Felisetti, Camilla
(2018)
Two applications of the decomposition theorem to moduli spaces, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Matematica, 30 Ciclo. DOI 10.6092/unibo/amsdottorato/8681.
Documenti full-text disponibili:
Anteprima |
|
Documento PDF (English)
- Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (591kB)
| Anteprima
|
Abstract
The decomposition theorem is a statement about the (derived) direct image of the intersection cohomology by an algebraic projective map. The decomposition theorem and more generally the theory of perverse sheaves have found many interesting applications, especially in representation theory. Usually a lot of work is needed to apply it in concrete situations, to identify the various summands. This thesis proposes two applications of the decomposition theorem.
In the first we consider the moduli space of Higgs bundles of rank 2 and degree 0 over a curve of genus 2. Applying the decomposition theorem, we are able to compute the weight polynomial of the intersection cohomology of this moduli space.
The second result contained in this thesis is concerned with the general problem of determining the support of a map, and therefore in line with the ”support theorem” by Ngo.
We consider families C ! B of integral curves with at worst planar singularities, and the relative ”nested” Hilbert scheme C^[m,m+1]. Applying the technique of higher discriminants, recently developed by Migliorini and Shende, we prove that in this case there are no supports other than the whole base B of the family. Along the way we investigate smoothness properties of C[m,m+1], which may be of interest on their own.
Abstract
The decomposition theorem is a statement about the (derived) direct image of the intersection cohomology by an algebraic projective map. The decomposition theorem and more generally the theory of perverse sheaves have found many interesting applications, especially in representation theory. Usually a lot of work is needed to apply it in concrete situations, to identify the various summands. This thesis proposes two applications of the decomposition theorem.
In the first we consider the moduli space of Higgs bundles of rank 2 and degree 0 over a curve of genus 2. Applying the decomposition theorem, we are able to compute the weight polynomial of the intersection cohomology of this moduli space.
The second result contained in this thesis is concerned with the general problem of determining the support of a map, and therefore in line with the ”support theorem” by Ngo.
We consider families C ! B of integral curves with at worst planar singularities, and the relative ”nested” Hilbert scheme C^[m,m+1]. Applying the technique of higher discriminants, recently developed by Migliorini and Shende, we prove that in this case there are no supports other than the whole base B of the family. Along the way we investigate smoothness properties of C[m,m+1], which may be of interest on their own.
Tipologia del documento
Tesi di dottorato
Autore
Felisetti, Camilla
Supervisore
Dottorato di ricerca
Ciclo
30
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
decomposition theorem, Hodge, higgs bundles, nested hilbert schemes, moduli spaces
URN:NBN
DOI
10.6092/unibo/amsdottorato/8681
Data di discussione
4 Maggio 2018
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Felisetti, Camilla
Supervisore
Dottorato di ricerca
Ciclo
30
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
decomposition theorem, Hodge, higgs bundles, nested hilbert schemes, moduli spaces
URN:NBN
DOI
10.6092/unibo/amsdottorato/8681
Data di discussione
4 Maggio 2018
URI
Statistica sui download
Gestione del documento: