Methods for acquisition and integration of personal wellness parameters

Zuccala, Veronica Chiara (2021) Methods for acquisition and integration of personal wellness parameters, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Ingegneria biomedica, elettrica e dei sistemi, 33 Ciclo. DOI 10.48676/unibo/amsdottorato/9947.
Documenti full-text disponibili:
[img] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (7MB)

Abstract

Wellness indicates the state or condition of being in good physical and mental health. Stress is a common state of emotional strain that plays a crucial role in the everyday quality of life. Nowadays, there is a growing individual awareness of the importance of a proper lifestyle and a generalized trend to become an active part in monitoring, preserving, and improving personal wellness for both physical and emotional aspects. The majority studies in this field relies on the evaluation of the changes of sensed parameters passing from rest to “maximal” stress. However, the vast majority of people usually experiences stressing circumstances in everyday life. This led us to investigate the impact of mild cognitive activation which can be somehow comparable to usual situations that everyone can face in daily life. Several signals and data can be useful to characterize the state of a person, but not all of them are equally important. So it is crucial to analyse the mutual relevance of the different pieces of information. In this work we focus on a subset of well-established psychophysical descriptors and we identified a set of devices enabling the measurement of these parameters . The design of the experimental setup and the selection of sensing devices were driven by qualitative criteria such as intrusiveness, reliability, and ease of use. These are deemed crucial for implementing effective (self-)monitoring strategies. A reference dataset, named “Mild Cognitive Activation” (MCA), was collected. The last aim of the project was the definition of a quantitative model for data integration providing a concise description of the wellness status of a person. This process was based on unsupervised learning paradigms. Data from MCA were integrated with data from the “Stress Recognition in Automobile Drivers” dataset . This allowed a cross validation of the integration methodology.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Zuccala, Veronica Chiara
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
33
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Personal wellness, stress, psycho-physical parameters, heart rate, respiratory rate, electrodermal activity, electrical brain activity, data integration model.
URN:NBN
DOI
10.48676/unibo/amsdottorato/9947
Data di discussione
15 Ottobre 2021
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^