Felisetti, Camilla
  
(2018)
Two applications of the decomposition theorem to moduli spaces, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. 
 Dottorato di ricerca in 
Matematica, 30 Ciclo. DOI 10.6092/unibo/amsdottorato/8681.
  
 
  
  
        
        
        
  
  
  
  
  
  
  
    
  
    
      Documenti full-text disponibili:
      
        
          
            | ![felisetti_camilla_tesi.pdf [thumbnail of felisetti_camilla_tesi.pdf]](https://amsdottorato.unibo.it/8681/1.hassmallThumbnailVersion/felisetti_camilla_tesi.pdf)  Anteprima | Documento PDF (English)
 - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
 Download (591kB)
              
			  
			  | Anteprima
 | 
        
      
    
  
  
    
      Abstract
      The decomposition theorem is a statement about the (derived) direct image of the intersection cohomology by an algebraic projective map. The decomposition theorem and more generally the theory of perverse sheaves have found many interesting applications, especially in representation theory. Usually a lot of work is needed to apply it in concrete situations, to identify the various summands. This thesis proposes two applications of the decomposition theorem.
In the first we consider the moduli space of Higgs bundles of rank 2 and degree 0 over a curve of genus 2. Applying the decomposition theorem, we are able to compute the weight polynomial of the intersection cohomology of this moduli space.
The second result contained in this thesis is concerned with the general problem of determining the support of a map, and therefore in line with the ”support theorem” by Ngo.
We consider families C ! B of integral curves with at worst planar singularities, and the relative ”nested” Hilbert scheme C^[m,m+1]. Applying the technique of higher discriminants, recently developed by Migliorini and Shende, we prove that in this case there are no supports other than the whole base B of the family. Along the way we investigate smoothness properties of C[m,m+1], which may be of interest on their own.
     
    
      Abstract
      The decomposition theorem is a statement about the (derived) direct image of the intersection cohomology by an algebraic projective map. The decomposition theorem and more generally the theory of perverse sheaves have found many interesting applications, especially in representation theory. Usually a lot of work is needed to apply it in concrete situations, to identify the various summands. This thesis proposes two applications of the decomposition theorem.
In the first we consider the moduli space of Higgs bundles of rank 2 and degree 0 over a curve of genus 2. Applying the decomposition theorem, we are able to compute the weight polynomial of the intersection cohomology of this moduli space.
The second result contained in this thesis is concerned with the general problem of determining the support of a map, and therefore in line with the ”support theorem” by Ngo.
We consider families C ! B of integral curves with at worst planar singularities, and the relative ”nested” Hilbert scheme C^[m,m+1]. Applying the technique of higher discriminants, recently developed by Migliorini and Shende, we prove that in this case there are no supports other than the whole base B of the family. Along the way we investigate smoothness properties of C[m,m+1], which may be of interest on their own.
     
  
  
    
    
      Tipologia del documento
      Tesi di dottorato
      
      
      
      
        
      
        
          Autore
          Felisetti, Camilla
          
        
      
        
          Supervisore
          
          
        
      
        
      
        
          Dottorato di ricerca
          
          
        
      
        
      
        
          Ciclo
          30
          
        
      
        
          Coordinatore
          
          
        
      
        
          Settore disciplinare
          
          
        
      
        
          Settore concorsuale
          
          
        
      
        
          Parole chiave
          decomposition theorem, Hodge, higgs bundles, nested hilbert schemes, moduli spaces
          
        
      
        
          URN:NBN
          
          
        
      
        
          DOI
          10.6092/unibo/amsdottorato/8681
          
        
      
        
          Data di discussione
          4 Maggio 2018
          
        
      
      URI
      
      
     
   
  
    Altri metadati
    
      Tipologia del documento
      Tesi di dottorato
      
      
      
      
        
      
        
          Autore
          Felisetti, Camilla
          
        
      
        
          Supervisore
          
          
        
      
        
      
        
          Dottorato di ricerca
          
          
        
      
        
      
        
          Ciclo
          30
          
        
      
        
          Coordinatore
          
          
        
      
        
          Settore disciplinare
          
          
        
      
        
          Settore concorsuale
          
          
        
      
        
          Parole chiave
          decomposition theorem, Hodge, higgs bundles, nested hilbert schemes, moduli spaces
          
        
      
        
          URN:NBN
          
          
        
      
        
          DOI
          10.6092/unibo/amsdottorato/8681
          
        
      
        
          Data di discussione
          4 Maggio 2018
          
        
      
      URI
      
      
     
   
  
  
  
  
  
    
    Statistica sui download
    
    
  
  
    
      Gestione del documento: 
      
        