polymer (FRP)
structures. Additionally, it elaborates on the procedures that en-
able material anisotropy in the available topology optimization
approaches. Moreover, several papers have extended the sug-

https://dx.doi.org/10.1007/BF01650949
https://dx.doi.org/10.1007/BF01650949
https://dx.doi.org/10.1007/BF01742754
https://dx.doi.org/10.1007/BF01742754
https://dx.doi.org/10.1007/BF01742754
https://dx.doi.org/10.1016/S0045-7825(02)00559-5
https://dx.doi.org/10.1016/S0045-7825(02)00559-5
https://dx.doi.org/10.1016/j.jcp.2003.09.032
https://dx.doi.org/10.1016/j.jcp.2003.09.032
https://dx.doi.org/10.1016/j.jcp.2003.09.032
https://dx.doi.org/10.1016/0045-7949(93)90035-C
https://dx.doi.org/10.1016/0045-7949(93)90035-C
https://dx.doi.org/10.1016/0045-7949(93)90035-C
https://dx.doi.org/10.1115/1.4036941
https://dx.doi.org/10.1115/1.4036941
https://dx.doi.org/10.1115/1.4036941
https://dx.doi.org/10.1115/1.4036941
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Figure 2.1: The flowchart outlines the essential components required to develop
a general topology optimization framework, irrespective of the approach.
Regularization is a technique widely used in density-based methods, and its
implementation is detailed here.[51]
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gested methodologies to study multi-physics and multi-objective
measures or adapt them for numerical improvement or specific
applications. Although many references are available, the chapter
includes only essential ones for brevity. The presented information
in this chapter aims to provide a comprehensive understanding
of the topology optimization approach and its applications in
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designing and optimizing CFRP structures.

2.2 Topology Optimization for Continuum Structures
Structural optimization can be divided into three main types: size,
shape, and topology. Size optimization focuses on finding the best
structural design by changing the size parameters of a structure
or component, such as the cross-sectional area of a truss bar or
the thickness of a plane sheet. Shape optimization works with a
fixed topology and a subset of allowable shapes to optimize the
structure’s performance by changing the shape of its boundary.

Topology optimization is a numerical technique that distributes
material over the design space while considering boundary and
loading conditions. It is defined by a set of performance criteria,
constraints, and bounds on the design variables, which are un-
known quantities optimized for the nested optimization problem.
The finite element method (FEM) is used to evaluate the design per-
formance, and the design is optimized using either gradient-based
mathematical programming techniques or non-gradient-based
algorithms. The method relies on repeated analysis and update
steps, guided mainly by the gradient computation.

An objective function ℱ represents the quantity that must be
minimized or maximized to improve the system’s performance.
The characteristics function 𝜒𝜔 is associated with the parameter
𝜔, which defines the allowable topology 𝒪 in the design domain,
Ω ⊆ R𝑑, for the boundary value and optimization problem. The
constraints 𝐺𝑖 are imposed on the allowable topologies, thus
ensuring the problem is well-posed, i.e., regularization scheme.
The design domain is an extended domain that includes all possible
topologies, i.e., 𝜔 ⊆ Ω ∀ 𝜔 ∈ 𝒪. It facilitates the description of
the governing boundary value problem. Therefore, the general
optimization problem can be expressed as:

min
𝜒𝜔

: ℱ (𝜒𝜔 ,U)

:=
∫
Ω

𝑓 (𝜒𝜔 ,U)𝑑x

s.t. : 𝐺0(𝜒𝜔) =
∫
Ω

𝜒𝜔(x)𝑑x − |Ω𝑑 | ≤ 0,

: 𝐺𝑖(𝜒𝜔 ,U) ≤ 𝐺∗
𝑖 , 𝑖 = 1, . . . , 𝐾

: 𝜒𝜔(x) =
{
0 or 1 ∀x ∈ Ω

(2.1)
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Ω

ω
τ

Figure 2.2: Extended design domain and boundary conditions for the state
equation (adapted from [54]).

The objective function and constraints are dependent on both
the material distribution 𝜒𝜔 and the state variable U(𝜒𝜔). The
nested approach involves implicitly considering the displacement
functions’ U(𝜒𝜔) dependency in the equilibrium equations, which
are assumed to be fulfilled at each optimization step. Therefore,
to conclude the discussion, U(𝜒𝜔) ∈ 𝒱 satisfies the variational
problem of elasticity.

U(𝜒𝜔) = inf
U

Π(U), such that

Π(U) =
∫
Ω

𝜒𝜔𝑊0(U, x)dx −
∫
Γ̃𝑁

𝝉 · UdS,
(2.2)

where as shown in Fig 2.1,

• 𝒱 =
{
U ∈ 𝐻1 (Ω,R2) : u|Γ𝐷 = 0

}
refers to the set of allow-

able displacements, which is independent of 𝜔.

• ΠΩ𝑑
(U) represents the total potential energy of the system.

• 𝑊0(u, x) is the density of strain energy in the solid material
located in Ω𝑑.

• Γ𝐷 and Γ𝑁 are partitions of 𝜕Ω.

• 𝝉 is an applied traction that is non-zero and acts on Γ̃𝑁 ⊆ Γ𝑁 .

It is widely acknowledged that optimal solutions to equation (2.1)
may not be guaranteed due to the infeasibility of the set of feasible
designs. Therefore, we assume that design or manufacturing
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constraints have been imposed on 𝒪, rendering the problem well-
posed. This is known as the restriction settings, which differs from
the relaxation strategy, as explained in the review paper [55]

In the discretized design domain Ωℎ , parameterizing allowable
topologies using characteristic functions leads to an integer pro-
gramming problem. However, this approach becomes intractable
for large systems, so the optimization variables in the general
problem are mainly due to the continuous parameterization of
the topology. For instance, the characteristic function in the state
function’s description can be replaced by the density function 𝜌,
which takes continuous values between 0 and 1. Alternatively, it
can be replaced by the Heaviside function 𝐻(Φ), where an implicit
function Φ belongs to the bounded interval [−𝛼, 𝛼] for 𝛼 > 0, as
defined in (2.3).

2.2.1 Shape-Based Topology Optimization
The problem (2.1) can be addressed through Lagrangian meth-
ods, such as non-parametric shape optimization techniques. In
these methods, the nodal positions in the FE model represent
geometry and are updated during optimization. Classical shape
optimization exhibits a continuous mapping with a continuous
inverse function between two topological spaces, implying that
homeomorphism exists. Therefore, it must be combined with a
criterion to generate new holes, such as the bubble method 56,
topological derivatives 57,58, etc., for topological changes to solve
the general problem. However, this approach is challenging due to
the possible adverse effects on boundary changes when perturbing
the design variables and the need for re-meshing and adaptive
meshing to track moving boundaries and interfaces. Several
shape optimization techniques and their current developments
are reviewed here 59. On the other hand, the recent utilization
of isogeometric analysis for shape and topology optimizations
has several advantages, such as seamless integration between
design and analysis, exact geometric representation, and non-
parameterized structural boundaries. Interested readers can find
several attributes of isogeometric shape and topology optimization
in [60, 61].

The Lagrangian formulation is a mathematical framework that
employs non-parametric techniques for representing designs using
a free-form implicit design representation with level-set methods
(LSMs). The LSMs are shape optimization methods with well-
defined boundaries but can move to form, remove, and merge
void regions that ultimately define the topological design. The
LSMs define a level set function (2.3) with a higher dimension to

https://dx.doi.org/10.1016/J.ADVENGSOFT.2021.102992
https://dx.doi.org/10.1016/J.ADVENGSOFT.2021.102992
https://dx.doi.org/10.1016/J.ADVENGSOFT.2021.102992
https://dx.doi.org/10.1016/J.ADVENGSOFT.2021.102992
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represent the structure. The zero-level set, denoted as Φ, describes
the material interface 𝜕Ω. In other words, Φ = 0 represents the
boundary between two materials. A level set function (LSF) with
negative values defines the voids domain. On the other hand, the
LSF with positive values is used to describe the material domain,
Ω𝑑, in the design space, Ω. This means that positive values of
the LSF represent the material while negative values represent
the voids. The LSMs-based Lagrangian formulation offers a
powerful and flexible approach for representing designs with a
crisp interface between several materials (or fluids or mediums) in
the design domain.

Φ(x, 𝜏) > 0 ⇔ x ∈ Ω (material)
Φ(x, 𝜏) = 0 ⇔ x ∈ Γ (interface)
Φ(x, 𝜏) < 0 ⇔ x ∈ (Ω𝑑\Ω)( void )

(2.3)

where 𝜏 denotes a pseudo time representing the optimization
process’s iteration. Hence, the evolution of LSF advances the
structure’s shape and possibly its topology in the material domain.
Evolving the LSF in the optimization process is mainly governed
via the solution of the Hamilton–Jacobi equation, which is first-
order and models convection only:

𝜕Φ(𝒙 , 𝑡)
𝜕𝑡

− 𝑣𝑛 ∥∇Φ∥ = 0, Φ(x, 0) = Φ0(x) (2.4)

where 𝑣𝑛 = 𝒗 · 𝒏, such that the normal to the zero-level contour
is related to the gradient of the LSF by 𝒏 = −∇Φ

∥∇Φ∥ . For a more
mathematical discussion, we refer the reader to the works of
Burger and Osher [62–64].

A general form of level-set-based topology optimization (LSTO),
together with (2.2), in which the Heaviside function, 𝐻(Φ), reflects
the characteristic function, can be written as follows:

min
Φ

: ℱ (U,Φ)

:=
∫
Ω

𝑓 (U(Φ))𝐻(Φ)𝑑x

s.t. : 𝐺0(Φ) =
∫
Ω

𝐻(Φ)𝑑x − |Ω𝑑 | ≤ 0,

: 𝐺𝑖(Φ,U(Φ)) ≤ 𝐺∗
𝑖 , 𝑖 = 1, . . . , 𝑄

: 𝐻(Φ) =
{

0, Φ(x, 𝜏) < 0
1, Φ(x, 𝜏) ≥ 0

(2.5)

Level-set topology optimization (LSTO) is a powerful opti-
mization technique that operates on the boundaries of a structure
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instead of local density. In this technique, the zero-level set of a
scalar function, known as the level-set function (LSF), defines the
structure’s geometry. Topological changes are based on the evolu-
tion of the LSF, and several level-set methods (LSMs) have been
developed that are classified based on the LSF’s parameterization
and the strategy used to solve the optimization problem.

Van Dĳk et al. review paper provides a comprehensive overview
of different LSMs used in LSTO, which includes techniques for
mapping the level-set-based geometry onto the mechanical model.
The accuracy of the mechanical model’s structural response and
the convergence of the optimization process is influenced by the
structural boundaries in the discretized mechanical model. The
structural topology is mapped using different approaches, such
as conforming, immersed boundary techniques, or density-based
mapping. Conforming and immersed boundary techniques gen-
erally provide a crisp representation of the mechanical model’s
boundaries and are suitable for solving variational problems to
perform general topology optimization. However, density-based
mapping replaces the Heaviside function with density distribution
𝜌(Φ) to approximate LSTO as

∫
Ω
𝑓 𝐻(Φ)𝑑𝑉 ≈

∫
Ω
𝑓 𝜌(Φ)𝑑𝑉 . The

density distribution can map the LSF point-wise or element-wise
and is an effective technique for identifying the material interfaces.
In summary, LSTO is a well-established methodology for optimiz-
ing structural topology, and several LSMs can accurately map the
level-set-based geometry onto the mechanical model. The choice
of mapping technique depends on the accuracy required for the
structural response and the optimization process’s convergence.

Finally, we’d end our synopsis of the LSTO on the following
grounds. First, most of the works reviewed in the articles follow
density-based TO (DTO 2.2.2) to optimize anisotropic materials’
orientation and distribution; DTO has also been applied to several
other applications in academia and industrial sectors. Secondly,
LSTO often adopts Eulerian mesh with ersatz material (point-wise
density distribution) and a DTO formulation because of the DTO’s
simplicity and ease of implementation. Still, the crisp boundary
description is maintained throughout the optimization process,
allowing shape sensitivity analysis and design updates by solving
the HJ equation, i.e., different from DTO. The above deduction is not
biased toward following a particular TO approach. No comparative
studies are performed on their methodologies, numerical efficiency,
numerical verification of the attained optimized design, or their
realizability and applicability. Hence, the readers are referred
to earlier citations for different TO approaches to adopt the TO
formulation that fits their application.



Literature review—Topology optimization approaches for additively
manufacturable continuous fiber-reinforced polymers. 18

Figure 2.3: Binary Density-based
Topology Optimization

Figure 2.4: Continuous Density-
based Topology Optimization

2.2.2 Density-Based Topology Optimization
Earlier in this section, we discussed two different topology opti-
mization models—the boundary-following or Lagrangian model
and the Eulerian model, also known as the fixed mesh model. The
Eulerian model maps the topology through a density function, 𝜌,
on the discretized design domain. Once the density distribution,
𝝆, is obtained, it is fed to the optimization process as design vari-
ables. This reformulation is referred to as density-based topology
optimization.

Compared to the shape-based TO, the nodes of the structures’
boundaries are the optimization variables in topology optimiza-
tion,i.e., the LSTO method considers the parameterized Level Set
Functions (LSFs) to be the design variables for the optimization
process. Thus, the structure’s boundaries are at least retained
in the optimization process, even though it has blurred out the
discretized setting of the continuum design space when utilizing
density-based mapping.

It is worth noting that when elements or nodes of the mesh are
optimized, such as sizing variables, the sense of the exact illustra-
tion of the structure’s boundaries is physically lost. Mathematically,
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the optimization process takes the following form:

min
𝝆

: ℱ (U, 𝝆)

:=
∑
𝑖

∫
Ω𝑖

𝑓 (𝜌𝑖 ,U(𝜌𝑖))𝑑x

s.t. : 𝐺0(𝝆) =
∑
𝑖

v𝑖𝜌𝑖 − |Ω𝑑 | ≤ 0,

: 𝐺 𝑗(𝝆,U(𝝆)) ≤ 𝐺∗
𝑗 , 𝑗 = 1, . . . , 𝑄

: 𝜌 =

{
𝜖, ( void )
1, ( solid )

, 𝑖 = 1, . . . , 𝑁

(2.6)

The density distribution, 𝝆, denotes the design variable vector
of length N. It is defined such that 𝜌 = 1 if x ∈ 𝜔 and 𝜌 = 0
otherwise. For regions where 𝜌 = 0, solutions to the boundary
value problem are not guaranteed, as the energy’s bilinear form is
not coercive. Thus, the density function is defined as 𝜖 + (1 − 𝜖)𝝆,
in which 𝜖 ≪ 1 is the ersatz parameter:

U = inf
U

Π(𝝆,U), s.t.

Π(𝝆,U) =
∫
Ω

[𝜖 + (1 − 𝜖)𝝆]𝑊0(U, x)dx −
∫
Γ̃𝑁

𝝉 · U𝑑𝑆
(2.7)

The above formulation represents a binary problem that de-
picts a structure’s void and solid regions, commonly called dis-
crete density-based topology optimization (DDTO), shown in
Fig(??). One of the most well-known binary formulations is the
Bi-directional Evolutionary Structural Optimization (BESO), which
uses various techniques (regularization schemes) commonly used
in continuous DTO approaches. Sivapuram et al. 65 combined the
features of BESO and the sequential integer linear programming
for discrete topology optimization, which shows promising re-
sults. Interested readers can find comprehensive reviews of BESO
methods in [48, 66].

Another approach to handle the discretizing problem is using
a genetic algorithm [67], which can find a "global minimum" and
allow handling a discrete variable. However, Sigmund 68 questions
the usefulness of non-gradient approaches in TO as this method
typically comes with a higher computational cost. In practice, it
is recommended to assume the continuous density field together
with (2.7) when formulating the TO problem, as this approach has
shown to be effective, as portrayed below:

https://dx.doi.org/10.1016/j.commatsci.2018.08.008
https://dx.doi.org/10.1016/j.commatsci.2018.08.008
https://dx.doi.org/10.1016/j.commatsci.2018.08.008
https://dx.doi.org/10.1016/j.commatsci.2018.08.008
https://dx.doi.org/10.1007/s00158-011-0638-7
https://dx.doi.org/10.1007/s00158-011-0638-7
https://dx.doi.org/10.1007/s00158-011-0638-7
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min
𝝆

: ℱ (U, 𝝆)

:=
∑
𝑖

∫
Ω𝑖

𝑓 (𝜌𝑖 ,U(𝜌𝑖))𝑑x

s.t. : 𝐺0(𝝆) =
∑
𝑖

v𝑖𝜌𝑖 − |Ω𝑑 | ≤ 0,

: 𝐺 𝑗(𝝆,U(𝝆)) ≤ 𝐺∗
𝑗 , 𝑗 = 1, . . . , 𝑄

: 0 ≤ 𝜌𝑚𝑖𝑛 ≤ 𝜌 ≤ 1, 𝑖 = 1, . . . , 𝑁

(2.8)

The continuous density-based formulation (2.8) is a broadly
received idea in the TO of continuum structures that utilizes
continuous density design variables instead of binary density
variables, thus enabling the use of gradient-based information.
The density function, 𝜌, takes values in [0, 1] and replaces the
characteristic function in the description of the state Equation
(2.9) and the objective and constraint functions. In addition, to
attain binary design, the density function interpolates the material
properties through the material interpolation function as given
in the state equation, where 𝑝 = 3 is a penalization exponent [34,
35]—called as Solid Isotropic Material with Penalization (SIMP),
as depicted in Fig(??):

U = inf
U

Π(𝝆,U), s.t.

Π(𝝆,U) =
∫
Ω

[𝜖 + (1 − 𝜖)𝝆𝑝]𝑊0(U, x)dx −
∫
Γ̃𝑁

𝝉 · U𝑑𝑆.
(2.9)

Finding an optimal solution for a given problem is not guaran-
teed due to the need for more closedness in the set of feasible design
spaces. This means generating even more holes may decrease the
objective function, leading to a less effective solution. Additionally,
numerical instabilities can arise in the discretized space, including
checkerboarding and mesh dependency. Checkerboarding refers
to forming patches of alternating solid-void elements, whereas
mesh dependency causes different topologies from similar design
domains of different discretization sizes. To prevent the rapid
oscillation of the density distribution, restrictions are imposed on
the admissible density function in practice, as suggested in the
papers 55,69. This contrasts relaxation settings, which accommo-
date generalized shapes due to severe oscillation of the density
distribution. The concept is called the homogenization approach
to topology optimization [33]. To ensure well-posedness, regu-
larization strategies are imposed similarly on the variation in the
LSF.
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2.2.3 A note on Gradient-Based Update Schemes for
Topology Optimization

Fiber orientation plays a significant role in handling anisotropic
materials and designing lightweight composite structures, making
it a critical factor in optimizing the performance of next-generation
materials. However, optimizing fiber orientation can be challeng-
ing due to local optima and discontinuous functions. To address
these challenges, gradient-free algorithms with a global search
ability have proven to be more effective [10, 26]. These algo-
rithms, such as those proposed by Hasançebi et al. , Reuschel et al.
, and Voelkl et al. , allow for differentiable functions, mixed design
variables, and discrete spaces. The relaxed formulation these algo-
rithms offer also has the advantage of obtaining fewer local optima.
However, the downside of using gradient-free algorithms is their
inefficiency, which requires numerous function evaluations[68].
This can be impractical for expensive finite element simulations.
Therefore, adopting gradient-based algorithms like the Optimality
Criteria Method (OCM 73), Method of Moving Asymptotes (MMA)
(Svanberg, 1987 74), and Sequential Linear Programming (SLP)
(Dunning, 2015 75) can be a reasonable choice for tackling the fiber
orientation optimization problem.

The OCM (Optimality Criteria Method) is a technique used
in topology optimization to find the optimal design by solving
a Lagrange function consisting of objective and constraint func-
tions. This function must satisfy the Karush-Kuhn-Tucker (KKT)
condition for an optimal solution. The OCM procedure involves
two loops: the inner loop that updates the design variable and
the outer loop that updates the Lagrange multiplier based on the
KKT condition. However, this method cannot handle multiple
constraints since coupling the Lagrange multiplier and the design
variables requires solving a nonlinear equation. To address this
issue, Shen et al. suggested a step-length scheme for orientation
optimization. This scheme involves normalizing the gradient
vector and introducing a parameter to control the magnitude of
material orientation in each iteration, which leads to global de-
scent. However, the effect of adding constraints to the orientation
optimization problem on the update scheme needs to be verified,
which is a critical factor for the OCM. Therefore, a more generalized
OCM is required for the topology optimization of an anisotropic
material that can handle scalability and multiloading situations.
Recently, Kim et al. proposed a generalized optimality criteria
method for topology optimization problems, which eliminates the
need to satisfy the constraints during every optimization iteration
but should be met upon convergence. This method is based on the

https://dx.doi.org/10.1002/nme.1620240207
https://dx.doi.org/10.1002/nme.1620240207
https://dx.doi.org/10.1002/nme.1620240207
https://dx.doi.org/10.1007/s00158-014-1174-z
https://dx.doi.org/10.1007/s00158-014-1174-z
https://dx.doi.org/10.1007/s00158-014-1174-z
https://dx.doi.org/10.1007/s00158-014-1174-z


Literature review—Topology optimization approaches for additively
manufacturable continuous fiber-reinforced polymers. 22

work of Patnaik et al. on parametric optimization.
Sequential Linear Programming and Methods of Moving

Asymptopoes are optimization strategies for solving engineer-
ing problems involving multiple objectives and constraints. These
methods are based on first-order approximations of the objective
and constraint functions using gradient information at a given
design point. MMA uses a hybrid linear and reciprocal approxima-
tion method [79], known as convex linearization (CONLIN) [80],
that is convex and approximates the optimization problem. Svan-
berg [74] introduced a variation of this method that uses moving
asymptotes to stabilize and speed up the convergence of the opti-
mization process. In addition, a dual approach or a primal-dual
interior-point method can efficiently solve the non-linear program-
ming problem because the subproblem is separable and convex.
However, the reciprocal approximation used in MMA may elimi-
nate the linearity of the approximation [81].

2.3 Parameterization Schemes for Fiber Orientation
The parameterization scheme implements a numerical description
of fiber orientation patterns and defines variables for optimization.
It should ensure the spatial continuity of fiber angles so that the
CF4 technology can produce the structure. It should also provide
enough design freedom so that the optimization algorithm can
consider more candidate designs. For mathematical completeness,
the general density-based template for the optimization problem
is presented to find the optimal distribution of structural topol-
ogy, fiber layout, and fiber orientation in functionally graded
anisotropic composite structures. In Fig. 2.5, the density distribu-
tion accommodates fiber material only; however, the addition of
materials is considered through separate density functions in the
optimization framework, for example, when optimizing variable
fiber fractions or functionally graded anisotropic composites, as de-
picted in the Equation (2.10). Thus, as detailed in this section, the
template accommodates several parameterization schemes used
in the literature to optimize fiber-reinforced composite structures.
The vector 𝒛 comprises all the design variables, such as isotropic
material (matrix) density, fiber material density, and orientation
variables. Each design variable has a range of values between 𝑧 𝑖
and 𝑧̄𝑖 . The total volume of the matrix material, 𝐺𝑚0, is calculated
from the density distribution 𝝆𝑚 , which is determined by the
design variable or density function 𝜌𝑚 . Similarly, the fiber material
volume is determined using the fiber density function 𝜌(𝜃) 𝑓 . The
system of linear equations consists of the stiffness matrix 𝑲 and
the force vector 𝑭 , which is derived from the state equation using
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Figure 2.5: Illustration of DTO considering anisotropic material via fiber
orientation parameterization.

[ρ;θ]
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finite element formulation.

min
𝒛

: ℱ (U, 𝒛)

:=
∑
𝑖

∫
Ω𝑖

𝑓 (𝑧𝑖 ,U(𝑧𝑖))𝑑x

s.t. : 𝒛 :=
[
𝝆𝑚 , 𝝆 𝑓 (𝜃)

]
: 𝑧 𝑖 ≤ 𝑧𝑖 ≤ 𝑧̄𝑖 ,∀𝑧𝑖 ∈ 𝒛, 𝑖 = 1, . . . , 𝑁

: 𝐺𝑚0(𝝆𝑚) =
∑
𝑖

v𝑖𝜌𝑖𝑚 − V𝑚 ≤ 0,

: 𝐺 𝑓 0(𝝆 𝑓 ) =
∑
𝑖

v𝑖𝜌𝑖𝑓 − V 𝑓 ≤ 0,

: 𝐺 𝑗(𝒛,U(𝒛)) ≤ 𝐺∗
𝑗 , 𝑗 = 1, . . . , 𝑄

: 𝑲(𝒛)U = 𝑭

(2.10)

2.3.1 Continuous Parameterization
The design approach known as continuous parameterization of
fiber orientation (CFO) employs the angle as the design variable.
This design variable is a continuous and independent parameter
that allows for flexibility in changing the orientation across the
design points, expanding the orientation design space. This
concept is illustrated in Fig. 2.6. The rotation stiffness tensor,
denoted by C(𝜃), is derived from the base anisotropic stiffness
tensor C using a rotation tensor, T(𝜃), where 𝜃 corresponds to the
direction of the fiber. In this context, 𝑐 and 𝑠 represent cos𝜃 and
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sin𝜃, respectively.

C(𝜃) = T−1(𝜃) · C · T′(𝜃) =

𝐶̄11 𝐶̄12 𝐶̄16
𝐶̄12 𝐶̄22 𝐶̄26
𝐶̄16 𝐶̄26 𝐶̄66

 (2.11)

T(𝜃) =

𝑐2 𝑠2 2𝑐𝑠
𝑠2 𝑐2 −2𝑐𝑠
−𝑐𝑠 𝑐𝑠 𝑐2 − 𝑠2

 , T′(𝜃) =


𝑐2 𝑠2 𝑐𝑠

𝑠2 𝑐2 −𝑐𝑠
−2𝑐𝑠 2𝑐𝑠 𝑐2 − 𝑠2


(2.12)

The optimization process for parameterized fiber orientation, de-
noted by 𝜃, involves continuously varying the angle within the
range of

[−𝜋
2 ,

𝜋
2
]
. However, designing a continuous fiber orienta-

tion presents a challenge due to the complex fourth-order transform
tensor that rotates to a given angle, which involves multivalued
sine and cosine functions, resulting in a non-convex optimization
problem. Additionally, the optimization process for fiber orienta-
tion is sensitive to the initial fiber configuration, making it difficult
to obtain the optimized solution. Previous studies have shown that
suboptimal solutions are common in continuous fiber orientation
design problems. One way to tackle this issue is by expanding the
design space. For instance, free material optimization (FMO) [82,
83] parameterizes each stiffness tensor element independently as
a design variable. This approach avoids the complexity of orienta-
tion design variables. Still, point-wise nonlinear constraints are
required to ensure the positive semi-definiteness of the stiffness
tensor and link it to the feasible physical design, making this
method challenging. Nomura et.al. 84 have simplified the first
tensor invariant constraint and removed the nonlinear constraints
by formulating an orientation design variable as a tensor field.
However, these constraints can still be violated at the joint point of
the structural members where the orientation shows a discontin-
uous distribution. Studies on optimizing fiber orientation using
the analytically derived optimally criterion [85] date back to the
pioneering work of Pedersen on the strain-based method 86–88. In
Pedersen’s work, it was concluded that material orientation axes
that lie along principal strain axes always give stationary energy
density. However, Cheng [89] argued that this conclusion is lim-
ited to a unit cell case where the orientation variable is separated
from the design domain to obtain extreme strain energy. A similar
deduction using iterative optimality criteria [90, 91] formulated
the stress-based method [92] by exercising an invariant stress field
for material orientation. Diaz and Bendsoe [93] then extended
the stress-based method to determine the optimal orientation opti-
mization problem corresponding to multiple loads. While both

https://dx.doi.org/10.1016/j.compositesb.2019.107187
https://dx.doi.org/10.1016/j.compositesb.2019.107187
https://dx.doi.org/10.1016/j.compositesb.2019.107187
https://dx.doi.org/10.1016/j.compositesb.2019.107187
https://dx.doi.org/10.1007/BF01637666
https://dx.doi.org/10.1007/BF01637666
https://dx.doi.org/10.1007/BF01743521
https://dx.doi.org/10.1007/BF01743521
https://dx.doi.org/10.1007/BF01743521
https://dx.doi.org/10.1007/BF01743275
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Figure 2.6: Finite elements are considered design variables in DTO: (a) Contin-
uous material orientation; (b) Discrete material orientation.

θ

θ� θ� θ� θ��� θ��� θ�{ }θ≡
���������������������������

�����������������������������

[ρ;θ]

95 Lu et al., “Concurrent
optimization of topologies and fiber
orientations for laminated composite
structures,” 2022.

96 Qiu et al., “Concurrent topology
and fiber orientation optimization
method for fiber-reinforced
composites based on composite
additive manufacturing,” 2022.

methods are similar, the stress-based method produces a slightly
stiffer structure than the strain method because strong couplings
exist among the orientational variables when the strain field is
used [89]. In conclusion, Gea and Luo [94] demonstrated that the
fiber orientation coincides with the principal stress/strain fields for
relatively weak shear and some strong shear types of anisotropic
materials. Recently 95, a strain-based method framework has been
utilized to optimize laminate topology and fiber orientation for
various in-plane and out-of-plane loading conditions.

In the field of CFO (Continuum Fiber Orientation), the methods
used for analysis heavily rely on the fibers’ initial configuration.
However, as explained in an article by Qiu 96, there may be better
methods for shear ’strong’ type materials due to multiple global
minimum solutions. While these shortcomings have led to the
development of new methods, one such method is the energy-
based approach proposed by Luo and Gea [97, 98]. This approach
utilizes an inclusion cell to estimate the dependence of the strain
and stress fields on the fiber orientation using an approximate
energy factor. However, the factors that affect the energy, such
as traction stress, material properties, and the direction of the
inclusion cell and its surroundings, make applying this method for
3D and complex loading problems challenging. Building on the
energy-based method,Yan et al. proposed a hybrid stress-strain
approach by considering the optimality condition of the mean
compliance in both the stress and strain forms. They demonstrated
their method using numerical examples of weak and strong shear
materials and extended them to 3D problems. However, the
assumption regarding the elemental strain and stress field invariant
to the neighboring elemental orientation may limit the solution of
3D problems and lead to suboptimal results.
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2013.
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103 Brampton et al., “New
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method,” 2015.
104 Papapetrou et al.,
“Stiffness-based optimization
framework for the topology and fiber
paths of continuous fiber
composites,” 2020.

112 Bruyneel, “SFP—a new
parameterization based on shape
functions for optimal material
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conventional composite plies,” 2011.

An alternative is employing curvilinear parameterization schemes
that define fiber paths as the graphs of analytical function, guaran-
tee the continuity of the fiber angle, and have a few numbers of
design variables 100–102. Nevertheless, the restrictive design search
space will limit the tailoring of the fiber path, thus deteriorating
the stability of the optimization problem [26] and the quality of the
optimized solution. In addition, the parameterization schemes can
follow equidistant iso-contours of a level set function to represent
curvilinear fiber paths 103,104, naturally ensuring fiber continuity
and often being parallel to the neighboring fiber paths. Further-
more, the optimization result depends on the initial configuration,
and local solutions often appear [105].

2.3.2 Discrete Parameterization
The counter scheme is a method that limits the design options for
orientation by using a specific optimization process. This is done
to prevent problems with multiple solutions. The original method
used a genetic algorithm, which was computationally demand-
ing [106–108]. However, Stegmann et al. simplified the process
by transforming the base anisotropic stiffness tensor for the given
fiber orientation and selecting the material candidates beforehand.
This transformed the combinatorial problem into a continuous
optimization problem. Finally, the effective anisotropy elasticity
tensor is calculated as a combination of material candidates that
meets certain conditions and is convex.

C𝑒 𝑓 𝑓 =

𝑛𝑐∑
𝑖=1

𝑤𝑖C𝑖 ,

0 ⩽ 𝑤𝑖 ≤ 1
𝑛𝑐∑
𝑖=1

𝑤𝑖 = 1
(2.13)

The discussed scheme shares similarities with the multi-material
optimization problem mentioned in [110, 111]. In this scheme,
weighting functions are assigned to different candidates. It em-
ploys gradient-based optimization with a penalization coefficient,
which forces the weighting functions to seek a binary design and
fiber convergence, meaning there is only one discrete material at
each design point. This method is known as Discrete Material
Optimization (DMO).

DMO was a significant development and laid the foundation
for Shape Function with Penalization (SFP) 112 and Bi-value Cod-
ing Parameterization (BCP) [113]. These methods were used to
perform discrete fiber orientation optimization. Later, DMO was
extended for laminated composite structures to determine the ma-
terial distribution and thickness variation. This process is known
as Discrete Material and Thickness Optimization (DMTO) [114].
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Some recent works [6, 115, 116] have further improved the appli-
cability of DMTO. A comparison of these methods using various
numerical examples can be found in 116,117.

Another work proposed a self-penalization interpolation model
for fiber orientation (SPIMFO). This model is based on the con-
vergent Taylor series for sine and cosine functions to optimize
composite hyperelastic material 118 and the dynamic design of
laminated piezo-composite actuators [119].

DMO does not incorporate design problems for continuously
varying orientation distributions. First, it is an imperative design
consideration to circumvent stress constraints and degradation in
the strength by order of magnitude compared to that for continuous
fiber paths due to fiber discontinuity. Secondly, these methods
must address the fiber convergence, even against the significant
penalization factor; hence, their benefit relies on an optimization
algorithm to circumvent impractical mixtures of fiber orientations.
Third, the discrete parameterization schemes should minimize the
number of design candidates for efficient optimization.

2.3.3 Discrete-Continuous Parameterization
One way to optimize fiber orientation is by combining continuous
and discrete methodology. By utilizing the benefits of both ap-
proaches, it is possible to improve computational efficiency, avoid
local optima, and address issues related to fiber continuity and
manufacturability. To achieve this, a combination of discrete and
continuous parameterization is suggested. A recent study by Luo
et al. proposed a coarse-to-fine strategy that divides the orientation
design space into discrete sub-intervals. The CFO then searches
for an optimized solution in each sub-interval using the DMO
approach. However, the number of sub-intervals needed is still
being determined. This approach reduces the risk of falling into
local optima while maintaining fiber continuity.

Nevertheless, Nomura et al. proposed a flexible strategy that
integrates alternatives suggested for DMO and CFO approaches.
Their study explored the Cartesian system for orientation de-
sign variables to improve the initial design dependency and local
optima issues encountered in the continuous parameterization
approach. They extended the parameterization scheme to yield an
optimized design for a given discrete orientation set. Additionally,
the vectorial form of the orientation design variables considered
the 2𝜋 ambiguity, which occurs due to the periodic nature of the
orientation design variable. By introducing vectorial design vari-
able as a point-wise quadratic inequality constraint, they obtained
more interpolated elasticity tensors than the single variable polar
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representation. However, the optimization algorithm treats contin-
uous and discrete problems as two different problems. Therefore,
investigating the coupled optimization framework might be an
outlook for consideration. Another proposed parameterizing
scheme by Kiyono et al. continued the computational approach
suggested by Yin and Ananthasuresh [111]. They introduced
a normal distribution function as a weighting function in their
parameterizing strategy, which guaranteed fiber convergence, low
sensitivity to the initial fiber configuration, and continuity of the
fiber orientation.

Xia and Shi [122] have proposed a method to represent the
fiber orientation throughout the design domain using a continu-
ous global function. This is achieved by applying the shepherd
interpolation method at scattered design points. The interpolation
function ensures fiber continuity while considering a reduced
orientation design space compared to CFO. However, this method
needs an initial configuration and may end up with a sub-optimal
solution. In another work Xia et al. , multilevel optimization was
applied for fiber orientation optimization. It was more efficient
than single-level optimization; however, the optimization results
in different fiber arrangements for different initial fiber orienta-
tions. Therefore, the efficiency of the multilevel approach depends
on the attained fiber orientation field at a coarse level since the
optimization at the successive refined level starts from an initial
design computed at its neighboring coarser level.

A recent study by Ding et al. proposed a framework that com-
bines discrete and continuous optimization techniques, drawing
inspiration from previous works by Kiyono [117] and Luo [120].
However, the framework has yet to be compared to other op-
timization methods and may lead to local minima when the
discrete-continuous interval is greater than two. Another study
by Qiu et al. focused on optimizing material orientations using
multiple print planes, as shown in Figure 2.7. The authors imple-
mented their optimization framework using nylon filaments with
chopped carbon fibers, and their results demonstrated a signif-
icantly lower compliance value compared to previous methods.
Finally, the authors provided an example to illustrate the choice of
a discrete-continuous interval.

2.3.4 Feature-Based Parameterization
Parameterization schemes are widely used for representing designs
using low-level fiber material representations, such as pixel or
voxel-based representations. These representations allow for
complex and free-form designs, which can be further refined
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Figure 2.7: (Left)—Schematic the diagram represents the design variables of
an element and parameterizes continuous orientation variables in the discrete-
continuous setting. Right—Implementation of the multiple print plane to
design MBB [96]

using variables based on the number of pixels or voxels in the
design space. To make these designs more manufacturable, high-
level parameters are introduced to represent fiber material as
geometric features. These high-level parameters refer to the spatial
dimensions of a feature’s size, position, or orientation. This
approach allows for creating more efficient and effective designs
with fewer variables. Finally, to analyze these designs, feature-
mapping techniques are employed to map the geometric features
onto a fixed mesh. This process allows for a more detailed design
analysis and helps identify potential issues and improvement areas.
A comprehensive review of feature-mapping methods conducted
by Wein et al. details the various components of feature-mapping
techniques and their implementation in structural optimization.
By using these advanced techniques, designers can create more
efficient and practical designs that are easier to produce and
analyze.

The feature-mapping methodology is a design technique that
helps to connect two crucial elements of the product design process:
topology optimization and easy-to-manufacture designs. Mapping
the optimized topology onto a predefined feature space enables
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Figure 2.8: The illustration describes an algorithm for designing a continu-
ous fiber-reinforced polymer laminate specifically tailored for the geometry
projection method. The algorithm proposes a laminate with variable stiffness,
optimized using GP and then stacked together to create a multi-layered, opti-
mized laminate. Various CF4 constraints are incorporated during the design
process to ensure the final product is ready to print and meets all required
specifications.
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Figure 2.9: A similar algorithm as described in Fig. 2.8 can be utilized to design
single-layered variable-stiffness composite laminate using composite laminate
equivalent single-layer theory. The subsequent chapters provide a detailed
explanation of these concepts.

generating geometric features that can be readily manufactured
using conventional processes. This approach provides a seamless
transition from the initial design stage to the final manufactur-
ing stage, optimizing the product design for performance and
manufacturability. When exploring the possibilities of additive
manufacturing processes, it is essential to consider feature-based
mapping as a suitable framework for designing and optimizing
additively manufactured structures. By incorporating specific
features and AM’s requirements into the design process, designers
can create functional and optimized structures for the additive
manufacturing process, reducing production costs and improving
efficiency.

The emergence of CF4 technology has opened up new pos-
sibilities for developing advanced lightweight structures made
from continuous fiber-reinforced polymers, thus providing an
opportunity to exploit feature-mapping methods for these young
manufacturing techniques yet to be formulated for monolithic
structures. The thesis builds upon the promising work carried
out by various researchers in the past who have pioneered the
use of the geometry projection method for topology optimization
of structures made of components that are ready to assemble.
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However, the authors have taken a different approach by applying
this method to optimize the topology of monolithic structures
made entirely of CFRP material.

Geometry projection (GP) [125] is an explicit feature-mapping
technique that represents the design using cylindrical bars re-
inforced with continuous fibers [126]. It performs the analysis
using a fixed finite element mesh. The method penalizes the
interpolation of material properties at the junction of multiple bars
made of an anisotropic material as a convex combination of the
penalized effective densities for each component. CF4 offers shape
constraints on the structural form that can be easily integrated into
the method, as shown in Fig. 2.10. This work lays the groundwork
for using the geometry projection method for fiber-orientation
optimization design problems. However, the fiber can only be
unidirectional along the bars, which restricts the design freedom
offered by CF4. The method can control the structure’s size by
explicitly representing features. For example, Sun et al. proposed
a trapezoidal component made of primary material and wound by
fiber layers.

When integrating GP with CF4, it’s important to remember the
CF4 design principle and the manufacturing constraints that go
with it. One of these constraints involves adopting a layer-wise
approach to print CFRP (Carbon Fiber Reinforced Polymer) struc-
tures using commercial printers available in the market, such as
Markforged®, Anisoprint®, Prusa®, and others. This layer-wise
approach ensures that the carbon fibers are laid down in a specific
pattern and orientation, which is critical to achieving the desired
strength and stiffness of the final product. It’s worth noting that
this approach requires careful optimization of the printing param-
eters, such as the layer thickness, printing speed, and temperature,
to ensure that the carbon fibers are fully embedded in the matrix.
With the right approach and parameters, however, GP-CF4 com-
posite structures can be manufactured with excellent mechanical
performance and dimensional accuracy, making them ideal for
various applications, including aerospace, automotive, etc.

2.3.5 Material Parameterization
It is possible to introduce further relaxation in the feasible design
space through material heterogeneity. Heterogeneous composite
materials, for example, consist of two or more materials and are
engineered to vary the spatial composition and structure continu-
ously [128]. This variation allows for a broader range of material
properties beyond natural limits. Recent studies have shown that
CF4 is ready to manufacture FRC structures with continuous yet



Literature review—Topology optimization approaches for additively
manufacturable continuous fiber-reinforced polymers. 33

Ta
bl

e
2.

1:
Va

rio
us

at
tr

ib
ut

es
an

d
co

m
pa

ris
on

of
en

um
er

at
ed

pa
ra

m
et

er
iz

at
io

n
te

ch
ni

qu
es

.

Pa
ra

m
et

er
iz

at
io

n
D

es
ig

n
Fr

ee
do

m
A

dv
an

ta
ge

s
A

pp
lic

ab
ili

ty
D

ra
w

ba
ck

s

C
on

tin
uo

us
Fu

lly
re

la
xe

d
m

at
er

ia
l

or
ie

nt
at

io
n

sp
ac

e.
Sp

at
ia

lly
va

ry
in

g
fib

er
pa

th
bo

th
in

2D
an

d
3D

.
A

do
pt

ed
sc

he
m

e
fo

r
C

F4
pa

rt
de

si
gn

an
d

ve
r-

ifi
ca

tio
n.

In
iti

al
de

si
gn

de
pe

nd
en

cy
,

si
gn

ifi
ca

nt
va

ria
tio

n
in

fib
er

an
gl

es
,a

nd
𝜋

am
bi

gu
ity

re
-

su
lt

in
po

or
lo

ca
lm

in
im

a.

D
is

cr
et

e
M

os
tr

es
tr

ic
tiv

em
at

er
ia

l
or

ie
nt

at
io

n
sp

ac
e.

M
os

te
ffe

ct
iv

e
gr

ad
ie

nt
-

ba
se

d
m

et
ho

d
fo

r
di

s-
cr

et
e

se
tti

ng
s

1 ,
e.

g.
,

m
ul

ti-
ph

as
e

TO
.

N
um

er
ou

s
st

ud
ie

s
on

de
si

gn
in

g
m

ul
ti-

la
ye

re
d

co
m

po
si

te
la

m
in

at
es

.

Se
ve

ra
l

de
si

gn
va

ri
ab

le
s,

fib
er

co
nv

er
ge

nc
e,

an
d

m
a-

te
ria

ld
is

co
nt

in
ui

ty
le

ad
to

am
bi

gu
ou

sd
es

ig
n.

D
is

cr
et

e-
co

nt
in

uo
us

C
on

tin
uo

us
or

ie
nt

a-
tio

ns
ar

e
pe

na
liz

ed
fo

r
at

ta
in

in
g

as
si

gn
ed

di
sc

re
te

di
re

ct
io

ns
.

G
en

er
al

fr
am

ew
or

k
fo

r
bo

th
co

nt
in

uo
us

an
d

di
s-

cr
et

e
se

tti
ng

s.

Pr
om

is
in

g
fr

am
ew

or
k

to
w

ith
st

an
d

va
ri

ou
s

FR
C

m
an

uf
ac

tu
rin

g
un

its
.

O
nl

y
a

fe
w

w
or

ks
ar

e
av

ai
l-

ab
le

,
an

d
an

effi
ci

en
t

op
-

tim
iz

at
io

n
fo

rm
ul

at
io

n
is

ne
ed

ed
to

ta
ck

le
th

e
ge

n-
er

al
se

tti
ng

.

Fe
at

ur
e-

ba
se

d
M

os
tr

es
tr

ic
tiv

em
at

er
ia

l
di

st
rib

ut
io

n
sp

ac
e

2 .
Le

as
t

nu
m

be
r

of
op

-
tim

iz
at

io
n

va
ri

ab
le

s,
ea

sy
-to

-c
on

tr
ol

fe
at

ur
e

si
ze

,
an

d
re

ad
y-

to
-

m
an

uf
ac

tu
re

de
si

gn
.

Fa
vo

ra
bl

ef
or

la
rg

e-
sc

al
e

ap
pl

ic
at

io
n

an
d

in
du

s-
tr

ia
l

m
an

uf
ac

tu
ri

ng
un

its
du

e
to

its
si

m
pl

e
to

po
lo

gy
.

To
po

lo
gy

is
re

st
ri

ct
ed

3
to

fe
at

ur
es

ha
pe

,t
hu

sl
im

iti
ng

C
F4

ca
pa

bi
lit

ie
s

M
at

er
ia

l
C

om
pl

et
el

y
re

la
xe

d
in

m
at

er
ia

l
di

st
ri

bu
tio

n
an

d
or

ie
nt

at
io

n
sp

ac
e

A
llo

w
s

sp
at

ia
lly

va
ry

-
in

g
fib

er
pa

th
an

d
vo

l-
um

e
fr

ac
tio

n,
co

m
pl

ex
lo

ad
in

g,
in

te
gr

at
io

n
of

fa
ilu

re
cr

ite
ri

a,
da

m
ag

e
m

od
el

,e
tc

.

Fu
lly

ex
pl

oi
t

th
e

ca
pa

-
bi

lit
ie

so
fC

F4
w

ith
a

de
-

si
gn

th
at

ca
n

fo
llo

w
th

e
re

sp
on

se
of

th
e

ac
tu

al
pa

rt
.

Va
lid

at
io

n
of

nu
m

er
ic

al
fr

am
ew

or
k

is
di

ffi
cu

lt
be

-
ca

us
et

he
at

ta
in

ed
to

po
lo

gy
is

co
m

pl
ex

1

G
en

et
ic

al
go

rit
hm

sa
re

us
ed

in
th

e
di

sc
re

te
fr

am
ew

or
k;

2
M

ai
nl

y
fo

re
xp

lic
it

fe
at

ur
e-

m
ap

pi
ng

;3
Im

pl
ic

it
fe

at
ur

es
ca

n
al

lo
w

fr
ee

-fo
rm

to
po

lo
gy

at
th

e
co

st
of

co
m

pu
tin

g
th

e
di

st
an

ce
fu

nc
tio

n
nu

m
er

ic
al

ly
.



Literature review—Topology optimization approaches for additively
manufacturable continuous fiber-reinforced polymers. 34
Figure 2.10: The example demonstrates the design of MBB using the geometry
projection method. The top of the left column shows the MBB beam design
region, support, and unit load, whereas the bottom depicts colored penalized
element densities for the optimal MBB beam designs. Note that the color
denotes the orientation of the rest of the changes. In the right column, iteration
histories of an objective function indicate the attained compliance value 𝑓 (𝑖) at
an iteration 𝑖. [126]

spatially varying fiber paths and fiber volume fractions. Variable
FRC material properties may perform better if optimized ade-
quately than a fixed FRC material volume fraction. Therefore, a
composite structure comprising heterogeneous FRC material dis-
tribution provides considerably larger design freedom to CF4 [129–
131]. Lee et al. have considered a sequential approach to designing
FRC structures by considering fiber and material fractions in a
given design space. A sequential process begins with designing an
isotropic-material matrix with voids, selecting fiber fractions, and
optimally orienting the fibers. However, this approach sacrifices
exploring new topologies that might be optimal for variable FRC
structures. To address this issue, Desai et al. work investigated
the simultaneous design of matrix topology, fiber material layout,
and orientation using an anisotropic topological derivatives frame-
work. In addition, the dense arrangement of fibers was evenly
spaced for the part’s manufacturability while retaining their spe-
cific patterns. However, the structural performance resulting from
simplifying the dense fiber arrangement needed to be evaluated,
thus questioning the reliability of the printed part.

As previously discussed, the work involved optimizing the
distribution and orientation of FRC material through mono-scale
approaches. However, CF4 can also be used to create mono-scale
and multi-scale structures. Multi-scale approaches can be divided
into lattice-based and hierarchical-based topology optimization
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based on their micro-scale optimization methodology. The lattice-
based approach calculates effective elastic coefficients through
offline homogenization of a fixed or a set of multi-variable micro-
structures. The computed coefficients are then interpolated to
achieve continuous variations for corresponding variations in the
microstructure parameters. On the other hand, the hierarchical
approach solves a spatially varying micro-structural and macro-
scale optimization problem at each material point, which leads
to high computational costs and connectivity issues. Despite
the challenges, designing next-generation lightweight structures
is promising, as FRCs have inherent multi-scale characteristics
and geometric patterns that span at least two or more scales.
Spatially varying material distributions are critical to this approach.
Interested readers can refer to the review paper by Wu et al. ,
which provides the general framework for multi-scale topology
optimization and diverse applications the framework has been
utilized.

The multi-scale approach for anisotropic materials is challeng-
ing due to various factors such as length scale controls, connectivity
between adjacent micro-structures, the ability to produce models
for damage criteria to capture actual anisotropic behavior, and
unique treatments at the domain’s boundaries. These factors re-
quire investigation through experiments or appropriate numerical
tools to estimate the actual performance of printed parts. Only a
few works have addressed the multi-scale approach for FRCs. Kim
et al. adopted the homogenization method for designing spatially
varying fiber volume fractions and orientations. Their work used
SIMP to design the macro-structure’s composite topology. The
de-homogenization procedure applied to fiber microstructures
obtained in the coarser mesh was visualized by projecting at a
finer mesh. Various benchmark and multi-load structure prob-
lems were studied, and it was concluded that locally varying FRC
materials augment the global stiffness of the structure more than
a fixed fiber volume fraction or isotropic multi-material structure.
In continuation of the Kim methodology, Jung et al. proposed
a 3D TO approach for designing FRC structures with spatially
varying fiber fractions and orientations. Finally, Boddeti et al.
introduced a complete design to the manufacturing workflow for
laminated continuous fiber-reinforced composites with variable
stiffness enabled by spatially varying microstructures.

2.4 Discussion
The discussion centers around the effectiveness of a specific topol-
ogy optimization for materials that exhibit anisotropic properties.
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Figure 2.11: MBB—post-processed design result of FRC structure with fixed
(top-row) and varying fiber volume fraction (bottom-row) using a micro-
structure unit cell with rectangular-shape (left-column) and cross-shaped
(right-column) fiber layout. The black color represents matrix material, and the
yellow colored part is fiber material [135].

However, it should be noted that this discussion is a partial analysis
of CF4 and its differences when adopting a particular topology
optimization method. The main objective is to explore topology
optimization strategies that can fully leverage the design freedom
offered by CF4 technologies. As previously mentioned in Sec-
tion 2.3, there are five primary categories of existing techniques
for material orientation, including continuous, discrete, discrete-
continuous, feature, and material parameterization.

The Discrete Material Orientation (DMO) approach is a popular
method used in the aerospace, automotive, and wind turbine
industries to optimize a prescribed set of alternative discrete
angles for manufacturability reasons. This approach is particularly
favorable for multi-layer composite laminate designs [138–140], as
it allows a mixed-integer programming problem to be formulated
as a continuous problem that can be solved efficiently using
gradient-based optimizers. This makes it possible to solve complex
problems that may not be amenable to gradient-free methods, and
the simplicity of DMO, combined with its ability to attain the
discrete setting for material orientation, has led to its adoption in
various industrial applications. However, it should be noted that
the DMO approach has some limitations, particularly regarding
its restrictive measures on the material orientation design space.
While it is effective in many cases, there needs to be more literature
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on its applicability to CF4, and it may not fully exploit the potential
of this material. As such, it is essential to carefully consider the
benefits and limitations of the DMO approach when applying it to
different materials and designs.

The optimization of multi-layered composite laminates [141]
can be approached using an indirect method known as lamination
parameterization. Tsai and Pagano [142] introduced this method
to parameterize the composite laminate’s stiffness using twelve lin-
early dependent parameters. This approach offers the advantage
of reducing the number of optimization variables, making obtain-
ing a globally optimal solution easier. However, the lamination
parameters are not independent design variables, which makes it
challenging to incorporate composite failure criteria and design
and manufacturing constraints. Although lamination parameteri-
zation is a popular method, it has limitations. For example, it is
limited to considering only one candidate material and does not
provide a direct description of the laminate data for the design.
To overcome these limitations, additional optimization steps are
required to convert the stiffness properties to optimal fiber orienta-
tion angles and to introduce design guidelines and manufacturing
constraints. Therefore, a multi-level optimization strategy that
exploits the benefits of achieving global optima at its first stage
is used. However, this approach limits the capability of CF4 pro-
cesses that enable multi-axial and micro-scale prints. Additionally,
it is essential to consider additive manufacturing-related manufac-
turing constraints, such as minimum turning angles, feature sizes,
etc., to achieve a realizable AM design. The LP framework needs
to be expanded to achieve scalability for numerical verification of
the CF4 prints. The LP framework is briefly discussed for com-
pleteness on available parameterization schemes. Still, interested
readers can look at the review by Albazzan et al. and recent work
on the TO of laminates in the following citations [144–147]

Advanced manufacturing techniques are revolutionizing the
field of composite materials, and continuous fiber orientation
methods are emerging as a promising parameterizing scheme
for CF4 processes. These methods offer the highest degree of
freedom regarding shape and variable stiffness, making them ideal
for directing material deposition path planning. Unlike discrete
methods, continuous orientation formulation ensures that the
fiber trajectory curvature, fiber continuity, fiber fraction, and offset
distance between adjacent fibers are optimized, thereby making
fiber convergence and continuity easier to achieve. Papapetrou
et al. have designed parts’ topology and material orientation
simultaneously, followed by post-processing using continuous fiber
path planning to ensure realizability. A sequential scheme has also
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been proposed by Chen and Wang [23, 148], where fiber placement
based on load transmission follows isotropic TO, in contrast to Liu
et al. , who adopted concurrent fiber path planning and structural
topology optimization. Multi-axis material deposition technology
using a robotic arm requires an extension of the TO algorithm to
envelop the 3D fiber orientation, which is unnecessary in in-plane
printing. Schmidt et al. introduced azimuth and elevation angles
to extend the CFO method for 3D fiber orientation. They have
also emphasized the issues of the non-convexity of compliance
and sensitivity to initial fiber orientations and have investigated
the orientation parameter space to mitigate these problems [151].
Finally, the realizability of 3D-printed composites has been studied
by Fedulov et al. , who have proposed a filtering technique for
fast convergence. The method aims to ensure that the printing
process meets the requirements for fiber placement, allowing for
the production of high-quality composite materials.

Topology optimization techniques in exploring the potential of
CF4 technology can be pretty costly, mainly when these methods
are applied to produce large-scale structural parts. Therefore,
it is essential to balance commercial aspects, such as feasibility,
practicality, and structural design, by considering the benefits of
various methodologies, such as discrete, continuous, and multi-
component approaches. A discrete-continuous parameterization
scheme is beneficial in optimizing the structural topology and
material orientation, and multi-component optimization (MTO)
can be employed to decompose product geometry while ensuring
that manufacturing constraints are met. This approach is crucial
in minimizing the impact of quality and cost on the end product.
Initially, a genetic algorithm was used to solve MTO, as proposed
by Lyu et al. . Recently, Zhou et al. have used a gradient-based opti-
mization algorithm to enhance this approach. They have extended
their work to structures consisting of multiple composite compo-
nents with tailored material orientations without a prescribed set
of alternative discrete angles. This has made it possible to produce
regions that can be fabricated separately and joined with contin-
uous or discrete material orientation methods, as demonstrated
by Qiu et al. . Overall, these TO methods offer a promising avenue
for exploring the potential of CF4 technology while minimizing
the associated costs. The optimization algorithms employed in
this approach can provide a more efficient and effective means of
designing and producing composite materials.

The principle of feature mapping is rooted in being ready for
manufacturability while imposing necessary limitations on the
spatial distribution of fiber orientations. This approach considers
commercial aspects to ensure that composite parts can be easily
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manufactured by introducing CAD-based features that help sim-
plify the layerwise design process. It also significantly reduces
the number of design variables, further streamlining the design
space. It is worth noting that previous research in this area has
only considered stiffness-driven design. However, it is equally im-
portant to consider the failure modes of composite parts that may
arise during the layerwise additive manufacturing process. Such
failure criteria can result in substantially different designs, making
this method particularly relevant in fabricating fiber-reinforced
composite structures.

In this particular study, optical microscopy images of the cross-
sectional area of a fiber-reinforced plastic material are shown in
Figure 2.12. The material comprises carbon fibers impregnated
with nylon plastic, known as polyamide 6. The fibers are wound
on a filament spool placed in a material chamber, resulting in a
somewhat circular cross-section. However, once the filament is
deposited on the platen, the cross-section takes on a rectangular
shape due to the carbon fiber bundle filament passing through a
roller. It is worth noting that the presence of voids in the material
can significantly impact its mechanical performance. According
to He et al. , poor fiber-matrix interfaces can reduce mechanical
performance due to voids. The study observed void content as
high as 12% for CF/PA6 composites despite having a fiber volume
fraction of 35%. Based on these experimental observations, the
design space for such materials encompasses both micro and
macro-scale behaviors. Therefore, multi-scale models that utilize
disposable parameterization schemes can accurately predict the
actual response of the print structure. One of the main benefits of
using a micro-mechanics approach is that it enables the prediction
of all of the elastic properties of the composite, as well as its
complex, multi-axial, nonlinear response based on the properties
of its constituents. By fully exploiting the capabilities of CF4,
multi-scale modeling can help optimize the performance of fiber-
reinforced plastic materials.
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Figure 2.12: Typical cross-sectional view of a CF/PA6 filament by optical
microscopy [9].

The field of multi-scale modeling is constantly evolving and
advancing, with the ultimate goal of eliminating the need for mono-
scale topology optimization. Despite this, multi-scale modeling is
still considered an extension of the design for additive manufac-
turing (DfAM) framework. It plays a crucial role in understanding
the complex physics that connects the materials and structures in
a given system. In addition, future research in DfAM may include
exploring new multi-objective performance measures. This could
involve extending the framework to include objectives beyond com-
pliance. For instance, researchers could focus on optimizing the
performance of a system in terms of its strength, stiffness, or other
properties. Furthermore, there is a growing interest in integrating
manufacturing constraints into the optimization process. One
way to achieve this is through emerging feature-based topology
optimization approaches. These approaches allow for the easy
integration of manufacturing restrictions, enabling more accurate
modeling and simulation of complex systems. This could prove
particularly useful for optimizing the performance of complex
systems subject to various manufacturing constraints.

Knowing the advantages and limitations of feature-mapping
methods—the main focus of the thesis is the integration of GP-
CF4 (Fig. 2.8), which aims to propose a comprehensive design for
an additive manufacturing framework for CF4. This framework
utilizes GP as a topology optimization framework to optimize the
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design process. The goal is to create a general framework that
is flexible enough to accommodate various design requirements
while ensuring efficient and effective manufacturing of CF4 com-
ponents. The thesis explores multiple aspects of the integration
process, including the design methodology, process optimization,
and performance analysis. Ultimately, the aim is to provide a
robust and reliable framework for various research applications.

2.5 Conclusions
The chapter reviews topology optimization (TO) methods for con-
tinuous fiber-reinforced polymers (CFRP) structures applied to CF4
design principles. Firstly, the study emphasizes the single-scale
TO approaches that simultaneously or sequentially design fiber
orientation and structural topologies. To accomplish this, the anal-
ysis classifies various parameterizing techniques for anisotropic
materials’ topology optimization. Continuous parameterization
schemes are considered for spatially varying fiber orientations
and/or fiber volume fractions, which can be easily applied to
CF4 and multi-axis material deposition technologies. However, to
meet established manufacturable units, such as automatic fiber
placement or automated tape layup, discrete material optimiza-
tion (DMO) is widely chosen to optimize composite laminates.
The study further reports the usefulness of multi-scale TO for
realizing FRC and extending it for variable fiber fraction struc-
tures. Moreover, it highlights emerging methodologies such as
feature mapping, multi-component, and isogeometric optimiza-
tion that can be applied to CF4, which sets a new bar for designing
FRC structures. Therefore, the study aims to address the main
challenges in designing TO for anisotropic materials.

General applicability: To tackle various structural problems, re-
searchers often employ performance measures that aim to reduce
compliance and material distribution on a basic structure. How-
ever, it is essential to note that these methods may not be sufficient
to address more complex issues such as buckling stability, compli-
ant mechanisms, eigenvalue analysis, and other related challenges.
As a result, further validation and testing are required to ensure
that these approaches are effective and reliable in dealing with
intricate structural problems.

Solution dependency on an initial guess: The effectiveness of CFO
methods is highly dependent on the initial assumptions made, yet
they are commonly preferred for their straightforward approach
and capacity to enhance the continuous fiber orientation design.
Integrating CFO and DMO techniques is a promising avenue for
developing free-form CFRP structures through additive manu-
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facturing. It is often difficult to avoid initial design dependency
when designing materials that exhibit anisotropic behavior. This
is especially true for methods that use pixel or voxel data as design
variables. The challenge is that anisotropic materials have different
material properties in different directions, making optimizing their
performance difficult due to non-convex design space. However,
constantly exploring new methods, e.g., feature-mapping and
MTO, to overcome these challenges and develop a TO framework
that can be optimized for various applications.

Multiple constraints: To ensure that the optimization process for
CF4 is successful, it is essential to integrate it with manufacturing
constraints. Some manufacturing constraints must be considered,
including minimum curvature, fiber filament cut-out, and feature
size. These constraints are crucial in validating the optimization
process and ensuring that the final printed part is viable and can
be manufactured without issues. Considering these constraints, it
is possible to create high-quality 3D-printed parts that meet the
desired specifications and are fully optimized for their intended
use.

Revival of shape-based TO: In recent years, topology optimization
(TO) has gained significant attention in the field of design for
additive manufacturing (DfAM) due to its capability to generate
optimized designs that can be produced using additive manufac-
turing (AM) technology. Voxel-based methods are widely used
due to their simple implementation. Still, they may not be a suit-
able choice to attain computer-aided (CAD)-friendly designs and
may not necessarily adapt to other freeform fabrication processes.
Hence, emerging TO methodologies such as feature mapping,
isogeometric shape optimization, and multi-component methods
have been considered for the DfAM framework. These methodolo-
gies are expected to provide better solutions for complex design
problems by using higher-order geometric entities such as curves
and surfaces rather than voxels or pixels. They also enable users to
generate more designs compatible with CAD systems and quickly
adapt to various freeform fabrication units.

Three-dimensional printing of continuous FRCs: CF4 has been gain-
ing popularity as a promising technology for designing structures
with improved mechanical properties, such as tensile, flexural,
compression, and impact resistance. However, CFRPs produced
using additive manufacturing techniques are weaker than those
produced using traditional methods. This is due to several fac-
tors, including low fiber content, poor interface bonding force,
void formation, and printing limitations. Therefore, to enhance
the performance of CFRCs manufactured using 3D printing, a
comprehensive investigation of the material and morphological
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properties of continuous fiber-reinforced composites is necessary.
This should be conducted in tandem with developing a theoretical
optimization (TO) framework. By studying the material and mor-
phological properties of CFRCs, researchers can identify ways to
overcome the limitations of 3D printing and improve the strength
and durability of printed parts. Ultimately, this could lead to
the development of more robust, more reliable, and cost-effective
structures.
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The geometry projection (GP) 125 methodology optimizes a high-
level parametric description of geometric componentsΩ𝑏 ∈ R2orR3.
Given the layer-wise approach of CF4 to print structure, our re-
search focuses on optimizing linearly elastic planar structures
composed of bars with fixed width and semicircular ends. The
design space for optimization includes the endpoint locations of
the bar’s medial axes and their constant out-of-plane thicknesses.
A differentiable mapping for efficient gradient-based optimization
projects the bar design onto the computational design domain
𝒟 by converting the endpoint positions into a continuously vary-
ing density field. This density field indicates the fraction of
solid material in 𝒟, similar to density-based topology optimiza-
tion methods. This enables penalized density to be employed
in determining the material properties as in SIMP 73 topology
optimization techniques. A zero penalized density means bar
Ω𝑏 does not affect the material properties at x ∈ 𝒟. Therefore,
the bar’s membership variables 𝛼𝑏 and the penalization allow the
optimizer to remove or reinsert the bars in the design, regardless of
the bar’s dimensions, position, or orientation. This characteristic
is a hallmark of GP techniques and promotes better optimization
convergence. The membership variable and the projected density
must be penalized to ensure that intermediate-density regions
satisfy the Hashin-Shtrikman bounds. Lastly, the method naturally
accommodates the imposition of several fixed-length scales, which
allows different bar widths. Using bars with semicircular ends
instead of rectangles simplifies geometry projection and sensitivity
analysis, improving robustness and design. For completeness,
the method demonstrated its capabilities for primitives made of
fiber-reinforced plates 155,156.

This chapter details the critical ingredients of the feature-
mapping methods. Then, it describes the formulation of the geom-
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etry projection for isotropic material, discusses implementation
aspects, and demonstrates some of its capabilities by presenting
several 2D compliance minimization examples. The chapter dis-
cusses the main components of the GP method to construct the
building block for extrapolating the implementation for continu-
ous fiber-reinforced polymer (CFRP) materials. The subsequent
chapter explains how to apply the GP method to variable stiffness
CFRP laminates for both single-layer and multilayered approaches.

3.1 Key ingredients of feature-mapping methods
Over the past twenty years, a new set of methods for implementing
and solving structural optimization problems has emerged: feature-
mapping methods. These methods rely on a high-level geometric
description to parameterize the design and map features onto a
non-body-fitted mesh for analysis. The primary purpose of using
these methods is to have greater control over the geometry, which
can help impose direct constraints on geometric features while
avoiding re-meshing problems. We examine the key definitions
and elements that these methods employ to map geometric features
onto a fixed mesh and other feature-mapping techniques, including
methods for combining features.

High-level geometric features —A collection of defined points
that are either solid components or holes in a solid component
are called high-level geometric features. These features are distin-
guished by their size, location, or orientation. Examples of such
parameters include the position of a primitive shape like a bar or a
circle. These parameters frequently represent solid objects in CAD
systems, thus managing their dimensions more straightforwardly.
Their parameterization describes high-level geometric features,
representing solid components or openings and the direct spatial
dimensions linked with their size, location, or orientation.

Mapping features onto a fixed grid —Mapping high-level ge-
ometric features onto a fixed grid is crucial for feature-mapping
techniques applied in structural optimization. This step involves
representing these features in a way that enables them to be ana-
lyzed on a fixed grid, which serves as a spatial partition of the de-
sign region that remains unchanged throughout the optimization
process. This, in turn, facilitates the analysis of high-level geomet-
ric features within a structured spatial discretization, providing
a means to perform structural optimization without re-meshing
during the optimization process. Two main types of geometry
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mapping approaches are used for analyzing high-level geometric
features in structural optimization: pseudo-density-based map-
ping and immersed boundary/XFEM approaches.

Representation of high-level geometric features is achieved
through pseudo-density-based mapping, which involves using
element-constant pseudo-densities. These densities estimate the
volume fraction of the elements that intersect the features. The
advantage of this method is that it allows for analysis to be per-
formed on a fixed grid without re-meshing. On the other hand,
immersed boundary/XFEM approaches rely on techniques such
as the eXtended Finite Element Method (XFEM) 157 to analyze
structures with complex geometries. These approaches enhance
the finite element approximation with additional degrees of free-
dom, allowing for accurate capture of the behavior of the structure,
particularly at the boundaries and interfaces.

Material interpolation functions —Interpreting material prop-
erties for intermediate pseudo-density values in structural opti-
mization heavily relies on material interpolation functions. These
functions determine the stiffness corresponding to the intermediate
values of the pseudo-density field for a given material properties.
The material interpolation function scales the material proper-
ties based on the pseudo-density values, thereby impacting the
interpretation of material properties for intermediate values. It
determines the changes in the stiffness properties of the material
as the pseudo-density varies between the solid and void states.
Accurately interpreting the material properties for intermediate
pseudo-density values is challenging because these values repre-
sent the transition between solid and void. Hence, the form of
the material interpolation function is crucial in ensuring that the
resulting material properties align with the physical behavior of
the material.

Combining features —Two primary methods exist to combine
individual mapped features before or after mapping to the fixed
grid in the context of structural optimization. The first method is
"combine-then-map," aggregating individual geometric features
to form a unified representation. Afterward, this unified represen-
tation is mapped onto the fixed grid for analysis. An example of
this method is using Boolean operations to combine individual fea-
tures before mapping them to the fixed grid. The second method
is called "map-then-combine." Here, each geometric feature is
initially mapped onto the fixed grid. Once the mapping is com-
plete, the resulting mapped variables, such as pseudo-densities or
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material property values, are combined. This combination can be
element-wise or at integration points, depending on the specific
method used.

Implicit vs explicit feature representations —Structural opti-
mization can be represented in two ways: implicit and explicit
feature representations. Implicit feature representations use rules
to determine if a point belongs to a feature, while explicit feature
representations generate points that form the feature geometry.
Implicit representations are ideal for complex and irregular feature
geometries, while explicit representations are better suited for
well-defined and regular geometries. Density-based and level-set
methods typically use implicit representations, while high-level
parameters define explicit representations, such as the geometry
projection method.

Sensitivity analysis —Feature-mapping methods follow density-
based topology optimization methods for computing sensitivities.
Both methods allow for design sensitivities to be calculated more
quickly than approaches that require the computation of boundary
sensitivities, like some level-set methods. Density-based topology
optimization has an established process for calculating design
sensitivities, which can be easily performed for a wide range of
functions, including multiphysics problems that comply with the
chain rule. Density-based topology optimization involves the
calculation of sensitivities with respect to the element pseudo-
densities, which is closely related to the calculation of sensitivities
in feature-mapping methods. By leveraging the established meth-
ods used in density-based topology optimization, feature-mapping
methods provide a simple and efficient approach to sensitivity
analysis.

Feature-based topology optimization —Topology optimization
problems are addressed using feature-mapping methods that rely
on high-level parametric descriptions of voids in a solid design
region or solids in a void design region to define the structure. This
approach involves parameterizing the design with a high-level
geometric description and mapping features onto a fixed grid
for analysis. Feature-mapping methods provide a way to change
the shape and connectivity of the structure simultaneously and
allow for mapping the geometry of individual features onto a fixed
analysis grid, which is essential for topology optimization. This
approach also offers better control over the structure’s geometry,
making imposing direct constraints on geometric features easier
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while avoiding re-meshing. The Geometry Projection method
discussed in the thesis includes the map-then-combine method,
which explicitly uses high-level geometric parametric descriptions
to optimize topology. In summary, feature-mapping methods are
a unique solution to topology optimization problems, relying on
high-level geometric parameterization and mapping features onto
a fixed grid for analysis.

3.2 Geometry projection formulation
Geometry Projection (GP) is a topology optimization methodology
that represents the design using geometric components such as
2D flat or 3D cylindrical bars or 3D rectangular plates mapped
onto a component density field. This field is then discretized
using a fixed analysis mesh

(
𝒟 ⊂ R2) , avoiding the need to re-

mesh upon design updates. The GP mapping is differentiable,
readily allowing for sensitivity calculations with respect to the
geometric parameters so that efficient gradient-based nonlinear
programming methods can be employed for the optimization. The
chain rule used to compute sensitivities requires derivatives of
the optimization functions concerning the densities. However,
the technique can benefit from sensitivity formulations already
developed for density-based topology optimization approaches.
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Figure 3.1: Geometric design variables for a bar
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Figure 3.2: Projection of bar on x ∈ 𝒟

3.2.1 Definition of components and their projected
densities

To begin the GP procedure, we first map the design variables of
the component to a component-wise density field 𝜌𝑏 (x; z𝑏) for
any point x in the design region. The dual geometric parame-
ters/density representation can treat individual components as
high-level geometric objects or field variables in component densi-
ties. Each bar 𝑏 ∈ ℬ, where ℬ represents the set of all bar indices,
is characterized by an offset solid whose medial axis is a line
segment, which corresponds to a rectangle with semicircular ends
(see Fig. 7.1) and occupies a region Ω𝑏 ∈ R2. The medial axis is
defined by its two endpoints (x1𝑏 , x2𝑏), and the offset distance is
given by the bar’s radius 𝑟𝑏 . A membership variable 𝛼𝑏 ∈ [0, 1] is
assigned to each bar and penalized as in density-based methods,
which allows the optimizer to remove it from or reinsert it in the
design. The vector of the design variable z𝑏 for bar 𝑏 is thus given
by

z𝑏 := (x1𝑏 , x2𝑏 , 𝑟𝑏 , 𝛼𝑏) . (3.1)

As illustrated in Fig. 3.2, the projected density at a point x is defined
as the intersection of a ball with a radius 𝑟 and centered at x with
Ω𝑏 , i.e.

𝜌𝑏(x; z𝑏) :=
|𝐵𝑟x ∩Ω𝑏 (z𝑏)|

|𝐵𝑟x |
. (3.2)

In 2D, assuming 𝑟 is much smaller than the bar’s dimensions,
𝐵𝑟x ∩ 𝜕Ω𝑏 can be approximated as a line segment. Therefore, the
area fraction of (5.7) can be computed as the area fraction of the
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circular segment of height ℎ = 𝑟−𝜙𝑏 , where 𝜙𝑏 denotes the signed
distance from x to 𝜕Ω𝑏 . That is, the projected density for bar 𝑏
is a single-valued function of 𝜙𝑏 , which effectively constitutes a
regularized Heaviside function:

𝜌𝑏(x; z𝑏) := 𝐻̃

(
𝜙𝑏(x; z𝑏)

𝑟

)
. (3.3)

The expression for 𝐻̃ is given as,

𝐻̃(𝑥) =


0, if 𝑥 ≤ −1
1 + 1

𝜋

(
𝑥
√

1 − 𝑥2 − arccos 𝑥
)
, if |𝑥 | < 1

1, if 𝑥 ≥ 1

𝑑𝐻̃

𝑑𝑥
=

{
2
√

1 − 𝑥2/𝜋, if |𝑥 | < 1
0, otherwise

(3.4)

We follow the convention that the signed distance from points
that are inside the bar (i.e., x ∈ Ω𝑏) is positive, while the signed
distance to points outside the bar (i.e., x ∈ R2\Ω𝑏) is negative. The
signed distance function for a bar is thus the offset less the distance
to the medial line segment, as detailed in the next Section.

A penalized density is computed for each bar that is subse-
quently used to calculate its elastic stiffness tensor using a method
similar to the solid-isotropic material penalization (SIMP) ap-
proach used in density-based topology optimization [110]. The
penalized density is given by

𝜌̆
eff
𝑏
(x; z𝑏) := (𝛼𝑏𝜌𝑏(x; z𝑏))𝑞 , (3.5)

where we recall 𝛼𝑏 represents the bar’s membership variable. The
geometry projection method involves assigning a membership
variable, denoted as 𝛼𝑏 ∈ [0, 1], to each component in addition
to the parameters that describe its shape. This variable penalizes
the size of each component, similar to the penalization schemes
used in density-based topology optimization. A value of 𝛼𝑏 = 1
means the geometric component must be included in the structure,
while 𝛼𝑏 = 0 means the component must be removed from the
design. This feature makes it easier for the optimizer to modify
the topology by removing geometric components.



Topology optimization using geometric components made of isotropic materials.51

125 Norato et al., “A geometry
projection method for
continuum-based topology
optimization with discrete elements,”
2015.

3.2.2 Combining Components
When multiple bars overlap, the penalized densities for all bars
into a combined density given by

𝜌(𝑥,Z, 𝑝) :=

𝜌min, if 𝜌̆eff

𝑏
= 0, for 𝑏 = 1, · · · , 𝑛𝑏

max
𝑏𝜌̆

eff
𝑏

, otherwise, (3.6)

where 𝑛𝑏 is the number of geometric components, m̃ax denotes a
smooth approximation of the maximum function, and 0 < 𝜌min ≪
1 is a positive lower bound to prevent an ill-posed analysis.

𝜌(𝑥, 𝑍, 𝑝) :=

[
𝜌
𝑝

min +
(
1 − 𝜌

𝑝

min

) 𝑛𝑏∑
𝑏=1

𝜌̆
eff 𝑝
𝑏

] 1
𝑝

(3.7)

This modified 𝑝 norm renders 𝜌 = 𝜌min, if 𝜌̂𝑏 = 0∀𝑏 and 𝜌 = 1
if 𝜌̂𝑏 = 1∀𝑏, regardless of the number of geometric components.
Finally, the combined density is reflected in the analysis by using
an artificial material, with the elasticity tensor modified as

C(𝑥, 𝑍) := 𝜌C0 (3.8)

where C0 is the elasticity tensor for the isotropic material.
For the finite element analysis, we assume an element-uniform

projected density. As such, the element projected density 𝜌𝑏𝑒 is
computed at its centroid x𝑒 . The sample window radius 𝑟 is fixed
and taken to be at least the smallest semi-diagonal of the element.

3.2.3 Distance function
The section describes the computation of the signed distance 𝜙𝑏 in
(5.7) of bars represented as offset surfaces 125. The set of all points
gives the boundary of the bar at a distance 𝑟b of the line segment
with endpoints x1𝑏 and x2𝑏 (Fig. 7.1). This definition portrays bars
in 2D as rectangles with semicircular ends and 3D as cylinders
with semispherical ends.

The vector of design parameters for bar 𝑏, which is given by
z𝑏 := (x1𝑏 , x2𝑏 , 𝑟𝑏 , 𝛼𝑏). The offset surface representation has an
added advantage: the ability to compute the signed distance to
the bar’s boundary. This can be achieved by subtracting the bar
radius by taking the distance to the medial axis, denoted as 𝑑b.

𝜙𝑏 (x; z𝑏) = 𝑑b (x; z𝑏) − 𝑟b

To determine the distance to the boundary of a bar, it is only
required to calculate the distance to the bar’s medial axis. Thus,

https://dx.doi.org/10.1016/j.cma.2015.05.005
https://dx.doi.org/10.1016/j.cma.2015.05.005
https://dx.doi.org/10.1016/j.cma.2015.05.005
https://dx.doi.org/10.1016/j.cma.2015.05.005
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computing the distance to the medial axis can effectively determine
the minimum distance to any point on the bar’s boundary. The
distance to the medial segment from x is given by

𝑑𝑏 =

√(
𝑑⊥
𝑏

)2
+
(
𝑑
∥
𝑏

)2
,

where,

𝑑⊥𝑏 =


P⊥

𝑏 x𝑏


 𝑑

∥
𝑏
= max

{
0,



P∥

𝑏
x𝑏



 − ∥v𝑏 ∥

2

}
P⊥
𝑏 = I − P∥

𝑏
P∥
𝑏

:= v𝑏 ⊗ v𝑏
∥v𝑏 ∥2

x𝑏 := x − x1𝑏 v𝑏 := x2𝑏 − x1𝑏

In these expressions, P⊥
𝑏

and P∥
𝑏
denote the perpendicular and

parallel projectors to the medial axis vector v𝑏 of bar 𝑏, respectively,
and ⊗ denotes the tensor product.

3.3 Setting and implementation of the optimization
problem

A domain 𝒟 is discretized using linear quadrilateral plane-stress
4-noded finite elements of size 1 × 1, in which the displacements
are interpolated within each element as

u =

{
𝑢0
𝑣0

}
=

4∑
𝑖=1

N𝑖a(𝑒)𝑖 = [N1,N2,N3,N4]


a(𝑒)1
a(𝑒)2
a(𝑒)3
a(𝑒)4


= Na(𝑒) (3.9)

where 𝑁𝑖(𝜉, 𝜂) is the 𝐶◦ continuous shape function of node 𝑖.

N𝑖 =

[
𝑁𝑖 0
0 𝑁𝑖

]
; a(𝑒)

𝑖
= [𝑢0𝑖 , 𝑣0𝑖 ]𝑇 (3.10)

The stiffness matrix K(𝑒)
𝑖 𝑗

for an element is obtained by taking the
contribution from the stiffness matrices due to membrane, bending,
and transverse shear effects. This results in an element stiffness
matrix, which is used to compute its design sensitivity:

K(𝑒)
𝑎𝑖 𝑗 =

∬
Ω(𝑒)

B𝑇𝑎𝑖D𝑎B𝑎 𝑗𝑑Ω
(𝑒) , 𝑎 = 𝑚

∇𝑧K(𝑒)
𝑎𝑖 𝑗 =

∬
Ω(𝑒)

B𝑇𝑖 ∇𝑧D𝑎B𝑗𝑑Ω
(𝑒)

(3.11)
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B𝑖 is the symmetric gradient for the 𝑖𝑡ℎ node, which can be defined
as

B𝑖 =
{

B𝑚𝑖

}
with B𝑚𝑖 =


𝜕𝑁𝑖

𝜕𝑥 0
0 𝜕𝑁𝑖

𝜕𝑦
𝜕𝑁𝑖

𝜕𝑦
𝜕𝑁𝑖

𝜕𝑥

 (3.12)

The density at the centroids of each element is used to calculate
the structural volume, which estimates the solid volume fraction
𝑣(𝑒) in the domain Ω(𝑒) that the element 𝑒 ∈ 𝒟 occupies.

𝑣(𝑒) := 1��Ω(𝑒)
�� ∑

𝑏

𝜌eff
𝑏𝑒

(3.13)

We consider the compliance minimization problem subject to a
given volume fraction. The optimization problem may be formally
stated as

min{z𝑏} 𝑓 := log(𝑐 + 1)
subject to:

𝑣 ≤ 𝑣̄

KU = f
𝑧 𝑖 ≤ 𝑧𝑖 ≤ 𝑧̄𝑖 , 𝑖 = 1, 2, . . . , 𝑛𝑧 ,

(3.14)

where 𝑐 = U⊤f is the compliance, U and f are the global displace-
ment and force vectors, respectively, 𝑣̄ is a prescribed upper limit
on the volume fraction, K is the global stiffness matrix,

[
𝑧 𝑖 , 𝑧̄𝑖

]
is a

lower and upper bound on the 𝑖th design variable, 𝑣̄ is a prescribed
upper-limit on the volume fraction and 𝑣 is the volume fraction
defined as

𝑣 :=
∑
𝑒 𝑣

(𝑒)Ω(𝑒)∑
𝑒 Ω

(𝑒) (3.15)

As addressed in previous works [125, 126], to prevent convergence
issues during the optimization steps, precautionary steps are taken
as follows: first, log-scaled compliance 𝑓 (z) = log(1 + 𝑐(z)) damps
the large oscillation in compliance when the structure becomes
disconnected from the load/support. Second, scaling the design
variables allows us to impose a uniform move limit 𝑚 at each
iteration 𝐼 as

𝑧̂𝑖 :=
𝑧𝑖 − 𝑧 𝑖
𝑧̄𝑖 − 𝑧 𝑖

max
(
0, 𝑧𝐼−1

𝑖 − 𝑚
)
≤ 𝑧𝐼𝑖 ≤ min

(
1, 𝑧𝐼−1

𝑖 + 𝑚
) (3.16)

Finally, for the design-independent loading, the problem (4.22)
is self-adjoint, and so the sensitivity of the compliance and volume
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fraction is as follows:

∇𝑧𝑐 = −
∑
𝑒

u⊤
(
∇𝑧K(𝑒)

)
u

∇𝑧𝑣 =

∑
𝑒

(
∇𝑧𝑣(𝑒)

)
Ω(𝑒)∑

𝑒 Ω
(𝑒)

(3.17)

For isotropic materials, the stiffness matrix derivative ∇𝑧K(𝑒) is
equal to zero because material properties are independent of
geometric parameters, where we denote the design sensitivity
operator as ∇𝑧 := 𝜕

𝜕𝑧𝑖
. Unlike anisotropic materials where material

properties depend on geometric parameters, implies ∇𝑧K(𝑒) ≠ 0 as
seen in Chapter 4.

3.4 Computer Implementation
The finite element (FE) code used in this work is implemented in
MATLAB using linear quadrilateral/hexahedral elements. The
sparse() function is employed to assemble the stiffness matrix,
which is subsequently partitioned by Neumann (free) and Dirichlet
(essential) degrees of freedom on the CPU. The stiffness matrix,
compliance, volume fraction function, and their sensitivities are
computed using multidimensional arrays, avoiding loops and
calling built-in MATLAB functions whenever possible.

Calculating the objective and constraint function is divided
into three steps. Firstly, the geometry projection is performed,
which involves computing the element volume fractions 𝑣𝑒 and
element elasticity tensors C𝑒 for each element in the mesh based on
their definitions in Section 3.2. Additionally, we also calculate and
store their analytical design sensitivities. Secondly, we assemble
the finite element system corresponding to the current design
and solve for the unknown displacements. Finally, we calculate
compliance and its sensitivity using geometry projection and
finite element analysis. In addition, we determine the structural
volume fraction and its sensitivity using the result of the geometry
projection.

For all the examples, the following settings are considered
until mentioned otherwise. The method-of-moving-asymptotes
(MMA) [74] is employed for the optimization routine, using the
default parameters described in [158], i.e., 𝑎0 = 1 for the objective
function, and 𝑎𝑖 = 0, 𝑐𝑖 = 1000 and 𝑑𝑖 = 1 for every constraint 𝑖
in the optimization. The void material is isotropic with Young’s
modulus 𝐸void = 10−3𝐸1 and Poisson’s ratio 𝑣void = 0.3. During
initialization, the radius of the bars is set to the average of their
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upper and lower bounds. The sizing variable is set to 𝛼 = 0.5, and
the move limit is fixed to 𝑚 = 0.05 throughout the optimization
process.

The optimization procedure involves three stopping criteria.
The first criterion is met when the 2-norm of the change in the
design variable vector is less than 0.003. The second criterion
is reached when the norm of the Karush-Kuhn-Tucker optimal-
ity conditions falls below 0.005. The third criterion is satisfied
when the change in the objective function is less than 10−6. The
optimization process is stopped if any of these criteria are met.

Table 3.1: Material properties used for all the examples

Material 𝐸1[GPa] 𝐸2[GPa] 𝑣12 𝐺12[GPa] 𝐺13[GPa] 𝐺23[GPa]
Aluminum 6061-T-6 68.9 - 0.33 6.0 - -

3.5 Examples
For all four numerical examples—We consider bars made of
isotropic and components are joined together as described in Sec-
tion 3.2.2. Table (3.1) lists Aluminum 6061-T-6 material properties
used for the bars. The geometry projection method employs a
compact design representation more prone to getting stuck in
unfavorable local minima based on the initial design than the ver-
bose representation used by density-based and level-set methods.
The initial design plays a crucial role in all topology optimization
techniques, but its significance is more evident in feature-mapping
techniques. The dependence on the initial design is not specific
to any feature-mapping technique but is due to the restrictive
geometric representation.

The orientation of the bar to the global coordinate system
determines the color assignment in the density plot. The colormap
to the bars has no physical significance for isotropic bars and only
serves as a visualization tool. However, when bars are assigned
with FRP material properties, the colormap illustration of bars
helps to differentiate between bars with varying material properties
based on their orientation to the global coordinate system.

3.5.1 A rectangular plate under 3−point
bending—MMB

In this example, a Messerschmitt-Bölkow-Blohm (MBB) beam
is designed with an aspect ratio of 1:6 over a sweep of volume
fraction limits in the range of 𝑣̄ ∈ [0.25, 0.35]. Since the problem is



Topology optimization using geometric components made of isotropic materials.56

159 Zegard et al.,
“GRAND—Ground structure based
topology optimization for arbitrary
2D domains using MATLAB,” 2014.

symmetric, only the right half of the geometry is modeled. The
dimensions, supports, and loading are depicted alongside the
initial design in Fig. 3.3. The initial design is made of 27 bars.

(0, 0)
3
0

 ≤


(x𝑏1, x𝑏2)
𝑟𝑏
𝛼𝑏

 ≤


(300, 100)
6
1

 (3.18)

Figure 3.3: MBB—The features’ initial arrangement in rectangular plates of the
aspect ratio of 1 × 6, which are subjected to supports and unit load, i.e., 3−point
bending
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There are a few noteworthy things about this run. Firstly,
despite the complexity of the design space, the optimizer can
identify the optimal topology in less than 20 iterations. This is
demonstrated in Fig. 3.6. Secondly, the optimizer can effectively
remove bars by reducing their 𝛼𝑏 value to approximately zero and
setting their length to almost zero, collapsing them into a circle.
This suggests that the sensitivities provide the optimizer with
quick and efficient guidance towards a good solution.

It is important to note that the members in our structure
are mostly connected, without gaps between intersecting bars.
The disconnected structure can cause a jump in compliance, as
demonstrated in Fig. 3.6. This is due to structural requirements, as
we do not impose any geometric constraint that enforces this, for
example, connected features as carried out in the ground structure-
based topology optimization 159. Achieving this quality requires
the void region material to be sufficiently soft, meaning that 𝐸void

must not be too large—the void material will be stiff enough to
transfer the load if it is. On the other hand, 𝐸void can be relatively
small, as the analysis will become ill-posed. This is particularly
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Aluminum 6061-T6 density, c = 5.496327
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0

50

100
Aluminum 6061-T6 density, c = 4.125862

Figure 3.4: MBB—The density plot for two volume fraction 𝑣̄ ∈ [0.25, 0.35].
Color assignment to bars is based on the bar’s orientation to the global coordinate
system; thus, it only serves the purpose of visualization for bars made of isotropic
material.

73 Andreassen et al., “Efficient
topology optimization in MATLAB
using 88 lines of code,” 2011.

important in early iterations when there may need to be a connected
path of bars between the loads and the supports—our experience
shows that the value 𝐸void = 10−3𝐸1 is appropriate and produce
comparable results to those of SIMP 73. Another observation
that must be made is that the optimizer can offset two (or more)
bars to increase the effective width and the bending stiffness (see
Fig. 3.5). This can be seen, for example, in the bottom and top
members on the left edge of the last iteration in Fig. 3.4. Similarly,
the optimizer’ concatenates’ bars to produce a more extended
member or a curved load path. If one bar engulfs another, the
adequate thickness is the maximum thickness between the two
bars (Section 3.2.2), and the sensitivity of the composite density
with respect to a change in the position of the engulfed bar’s
endpoint along its medial axis is zero. Finally, it is worth noting
that the convergence behavior of this and all other examples is
good. There is a significant difference in the convergence behavior
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Figure 3.5: MBB—The design plot for two volume fraction 𝑣̄ ∈ [0.25, 0.35].
Different bar intersections can be observed: merged bars with in-plane width
offset, concatenated merged bars, collinear merged bars, and in-plane width
stacking of merged bars.

for two volume fraction limits. When the volume fraction is lower,
the design variable of the component can change substantially at
every iteration for a move limit of (𝑚 = 0.05), unlike at higher
volume fractions. This is not because of the volume fraction limit
but because of the hyperparameters used for the MMA optimizer.
These hyperparameters can cause oscillation in some instances
before the optimizer reaches the desired convergence criteria.
The following will be discussed in the subsequent chapters, yet
a primary analysis can be made between isotropic and CFRP
material. We can consider a hypothetical isotropic material with
the same Young’s modulus as the CFRP fiber-direction modulus
of 𝐸1 = 113.6[GPa] but the same Poisson’s ratio as aluminum
of 𝑣12 = 0.33. Although the bars’ width is relatively small, we
might think the two materials will comply similarly. However,
there will be a significant difference in strain-energy density at the
intersections of components. At these intersections, the internal
forces of the adjacent members converge in different directions.
This poses no issue for the isotropic material since it is equally stiff
in all directions. However, the transversely compliant CFRP will
have a much higher strain-energy density at the intersections of
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Figure 3.6: MBB— The compliance history plot also depicts a large difference
in the convergence behavior for two volume fractions 𝑣̄ ∈ [0.25, 0.35]

members because the stiff fiber direction cannot simultaneously
align with all the intersecting load paths. Therefore, considerable
research has been done to enable overlapping fiber-reinforced
bars in the GP method and still attain additively manufacturable
designs.

3.5.2 A rectangular domain under uniform
load—Bridge

A bridge with an aspect ratio of 1 : 4 is designed to support a
distributed load with a net magnitude of 1.0. The design considers
volume fraction limits in the 𝑣̄ ∈ [0.25, 0.35]. Since the problem is
symmetric, only the left half of the geometry is modeled. Fig. 3.7
shows the dimensions, supports, and loading alongside the initial
design, which consists of 38 bars. In addition to the designable
bars, a non-designable bar 𝑏 with a fixed offset radius of 𝑟𝑏 = 4.0
and a fixed size variable of 𝛼𝑏 = 0.99 is placed with its medial axis
aligned with the top edge, along the distributed load.

(0, 0)
3
0

 ≤


(x𝑏1, x𝑏2)
𝑟𝑏
𝛼𝑏

 ≤


(200, 100)
6
1

 (3.19)

The optimizer can identify the optimal topology in less than
20 iterations. This is demonstrated in Fig. 3.8a, 3.8b. Secondly,
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Figure 3.7: Bridge—The features’ initial arrangement in the rectangular domain
of the aspect ratio of 1 × 2, subjected to supports and uniform distributed load
over a non-designable bar.
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the convergence behavior of both cases is good, and the solution
converges approximately at 100 iteration in contrast to the previous
example, where a significant difference is observed in convergence
behavior. Similarly to the MMB beam example, the optimizer can
offset bars to increase the effective width and concatenates’ bars to
produce a more extended member as seen in Fig. 3.8a, 3.8b.

When comparing both bridge designs optimized for different
volume fraction limits, the dendrite bar arrangements are almost
identical for both cases—regions closer to the distributed load. A
drop in compliance for higher volume fractions is not due to a
significant change in the topology but the excessive bars merging
at the fixed support conditions. It demonstrates the usefulness of
general topology optimization, which is that the volume fraction of
a material does not necessarily determine the structure’s stiffness.
In other words, a lower-volume structure can still be stiff enough
to rival the designs with a higher volume fraction. This indicates
that other factors beyond the volume fraction, such as topology,
length scales, etc., can influence a structure’s stiffness.

3.5.3 A square plate under bi-axial and shear load
last example considered the bi-axial(Fig. 3.9a) and shear (Fig. 3.9b)
loading problem (independently) with an aspect ratio of 1 : 1; the
volume fraction limits in the 𝑣̄ ∈ [0.25, 0.5]. The whole plate has
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(a) Biaxial—The features’ initial
arrangement in the rectangular
domain of the aspect ratio of
1 × 1, subjected to supports and
biaxial loading.

(b) Shear—The features’ initial
arrangement in the rectangular
domain of the aspect ratio of
1 × 1, subjected to supports and
shear loading.

been initialized with 24 bars, and the design variables have been
restricted within the following bounds.

(0, 0)
3
0

 ≤


(x𝑏1, x𝑏2)
𝑟𝑏
𝛼𝑏

 ≤


(100, 100)
6
1

 (3.20)

3.6 Conclusions
We have presented an approach for topology optimization of dis-
crete element structures, which relies on a differentiable projection
of the structure’s geometry onto a fixed analysis grid. This pro-
jection allows for simplified analysis and continuous sensitivities,
similar to density-based topology optimization. The sensitivities
can be easily obtained using the chain rule, providing a means to
use standard nonlinear programming algorithms with multiple
constraints. The approach can also modify material properties and
penalize intermediate-size members, similar to SIMP methods,
and can be readily combined with existing density-based topology
optimization methodologies. Unlike ground structure methods,
the discrete elements in the GP need not be connected during
optimization, providing greater freedom to optimize member
placement and size. Examples exhibit designs consistent with
well-known topologies in the literature without numerical param-
eter tuning, except for a possible move limit adjustment, which is
also typical in density-based methods.

In the following chapters, we explore using the GP method
for designing and optimizing variable stiffness continuous fiber-
reinforced polymer laminates (VS-CFRP-Ls). Specifically, we
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extend the GP method to include fiber-reinforced polymer materi-
als, which can be used to design laminates with varying stiffness
properties. We also investigate several formulations allowing over-
lapping GP components rather than merging them as introduced
in Section 3.2.2. This is particularly important when dealing with
anisotropic materials, where overlapping components can help to
find better solutions by modeling the material’s behavior more
accurately.

In addition, we introduce a length constraint formulation within
the GP framework that is not a constraint in the optimization pro-
cess but rather an intrinsic attribute of GP methodology. Finally,
we proposed a multilayered formulation for designing and opti-
mizing VS-CFRP laminates that integrate Multilayered Structures
and Multified Analyses (MUL2) software with GP. This provides a
general framework for optimizing and analyzing multiobjective
and multiphysics designs, which can be used to design more effi-
cient and effective VS-CFRP-L laminates. Overall, these chapters
provide a detailed exploration of the GP method for designing
and optimizing VS-CFRP-L laminates and introduce several new
formulations and techniques that can be used to improve their
performance.



4Geometry Projection method for
Variable Stiffness Continuous
Fiber-Reinforced Polymer Laminates.

Chapter 3 focuses on optimizing planar structures made of
isotropic material bars with fixed width and semicircular ends. The
design space for the optimization process involves determining the
endpoint positions of the bar’s medial axes and their radius and
membership variables. A differentiable mapping projects the bar
design onto the analysis grid to facilitate efficient gradient-based
optimization. This mapping converts the endpoint positions into
a continuously varying density field, representing the fraction
of solid material in the design space, similar to density-based
topology optimization methods.

The GP framework has recently been utilized to optimize
the layout of fiber-reinforced bars (FRBs) in both 2D and 3D
for maximum structural stiffness [126]. Further research has
demonstrated the framework’s capabilities for primitives made of
fiber-reinforced plates [155, 156]. However, the GP methods are
mainly designed for structures made of individual fiber-reinforced
components that are later assembled. Designing structures where
the fiber-reinforced components can overlap to form a joint is yet
to be demonstrated using the GP procedure.

When designing for CFRP components, overlaps at angles
that are not parallel can be crucial to exhibit an almost isotropic
response. This poses an issue when seeking designs for discrete
components because they cannot simultaneously align with all the
intersecting load paths. Therefore, designing VS-CFRP-Ls requires
customization of the GP procedure to leverage the design oppor-
tunities presented by CF4. However, the constraint of preventing
overlapping components can be daunting. On the other hand,
freely allowing components to overlap can result in suboptimal
solutions, particularly for higher-volume fractions. This is because
the optimizer may try to compensate for the transversely compliant
response of CFRPs by increasing component overlaps in the design

68
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126 Smith et al., “Topology
optimization with discrete geometric
components made of composite
materials,” 2021.

domain, which leads to a non-manufacturable design. Moreover,
the utility of overlapping constraints in the GP procedure can cause
the optimization process to oscillate in the pursuit of determining
the dominant component, resulting in the dissolution of features
during the early optimization stages.

In this chapter, we build upon the work of Smith and Norato 126.
A GP-based procedure is formulated to enable the design of VS-
CFRP-Ls. While using fiber-reinforced bars (FRBs) as features, we
relax the GP methodology on multiple fronts.

1. The overlapping FRBs in the design domain are retained
and modeled using composite laminate theory to compute
homogenized stiffness matrices (Fig. 4.2), enabling a local
orthotropic material response.

2. Describing the overlap of FRBs can be difficult because the
components are mapped onto density fields that obscure
the accurate representation of the FRBs. Therefore, the dual
nature of the geometry projection is utilized to postulate a
criterion that defines the overlapping regions at the density
level.

3. The GP method uses weights to determine the level of domi-
nance for intersecting FRBs. This helps to identify a discrete
component by augmenting FRBs’ densities with weights and
using a softargmax function. On the other hand, overlapping
FRBs can assist in lessening the high-strain energy density
at intersecting load paths and introduce variable fiber paths.
Thus, the softmax function is not considered.

4. By reformulating the sensitivity of FRBs, the dependency
introduced through the weights is removed, enabling the
formation of intersecting FRBs and removing small features
in the design domain.

Extending GP above strategies and thanks to the component-wise
formulation allows us for the seamless printing of VS-CFRP-Ls with
the clear manifestation of overlapping components. Nonetheless,
our approach can be used to optimize the material distribution
and fiber orientation in variable stiffness laminates—limited here
to a single layer—which we call GP-AM. Finally, we compare the
procedure with the GP method on four numerical examples as
illustrated in Fig. 5.4 that minimize compliance, demonstrating
the applicability of the proposed methodology.

https://dx.doi.org/10.1016/j.cma.2020.113582
https://dx.doi.org/10.1016/j.cma.2020.113582
https://dx.doi.org/10.1016/j.cma.2020.113582
https://dx.doi.org/10.1016/j.cma.2020.113582
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126 Smith et al., “Topology
optimization with discrete geometric
components made of composite
materials,” 2021.

Remarks The notation standard-GP refers to the work wherein
the bars are made of isotropic material [125, 160]—the previous
chapter loosely annotated it with GP. From here on, the work of
Smith and Norato 126, GP notation will refer to the formulation
discussed in Section 4.1. Meanwhile, the GP-AM notation referred
to several formulations adopted for designing and optimizing
variable-stiffness continuous fiber-reinforced polymer laminates.

Figure 4.3: Overlapping Criterion—Darker grey regions represent overlapping
regions 𝜔𝑒 , while the lighter grey region depicts fiber mixture. Thus, the
overlapping criterion selects the regions whose stack bar’s densities, 𝜌𝑏 , are
equal to 1 for all intersecting FRBs.

4.1 Combining Components
The definition of the geometric components and their geometric
design variable 4.4, the component’s projection on the computation
design domain 4.5, and the penalization of projected densities and
membership variable, referred to as penalized densities,

𝜌̆
eff
𝑏
(x; z𝑏) := (𝛼𝑏𝜌𝑏(x; z𝑏))𝑞 , (4.1)

these attributes of the geometry projection method are thoroughly
discussed in Chapter 3 and the same for the GP formulation, thus
omitted here. The section describes the formulation for combining
anisotropic components, which differs from combining isotropic
components.

https://dx.doi.org/10.1016/j.cma.2020.113582
https://dx.doi.org/10.1016/j.cma.2020.113582
https://dx.doi.org/10.1016/j.cma.2020.113582
https://dx.doi.org/10.1016/j.cma.2020.113582
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Figure 4.4: A fiber-reinforced bar
with geometric design variables
and material orientation.
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Figure 4.5: Projecting FRB to the
centroid of a finite element using
density approach.

When multiple bars are present, they must be combined in a
manner that is consistent with the intended manufacturing pro-
cess. For previous GP techniques for design with fiber-reinforced
primitives (cf., [126, 155, 156]), the intent is to have structures
made of individually manufactured fiber-reinforced primitives
that are subsequently assembled. In that case, the combination
of components is done such that at overlapping regions, only
one of the reinforcements of the intersecting bars is selected; in
other words, no overlaps of fiber reinforcements are considered.
The goal of this work, on the other hand, focuses on continuous
fiber reinforcement and, therefore, on overlaps where multiple
reinforcements are present. It should be noted that an overlap
of bars made of isotropic materials was considered in [125], in
which it was assumed that the thicknesses of 2D bars were stacked
together by simply defining the combined density as the sum of
effective densities.

In the previous GP method [126], when considering multiple
FRBs, the combined penalized effective element density is defined
as a convex combination of each component,

𝜌̆
eff
𝑒 =

∑
𝑏

𝑤𝑏𝑒 𝜌̆
eff
𝑏𝑒

(4.2)

Such that the weights 𝑤𝑏𝑒 ∈ [0, 1],∑𝑏 𝑤𝑏𝑒 = 1 denote the fractional
contribution of each bar to the penalized element density, which is
analogous to the DMO method [109]. The GP method employs an
aggregation scheme called softmax (4.3) to calculate the weights.
When the value of the softargmax parameter 𝛽 increases towards
infinity, the approximation reaches its maximum, and the weights
are determined as 𝑤𝑖

({
𝑥 𝑗
}𝑛
𝑗=1 , 𝛽 → ∞

)
= 𝛿𝑖 𝑗 . This means that the

highest penalized effective densities for the intersecting compo-
nents can be identified, thus allowing us to single out the dominant
feature in the overlapping region and streamline the assembly
process.

𝑤𝑖(x) = ˜argmax𝑗
(
𝑥 𝑗 ; 𝛽

)
=

𝑒𝛽𝑥𝑖∑
𝑗 𝑒

𝛽𝑥 𝑗

𝜕𝑤𝑖
𝜕𝑥 𝑗

= 𝛽𝑤𝑖
(
𝛿𝑖 𝑗 − 𝑤 𝑗

) (4.3)

As the value of 𝛽 increases, the weights can approach a discrete one-
hot vector, which can identify the highest density. This means that
different fiber orientations can coexist in areas where bars intersect,
leading to an unavoidable fiber mixture when 𝛽 is finite. However,
substantial values of 𝛽 can result in highly non-linear aggregation
schemes and optimization functions, which can cause issues when
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using gradient-based optimizers. While it is challenging to avoid
overlapping bars, in GP, the elasticity tensors are calculated by
combining the contributions of all elasticity tensors for elements
in the overlapping regions.

C𝑒 = C𝑣 +
∑
𝑏

𝑤𝑏𝑒 𝜌̆
eff
𝑏𝑒 (C𝑏 − C𝑣) (4.4)

The elasticity tensor interpolation equation (4.4) can be used to
interpolate between the solid material (bar material C𝑏) and void
material C𝑣 for isotropic material. However, for anisotropic mate-
rials, i.e., FRBs, this can overestimate stiffness in the overlapping
regions with a significant gap in FRBs’ orientation. The membrane
stiffness matrices D𝑚𝑒 can be evaluated as a convex combination of
layers in the composite laminate. This evaluation can be achieved
by establishing a relationship between weights and the thickness
of the layers in the fiber mixture region. However, the same can-
not be done for the bending stiffness D𝑏𝑒 of the laminate due to
the nonlinear material distribution along the stacking direction.
Therefore, equation (4.4) must be modified to represent regions
for intersecting FRBs in VS-CFRP-Ls.

Lastly, the criterion to evaluate the weights of the components
is biased on their densities 𝜌̆

eff
𝑏

than their orientation 𝜃 in the
design space 𝒟. It can be demonstrated from the softargmax
expression that the bar’s densities are the decisive argument
to compute the weights. At the same time, the component’s
orientation is considered as a feedback effect transmitted through
the membership variable 𝛼 (i.e., 𝜌̆eff

𝑏
:= (𝛼𝑏𝜌𝑏)𝑞). Augmenting

the densities of components with weights can be an effective
way to optimize material distribution. However, penalizing fiber
orientations through the same weights without considering their
impact on the design and optimization process may result in a
less-than-optimal solution.

Therefore, the work focuses on enhancing GP procedures’
capabilities to achieve a design with overlapping bars while ensur-
ing that the resulting VS-CFRP-Ls can be printed with minimal
post-processing. To achieve this, the following propositions are
introduced in the GP procedure. First, composite laminate theory
models the overlapping FRBs in the design domain, enabling a
local orthotropic material response. Second, a criterion is pos-
tulated to define the overlapping regions at the density level to
ensure printability. Third, to take full advantage of the design
freedom offered by CF4, the softmax function is disregarded from
GP procedures, which results in intersecting fiber paths in the
optimized design. The intersecting fiber path can be printed in
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subsequent layers, but fiber path planning is postponed for future
work. These propositions for the GP-AM procedure are discussed
in Section 4.2, and Section 4.4 details the GP-AM implementation
and modifications made to the sensitivity analysis.

4.2 Geometry projection formulation for VS-CFRP-Ls
based on overlapping criterion.

The starting approach to design and optimize VS-CFRP-Ls was
based on simple overlap, in the same spirit as formulated pre-
viously for components made of isotropic material Chapter 3.
However, as discussed and concluded in the Chapter 5, the op-
timized design falls into poor local minima, resulting in a non-
manufacturable design. Therefore, in the pursuit of designing and
optimizing additively manufactured VS-CFRP-Ls, several restric-
tions were initially imposed on defining the overlapping regions.
These limitations were then refined and tested numerically, re-
sulting in an overlapping criterion that ensures the design can be
produced using conventional and additive manufacturing tech-
niques. The section goes through the overlapping criterion in detail
and the modeling of components using first-shear deformation
theory for composite laminate.

4.2.1 Definition of overlapping components
The high-level geometric-based design in the GP formulation is
represented by density mapping on a fixed grid 𝒟. However,
accurately representing the boundary of the FRB can be difficult as
the projected densities may not match the analytical portions of the
components Ω𝑏 . As indicated previously [160], FRBs’ projected
densities 𝜌𝑏𝜔𝑒 ∈ [0, 0.5) lie outside the analytical geometry Ω𝑏 .
Different from isotropic material [125], simply defining overlaps
using projected densities when designing for materials with di-
rectional stiffness can cause the optimization process to lock at
early stages, leading to arbitrary and excessive overlapping FRBs
that may not be optimal for manufacturing. Therefore, a criterion
is developed to describe overlapping FRBs to address this issue.
The dual nature of the geometry projection method is exploited
to postulate a criterion that defines the overlapping areas at the
density level to optimize the bar’s material properties and create a
stiffer manufacturable design.

Consider a bar Ω𝑏 that overlaps with other bars {Ω𝑖}𝑖∈ℬ\{𝑏}.
The stack of bars forming the overlapping region 𝜔𝑒 (as shown in
Fig 4.3) can be modeled as an equivalent single layer using the first-
shear deformation theory (FSDT) as formulated in Section 4.2.2.
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When calculating the stiffness matrices (4.14) for a stack, the
thickness of the FRBs can be determined based on their projected
densities, i.e.,

ℎ𝑏 :=
𝜌𝑏∑ℬ
𝑖=𝑏 𝜌𝑏

(4.5)

A normalized FRB thickness distribution can be used to com-
pare the two methods, i.e., GP and GP-AM. This is necessary
because the computational design domain has a fixed thickness
in the GP method, which doesn’t allow out-of-plane overlapping
components. In practice, from a manufacturing point of view, a
fixed thickness assigned to FRBs resembles fiber-fused filament
extruded from the printer’s nozzle. So, the thickness of the FRBs
is fixed, i.e., ℎ𝑏 = 1 for all the numerical examples 5.4. However, it
is also possible to assign the thickness given by Eq (4.5) to FRBs
without any changes in the GP-AM formulation.

• Overlapping criterion: An overlapping region 𝜔𝑒 is defined
when overlapping component densities are equal to one,
represented as 𝜌𝑏𝜔𝑒 = 1 and illustrated in Fig. 4.3. As a
result, the derivatives of these components’ densities with
respect to design variables must be zero.

∇𝑧𝑖 𝜌̆
eff
𝑏𝜔𝑒

(x; z𝑏) := ∇𝑧𝑖 (𝛼𝑏𝜌𝑏𝜔𝑒 (x; z𝑏))𝑞 = 0, z𝑖 := (x1𝑏 , x2𝑏 , 𝑟𝑏)
(4.6)

Equation (5.3) is a result of Equation (3.3), which is equal to zero
when 𝜌𝑏𝜔𝑒 = 1. The definition of overlaps simplifies the calculation
of the stiffness matrices (4.14) and their sensitivities, as shown in
Section 4.4. Additionally, the criterion requires that all 𝜌𝑖 values for
𝑖 ∈ ℬ are equal to 1.0, which allows for unconstrained movement
of FRBs during the optimization process. This facilitates the
formation of intersecting FRBs and prevents design lock-in during
the early stages.

4.2.2 Definition of laminated components
Mathematically, we considered a symmetric composite laminate,
𝒪, comprised of the superposition of 2𝑛𝑏 layers, each layer of
thickness ℎ𝑏 > 0, and constant material orientation in a layer of
shape 𝜔𝑒 as follows:

𝒪 =
{
𝜔𝑖
𝑒

}
𝑖∈ℬ\{0},𝑖=−𝑛𝑏 ...𝑛𝑏 (4.7)

The index 𝑖 grows from the inside to the outside of the laminated
composite structure. Assuming 𝒪 symmetric, i.e., 𝜔−𝑖

𝑒 = 𝜔𝑖
𝑒 , is

desirable in zeroing membrane-bending coupling matrix D𝑚𝑏 and
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to minimize the wrapping of the printed laminate; thus, only 𝑛𝑏
layers are modeled, which implies 𝒪 =

{
𝜔𝑖
𝑒

}
𝑖=1...𝑛𝑏

, where 𝑛𝑏 is a
total number of intersecting bars. Each layer in the given context
corresponds to each bar of shape 𝜔𝑒 . As a result, the terms layer
and bar are used interchangeably in the following sections. We
assume that

• Each layer 𝑘 is defined by the planes 𝑧 = ℎ𝑘 and 𝑧 = ℎ𝑘+1
with ℎ𝑘 ≤ 𝑧 ≤ ℎ𝑘+1,

• The orthotropy directions ê1 and ê2 can vary for each layer
and are represented by the angle 𝜃𝑖 between the global axis
𝑥 and the directions ê𝑘1 of the 𝑘𝑡ℎ layer,

• Each layer satisfies the plane stress assumption (𝜎𝑧 = 0),

• The continuous displacement field between the layers satis-
fies Eq. (4.8).

From an analysis viewpoint, we lean on the FSDT assumption to
study the mechanical behavior of VS-CFRP-Ls. However, several
hypotheses have been considered to model composite laminates,
discussed in the book [161]. In the FSDT, Kirchhoff’s theory is relaxed
by considering transverse normal does not remain perpendicular
to the mid-plane (𝑧 = 0) after the deformation, which implies that
the elastic displacement field of Reissner-Mindlin plate theory is
extended by introducing the horizontal (in-plane) displacements
𝑢0(𝑥, 𝑦) and 𝑣0(𝑥, 𝑦) inside the laminate as:

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) + 𝑧𝜓𝑥(𝑥, 𝑦)
𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) + 𝑧𝜓𝑦(𝑥, 𝑦)
𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦)

(4.8)

where 𝑤0(𝑥, 𝑦) is out-plane displacement, and (·)0 denotes the
displacements of the mid-plane.

Considering the kinematics equation (4.8), the optimization
approach of GP-AM focuses on optimizing equivalent single-layer
VS-CFRP-L. When updating the design variables, it takes into ac-
count the in-plane displacements (𝑢0, 𝑣0, 𝑤0) and rotation (𝜓𝑥 ,𝜓𝑦)
of the entire laminate, rather than computing the displacement
fields of individual layers, which can be formulated using layer-
wise theories [162] therefore limits the GP-AM formulation to
consider the stacking sequence optimization.

It is worth noting that when there are overlapping regions with
a 𝜌𝜔𝑒 value less than 1, these regions are considered fiber mixture
regions. However, for the sake of simplicity, these regions are



Geometry Projection method for Variable Stiffness Continuous Fiber-Reinforced
Polymer Laminates. 78

modeled as non-overlapping regions 𝜔𝑒 ∩ 𝒟. In this case, GP
method material interpolation Eq. (4.9) is utilized to compute
the laminate stiffness matrices (4.15). Recall that the GP method
material interpolation is weighted using the softargmax function
to find discrete components in the overlapping region. Thus,
dominant components that overlap with intermediates’ densities
(i.e., non-overlapping region) will push out the other components
to compute stiffness matrices of a single FRB, unlike the formulation
for the overlapping region.

Therefore, the material interpolation for the overlapping region
is defined as follows.

C𝑒 =
∑
𝑏

𝜌̆eff
𝑏𝑒

C𝑏 (4.9)

To avoid an ill-posed analysis in the void region, the discretized do-
main, 𝒟, is initialized with a weak isotropic material C𝑣 ; therefore,
the bar’s elasticity tensor is defined as C𝑏 ≡ C𝑏 − 𝐶𝑣 .

Although it is impossible to eliminate the fiber mixture regions
in non-overlapping regions, considering fiber mixture regions
as overlapping FRBs can lead to poor design, which is a simple-
overlap formulation that will be discussed in Chapter 5. This limits
the GP-AM formulation to compute VS-CFRP-L’s stiffness based
on FSDT formulation in fiber mixture regions. Nevertheless, as
the optimization process converges to the final design, the GP-AM
procedure lays out the clean regions of overlapping FRBs, and
the contribution of these fiber mixtures to the structure’s stiffness
becomes less relevant.

4.3 Elasticity tensor for laminated components
The material coordinate system (MCS) of a bar, denoted by
{ê1𝑏 , ê2𝑏 , ê3𝑏}, is often different from the global coordinate sys-
tem (GCS), {e1, e2, e3}, as shown in Fig. 4.4. Additionally, the
global out-of-plane axis, represented by e3, is the orthotropic axis
for all layers, thus satisfying the plane anisotropy condition.

The components of the coordinate transformation matrix for
each bar can be obtained from the direction cosines 𝑅𝑏

𝑖𝑗
= e𝐼 · ê𝑗𝑏 .

This allows for the transformation of the coefficients of the elasticity
tensor C𝑏 for each bar into the global coordinate system:

(C𝑏)𝑖 𝑗𝑘𝑙 =
∑
𝑝,𝑞,𝑟,𝑠

𝑅𝑏𝑖𝑝𝑅
𝑏
𝑗𝑞𝑅

𝑏
𝑘𝑟
𝑅𝑏
𝑙𝑠

(
Ĉ𝑏

)
𝑝𝑞𝑟𝑠

(4.10)
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where (C𝑏)𝑖 𝑗𝑘𝑙 and
(
Ĉ𝑏

)
𝑝𝑞𝑟𝑠

are the components of the fourth-

order tensor Cb in the global and material coordinate system,
respectively.

The stress and strain relationships within a multi-layered lam-
inate subjected to plane stress conditions are defined by consti-
tutive matrices for each layer. These matrices, denoted by Ĉ𝑝

𝑏

and Ĉ𝑠
𝑏
, relate the in-plane stress components 𝜎1, 𝜎2, and 𝜏12

to the transverse shear strains 𝜏13 and 𝜏23 in the material coor-
dinate system ê1, ê2, and ê3.The five independent coefficients
𝐸11, 𝐸12, 𝐸22, 𝐺13 = 𝐺12, 𝐺23, are depicted in Tab. 4.1.

Ĉ𝑝

𝑏
=


𝐸11 𝐸12 0

𝐸22 0
Sym. 𝐺12

 ,
Ĉ𝑠
𝑏
=

[
𝐺13 0
0 𝐺23

]
,

Ĉ𝑏 =


𝐸11 𝐸12

𝐸22 0
𝐺13

Sym. 𝐺23
𝐺12



(4.11)

The coordinate transformation equation (4.10) involves five
matrix multiplication with four-subscripts material coefficient,
which can be simplified as,

C𝑝

3×3
= T𝑇1 Ĉ𝑝

𝑏
T1 , C𝑠

2×2
= T𝑇2 Ĉ𝑠

𝑏
T2

C𝑘 ≡ C𝑏 =

[
C𝑝 03×2

02×3 C𝑠

] (4.12)

with,

T1 =


𝑐2 𝑠2 −𝑐𝑠
𝑠2 𝑐2 𝑐𝑠

2𝑐𝑠 −2𝑐𝑠 𝑐2 − 𝑠2


T2 =

[
𝑐 −𝑠
𝑠 𝑐

] (4.13)

where 𝑐 = cos𝜃, 𝑠 = sin𝜃, and 𝜃 is the angle between the axes ê1
and x illustrated in Fig. 4.4

For a symmetric laminate 𝒪 with 𝑛𝑏 layers whose properties
are symmetrical to the middle plane (𝑧 = 0), membrane-bending
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coupling matrix D𝑚𝑏 is zero, and we can write

D𝑚 =

𝑛𝑏∑
𝑘=1

ℎ𝑘

(
𝜌̆

eff
𝑘

C𝑝

𝑘

)
D𝑠 =

𝑛𝑏∑
𝑘=1

ℎ𝑘𝜅
(
𝜌̆

eff
𝑘

C𝑠
𝑘

)
D𝑏 =

𝑛𝑏∑
𝑘=1

1
3
[
ℎ3
𝑘+1 − ℎ

3
𝑘

] (
𝜌̆

eff
𝑘

C𝑝

𝑘

) (4.14)

where 𝑡𝑘 = ℎ𝑘+1 − ℎ𝑘 , 𝜅 = 5/6, and C𝑝

𝑘
and C𝑠

𝑘
are constitutive

matrices for the 𝑘𝑡ℎ layer. For the case where 𝑛𝑏 equals one,
Eq. (4.14) can be adjusted to calculate the stiffness matrices of a
laminate for non-overlapping regions as follows. In this case, C𝑝

𝑒

is obtained from Eq. (4.9).

D𝑚 =

𝑛𝑏∑
𝑘=1

ℎ𝑘C
𝑝
𝑒

D𝑠 =

𝑛𝑏∑
𝑘=1

ℎ𝑘𝜅 (C𝑠
𝑒)

D𝑏 =

𝑛𝑏∑
𝑘=1

1
3
[
ℎ3
𝑘+1 − ℎ

3
𝑘

]
C𝑝
𝑒

(4.15)

To compute the stiffness matrices for the GP method, C𝑝
𝑒 is obtained

from Eq. (4.4). In the GP-AM method, the softargmax function
doesn’t affect the stiffness matrices of laminates. As a result, the
sensitivity of bars is only dependent on their respective design
variables z𝑏 and not influenced by other FRBs. This differs from
the GP method, where the weights 𝑤𝑏𝑒 create interdependencies
between overlapping FRBs, restricting the components’ cross-over
movements to preserve discrete fiber orientation in the design.
In the following Sec. 4.4, the sensitivities of coinciding FRBs are
reformulated to enable merging and cross-over of the components.

4.4 Setting and implementation of the optimization
problem

A domain 𝒟 is discretized using linear quadrilateral plane-stress
4-noded finite elements of size 1 × 1, in which the displacements
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and rotations are interpolated within each element as

u =


𝑢0
𝑣0
𝑤0
𝜓𝑥

𝜓𝑦


=

4∑
𝑖=1

N𝑖a(𝑒)𝑖 = [N1,N2,N3,N4]


a(𝑒)1
a(𝑒)2
a(𝑒)3
a(𝑒)4


= Na(𝑒)

(4.16)
where 𝑁𝑖(𝜉, 𝜂) is the 𝐶◦ continuous shape function of node 𝑖.

N𝑖 =


𝑁𝑖 0 0 0 0
0 𝑁𝑖 0 0 0
0 0 𝑁𝑖 0 0
0 0 0 𝑁𝑖 0
0 0 0 0 𝑁𝑖


; a(𝑒)

𝑖
=
[
𝑢0𝑖 , 𝑣0𝑖 , 𝑤0𝑖 ,𝜓𝑥𝑖 ,𝜓𝑦𝑖

]𝑇
(4.17)

The stiffness matrix K(𝑒)
𝑖 𝑗

for an element is obtained by taking the
contribution from the stiffness matrices due to membrane, bending,
and transverse shear effects. This results in an element stiffness
matrix, which is used to compute its design sensitivity:

K(𝑒)
𝑎𝑖 𝑗 =

∬
Ω(𝑒)

B𝑇𝑎𝑖D𝑎B𝑎 𝑗𝑑Ω
(𝑒) , 𝑎 = 𝑚, 𝑏, 𝑠

∇𝑧K(𝑒)
𝑎𝑖 𝑗 =

∬
Ω(𝑒)

B𝑇𝑖 ∇𝑧D𝑎B𝑗𝑑Ω
(𝑒)

(4.18)

B𝑖 is the symmetric gradient for the 𝑖𝑡ℎ node, which can be defined
as

B𝑖 =


B𝑚𝑖

B𝑏𝑖
B𝑠𝑖

 with (4.19)

B𝑚𝑖 =


𝜕𝑁𝑖

𝜕𝑥 0 0 0 0
0 𝜕𝑁𝑖

𝜕𝑦 0 0 0
𝜕𝑁𝑖

𝜕𝑦
𝜕𝑁𝑖

𝜕𝑥 0 0 0


B𝑏𝑖 =


0 0 0 −𝜕𝑁𝑖

𝜕𝑥 0
0 0 0 0 −𝜕𝑁𝑖

𝜕𝑦

0 0 0 −𝜕𝑁𝑖

𝜕𝑦 −𝜕𝑁𝑖

𝜕𝑥


B𝑠𝑖 =

[
0 0 𝜕𝑁𝑖

𝜕𝑥 −𝑁𝑖 0
0 0 𝜕𝑁𝑖

𝜕𝑦 0 −𝑁𝑖

]
The density at the centroids of each element is used to calculate the
structural volume. In GP, this is done by applying the softargmax
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function to estimate the solid volume fraction 𝑣(𝑒) in the domain
Ω(𝑒) that the element 𝑒 ∈ 𝒟 occupies.

𝑣(𝑒) := 1��Ω(𝑒)
�� ∑

𝑏

𝑤𝑏𝑒𝜌
eff
𝑏𝑒

(4.20)

For the GP-AM, the contribution of the weighting scheme is
disregarded, and the structural volume is calculated as follows:

𝑣(𝑒) := 1��Ω(𝑒)
�� ∑

𝑏

𝜌eff
𝑏𝑒

(4.21)

We consider the compliance minimization problem subject to a
given volume fraction. The optimization problem may be formally
stated as

min{z𝑏} 𝑓 := log(𝑐 + 1)
subject to:

𝑣 ≤ 𝑣̄

KU = f
𝑧 𝑖 ≤ 𝑧𝑖 ≤ 𝑧̄𝑖 , 𝑖 = 1, 2, . . . , 𝑛𝑧 ,

(4.22)

where 𝑐 = U⊤f is the compliance, U and f are the global displace-
ment and force vectors, respectively, 𝑣̄ is a prescribed upper limit
on the volume fraction, K is the global stiffness matrix,

[
𝑧 𝑖 , 𝑧̄𝑖

]
is a

lower and upper bound on the 𝑖th design variable, 𝑣̄ is a prescribed
upper-limit on the volume fraction and 𝑣 is the volume fraction
defined as

𝑣 :=
∑
𝑒 𝑣

(𝑒)Ω(𝑒)∑
𝑒 Ω

(𝑒) (4.23)

As addressed in previous works [125, 126], to prevent convergence
issues during the optimization steps, precautionary steps are taken
as follows: first, log-scaled compliance 𝑓 (z) = log(1 + 𝑐(z)) damps
the large oscillation in compliance when the structure becomes
disconnected from the load/support. Second, scaling the design
variables allows us to impose a uniform move limit 𝑚 at each
iteration 𝐼 as

𝑧̂𝑖 :=
𝑧𝑖 − 𝑧 𝑖
𝑧̄𝑖 − 𝑧 𝑖

max
(
0, 𝑧𝐼−1

𝑖 − 𝑚
)
≤ 𝑧𝐼𝑖 ≤ min

(
1, 𝑧𝐼−1

𝑖 + 𝑚
) (4.24)

Finally, for the design-independent loading, the problem (4.22)
is self-adjoint, and so the sensitivity of the compliance and volume
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fraction is as follows:

∇𝑧𝑐 = −
∑
𝑒

u⊤
(
∇𝑧K(𝑒)

)
u

∇𝑧𝑣 =

∑
𝑒

(
∇𝑧𝑣(𝑒)

)
Ω(𝑒)∑

𝑒 Ω
(𝑒)

(4.25)

In the GP, to calculate the derivative of the stiffness matrix K(𝑒)

concerning a specific design variable 𝑧𝑖 , we use the elasticity tensor
(4.4) design sensitivity ∇𝑧C(𝑒), which is computed as follows:

∇𝑧C(𝑒) =
∑
𝑏

[
∇𝑧

(
𝑤𝑏𝑒 𝜌̆

eff
𝑏𝑒

)]
(C𝑏 − C𝑣) + 𝑤𝑏𝑒 𝜌̆eff

𝑏𝑒 (∇𝑧C𝑏) (4.26)

where, we denote the design sensitivity operator as ∇𝑧 := 𝜕
𝜕𝑧𝑖

.
When concerning the GP-AM procedure, modifications are

made to compute the design sensitivities for stiffness matrices
D𝑎 , where {𝑎 = 𝑚, 𝑏, 𝑠} from Eq.(4.14), as follows.

∇𝑧C(𝑒)
𝑘

= ∇𝑧𝜌eff
𝑘𝑒 (C𝑘 − C𝑣) + 𝜌eff

𝑘𝑒 (∇𝑧C𝑘) (4.27)

Eq.(4.27) can be simplified by the postulate for overlapping bars.
For completeness, the design sensitivities for the GP-AM are
written as

∇𝑧D(𝑒) =


∇𝑧D(𝑒)

𝑚 03 03

03 ∇𝑧D(𝑒)
𝑏

03

02 02 ∇𝑧D(𝑒)
𝑠

 where,

∇𝑧D(𝑒)
𝑚 =

𝑛𝑏∑
𝑘=1

𝑡𝑘∇𝑧C(𝑒)𝑝
𝑘
,

∇𝑧D(𝑒)
𝑏

=

𝑛𝑏∑
𝑘=1

1
3
[
ℎ3
𝑘+1 − ℎ

3
𝑘

]
∇𝑧C(𝑒)𝑝

𝑘

∇𝑧D(𝑒)
𝑠 =

𝑛𝑏∑
𝑘=1

𝑡𝑘∇𝑧C(𝑒)𝑠
𝑘

(4.28)

where 0𝑛 and 0𝑚×𝑛 is a 𝑛×𝑛 and𝑚×𝑛 zero matrix, respectively. As
mentioned previously, the design sensitivity for stiffness matrices
in Eq. (4.28) can be modified for the case where 𝑛𝑏 is equal to one.
Lastly, Eq. (4.29) outlines the derivation of the term that represents
the dependence of the design on the orientation of the bar elasticity
tensor, denoted as ∇𝑧C𝑏 or ∇𝑧C𝑘 . The sensitivities of the basis
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vectors to the endpoints of each FRB’s medial segment are given
as follows:

𝜕 (ê1𝑏)𝑖
𝜕 (x𝑠𝑏)𝑗

=

(
𝛿𝑠2 − 𝛿𝑠1

)
∥v𝑏 ∥

(
P⊥

ê1𝑏

)
𝑖 𝑗

𝜕 (ê2𝑏)𝑖
𝜕 (x𝑠𝑏)𝑗

=
𝜀𝛼𝑘𝑚

∥v𝑏 × ê𝛼∥
(
P⊥

ê2𝑏

)
𝑖𝑚

𝜕 (ê1𝑏)𝑘
𝜕 (x𝑠𝑏)𝑗

(4.29)

where the index 𝑠 ∈ {1, 2} indicates the side of the bar, 𝛿𝑠𝑠 is the
Kronecker delta, P⊥

𝑏
denote the perpendicular projectors to the

medial axis vector, and 𝜖𝑖 𝑗𝑘 is the permutation symbol. Knowing
the derivatives of the basis vectors, the sensitivities of the elasticity
tensor of a bar can be computed using equation (4.10).

Remark: A component can be uniquely defined by a set of design
variables represented by z𝑏 . For a specific design variable 𝑧𝑖 ∈ z𝑏 ,
the design dependence on orientation ∇𝑖C𝑘 only affects the layer
that corresponds to 𝑧𝑖 . In other words, ∇𝑖C𝑘 is zero everywhere
except for its endpoints. The same applies to ∇𝑧 𝜌̆eff

𝑘𝑒
. Therefore,

here we differ from the equation (4.26) by computing the design
sensitivities of components only to their design variables, relax-
ing the design to enable intersecting components by disowning
the contribution of softargmax function from Eq. (4.26), which
eliminates the interdependency of the bar’s design variable to
other bars in the sensitivity analysis. Furthermore, rather than
summing the design sensitivities of component stiffness tensors,
their contributions with their corresponding thickness are stacked
to compute elasticity tensor design sensitivities.

Table 4.1: Material properties used for all the examples

Material 𝐸1[GPa] 𝐸2[GPa] 𝑣12 𝐺12[GPa] 𝐺13[GPa] 𝐺23[GPa]
Carbon epoxy AS4/3501-6 113.6 9.650 0.334 6.0 6.0 3.1

4.5 Examples
For all four numerical examples—We consider bars made of carbon-
fiber-reinforced polymer, and fiber orientation is aligned to the
bar’s axis and is continuous. Table (4.1) lists unidirectional carbon-
epoxy AS4/3501-6 material properties used for the bars. The
transverse modulus of CFRP is ten times less than its longitudinal
modulus. This implies that designs assembled with FRBs can
achieve a higher stiffness when most of the load is carried along
the fiber direction. On the other hand, designs using FRBs have
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the potential to be substantially more compliant if a significant
percentage of the load is held transverse to the reinforcing fibers.
In this context, we introduced the methodology of model bars
using FSDT to design regions with intersecting load paths with-
out compromising manufacturability for minimum compliance
optimization problems.

For all the examples in Fig. 5.4, the following settings are con-
sidered until mentioned otherwise. In the following examples, we
have included design and density plots to illustrate the overlapping
regions and fiber path, respectively. Additionally, the objective
history and volume fraction plot demonstrate the convergence
of the designs. It’s worth noting that the volume fraction plot
also displays the deposited mass in the design area during the
optimization process, assuming a constant material density, i.e.,
1.6𝑔/𝑐𝑐.

Parameters for method-of-moving-asymptotes (MMA), em-
ployed for the optimization routine, using the default parameters
described in Section 3.4. The void material is isotropic with Young’s
modulus 𝐸void = 10−3𝐸1 and Poisson’s ratio 𝑣void = 0.3. During
initialization, the radius of the bars is set to the average of their
upper and lower bounds. The sizing variable is set to 𝛼 = 0.5, and
the move limit is fixed to 𝑚 = 0.005 throughout the optimization
process. The penalization factor for the softargmax function is
another fixed parameter for the GP, the value of 𝛽 = 100.

The optimization procedure involves three stopping criteria.
The first criterion is met when the 2-norm of the change in the
design variable vector is less than 0.005. The second criterion
is reached when the norm of the Karush-Kuhn-Tucker optimal-
ity conditions falls below 0.002. The third criterion is satisfied
when the change in the objective function is less than 10−9. The

Figure 4.6: Color wheel used for density plots to indicate the orientation of the
primitive.
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Figure 4.8: MBB—The design plot for GP method and converge after 191
iterations.

0
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Figure 4.9: MBB—The density plot for GP method and attained compliance is
1.199431.

Figure 4.10: MBB—The design plot for GP-AM method and converge after 163
iterations.
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Figure 4.11: MBB—The density plot for GP-AM method and attained compli-
ance is 1.138311.

optimization process is stopped if any of these criteria are met.

4.5.1 A rectangular plate under 3−point
bending—MMB

The first example considered the MMB problem with an aspect ratio
of 1 : 6; the volume fraction limit is set to 0.4. Since the problem is
symmetrical, only the right side of the geometry has been modeled
as depicted in Fig. 5.4. The whole plate has been initialized with
27 bars, and the design variables have been restricted within the
following bounds.

(0, 0)
3
0

 ≤


(x𝑏1, x𝑏2)
𝑟𝑏
𝛼𝑏

 ≤


(300, 100)
6
1

 (4.30)

The orientation-dependent density is color-coded based on the
color wheel in Fig. 4.6. The GP-AM method uses a plot design
that displays features with transparency. It is not consistent with
the density colormap but is used to help visualize overlapping
regions. It’s important to note that in this method, all features aim
to maximize the membership variable, meaning that transparency
does not correspond to the value of the membership variable
(represented by 𝛼) as it does in the GP method.

In the MBB problem, the upper left corner (where the load is
applied) experiences the highest bending stress, and the normal
stresses are tensile on the bottom edge and compressive on the
top edge—an applied load results in bending, normal stress, and
significant shear stresses near the neutral axis. Moreover, the
optimal design for a single load instance will be the one that aligns
the principal material direction with the principal stress at each
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88 Pedersen, “On thickness and
orientational design with orthotropic
materials,” 1991.

point [86]. Therefore, a structure with members that align with the
principal stresses would be ideal for minimizing compliance—an
optimized design can be attained by assembling the FRBs to align
the principal stress directions in the structure.

Both methods show a similar distribution of FRBs and attain
optimized design by assembling the FRBs to align the principal
stress directions in the structure. It can be observed that the top and
bottom have horizontal bars for normal stress distribution, while
there are inclined bars for shear stress distribution. However, there
is a slight difference in the arrangement of FRBs between the two
methods. In Fig. 4.10, the GP-AM method combines FRBs at the
top and bottom of the structure to attain thicker features to support
stresses. Furthermore, an inclined FRB near the loading region
maximizes the shear stiffness. Both observations highlight the
importance of the GP-AM strategy that results in lower compliance
than the GP approach by 5.4%. Note that in Fig. 4.8, the FRB along
the left edge in the design plot is assigned with transparency for
visualization purposes only to compare the thickness of the FRBs
in the two methods.

Fig. 4.14 demonstrates that the optimization traces a typical
convergence behavior for compliance with a sharp drop in the
first few iterations, followed by small design variable adjustments
in the following optimization iterations. Further, both methods
exhibit a typical smooth convergence curve. As demonstrated,
the design with GP-AM achieves slightly lower final compliance,
but the number of optimization iterations required to achieve
convergence is significantly lesser than GP. Fig. 4.14 also represents
the history of a volume constraint on the right-side y-axis. The
plot shows a pattern with a rapid increase in the material volume
to increase the stiffness until it reaches the volume fraction limit
set as a constraint in the optimization process.

Finally, a comparison between designs obtained using the
standard-GP and the GP-AM method provides insights into the
effectiveness of these methods. However, it is essential to note
that a direct comparison cannot be made because the standard-GP
merges the components by considering the maximum effective
densities in the overlapping region as discussed in Section 3.2.2.
At the same time, the GP-AM method involves overlapping FRBs
to increase the bending stiffness of the structure. Although the
slender bars are stiff when subjected to a force applied along their
length, they are more flexible when subjected to a force applied
perpendicular to their length. As a result, it is most efficient to align
the members of a structure with the principal stresses 88. This is
consistent with the established principles for designing structures
with heterogeneous orthotropic materials. In such materials, the

https://dx.doi.org/10.1007/BF01743275
https://dx.doi.org/10.1007/BF01743275
https://dx.doi.org/10.1007/BF01743275
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optimal design for a single load case involves aligning the principal
material direction with the principal stress at each point.

Figure 4.12 and 4.13 depict the design and density plot for
the standard-GP method, respectively. As expected, the resulting
structure is compliant compared to FRBs, mainly because the
standard-GP approach combines components by merging rather
than overlapping them. Figure 4.12 illustrates that multiple fea-
tures are merged on the top and bottom regions adjacent to the
line of action—this accommodates the applied load, similar to the
FRBs arrangement obtained for GP and GP-AM methods. Overall,
a common similarity in the topology, such as bar arrangement in
the interior region to attain shear stresses and inclined features
to manifest dome structure, is attained in the GP and GP-AM
methods.

Figure 4.12: MBB—The design plot for standard-GP method.

0 50 100 150 200 250 300
0

50

100
Aluminum 6061-T6 density, c = 3.660459

Figure 4.13: MBB—The density plot for standard-GP method
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design, iteration = 165
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Figure 4.14: MBB—Comparison of the objective and constraint history of the
GP method with the GP-AM method on a logarithmic and linear scale plotted
on the left and right axes, respectively.
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4.5.2 A square plate under point bending load
We share our findings on analyzing a clamped square plate under
point loading. The load, denoted as 𝑞 ≡ 1, is uniformly distributed
over a circular region with a radius of 𝑟 = 5. The region’s center is
located at the point of application, as shown in Fig. 5.4. The design
region measures dimensions 150 × 150 × 2. Although the problem
definition has two planes of symmetry, we did not consider the
symmetry conditions because they limit the overlapping regions
of the design space. Therefore, we analyzed the whole plate for
comparison. The plate was initially divided into 24 bars, and we
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137 Boddeti et al., “Optimal design
and manufacture of variable stiffness
laminated continuous fiber
reinforced composites,” 2020.

imposed the following bounds on the design variables:
(0, 0)

3
0

 ≤


(x𝑏1, x𝑏2)
𝑟𝑏
𝛼𝑏

 ≤


(150, 150)
6
1

 (4.31)

From the consideration of statics that, owing to the action of the
load 𝑞, it will induce bending and twisting moments, and also the
shearing forces, the magnitudes of which per unit of length can be
defined by the following formula.

𝝈̂𝑠 =

{
𝑄𝑥

𝑄𝑦

}
=

∫ 𝐻

−𝐻

{
𝜏𝑥𝑧
𝜏𝑦𝑧

}
𝑑𝑧

𝝈̂𝑏 =


𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

 = −
∫ 𝐻

𝐻

𝑧


𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

 𝑑𝑧
(4.32)

According to Eq. (4.32)), the maximum bending stiffness matrix
D𝑏 can be achieved by optimizing the in-plane material and
fiber distribution. In a study by Boddeti et al. 137, a multiscale
density-based topology optimization framework was used to show
that the optimized topology consists of four arms connected to a
central region where the fibers are arranged in a circular pattern.
Density-based methods are generally more flexible in achieving
fiber arrangements with a strong curvature than feature-based
methods. The GP-AM approach showed a better trade-off between
optimization and manufacturability than GP by not imposing
heavy penalties on the fiber mixture regions and allowing for FRBs
(fiber-reinforced beams) cross-over, as shown in Fig. 4.16.

The optimized design achieved through the GP method is
depicted in Fig. 4.15, outperforming the GP-AM method. The
compliance value increment for GP-AM is 6.42%. In both designs,
four branches connect to the central region. However, the GP-AM
method comprises mostly overlapping bars arranged in a stacking
sequence [0◦\90◦]𝑠 to maximize bending stiffness components.
This design is suboptimal because it requires fiber orientations such
as 45◦ and 135◦ to maximize the laminate’s stiffness component
𝐷𝑏33. On the other hand, the GP method produces similar FRBs
to the GP-AM method, resulting in a [0◦\90◦]𝑠 stacking sequence
arrangement. By implementing a considerable penalty in the GP
method, the aggregation of bars is prevented during the initial
stages of the optimization process. This is particularly effective
when the membership variable is relatively low, but it leads to a less
optimal arrangement of bars in the central region. The example also
highlights the difficulty of attaining a discrete material orientation
at each design point when designing for intersecting load paths.
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Both methods have a geometric constraint that limits the de-
sign space for material distribution. Additionally, the GP method
increases the stiffness contribution through fiber mixture regions,
resulting in a lower compliance value. Acquiring a discrete fiber
orientation is challenging, even with a high value of 𝛽. Eq. (4.4)
calculates a weighted sum of elasticity tensors C𝑏 of overlapping
FRBs, which increases the transversal elasticity component. This
overestimates the stiffness matrices 𝐷𝑎 when FRBs overlap. How-
ever, the component weights penalize the densities of FRBs and
do not address their directional properties. As a result, a single
feature is oriented at 135◦. The GP-AM method uses a low value of
𝛽, which can cause bars to group around the loading area to com-
pensate for their smaller size during the early optimization stages.
This can result in a limited range of orientation for the bars in the
design space. As a result, the GP-AM method is more sensitive to
the initial design than the GP. However, these limitations can be
resolved by simultaneously optimizing the topology of multiple
layers.

Note that even if the design requirements call for a symmet-
ric design, the final design results in an asymmetric layout. For
density-based and level-set topology optimization methods can
easily create designs that meet those requirements due to en-
riched topological space. However, when using discrete geometric
components to represent the design, the optimizer may produce
asymmetrical designs that meet the weight requirements exactly
but have lower compliance than the optimal symmetric designs
created using the available components. In other words, it is
possible to find an asymmetric design that perfectly meets the
weight fraction constraint despite having less compliance than
the best symmetric design that can be made with the available
components, as discussed in more detail in [125].

The figure labeled Fig. 4.17 shows the objective and constraint
history for the GP and GP-AM at various 𝛽 values. The GP formula-
tion aims to identify discrete components by removing mixed fiber
regions, which requires updating membership design variables.
This update significantly affects material properties at intersections
in GP. Even a slight change in membership variable 𝛼 can cause
the intersection to be dominated by a different component, making
GP highly sensitive to these changes. This sensitivity can result in
more oscillations as the gradients become very steep, as shown in
Fig. 4.17.
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Figure 4.17: Bending—Comparison of the objective and constraint history of
the GP method with the GP-AM method on a logarithmic and linear scale
plotted on the left and right axes, respectively. The objective history inset plot
from iteration 20 − 70 shows oscillation in the GP method due to rapid changes
in membership variables.
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4.5.3 A rectangular plate under pure torsion
In the third example, we consider a rectangular plate with di-
mensions of 400 × 100 × 2 subjected to pure torsion, as shown in
Figure 5.4. Due to anti-symmetry conditions, the finite element
analysis was performed on half of the plate. The plate is discretized
using 200× 50 plate elements. Initially, the design has 36 bars, and
the design variables have the following bounds:

(0, 0)
3
0

 ≤


(x𝑏1, x𝑏2)
𝑟𝑏
𝛼𝑏

 ≤


(200, 50)
6
1

 (4.33)

Under pure torsion conditions, each point in a plate is subject
to pure shear, defined by the components 𝜏𝑥𝑦 and 𝜏𝑥𝑧 . When
seeking an optimized design for a symmetric laminate, the most
significant contributors are the 𝐷𝑚33, 𝐷𝑏33, and 𝐷𝑠 components
of the laminate stiffness matrices. Additionally, it’s possible to
assume that the displacements and rotations are proportional to
the angle of twist, i.e., 𝑢, 𝑤, 𝜓𝑥 , and 𝜓𝑦 are proportional to 𝜁. The
relationship between the applied torque, 𝑇, and the twist angle, 𝜁,
can be expressed as follows.

𝑇 ∝ 𝐷33𝑏𝜁 (4.34)

Maximizing the 𝐷33𝑏 component of its stiffness matrix is essential
to minimize the displacements and rotations of a laminate. This is
why the ideal design arranges the FRBs at angles of either 45◦ or
135◦. For example, we can compare the membrane-shear coupling,
bending-shear coupling, and torsional rigidity components of
two symmetric laminates, 𝐴 and 𝐵, representing GP and GP-
AM formulations, respectively. Both laminates have the same ply
thickness and a stacking sequence of either [45/45]𝑠 (or [135/135]𝑠)
and [45/135]𝑠 . Table (4.2) displays the stiffness components for
both configurations. It is important to note that when computing
overlapping FRB stiffness, the GP method adds penalized material
properties while the GP-AM method computes homogenized
material properties.

Table 4.2: For a given laminate1 configuration, stiffness matrices’ components
are used for GP and GP-AM method.

Laminate 𝐷𝑚13[Nmm] 𝐷𝑚23[Nmm] 𝐷𝑏13[Nmm] 𝐷𝑏23[Nmm] 𝐷𝑏33[Nmm]
𝐴 (GP) 52375 52375 17459 17459 19728
𝐵 (GP-AM) 0 0 13094 13094 19728

1 The material properties mentioned in Tab. 4.1 have been converted into MPa
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It should be noted that the torsional rigidity, denoted as 𝐷𝑏33,
is equal for both laminates. This suggests that the overlapping
components in the GP-AM method do not provide any additional
benefits to the design. However, the GP-AM can alleviate the effect
of membrane-shear coupling. To better understand the effects of
these stiffness components on the overall layout, a comparison
between the GP-AM and GP methods is conducted in two different
design cases by altering the volume constraint limit, i.e., for 50%
and 60%. The design and density plots of the GP-AM method in

Figure 4.18: Torsion—The design plot for GP method. The transparency of
FRBs depicts the membership variable attained intermediate value, i.e., 𝛼 < 1

.

Figure 4.19: Torsion—The density plot for GP method. The compliance for a
given volume fraction limit 0.5 is 184.893393.

 

Fig. 4.20, 4.21 show the arrangements of FRBs and their overlapping
regions for volume fraction limits of 𝑣̄ = 0.5. The FRBs are arranged
in a way that forms a cross-over at angle 45◦ and 135◦, and the
design fulfills the anti-symmetric boundary condition on the left
edge by placing the bars at 0◦, which supports the initial analysis.
The design plots show that the cross-over features of different sizes
are stacked on top of each other instead of introducing variability
in the orientation of FRBs, i.e., to achieve a stiffer structure without
altering the topology of the design.
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Figure 4.20: Torsion—The design plot for the GP-AM method shows that FRBs’
membership variable always approaches 1.

Figure 4.21: Torsion—The density plot for GP-AM method. The compliance for
a given volume fraction limit 0.5 is 141.048719.

 

In Fig. 4.18 and Fig. 4.19, we can see the design and density plots
of the GP method. However, it is difficult to predict the expected
assembly of FRBs when comparing it with GP-AM for the case
of 𝑣̄ = 0.5. This is because the softmax function imposes a heavy
penalty on overlapping bars. The central region, i.e., the region
between the boundary and loading condition, of the computational
domain bars tends to dissolve first, then the components near both
ends of the computational domain. To design connected VS-CFRP-
L and counteract the membrane-shear coupling effect, the bars
orient themselves at 0◦ by penalizing the formation of overlapping
FRBs in the central region. This means the GP method settled in a
sub-optimal design by avoiding intersecting FRBs as arranged in
the GP-AM method (Fig. 4.21). The FRBs cannot be dissolved near
the loading region, resulting in a disconnected structure. This
leads to a compliant VS-CFRP-L since the GP method must still
comply with the constraint of inhibited overlapping regions in the
design. Similarly, near the boundary condition, a feature at 90◦ is
due to similar consequences. To demonstrate the effectiveness
of the GP-AM method, we have solved a similar problem with a
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Figure 4.22: Torsion—The design plot for GP method. The transparency of
FRBs depicts the membership variable attained intermediate value, i.e., 𝛼 < 1

.

Figure 4.23: Torsion—The density plot for GP method. The compliance for a
given volume fraction limit 0.6 is 135.665506.

Figure 4.24: Torsion—The design plot for the GP-AM method shows that FRBs’
membership variable always approaches 1.
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Figure 4.25: Torsion—The density plot for GP-AM method. The compliance for
a given volume fraction limit 0.6 is 112.607709.

volume fraction limit of 𝑣̄ = 0.6. The design and density plots of
the GP-AM method are shown in Fig.4.24 and 4.25, respectively,
which display the arrangement of FRBs and their overlapping
regions for a volume fraction limit of 𝑣̄ = 0.6. On the other hand,
Fig.4.22 and 4.23 illustrate the design and density plots of the GP
method, respectively.

When using the GP method, overlapping bars near the loading
region are expected to dissolve. This occurs because significant
material accumulates during the initial optimization stages to
minimize compliance. These results demonstrate that the GP
formulation is susceptible to considering higher volume fractions
and designs with intersecting load paths simultaneously, which
can directly impact the manufacturability of the final design, as
shown in Fig. 4.22 and Fig. 4.23. While the GP-AM produces
better designs than the GP approach (are shown in Fig. 4.24 and
Fig. 4.25), it is essential to note that the overlaps in the design are
more free-form than for the case of 𝑣̄ = 0.5. This is because higher
volume fractions allow for significant overlap regions, which in
turn offer the opportunity to achieve a substantial variability in fiber
orientation during the stages of the design process. Additionally,
it is crucial to carefully consider the initial bar arrangement (as
shown in Fig. 5.4) to ensure the manufacturability of a design.
For example, if the problem is initialized with bars arranged only
at 0◦ and 90◦ angles, as carried out in the previous examples, it
may accumulate more bars near the loading region. Despite the
limitations of GP-AM, the method demonstrates that the design
can be optimized for intersecting load paths and large volume
fractions simultaneously.

The results presented in Fig. 4.26 and Fig. 4.27 demonstrate
that optimizing the intersecting load region improves the design.
Our assertion that this approach provides benefits is supported
by the GP-AM method, which led to compliance reductions of



Geometry Projection method for Variable Stiffness Continuous Fiber-Reinforced
Polymer Laminates. 102
Figure 4.26: Torsion—𝑣̄ = 0.5. The objective history plot of the GP method
from iteration 10 − 60 showed no oscillation due to the dissolution of FRBs.
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23.7135% and 17% for volume fraction constraints of 0.5 and 0.6,
respectively. Furthermore, the approach reached convergence after
only 113 and 118 iterations, which is quicker than GP’s 161 and 271
iterations for the same two cases. The inset of Fig. 4.26 and Fig. 4.27
shows the effects of high sensitivity to design variables in GP
formulation. In the early optimization stage, the overlapping bars
disappear, enabling distinct features that result in moderate and
limited oscillations to occur in a narrow region. This contrasts the
previous example (Fig. 4.17), where the features are not eliminated,
leading to significant oscillations. Defining overlapping regions
and their modeling to optimize the design for intersecting load
paths achieves better design and a smoother optimization process,
resulting in a design that can be manufactured. Failure to consider
the postulate defined for overlapping regions and only relaxing
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the penalization parameter of the GP formulation’s aggregation
function will result in an unrealizable solution.

It is important to note that the transparency of the FRBs in
Fig. 4.18 and Fig. 4.22 represents the membership variable (𝛼)
for each bar. The membership variable indicates the presence
or absence of specific features in the design space. However,
this explanation does not apply to Fig. 4.20 and Fig. 4.25. In
these figures, each bar’s membership variable approaches unity.
Therefore, a constant transparency factor is used to visualize
overlapping FRBs in the GP-AM method.

Figure 4.27: Torsion—𝑣̄ = 0.6. The objective history inset plot from iterations
10 − 60 shows oscillation due to large overlapping, which cannot be avoided
due to the increase in the volume fraction limit.
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4.5.4 Multiple load cases
The following example considers a rectangular plate with dimen-
sions of 160 × 80 × 2 subjected to two load cases. The plate is fixed
at the left edge, and a unit out-of-plane load is applied at the center
while a couple is applied at the right edge corner, as shown in
Figure 5.4. The initial design comprises 22 bars, and the design
variables are bounded as follows:

(0, 0)
3
0

 ≤


(x𝑏1, x𝑏2)
𝑟𝑏
𝛼𝑏

 ≤


(160, 80)
6
1

 (4.35)

Furthermore, we define the objective compliance function for the
two load cases in this example according to equation(5.20) the net
compliance, i.e., the sum of the compliance of each load case

𝑐 :=
∑

𝑐𝑖 . (4.36)

In Fig 4.32, we see a combined plot displaying objective and

Figure 4.28: Multiload—The design plot for GP method. The transparency of
FRBs depicts the membership variable attained intermediate value, i.e., 𝛼 < 1

.

constraint history for a fixed 𝑣̄ = 0.5. Additionally, design and
density plots for GP and GP-AM are depicted in Figures 4.28, 4.29
and Figures 4.30, 4.31, respectively.

We can observe common similarities between the approaches,
such as inclined tapered long bars contributing to the torsional
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Figure 4.29: Multiload—The density plot for GP method. The compliance for a
given volume fraction limit 0.5 is 226.575885.

 

Figure 4.30: Multiload—The design plot for the GP-AM method shows that
FRBs’ membership variable always approaches 1.
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Figure 4.31: Multiload—The density plot for GP-AM method. The compliance
for a given volume fraction limit 0.5 is 195.571698.

 

rigidity and bending stiffness simultaneously through coupling
terms and inclined and traverse features at structure boundaries
near the loading region. This shows that both approaches are
well-suited to optimize non-intersecting load path regions and
achieve similar FRB orientation in the design space.

For the torsion load, the GP method pushes the bars towards
structure extremities to avoid overlapping bars. In contrast, GP-
AM combines the tapered feature with other features to provide
a smooth transition to achieve crossed bars near the loading
region. This demonstrates the optimized layout for the twisting
moment. Moreover, the GP-AM method can merge features to
introduce thicker features at the boundary condition, which can
be advantageous when the upper limit of the design variables is
fixed.

As a result, the GP-AM produces a design that is 13.684% stiffer
than the GP. Unfortunately, the GP does not allow for the inclusion
of these crossed features due to imposed restrictions, as discussed
before—resulting in a suboptimal arrangement of the FRBs. The
multi-load case highlights the difference between the GP-AM and
GP method—the former produces better designs and achieves
faster convergence, even for complex examples.
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Figure 4.32: Multiload—The multi-load example using GP and GP-AM methods
converges in 186 and 114 iterations respectively.
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4.6 Summary and conclusions
This chapter introduces the GP-AM methodology for designing
variable stiffness composite laminates. The process leverages the
geometry projection method’s dual representation—i.e., to utilize
both high-level parameterized primitives and low-level density-
based design spaces—to design for intersecting load path regions.
Therefore, it accommodates multiple fiber orientations by enabling
multiple component intersections and merging features within the
design. While in GP, the softargmax function is used to attain dis-
crete components, in GP-AM, this is not utilized so that features can
overlap. However, because removing the aggregation scheme may
render the design unrealizable, we postulate a criterion to define
overlapping regions to ensure the design matches the manufac-
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turability standards proposed in the geometry projection method.
Thus, these regions are modeled using composite laminate theory,
where multiple fiber orientations are represented as layers in the
laminate; sensitivities are reformulated to enable the cross-over
and merging of features, yielding an optimized design for inter-
secting load path regions. We demonstrated the effectiveness of
GP-AM with several computational design domains of different
aspect ratios under various boundary conditions. By compar-
ing GP-AM and GP designs, we showed that the upper bounds
on the bar’s radius could limit the GP design from achieving a
better solution; GP-AM can overcome this limitation by merging
components to increase their thickness and introducing tapered
features. Additionally, GP-AM attains a stiff and manufacturable
design by modeling fiber mixture regions and demonstrates that
the formulation to achieve a discrete fiber orientation must be
considered cautiously for optimizing VS-CFRP-Ls.

The GP-AM formulation also showed a fast and smooth con-
vergence by subduing the FRB’s compliant transversal response.
Mitigating the steep gradients stemming from slight changes in
sizing variables enables GP-AM to reach significant variations in
material properties within intersecting regions. This is important
because seeking a dominant feature could make optimizing the
design challenging for areas under intersecting load paths, leading
to a suboptimal design that may not be manufacturable.

In the geometry projection method, defining overlapping re-
gions can be complex due to the limitations of the density-based
approach in accurately representing the boundaries of FRBs. As a
result, the analytical portions of the components are approximated
by their projected densities 𝜌𝑏𝜔𝑒 . It is worth noting that selecting a
value of 𝜌𝑏𝜔𝑒 within the range of (0.5, 1] can significantly affect the
final design, as discussed in the Appendix B. For instance, using
a less restrictive definition of overlaps (e.g., 𝜌𝑏𝜔𝑒 ≥ 0.5) allows
the formation of several overlapping FRBs to attain varying fiber
orientations in the design space but can make the manufacturing
process complicated. On the other hand, a value 𝜌𝑏𝜔𝑒 = 1 can
limit the variability of the fiber orientation by forming overlaps
for regions where ∇𝑧𝑖 𝜌̆

eff
𝑏𝜔𝑒

(x; z𝑏) is zero, thereby allowing free
movements of the FRBs by not influencing the individual bar’s
sensitivity through the formation of overlaps. For single-layer
VS-CFRP-L, 𝜌𝑏𝜔𝑒 ≥ 1 is chosen to approximate intersecting areas
successfully, yielding manufacturable designs.

The criteria for overlapping fibers introduce variability of fiber
path by concatenating FRBs and moderate overlapping FRBs that
may hinder the smooth printability of the design by inducing fiber
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cut-outs. The simplicity of the feature prompts the question of
whether the design can be further simplified to attain more manu-
facturable VS-CFRP-Ls through GP-AM methodology. The next
chapter investigates simple overlap, i.e., no overlapping criteria,
and discusses the consequence of using simple overlap formulation
in terms of the optimization process and printability to design. To
resolve these issues, we introduce length constraint formulation
that minimizes the overlapping FRBs but retains features that
enable a stiffer and more manufacturable structure.



5Geometry Projection method for
Variable Stiffness Continuous
Fiber-Reinforced Polymer
Laminates—Simple Overlap formulation
with length constraint.

Chapter 4 formulates the GP-AM procedure to design monolithic
structures where fiber-reinforced components overlap to form a
joint, using a GP procedure where primitives structure is intended
to assemble with fiber-reinforced components. The intention
is to align the stiff fiber direction with all the intersecting load
paths. This can be crucial for exhibiting an orthotropic (or almost
isotropic) response and lowering the strain energy. This challenges
the GP method, as seeking designs for discrete components can
only align with a single load path. As already demonstrated in
the Chapter 4, the softargmax function can cause the optimization
process to oscillate in determining the dominant component, lead-
ing to the dissolution of features during the early optimization
stages. Therefore, customizing the GP procedure for designing
VS-CFRP-Ls to leverage the design opportunities presented by
CF4 is daunting due to the constraint of preventing overlapping
components. Thus, the GP-AM methodology postulates a criterion
that defines the overlapping regions at the density level because
freely allowing components to overlap can result in suboptimal
solutions. On the other hand, allowing components to overlap
using overlapping criteria can still lead to suboptimal solutions, es-
pecially for higher-volume fractions. This is because the optimizer
may try to compensate for the transversely compliant response of
CFRPs by increasing component overlaps in the design domain,
resulting in a non-manufacturable design.

In the chapter on geometry projection of isotropic bars ( Chap-
ter 3), a standard-GP method was introduced that combined
isotropic components (see Section 3.2.2), which was later extended
by Smith et al. in the context of components made of CFRP material.

110
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164 Groen et al.,
“Homogenization-based topology
optimization for high-resolution
manufacturable microstructures,”
2017.

Similarly, this chapter reformulates [125] the definition of over-
lapping isotropic components and applies it to the VS-CFRP-Ls
framework, i.e., it defines simple overlap definition to the compo-
nents made of CRP material. Instead of using overlapping criteria,
the chapter discusses the consequences of simple overlap formula-
tion and demonstrates its limitations through several numerical
examples. Finally, to overcome the limitation of the simple over-
lap formulation related explicitly to poor manufacturability, we
integrate minimum length constraint formulation in the geometry
projection methodology, which is not considered as a constraint
in the optimization process, such as volume constraint, but is
regarded as the intrinsic definition of the geometry projection
method.

The membership variable can control the structural topology
but sometimes eliminates all small members. This was demon-
strated in the Appendix A.1. For instance, in the ground structure
topology optimization, Ramos et al. [163] studied the effect of not
having a discrete structure filtering tool in the optimization process.
They found that when using the conventional elastic formulation
for compliance minimization with a low cross-sectional area, the
entire ground structure is obtained as part of the solution. This
results in many bars with small regions of the final topology, even
though not all the cross-sectional areas of thin members go to zero.
Such examples highlight the need for an effective filtering scheme
to filter structures out of ground structures.

Adopting a filtering scheme enforces the global equilibrium
and structural resolution (ratio between the minimum and maxi-
mum member areas in the topology) while also allowing control
of the variation of the objective function between consecutive non-
linear iterations. This leads to a well-defined topology in which all
structural members have a finite area. In another study, Groen and
Sigmund 164 used a smooth Heaviside function to filter out small
details in microstructural layouts. Due to the need for the length
scale constraint in the GP-AM method, a weighting mechanism is
formulated using a Sigmoid function with a threshold value on the
minimum length of the FRB to improve the topological decision.
Using the Sigmoid function makes the optimization process more
stabilized and less likely to oscillate than formulating an optimiza-
tion problem with a length constraint. The continuous weighting
procedure utilizes smooth, differentiable Sigmoid functions that
include a continuation scheme to narrow the transition zone of
the Sigmoid function gradually. Nonetheless, the approach is still
limited to a single layer—which we call LGP-AM.

https://dx.doi.org/10.1002/nme.5575
https://dx.doi.org/10.1002/nme.5575
https://dx.doi.org/10.1002/nme.5575
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Figure 5.1: Simple Overlap—Darker grey region effective densities, 𝜌̆eff, are
greater than lighter grey regions, given that the membership variable, 𝛼, is
equal to 1 for intersecting bars. The complete region, including intermediate
densities, defines an overlapping region,𝜔𝑒 , in simple overlap.

5.1 Fomulation for Simple Overlapping FRBs
Norato et al. [125] formulated the overlapping of bars made of
isotropic materials, in which it was assumed that the thicknesses
of 2D bars were stacked together by simply defining the combined
density as the sum of effective densities. For computing stiffness
matrices of laminate, the membrane stiffness matrices can be
evaluated by defining the combined density as the sum of effective
densities. However, due to the nonlinear material distribution
along the stacking direction, the sum of effective densities cannot
be used for the laminate’s bending stiffness. Therefore, Eq.(5.1)
compute laminate stiffness matrices accurately, as follows.

D𝑚 = Cp
iso

𝑛𝑏∑
𝑘=1

ℎ𝑘

(
𝜌̆

eff
𝑘

)
; D𝑠 = Cs

iso

𝑛𝑏∑
𝑘=1

ℎ𝑘𝜅
(
𝜌̆

eff
𝑘

)
;

D𝑏 = Cp
iso

𝑛𝑏∑
𝑘=1

1
3
[
ℎ3
𝑘+1 − ℎ

3
𝑘

] (
𝜌̆

eff
𝑘

) (5.1)

At each design update, the stiffness of overlapping regions depends
solely on the combined densities—the elasticity tensor Ciso of the
bar is a constant. Similarly, the component’s sensitivities can be
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125 Norato et al., “A geometry
projection method for
continuum-based topology
optimization with discrete elements,”
2015.

computed as below:

∇𝑧D(𝑒) =


∇𝑧D(𝑒)

𝑚 03 03

03 ∇𝑧D(𝑒)
𝑏

03

02 02 ∇𝑧D(𝑒)
𝑠

 where,

∇𝑧D(𝑒)
𝑚 = Cp

iso

𝑛𝑏∑
𝑘=1

𝑡𝑘∇𝑧 𝜌̆eff
𝑘
,

∇𝑧D(𝑒)
𝑏

= Cp
iso

𝑛𝑏∑
𝑘=1

1
3
[
ℎ3
𝑘+1 − ℎ

3
𝑘

]
∇𝑧 𝜌̆eff

𝑘

∇𝑧D(𝑒)
𝑠 = Cs

iso

𝑛𝑏∑
𝑘=1

𝑡𝑘∇𝑧 𝜌̆eff
𝑘

(5.2)

where 0𝑛 and 0𝑚×𝑛 is a 𝑛 × 𝑛 and 𝑚 × 𝑛 zero matrix, respectively,
and 𝑡𝑘 = ℎ𝑘+1 − ℎ𝑘 , 𝜅 = 5/6, and Cp

iso and Cs
iso are constitutive

matrices for the 𝑘𝑡ℎ layer.
When examining the overlapping region 𝜔𝑒 where the overlap-

ping component densities are equal to one, denoted as 𝜌𝑏𝜔𝑒 = 1, it
is essential to note that the derivatives of these component densities
with respect to design variables must be zero. This is because the
derivative of the Heaviside function of projected densities (5.7) is
zero.

∇𝑧𝑖 𝜌̆
eff
𝑏𝜔𝑒

(x; z𝑏) := ∇𝑧𝑖 (𝛼𝑏𝜌𝑏𝜔𝑒 (x; z𝑏))𝑞 = 0, z𝑖 := (x1𝑏 , x2𝑏 , 𝑟𝑏)

∇𝑧𝛼 𝜌̆
eff
𝑏𝜔𝑒

(x; z𝑏) = 𝑞.

(5.3)
As the membership variable approaches 1, ∇𝑧𝛼 𝜌̆

eff
𝑏𝜔𝑒

(x; z𝑏) = 𝑞

reaches a fixed constant value. Later in the optimization stages,
it can be deduced that the sensitivity of stiffness (5.2) becomes
zero and a fixed constant, for z𝑖 := (x1𝑏 , x2𝑏 , 𝑟𝑏) and 𝛼, respectively.
For these conditions, the design update becomes less sensitive to
changes in the design variables as ∇𝑧D(𝑒) becomes inactive, and
the design gradually locks into an optimized configuration.

Similarly to isotropic formulation, the GP optimizer seeks to
achieve the design sensitivities (Eq. (5.5)) to be inactive with respect
to design update. Different from isotropic material 125, simply
defining overlaps when designing for materials with directional
stiffness, the elasticity tensor has a design dependency on the bar’s
endpoint (z𝑖 := (x1𝑏 , x2𝑏)), which makes the formulation highly
sensitive to design update in the regions of overlapping FRBs

https://dx.doi.org/10.1016/j.cma.2015.05.005
https://dx.doi.org/10.1016/j.cma.2015.05.005
https://dx.doi.org/10.1016/j.cma.2015.05.005
https://dx.doi.org/10.1016/j.cma.2015.05.005
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results in Eq. (5.4).

∇𝑧D(𝑒)
𝑚 =

𝑛𝑏∑
𝑘=1

𝑡𝑘∇𝑧(𝜌̆eff
𝑘

Cp
ani𝑘

),

∇𝑧D(𝑒)
𝑏

=

𝑛𝑏∑
𝑘=1

1
3
[
ℎ3
𝑘+1 − ℎ

3
𝑘

]
∇𝑧(𝜌̆eff

𝑘
Cp
ani𝑘

)

∇𝑧D(𝑒)
𝑠 =

𝑛𝑏∑
𝑘=1

𝑡𝑘∇𝑧(𝜌̆eff
𝑘

Cs
ani𝑘)

(5.4)

where Cp
ani and Cs

ani are constitutive matrices for the 𝑘𝑡ℎ layer, and
equivalent to elasticity tensor of FRB, i.e., Cb.

∇𝑧(𝜌̆eff
𝑘

Cani𝑘) = ∇𝑧 𝜌̆eff
𝑘

(Ck − C𝑣) + 𝜌̆
eff
𝑘

(∇𝑧Ck) (5.5)

Additionally, in the compliance problem described by equation (4.22),
the design sensitivities outlined in equation (5.6) are significantly
influenced by the displacement field.

∇𝑧𝑐 = −
∑
𝑒

u⊤
(
∇𝑧K(𝑒)

)
u (5.6)

Unlike the density-based method, where design variables are
nodes or elements of the FE mesh, the GP design update is based
on each component’s design variables. Therefore, updating each
component requires the displacement fields obtained from FEA to
be evaluated for the corresponding bar’s projected densities and
directional stiffness and, finally, to update them iteratively. As a
result, it is vital to examine how design updates are influenced in
overlapping and non-overlapping regions. In the non-overlapping
areas, the displacement fields are computed for the elasticity tensor
of the FRBs, thus only considering the corresponding effective
densities and direction stiffness of the bar being updated. However,
the elemental stiffness of overlapping areas, 𝜔𝑒 , is homogenized
using first-shear deformation theory. Using this, the displacement
fields at the reference plane of the laminate are computed. As a
result, reference displacement fields—evaluated elemental-wise
instead of component-wise—are utilized to update each compo-
nent, which doesn’t map to each FRB in the stack, thereby ignoring
the corresponding component’s effective density and elasticity
tensor. Consequently, for significant variations in the stacking
effective densities, the dominant component in the overlaps, whose
effective density is more significant than others, primarily influ-
ences displacement fields, resulting in the achieved design with
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165 Smith et al., “Geometric
constraints for the topology
optimization of structures made of
primitives,” 2019.

small features, features with intermediate membership variables,
or excessive overlaps that may not be optimal for manufacturing.

These speculations are demonstrated by performing optimiza-
tion of several examples as depicted in Fig.(5.4) and discussed in
the Appendix A.1.

5.2 Definition of length constraint formulation
The high-level geometric-based design in the GP formulation is
represented by density mapping on a fixed grid 𝒟. The projected
bar density is calculated as follows.

𝜌𝑏(x; z𝑏) :=
|𝐵𝑟x ∩Ω𝑏 (z𝑏)|

|𝐵𝑟x |
. (5.7)

As discussed in the Section 3.2.1 of Chapter 3, the component’s
effective penalized density can be defined as,

𝜌̆
eff
𝑏
(x; z𝑏) := (𝛼𝑏𝜌𝑏(x; z𝑏))𝑞 , (5.8)

where 𝛼𝑏 represents the membership variable of a bar, the process
of the geometry projection method involves assigning a member-
ship variable, denoted as 𝛼𝑏 ∈ [0, 1], to each component. A value
of 𝛼𝑏 = 1 means that the geometric component must be included
in the structure, whereas 𝛼𝑏 = 0 implies that the component
must be removed from the design. This feature makes it easier
for the optimizer to modify the topology by removing geometric
components.

A method to introduce geometric constraints to optimize de-
signs that are more feasible to manufacture is to formulate an
exclusive constraint in the geometry projection optimization pro-
cess, for example, the minimum angle between bars. This particular
constraint considers both the angle between the members and
their proximity. As a result, it can be utilized to restrict the angle
between the nearby members and ensure a minimum distance
between the parallel members 165. Similarly, a direct length con-
straint on the components can be imposed and integrated into
the optimization process, penalizing the objective function if the
length of the components, ℓ𝑏 , is less than the threshold, i.e., ℓ𝑏 ≤ ℓ 𝑏 .
Generally, adding constraints heavily penalizes the performance
measure for even small negative changes in the component’s length,
which influences the optimization process by, i.e., causing further
non-convexity in the design space.

This section introduces a new method of integrating geometric
constraints in the geometry projection approach. Instead of explic-
itly defining the constraint in the compliance problem definition
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(as shown in Eq. (4.22)), a geometric constraint can be intrinsically
defined in the geometry projection formulation. This is similar to
the membership variable, combined with the component projected
density to enable the removal or reinsertion of the primitives in
the computational design domain. Since the membership vari-
able of a component is not determined by its geometric attributes,
such as length, radius, and orientation. Therefore, we augment
the component’s effective projected density (𝛼𝑏𝜌𝑏) by assigning a
weights factor, denoted as 𝑤𝑏 ∈ [0, 1], to each feature. Similarly to
the definition of membership variable, the value of 𝑤𝑏 = 1 means
that the geometric component must be included in the structure,
whereas𝑤𝑏 = 0 implies that the component must be removed from
the design.

By assigning weight to the components, the component’s effec-
tive projected density in the geometry projection method can be
redefined as,

𝜌
eff
𝑏
(x; z𝑏) := 𝜌𝑏(x; z𝑏) 𝛼𝑏 𝑤𝑏(ℓ𝑏(x)) (5.9)

Therefore, the effective penalized density of the components,
Eq. (5.7) can be written as,

𝜌̆
eff
𝑏
(x; z𝑏) := (𝜌𝑏(x; z𝑏) 𝛼𝑏 𝑤𝑏(ℓ𝑏(x)))𝑞 (5.10)

The technique of weighting augmentation is used to enhance
the components in a way that allows the geometry projection
to ignore their projected density if the length of FRB is shorter
than the predetermined threshold onto the computational domain.
This is done regardless of the value of the membership variable.
Therefore, it provides a way to avoid considering short features
even if their membership value is one. This technique enhances the
geometry projection methodology and helps design and optimize
stiffer, more straightforward manufacturing structures. Using a
length constraint ensures that a design can be effectively manu-
factured. The benefits of this approach to attain stiffer design are
indirectly observed in various numerical examples presented in
subsection Appendix A.1. It has been noted that the approach
can help avoid suboptimal designs, which may arise due to small
features in the design. Removing such features can address poten-
tial manufacturability issues while aiding the geometry projection
optimizer in finding a more robust and stiffer design.

5.2.1 Definition of Smooth functions and their utility
in structure optimzation

Topology optimization formulations that rely on feature mapping
techniques often use the Heaviside function to represent struc-



Geometry Projection method for Variable Stiffness Continuous Fiber-Reinforced
Polymer Laminates—Simple Overlap formulation with length constraint. 117

tural boundaries in the design domain. However, the Heaviside
function is inherently non-smooth, making it difficult to solve the
topology optimization problem directly. During the optimization
process, discrete intermediate design variables are obtained from
the calculation using the Heaviside function, which cannot be used
with existing gradient-based optimizer methods such as Sequential
Linear Programming (SLP), Optimality Criteria (OC) method, or
the method of moving asymptotes (MMA).). It is necessary to
smooth the Heaviside function to enable the use of gradient-based
optimizers in the design problem.

Specifically, the geometry projection method uses a smooth
piecewise function to define the component’s boundary to ap-
proximate the Heaviside function as discussed in the Chapter 3.
Thereby, the component boundaries in the computational domain
can be identified as,

𝜌𝑏(x; z𝑏) := 𝐻̃

(
𝜙𝑏(x; z𝑏)

𝑟

)
. (5.11)

The expression for 𝐻̃ is given as,

𝐻̃(𝑥) =


0, if 𝑥 ≤ −1
1 + 1

𝜋

(
𝑥
√

1 − 𝑥2 − arccos 𝑥
)
, if |𝑥 | < 1

1, if 𝑥 ≥ 1

𝑑𝐻̃

𝑑𝑥
=

{
2
√

1 − 𝑥2/𝜋, if |𝑥 | < 1
0, otherwise

(5.12)

The Heaviside function is a non-analytical smooth function whose
value is 0 for negative and 1 for positive arguments.

The Sigmoid function is a continuous nonlinear activation
function that can be used as an alternative to the Heaviside func-
tion. It is an analytical and smooth function with a one-to-one
correspondence between two mathematical sets, making it a bi-
jective function. The Sigmoid function can be loosely denoted as
𝒮 : R→ [0, 1]. These functions are commonly used in topology
optimization to identify the crisp boundary and penalized inter-
mediate densities by transforming a continuous space value into a
binary one.
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Figure 5.2: Properties of a sigmoid function: Most functional forms share these
characteristics—an initial lag with slow growth, rapid exponential growth, and
reduced growth rate leading to saturation (adapted from [166]).
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The optimization process mainly involves finding the best solu-
tion for feasible design spaces. However, the discrete nature of the
problem can cause issues for gradient-based optimizers. Therefore,
smooth functions can formulate a feasible design space by trans-
forming the discrete feasible space with a smooth transition. This
smooth transition zone can be helpful when satisfying multiple
constraints and objective measures, as discrete constraints can
cause gradient-based optimizers to oscillate. Instead of using hard
bounds on the design space, smooth functions can introduce a
smooth transition by computing smooth changes in the sensitivity
analysis to drive the optimization problem. By doing this, smooth
functions can capture the changes in the objective function and
constraints more accurately and continuously. Optimization can
then be more stable and effective, avoiding suboptimal solutions.

5.2.2 A weighting mechanism for components using
the Sigmoid function.

The length constraint presented in this section can only be readily
accommodated by techniques like the geometry projection method,
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which has a high-level parametric representation of the structure
available. This representation makes it possible to directly compute
the length of the bars from the design variables. Although this is a
simple concept, imposing a length constraint is notably impossible
in density-based and level-set methods, where the geometric
representation is such that the concept of a structural element’s
length is simply unavailable.

To define the length constraint in an optimization problem, one
can set a minimum length for each bar as a constraint. However, this
approach can lead to multiple constraints for all bars in the design,
slowing the optimization process. A constraint can be applied
to bars below the threshold instead of all bars to overcome this
issue. A p-norm approximation can be used; however, for a value
of 𝑝 that is too large, the approximation becomes highly nonlinear,
along with the hard bound on the feasible space. Therefore, using
a smooth function, as discussed, is a reasonable and suitable choice
for geometry projection.

The sigmoid function for the weighting mechanism is formu-
lated using the error function as,

ℰ := 1
2

[
1 + erf

(
𝐸ℓ√

2

)]
; (5.13)

The error function, often denoted by erf, is a function defined as

erf 𝑧 = 2√
𝜋

∫ 𝑧

0
𝑒−𝑡

2 d𝑡

d
d𝑧 erf 𝑧 = 2√

𝜋
𝑒−𝑧

2
(5.14)

Finally, the component’s weight can be computed using the
sigmoid-error function as,

𝑤𝑏 =
[
ℰ
(
ℓ𝑏 − ℓ

) ]
(5.15)

Similarly, to the 𝑝-norm approximation that utilized 𝑝 to find
the extremum, in Eq. 5.13, the constant 𝐸 = 𝑒𝑥𝑝(𝜂) defines the
steepness of the sigmoid curve, as indicated in Fig. 5.3, where
𝜂 ∈ [0, 2].
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167 Petersson, “A finite element
analysis of optimal variable
thickness sheets,” 1999.
55 Sigmund et al., “Numerical
instabilities in topology optimization:
a survey on procedures dealing with
checkerboards, mesh-dependencies
and local minima,” 1998.

47 Sigmund et al., “Topology
optimization approaches,” 2013.

Figure 5.3: For ℓ = 10—The plot shows how the steepness of the sigmoid
function is increased using a continuation approach to achieve a discrete weight
value.
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Knowing that the compliance minimization problem is convex
for 𝑞 = 1 167 but better approximates solid–void solutions with
values 𝑞 >> 1 motivates the use of a continuation approach on the
penalization parameter 55. This consists of initially optimizing for
𝑞 = 1 (unique solution) and gradually increasing the penalization
value during the optimization process to reduce the intermediate
density values, thus driving the solution closer toward solid–void
design. While this technique often converges to better designs,
this cannot be guaranteed nor proven mathematically due to the
multiple local minima for 𝑞 > 1. Alternatively, a continuation
scheme could be used on the filter radius instead, i.e., gradually
decreasing the filter radius during optimization 47. Therefore,
instead of using a single constant, the range of 𝐸 is chosen because
of standard practices adopted in the topology optimization com-
munity of using a continuation approach. In this context, the idea
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74 Svanberg, “The method of
moving asymptotes—a new method
for structural optimization,” 1987.

158 Svanberg, “MMA and GCMMA,
versions September 2007,” 2007.

of this continuation technique is to successfully scale the steepness
of the sigmoid function through 𝜂 during the optimization so that
the weighting mechanisms gradually assign a discrete value to the
bars.

5.3 Examples
For all four numerical examples—We consider bars made of carbon-
fiber-reinforced polymer, and fiber orientation is aligned to the
bar’s axis and is continuous. Table (4.1) lists unidirectional carbon-
epoxy AS4/3501-6 material properties used for the bars. More
examples of in-plane loading conditions based on simple overlap
formulation optimized for multi-layered VS-CFRP-Ls are discussed
in Appendix A.

For all the examples in Fig. 5.4, the following settings are
considered until mentioned otherwise. The method-of-moving-
asymptotes (MMA) 74 is employed for the optimization routine,
using the default parameters described in 158, i.e., 𝑎0 = 1 for the
objective function, and 𝑎𝑖 = 0, 𝑐𝑖 = 1000 and 𝑑𝑖 = 1 for every
constraint 𝑖 in the optimization. The void material is isotropic with
Young’s modulus 𝐸void = 10−3𝐸1 and Poisson’s ratio 𝑣void = 0.3.
During initialization, the radius of the bars is set to the average
of their upper and lower bounds. The sizing variable is set to
𝛼 = 0.5, and the move limit is fixed to 𝑚 = 0.02 throughout the
optimization process.

The optimization procedure involves three stopping criteria.
The first criterion is met when the 2-norm of the change in the
design variable vector is less than 0.002. The second criterion
is reached when the norm of the Karush-Kuhn-Tucker optimal-
ity conditions falls below 0.001. The third criterion is satisfied
when the change in the objective function is less than 10−9. The
optimization process is stopped if any of these criteria are met.

5.3.1 A rectangular plate under 3−point
bending—MMB

The first example considered the MMB problem with an aspect ratio
of 1 : 6; the volume fraction limit is set to 0.4. Since the problem is
symmetrical, only the right side of the geometry has been modeled
as depicted in Fig. 5.4. The whole plate has been initialized with
27 bars, and the design variables have been restricted within the
following bounds.

(0, 0)
3
0

 ≤


(x𝑏1, x𝑏2)
𝑟𝑏
𝛼𝑏

 ≤


(300, 100)
6
1

 (5.16)

https://dx.doi.org/10.1002/nme.1620240207
https://dx.doi.org/10.1002/nme.1620240207
https://dx.doi.org/10.1002/nme.1620240207
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Figure 5.6: MBB—The objective history plot demonstrates that the optimization
traces a typical smooth convergence behavior for compliance with a sharp drop
in the first few iterations, followed by small design variable adjustments in the
later optimization stage for with and without length constraint formulation.
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The lower bound on the FRBs’ length is set to ℓ = 10 for the
LGP-AM method.

Table 5.1: MBB—The compliance value for all the geometry projection formu-
lations developed to optimize VS-CFRP-L.

Methods GP GP-AM LGP-AM LGP-AM

Compliance 1.199431 1.138311 1.084029 1.028333

The design of MBB achieved through all the formulations
discussed in Chapter 5 and Chapter 4 is illustrated in Fig. 5.5.
When we compare the stiffness of different designs as presented
in Tab. 5.1, the LGP-AM design is comparatively stiffer than the
others. This suggests that simpler overlap formulations with or
without length constraints lead to stiffer designs. This is because
allowing components to overlap results in higher bending stiffness
(overlapping FRBs on the top and bottom regions on the left side
of the structure) than designs that restrict the overlapping area
or avoid it altogether, such as the GP-AM and GP methods. It is
worth noting that the LGP-AM approach exhibits more favorable
characteristics when compared to its counterpart, the LGP-AM.
One of the reasons for this is that the LGP-AM method employs a
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length constraint, which enables a stiffer structure by eliminating
small features that may cause the design to become locked into a
sub-optimal solution, simultaneously ensuring that the VS-CFRP-
Ls can be manufactured easily.

From a manufacturing perspective, the design of the GP can
be used as a baseline to evaluate the ease of printability of the
optimized design achieved through alternative methods. The GP
technique pushes the optimizer to seek distinct components, result-
ing in a clearly defined fiber path in a layer without compromising
the design’s performance. This comparison is only valid for MBB
examples or designs optimized for in-plane loading conditions, as
further demonstrated in the Appendix A. For other examples, the
GP method results in poor design in terms of manufacturability
and performance, as already discussed in the Chapter 4. When
evaluating the LGP-AM design, the only region of the overlapping
FRBs is in the upper left region (where the load is applied), which
experiences the highest bending stress, and in the bottom left
region, where the normal stresses are tensile and of the FRBs as-
sembly results in the discrete components that ensure printability
of the VS-CFRP-L seamlessly.

The optimized design with LGP-AM (ℓ = 0) results in printable
assembly of the components; however, the method results in the
intermediate membership value for a single element that questions
the reliability of gP-lAM methodology to optimize the design for
complex loading conditions, as demonstrated in the subsequent
examples. The component that attained intermediate membership
value can be visualized in the density plot (Fig. 5.5) and tabulated
in the Tab. 5.2

Finally, the plot of the objective history for the LGP-AM meth-
ods, shown in Fig. 5.6, follows a similar trend. This is because
both methods allow for freely overlapping FRBs without restric-
tions, which differs from the GP-AM approach. The weighting
mechanism is only active when the FRBs’ length is below the
minimum bar length (ℓ𝑏 ≤ ℓ ); otherwise, 𝑤𝑏 = 1. However, a
key difference is that LGP-AM (ℓ > 0) takes a considerably large
number of iterations before convergence. The reason behind it can
be deduced from the parameter that defines the steepness of the
error function, i.e., 𝐸 = exp(𝜂). The larger the value of 𝐸, the closer
the approximation is to the binary weights. The approximation
becomes highly nonlinear as 𝐸 becomes prominent in the latter
optimization stages due to a continuation process, which gradually
increases the value of 𝜂 from 0 to 3. This means that the approxima-
tions of this constraint made by gradient-based optimizers become
highly sensitive to any slight change in the FRBs’ length (close to
the threshold value). Therefore, the optimization would take many



Geometry Projection method for Variable Stiffness Continuous Fiber-Reinforced
Polymer Laminates—Simple Overlap formulation with length constraint. 126

iterations to converge. Nevertheless, allowing length constraint
results in better design in terms of stiffness and manufacturability.

Table 5.2: MBB—FRBs’ length and membership values are tabulated—for
LGP-AM methods—only for the bars that define the final topology as shown in
Fig. 5.5. The minimum lengths of FRBs achieved by LGP-AM are bolded when
the length’s threshold value is set to ℓ = 10.

ℓ0 𝛼0 ℓ10 𝛼10

60.8998 0.9995 83.4464 1.0
141.172 1.0000 91.7409 1.0
31.4035 0.9999 14.0891 1.0
90.2941 1.0000 37.0567 1.0
142.545 1.0000 69.0612 1.0
72.7031 1.0000 141.225 1.0
133.604 1.0000 76.3229 1.0
1.199431 1.0000 143.049 1.0
43.3232 0.9999 47.2478 1.0
05.1974 0.9999 45.6555 1.0
43.1690 0.7642 55.1339 0.9998
56.8873 1.0000 150.664 1.0
37.1845 1.0000 49.2090 1.0
84.7051 1.0000 82.0541 1.0
52.9917 1.0000 50.2496 1.0
65.9778 1.0000 78.1616 1.0
58.9169 1.0000 58.6222 1.0
36.1575 1.0000 27.7991 1.0
12.6213 1.0000 13.5528 1.0
47.4761 1.0000 46.3714 1.0

5.3.2 A square plate under point bending load
We present results for analyzing a clamped square plate under
point loading, i.e., 𝑞 ≡ 1, which is uniformly distributed over a
circular region of radius, 𝑟 = 4, and the center is at the point
of application as depicted in Fig 5.4. The design region has
dimensions 150×150×2. Although the problem definition has two
planes of symmetry, the symmetry conditions are not considered
because these boundary conditions limit the overlapping regions
of the design space. Thus, for comparison, the entire plate is
analyzed. The whole plate is initialized with 48 bars, and the
bounds imposed on the design variables are as follows:

(0, 0)
3
0

 ≤


(x𝑏1, x𝑏2)
𝑟𝑏
𝛼𝑏

 ≤


(150, 150)
6
1

 (5.17)
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Figure 5.7: Bending—The opti-
mized design using GP formula-
tion for bending example

Figure 5.8: Bending—The opti-
mized design using GP-lAM for-
mulation for bending example

As discussed in the Chapter 4, a density-based topology opti-
mization framework demonstrates that the optimized topology
comprises four arms interconnected to a central region where the
fibers are arranged in a circular pattern and have an edge over
feature-based methods in achieving fiber arrangements with a
strong curvature, thus enriches the topology space. The figures
shown below, Fig. 5.7 and Fig. 5.8, depict the GP and GP-lAM
designs, respectively. By comparing these designs with the one
shown in Fig. reffig:bending-designs-0.5, it can be seen that the
geometry projection method, by default, restricts topology space.
Moreover, allocating the topology space with overlapping bars
results in a suboptimal solution—one major limitation of the sim-
ple overlap formulation that cannot be avoided. In the following
chapter, a layer-wise formulation is introduced in the geometry
projection, which allows for the simultaneous optimization of each
layer’s topology, material, and stacking sequence in the composite
laminate. This leads to discrete fiber paths within each layer and
overlapping bars through the adjacent layer to optimize intersec-
tion load paths, overcoming the limitations of LGP-AM and GP.
This approach, named GP-MUL2, introduces a unified framework
for achieving a more comprehensive and effective optimization of
multi-layered VS-CFRP-Ls (MUL-VS-CRPF-Ls).

Table 5.3: Bending—The compliance value for different length constraint

ℓ 𝑏 = 0 ℓ 𝑏 = 5 ℓ 𝑏 = 10 ℓ 𝑏 = 15
Compliance 0.212375 0.219199 0.234320 0.242954

Knowing the limitation of the geometry projection method, we
investigated the LGP-AM method for various minimum length
constraints that were imposed on the FRBs for values of ℓ 𝑏 ranging
from 0 to 15 in increments of 5. The compliance value obtained
for the VS-CFRP-L, as depicted in Fig. 5.11, has been tabulated
in Tab. 5.3. All the designs have a similar range of stiffness, and
the arrangement of FRBs forms a "plus" symbol for any value of
ℓ 𝑏 . It can be concluded that all cases always result in a similar
topology regardless of the initial condition. This means that even
if the number of bars increases or decreases, the simple overlap
formulation will always produce a suboptimal design. This is
because, during the early stages of optimization, the penalized
effective densities of FRBs (Eq. (5.10)) are significantly low; thus,
the resulting stiffness causes the optimizer to drive more FRBs
towards the concentrated load and gradually lock design as the
membership value grew over iteration. The excessive overlapping
can be avoided in the GP formulation (as in Fig 5.7), but it cannot
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be designed for intersecting load paths, for example, plate under
pure torsion.

Figure 5.9: Bending—The objective history plot depicts that LGP-AM (ℓ = 0)
takes more iterations compared to LGP-AM(ℓ > 0) formulation. This is because
small features get stuck in the overlapping bars listed in Table 5.4. Moreover,
LGP-AM(ℓ > 0) takes a similar number of iterations to converge, irrespective of
the imposed threshold length, ℓ , on FRBs. This indicates that small features
cause manufacturing issues and lead to optimizer oscillation. The plot is
arranged in increasing order of ℓ .
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When comparing the compliance achieved by the simple over-
lap method with or without length constraint to the GP and GP-AM
methods, it was observed that the simple overlap method increases
stiffness by approximately 85.7%. This is because the constant
thickness of the FRBs, when stacked, increases the bending stiffness
of the VS-CFRP-L, leading to lower compliance. Consequently, the



Geometry Projection method for Variable Stiffness Continuous Fiber-Reinforced
Polymer Laminates—Simple Overlap formulation with length constraint. 129

LGP-AM (ℓ > 0) method results in the lowest compliance because
the small features are locked near the application of point load.

Several non-manufacturable components are tightly locked
beneath the long vertical FRBs in the given scenario. The opti-
mizer can’t remove these components because the long vertical
feature is dominant and effectively subdues the displacement
field generated by the FE analysis. The optimization is limited to
single-layer analysis, which means that the component densities
in the overlapping regions are driven by the displacement field
obtained for the homogenized structure’s stiffness in the reference
plane. However, updating all the components in the overlapping
region using the reference displacement doesn’t accurately update
each feature in the design. Obtaining a displacement field for each
component is crucial because updating schemes, particularly in
geometry projection, are carried out for each geometric variable,
i.e., for high-level parametric design space. Therefore, the overlap-
ping region of the components is tightly locked, and the resulting
displacement field subdues any attempt by the optimizer to adjust
or remove it.

The figures of a plate’s design and density plot under predeter-
mined conditions are displayed in Fig. 5.10 and 5.11 respectively.
The design produced by the LGP-AM (ℓ = 0) method contained
non-manufacturable features, which were eliminated by the LGP-
AM method by setting a lower bound on the minimum length of the
FRBs (ℓ 𝑏 = 5). Gradually increasing this threshold limit resulted in
a more distinct design by removing features and reducing overlaps
of FRBs, which slightly increased compliance. However, all of the
designs were suboptimal due to the limited topology space of the
feature-mapping-based topology optimization framework. The
purpose of this example was to demonstrate the effectiveness of
the LGP-AM formulation, which can impose distinct bounds on
the minimum length of the FRBs. The method efficiently removes
any features that fall below the threshold value as detailed in
Tab. 5.4, resulting in discernable overlapping components and a
manufacturing design with minimal post-processing steps.

5.3.3 A rectangular plate under pure torsion
In the third example, we consider a rectangular plate with dimen-
sions of 400×100×2, subjected to pure torsion. The plate is shown
in Fig. 5.4. Thanks to anti-symmetry conditions, we performed
an FE analysis on half of the plate, which was discretized using
200 × 50 plate elements. The initial design comprised of 29 bars,
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and we imposed the following bounds on the design variables:
(0, 0)

3
0

 ≤


(x𝑏1, x𝑏2)
𝑟𝑏
𝛼𝑏

 ≤


(200, 50)
6
1

 (5.18)

The problem has been solved for two volume fraction limits,
𝑣̄ = {0.5, 0.6}, each with corresponding lower bounds on the FRBs’
length set to ℓ = {0, 5, 10}.

Table 5.5: Torsion—The compliance values for two different volume fraction
limits are indicated for comparison among formulations.

GP GP-lAM ℓ 𝑏 = 0 ℓ 𝑏 = 5 ℓ 𝑏 = 10
𝑣̄ = 0.5 184.893393 141.048719 80.634837 84.258939 103.316065
𝑣̄ = 0.6 135.665506 112.607709 91.586009 93.730293 83.373807

In Chapter 4, it was shown that the arrangement of components
in a crossover pattern at angles of 45◦ and 135◦ should be the
dominant feature in the computational design domain. However,
the GP-AM method produced a design requiring multiple post-
processing steps to replicate the design ready for manufacturing,
including overlapping FRBs and a moderate free-form component
arrangement. This is necessary to accurately capture the essence
of the design and ensure that it can be replicated even in the
manufactured VS-CFRP-Ls. Therefore, the simple overlap with
length formulation was derived from overcoming these challenges
and pursuing our goal to design and optimize additively manu-
facturable VS-CFRP-Ls, which is demonstrated through designs
plotted in Fig. 5.14, 5.15.

Fig. 5.14 presents the design and density plots for a volume
fraction constraint of 0.5 considering several length thresholds
of ℓ = {0, 5, 10}. When ℓ = 0, the design has small features and
overlapping FRBs that make manufacturing challenging. These
non-manufacturable features also contribute to the stiffness of
the VS-CFRP-L, which can be overestimated and unachievable in
some cases. For example, overlapping FRBs near the boundary
conditions require an approximate representation of the fiber
deposition in a layer to achieve the same stiffness as the overlapping
FRBs. When ℓ = 5, the design improves significantly by removing
all small features. This frees up the design space for a better
solution, such as introducing easy-to-print features. However,
the overlapping features present in the design near the boundary
condition may cause difficulty in printing and replicating the
optimized VS-CFRP-Ls. It is worth noting that the design plot
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shows several small features not present in the corresponding
density plot. These are included deliberately to demonstrate
that components with lengths below the threshold value are not
considered in the design, regardless of their membership variable
value. This can be understood from the previous example wherein
a table (Tab. 5.4) is populated comprising the length, corresponding
membership variable, and weight of components.

Figure 5.12: Torison—The objective history plots for volume fraction constraint
of 0.5 with corresponding length thresholds of ℓ = {0, 5, 10} are shown.

Finally, the design for ℓ = 10 is free from features that require
post-processing steps or cannot be printed. The compliance values
for the final designs are tabulated in Tab. 5.5, and a significant
difference can be observed. The design with the lowest stiffness—
with a minimum length constraint of ℓ = 10—shows a considerable
difference in the stiffness than the other two designs. Although the
topology of the designs is roughly similar, the difference in stiffness
is primarily due to the presence of overlapping bars in the ℓ = 10
design. This confirms that overlapping features can overestimate
stiffness, and such overlaps can lead to poor performance due to
manufacturing inconsistencies, even if they are conceivable.
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Fig 5.12 shows a smoother compliance history for ℓ = 0 com-
pared to when ℓ > 0. The jumps seen in the plots result from
removing features shorter than the minimum threshold length
set for the optimization problem. This leads to a disconnected
structure, which increases compliance. When components are
removed near the load application, there is a strong peak, while
less intense peaks occur when the bars are removed in the central
regions of the computational design space. However, these peaks
gradually subside because other components occupy the design
space left by the removed features.

Figure 5.13: Torison—The objective history plots for volume fraction constraint
of 0.5 with corresponding length thresholds of ℓ = {0, 5, 10} are shown.
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Figure 5.14: Torison—Adjacent design and density plots for volume fraction
constraint of 0.5 with corresponding length thresholds of ℓ = {0, 5, 10} are
shown.
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Figure 5.15: Torison—Adjacent design and density plots for volume fraction
constraint of 0.5 with corresponding length thresholds of ℓ = {0, 5, 10} are
shown.
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To explore the potential of the LGP-AM method, we optimized
the same problem for a volume fraction constraint of 0.6. As
discussed earlier in the Chapter 4, the method is prone to getting
stuck in sub-optimal solutions if necessary restrictions are not
implemented. For example, the overlapping criterion introduced
in the GP-AM method. This issue is even more apparent in
the simple formulation (ℓ = 0), where the optimizer can lock
the design in earlier stages if necessary restrictions are not in
place, as shown in Fig. 5.15. It is evident that the optimizer
generates non-manufacturable designs and results in the least stiff
structure compared to the other two cases with an increase in the
volume fraction. This reinforces our argument that when using
the geometry projection method to design and optimize CFRP
structures, the formulations must include necessary restrictions
in the design space to reduce the likelihood of the optimizer
falling into sub-optimal solutions. These sub-optimal solutions
are characterized by the dissolution of components, excessive
FRBs overlapping, and small design features. Finally, the designs
obtained using LGP-AM are stiff and manufacturable for ℓ =

{5, 10}).
Finally, FRBs’ initial arrangement, i.e., the number of FRBs,

their orientation, and their length due to the nonconvexity of
the optimization, highly impact the final topology. A numerical
experiment that examines the impact of the initial arrangement of
features on an optimization workflow. The experiment has two
cases. The first case looks at the effect of changes in the orientation
of features, while the second case examines how changes in the
initial length of features and their number affect the optimization
workflow, as shown in Fig. 5.16.

Comparing the topology obtained in Fig. 5.14 to the topology
attained when the initial arrangement of the feature changed,
the FRBs still form the intersecting FRBs to compensate for the
torsion load applied at the right end and horizontal features at
the left edge where the boundary condition is applied. Still,
slight variations in the topology can be observed in all three
cases, which start with the different initial configurations, which is
generally the case when solving non-convex optimization problems,
which are highly dependent on the initial settings. Despite that,
LGP-AM formulation handles non-convexity robustly, which is
demonstrated by keeping the dominating features in the design
for all three cases.
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Figure 5.16: Torison—The LGP-AM design (ℓ = 10) is plotted for two different
initial conditions. The bound on the design variables is given in (5.18), and the
volume fraction is set to 𝑣̄ = 0.5.
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5.3.4 Multiple load cases

fi
xe

d 
ed

ge

The following example considers a rectangular plate with dimen-
sions of 160 × 80 × 2 subjected to two load cases. The plate is
fixed at the left edge, and a unit out-of-plane load is applied at
the bottom-right corner while a couple is applied at the right edge
corner, as shown in Fig. ??. The initial design comprises 41 bars,
and the design variables are bounded as follows:

(0, 0)
3
0

 ≤


(x𝑏1, x𝑏2)
𝑟𝑏
𝛼𝑏

 ≤


(160, 80)
6
1

 (5.19)

Furthermore, we define the objective compliance function for the
two load cases in this example according to equation(5.20) the net
compliance, i.e., the sum of the compliance of each load case

𝑐 :=
∑

𝑐𝑖 . (5.20)

The design with a length constraint shares several similarities
with the design that has no length constraint. For instance, by
overlapping FRBs, two crossover components can offset a torsion
load that is exerted on the right edge. This load is applied to mimic
the short cantilever benchmark problem. This method is similar
to the MBB problem case study and is commonly employed to
validate the new TO framework. In both designs, the transversal
load applied at the right corner of the bottom edge is optimized
by arranging components at the top edge of the structure and
projecting extended features at the bottom of the design.

Fig. 5.17 shows plots for minimum length constraints of ℓ = 0
and ℓ = 10. The design without length constraint reached a
compliance of 50.497352 after 271 iterations, while the other design
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168 Guest et al., “Achieving
minimum length scale in topology
optimization using nodal design
variables and projection functions,”
2004.
68 Sigmund, “On the usefulness of
non-gradient approaches in topology
optimization,” 2011.

reached a compliance of 53.159720 after 280 iterations. Despite
the former having higher stiffness, there are concerns about the
actual stiffness of the printed VS-CRPL-L. The design’s fiber path
arrangement allows for lower compliance, but significant effort
is required to ensure printability by connecting components of
multiple length scales, such as short bars with circular bars.

The LGP-AM (ℓ > 0) technique is a method that optimizes the
arrangements of FRBs, making them suitable for production using
either additive or conventional methods. It should be noted that
the optimized design requires no extra post-processing, except for
the fiber path planning strategy, which mainly depends on the CF4
unit being considered. This example demonstrates the technique’s
ability and flexibility to solve complex problems while ensuring
that the final design is easy to manufacture.

5.4 Conclusion
One further development of the LGP-AM method is to optimize
the maximum length scale to improve structural redundancy, even
if it comes at the expense of the nominal objective value. Regarding
the minimum length scale, the continuum approach offers well-
established solutions, such as projection techniques 168 and the
robust topology optimization method 68. However, imposing a
maximum length scale in continuum topology optimization is more
challenging. This issue has been addressed by Guest2009 ength
as well as more recently in Wu et al. and Lazarov et al. , and
it is still the focus of ongoing research. Despite this, all of the
solutions offered by the continuum approach deal with this issue
by implicitly determining the characteristic sizing, which can
sometimes require additional computational effort. In contrast,
the LGP-AM method explicitly imposes a length scale and is
almost straightforward, as it is carried out for minimum length
constraints.

https://dx.doi.org/10.1007/s00158-011-0638-7
https://dx.doi.org/10.1007/s00158-011-0638-7
https://dx.doi.org/10.1007/s00158-011-0638-7
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6AUnified Topology Optimization
Framework for Multilayered Variable
Stiffness Composite Laminates.

6.1 Continuous Fiber FUsed Fabrication—Markforged
Printers

In 2014, Markforged released the world’s first commercial printer
that enabled the 3D printing of composites with 1𝐾 continuous
fiber reinforcement. Other researchers have also developed in-
house printers for CCFRP composites by impregnating fibers with a
thermoplastic matrix before extruding or within the printer nozzle.
However, Markforged is one of the few companies commercially
offering CFRP additive manufacturing technology. It uses a dual
nozzle extrusion method—one nozzle is used for the matrix, and
the other is used for the reinforcing fiber. Embedding continuous
fiber into the molten polymer involves extruding the polymer
matrix onto the print bed using the matrix nozzle. The fiber nozzle
embeds the continuous fiber into the molten polymer. The print
head irons the fiber bundle into a flat layer as the fiber bundle is
extruded. The fibers provide most of the stiffness in this composite
type, whereas the matrix bonds them together and determines the
component’s geometry.

Markforged printers utilize the Eiger slicing software to define
the components’ fiber routing and infill strategy. These printers
have limited flexibility for changes in print parameters like nozzle
temperature, speed, and layer thickness. However, the mechanical
properties of the printed object can be adjusted by modifying
process parameters like infill density, infill pattern, fiber pattern,
and fiber orientation. The printers offer two fiber patterns—
unidirectional and concentric, which can be combined in a single
layer. Fibers can be printed at any angle with a resolution of 0.01
degrees. The fibers are continuous in each layer but do not bridge
layers. The user has two choices of matrix, nylon, or onyx and
three options for fiber reinforcement- carbon, glass, or Kevlar. The

143



A Unified Topology Optimization Framework for Multilayered Variable
Stiffness Composite Laminates. 144

172 Fernandes et al., “Experimental
investigation of additively
manufactured continuous fiber
reinforced composite parts with
optimized topology and fiber paths,”
2021.
173 Zhang et al., “3D printing of
continuous carbon fibre reinforced
polymer composites with optimised
structural topology and fibre
orientation,” 2023.

fiber volume fraction can be adjusted by changing the number of
fiber layers.

Onyx
Property Value
Young’s modulus, 𝐸 2.4GPa
Poisson’s ratio, 0 0.38

Table 6.1: Elastic material properties of Onyx[171]

Carbon fiber
Property Value
Young’s modulus 1, 𝐸1 231GPa
Young’s modulus 2, 𝐸2 12.9GPa
Young’s modulus 3, 𝐸3 12.9GPa
Poisson’s ratio 12, 𝑣12 0.3
Poisson’s ratio 13, 𝑣13 0.3
Poisson’s ratio 23, 𝑏23 0.46
Shear modulus 12, 𝐺12 11.3GPa
Shear modulus 13, 𝐺13 11.3GPa
Shear modulus 23, 𝐺27 4.45GPa

Table 6.2: Anisotropic material properties of carbon fiber [171]

The Markforged printer uses filaments that contain thousands
of continuous carbon fibers. Each filament has a diameter of
0.4𝑚𝑚 and a density of 1.2𝑔/𝑐𝑚3 with a fiber volume fraction of
34%. A cutting mechanism has been added to the printer, which
allows for the scission of carbon fibers to print discrete paths 172.

6.1.1 Recent studies on CF4 technology with the
Markeforged system.

In a study 173 on achieving better lightweight performance—
topology and fiber orientation optimization were combined se-
quentially. Customized fiber placement was performed using an
extrusion-based 3D printing technique to manufacture composite
preforms. The optimized design was then compared to a bench-
mark printed sample using the commercial Markforged printing
system. A finite element model was built based on the actual
printing paths to understand the effect of customized fiber paths
on lightweight performance. This model was used to analyze the
strain distribution in the topology-optimized geometry and how
stress-lines continuous fibers transferred and carried the loading.

Almeida et al. [174] have developed and implemented a frame-
work for optimizing parts with both isotropic and orthotropic

https://dx.doi.org/10.1016/J.ADDMA.2021.102056
https://dx.doi.org/10.1016/J.ADDMA.2021.102056
https://dx.doi.org/10.1016/J.ADDMA.2021.102056
https://dx.doi.org/10.1016/J.ADDMA.2021.102056
https://dx.doi.org/10.1016/J.ADDMA.2021.102056
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175 Ichihara et al., “3D-printed
high-toughness composite structures
by anisotropic topology
optimization,” 2023.

material properties by optimizing the topology and fiber orienta-
tion. Their study found that for parts subjected to 3-point bending,
onyx parts exhibited a significant increase in structural stiffness
compared to nylon parts. The stiffness increase was observed to
be 282%, 282%, and 165% for onyx parts at admissible volumes
of 30%, 40%, and 50%, respectively. Similarly, for parts subjected
to 4-point bending, onyx parts also showed greater stiffness and
strength compared to nylon parts. The stiffness increase was
measured to be 169%, 62%, and 137% for onyx parts at admissible
volumes of 30%, 40%, and 50%, respectively.

The study 175 aimed to increase the strength of 3D-printed
carbon fiber-reinforced composite structures using a design frame-
work incorporating local latticing. The framework utilized the
intermediate material fraction obtained in topology optimization.
An anisotropic topology optimization, which considered both ma-
terial fraction and orientation, was used, and the phase field-based
technique was used to determine the 3D printing path. The tough-
ness of the 3D-printed carbon fiber-reinforced composite structure
was improved by the framework when tested on a three-point
bending beam problem using Anisoprint.

Markforged allows users to choose the orientation of fibers
on each layer. The standard options for fiber orientation are
0◦, 45◦, 90◦, and135◦. However, it is possible to have variable fiber
orientation on any layer to achieve specific goals. The printer can
handle more complexity, but the direction parallel option limits
the fiber to only one direction per layer. This is done to main-
tain structural integrity, improve manufacturability, and reduce
complexity. The fixed fiber orientation within a layer provides
sufficient design freedom for optimization while preserving manu-
facturability, especially for smaller builds, as proposed by Forward
et al. [171].

When creating 3D-printed parts for functional applications,
using unidirectional composites is not common because of the
complex stress state they undergo. Instead, a laminate with an
optimized stacking sequence is preferred. Sugiyama et al. demon-
strated that the stiffness and strength per unit weight of the
optimized variable fiber volume and stiffness composites were 9.4
and 1.6 times greater than those of conventional linear laminates,
respectively. This means the composite layers are stacked to align
with the desired properties. Although any stacking sequence can
be achieved in the 3D printing of composite laminates, there are
a few differences to consider when interpreting the lay-ups of
3D-printed specimens. The composite is enclosed within a shell of
the matrix, which is made up of layers of floor (bottom), roof (top),
and wall/shell (surrounding) layers. Further, In Markforged 3D
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162 Carrera, “Theories and finite
elements for multilayered,
anisotropic, composite plates and
shells,” 2002.

printers, each layer can only be a fiber or a matrix.

6.1.2 A unified topology optimization framework for
multi-layered composite laminates.

In the previous chapters, we discussed the printability of single-
layer VS-CFRP-Ls and formulated various approaches for design-
ing and optimizing these laminates using the geometry projection
method. However, the manufacturing process of these laminates
involves additional constraints that must be imposed on each layer.
This means that designing VS-CFRP-Ls requires an approach that
considers the physical optimization of each layer, in contrast to
previous formulations that analyze multi-layered laminates using
equivalent single-layered theory. Therefore, developing a new
formulation that considers these additional constraints is necessary
to ensure the manufacturability of multilayered variable stiffness
composite laminates (MUL-VSCLs), for example, designing and
optimizing for thick composite laminates.

Thick laminated composite structures exhibit complex behavior
that cannot be accurately predicted by classical plate and shell theo-
ries due to oversimplified transverse shear deformation. Although
shear deformation can be ignored in thinner composite structures,
it causes significant errors in predicting mechanical behavior in
thicker ones. The first-order shear deformation theory uses a shear
correction factor to address this issue, and the high-order theory
uses a tangential transverse shear effect. However, these meth-
ods are inadequate for composite laminates with multiple layers
because of the zigzag shape of in-plane displacement and the
interlaminar continuity of transverse stresses. In response to these
challenges, researchers have proposed several solutions, including
the layerwise theory, which addresses the zigzag displacement
and interlaminar continuity of transverse stress issues 162.

This chapter presents a unified topology optimization frame-
work for optimizing multi-layered variable stiffness composite
laminates (MUL-VSCLs). The proposed method combines the
geometry projection technique and the MUL2 software—based on
Carrera Unified Formulation—developed by the MUL2 research
group at Politecnico di Torino in Italy. The objective is to integrate
CUF-based analysis with the geometry projection method to opti-
mize MUL-VSCLs more efficiently and effectively. The proposed
framework—GP-MUL2—can enable general additive manufactur-
ing constraints, irrespective of CF4 technology in consideration,
making it modular and enabling multi-objective and multi-physics
analysis.

The Carrera Unified Formulation (CUF) is a widely used
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multilayered plate elements
including zig-zag and interlaminar
stress continuity,” 1996.

177 Carrera et al., “Classical and
advanced multilayered plate
elements based upon PVD and
RMVT. Part 1: Derivation of finite
element matrices,” 2002.
178 Carrera et al., “Classical and
advanced multilayered plate
elements based upon PVD and
RMVT. Part 2: Numerical
implementations,” 2002.

method for formulating finite elements (FEs) for various structures.
The CUF approach includes one-dimensional (beam) and two-
dimensional (plate and shell) theories beyond classical theories
such as Euler, Kirchhoff, Reissner, Mindlin, etc. The critical feature
of CUF is using a condensed notation, which allows for expressing
displacement fields in terms of expansion or thickness functions.
The benefits of using CUF are that it enables the performance of
related assembly techniques more efficiently, and one-dimensional
and two-dimensional FEs provide results comparable to 3D ele-
ments but with lower computational costs. The CUF approach has
been widely used to develop efficient and accurate 2D FEs, which
can analyze various structures with complex geometries.

Since the CUF-based topology optimization approach has yet
to be demonstrated, the chapter details the integration of a CUF-
based geometry projection framework utilizing the same problem
statement discussed in the previous chapters. The GP-MUL2

framework can optimize topology with multi-objective functions
and consider multi-physics, including several CF4 constraints.
However, these adaptions are not considered in the chapter and
are postponed for future work.

6.2 Multilayered Composite Laminates—A brief
background

Layered structures are referred to as "transversely anisotropic"
materials because they exhibit distinct physical and mechanical
properties in the direction of thickness. Due to the discontinuous
mechanical properties in the transverse direction, a displacement
field occurs in the thickness direction. The slope of this displace-
ment field changes abruptly at each layer interface, resulting in a
zigzag or ZZ form of the displacement field. Although the in-plane
stresses may discontinue at each layer interface, the transverse
stresses must be continuous at each layer interface for reasons of
equilibrium, as stated in Cauchy’s theorem. This continuity of
transverse stresses is known as interlaminar continuity (IC).

Developing a theory suitable for multilayered composite lam-
inates requires meeting the C0

𝑧 and IC requirements 176. A com-
posite, multilayered structure can be developed by following the
three points discussed in detail here 177,178.

1. Elimination of the thickness coordinate z

• Asymptotic type approaches
• Axiomatic type approaches

2. Choice of the unknown variable
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• Displacement formulation
• Mixed formulation

3. Choice of the description of the variables

• Equivalent Single-Layer Models
• Layer-Wise Models

6.2.1 Axiomatic Theories for Multilayered Structures
The asymptotic method approximates theories that are known
to be accurate compared to the 3D exact solution. Developing
asymptotic theories is generally more complex than developing
axiomatic ones. In axiomatic theory, several hypotheses about
the behavior of the unknown functions are introduced to simplify
the mathematical complexity of the 3D differential equations, as
described below.

Equivalent single layered theories (ESL) The CLTs (Classical
Lamination Theories) are based on the assumption that the normals
to the reference surface remain normal in the deformed states and
do not change in length. This means that transverse shear and
normal strains are considered negligible concerning the other
strains. The first-order shear deformation theory extends the
CLTs, including transverse shear strains, to layered structures
as discussed in Chapter 4. Higher-order theories are based on
displacement models that are more complex than the ones used in
FSDT.

𝒖 𝑖(𝑥, 𝑦, 𝑧) = 𝒖0 + 𝑧𝒖1 + 𝑧2𝒖2 + . . . + 𝑧𝑁𝒖𝑁 (6.1)

where 𝑁 is the order of expansion used for the displacement variables.

Zigzag Theories ESL models to multilayered VSCLs do not
permit the fulfillment of C0

𝑧 requirements. Refined theories, called
zigzag (ZZ), have been developed to meet these requirements due
to the form of the displacement field in the thickness direction. In
ZZ theories, a particular displacement model is assumed in each
layer, and compatibility and equilibrium conditions are used at
the interface to reduce the number of unknown variables.

Layer-Wise Theories The ESL models are "kinematically homo-
geneous," meaning they are not sensitive to individual layers as
assumed variables are independent regardless of the number of
layers. These models are typically referred to as a given reference
plate or shell surface, for example, Eq. (4.8).
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formulation, 2014.

Incorporating the ZZ effect into an ESL model that only uses
displacement variables can attain a detailed response from individ-
ual layers. This means that each layer is treated as an independent
plate, and the compatibility of displacement components is im-
posed as a constraint for each interface. Each layer 𝑘 is considered
an independent plate or shell.

6.3 Introduction to the Carrera Unified Formulation
Considering a plate, the variable in-plane displacement, consider-
ing all the components, over the cross-section is written as,

𝒖𝜏(𝑥, 𝑦) → 𝒖𝜏(𝑥, 𝑦, 𝑧) (6.2)

where,
𝒖𝜏 = (𝑢𝜏 , 𝑣𝜏 , 𝑤𝜏)

Then, the CUF technique expresses components of the displace-
ment field using expansion terms to approximate the displace-
ments along the thickness as,

𝑢(𝑥, 𝑦, 𝑧) = ∑𝑛
𝜏=0 𝐹𝜏(𝑧)𝑢𝜏(𝑥, 𝑦)

𝑣(𝑥, 𝑦, 𝑧) = ∑𝑛
𝜏=0 𝐹𝜏(𝑧)𝑣𝜏(𝑥, 𝑦)

𝑤(𝑥, 𝑦, 𝑧) = ∑𝑛
𝜏=0 𝐹𝜏(𝑧)𝑤𝜏(𝑥, 𝑦)

(6.3)

The thickness function 𝐹𝜏 is the powers of 𝑧, and the distribution
of displacements can be a Taylor or Lagrange expansion at order n
of coefficient 𝑢𝜏 , 𝑣𝜏 , 𝑤𝜏. In vector form, the displacement can be
rewritten then as,

𝒖 = 𝐹𝜏(𝑧)𝒖𝜏(𝑥, 𝑦) (6.4)

CUF builds upon the FE method by employing structural theo-
ries along the thickness, which allows FE matrices and vectors to
be derived from fundamental nuclei. The CUF expands index no-
tation beyond the traditional 𝑖 and 𝑗 indices used in FE procedures
and incorporates the use of 𝜏 and 𝑠 indices commonly used in
the theory of structures. A fundamental nucleus (FN) is obtained,
expressed in four indices: 𝜏, 𝑠, 𝑖, and 𝑗. The resulting FN is a 3 × 3
array or a 3 × 1 vector, and its shape remains constant across 1D,
2D, and 3D problems179.

6.4 Unified Formulation for Multilayered Structure
The assumptions about displacements can be made at either the
layer or the multilayer level. For layer-wise description, u𝜏 are layer
variables that differ for each layer. On the other hand, in the ESL
description, u𝜏 are the same for the entire multilayer. The potential
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outcomes of employing ESL models for the geometry projection
method have already been discussed. Specifically, the focus is on
GP-MUL2 and its advantages and limitations when using the LW
model. However, it is worth noting that any model can be utilized
due to the modular nature of MUL2 software, which allows for
the swapping of theories.

For example, higher-order ESLMs appear in the following form:

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) + 𝑧𝑢1(𝑥, 𝑦) + 𝑧2𝑢1(𝑥, 𝑦) + . . . + 𝑧𝑁𝑢𝑁 (𝑥, 𝑦)
𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) + 𝑧𝑣1(𝑥, 𝑦) + 𝑧2𝑣1(𝑥, 𝑦) + . . . + 𝑧𝑁𝑣𝑁 (𝑥, 𝑦)
𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) + 𝑧𝑤1(𝑥, 𝑦) + 𝑧2𝑤1(𝑥, 𝑦) + . . . + 𝑧𝑁𝑤𝑁 (𝑥, 𝑦)

(6.5)
According to the unified formulation, these can be written in the
following compact form:

𝒖 = 𝐹0𝒖0 + 𝐹1𝒖1 + . . . + 𝐹𝑁𝒖𝑁 = 𝐹𝜏𝒖𝜏 , 𝜏 = 0, 1, 2, . . . , 𝑁 (6.6)

where 𝑁 is the order of the expansion, and the thickness function 𝑭𝜏

is defined as

𝐹0 = 1, 𝐹1 = 𝑧, 𝐹0 = 𝑧2, . . . , 𝐹𝑁 = 𝑧𝑁 (6.7)

6.4.1 Layerwise Theory with Legendre Expansion
All the examples carried out for GP-MUL2 considered each layer
independent, and the compatibility of displacement components
at each interface is imposed. The following expansion is employed
in terms of Legendre polynomials:

𝑢𝑘 = 𝐹𝑡𝑢
𝑘
𝑡 + 𝐹𝑏𝑢𝑘𝑏

𝑣𝑘 = 𝐹𝑡𝑣
𝑘
𝑡 + 𝐹𝑏𝑣𝑘𝑏

𝑤𝑘 = 𝐹𝑡𝑤
𝑘
𝑡 + 𝐹𝑏𝑤𝑘

𝑏

(6.8)

The subscripts 𝑡 and 𝑏 denote values related to the top and bottom
layer surface, respectively. For first-order expansion, the thickness
functions 𝐹𝜏 (𝜁𝑘) are now defined at the 𝑘-layer level,

𝐹𝑡 =
𝑃0 + 𝑃1

2 , 𝐹𝑏 =
𝑃0 − 𝑃1

2 (6.9)

in which 𝑃𝑗 = 𝑃𝑗 (𝜁𝑘) is the Legendre polynomial of the 𝑗 th order
defined in the 𝜁𝑘 domain: 𝜁𝑘 = 2𝑧𝑘/ℎ𝑘 and −1 ≤ 𝜁𝑘 ≤ 1.

The Legendre polynomials allow one to have interface values as
unknown variables, avoiding the inclusion of constraint equations
to impose 𝐶0

𝑧 requirements. In a unified form

𝑢𝑘 = 𝐹𝑡𝑢
𝑘
𝑓
+ 𝐹𝑏𝑢𝑘𝑏 = 𝐹𝜏𝑢

𝑘
𝑧 , 𝜏 = 𝑡 , 𝑏 (6.10)
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Table 6.3: The first five Legendre polynomials

𝑃0 𝑃1 𝑃2 𝑃3 𝑃4

1 𝜁𝑘
(
3𝜁2

𝑘
− 1

)
/2 5

2𝜁
3
𝑘
− 3

2𝜁𝑘
35
8 𝜁4

𝑘
− 15

4 𝜁2
𝑘
+ 3

8

Higher-order LW theories used in the examples are formulated as,

𝑢𝑘𝑥 = 𝐹𝑡𝑢
𝑘
𝑡 + 𝐹𝑏𝑢𝑘𝑏 + 𝐹2𝑢

𝑘
2

𝑢𝑘𝑦 = 𝐹1𝑣
𝑘
𝑡 + 𝐹𝑏𝑣𝑘𝑏 + 𝐹2𝑣

𝑘
2

𝑢𝑘𝑧 = 𝐹1𝑤
𝑘
𝑡 + 𝐹𝑏𝑤𝑘

𝑏
+ 𝐹2𝑤

𝑘
2

(6.11)

where
𝐹𝑟 = 𝑃𝑟 − 𝑃𝑟−2, 𝑟 = 2, 3, . . . , 𝑁 (6.12)

In a unified form

𝑢𝑘 = 𝐹𝑟𝑢
𝑘
𝑖 + 𝐹𝑏𝑢

𝑘
𝑏
+ 𝐹𝑟𝑢𝑘𝑟 = 𝐹𝜏𝑢

𝑘
𝑟 , 𝜏 = 𝑡 , 𝑏, 𝑟 = 2, 3, . . . , 𝑁

(6.13)

6.5 A Four-Index Fundamental Nucleus
The virtual displacement (PVD) principle derives the weak form
of governing equations. This variational statement allows writing
the governing equations in integral form using a displacement
formulation [180].

According to PVD, the total virtual variation of the total work
in the body under deformation is zero:

𝛿ℒ = 𝒰𝑖𝑛𝑡 −𝒲ext = 0

The total virtual internal work is the strain energy developed
during the deformation, which is given as,

𝒰𝑖𝑛𝑡 =
1
2

∫
𝑉

𝛿𝜺𝑇𝝈𝑑𝑉

The total virtual external work will be expressed by the work
done by the external load:

𝒲ext =
1
2

∫
𝑉

𝛿𝒖𝑇𝑭𝑑𝑉

By using the above definitions, the PVD can be written as:∫
𝑉

𝛿𝜺𝑻𝝈𝑑𝑉 =

∫
𝑉

𝛿𝒖𝑇𝑭𝑑𝑉 (6.14)
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Using the constitutive equation and the geometrical relation to
rearrange the expression of the PVD and obtain an equation only
in terms of displacements:

𝛿𝜺 = [𝐵]𝛿𝒖
𝝈 = [𝑪]𝜺 = [𝑪][𝐵]{𝒖} (6.15)

Substituting the above two relations into an expression of PVD
Eq. (6.14), obtaining:∫

𝑉

𝛿𝒖𝑇[𝑏]𝑇[𝑪][𝒃]𝒖𝑑𝑉 =

∫
𝑉

𝛿𝒖𝑇𝑭𝑑𝑉

The unified formulation (see Eq. (6.4)) can be applied to dis-
placement fields. Note two separate indexes, 𝜏and 𝑠, are used
because the displacement fields are independent,

𝒖 = 𝐹𝜏(𝑧)𝒖𝜏(𝑥, 𝑦)
𝛿𝒖 = 𝐹𝑠(𝑧)𝛿𝒖𝑠(𝑥, 𝑦)

(6.16)

6.5.1 Implementing finite element method
Considering the discretization of the domain by a Q4 element, the
displacement field can be rewritten as:

𝒖𝜏(𝑥, 𝑦) =
𝑁∑
𝑖=0

𝑁𝑖𝒖𝜏𝑖 (𝑥, 𝑦) (6.17)

Substituting the discretization in-plane displacement field in
the Eq. (6.16) allows to rewrite the displacements of the two systems
as,

𝒖 = 𝐹𝜏(𝑧)𝑁𝑖𝒖𝜏(𝑥, 𝑦)
𝛿𝒖 = 𝐹𝑠(𝑧)𝑁𝑗𝛿𝒖𝑠(𝑥, 𝑦)

(6.18)

Finally, the finite element formulation of the PVD is written as,[∫
𝑉

𝐹𝑠𝑁𝑗[𝐵]𝑇[𝑪][𝐵]𝑁𝑖𝐹𝜏𝑑𝑉

]
𝒖𝜏𝑖 =

∫
𝑉

𝐹𝑠𝑁𝑗𝑭𝑑𝑉 (6.19)

And the fundamental nucleus can be obtained

𝛿ℒ𝑖𝑛𝑡 =

∫
𝑉

𝛿𝜺𝑇𝝈𝑑𝑉 = 𝛿𝒖𝑠 𝑗𝒌
𝜏𝑠𝑖𝑗𝒖𝜏𝑖

= 𝛿𝒖𝑇𝑠 𝑗

∫
𝑉

[𝐹𝑠(𝑧)𝑁𝑗

𝒃𝑇︷ ︸︸ ︷
[3 × 6]

𝑪︷ ︸︸ ︷
[6 × 6]

𝒃︷ ︸︸ ︷
[6 × 3]︸                    ︷︷                    ︸[

3×3
] 𝑁𝑖𝐹𝜏(𝑧)] 𝑑𝑉𝒖𝜏𝑖

︸                                                          ︷︷                                                          ︸
𝒌𝜏𝑠𝑖𝑗

(6.20)
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For all the components of the displacement are considered, the
fundamental nucleus becomes a 3 × 3 matrix:

𝒌𝜏𝑠𝑖𝑗
=

∫
𝑉

𝐹𝑠(𝑥, 𝑧)𝑁𝑗(𝑦)𝒃𝑇𝑪𝒃𝑁𝑖(𝑦)𝐹𝜏(𝑥, 𝑧)𝑑𝑉 (6.21)

6.5.2 CUF Assembly Technique
After defining the PVD for a single element of the discretized
domain, the total stiffness matrix is calculated by considering the
common nodes between elements in the mesh. To do this, we need
to define the fundamental nucleus of the stiffness matrix for each
element in the domain and then combine these nuclei.

Note that the indexes 𝜏 and 𝑠 define the accuracy of the model
in the thickness by order of expansion, 𝜏, 𝑠 = 1, 2, . . . 𝑀 to describe
the displacements field, and the indexes 𝑖 and 𝑗, are fixed the
number of nodes that have been chosen for the single element of
the mesh, i.e., 𝑖 , 𝑗 = 1, 2, . . . 𝑁𝑛 , as follows,

𝑖=1︷                   ︸︸                   ︷
𝜏 = 1 · · · 𝜏 = 𝑀

𝑖=𝑁𝑁𝑛︷                   ︸︸                   ︷
𝜏 = 1 · · · 𝜏 = 𝑀

𝑗 = 1


𝑠 = 1 𝒌1111 · · · 𝒌1𝑀11 · · · 𝒌111𝑁𝑛 · · · 𝒌1𝑀1𝑁𝑛

...
...

... · · · ...
...

𝑠 = 𝑀 𝒌𝑀111 · · · 𝒌𝑀𝑀11 · · · 𝒌𝑀11𝑁𝑛 · · · 𝒌𝑀𝑀1𝑁𝑛

𝑗 = 𝑁𝑛


𝑠 = 1 𝒌11𝑁𝑛1 · · · 𝒌1𝑀𝑁𝑛1 · · · 𝒌11𝑁𝑛𝑁𝑛 · · · 𝒌1𝑀𝑁𝑛𝑁𝑛

...
...

... · · · ...
...

𝑠 = 𝑀 𝒌𝑀1𝑁𝑛1 · · · 𝒌𝑀𝑀𝑁𝑛1 · · · 𝒌𝑀1𝑁𝑛𝑁𝑛 · · · 𝒌𝑀𝑀𝑁𝑛𝑁𝑛

So, since the dimension of the fundamental nucleus, for each
element, has dimension 3𝑀 × 3𝑀, the global stiffness matrix will
have dimension 3𝑀 · 𝑁𝑛 × 3𝑀 · 𝑁𝑛 .

The matrix assembly consists of four loops on indexes 𝑖 , 𝑗 , 𝜏 and 𝑠,
and an FN is calculated for each combination of these indexes.
Each FN is reported as 𝒌𝜏𝑠𝑖𝑗 and works as the matrix construction’s
core. The indexes indicate the nucleus’s position in the global
matrix.

The total number of DOFs in the structural model discretized
by Q4 element and uses the model given by Eq. (6.8)

DOFs = 3 × 2︸︷︷︸
DOFs per node

×[( 2︸︷︷︸
nodes per edge

−1) × 𝑁𝐸𝑥︸︷︷︸
elements along 𝑥

+1]

× [( 2︸︷︷︸
nodes per edge

−1) × 𝑁𝐸𝑦︸︷︷︸
elements along 𝑦

+1]

(6.22)
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FN for fixed 𝑖 , 𝑗 using linear Legendre expansion function is
reported, 𝒌𝜏𝑠𝑖𝑗 , as

𝑘1,1
𝑥𝑥 𝑘1,1

𝑥𝑦 𝑘1,1
𝑥𝑧 𝑘1,𝑧

𝑥𝑥 𝑘1,𝑧
𝑥𝑦 𝑘1,𝑧

𝑥𝑧

𝑘1,1
𝑦𝑥 𝑘1,1

𝑦𝑦 𝑘1,1
𝑦𝑧 𝑘1,𝑧

𝑦𝑥 𝑘1,𝑧
𝑦𝑦 𝑘1,𝑧

𝑦𝑧

𝑘1,1
𝑧𝑥 𝑘1,1

𝑧𝑦 𝑘1,1
𝑧𝑧 𝑘1,𝑧

𝑧𝑥 𝑘1,𝑧
𝑧𝑦 𝑘1,𝑧

𝑧𝑧

𝑘𝑧,1𝑥𝑥 𝑘𝑧,1𝑥𝑦 𝑘𝑧,1𝑥𝑧 𝑘𝑧,𝑧𝑥𝑥 𝑘𝑧,𝑧𝑥𝑦 𝑘𝑧,𝑧𝑥𝑧
𝑘𝑧,1𝑦𝑥 𝑘𝑧,1𝑦𝑦 𝑘𝑧,1𝑦𝑧 𝑘𝑧,𝑧𝑦𝑥 𝑘𝑧,𝑧𝑦𝑦 𝑘𝑧,𝑧𝑦𝑧
𝑘𝑧,1𝑧𝑥 𝑘𝑧,1𝑧𝑦 𝑘𝑧,1𝑧𝑧 𝑘𝑧,𝑧𝑧𝑥 𝑘𝑧,𝑧𝑧𝑦 𝑘𝑧,𝑧𝑧𝑧

 𝑖 𝑗
(6.23)

The superscripts indicate the expansion functions involved in each
component of the stiffness matrix, i.e., one and 𝑧. The explicit
expression of two components is reported here:

𝑘1,1
𝑥𝑥 = 𝐶̃11

∫
𝐴

1 · 1𝑑𝑧
∫
Ω

𝑁𝑖 ,𝑥𝑁𝑗 ,𝑥𝑑Ω + 𝐶66

∫
𝐴

1 · 1𝑑𝑧
∫
Ω

𝑁𝑖 ,𝑦𝑁𝑗 ,𝑦𝑑Ω

𝑘1,𝑧
𝑦𝑧 = 𝐶23

∫
𝐴

1 · 𝜕𝑧
𝜕𝑧
𝑑𝑧

∫
Ω

𝑁𝑖 ,𝑦𝑁𝑗𝑑Ω = 𝐶23

∫
𝐴

1 · 1𝑑𝑧
∫
Ω

𝑁𝑖 ,𝑦𝑁𝑗𝑑Ω

(6.24)
where Ω indicates the in-plane domain and 𝐴 the through-the-
thickness domain. Interested readers can refer to the book [179] for
a complete derivation of components of the fundamental nucleus
and a thorough understanding of the CUF modeling.

6.6 Intergating CUF-based analysis in the geometry
projection method

The geometry projection comprises three modules—geometric
design space, finite element analysis, and optimization module—
which are independent in their functionalities and thus provide
flexibility for using the geometry projection method with CUF-
based modules by replacing the FE module. It is possible to use any
geometry projection formulations with the CUF framework. This
is because the MUL2 software can efficiently model and analyze
multilayered VSCLs using different theories, allowing the user to
apply any theories available in the literature.

The GP formulation is a suitable method for designing and
optimizing MUL-VSCLs. It involves using the softmax function to
identify discrete components within a layer, allowing maximum
stiffness and enabling stacking sequence optimization. Optimizing
for the fiber orientation in the stack of physical layers indirectly
optimizes for the intersecting load path. However, this method is
unsuitable for optimizing single-layer monolithic structures, as it
can result in suboptimal solutions by dissolving components in
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overlapping regions to pursue a discrete component in the design
domain.

Implementing the GP-MUL2 framework has two significant
computation changes, which are allocated to the MUL2 software,
wherein the mathematical formulation is the same as the GP
except instead of discretizing the computational domain using a
single layer, a multilayered formulation is introduced. Further, the
laminate is modeled using layer-wise theory as stated in Eq. (??).

The first computation in the MUL2 software is the evaluation
of stiffness matrices and the assembly of the stiffness matrices.
Referring to Chapter 4, for the anisotropic material, elasticity
tensors are calculated for the GP-MUL2 method as carried out in
the GP method:

C𝑒 = C𝑣 +
∑
𝑏

𝑤𝑏𝑒 𝜌̆
eff
𝑏𝑒 (C𝑏 − C𝑣) (6.25)

Second, to evaluate ∇𝑧𝑐, the following equations are modeled
in the MUL2 software. In the GP method, the derivative of the
elemental stiffness matrix K(𝑒) concerning a specific design variable
𝑧𝑖 is computed as the elasticity tensor design sensitivity ∇𝑧C(𝑒),
which is computed as follows:

∇𝑧C(𝑒) =
∑
𝑏

[
∇𝑧

(
𝑤𝑏𝑒 𝜌̆

eff
𝑏𝑒

)]
(C𝑏 − C𝑣) + 𝑤𝑏𝑒 𝜌̆eff

𝑏𝑒 (∇𝑧C𝑏) (6.26)

where, we denote the design sensitivity operator as ∇𝑧 := 𝜕
𝜕𝑧𝑖

.The
sensitivity of the compliance is given as follows:

∇𝑧𝑐 = −
∑
𝑒

u⊤
(
∇𝑧K(𝑒)

)
u (6.27)

However, a different approach is adopted in the GP-MUL2 for-
mulation. For a given design variable, first, the relevant element
set (E ∀ ∇𝑧C(𝑒) ≠ 0) is attained, and then

(
∇𝑧K(𝐸)

)
is assembled

into a sparse matrix (Kℰ), where 𝐸 ⊂ ℰ, where indices of the
nonzero elements of the sparse matrix (Kℰ) given by the degree of
freedoms assigned to the relevant elements. The sensitivity of the
compliance for GP-MUL2 is given as follows:

∇𝑧𝑐 = −
∑

U⊤
(
∇𝑧K(ℰ)

)
U (6.28)
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6.7 Examples
In the two numerical examples—We consider bars made of carbon-
fiber-reinforced polymer; fiber orientation is aligned to the bar’s
axis and is continuous. Table (4.1) lists unidirectional carbon-epoxy
AS4/3501-6 material properties used for the bars.

For all the examples in Fig. 5.4, the following settings are
considered until mentioned otherwise. Four layers are initialized
in both examples; however, any number can be used; each layer is
initialized with several FRBs projected on their corresponding layer
and independent from other layers. Discretization is based on the
Q4 element, and the cross-section of the layer is discretized using
the B3 element. The total thickness of MUL-VSCL is equal to 2 unit,
and each layer is of equal thickness, similar to what is considered
in the single-layer formulations. Unlike other formulations, the
symmetric condition is not applied along the stack direction; thus,
a different topology is most likely to be obtained in each layer. It
must be noted that length constraints can be easily implemented
in the GP-MUL2 framework,

Parameters for method-of-moving-asymptotes (MMA), em-
ployed for the optimization routine, using the default parameters
described in Section 6.7.

6.7.1 A square plate under point bending load
A clamped square plate under point loading, i.e., 𝑞 ≡ 3, is consid-
ered, and the center of the plate is under point load. The design
region has dimensions 80×80×2. Although the problem definition
has two planes of symmetry, the symmetry conditions are not
applied at the top and right edge of the square design domain.
Each layer is initialized with 12 bars, and the bounds imposed on
the design variables are as follows:

(0, 0)
2
0

 ≤


(x𝑏1, x𝑏2)
𝑟𝑏
𝛼𝑏

 ≤


(80, 80)
5
1

 (6.29)

Figures 6.1 and 6.2 show the design and density for each layer in
the MUL-VSCL, wherein the volume fraction constraint of 0.4 is
assigned to each layer. Utilizing the layerwise model to update
each lamina’s topology and fiber orientation enables the capture of
the actual displacement field for a MUL-VSCL across the thickness
direction by satisfying the C0

𝑧 requirement. As a result, each lamina
achieved a unique topology and fiber orientation. In contrast to
the design shown in the Appendix A wherein the ESL model
is used to update each lamina’s topology and fiber orientation,
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Figure 6.3: Bending—The opti-
mized design using GP method.

Figure 6.4: Bending—The op-
timized design using GP-AM
method.

which is unsuitable for capturing the displacement field across the
thickness direction.

Even though the symmetric laminate is not considered, a
common feature can be identified (Fig. 6.2), resulting in the feature
of symmetric and asymmetric laminates. Comparing the FRBs
arrangement near the left and top edge of 1𝑠𝑡 layer and the left and
bottom edge of 4𝑡ℎ layers resulting in similar topology. Further,
the assembly of components attached to the bottom edge of the 1𝑠𝑡
layer is replicated in the 4𝑡ℎ layer at the right edge. Similarly, the
deduction can be carried out for 2𝑛𝑑 and 3𝑟𝑑, i.e., identical features
are obtained in symmetric or asymmetric order across the laminate.
Note that each layer obtained discrete components by penalizing
other overlapping components using the softmax function in the
GP method. Therefore, fiber orientation at each point in the
laminate can be procured from the density plot(Fig. 6.2).

Comparing the design of the GP-MUL2 framework with others
(see 6.3 and 6.4), it is clear that the method further enriched the
topology space, which is limited for the ESL model. Still, the
default limitation of the geometry projection compared to the
density-based method exists and cannot be circumvented—limited
topology design space.

Finally, Fig. 6.5 depicts the total number of iterations required
before all the layers satisfy the convergence criteria. By assuming
a piecewise linear variation of the in-plane displacements and
parabolic transverse displacement in the thickness direction, the
formulation updates each layer corresponding to their displace-
ment field; thus, each lamina can converge separately once it
reaches the convergence criteria as defined. Global convergence
criteria, however, could cause several iterations before the design
converges; thus, well-defined criteria can be investigated in future
works. For simplicity, the local convergence criteria work well for
current examples; thus, no modifications are made. As shown in
Fig. 6.5, all the layers converge separately; however, the difference
is nominal in that local convergence is well-defined, and none of
the layers falls into suboptimal solution with respect to other layers
in the laminate.

6.7.2 A square plate under torsion load
The second example considers a square plate of dimension 75×50×2
under torsion load, and The plate is clamped on the left edge. The
initial design consists of 12 bars, and the bounds imposed on the
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Figure 6.5: Bending—The graph shows the history of objectives and constraints
for all the layers on a logarithmic and linear scale, plotted on the left and right
axes, respectively. Each iteration generates four data points for every layer.
Therefore, the x-axis represents the total number of iterations to converge all
the layers. The first layer converged on the 89𝑡ℎ iteration, the 353𝑟𝑑 iteration
overall. The second layer converged on the 79𝑡ℎ iteration and the 314𝑡ℎ iteration
overall. The third and fourth layers converged on the 90𝑡ℎ iteration, which is
the 359𝑡ℎ and 360𝑡ℎ overall.
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design variables are as follows:
(0, 0)

1
0

 ≤


(x𝑏1, x𝑏2)
𝑟𝑏
𝛼𝑏

 ≤


(75, 50)
4
1

 (6.30)

Fig. 6.6 and 6.7 show the design and density for each layer in
the MUL-VSCL, wherein the volume fraction constraint of 0.4 is
assigned to each layer. Mainly for this example, the left edge is
clamped instead of being provided with an anti-symmetric condi-
tion, as carried out in the previous chapters—still, a comparison
can be drawn between several formulations as dictated until now.
When comparing GP-MUL2 with GP, the multilayered formula-
tion used in GP-MUL2 helps to retain overlapping FRBs. This
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Figure 6.6: Torison—The design plots for volume fraction constraint of 0.4 for
each layer.
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Figure 6.7: Torison—The density plots for volume fraction constraint of 0.4 for
each layer.
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Figure 6.8: Torsion—The graph shows the history of objectives and constraints
for all the layers on a logarithmic and linear scale, plotted on the left and right
axes, respectively. Each iteration generates four data points for every layer.
Therefore, the x-axis represents the total number of iterations to converge all
the layers. The second layer converged on the 81𝑡ℎ iteration, the 322𝑛𝑑 iteration
overall. The first, third, and fourth layers converged on the 93𝑟𝑑 iteration, which
is the 370, 371𝑠𝑡 and 372𝑛𝑑 overall.

is because the overlap can be accommodated in adjacent layers,
allowing for optimization of intersecting load paths. By doing so,
the features do not dissolve as overlapping features are done sepa-
rately in different layers. It is important to note that the softargmax
penalization factor,𝛽, is set at 100, just like in GP. Therefore, the
GP-MUL2 formulation takes full advantage of attaining discrete
components in each layer, making the manufacturing process more
accessible. Secondly, the primitive form overlap can expand the
material design space, limited to transversaly isotropic material in
the GP method.

Several similarities can be drawn between GP-MUL2 and the
GP-AM method. The final design incorporates features that ensure
it aligns with the laminate’s intersecting load path while limiting
long features in the design space. Figure 6.7 demonstrates that a
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Figure 6.9: Torsion—The opti-
mized design using GP method.

Figure 6.10: Torsion—The op-
timized design using GP-AM
method.

discrete orientation is always preferred when components overlap
in a layer. However, the limitations of the GP method are over-
come by reinforcing the penalized features in subsequent layers,
enabling overlapping. For comparison, utilizing the similar initial
condition GP and GP-AM design is shown in Fig ??. The main
difference between the GP-MUL2 and GP-AM methods, aside from
the optimization of stacking sequences, is that the formulation of
the latter provides a better way to integrate fiber path-planning
strategies. This is because discrete orientation can uniquely define
the fiber trajectory, and optimizing simultaneously to satisfy objec-
tive functions such as cost can be more straightforward than with
single-layer formulations. These goals are postponed for future
work and have not been carried out in the thesis.

The different methods proposed for designing and optimizing
multilayered structures, including LGP-AM, all lead to similar final
designs. This shows that the suitability of geometry projection
for monolithic multilayered structures is robust. In LGP-lAM, the
feature’s length determines the FRBs’ dominance. This means that
small features may swallowed if the computational design can
realize long FRBs—a limitation of LGP-AM—thus offering limited
variability of fiber path in the laminate. Wherein GP-MUL2 offer
FRBs to concatenate and produce ample freedom in the spatial
variability of fiber path. However, the designs realized through
the several formulations, it can be speculated that the LGP-AM
method results in a stiffer and more manufacturable design than
other single-layer formulations. Therefore, the density-based
approaches, where material distribution offers enriched topology
space, can offer better solutions than feature-mapping or ground
structure-based topology optimization, which can be contradicted
by more research in feature-mapping approaches as carried out
for density-based techniques.

Notably, the 1𝑠𝑡 and 4𝑡ℎ layer results in a disconnected structure.
For compliance-based problems, these disconnected components
are not an issue as the laminated is fully connected. However, for
stress-based topology optimization, each must result in a connected
structure; therefore, it is necessary to formulate and postpone it for
future work. At the same time, MUL2 provides excellent flexibility
to introduce multi-physics quickly.

6.8 Conclusion
The GP-MUL2 method aims to integrate and validate the GP
approach with single-layer formulations, resulting in a unified
topology optimization framework for multilayered composite
laminates. However, several challenges must be addressed before
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tackling a more general problem. For example, the first task can
be to optimize the MUL2 software to handle the high-resolution
computational domain. While the MUL2 method can capture the
exact field response even for highly coarse mesh, high resolution is
required to capture the structure boundaries, but not necessarily;
for example, higher-order elements can be used. Figure 6.7 shows
the components’ staggered boundaries; thus, a refined mesh is
needed to capture the boundaries. However, even a moderate
increase in resolution to 200 × 50 can take days to converge due
to the need to read and write a file at each iteration and the use
of nested for-loops. Using higher-order elements may be helpful,
but in general, when using advanced compilers such as the Intel®
oneAPI DPC++/C++ Compiler can provide more straightforward
and faster strategies for vectorizing (co-arrays), and using high-
performance computing tools in the FORTRAN to exploit the full
potential of the software.



7Conculsion and Recommendations

The design flexibility offered by the CF4 process enables multilay-
ered variable-stiffness composite laminates to be manufactured,
which allows the directional properties of CFRP materials to be
fully exploited. Steering fiber paths such that the fiber angle
orientation varies spatially enables significant improvements in
structural performance. Despite the apparent potential, the de-
sign tools currently available to engineers only partially exploit
the steering capabilities of the CF4 process, for example, using
sequential-based topology optimization or performing topology
optimization for isotropic material and then laying the fiber along
the structural boundaries. The goal of the research conducted
and presented in this thesis was outlined in the Section 1.1.2 and
ultimately summarized as follows—to demonstrate that develop-
ing an efficient design tool for additively manufacturable variable
stiffness composite structures is both productive and worthwhile.

A conclusion and future aspect of the research remain to
be drawn. To this end, an overview of the study and results
presented within this thesis and the conclusions to which they
lead are presented in this chapter, including recommendations.
The discussion is divided into two parts.The Section 7.1, in which
the generic implementation and conclusion of the novel unified
design optimization framework for multilayered variable stiffness
composite structures scheme are discussed, and Section 7.2, in
which several extensions to the developed design framework can
be envisaged to improve the structural performance of MUL-VSCLs
further.

For conclusions explicitly related to each of the issues presented
within this thesis, the reader should refer to the relevant section at
the end of each chapter.

7.1 Conclusion
We are proposing a tool that can replace heavy structures with
lighter ones made of CFRP materials. To achieve this, we are ad-
dressing the topology optimization problem for structures made

166
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of anisotropic materials. Our work’s significant contribution is
developing a method that can optimize the material density and
anisotropy distributions concurrently for structures made of any
material and further manufactured additively. We are considering
transversely isotropic material in 2D and orthotropic materials in
3D, and the proposed method is for additively manufacturable
MUL-VSCLs. Our approach has no such assumptions, unlike exist-
ing methods that assume a fixed and predefined shape, topology,
and anisotropy distribution to ease out the manufacturing process.
We start with a maximum 2D and 3D design volume and prescribe
boundary conditions, loadings, and manufacturing constraints,
which can be extrapolated to several other problem statements
because of the full integration of MUL2 software, for example,
frequency or stress-based problem.

The proposed framework combines several ingredients: high-
level parameterization of the topology and the material anisotropy,
manufacturing constraints, a suitable algorithm for structural
optimization for 2D and 3D computational design space, and a
simple problem formulation. The maximization of global struc-
tural stiffness is solved by reformulating it into a minimization
of complementary energy for high-level parameterized primitive
design variables, and these primitives come from the definition of
the geometry projection method. The combination of the SIMP
method with geometry projection to parameterize the topology
with the definition of primitives ( transversely isotropic material in
2D and orthotropic materials in 3D) to parameterize the elasticity
tensor is a very efficient method to deal with the concurrent opti-
mization of the topology and the material anisotropy. Indeed, by
doing so, the minimizations of the complementary energy to the
design variables are performed analytically, including sensitivity
analysis (as well-established sensitivity analysis is available for
density-based formulation), and render the computationally effi-
cient design space by dramatically reducing the inordinate amount
of design variables that cannot be overlooked in the density-based
formulation. Since integrating anisotropy behavior into structural
optimization is complex, the advantage of this algorithm is its
simplicity. Furthermore, its numerical cost is lower than the main
structural optimization algorithms; however, criteria other than
global structural stiffness are included.

The numerical application of the method on test cases shows
its effectiveness. The numerical test cases are processed by gradu-
ally adding complexity to the optimization problem with several
boundary conditions, loading conditions, various geometrical
aspect ratios, and manufacturing and volume constraints. The
framework is based on the MMA algorithm (Method of Mov-
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ing Asymptote), a general nonlinear optimizer that can perform
practical applications considering several nonlinear performance
measures and constraints. Real structures are subjected to one
and multiple load cases; thus, solving a multi-load case example
demonstrates the framework’s versatility. For such a configuration,
a transversely isotropic material that exhibits a privileged direction
may not be sufficient; thus, several geometry projection formula-
tions are discussed to attain a stiffer and more manufacturable
design. Moreover, we introduce a novel framework (LgP-lAM)
that allows the definition of multiple orientations in a single layer
to optimize material properties to accommodate intersecting load
paths locally. Even addressing the various orientations, the final
design can be manufactured using conventional or addictive man-
ufacturing processes with low computational cost compared to a
3D framework.

Generally speaking, the post-processing of the topology is
necessary for density-based formulation. Because the assembly of
voxels defines the optimal topology, the shape boundaries could be
more precise, transparent, and smoother. Extensive studies are di-
rected to define the geometric surfaces of the optimal shape and to
identify the zones of the optimal shape that are thin (structure-like
a shell) and slender (structure-like truss). However, such postpro-
cessing steps are entirely taken care of during the optimization by
imposing several constraints on the primitives, such as their thick-
ness (radius) and length, which enable ready-to-manufacturable
structure without losing any topology characteristics that can lost
during the postprocessing step.

7.2 Recommendation
Design studies have been conducted thus far, and both theoretical
and numerical results are presented in this thesis for designing
and optimizing multilayered variable stiffness composite lami-
nates. The developed optimization framework has proven to be
an efficient design tool for variable stiffness composite structures.
However, several challenges remain in designing and optimizing
multi-layered variable stiffness composite laminates.

It is recommended to conduct numerical and experimental
investigations to study the proposed methodology further to
enhance confidence in it and create benchmarks to improve its
capabilities. For instance, optimizing a plate with a hole can be
helpful. It is also recommended that the framework be validated
experimentally. The function-to-print workflow, such as the MBB
beam problem, is already available, which can almost directly
translate into a three-point bend test. An alternative goal could
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181 Biyikli et al., “Proportional
topology optimization: a new
non-sensitivity method for solving
stress constrained and minimum
compliance problems and its
implementation in MATLAB,” 2015.

be to automate the translation of the CAD representation of the
components’ assembly into an STL file and subsequently be printed
by a 3D printer.

The proposed technique has the potential to be extended for
laminated-shell structures, which can be quickly accomplished
using the GP-MUL2 formulation. The primary aim of this thesis is
to provide a comprehensive tool and methodology for concurrent
optimization of material density and anisotropy for MUL-VSCLs,
which can be applied to real structures. To achieve this goal,
it is necessary to consider additional criteria beyond the global
structural stiffness. While a global criterion provides an under-
standing of the overall behavior of a structure, it only offers a partial
picture. For instance, local criteria like maximum displacement
at some points are essential for a more comprehensive method.
Additionally, structures can be subject to multiple physical phe-
nomena, including buckling and material failure, which must be
considered in the optimization process. Integrating the failure of
the material in the optimization process by considering a stress
constraint 181 using the alternate algorithm must be attempted.
However, since considering multiple constraints with this algo-
rithm is challenging, stress constraint aggregation is commonly
used for stress-based topology optimization frameworks. Though
the local minimizations and the global constraint on stress are
difficult to relate to, integrating the stress constraint is complex;
therefore, a new algorithm must be devised with the proposed
framework. Although these problems couldn’t be captured in
this academic term, the GP-MUL2 formulation provides a general
framework to develop this practical problem without devising a
new formulation altogether.

The proposed method is conceptual and involves using a
general transversely isotropic and orthotropic material in two and
three dimensions (GP-MUL2) within the conditions of the linear
elasticity regime. The method can be further developed using an
anisotropic material in three dimensions, which can accurately
predict the response of composite structures. A first step in that
direction could be to use a technique like generalized method cells,
as depicted in the illustration.

3D printing is a rapidly growing manufacturing method that
offers new possibilities for creating materials with complex com-
positions. With the potential of 3D printing, it may be possible to
find a manufacturable material close to the ideal solution; thus,
investigating multiscale framework within the geometry projection
method can cover a broader range of general materials suitable for
multiple load cases and the perfect material obtained through this
method is described by the elasticity tensor coefficients that repre-
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104 Papapetrou et al.,
“Stiffness-based optimization
framework for the topology and fiber
paths of continuous fiber
composites,” 2020.

183 Eckrich et al., “Structural
topology optimization and path
planning for composites
manufactured by fiber placement
technologies,” 2022.

27 Sugiyama et al., “3D printing of
optimized composites with variable
fiber volume fraction and stiffness
using continuous fiber,” 2020.

sent a homogenized material. This ideal material can be achieved
through a post-processing step that searches for the material’s
microstructure, which would be exciting.

Figure 7.1: Method of Cells—Illustration of a laminate whose plies are now
represented with micromechanics, thereby incorporating the detail of the fiber
and matrix constituent materials at a lower length scale. Adapted from [182]

 

���

���

The work completed during this project has opened up numer-
ous exciting possibilities. The developed technique has shown
promising results in numerical experiments. The fiber placement
process can be incorporated into the method that simultaneously
seeks fiber paths based on the CF4 constraints, including the
cost function. Several techniques, such as principal stress and
loading path analysis in a structure, are implemented for path plan-
ning. The path-planning stage largely determines the efficiency
of reinforcing fiber placement. Papapertros et al. 104 proposed
several optimization schemes to maximize the stiffness of contin-
uous fiber-reinforced parts while subjected to minimum weight
constraints. Eckrich et al. 183 utilize a dilate filter from SIMP to
constrain feature width and avoid transverse undercuts to the
plane’s placement. Sugiyama et al. 27 focused on optimizing the
curved fiber trajectories for bolt-jointed panels under tension. This
was achieved by minimizing the effective stress concentration,
while the fiber orientation was determined based on preliminary
stress field calculations. These works can be integrated into the
proposed methodology to achieve an effective tool for design for
additive manufacturing.
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AExamples for Multi-layered
Variable-Stiffness Composite
Lamniate—Simple Overlap formulation

A.1 Examples
For all three numerical examples—Bars made of continuous, uni-
directional carbon-fiber-reinforced polymer (CFRP) aligned with
the bar’s axis are considered as carried out for previous examples.
The simple overlap formulation is used, denoted by the gP-lAM
notation.

Examples in Appendix A.1.1 Appendix A.1.2, and Appendix A.1.3
consider only in-plane loading conditions, which are further opti-
mized for multi-layered VSCLs using simple overlap formulation.

Parameters for method-of-moving-asymptotes (MMA), em-
ployed for the optimization routine, using the default parameters
described in Section 3.4. The void material is isotropic with Young’s
modulus 𝐸void = 10−3𝐸1 and Poisson’s ratio 𝑣void = 0.3. During
initialization, the radius of the bars is set to the average of their
upper and lower bounds. The sizing variable is set to 𝛼 = 0.5, and
the move limit is fixed to 𝑚 = 0.02 throughout the optimization
process.

A.1.1 A square plate under bi-axial loading
The second example considered the bi-axial loading problem with
an aspect ratio of 1 : 1; the volume fraction limit is set to 0.4.
Since the problem is symmetrical, only a quarter of the geometry
has been modeled as depicted in Fig. A.1. The whole plate has
been initialized with 24 bars, and the design variables have been
restricted within the following bounds.

(0, 0)
3
0

 ≤


(x𝑏1, x𝑏2)
𝑟𝑏
𝛼𝑏

 ≤


(100, 100)
6
1

 (A.1)

In Figure A.1, two methodologies, namely GP (as described in [126])
and LGP-AM with a simple overlap formulation, are compared
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to showcase the modeling capabilities of overlapping FRBs in the
GP method. The GP design and density plot are displayed in
the top-right corner, while the LGP-AM plots can be seen in the
bottom-right corner, and the positions of plots are referenced to
the landscape view. The GP method is optimized for single-layer,
whereas the LGP-AM optimizes for multilayered VSCLs; in this
case, two-layer are optimized simultaneously.

It is worth noting that the multilayered LGP-AM formulation
results in the same topology in both layers—layers’ design sensi-
tivities updates (Eq. (5.6)) are driven by reference displacement
fields obtained from FSDT theory. When we compare the LGP-AM
design with GP, we can notice only a slight difference in the stiff-
ness of VSCL. However, the resulting topology is entirely different
as expected. Unlike the discrete FRBs in GP, the LGP-AM design
involves the formation of concatenate FRBs (like a sausage string)
through simple overlap. This introduces fiber path variability in
the structure.

Moreover, introducing overlapping FRBs results in a manufac-
turable design using conventional and additive techniques but
also attains faster convergence by simultaneously seeking local
orthotropic behavior in the design domain.

A.1.2 A square plate under shear loading
The third example considered the shear loading problem with an
aspect ratio of 1 : 1; the volume fraction limit is set to 0.4. The
applied loading and boundary conditions are depicted in Fig. A.2.
The whole plate has been initialized with 24 bars, and the design
variables have been restricted within the following bounds.

(0, 0)
3
0

 ≤


(x𝑏1, x𝑏2)
𝑟𝑏
𝛼𝑏

 ≤


(100, 100)
6
1

 (A.2)

As seen in the previous example in section A.1.1, the multilayered
LGP-AM formulation yields the same topology in both layers,
which is depicted by the design and density plot at the bottom-
right corner of Fig. A.2. In this example, the design attained by
GP is comparatively stiffer than the one attained by LGP-AM, and
the resulting topology is again entirely different for both methods.
Further, topology with concatenate bars with branching (tree-like
structure) attained by the LGP-AM is far richer than that of the GP
method, without a trade-off in terms of manufacturability of the
VSCL.
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A.1.3 Variable volume fraction multi-layered
VS-CFRP-Ls

For design variable volume fraction multi-layered VS-CFRP-L, this
example considered the biaxial and shear loading problems with
an aspect ratio of 1 : 1, with the volume fraction limit set to 0.4
and 0.3 for each layer. The whole plate has been initialized with
24 bars; the applied loading and boundary conditions and the
bounds on the design variables are the same, as described in the
previous examples, for each case, respectively.

The optimized multi-layered VS-CFRP-L for bi-axial and shear
load is illustrated in Figure shown in Fig. A.3. Unlike previous
examples,—each layer has the same topology—indicating the
ability to optimize for multi-layered VS-CFRP-L with varying
CFRP material volume fractions and introduce different topologies
across each layer. Furthermore, the examples for in-plane loading
conditions show that the layers adhere to the same CFRP material
distribution for a fixed layer’s volume fraction, which is possible
due to the evaluation of membrane stiffness D𝑚𝑒 as a convex
combination of layers in the composite laminate. This suggests
that stacking FRBs with the same material orientation is preferable
to stacking those with varying material orientations.

The same reasoning cannot be applied to the bending stiffness
D𝑏𝑒 of the laminate due to the nonlinear material distribution
along the stacking direction. In addition, using a simple overlap
formulation results in poor local minima for out-of-plane loading
conditions, as discussed in Chapter 5.
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BExamples for Single layer
Variable-Stiffness Composite
Laminate—Overlap Criterion

In the Chapter 4, we discussed that allowing a less strict definition
of overlaps (such as having a 𝜌𝑏𝜔𝑒 value of 0.5 or higher) would
result in the formation of multiple overlapping FRBs that can
achieve different fiber orientations in the design space, thus can
also lead to complications in the manufacturing process. For
completeness, the following results demonstrate the sensitivity of
overlapping criteria toward the optimization process.

All the designs are attained using the same conditions defined
in the ??. Fig B.1 represents the design obtained for the initial
condition defined in the example ??. The final compliance achieved
is 1.473194, and the design converged in 104 iteration, similar to
optimized GP-AM method results (see Fig. 4.16), except that the
topology enables long FRBs and comparatively several overlapping
FRBs because of less restrictive definition of overlapping criterion.

Figure B.1: Bending—The plot for volume fraction limit of 𝑣̄ = 0.50
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Figure B.2: Torsion—The plot for volume fraction limit of 𝑣̄ = 0.50. The final
compliance achieved is 173.642046, and the design converged in 253 iterations.

Figure B.3: Torsion—The plot for volume fraction limit of 𝑣̄ = 0.60. The final
compliance achieved is 157.389650, and the design converged in 323 iterations.
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Figure B.4: Multiload—The plot for volume fraction limit of 𝑣̄ = 0.50.The final
compliance achieved is 192.429452, and the design converged in 220 iterations.

Similarly, Fig B.2, B.3 represents the design for the same as-
pect ratio and boundary and loading conditions in the ?? and ??.
Compared to the results obtained, using a less restrictive approach
produces a more compliant design and slower convergence. Fi-
nally, Fig. B.4 represents the design for the aspect ratio of 1 × 3 but
considering boundary and loading conditions defined in the ??—
the design resulted in excessive overlap, which makes it unsuitable
for printing purposes.
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