Owusu Obeng, Eric
(2020)
The impact of phosphoinositide metabolic enzymes in glioblastoma: a tale of phosphoinositide-specific phospholipase C PLCβ1 and 5-phosphatase SKIP, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Scienze biomediche e neuromotorie, 33 Ciclo. DOI 10.48676/unibo/amsdottorato/9536.
Documenti full-text disponibili:
|
Documento PDF (English)
- Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (2MB)
|
Abstract
Background: Glioblastoma multiforme (GBM) is one of the deadliest and most aggressive form of primary brain tumor. Unfortunately, current GBM treatment therapies are not effective in treating GBM patients. They usually experience very poor prognosis with a median survival of approximately 12 months. Only 3-5% survive up to 3 years or more. A large-scale gene profile study revealed that several genes involved in essential cellular processes are altered in GBM, thus, explaining why existing therapies are not effective. The survival of GBM patients depends on understanding the molecular and key signaling events associated with these altered physiological processes in GBM. Phosphoinositides (PI) form just a tiny fraction of the total lipid content in humans, however they are implicated in almost all essential biological processes, such as acting as second messengers in spatio-temporal regulation of cell signaling, cytoskeletal reorganization, cell adhesion, migration, apoptosis, vesicular trafficking, differentiation, cell cycle and post-translational modifications. Interestingly, these essential processes are altered in GBM. More importantly, incoming reports have associated PI metabolism, which is mediated by several PI phosphatases such as SKIP, lipases such as PLCβ1, and other kinases, to regulate GBM associated cellular processes. Even as PLCβ1 and SKIP are involved in regulating aberrant cellular processes in several other cancers, very few studies, of which majority are in-silico-based, have focused on the impact of PLCβ1 and SKIP in GBM. Hence, it is important to employ clinical, in vitro, and in vivo GBM models to define the actual impact of PLCβ1 and SKIP in GBM.
AIM: Since studies of PLCβ1 and SKIP in GBM are limited, this study aimed at determining the pathological impact of PI metabolic enzymes, PLCB1 and SKIP, in GBM patient samples, GBM cell line models, and xenograft models for SKIP.
Results: For the first time, this study confirmed through qPCR that PLCβ1 gene expression is lower in human GBM patient samples. Moreover, PLCβ1 gene expression inversely correlates with pathological grades of glioma; it decreases as glioma grades increases or worsens. Silencing PLCβ1 in U87MG GBM cells produces a dual impact in GBM by participating in both pro-tumoral and anti-tumoral roles. PLCβ1 knockdown cells were observed to have more migratory abilities, increased cell to extracellular matrix (ECM) adhesion, transition from epithelial phenotype to mesenchymal phenotype through the upregulation of EMT transcription factors Twist1 and Slug, and mesenchymal marker, vimentin. On the other hand, p-Akt and p-mTOR protein expression were downregulated in PLCβ1 knockdown cells. Thus, the oncogenic pathway PI3K/Akt/mTOR pathway is inhibited during PLCβ1 knockdown. Consistently, cell viability in PLCβ1 knockdown cells were significantly decreased compared to controls. As for SKIP, this study demonstrated that about 48% of SKIP colocalizes with nuclear PtdIns(4,5)P2 to nuclear speckles and that SKIP knockdown alters nuclear PtdIns(4,5)P2 in a cell-type dependent manner. In addition, SKIP silencing increased tumor volume and weight in xenografts than controls by reducing apoptosis and increasing viability. All in all, these data confirm that PLCβ1 and SKIP are involved in GBM pathology and a complete understanding of their roles in GBM may be beneficial.
Abstract
Background: Glioblastoma multiforme (GBM) is one of the deadliest and most aggressive form of primary brain tumor. Unfortunately, current GBM treatment therapies are not effective in treating GBM patients. They usually experience very poor prognosis with a median survival of approximately 12 months. Only 3-5% survive up to 3 years or more. A large-scale gene profile study revealed that several genes involved in essential cellular processes are altered in GBM, thus, explaining why existing therapies are not effective. The survival of GBM patients depends on understanding the molecular and key signaling events associated with these altered physiological processes in GBM. Phosphoinositides (PI) form just a tiny fraction of the total lipid content in humans, however they are implicated in almost all essential biological processes, such as acting as second messengers in spatio-temporal regulation of cell signaling, cytoskeletal reorganization, cell adhesion, migration, apoptosis, vesicular trafficking, differentiation, cell cycle and post-translational modifications. Interestingly, these essential processes are altered in GBM. More importantly, incoming reports have associated PI metabolism, which is mediated by several PI phosphatases such as SKIP, lipases such as PLCβ1, and other kinases, to regulate GBM associated cellular processes. Even as PLCβ1 and SKIP are involved in regulating aberrant cellular processes in several other cancers, very few studies, of which majority are in-silico-based, have focused on the impact of PLCβ1 and SKIP in GBM. Hence, it is important to employ clinical, in vitro, and in vivo GBM models to define the actual impact of PLCβ1 and SKIP in GBM.
AIM: Since studies of PLCβ1 and SKIP in GBM are limited, this study aimed at determining the pathological impact of PI metabolic enzymes, PLCB1 and SKIP, in GBM patient samples, GBM cell line models, and xenograft models for SKIP.
Results: For the first time, this study confirmed through qPCR that PLCβ1 gene expression is lower in human GBM patient samples. Moreover, PLCβ1 gene expression inversely correlates with pathological grades of glioma; it decreases as glioma grades increases or worsens. Silencing PLCβ1 in U87MG GBM cells produces a dual impact in GBM by participating in both pro-tumoral and anti-tumoral roles. PLCβ1 knockdown cells were observed to have more migratory abilities, increased cell to extracellular matrix (ECM) adhesion, transition from epithelial phenotype to mesenchymal phenotype through the upregulation of EMT transcription factors Twist1 and Slug, and mesenchymal marker, vimentin. On the other hand, p-Akt and p-mTOR protein expression were downregulated in PLCβ1 knockdown cells. Thus, the oncogenic pathway PI3K/Akt/mTOR pathway is inhibited during PLCβ1 knockdown. Consistently, cell viability in PLCβ1 knockdown cells were significantly decreased compared to controls. As for SKIP, this study demonstrated that about 48% of SKIP colocalizes with nuclear PtdIns(4,5)P2 to nuclear speckles and that SKIP knockdown alters nuclear PtdIns(4,5)P2 in a cell-type dependent manner. In addition, SKIP silencing increased tumor volume and weight in xenografts than controls by reducing apoptosis and increasing viability. All in all, these data confirm that PLCβ1 and SKIP are involved in GBM pathology and a complete understanding of their roles in GBM may be beneficial.
Tipologia del documento
Tesi di dottorato
Autore
Owusu Obeng, Eric
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
33
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
PLCB1, SKIP, Phosphoinositides, Glioblastoma, Phospholipases
URN:NBN
DOI
10.48676/unibo/amsdottorato/9536
Data di discussione
4 Dicembre 2020
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Owusu Obeng, Eric
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
33
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
PLCB1, SKIP, Phosphoinositides, Glioblastoma, Phospholipases
URN:NBN
DOI
10.48676/unibo/amsdottorato/9536
Data di discussione
4 Dicembre 2020
URI
Statistica sui download
Gestione del documento: