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DOTTORATO DI RICERCA IN MATEMATICA

CICLO XXX

Settore Concorsuale di afferenza: 01/A2

Settore Scientifico disciplinare: MAT/03

TWO APPLICATIONS OF THE

DECOMPOSITION THEOREM TO MODULI

SPACES

Presentata da: Camilla Felisetti

Coordinatore Dottorato

Chiar.ma Prof.ssa

Giovanna Citti

Relatore

Chiar.mo Prof.

Luca Migliorini

Esame finale 2018



Ai miei nonni Rosa e Mirko,

che non hanno mai dubitato che questo giorno arrivasse

e che mi porto dentro ogni giorno.



Contents

1 The decomposition theorem 6

1.1 Preliminaries of Hodge theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Families of nonsingular projective varieties . . . . . . . . . . . . . . . . 8

1.2 Singular varieties: mixed Hodge theory and intersection cohomology . . . . . . 9

1.3 Intersection complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Intersection cohomology groups and decomposition theorem . . . . . . . . . . . 12

1.4.1 Hodge-Lefschetz package for IH∗(X) . . . . . . . . . . . . . . . . . . . . 13

1.4.2 The mixed Hodge structure on IH∗(X) . . . . . . . . . . . . . . . . . . 13

1.4.3 Decomposition theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Semismall maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6 Support type theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Intersection cohomology of the moduli space of Higgs bundles 20

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 The structure of MDol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Strategy of the desingularization . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Singularities of MDol and their normal cones . . . . . . . . . . . . . . . . . . . 26

2.3.1 Normal cones and deformation of sheaves . . . . . . . . . . . . . . . . . 27

2.3.2 Local structure of singularities . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Construction of the desingularization M̂Dol . . . . . . . . . . . . . . . . . . . . 33

2.4.1 Normal cones of the singularities in RDol . . . . . . . . . . . . . . . . . 35

2



CONTENTS 3

2.4.2 The space PDol, its singularities and normal cones . . . . . . . . . . . . 45

2.4.3 Semistable points of SDol and construction of the desingularization . . . 50

2.5 Construction of the semismall desingularization for g = 2 . . . . . . . . . . . . 56

2.5.1 Description of Ω̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.5.2 Analysis of Σ̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.6 Intersection cohomology of MDol . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.7 Cohomology of Ms
Dol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.7.1 The stable case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.7.2 Strictly semistable case . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.7.3 Unstable case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.8 Computation of the IE(MDol) . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.8.1 Cohomology of Σ̃ \ Ω̃ and Ω̃ . . . . . . . . . . . . . . . . . . . . . . . . . 83

3 The cohomology of the nested Hilbert schemes of planar curves 85

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.2 Versal deformations of curves singularities . . . . . . . . . . . . . . . . . . . . . 87

3.3 Smoothness of the relative nested Hilbert scheme . . . . . . . . . . . . . . . . . 90

3.4 Supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.5 Proof of theorem 3.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.5.1 Hilbert scheme case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.5.2 Nested Hilbert scheme case . . . . . . . . . . . . . . . . . . . . . . . . . 102

Bibliografia 108



Introduction

The decomposition theorem of Beilinson, Bernstein and Deligne is a powerful tool to investigate

the topology of algebraic varieties and algebraic maps. Its statement emphasizes the central

role played by a relatively new topological invariant, the intersection cohomology of an algebraic

variety, or, more generally, of a local system defined on a locally closed nonsingular subset of

an algebraic variety.

This invariant, introduced in the late 70’s by Goresky and MacPherson to replace cohomology

when the variety is singular so as to preserve Poincaré duality turns out to be a building block

of the theory of perverse sheaves. Intersection cohomology is a complex of sheaves, and as such

it lives in the derived category of constructible sheaves.

The decomposition theorem is a statement about the (derived) direct image of the inter-

section cohomology by an algebraic projective map. The decomposition theorem and more

generally the theory of perverse sheaves have found many interesting applications, especially

in representation theory (see [dCM2] for instance). Usually a lot of work is needed to apply it

in concrete situations, to identify the various summands. This thesis proposes two applications

of the decomposition theorem.

In the first, contained in chapter 2, we consider the moduli space of Higgs bundles of rank 2

and degree 0 over a curve of genus 2. The condition of degree 0 says that the moduli space

is singular, while the choice for rank and genus are dictated by the fact that fairly explicit

desingularization is known and turns out to be semismall: this is the case where the decompo-

sition theorem has its simplest form. We stratify this space and its resolution. Applying the

decomposition theorem, we are able to compute the weight polynomial of the intersection co-

homology of this moduli space. This can be useful in view of investigating the so called P = W
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conjecture for singular moduli spaces, where it is conceivable that the relevant filtrations to be

compared will live on intersection cohomology groups.

The second result contained in this thesis is concerned with the general problem of determining

the support of a map, and therefore in line with the ”support theorem” by Ngô.

We consider families C → B of integral curves with at worst planar singularities, and the rel-

ative ”nested” Hilbert scheme C[m,m+1]. Along the lines of [MS1], and applying the technique

of higher discriminants, recently developed by Migliorini and Shende, we prove that in this

case, just as in the case of the relative Hilbert scheme and relative compactified Jacobian,

there are no supports other than the whole base B of the family. Along the way we investigate

smoothness properties of C[m,m+1], which may be of interest on their own.



Chapter 1

The decomposition theorem

1.1 Preliminaries of Hodge theory

Complex algebraic varieties have provided an important motivation for the development of

algebraic topology from its earliest days. On the other hand, algebraic varieties and algebraic

maps enjoy many truly remarkable topological properties that are not shared by other classes

of spaces and maps. These special features were first exploited by Lefschetz [L1] who claimed

to have “planted the harpoon of algebraic topology into the body of the whale of algebraic

geometry” ([L2], p.13), and they are almost completely summed up in the statement of the

decomposition theorem and of its embellishments. The classical precursors to the decomposition

theorem include the two theorems by Lefschetz, Hodge theorem, the Hodge-Riemann bilinear

relations and Deligne’s Theorem (1.1.1).

There are three known proofs of the decomposition theorem: the original proof by Beilinson,

Bernstein, Deligne [BBD] and Gabber [G] is via arithmetic properties of the varieties over finite

fields; the second one by Saito [Sa] uses the theory of mixed Hodge modules, while the last one

by De Cataldo and Migliorini [dCM2] is via classical Hodge theory.

Standard references for what follows are [GH] and [V].

Let X be a nonsingular complex projective variety of dimension n embedded in some projective

space PN , and let D = H ∩ X be the intersection of X with a generic hyperplane H ⊂ PN .

First let us fix some notation: in the whole chapter, unless specified otherwise, we will consider

6



1.1 Preliminaries of Hodge theory 7

cohomology with rational coefficients. Up to tensoring with C, we know by De Rham theorem

that there exist isomorphisms

H i(X) ∼= H i
sing(X) ∼= H i

dR(X).

The Lefschetz hyperplane theorem states that the restriction map H i(X) → H i(D) is an iso-

morphism for i < n− 1 and injective for i = n− 1.

The cup product with the first Chern class η of the hyperplane bundle yields a mapping
⋃
η :

H i(X)→ H i+2(X) which can be identified with the composition H i(X)→ H i(D)→ H i+2(X),

the latter being a ”Gysin” homomorphism.

The Hard Lefschetz theorem states that for all 0 ≤ i ≤ n the i−fold iteration of the cup product

with η gives an isomorphism (⋃
η
)i

: Hn−i(X)→ Hn+i(X).

The Hodge decomposition is a canonical decomposition

H i(X,C) ∼=
⊕
p+q=i

Hp,q(X).

The summands Hp,q(X) can be thought as cohomology classes of differential (p, q) form (that

is those with p dz’s and q dz̄’s).

This is the example we have to keep in mind when we define what a rational pure Hodge

structure is.

Definition 1.1.1. Let H be a Q-vector space. A pure Hodge structure of weight i on H is a

direct sum decomposition

HC := H ⊗ C =
⊕
p+q=i

Hp,q(X), Hp,q = Hq,p.

This is equivalent to give a decreasing filtration F •, called the Hodge filtration, such that

F p(HC) :=
⊕

p′≥pH
p′,q′ . We may also define a morphism of Hodge structures as a linear map

f : H → H ′ whose complexification (still denoted by f) is compatible with the Hodge filtration,
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i.e. Imf ∩ F p(H ′C) = f(F p(H ′C)).

For any fixed index 0 ≤ i ≤ n we can define a bilinear form SH on Hn−i(X) by

(a, b) 7→ SH(a, b) :=

∫
X
ηi ∧ a ∧ b = deg([X] ∩

(
ηi ∪ a ∪ b

)
where [X] denotes the fundamental homology class of the naturally oriented X. The Hard

Lefschetz theorem is equivalent to the nondegeneracy of the forms SH . The Hodge-Riemann

bilinear relations ([dCM, 5.2.1]) establish their signature properties.

1.1.1 Families of nonsingular projective varieties

If f : X → Y is a C∞ fibre bundle with nonsingular projective compact fibre F , let Rjf∗Q

denote the local system on Y whose fibre at a point y is the Hj(f−1(y)). We have the associated

Leray spectral sequence

Ei,j2 = H i(Y,Rjf∗Q)⇒ H i+j(X) (1.1)

and the the monodromy representation

ρi : π1(Y, y0)→ GL(H i(F )). (1.2)

Even when Y is simply connected, the Leray spectral sequence can be nontrivial, for example,

the Hopf fibration f : S3 → S2.

We define a family of projective manifolds to be a proper holomorphic submersion f : X → Y

of nonsingular varieties that factors through some product Y ×PN and for which the fibres are

connected projective manifolds. By Ehresmann theorem, such a map is also a C∞ fibre bundle.

The following two results are due to Deligne [D1],[D2].

Theorem 1.1.1. Suppose f : X → Y is a family of projective manifolds. Then

(i) The Leray spectral sequence (1.1) degenerates at the E2-page and induces an isomorphism

Hk(X) ∼=
⊕
i+j=k

H i(Y,Hj(F ));

(ii) the monodromy representation (1.2) is semisimple, i.e. it is a direct sum of irreducible

representations.
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Item (i) gives a rather complete description of the cohomology of X. Part (ii) is remarkable

because often the fundamental group of Y is infinite.

Remark 1. Even though theorem (1.1.1) is given in terms of cohomology groups, Deligne

proved a stronger sheaf theoretic statement (see 1.2.1.)

Remark 2. For singular maps, the Leray spectral sequence can be very seldom degenerate. If

f : X → Y is a resolution of singularities of a projective variety Y whose cohomology admits

a mixed Hodge structure which is not pure, then the pullback f∗ cannot be injective and this

prohibits degeneration in view of the edge-sequence.

1.2 Singular varieties: mixed Hodge theory and intersection

cohomology

The Lefschetz and Hodge theorem fail if X is singular. There are two somewhat complementary

approaches to generalize these statements to singular projective varieties. They involve mixed

Hodge theory [D2, D3] and intersection cohomology [GM, GM1].

Mixed Hodge theory

In mixed Hodge theory the topological invariant studied is the same as that investigated for

nonsingular varieties, namely, the cohomology group of the variety, whereas the structure with

which it is endowed changes. The (p, q) decomposition of classical Hodge theory is replaced by

a more complicated structure. In particular, we have two filtrations: the weight filtration on

the rational cohomology and the Hodge filtration on the complex one.

Definition 1.2.1. Let X be an algebraic variety. A mixed Hodge structure on the cohomology

of X is the datum of:

(i) An increasing filtration W•, the weight filtration, on the rational cohomology groups

H i(X,Q)

{0} ⊆W0 ⊆ . . . ⊆W2i = H i(X,Q)
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(ii) a decreasing filtration F • , the Hodge filtration,

H i(X,C) = F 0 ⊇ F 1 ⊃ . . . ⊃ Fm ⊃ {0}

such that the filtrations induced by F • on the graded pieces GrWk := Wk/Wk−1 endows them

with a pure Hodge structure of weight k.

Example 1.1. Let X be a rational irreducible curve with one node (topologically this is a

pinched torus). Then H1(X) has weight 0 and all the classes are of type (0, 0).

The definition of weights is due to Deligne [D2] and involves reduction to positive charac-

teristic. However, the so called ”Yoga of weights” tells us two fundamental restrictions on the

weights:

1. if X is nonsingular, but possibly noncompact, then the weight filtration on H i(X) starts

at Wi, that is WrH
i(X) = 0 for any r < i;

2. If X is compact, but possibly singular, then the weight filtration on H i(X) ends at Wi,

that is WrH
i(X) = H i(X) for any r ≥ i.

Intersection cohomology

In intersection cohomology, by contrast, is the topological invariant which is changed, whereas

the (p, q)-decomposition turns out to have the same formal properties. We are going to describe

intersection cohomology in the next section. For a beautiful introduction with also an historical

point of view we refer to [Kl]. For now, let us just say that the intersection cohomology

groups IH∗(X) can be described using geometric ”cycles” on the possibly singular varieties X

and this gives a concrete way to compute simple examples. There is a natural isomorphism

H i(X)→ IH i(X) which is an isomorphism when X is nonsingular. Moreover these groups are

finite dimensional, satisfy Mayer-Vietoris theorem and Künneth formula. Even though they

are not homotopy invariant, they satisfy analogues of Poincaré duality and Hard Lefschetz

theorem. The definition of intersection cohomology is very flexible as it allows for twisted

coefficients: given a local system L on a locally closed nonsingular subvariety Y of X we can

define the cohomology groups IH(Y ,L).
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Example 1.2. Consider the nodal curve X of example (1.1): H1(X) has dimension 1, therefore

it cannot admit a Hodge decomposition. If one considers the intersection cohomology group

IH1(X), this turns out to be 0. Therefore Hodge decomposition is restored.

As an analogue of Deligne’s theorem (1.1.1) we can now state the first version of the

decomposition theorem.

Theorem 1.2.1 (Decomposition theorem for intersection cohomology groups). Let

f : X → Y a proper map of varieties. There exists finitely many pairs (Yα, Lα) made of locally

closed, nonsingular and irreducible algebraic subvarieties Yα ⊂ Y , semisimple local systems Lα

on Yα and integer numbers dα such that for every open set U ⊂ Y there exists an isomorphism

IH i(f−1(U)) ∼=
⊕
α

IH i(U ∩ Y α,Lα). (1.3)

The pairs (Yα, Lα) are essentially unique, independent of U and they will be described in the

next sections. Setting U = Y we get a formula for IH∗(X) and therefore, if X is nonsingular,

a formula for H∗(X). If X → Y is a family of projective manifolds then the decomposition

(1.3) coincides with the one of theorem (1.1.1). On the opposite side of the spectrum, when

f : X → Y is a resolution of singularities of Y then the intersection cohomology groups of Y

are direct summands of the cohomology groups H∗(X).

When X is singular there is no direct sum decomposition for H∗(X). Intersection cohomology

turns out to be precisely the topological invariant apt to deal with singular varieties and maps.

The rest of the chapter will be devoted to explain the notion of intersection cohomology groups

and to describe the triples (Yα, Lα, dα) appearing in the decomposition (1.3).

1.3 Intersection complexes

Even though the statement of theorem (1.2.1) involves just intersection cohomology groups,

there are not known proofs of such a decomposition, without first proving the statement at the

level of complexes of sheaves. The language and theory of sheaves and homological algebra,

specifically derived categories and perverse sheaves, plays an essential role in all the known

proofs of the decomposition theorem, as well as in its numerous applications. We do not present
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them here, but the reader can find a detailed description in [I, dCM2]. We will just say that

the intersection cohomology groups are defined as the hypercohomology of some complexes,

called intersection complexes, that live in the derived category of constructible complexes. The

intersection complexes are constructed from local systems defined on a locally closed subsets

of an algebraic variety with a procedure called intermediate extension (see [BBD, 1.4.25,2.1.9,

2.1.11]).

Definition 1.3.1. Let X be an algebraic variety and let Y ⊂ X be a locally closed subset

contained in the regular part of X. Let L be a local system on Y . We define the intersection

complex ICY (L) associated with L as a complex of sheaves on Y which extends the complex

L[dimY ] and is determined up to unique isomorphism in the derived category of constructible

sheaves by the conditions

• Hj(ICY (L)) = 0 for all j < −dimY ,

• H− dimY (ICY (L|U )) ∼= L,

• dim SuppHj(ICY (L)) < −j, for all j > −dimY ,

• dim SuppHj(DICY (L)) < −j, for all j > −dimY , where DICY L denotes the Verdier

dual of ICY L.

Remark 3. Let X be an algebraic variety with regular locus Xreg. In case L = QXreg then

we just write ICX for ICX(L) and we call it intersection cohomology complex of X. If X is

nonsingular, then ICX ∼= QX [dimX].

1.4 Intersection cohomology groups and decomposition theo-

rem

Definition 1.4.1. Let X be an algebraic variety. We define the intersection cohomology groups

of X as

IH∗(X) = H∗−dimX(X, ICX)
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In general, given any local system L supported on a locally closed subset Y of X we define the

cohomology groups of Y with coefficients in L as

IH∗(Y ,L) = H∗−dimY (Y , ICY (L))

Taking cohomology with compact support we obtain the intersection cohomology groups with

compact support IH∗c (X) and IH∗c (Y ,L).

Remark 4. Here the shift is made so that for a nonsingular variety the intersection cohomology

groups coincides with ordinary cohomology groups.

1.4.1 Hodge-Lefschetz package for IH∗(X)

By the properties of IC complexes we can deduce the following theorems for intersection

cohomology groups (see [GM1] for further details).

Theorem 1.4.1 (Poincaré-Verdier duality). Let X be an algebraic variety of dimension n.

Then for any 0 ≤ j ≤ 2n there exists a nondegenerate bilinear form

IHj(X)× IH2n−j
c (X)→ Q

Theorem 1.4.2 (Künneth formula). Let X,Y be algebraic varieties. Then

IHk(X × Y ) =
⊕
i+j=k

IH i(X)⊗ IHj(Y )

Theorem 1.4.3 (Lefschetz hyperplane theorem). Let X be a projective variety of dimen-

sion n and D be a general hyperplane section. Then the restriction

IH i(X)→ IH i(D)

is an isomorphism for i < n− 1 and surjective for i = n− 1.

1.4.2 The mixed Hodge structure on IH∗(X)

The proof of Hard-Lefschetz theorem for intersection cohomology appears in [BBD]. Therefore,

at that point in time, intersection cohomology was known to fulfil the two Lefschetz theorems
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and Poincaré duality [GM, GM1]. The question concerning a possible Hodge structure in

intersection cohomology, as well as Hodge-theoretic questions, was very natural at that juncture

(see [BBD], p.165). The work of Saito [Sa1, Sa2] settled this issues completely with the use of

mixed Hodge modules. We now summarize some of the mixed Hodge-theoretic properties of

the intersection cohomology of complex quasi-projective varieties. For the proofs on projective

varieties we refer to [dCM2, dCM3], whereas for the extension to quasi-projective varieties and

proper maps we refer to [dC]. All these properties have been proved using classical Hodge

theory(see [dCM1, Section 3.3]). The intersection cohomology groups carry natural mixed

Hodge structures and so does intersection cohomology with compact support .

1. if f X is nonsingular, then the mixed Hodge structure coincides with the mixed Hodge

structure on the cohomology;

2. if f : X → Y is a resolution of singularities of Y then the mixed Hodge structures

on IH∗(Y ) and IH∗c (Y ) are canonical sub-quotients of the mixed Hodge structures on

respectively H∗(X) and H∗c (X);

3. the intersection bilinear pairing in intersection cohomology is compatible with mixed

Hodge structure, that is the resulting map IHn−j(X)→ (IHn+j
c (X))∨(−n) is an isomor-

phism of mixed Hodge structures and the shift (−n) increases the weights on (n, n);

4. the natural map H∗(X)→ IH∗(X) is a map of mixed Hodge structures; if X is projective

then its kernel is the subspace W∗−1 of classes of weight ≤ ∗ − 1.

1.4.3 Decomposition theorem

We are now in a position to express the decomposition theorem in his sheaf theoretic statement.

Theorem 1.4.4 (Decomposition theorem and semisimplicity theorem). Let f : X → Y

be a proper map of complex algebraic varieties. There exists an isomorphism in the constructible

derived category Db
c(Y ):

Rf∗ICX ∼=
⊕
i∈Z

pHi(Rf∗ICX)[−i].
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Moreover the perverse cohomology sheaves pHi(Rf∗ICX) are semisimple, i.e. there exists a

stratification of Y =
⊔
Sβ such that

pHi(Rf∗ICX) =
⊕
β

ICSβ (Lβ).

Combining these two results we can express the decomposition theorem in its final form, i.e.

the existence of a finite collection of pairs (Yα,Lα) such that

Rf∗ICX ∼=
⊕
α

ICY α(Lα)[dimX − dimYα] (1.4)

Recalling that IH∗(X) = H∗−dimX(X, ICX), the shifts in the formula are chosen so that

they match with the ones of theorem (1.2.1), which is a consequence of this form.

Definition 1.4.2. We call supports of f the Yα appearing in equation (1.4).

1.5 Semismall maps

In general, it is not easy to determine the supports Yα and the local systems Lα. However

Migliorini and De Cataldo [dCM1], following [BM], prove that for some proper maps, called

semismall maps, the Decomposition theorem has a very explicit form and it is easy to describe

both supports and local systems on them. Let us give some preliminary definitions.

Definition 1.5.1. Let f : X → Y be a map of algebraic varieties. A stratification for f

is a decomposition of Y into finitely many locally closed nonsingular subsets Yα such that

f−1(Yα)→ Yα is a topologically trivial fibration. The subsets Yα are called the strata of f .

Definition 1.5.2. Let f : X → Y be a proper map of algebraic varieties. We say that f is

semismall if there exists a stratification Y =
⊔
Yα such that for all α

dimYα + 2dα ≤ dimX

where dα := dim f−1(yα) for some yα ∈ Yα.

Remark 5. The condition on the dimensions of the preimages is equivalent to ask that the

complex f∗QX [dimX] satisfies both the support and co-support conditions, i.e. it is a perverse

sheaf.
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Definition 1.5.3. Keep the notation as above. We say that a stratum is relevant if

dimYα + 2dα = dimX.

The decomposition theorem for semismall maps takes a particularly simple form: the

only contributions come from the relevant strata Yα and they consist of nontrivial summands

ICY α(Lα), where the local systems Lα turn out to have finite monodromy. Let Yα be a relevant

stratum, y ∈ Yα and let F1, . . . , Fl be the irreducible (dimYα)−dimensional components of the

fibre f−1(y). The monodromy of the F ′is defines a group homomorphism ρα : π1(Yα) → Sl

from the fundamental group of Yα to the group of permutations of the F i’s. The representation

ρα defines a local system Lα on Yα. In this case the semisimplicity of the local system Lα is an

elementary consequence of the fact that the monodromy factors through a finite group, then

by Maschke theorem it is a direct sum of irreducible representations. As a result, the local

systems will be semisimple, that is it will be a direct sum of simple local systems. With this

notation, the statement of the decomposition theorem for semismall maps is the following.

Theorem 1.5.1 (Decomposition theorem for semismall maps). Let f : X → Y be a

semismall map of algebraic varieties and let Λrel the set of relevant strata. For each Yα ∈ Λrel

let Lα the corresponding local system with finite monodromy defined above. Then there exists

a canonical isomorphism in P(Y )

ICX ∼=
⊕

Yα∈Λrel

ICY α(Lα)

1.6 Support type theorems

How can we deal with maps that are not semismall? We said that in general it is hard to find

the supports of a map f : X → Y . However, there exists a fairly general approach to the so

called support type theorems like the decomposition theorem, which was developed by Migliorini

and Shende in [MS2]. Such an approach relies on the fact that even though a stratum S might

be necessary in the stratification of a map f , the change in the cohomology of the fibres of S

can be predicted just by looking at the map on the strata containing S.

Therefore, Migliorini and Shende constructed a coarser stratification, the stratification of higher
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discriminants. Such a description refines the notion of discriminant: instead of looking at the

inverse images of points one can consider the inverse images of discs Dr of varying dimension

r. Clearly the bigger the disc is the more likely its inverse image will be nonsingular. Let us

be more precise: suppose Y is nonsingular and let Y =
⊔
Yα. Take y ∈ Y and let k be the

dimension of the unique stratum containing y. Consider the codimension k slice, meeting the

stratum only in y. Its inverse image will be a nonsingular codimension k subvariety of X. In

case Y , we choose a local embedding (Y, y) ⊂ (Cn, 0) and we define a disc as the intersection

of Y with a nonsingular germ of complete intersection T through y. The dimension of the disc

is dimY − codimT .

Now we are ready for the definition of higher discriminant.

Definition 1.6.1. Keep the notation as above. We define the i− th higher discriminant ∆i(f)

as

∆i(f) := {y ∈ Y | there is no (i− 1)− dimensional disc φ : Di−1 → Y,

with f−1(Di−1) non singular , and codim(Di−1, Y ) = codim(f−1(Di−1), X)}

The higher discriminants ∆i(f) are closed algebraic subsets, and ∆i+1(f) ⊂ ∆i(f) by the

openness of nonsingularity and the semicontinuity of the dimension of the fibres. Also we would

like to remark that ∆1(f) is nothing but the discriminant ∆(f) that is the locus of y ∈ Y such

that f−1(y) is singular.

One advantage of higher discriminants is that they are usually much easier to determine

via differential method than the strata of a Whitney stratification. As we are supposing Y

to be nonsingular, the implicit function theorem prescribes precise conditions under which the

inverse image of a subvariety by a differentiable map is nonsingular: the tangent space of the

subvariety must be transverse to the image of the differential. Hence, under this assumption

we have the following

Proposition 1.6.1.

∆i(f) := {y ∈ Y | for every linear subspace I ⊂ TyY,with dim I = i− 1,

the composition TxX
df−→ TyY → TyY/I is not surjective for some x ∈ f−1(y)}
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We may rephrase condition of proposition (1.6.1) saying that there is no (i−1)- dimensional

subspace I transverse to f .

The following result shows the relevance of the theory of higher discriminants in determining

the summands appearing in the decomposition theorem.

Theorem 1.6.2 ([MS2],Theorem B). Let f : X → Y be a map of algebraic varieties. Then the

set of i-codimensional supports of the map f is a subset of the set of i-codimensional irreducible

components of ∆i(f).

This theorem restricts significantly the set of candidates for the supports. Furthermore, to

check whether a component of a discriminant is relevant it is enough to check its generic point.

We now describe a general strategy for proving support theorems.

We have seen that the stalks of intersection cohomology sheaves appearing in the decomposition

theorem (as well as the intersection cohomology groups) are endowed with a mixed Hodge

structure. Moreover the Saito proves that the isomorphism

Hk(f−1(y)) = Hk(Rf∗Q)y ∼=
⊕
α

Hk(ICY α(Lα))y (1.5)

provided by the decomposition theorem is actually an isomorphism of mixed Hodge structures.

Whenever we have a mixed Hodge structure H = ⊕H i we can define the so called weight

polynomial as

w(H)(t) :=
∑

(−1)i+jti dim GrWi H
j ∈ Z[t].

This polynomial has the additivity property, i.e. if Z ⊂ X is a closed algebraic subvariety of

X then

w(H∗(X))(t) = w(H∗(X \ Z))(t) + w(H∗(Z))(t).

As a result we have the following criterion

Proposition 1.6.3 ([M1], Prop. 8.4). Let f : X → Y a proper map between algebraic varieties

with Y nonsingular. Consider the stratification Y =
⊔
Yα of (1.5) and take y in some stratum

Yα. If we call Iα := {β 6= α | Yα ⊂ Y β} then the stratum Yα is a support if and only if

w(H∗(f−1(y)) 6=
∑
β∈Iα

w
(
ICY β (Lβ)y

)
(1.6)



1.6 Support type theorems 19

Although it is generally quite hard to determine weight polynomials, especially on the right

hand side of (1.6), the criterion is nevertheless quite powerful. For example, in [MS1] and

[MSV] this criterion is used to determine the supports for the relative Hilbert scheme and for

the compactified jacobian family associated to a versal family of planar curves. We are using

this criterion in chapter 3 to determine the supports for the relative nested Hilbert scheme

associated to a versal family of planar curves.



Chapter 2

Intersection cohomology of the

moduli space of Higgs bundles

2.1 Introduction

Let C be a smooth projective curve of genus g ≥ 2. Its associated analytic space, which we

still denote by C, is a Riemann surface and its fundamental group π1(C, x0) is well known to

be isomorphic to
〈α1, . . . , αg, β1, . . . , βg〉

〈
∏

[αi, βi]〉
,

the quotient of the free group on 2g generators modulo the normal subgroup generated by the

product of the commutator [αi, βi] = αiβiα
−1
i β−1

i . A representation of π1(C, x0) with values in

GL(n,C) is uniquely determined by 2g matrices A1, . . . , Ag, B1, . . . , Bg in GL(n,C) such that∏
[Ai, Bi] = In. We define the Betti moduli space MB(n, 0) as the GIT quotient

MB(0, n) :=
{

(A1, . . . , Ag, B1, . . . , Bg) ∈ GL(n,C)×2g |
∏

[Ai, Bi] = In

}
//GL(n,C)

with GL(n,C) acting by conjugation. Doing the GIT quotient implies to eliminate points

whose orbit is not closed, namely the points corresponding to representations which are not

semisimple. MB(0, n) is an affine variety, generally singular. Of course such a procedure can

be done with any reductive algebraic Lie Group and we call the varieties obtained in this way

character varieties. For the unitary group U(n) the character variety can be constructed using a

20
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similar procedure; Narasimhan and Seshadri [NS] have shown that there exists a real analytic

isomorphism between the character variety of unitary representations and the moduli space

N (0, n) of semistable vector bundles on C of degree 0 and rank n. This variety, which has

been the focus of several works in mathematics, parametrizes equivalence classes of semistable

algebraic vector bundles V on C. Let us detail a bit the kind of equivalence relation.

Definition 2.1.1. Let V be an algebraic vector bundle on C.

For any subbundle W ⊂ V one has µ(W ) :=
degW

rankW
≤ deg V

rankV
=: µ(V ). (2.1)

We call µ(V ) the slope of V . A bundle is said to be stable if a strict inequality holds.

Also, we say that a vector bundle is polystable if it can be written as a direct sum of stable

bundles. Whenever a bundle V is strictly semistable we can find subbundle W with least rank

with the same slope as V : as a result the bundle V/W is a stable bundle with the same slope

as V . Proceeding in this way we can construct a filtration, called the Jordan-Hölder filtration

0 = W0 ⊂W1 ⊂ . . . ⊂Wk = V

such that Wi/Wi−1 is a stable bundle with the same slope as V . Setting Gr(V ) := ⊕iWi/Wi−1

this is a polystable bundle with the same slope as V . We say that V and V ′ are S-equivalent

if Gr(V ′) = Gr(V ). Notice that S-equivalence is an equivalence relation and every class

has a unique polystable representative up to isomorphism. Therefore we can think N (0, n)

both as semistable bundles modulo S-equivalence and polystable bundles modulo isomorphism.

The stable bundles form a smooth dense locus N s(0, n), which corresponds to irreducible

representations in the character variety. Moreover, if one wants to consider bundles of degree

d, it suffices to replace the identity with e
2πid
n in the product of commutators which define the

character variety. If one instead wants to consider bundles with trivial determinant then the

representations in the character variety must take with values in SU(n).

A natural question to ask is what happens when we consider representations in the whole

GL(n,C), namely the Betti moduli space. Is there a corresponding geometrical object in terms

of bundles over C? The answer has been given by Hitchin [H] and leads to the definition of

Higgs bundles.
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Definition 2.1.2. Let C be a smooth projective curve over C. Let KC denote the canonical

bundle on C. A Higgs bundle is a pair (V, φ) where V is a holomorphic vector bundle on C

and φ ∈ H0(EndV ⊗KC) is a holomorphic one form with coefficient in EndV , which we call

Higgs field.

We say that W ⊆ V is a Higgs subbundle if φ(W ) ⊂ W . As in the case of vector bundles

we can define the notions of stability in the same way considering Higgs subbundles. We define

MDol(d, n) to be the moduli space of equivalence classes of semistable Higgs bundles of rank

n and degree d over C. Again if one wants to consider Higgs bundles with trivial determinant

then the representation must take values in SL(n,C).

MDol(0, n) is a quasi-projective normal irreducible variety, generally singular. The smooth

locus is dense and parametrizes stable pairs. Observe that whenever d and n are coprime, every

semistable pair is indeed stable, therefore the moduli space is smooth. If not, the singularities

corresponds precisely to the strictly semistable pairs. Such a moduli space, comes equipped

with a map to some affine space. Such a map is called the Hitchin fibration and maps a pair

(V,Φ) to the characteristic polynomial of Φ.

The work of Corlette [Co] , Donaldson [Do], Hitchin [H] and Simpson [Si2] shows that there

exists a real analytic isomorphism between the Dolbeault moduli space and the Betti one

MDol(d, n) ∼=MB(d, n). (2.2)

The cohomology of these moduli spaces has been widely studied and computed in some par-

ticular cases. For the smooth case, Poincaré polynomials for G = SL(2,C) character were

computed by Hitchin in his seminal paper on Higgs bundles [H] and for G = SL(3,C) by

Gothen in [G]. More recently, the techniques involved in the computations by Gothen and

Hitchin have been improved to compute the classes in the completion of the Grothendieck ring

for these varieties in the G = GL(4,C) case, and from their computations it is also possible to

deduce the compactly supported Hodge polynomials [GH]. For the case of rank 2 and degree

1 Higgs bundles, which corresponds to the twisted character variety of GL(2,C), De Cataldo,

Hausel and Migliorini [dCHM] stated and proved the so called P = W conjecture, which as-

serts that the weight filtration on the cohomology of the character variety corresponds in the
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isomorphism in (2.2) to the Perverse filtration constructed from the Hitchin fibration. Fur-

thermore, Hausel and Rodriguez-Villegas [HR] started the computation of the E-polynomials

of G−character varieties focusing on G = GL(n,C), SL(n,C) and PGL(n,C) using arithmetic

methods inspired on the Weil conjectures. Following the methods of Hausel and Rodriguez-

Villegas, Mereb [M] studied the case of SL(n,C) giving an explicit formula for the E-polynomial

in the case G = SL(2,C). Also, Mellit in [Me] compute E-polynomials for nonsingular moduli

spaces of Higgs bundles. The case we are interested in is the one of non twisted representa-

tions into SL(2,C), which corresponds to Higgs bundles with rank 2 and degree 0 with trivial

determinant. From now on we will denote this space simply by MDol. Note that, as it is Lie

algebra valued, the Higgs field in this case is traceless. First we describe the local structure of

the singularities, using the fact that they are identical to those of the moduli space of rank 2

semistable sheaves on a K3 surface with a generic polarization studied by O’ Grady in [OG],

then following the idea of [KY] and [OG] we construct a desingularization ofMDol. After that

we study the case of g = 2, for which there exists a desingularization M̃Dol such that the map

M̃Dol → MDol is semismall thus we can apply an easier version decomposition theorem to

compute the E-polynomial for the intersection cohomology of MDol.

The results in this chapter are a first step in the direction of understanding the P = W con-

jecture in the non coprime case, that is for singular moduli spaces of Higgs bundles. In fact in

this case the theory behind the conjecture suggests that the natural invariant to look at on the

Doulbeault side should be the intersection cohomology.

2.2 The structure of MDol

Let us recall briefly the construction by Simpson of the moduli space MDol.

• [Sim, Thm. 3.8] Fix a sufficiently large integer N and set p := 2N + 2(1 − g). Simpson

showed that there exist a quasi-projective schemeQ representing the moduli functor which

parametrizes the isomorphism classes of triples (V,Φ, α) where (V,Φ) is a semistable Higgs

pair with detV ∼= OX , tr(Φ) = 0 and α : Cp → H0(C, V ⊗ O(N)) is an isomorphism of
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vector spaces.

• [Sim, Thm. 4.10] Fix x ∈ C and let Q̃ be the frame bundle at x of the universal bundle

restricted to x. Then we have SL(2,C) × GL(p,C) acting on Q̃. In fact SL(2,C) acts

as automorphisms of (V,Φ) while the action of GL(p,C) acts on the α’s. The action of

GL(p,C) on Q lifts to Q̃ and Simpson proves that such an action is free and every point

in Q̃ is stable with respect to it, so we can define

RDol = Q̃/GL(p,C)

which represents the triples (V,Φ, β) where β is an isomorphism Vx → C2.

• [Sim, Thm. 4.10] Every point in RDol is semistable with respect to the action of SL(2,C)

and the closed orbits correspond to the polystable pairs (V,Φ, β) such that

(V,Φ) = (L, φ)⊕ (L−1,−φ)

with L ∈ Pic0(C) and φ ∈ H0(KC).

Proposition 2.2.1. [Sim, Thm. 4.10] The good quotient RDol//SL(2,C) is MDol.

Thanks to proposition (2.2.2) it is possible to describe the singularities of MDol in terms of

those on RDol. Let G be a reductive group acting linearly on a complex projective scheme Y

(here ”linearly” means that the action lifts to OY (1)), let W be a closed G-invariant subscheme

and π : Ỹ → Y be the blow-up of Y along W . Then G acts both on Ỹ and on the ample line

bundle

Dl := π∗OY (l)⊗OỸ (−E),

where l is an integer and E is the exceptional divisor of π. Thus the action is linearized and

it makes sense to talk about stable and semistable points: we denote by Y (s)s the (semi)stable

points with respect to OY (1) and Ỹ (s)s(l) the (semi)stable points with respect to Dl.

Proposition 2.2.2. [K, Prop. 3.1] Keep the notation as above. Forl� 0 the loci Ỹ (s)s(l) are

independent of l and we have that

π(Ỹ ss) ⊂ Y ss

π(Ỹ s) ⊂ Y s



2.2 The structure of MDol 25

In particular π induces a morphism

π̄ : Ỹ //G→ Y//G

and for l sufficiently divisible such a morphism is identified with the blow-up along W//G.

Kirwan’s proposition, roughly speaking, tells us that if we find a suitable desingularization

of RDol and we quotient by the action of SL(2,C) we obtain something with at worst quotient

singularities which has a birational map to MDol. After another blow-up we can eliminate

the singularities and find a desingularization of MDol. As a consequence, it is of primary

importance to understand the local structure of the singularities in RDol. By a result of

Simpson [Sim, Section 1], the criterion for GIT semistability of points in RDol coincides with

the slope semistability of the corresponding Higgs bundles.

As a result, the singularities correspond to the strictly semistable bundles. If a Higgs bundle

(V,Φ) is strictly semistable, then there exists a Φ-invariant line bundle L of degree 0. Call φ

the restriction of Φ to H0(EndL⊗KC) ∼= H0(KC). Then the singularities of RDol are of the

following form:

• Ω0
R := {(V,Φ, β) | (V,Φ) = (L, 0)⊕ (L, 0) with L ∼= L−1}

• Ω′R := {(V,Φ, β) | (V,Φ) is a nontrivial extension of (L, 0) by itself}

• Σ0
R := {(V,Φ, β) | (V,Φ) = (L, φ)⊕ (L−1,−φ) with (L, φ) 6∼= (L−1,−φ)}

• Σ′R := {(V,Φ, β) | (V,Φ) is a nontrivial extension of (L, φ) by (L−1,−φ)}

Since Ω′R and Σ′R are not polystable their orbits disappear when we quotient by the action of

SL(2,C), thus we can avoid considering them. We call ΩR and ΣR the closures of respectively

Ω0
R and Σ0

R inRDol. By proposition (2.2.2), the singularities ofMDol are the strictly semistable

Higgs bundles

• Ω0 := {(V,Φ) | (V,Φ) = (L, 0)⊕ (L, 0) with L ∼= L−1}

• Σ0 := {(V,Φ) | (V,Φ) = (L, φ)⊕ (L−1,−φ) with (L, φ) 6∼= (L−1,−φ)}.
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As before, we call Ω and Σ their closures in MDol. The loci Ω0 and Σ0 are the quotient of Ω0
R

and Σ0
R with respect to the action of SL(2,C) modulo their stabilizers. The points in Ω0 have

SL(2,C) as stabilizer, so both ΩR and Ω consists of 22g points corresponding to the roots of

the trivial bundle OC . Observe that Σ0
∼=
[
(Pic0(C)×H0(KC)) \ (22g points )

]
/Z2 where Z2

acts as the involution (L, φ) 7→ (L−1,−φ). Then Σ0
R is a PSL(2,C) bundle over Σ0.

2.2.1 Strategy of the desingularization

Our strategy will be first to desingularize RDol and then quotient by the action of SL(2,C).

1) we first blow up RDol along the deepest singular locus ΩR, set PDol := BlΩRRDol and call

ΣP the strict transform of the bigger singular locus;

2) we blow up again and set Sdol := BlΣPPDol;

3) If g = 2, M̂Dol := SDol//SL(2,C) is smooth; if g ≥ 3 it has at worst orbifold singularities

and blowing up SDol along the locus of points whose stabilizer is larger than the centre Z2

of SL(2,C), we obtain TDol such that

M̂Dol := TDol//SL(2,C)

is a smooth variety obtained by blowing up MDol first along the points (L, 0) ⊕ (L, 0),

secondly after the proper transform of orbit points of (L, φ)⊕ (L−1,−φ) and third along a

nonsingular subvariety lying in the proper transform of the exceptional divisor of the first

blow-up.

2.3 Singularities of MDol and their normal cones

The rest of the chapter is devoted to the construction of the desingularization. The strategy for

the desingularization is closely analogous to that in [OG]. The first thing to do is to describe

the singular loci and their normal cones.

Let us give some preliminary results.
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2.3.1 Normal cones and deformation of sheaves

If W is a subscheme of a scheme Z, we call CWZ the normal cone to W in Z. It is well known

that the exceptional divisor of a blow up of Z along W is equal to Proj(CWZ), therefore we

will have to determine both CΩRDol and CΣR̄Dol. The following theorem, known as Luna’s

étale slice theorem allows to see this problem in terms of deformation theory of sheaves. Thus

we take a brief excursus on normal cones and their relations with deformation theory. For

proofs and further details we refer to [OG].

Theorem 2.3.1. [Luna’s étale slice] Let G be a reductive group acting linearly on a quasi-

projective scheme Y . Let y0 ∈ Y such that O(y0) is closed in Y ss (this implies St(y0) is

reductive).Then there exists a slice normal to O(y0), i.e. an affine subscheme U ↪→ Y ss,

containing y0 and invariant under the action of St(y0), such that the following holds. The

multiplication morphism

G×St(y0) U → Y ss

has open image and is étale over its image. (Here St(y0) acts on G×V by h(g, y) := (gh−1, hy)).

Moreover the morphism is G-equivariant with respect to the left multiplication on the first factor.

The quotient map

U//St(y0)→ Y ss//G

has open image and is étale over its image. If Y ss is nonsingular at y0, then U is also nonsin-

gular at y0.

Now if W ⊂ Y ss is a locally closed G-invariant subset containing y0, we can describe the

normal cone CWZ in terms of the normal slice. More precisely, we have the following corollary.

Corollary 2.3.2. Let W := W ∩ U . There exists a St(y0)-equivariant isomorphism

(CWY
ss)y0

∼= (CWU)y0

Now we go back to SL(2,C) acting RssDol. The following result identifies the normal slice

with a versal deformation space.
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Proposition 2.3.3. [OG, Prop. 1.2.3] Let v = (V,Φ, β) ∈ RssDol a split extension (that is v

has a closed orbit with respect to the action of SL(2,C)). Let U be a normal slice and (U, v)

be the germ of U at v. Let V be the restriction to C × (U , v) of the tautological quotient sheaf

on C ×RDol. The couple ((U , v),V) is a versal deformation space of (V,Φ, β).

We also have some constraint on the dimension of the normal slice.

Proposition 2.3.4. Keep the notation as above. Let v ∈ RssDol be a point with a closed orbit,

and let U 3 v be a slice normal to the orbit O(v). Then

dimv U ≥ dimExt1(V, V )− Ext2(V, V )0

where Exti(V, V ) denotes extensions in the category of Higgs bundles and Ext2(V, V )0 are

traceless extensions.

The previous propositions permits to describe the normal cones to our singular loci as

normal cones of other loci in the versal deformation space of semistable bundles. Let us provide

tools which will turn out to be useful later.

Hessian cone

Let Y be a scheme and B ⊂ Y a locally closed subscheme such that B is smooth and TbY ha

constant dimension for every b ∈ B. Therefore it makes sense to talk about a normal vector

bundle NBY . Let I be the ideal sheaf of B in Y : the graded surjection

∞⊕
d=0

Symd(I/I2)→
∞⊕
d=0

Id/Id+1

determines an embedding i : CBY ↪→ NBY . We also observe that, as the map is an isomorphism

in degree 1, the homogeneous ideal I(i(CBY )) contains no linear terms. We define the Hessian

cone to be the subscheme of NBY whose corresponding homogeneous ideal is generated by the

quadratic terms in I(i(CBY )). Therefore we have a chain of cones

CBY ⊂ HBY ⊂ NBY.

Notice that for every b ∈ B

P(HbY ) is the cone over P(HBY )b with vertex P(TbB). (see [RU]) (2.3)



2.3 Singularities of MDol and their normal cones 29

Let Im := Spec(C[t]/(tm+1)); thus tangent vectors to Y at b are identified with pointed maps

I1 → (Y, b).Then the reduced part of the hessian cone is

(HbY )red := {f1 : I1 → (Y, b) | there exists f2 : I2 → (Y, b) extending f1}

Consider E to be a coherent sheaf over a projective scheme Y . If (Def(E , 0)) is a parameter

space for a versal deformation of E then one has that T0Def(E) ∼= Ext1(E , E). Consider the

Yoneda cup product Ext1(E , E)×Ext1(E , E)→ Ext2(E , E) that maps a couple (e, f) in e ∪ f .

The Hessian cone is given by [OG, 1.3.5]

H0(Def(E))red ∼= Υ−1
E (0)red (2.4)

where ΥE : Ext1(E , E) → Ext2(E , E) is the cup product of the extension class with itself. We

call this map the Yoneda square.

In the following section we describe the local structure of the singularities and use the isomor-

phism in equation (2.4) to compute the normal cones along the singular loci.

2.3.2 Local structure of singularities

Let Ai denote the sheaf of C∞ i−forms on C. For a polystable Higgs pair (V, φ) consider the

complex

0 // End0(V )⊗A0 // End0(V )⊗A1 // End0(V )⊗A2 // 0 (1)

with differential D′′ = ∂̄+ [φ,−]. Splitting in (p, q) forms, we have that the cohomology of this

complex is equal to the hypercohomology of the double complex

0

��

0

��

0

��
0 // 0 //

��

End0(V )⊗A1,0 ∂̄ //

��

End0(V )⊗A1,1 //

=

��

0

0 // End0(V )⊗A0 D′′ //

=

��

End0(V )⊗A1 D′′ //

��

End0(V )⊗A2 //

��

0

0 // End0(V )⊗A0,0 ∂̄ //

��

End0(V )⊗A0,1 //

��

0 //

��

0

0 0 0
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This means that the cohomology groups T i of (1) fit the long exact sequence (2)

0 // T 0 // H0(End0(V ))
[Φ,−] // H0(End0(V )⊗KC) //

T 1 // H1(End0(V ))
[Φ,−] // H1(End0(V )⊗KC) // T 2 // 0

Remark 6. Observe also that, by deformation theory for Higgs bundles, the T i’s parametrize

the traceless extensions of Higgs bundles i.e. T i = Exti0(V, V ) in the category of Higgs sheaves.

Moreover T 1 is precisely the Zariski tangent space to MDol.

Thanks to sequence (2) we can now find the singularities of bothMDol and RDol. By [Sim,

Lemma 10.7] one has that the dimension of the Zariski tangent space in a point v = (V,Φ, β)

is equal to

dimTvRDol = dimT 1 + 3− dimT0.

By Riemann-Roch theorem and (2) we have that

dimT 1 = χ(End0(V )⊗KC)− χ(End0(V )) = 6g − 6 + 2 dimT 0.

As a result, we have a singular point (V,Φ, β) in RDol if and only if dimT 0 > 0, that is there

exists a section of H0(End0(V )) that commutes with the Higgs field.

If (V,Φ) is stable, no such section exists thus the singularities of RDol must be the strictly

semistable orbits. Of course, as the condition does not depend from β, the same holds for the

singularities of MDol.

We can sum up the above remarks in the following proposition:

Proposition 2.3.5. (i) The singularities of RDol are:

• Ω0
R := {(V,Φ, β) | (V,Φ) = (L, 0)⊕ (L, 0) with L ∼= L−1}

• Ω′R := {(V,Φ, β) | (V,Φ) is a nontrivial extension of (L, 0) by itself}

• Σ0
R := {(V,Φ, β) | (V,Φ) = (L, φ)⊕ (L−1,−φ) with (L, φ) 6∼= (L−1,−φ)}

• Σ′R := {(V,Φ, β) | (V,Φ) is a nontrivial extension of (L, φ) by (L−1,−φ)}

(ii) The singularities of MDol are:
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• Ω0 := {(V,Φ) | (V,Φ) = (L, 0)⊕ (L, 0) with L ∼= L−1}

• Σ0
: = {(V,Φ) | (V,Φ) = (L, φ)⊕ (L−1,−φ) with (L, φ) 6∼= (L−1,−φ)}

Remark 7. Let us remark that the singularities of RDol andMDol have a different origin. In

fact, since the action of GL(p) on Q̃ is free, the singularities of RDol are those of Q̃, whereas

the singularities ofMDol are coming form the singularities of RDol and the strictly semistable

orbits for the action of SL(2,C).

Now that we know the singularities of RDol, our aim is to describe their local structure,

that is their normal cones. The following theorem by Simpson, describe the normal cone of the

singular loci in terms of the extensions.

Theorem 2.3.6. [Si2, Thm. 10.4] Consider SL(2,C) acting on RDol and suppose (V, φ) is

a point in a closed orbit. Let C be the quadratic cone in T 1 defined by the map η 7→ [η, η]

(where [, ] is the graded commutator) and h⊥ be the perpendicular space to the image of T 0 in

sl(2) under the morphism H0(End0(V )) → sl(2) . Then the formal completion (RDol, (V, φ))̂

is isomorphic to the formal completion (C × h⊥, 0)̂.

Moreover this theorem hold also at the level of MDol.

Proposition 2.3.7. [Si2, Prop. 10.5] Let v = (V,Φ) be a point MDol and let C be the

quadratic cone of (V,Φ, β) in the previous theorem. Then the formal completion of MDol at v

is isomorphic to the formal completion of the good quotient C/H of the cone by the stabilizer

of (V,Φ, β).

Remark 8. We have seen in the introduction that there exists a real analytic isomorphism

MDol
∼=MB = {ρ : π1(C, c0)→ SL(2,C)}//SL(2,C) .

This moduli space is constructed in the same way as MDol, starting from a space RB ∼=

Hom(π1(C, c0), SL(2,C)) which is still real analytic isomorphic to RDol. The description of

the singularities in theorem (2.3.6) is analogous to the one by Goldman and Millson in [GoM]

for RB. They show that the singularities at a point in RB are quadratic, that is the analytic

germ of a point ρ ∈ RB is equivalent to the germ of a quadratic cone at 0 in defined by a
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bilinear map on the tangent space TρRB.

Simpson’s isosingularity priciple [Si2, Thm. 10.6] tells us that the formal completion of point

in RDol and a formal completion to the corresponding point RB are isomorphic, thus the

singularities of RDol are quadratic as well.

Let us describe the spaces T i and the graded commutator more explicitly: we consider our

Higgs bundle (V,Φ) as an extension

0→ (L1, φ1)→ (V,Φ)→ (L2, φ2)→ 0.

The deformation theory of the above Higgs bundle is controlled by the hypercohomology of the

complex

C• : L−1
2 L1

ψ−→ L−1
2 L1 ⊗KC

f 7−→ φ1f − fφ2

and we have a long exact sequence

0 // Ext0H(L1, L2) // H0(L−1
2 L1)

ψ // H0(L−1
2 L1 ⊗KC) //

Ext1H(L1, L2) // H1(L−1
2 L1)

ψ // H1(L−1
2 L1 ⊗KC) // Ext2H(L1, L2) // 0

where ExtiH(L1, L2) := Hi(C•) are the extensions of (L2, φ2) with (L1, φ1) as Higgs sheaves.

Observe that

T i =
⊕
i,j

ExtiH(Li, Lj) (2.5)

As we are considering bundles with trivial determinant and traceless endomorphisms L2 will

be the dual of L1 =: L, φ2 = −φ1 =: −φ, and we will not consider ExtiH(L−1, L−1) because

they are just the opposites of elements in ExtiH(L,L).

Yoneda Product

We want to consider the Yoneda product

Y on : Ext1H(V, V )× Ext1H(V, V ) → Ext2H(V, V )

(α, β) 7→ α ∪ β
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and the associated Yoneda square

Υ : Ext1H(V, V )→ Ext2H(V, V ), α 7→ α ∪ α.

Remark 9. If we think of elements in Ext1H(V, V ) locally as matrices of 1-forms in sl(2) we

have that such a product coincide with the graded commutator of Simpson’s theorem.

If we use decomposition (2.5), we can write Yoneda square as

Υ : Ext1H(L,L)⊕ Ext1H(L−1, L)⊕ Ext1H(L,L−1) −→ Ext2H(L,L)

(a, b, c) 7−→ b ∪ c

Let

Υ : Ext1H(L−1, L)⊕ Ext1H(L,L−1) −→ Ext2H(L,L)

(a, b, c) 7−→ b ∪ c

be the map induced by Υ on Ext1H(V, V )/KerΥ.

We now have all the tools to describe the normal cones of elements in the singular loci of

RDol. Their fibres will be the exceptional divisors of the blow-ups we described at the beginning

of this section. We stress that, since the orbits of Γ0 and Λ0 are not closed they will disappear

when performing the GIT quotient by the action of SL(2,C), therefore we do not compute their

normal cones.

2.4 Construction of the desingularization M̂Dol

For ease of the reader we present a short summary of the results in this section.

1) We compute the normal cones of the singularities of RDol and prove that

Proposition. Σ0
R is smooth and its normal cone CΣRRDol is a locally trivial fibration over

Σ0
R with fibre the affine cone over a smooth quadric in P4g−5. More precisely we have that

for a point v = (V,Φ, β) in Σ0
R there is a canonical isomorphism

(CΣRRDol)v ∼= {(b, c) ∈ Ext
1
H(L−1, L)⊕ Ext1H(L,L−1) | b ∪ c = 0}
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Proposition. Ω0
R is a smooth closed subset of RDol and its normal cone CΩRRDol is a

locally trivial fibration over ΩR with fibre the affine cone over a reduced irreducible complete

intersection of three quadrics in P6g−1. That is if v = (V, φ, β) ∈ ΩR with (V,Φ) = (L, 0)⊕

(L, 0) then

(CΩRDol)v ∼= {f : sl(2)→ Λ1 | f∗ω = 0} =: Homω(sl(2),Λ1);

where Λ1 = Ext1H(L,L) and ω is the skew-symmetric bilinear form on Λ1 induced by the

Yoneda product on T 1.

2) We blow up RDol in ΩR and set PDol := BlΩRDol
π̂−→ RDol. We call ΩP the exceptional

divisor and ΣP the strict transform of ΣR under the blow-up. We describe the semistable

points in both ΩP and ΣP and again we compute their normal cones in PDol. More precisely

we will show:

Proposition. Let [f ] be an element of Homω(sl(2),Λ1). Then [f ] is semistable with respect

to the action of SL(2,C) if and only if

rkf


≥ 2 or

= 1 and kerf⊥ is non isotropic ,

where orthogonality and isotropy are with respect to the Killing form on sl(2).

The semistable points in the strict transform ΣP are described in the following proposition.

Proposition. Consider the locus Σss
P of semistable points in ΣP . One has:

(i) Σss
P is smooth and reduced;

(ii) the intersection Σss
P ∩ΩP is smooth and reduced and in particular one has that if v ∈ ΩR

then

π−1
P (v) ∩ Σss

P = PHomss
1 (sl(2),Λ1)

where Homss
1 (sl(2),Λ1) is the set of f ∈ Homω(sl(2),Λ1) which are semistable of rank

≤ 1 and has dimension 2g;



2.4 Construction of the desingularization M̂Dol 35

(iii) Σss
P \ ΩP = π−1

P (Σ0
R);

(iv) the normal cone of Σss
P in PDol is a locally trivial bundle over Σss

P with fibre the cone

over a smooth quadric in P4g−5.

3) Set πS : SDol → PDol to be the blow-up of PDol along ΣP . Put ΩS the strict transform

of ΩP and ΣS the exceptional divisor. By the previous propositions one has that for any

v ∈ ΩR

(πP ◦ πS)−1 = BlPHom1PHom
ω(sl(2),Λ1)⇒

⋃
v∈ΩR

BlPHom1PHom
ω(sl(2),Λ1) ⊂ ΩS .

Call ∆S the closure of
⋃
v∈ΩR

BlPHom1PHomω(sl(2),Λ1) in ΩP . By dimension counting we

show that ∆S is equal to the divisor ΩS if and only if g = 2. We prove that:

Proposition. (a) Ωss
S is smooth and all its points are stable;

(b) Σss
S is smooth and all its points are stable;

(c) SssDol is smooth and all its points are stable;

(d) ∆S is smooth.

4) We blow up SDol along ∆S and call the space so obtained TDol. We call M̂Dol := TDol//SL(2,C)

and we prove the following.

Proposition. M̂Dol
π̂−→MDol is a desingularization of MDol.

2.4.1 Normal cones of the singularities in RDol

In this section we compute the normal cones of the singular loci of RDol.

Cones of elements in Σ0
R

Consider

Σ0
R := {(V,Φ, β) | (V,Φ) = (L, φ)⊕ (L−1,−φ) with (L, φ) 6∼= (L−1,−φ)}.

We want to prove the following result.
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Proposition 2.4.1. Let Σ0
R be the set above. Then Σ0

R is nonsingular and the cone CΣRRDol
of Simpson’s theorem is a locally trivial fibration over Σ0

R with fiber the affine cone over a

nonsingular quadric in P4g−5. More precisely, for a point v = (V,Φ, β) in Σ0
R there is a

canonical isomorphism

(CΣRRDol)v ∼= {(b, c) ∈ Ext
1
H(L−1, L)⊕ Ext1H(L,L−1) | b ∪ c = 0}

Moreover the action of the stabilizer C∗ of (V,Φ) on CΣRRDol is given by

λ.(b, c) = (λ−2b, λ2c)

The proof will proceed in several steps and lemmas. If want to use the strategy suggested

by Simpson in theorem (2.3.6), we need to find the vector spaces T i and find the quadratic

cone in T 1 defined by the zero locus of the Yoneda square.

Lemma 2.4.2. Let (V,Φ, β) be an element of Σ0
R. Then the spaces T i = Exti0(V, V ) are

T 0 = Ext0H(L,L) ∼= C

T 1 = Ext1H(L,L)⊕ Ext1H(L−1, L)⊕ Ext1H(L,L−1) ∼= C6g−4

T 2 = Ext2H(L,L) ∼= C

Proof. Let us compute the ExtiH(Li, Lj) using (2). First we compute ExtiH(L,L).

We have

0 // Ext0H(L,L) // H0(O)
ψ // H0(KC) //

Ext1H(L,L) // H1(O)
ψ // H1(KC) // Ext2H(L,L) // 0

where the map ψ sends an element f ∈ H0(O) in fφ − φf . As φ is C∞-linear, every f ∈

H0(O) commutes with the Higgs field φ we have that Ext0H(L,L) ∼= H0(O) ∼= C. Moreover

Ext0H(L,L) ∼= Ext2H(L,L) by Serre duality 1 and we have Ext1H(L,L) ∼= H0(KC) ⊕ H1(O).

Thus

Ext0H(L,L) ∼= C Ext1H(L,L) ∼= C2g Ext0H(L,L) ∼= C
1we mean Serre duality for Higgs bundles
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Now we compute Exti(L,L−1).

We have

0 // Ext0H(L,L−1) // H0(L2)
ψ // H0(L2 ⊗KC) //

Ext1H(L,L) // H1(L2)
ψ // H1(L2 ⊗KC) // Ext2H(L,L−1) // 0

We have to be careful in doing this computation. In fact even though (L, φ) and (L−1,−φ) are

not isomorphic as Higgs bundles, L and L−1 might be isomorphic as vector bundles. However

we can see this does not change the nature of our description of the normal cone. Suppose

first L 6∼= L−1: then L2 is a nontrivial degree 0 line bundle thus it has no global sections and

we can conclude that Ext0H(L,L−1) = Ext2H(L,L−1) = 0. Also, Ext1H(L,L−1) ∼= H0(L2 ⊗

KC) ⊕ H1(L2) ∼= C2g−2; if L ∼= L−1 we have that H0(L2) ∼= H0(O) ∼= C , the map ψ sends

f to φf + fφ. Since there are no nonzero elements in H0(O) that commute with the Higgs

fields, then Ext0(L,L−1) is still 0. By Serre duality we can conclude that Ext2H(L,L−1) is

0 too and the alternate sum of the dimensions of vector spaces in the sequence tells us that

Ext1H(L,L−1) ∼= C2g−2 in both cases. To sum up we have that

Ext0H(L,L−1) = Ext2H(L,L−1) = 0 Ext1H(L,L−1) ∼= C2g−2.

The factors ExtiH(L−1, L) are isomorphic to Ext0H(L,L−1) as we have the involution L 7→

L−1. Summing up we have

T 0 = Ext0H(L,L) ∼= Ext0H(L−1, L−1) = C

T 1 = Ext1H(L,L)⊕ Ext1H(L−1, L)⊕ Ext1H(L,L−1) ∼= C6g−4

T 2 = Ext2H(L,L) ∼= Ext2H(L−1, L−1) ∼= C

Now we need to describe the Yoneda square.

Proposition 2.4.3. P(Υ
−1

(0)) is a nonsingular quadric hypersurface in P4g−5. In particular,

as g ≥ 2, P(Υ−1(0)) is a reduced irreducible quadric.
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Proof. By Serre duality, the Yoneda product

Ext1H(L,L−1) × Ext1H(L−1, L) −→ Ext2H(L,L) ∼= C

b c 7→ b ∪ c

is a perfect pairing. Hence

P(Ψ
−1

(0)) ⊂ P(Ext1H(L,L−1)× Ext1H(L−1, L)) = CP4g−5

is a nonsingular quadric hypersurface.

In order to prove proposition (2.4.1) we show that (CΣRRDol)v ∼= Υ
−1

(0) and that Σ0
R is

smooth.

Let U be a slice normal to the closed SL(2,C) orbit of v: by proposition (2.3.4), there is a

natural isomorphism between Def(U , v) ∼= Def(V,Φ, β). In particular we have an embedding

CvU ⊆ Ext1H(V, V ).

Proposition 2.4.4. There are natural isomorphism of schemes

CvU ∼= HvU ∼= Υ−1(0).

Proof. By the equality (2.4) and proposition (2.4.3)

P(HvU)red ∼= P(Υ−1(0)).

As P(Υ−1(0)) is a reduced irreducible quadric hypersurface and P(HvU) is cut out by quadrics

P(HvU) ∼= P(Υ−1(0)).

Consider the inclusion

CvU ⊂ HvU = Υ−1(0).

By what we said above, we have

dimCvU = dimU ≥ dimExt1H(V, V )− 1 = dim Υ−1(0).

Since Υ−1(0) is reduced irreducible, we must have CvU = Υ−1(0).



2.4 Construction of the desingularization M̂Dol 39

Lemma 2.4.5. Let W := U ∩ Σ0
R. Then W is smooth at v and

TvW ∼= Ext1H(L,L).

Furthermore, up to shrink U , we can assume that

dimTvU = dimTv′U ∀v′ ∈ U .

Proof. Using the identification (U , v) with Def(V,Φ, β), we call V a first order deformation of

(V,Φ, β) and e = (a, b, c) ∈ Ext1H(V, V ) its corresponding extension class. Then, by classical

deformation theory, we have that e is tangent to W if and only if the following two exact

sequences of Higgs bundles

0→ L→ V → L−1 → 0

0→ L−1 → V → L→ 0

lift to V. By [OG2] this condition is equivalent to

b = c = 0

that is e = (a, 0, 0) ∈ Ext1H(L,L). To prove smoothness, we observe that W parametrizes

Higgs bundles (L′, φ′)⊕ (L
′−1,−φ′), where (L′, φ′) near (L, φ), this implies that the dimension

of W at v is ≥ 2g (L lies in Pic0(C)). On the other hand the right-hand of the equation has

dimension 2g, hence W is smooth at v. To prove the last statement it suffices to notice that

(U , v) is a versal deformation.

Now we are ready to start proving lemmas that will lead to the proof of proposition (2.4.1).

Lemma 2.4.6. Keep the notation as above. Then Σ0
R is smooth.

Proof. Let v = (V,Φ, β) ∈ Σ0
R and U be a slice normal to the SL(2,C)-orbit O(v) and W =

U ∩ Σ0
R. By Luna’s étale slice theorem there exists a neighbourhood of v ∈ Σ0

R isomorphic to

a neighbourhood of (1, v) in SL(2,C) ×St(v) W. As W is smooth at v, SL(2,C) ×St(v) W is

smooth at the point (1, v) and v is a smooth point of Σ0
R.
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Proof of proposition (2.4.1). We have already proved that Σ0
R is smooth in lemma (2.4.6). Now

we just need to prove that the fiber of the normal cone is isomorphic to Υ
−1

(0).

We have seen that

(CWU)v ∼= (CΣRRDol)v,

therefore we must give an isomorphism

(CWU)v ∼= Υ
−1

(0).

As W is smooth and TwU has constant dimension for every w ∈ W then the normal bundle

NwW and we have the usual inclusions of cones

(CWU)v ⊂ (HWU)v ⊂ (NWU)v.

By lemma (2.4.5), the fiber of the normal cone NWU is equal to Ext1H(L,L−1)⊕Ext1(L−1, L).

Now if we rewrite in (2.3) using the identifications of cones of the normal slice then up to

projectivize we have

HvU is the cone over (HWU)v with vertex TvW,

since TvW ∼= Ext1H(L,L) and HvU ∼= Υ−1(0) then (HWU)v ∼= Υ
−1

(0). Arguing as in the

previous proof we conclude that (CWU)v ∼= (HWU)v.

Finally we describe the action of the stabilizer.

Let v = (V, φ, β) be a point with a closed orbit in ΣR and let U be a slice normal to the

orbit O(v) of v. As St(v) = Aut(V )/C∗ the action of the stabilizer on U . For any g ∈ Aut(V )

we define the differential

g∗ : TvU → TvU

of the corresponding to the action of g.

Lemma 2.4.7. Keeping the notation as above, let

e ∈ TvU ∼= T0Def(V ) ∼= Ext1(V, V )

then g∗(e) = g ∪ e ∪ g−1.
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Proof. Suppose V ′ and W ′ be the first order deformations corresponding to e and g∗e respec-

tively. Consider the tautological quotient on C×RDol: the action of Aut(V ) restricts to C×U

compatibly with the action on U . Then there exists an isomorphism αg : W ′ → V ′ fitting the

commutative diagram

0 // tV // V ′ //

αg
��

V //

g

��

0

0 // tV

g−1

OO

//W ′ // V // 0

with whom it is possible to identify g∗(e) with the deformation given by g ∪ e ∪ g−1.

If v is a point in Σ0 then Aut(V ) ∼= C∗. Write V = L ⊕ L−1; consider g ∈ C∗ and

e ∈ Ext1(V, V ) =

 a b

c −a

 with a ∈ Ext1(L,L), b ∈ Ext1(L−1, L), c ∈ Ext1(L,L−1). Then

g∗(e) =

 g−1 0

0 g

 a b

c −a

 g 0

0 g−1

 =

 a g−2b

g2c −a


as stated in proposition (2.4.1).

Cone of elements in ΩR

Let v = (V,Φ, β) be an element in ΩR. Then we have

(V,Φ) = (L, 0)⊕ (L, 0)

with L ∼= L−1. Then the bundle End0(V ) is holomorphically trivial and we have that

H0(End0(V )) ∼= sl(2) and we can think a generic element of this space as a b

c −a


with a, b, c ∈ H0(O). We now want to compute the T i’s and the quadratic cone defined by the

graded commutator. In order to make the computation easier, we first notice that the second

line of the long exact sequence is the Serre dual of the first one. Now we observe that T 0 are

the elements in sl(2) which commute with the Higgs field, which is 0, therefore

T 0 ∼= T 2 ∼= sl(2)
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and the first map and the last map of the sequence are isomorphisms. To compute T 1 consider

the central part of the sequence, which in this case is

0 // H0(End0(V )⊗KC) // T 1 // H1(End0(V )) // 0.

H0(End0(V )⊗KC) = H0(O⊕3⊗KC) ∼= H0(KC)⊗ sl(2). Using Serre duality we have that

H1(End0(V )) ∼= H1(O)⊗ sl(2), therefore we have that T 1 has dimension 6g and it is equal to

T 1 = (H0(KC)⊕H1(O))⊗ sl(2) = Ext1H(L,L)⊗ sl(2)

Set

Λi = ExtiH(L,L)

and consider the composition of the Yoneda product on Λ1 with the isomorphism Λ2 ∼= C given

by the integration:

Λ1 × Λ1 → Λ2 ∼= C.

This defines a skew-symmetric form which is non-degenerate bilinear form ω which is non-

degenerate by Serre duality. Call

Homω(sl(2),Λ1) := {f : sl(2)→ Λ1 | f∗ω = 0}.

We have a natural action of the automorphism group SL(2,C) of (V,Φ) given by the composition

with the adjoint representation on sl(2).

Remark 10. Let us remark thatHomω(sl(2),Λ1) is precisely the set of those f ∈ Hom(sl(2),Λ1)

whose image is an isotropic subspaces of Λ1 with respect to the symplectic form ω on it.

Proposition 2.4.8. Ω0
R is a smooth closed subset of RDol and the normal cone is a locally

trivial bundle over Ω0
R and there exist a SL(2,C)-equivariant isomorphism

(CΩRRDol)v ∼= Homω(sl(2),Λ1)

Proof. As we noticed in the previous paragraph, there is a natural isomorphism

T 1 = Λ1 ⊗ sl(2)
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and the Yoneda product is the tensor product of the Yoneda product Υ on Λ1 times the

composition with bracket of sl(2). Hence if Υ : Λ1 ⊗ sl(2)→ sl(2) is the Yoneda square,

Υ(
∑
i

λi ⊗mi) =
∑
i,j

ω(λi, λj)[mi,mj ]

Thanks to the self duality of sl(2) as an algebra and to the identifications

sl(2)⊗ Λ1 ∼= Hom(sl(2),Λ1) sl(2) ∼=
2∧
sl(2)

we have a map

Υ : Hom(sl(2),Λ1) →
∧2 sl(2)

f 7→ 2f∗ω

and Υ−1(0) = Homω(sl(2),Λ1).

To complete our proof we need to give an isomorphism for any v ∈ Ω0
R

CvRDol ∼= Υ−1(0).

First we prove that this locus is reduced and we proceed as in the case of Σ0
R. More precisely

we have the following lemma:

Lemma 2.4.9. P(Υ−1(0)) a reduced irreducible complete intersection of three quadrics in

P6g−1.

Proof. We first observe that the quadrics that intersects are precisely those given by the isotropy

conditions. In fact if f ∈ Homω(sl(2),Λ1) then Im(f) is an isotropic subspace of Λ1, therefore

if {a1, a2, a3} is basis of sl(2) then ω(f(ai), f(aj)) = 0 for all i, j = 1 . . . 3 which gives us

the three quadrics. Now we need to prove that their intersection is complete, irreducible and

reduced. To do that we determine the critical locus of Υ. Consider the polarization of the

quadratic form Υ

Υ̃(
∑
i

mi ⊗ λi,
∑
j

nj ⊗ µj) :=
∑
i,j

ω(λi, µj)[mi, nj ] :

then the differential of Υ in a point f =
∑

imi ⊗ λi is given by

dΥ(f) : sl(2)⊗ Λ1 → sl(2)∑
j nj ⊗ µj 7→

∑
i,j ω(λi, µj)[mi, nj ]
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One can easily see that the rank of dΥ(f) depends just on rkf :

rk(dΥ(f)) =


3 if rkf ≥ 2

2 if rkf = 1

0 if f = 0

Let cr(Υ) be the critical set of Υ: it is give by the f ∈ Hom(sl(2),Λ1) whose rank is ≤ 1.

Then, as g ≥ 2,

dimP(cr(Υ)) = 2g + 1 < 6g − 4 = dimP(sl(2)⊗ Λ1)− 3

the dimension of the critical set is strictly less than the dimension of Υ−1(0), therefore the

intersection of the three quadrics is reduced and complete. Now we need to prove irreducibility:

from the above consideration we see that the dimension of the projectivization of the singular

locus of Υ−1(0) in Υ−1(0) is strictly bigger than 1; on the other hand the above formula for

the rank of the differential show that for every singular point p

dimTpPΥ−1(0) = dimPΥ−1(0) + 1.

If P−1(0) were reducible, as it is connected it should be the intersection of two irreducible

components. However the above equality shows that the intersection of those components

should be the intersection of two divisors in a smooth ambient space, hance it should have

codimension 1 in PΥ−1(0), which contradicts what we said above.

We are now ready to construct the isomorphism between Υ−1(0) and the fibre of the normal

cone CΩRRDol. We first observe that since ΩR consists of isolated points, then (CΩRRDol)v =

CvRDol. Proceeding as in the case of Σ and using the previous lemma we have that P(HvRDol) =

P(HvRDol)red = P(Υ−1(0)). Now consider the inclusion

CvRDol ⊂ HvRDol = Υ−1(0);

as

dimCvRDol = dimRDol = 6g − 3 = dimExt1H(V, V )− 3 = dim Υ−1(0)

then CvRDol should be an irreducible component of Υ−1(0), which is irreducible: thus CvRDol =

Υ−1(0). This completes the proof of proposition (2.4.8).
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2.4.2 The space PDol, its singularities and normal cones

Call πP : PDol → RDol the blow-up of RDol along ΩR, and let ΩP be its exceptional divisor.

We have seen that this is isomorphic to Homω(sl(2),Λ1). As our aim is to compute the

desingularization of the GIT quotient MDol of RDol by the action of SL(2,C), we need to

describe just the semistable points of Ω̂ because the other will disappear when we do the

quotient.

Semistable points in ΩP

Proposition 2.4.10. Let [f ] be an element of Homω(sl(2),Λ1). Then [f ] is semistable with

respect to the action of SL(2,C) if and only if

rkf


≥ 2 or

= 1 and kerf⊥ is non isotropic ,

where orthogonality and isotropy are with respect to the Killing form on sl(2).

Proof. We observe that the action of SL(2,C) on Λ1 is trivial, therefore we just consider

the action on Hom(sl(2),Λ1) ∼= sl(2) ⊗ Λ1 ∼= sl(2)2g with the adjoint representation applied

simultaneously on every factor. We see that the torus C∗ of SL(2,C) acts with weight 2 on

E, -2 on F and 0 on H. If we apply the Hilbert-Mumford criterion we see that a point is not

semistable if and only if it is either of type (E,E, . . . , E) or (F, F, . . . , F ) ∈ sl(2)2g. To give

this condition in a way which is invariant under conjugation, we ask precisely for the rank of

f to be greater equal than 2 (which corresponds to the cases in which two different matrices

(E,F,H) are present in the vector) or to be of dimension 1 with the orthogonal non isotropic

(and this corresponds to the case (H,H, . . . ,H)).

Semistable points of ΣP

Call ΣP the strict transform of ΣR under the blow-up. Again, we want to describe the locus

Σss
P of semistable points. We start by describing Σss

P \ Ω̂: by proposition (2.2.2)

Σss
P \ ΩP ⊆ π−1

P (Σss
R − ΩR) = π−1

P (Σ0
R

∐
Ω′R).
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We want to prove the following result:

Proposition 2.4.11. Keep the notation as above. Then

Σss
P \ ΩP = π−1

P (Σ0
R)

To prove the proposition, we need the following lemma [OG, Lem. 1.7.4].

Lemma 2.4.12. Assume G is a reductive group acting linearly on a complex projective scheme

Y and S be a closed G-invariant subscheme. Let p : Ỹ → Y be the blow up of S. Let ṽ ∈ Ỹ be

a point such that v := p(ṽ) is such that

v 6∈ S, O(v) ∩ Sss 6= 0,

then ṽ is not semistable.

Now consider w ∈ PDol such that πP (w) = v ∈ Ω′R. Then O(v) ∩ ΩR 6= ∅ hence by the

above lemma w is not semistable. Hence π−1
P (Ω′R) ∩ PsDols = ∅ and Σss

P \ ΩP ⊆ π−1
P (Σ0

R).

We want to show the reverse inclusion, that is that every point in π−1(Σ0
R) is semistable.

Consider w ∈ π−1
P (Σ0

R) and let πP (w) = v. As O(v) is closed in RssDol and disjoint from the

SL(2,C)-invariant closed subset ΩR

Now consider the intersection Σss
P ∩ ΩP : again, by Kirwan’s theorem, we can see that it

contained in π−1
P (ΩR) which consists of 22g copies of PHomω(sl(2),Λ1).

Lemma 2.4.13. Let v ∈ ΩR. Then

π−1
P (v) ∩ Σss

P = PHomss
1 (sl(2),Λ1)

where Homss
1 (sl(2),Λ1) is the set of those f ∈ Homω(sl(2),Λ1) which are semistable and of

rank ≤ 1 and has dimension 2g.

Proof. If w ∈ Σ0
R then it has stabilizer C∗. Thus dimSt(w̃) ≥ 1 for any ṽ ∈ ΣP . In particular

if

[f ] ∈ π−1
P (v) ∩ Σss

P

the stabilizer St([f ]) has positive dimension. By the description given in the proof of proposition

(2.4.10), we have that the stabilizer has positive dimension if and only if rank f = 1 and this
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tells us that π−1
P (v) ∩ Σss

P ⊂ PHomss
1 (sl(2),Λ1).

Let’s prove the other inclusion. Assume [f ] ∈ PHomss
1 (sl(2),Λ1). The isomorphisms sl(2) ∼=

sl(2)∗ allow to write

[f ] = m⊗ α m ∈ SL(2,C), α ∈ Λ1,Tr(m2) 6= 0.

As Tr(m2) 6= 0, m is diagonalizable and using a basis of eigenvectors we can write f as

f =

 λ 0

0 −λ

 λ ∈ Λ1, (2.6)

Now we can deform the points in ΩR on a curve, that is we can find a sheaf L on a smooth

curve Γ such that for a given point 0 ∈ Γ

L0
∼= L−1

0 = (L, 0)

and Lp 6∼= L−1
p for all p 6= 0. Call K and K−1 the Kodaira-Spencer map of L and L−1, then

K(∂/∂t) = λ K−1(∂/∂t) = −λ, ∂/∂t ∈ T0Γ.

Set V = L⊕L−1. If U is a slice normal to the orbit of v, then there exists a map ψ : Γ→ U , 0 7→ v

such that G is the pullback of the quotient sheaf on C × U . By (2.6), the differential of ψ at 0

has image spanned by f . Also, since ψ−1(ΩR) = {0}, there is a well defined lift ψ̃ : Γ → PDol
such that ψ̃(Γ) ⊂ ΣP . Thus [f ] = ψ̃(0) ∈ Σss

P ∩ ΩP .

The aim of this section is to prove the following proposition:

Proposition 2.4.14. Keeping notation as above,

(i) Σss
P is smooth;

(ii) The intersection Σss
P ∩ ΩP is smooth and reduced;

(iii) The normal cone of Σss
P in PDol is a locally trivial bundle over Σss

P , with fibre the cone

over a smooth quadric in P4g−5.
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We omit the proof of the first two points in the proposition, for which we refer to [OG,

Prop. 1.7.10], and describe the normal cone. We observe that outside ΩP , πP is an isomorphism

therefore the normal cone of Σss
P −ΩP is isomorphic to CΣRRDol, whose fibre is a smooth quadric

in P4g−5.

Now let w ∈ Σss
P ∩ ΩP and set v := πP (w), then w will be of the form w = [f ], where f is an

element of PHomss
1 (sl(2),Λ1). Since ΩP and Σss

P intersect transversely, then

(CΣPPDol)[f ]
∼= (CΣP∩ΩPΩP )[f ];

also, since Ωss
P → ΩR is a locally trivial fibration over 22g distinct points then

(CΣP∩ΩPΩP )[f ]
∼= (CPHom1(sl(2),Λ1)PHomω(sl(2),Λ1))[f ]

If [f ] ∈ PHom1(sl(2),Λ1), Imf is a one-dimensional isotropic subspace of Λ1 with respect to

the symplectic form ω defined in the previous section and it makes sense to consider the space

Imf⊥ω/Imf. We call ωf the symplectic form induced by ω on Imf⊥ω/Imf, which is a space of

dimension 2g − 2.

Lemma 2.4.15. Keep the notation as above. Then

(CPHom1(sl(2),Λ1)PHomω(sl(2),Λ1))[f ]
∼= Homωf (Kerf, Imf⊥ω/Imf)

Remark 11. Lemma (2.4.15) directly implies the proof of point (iii) in proposition (2.4.14): in

fact Hom(Kerf, Imf⊥ω/Imf) is a vector space of dimension 4g−4 and since ωf is non-degenerate

the isotropy condition given by ωf on the images of basis of Kerf defines a cone over a smooth

projective quadric, which will live in P4g−5.

Proof of lemma 2.4.15. We first observe that

(CPHom1(sl(2),Λ1)PHom0(sl(2),Λ1))[f ]
∼= (CHom1(sl(2),Λ1)Hom

ω(sl(2),Λ1))[f ]

and we can work on the right-hand side. First we show that the Hessian cone toHom1(sl(2),Λ1)

in Homω(sl(2),Λ1) is defined and that it is equal to the normal cone. We observe that

Hom1(sl(2),Λ1) is smooth. Also, Homω(sl(2),Λ1) is the zero set of Υ and dΥ−1(0) has con-

stant rank along Hom1(sl(2),Λ1) therefore the tangent space to Homω(sl(2),Λ1) has constant



2.4 Construction of the desingularization M̂Dol 49

rank along Hom1(sl(2),Λ1). Now we want to compute the Hessian and normal cone: to do

this we choose a basis {λ1, . . . , λ2g} of Λ1 and {m1,m2,m3} of sl(2) such that f = λ1 ⊗m1

and such that the matrix associated to ω is block diagonal with g blocks of order 2 of the form 0 1

−1 0

 .

Using the formula for the differential in the proof of lemma 2.4.9 and noticing that ω(λ1, λi) = 0

whenever i 6= 2, we get that

dΥ0(φ)(
∑
i,j

Zijλi ⊗mj) = Z22[m1,m2] + Z23[m1,m3],

hence

(THomω(sl(2),Λ1))φ =

∑
i,j

Zijλi ⊗mj | Z22 = Z23 = 0

 .

If we consider rank 1 applications, they have to be of the form
∑

i Zijλi ⊗ mj for a fixed

j = 1, 2, 3 and they annihilate the differential if and only if either j or i = 1. As a result,

(THom1(sl(2),Λ1))φ =

∑
i,j

Zijλi ⊗mj | Zij = 0 if i ≥ 2, j ≥ 2

 .

Thus we have an isomorphism

(NHom1Hom
ω(sl(2),Λ1))φ ∼=

 ∑
i≥3,j≥2

Zijλi ⊗mj

 . (2.7)

Considering the natural isomorphism

(NHom1Hom(sl(2),Λ1))φ ∼= Hom(Kerφ,Λ1/ Imφ)

given by writing the generators of the right hand side in terms of tensor products, we can view

the normal bundle as the set of functions whose image is orthogonal to Imφ:

(NHom1Hom
ω(sl(2),Λ1))φ ∼= {α : Kerφ→ Λ1/ Imφ | Imα ⊂ (Imφ⊥/ Imφ)}.

Viewing (NHom1Hom
ω(sl(2),Λ1))φ as a deformation space and compute the Yoneda square

as in equation (2.4) we get that the equation of the Hessian cone of Hom1(sl(2),Λ1) in

Homω(sl(2),Λ1)) is ∑
2≤l≤g

(Z2l−1,2Z2l,3 − Z2l,2Z2l−1,3) = 0.
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In particular the hypotheses of lemma (2.3.4) are satisfied, hence the normal cone is equal to

the Hessian cone and we are done.

Action of the stabilizers.

We want to describe the action of the St(w) on (CΣPPDol)w at a point w ∈ Σss
P .

First we notice that if w is outside ΩP , the action is the one described in proposition (2.3.4).

In fact (Σss
P ΩP ) = π−1

P (Σ0
R) and on this set πP is an isomorphism. If instead w ∈ ΩP ∩Σss

P then

by lemma (2.4.12) we can write w = [f ] for an element [f ] ∈ Homss
1 (sl(2),Λ1). By the stability

condition, Ker f must be non isotropic. We choose bases {λ1, . . . , λ2g} of Λ1 and {m1,m2,m3}

of sl(2) as in the previous section, adding the conditions

(m1,m2) = −δ1i

(mj ,mj) = 0 j = 2, 3

(m2,m3) = 1

and m1 ∧m2 ∧m3 is the volume form (here we are exploiting again the isomorphism sl(2) ∼=∧2 sl(2). We observe that an element θ ∈ SL(2,C) stabilize [f ] if and only if it is an orthogonal

transformation of Ker f with respect to the Killing form. The stabilizer St(f) is generated by
1 0 0

0 α 0

0 0 α−1



−1 0 0

0 0 1

0 1 0


The action on the normal cone CΣPPDol is given by multiplication of the above matrices with

the mj appearing in the expression of equation (2.7).

2.4.3 Semistable points of SDol and construction of the desingularization

Call πS : SDol → PDol the blow-up of PDol along ΣP . Let ΩS ⊂ SDol be the strict transform of

ΩP and ΣS ⊂ SDol be the exceptional divisor (i.e. the inverse image ΣP ). Let v = (V,Φ, β) ∈

ωR and set V = L⊕ L. By lemma (2.4.12) and the second item of proposition (2.4.13),

(πP ◦ πS)−1(v) = BlPHom1PHom
ω(sl(2),Λ1)
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thus ⋃
v∈ΩR

BlPHom1PHom
ω(sl(2),Λ1) ⊂ ΩS .

Call ∆S the closure of the left-hand side. Observe that SDol has dimension 6g − 3 while

BlPHom1PHomω(sl(2),Λ1) has dimension 4g, thus

codim(∆S ,SDol) = 2g − 3

As ΩS is a divisor in SDol then ∆S = ΩS if and only if g = 2.

Let now πT : TDol → SDol be the blow up of SDol along ∆S and denote by ΩT and ΣT the

proper transforms of respectively ΩS and ΣS . We define

M̂Dol := TDol//SL(2,C)

By proposition (2.2.2), there exists a map π̂ : M̂Dol → MDol which is induced by the equiv-

ariant map πP ◦ πS ◦ πT . Set

Ω̂ := ΩT // SL(2,C) Σ̂ := ΣT // SL(2,C)

We now prove, following the method by [OG], that M̂Dol is a desingularization of MDol.

In the next section, in the case of genus 2, we construct a desingularization M̃Dol such that

the map π̃ : M̃Dol →MDol is semismall.

Analysis of ΩS

We have defined ΩS as the strict transform of ΩP under the map πS .

Proposition 2.4.16. The following holds:

(i) Ωss
S is smooth,

(ii) Ωss
S = Ωs

S.

To do that we need some preliminary lemmas.

Lemma 2.4.17. Let v ∈ Ω. Then the fibre (πP ◦πS)−1(v), which is equal to BlPHom1PHomω(sl(2),Λ1),

is nonsingular.
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Proof. By lemma 2.4.15 the exceptional divisor is a locally trivial fibration over PHomω(sl(2),Λ1)

and the fibre over a point [f ] is

Homωf (Kerf, Imf⊥ω/Imf),

that is a smooth quadric in P4g−5. As the base PHomω(sl(2),Λ1) is smooth, so is the exceptional

divisor. Thus the blow up is smooth along the exceptional divisor. Then the complement of

the exceptional divisor is smooth by (2.4.3).

Lemma 2.4.18. All SL(2,C) semistable points of BlPHom1PHomω(sl(2),Λ1) are SL(2,C) sta-

ble. More explicitly:

(i) Referring to the notation of (2.4.15), the semistable points in the exceptional divisor are

given by{
([f ], [α]) | [f ] ∈ PHomss

1 (sl(2),Λ1), [α] ∈ PHomωf (ker f, Im f⊥/ Im f), α(m2) 6= 0 6= α(m3)
}

Moreover, for ([f ], [α]) in the above set, the stabilizer

St([f ], [α]) ∼=

 Z2 if rankα = 2

Z2 ⊕ Z2 if rankα = 1.

(ii) The semistable points which are not in the exceptional divisor are given by

{
[f ] ∈ PHomss(sl(2),Λ1) | rank f = 3 or rank f = 2 and ker f non isotropic

}
For [f ] belonging to this set, stabilizer St([f ]) is trivial if rank f = 3 and equal to Z2 if

rank f = 2.

Proof. By (2.2.2) the semistable points of the exceptional divisor are contained in the inverse

image of PHoms
1s(sl(2),Λ1). If we apply the Hilbert-Mumford criterion as in proposition

(2.4.10), we are asking precisely for the images of E,F under the isomorphism of (2.4.10) not

to vanish. Rephrasing this condition in an equivariant way we get item (i).Let’s prove item

(ii). Applying again the numerical criterion, we observe that all the points of the set are stable

and by proposition (2.2.2) they remain so after the blow-up. We show that if rank f = 2 and
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Ker f is isotropic, then [f ] is not semistable. Choose m ∈ sl(2) such that m ∈ Ker f⊥ and

m 6∈ Ker f . Then there exists a one parameter subgroup λ : C∗ → SL(2,C) such that

lim
t→0

λ(t).f = g

where rank g = 1 and Ker g⊥ = m. Thus [g] should be in PHoms
1s(sl(2),Λ1), which is the

centre of the blow-up. However lemma (2.4.12) tells us that in this case [f ] cannot be semistable

because it does not belong to centre of the blow-up but the closure of its orbit intersects the

semistable points of it.

We are now ready to prove proposition (2.4.16).

Proof of proposition (2.4.16). By (2.2.2) we know that (πP ◦ πS)(Ωss
S ) ⊂ ΩR. Let v ∈ ΩR, by

lemma (2.4.17) the fibre (πP ◦ πS)−1(v) is smooth. As semistability is an open condition, we

get Ωss
S . The second item, follows directly from lemma (2.4.18).

Analysis of Σss
S

Proposition 2.4.19. The following holds:

(i) Σss
S is nonsingular,

(ii) Σss
S = Σs

S.

Proof. By (2.2.2), we have that Σss
S ⊂ π−1

S (Σss
P ) = P(CΣssP

PDol). Let w ∈ Σss
P and let v =

πP (w). Then either v ∈ Σ0
P or v ∈ Ω0

P . In the latter case, the preimage has been described

in the previous proposition. In the former case, we have that Σss
S ∩ (πP ◦ πS)−1(v) = P{(b, c) |

b ∪ c = 0, b, c 6= 0}. Also, all semistable points are stable. The stabilizer of any point in the

above set is Z2. Thus for every w ∈ Σss
P , π−1

S is a smooth quadric in P4g−5. By item (i) of

(2.4.16) Σss
P is smooth. Again, since stability is an open condition, we conclude that Σss

S is

smooth. The second item now follows from the previous claim.
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Analysis of SssDol

By Kirwan’s propositions we have that

SssDol = Σss
S ∪ Ωss

S ∪ (πS ◦ πP )−1(RsDol ∪ Σ
′0
R ∪ Ω

′0
R)

However, by (2.4.11) there are no semistable points in (πS ◦πP )−1(Ω
′0
R) and if we apply lemma

(2.4.12) to Y = PDol, Ỹ = SDol and V = ΣP we get that for any w ∈ π−1
P (Σ

′0
R) O(w)∩Σss

P 6= 0,

therefore there are no semistable points in (πS ◦ πP )−1(Σ
′0
R). Thus we conclude that

SssDol = Σss
S ∪ Ωss

S ∪ (πS ◦ πP )−1(RsDol) (2.8)

Proposition 2.4.20. We have:

(i) SssDol is nonsingular,

(ii) SssDol = SsDol.

Proof. The first item follows from the fact that (πS ◦ πP )−1(RsDol) lies in the stable locus by

lemma (2.2.2) , and we have just proved every pointΩss
S and Σss

S is indeed stable. To prove

the second item we observe that RsDol is smooth (this follows from the smoothness of the

deformation space of any point RsDol). As (πS ◦ πP ) is an isomorphism on the stable locus,

then also (πS ◦ πP )−1(RsDol) is smooth. Now we conclude by noticing that both Ωs
S and Σss

S

are nonsingular Cartier divisors, therefore SsDol is smooth along them.

Analysis of ∆s
S

We defined ∆S as the closure in SDol of the locus⋃
v∈ΩR

BlPHom1PHom
ω(sl(2),Λ1).

Proposition 2.4.21. Keep the notation as above. Then ∆S is nonsingular.

We want to see that ∆s
S is nonsingular. As stability is an open condition, it suffices to prove

that each one of the 22g fibres BlPHom1PHomω(sl(2),Λ1) is nonsingular.

We set

Grω(k,Λ1) := {[A] ∈ Gr(k,Λ1) | A is ω-isotropic }

P̃Homω
2 (sl(2),Λ1) := {([K], [A], [f ]) ∈ P(sl(2))×Gr(2,Λ1)× PHomω

2 (sl(2),Λ1) | K ⊂ Ker f, Im f ⊂ A},
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and let g : P̃Homω
2 (sl(2),Λ1)→ PHomω

2 (sl(2),Λ1) the projection onto the third factor.

Lemma 2.4.22. There exists an SL(2,C) equivariant isomorphism

g̃ : P̃Homω
2 (sl(2),Λ1)→ BlPHom1PHom

ω
2 (sl(2),Λ1)

such that the map g corresponds to the blow down map.

As the P̃Homω
2 (sl(2),Λ1) is nonsingular by lemma (2.4.17), then lemma (2.4.22) implies

that also BlPHom1PHomω
2 (sl(2),Λ1) is, showing in this way that ∆s

S is nonsingular.

Proof. By the Second Fundamental Theorem of Invariant Theory, the ideal IPHom1 of PHom1

is generated by 2 × 2 minors. Thus g∗IPHom1 is locally generated by the ”determinant” of

f̄ : sl(2)/K → A, hence it is locally principal. By the universal property of the blow up, there

exists a map g̃ as in the statement of the lemma. We now want to prove g̃ is an isomorphism.

Choose bases of sl(2) and Λ1 and realize the blow up as the closure in PHomω
2 (sl(2),Λ1)×P4g−3

of

{([f ], . . . , [mIJ(f)], . . .) | f ∈ Hom2(sl(2),Λ1), rank f = 2,mIJ(f) = (I×J)-minor, | I |=| J |= 2}

The map g̃ is given by

([K], [A], [f ]) 7→ ([f ], . . . , [pI(K)qJ(A)], . . .)

where PI(K) are the Plücker coordinates of [K⊥] ∈ Gr(2, sl(2)∗), and qJ(A) are Plücker coor-

dinates of [A]. This proves g̃ is an isomorphism and it is equivariant by construction.

Smoothness of M̂Dol

Proposition 2.4.23. Let M̂Dol = TDol//SL(2,C). Then π̂ : M̂Dol →MDol is a desingular-

ization of MDol.

Proof. We are now ready to prove that π̂ : M̂Dol →MDol is a desingularization.

By the first item of (2.4.20) the semistable points of SDol are actually stable, hence

T ssDol = π−1
T (SssDol) = π−1

T (SsDol) = Bl∆s
S
SsDol.
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As both ∆s
S and SsDol are nonsingular, so is the blow up T sDol. By (2.4.18), if v ∈ ΩR then

∆S∩ΣS∩(πP ◦πS)−1(v) = {([f ], [α]) ∈ PHom1(sl(2),Λ1)× ∈ PHomωf (Ker f, Im f⊥/ Im f) | rankα = 1}

By (2.4.19) and (2.4.18), for every point of z ∈ T sDol
{1} if z /∈ Σs

T ∪∆s
T

Z2 if z ∈ (Σs
T ∪∆s

T ) \ (Σs
T ∩∆s

T )

Z2 ⊕ Z2 if z ∈ Σs
T ∩∆s

T

Since Σs
T and ∆s

T are divisors, we conclude that M̂Dol is nonsingular.

2.5 Construction of the semismall desingularization for g = 2

We now restrict ourselves to the case of genus 2. Starting from the desingularization M̂Dol of

MDol, we construct another desingularization M̃Dol, such that the map π̃ : M̃Dol →MDol is

semismall. To do that we first describe the divisor Ω̂: its fibre over a point v ∈ Ω is isomorphic

to the total space of the projective bundle P(S2A) where A is the tautological C2 bundle over

the symplectic Grassmannian Grω(2,Λ1).

Thanks to Mori theory, we prove that if we do a contraction of M̂Dol over the P2-fibration

P(S2A)→ Ω̂→ Grω(2,Λ1), we end up with a semismall desingularization M̃Dol of MDol.

2.5.1 Description of Ω̂

Let Grω(2,Λ1) be symplectic Grassmannian over any point v = (V, 0) ∈ Ω and let A be the

tautological C2 bundle over it. We will prove the following.

Proposition 2.5.1. Keeping the notation as above, then for any v ∈ Ω the fibre of the excep-

tional divisor is isomorphic to the projective bundle P(S2A)

Ω̂v
∼= P(S2A)

Given v ∈ Ω we define the classes ε̂v and γ̂v in the cone of effective curves NE1(Ω̂v) in

the Neron-Severi cone N1(Ω̂v)(see [Ko] for further details). We let ε̂v be the class in N1(Ω̂v)
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of a line in the fibre of P(S2A) → Grω(2,Λ1). To define γ̂v we notice that proposition 2.5.1

gives the isomorphism Ω̂v
∼= P(S2A). Choose [H] ∈ P(Λ1) = P3 and [ql] ∈ P(S2H) and let

{[At] ∈ Grω(2,Λ1)}t∈P1 be a line through [H] i.e. for every t ∈ P1 there exists an inclusion

it : H ↪→ At and [At/H] ∈ P(H⊥/H) varies in a line. We observe that [it∗ql] is a local section

of P(S2A), therefore we can set

γ̂v :=
[
([At], [i

t
∗ql])

]
N1(Ω̂v)

and obtained an element of N1(Ω̂v) which is effective by definition. Letting iv : Ω̂v ↪→ M̂Dol

be the inclusion, we set

ε̂ := i∗v ε̂v

γ̂ := i∗vγ̂v

As the right-hand sides of the equalities do not depend on the point v ∈ Ω, ε̂ and γ̂ are well

defined as elements in NE1(M̂Dol). We obtain the following result.

Proposition 2.5.2. Keep notation as above. Then:

(i) R+ε̂ is a KM̂Dol
-negative extremal ray;

(ii) let M̃Dol be the variety obtained by contracting R+ε̂. Then M̃Dol is a smooth quasi-

projective desingularization of MDol.

(iii) The contraction of R+ε̂ is identified with the contraction of M̂Dol along the fibration

P(S2A)→ Ω̂→ Grω(2,Λ1).

(iv) Call π̃ the map obtained by π̂ contracting its fibres over the points in Ω. Let Ω̃ := π̃−1(Ω)

and Σ̃ := π̃−1(Σ). The fibre of π̃ over a point in Ω is isomorphic to the nonsingular

quadric hypersurface Grω(2,Λ1) in P4.

(v) The fibre of π̃ over a point in Σ0 is isomorphic to P1.

By proposition (2.5.2) we can prove the main theorem of this section.

Theorem 2.5.3. Consider π̃ : M̃Dol →MDol. Then π̃ is semismall.
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Proof. We recall that a proper map f : X → Y of algebraic varieties is semismall if and only

if, put Yk = {y ∈ Y | dim f−1(y) = k}, then one has

dimYk + k ≤ dimX − k. (2.9)

First of all we notice that since π̃ is birational, then it is proper.

Set

MDol,k :=
{
v ∈MDol | dim π̃−1(v) = k

}
We stratify MDol as

MDol =Ms
Dol t Σ0 t Ω,

where Ms
Dol denotes the smooth locus of MDol.

Since C is a curve of genus 2,MDol is a quasi-projective variety of dimension 6. We have seen

in section 2.2 that the singular locus

Σ0 = {(V,Φ) | (V,Φ) = (L, φ)⊕ (L−1,−φ), with (L, φ) 6∼= (L−1,−φ)}

is given by
[
(Pic0(C)×H0(KC)) \ (16 points )

]
/Z2. Pic0(C) is a 2-dimensional torus, while

H0(KC) ∼= C2 therefore Σ0 has dimension 4. The singular locus

Ω = {(V,Φ) | (V,Φ) = (L, 0)⊕ (L, 0) with L ∼= L−1}

parametrizing the fixed points of the involution (L, φ) 7→ (L−1,−φ) consists just of 16 points,

corresponding to the roots of the trivial bundle on C.

On Ms
Dol, π̃ is an isomorphism and every point has just one pre-image, thus Ms

Dol =

MDol,0. Thus it satisfies (2.9). Let now v ∈ Σ0. By proposition (2.5.2, (iv)), Σ̃ \ Ω = π̃−1(Σ0)

is a P1-bundle over Σ0. Then one has that Σ0 correspond the stratumMDol,1. Again it satisfies

(2.9). Finally,by (2.5.2, (iv)), the fibre over each one of the 16 points of Ω is isomorphic to

Grω(2,Λ1), which is a nonsingular hypersurface in P4. As a result it has dimension 3. This

tells us that Ω is MDol,3 and that it satisfies (2.9) as well.

Remark 12. We observe that all the strata indeed satisfy the equality

MDol,k + k = dimM̃Dol − k,

that is they are relevant strata in the decomposition theorem for semismall maps (1.5.1).
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We now prove proposition (2.5.1). We recall that for genus 2, TDol = SDol, hence M̂Dol =

SDol//SL(2,C). We call q : SsDol → M̂Dol the quotient map.

Proof of proposition 2.5.1. We have the isomorphism

P̃Homω
2 (sl(2),Λ1)// SL(2,C) ∼= BlPHom1PHom

ω
2 (sl(2),Λ1)// SL(2,C) .

As SL(2,C) acts trivially on Grω(2,Λ1) we get a map

h : P̃Homω
2 (sl(2),Λ1)//SL(2,C)→ Grω(2,Λ1), ([K], [A], f) 7→ [A]

As we are considering the case rank f = 2 the semistable points of P̃Homω
2 (sl(2),Λ1) are in the

preimage of semistable points of ωS , therefore by (2.4.18) we have

P̃Homω
2 (sl(2),Λ1)ss = P̃Homω

2 (sl(2),Λ1)s = {([K], [A], f) | [K] is non isotropic},

hence the projection on the first factor P̃Homω
2 (sl(2),Λ1) → P(sl(2)) maps the stable locus

to the complement of the isotropic conic, i.e. P(sl(2))ss. The action of SL(2,C) by adjoint

representation on P(sl(2))ss is transitive, therefore

h−1([A]) = PHom(K⊥, A)//SO(K⊥)

where [K] ∈ P(sl(2))ss is any chosen point. Now observe that the map PHom(K⊥, A) →

P(S2A), α 7→ α ◦t α is the quotient map for the SO(K⊥) action. As a consequence we have

h−1(A) ∼= P(S2A) for any A ∈ Grω(2,Λ1).

To prove proposition (2.5.2) we will use Mori theory. Here we state and prove some technical

lemmas.

Lemma 2.5.4.

NE1(Ω̂v) = R+ε̂v ⊕R+γ̂v

Proof. Consider the maps g : Ω̂v → Grω(2,Λ1) ← Ω̂v, h : PHomω(sl(2),Λ1)//SL(2,C). One

can easy verify that they are the contractions of R+ε̂v and R+γ̂v respectively. Therefore they

are extremal rays. Now, since g is a P2-fibration on Grω(2,Λ1), which is a smooth quadric

threefold, then N1(Ω̂v) has rank 2 and the lemma is proved.
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Now, take [A] ∈ Grω(2,Λ1). We want to prove that Ω̂|P(S2A)
∼= OP(S2A)(−1).

Lemma 2.5.5.

q∗(Ω̂) ∼ 2Ωs
S

where ∼ denotes numerical equivalence.

Proof. Since q−1Ω̂ = Ωs
S , all we have to do is determine the multiplicity of q∗Ω̂ at a generic

point of Ωs
S . Let v ∈ Ωs

S \ΣS , by (2.4.18) the stabilizer St(v) is equal to Z2. Let now U ⊂ SsDol
be a slice normal to = O(v). By (2.3.1), U//Z2 is isomorphic to some neighbourhood of q(v)

in M̂Dol. Since the fixed locus of the action of Z2 is ΩS ∩ U , the claim is true on U .

Lemma 2.5.6. Let [K] ∈ P(sl(2))ss. As K is non isotropic then there exists a straight line Θ

in PHomω(sl(2),Λ1). Then

ΩS ·Θ = −1

where · denotes the standard intersection form.

Proof. We have Ωs ∼ π∗SΩP and

ΩP |PHomω(sl(2),Λ1)
∼= OPHomω(sl(2),Λ1)(−1).

Since the restriction of πS to Θ is an isomorphism to a straight line in PHomω(sl(2),Λ1), then

the intersection must be -1.

Now we can prove that Ω̂|P(S2A)
∼= OP(S2A)(−1). Suppose Ω̂|P(S2A)

∼= OP(S2A)(a). By (2.5.4)

q maps Θ on-to-one onto a conic Γ ⊂ P(S2A). Using the previous lemmas we get

2a = Ω · Γ = q∗Ω ·Θ = 2ΩS ·Θ = −2

from which we conclude that a = −1.

2.5.2 Analysis of Σ̂

Let v ∈ Σ0. As before, we call Σ̂v := π̂−1(v). Hence Σ̂v ⊂ (Σ̂ \ Ω̂).

Proposition 2.5.7. Keep the notation as above. Then there exists an isomorphism Σ̂v
∼= P1

and Σ̂ · Σ̂v = −2.
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Proof. By (2.4.1), we have that

Σ̂v
∼= P{(b, c) ∈ Ext1(L−1, L)⊕ Ext1(L,L−1) | b ∪ c = 0}//C∗

and the action of C∗ is the one described in (2.4.1). As we have already seen, this is a perfect

pairing, therefore one gets that Σ̂v
∼= P1.

Consider now the skew-symmetric isomorphism ψ : Ext1(L,L−1)→ Ext1(L−1, L) given by the

involution and let Θ := {(b, c, ψ(c))} ⊂ P{(b, c) | b ∪ c = 0}s. Then q(Θ) ∼= Σ̂v and the map is

an isomorphism. Thus

Σ̂ · Σ̂v = q∗Σ̂ ·Θ,

again arguing as in the proof of lemma (2.5.5) we see that q∗Σ̂ ∼ 2Σs
S . Moreover, as Θ is a line

in P{(b, c) | b ∪ c = 0} ,then ΣS ·Θ = −1. Thus

Σ̂ · Σ̂v = q∗Σ̂ ·Θ = 2Σs
S ·Θ = −2.

Let now kv : Σ̂v ↪→ M̂Dol be the inclusion. We need to prove the following result.

Lemma 2.5.8. Keeping the notation as above,

kv∗NE1(Σ̂) = R+γ̂.

Proof. As Σ̂ · Σ̂v = −2 then kv∗NE1(Σ̂) = R+[Σ̂v]. If we approach Ω from Σ, we see that [Σ̂v]

can be represented by a one cycle Γ on Ω̂v ∩ Σ̂. The cycle Γ must be mapped to a single point

by the map induced by πS , and this implies that it must be a multiple of the cycle defining

γ̂.

Finally, we are ready to prove the first item of proposition (2.5.2).

Proof of item (i) of (2.5.2). We start by proving the first item. Arguing as in the previous

proofs we see that KM̂Dol
∼ 2Ω̂. Given that Ω̂|P(S2A)

∼= OP(S2A), we deduce that KM̂Dol
· ε̂ = −2

i.e. R+ε̂ is KM̂Dol
-negative. We show that ε̂ and γ̂ are linearly independent and that the image

of the map iv∗ : NE1(Ω̂)→ NE1(M̂Dol) is injective with image R+ε̂⊕R+γ̂. This comes from
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the fact that Ω̂ · ε̂ = i∗v[Ω̂] · ε̂ = −1, thus by (2.3.3) Ω̂ · γ̂ = 0. As a consequence ε̂ and γ̂ define

independent elements in N1(M̂Dol). Now, noticing that R+ε̂⊕R+γ̂ = NE1(Ω̂), then the image

of the inclusion must be generated by them.

Given the previous observations, the prove thatR+ε̂ is extremal is a consequence of the following

lemma.

Lemma 2.5.9. Keeping the notation as above, R+ε̂⊕R+γ̂ is an extremal face of NE1(M̂Dol).

Proof. Suppose to have a positive linear combination of irreducible curves on M̂Dol
∑

α∈I tαΓα ⊂

R+ε̂⊕R+γ̂. We want to show that in this case any Γα lies in ⊂ R+ε̂⊕R+γ̂. As π̂∗ε̂ = π̂∗γ̂ = 0,

we get π̂∗Γα is zero, therefore π̂(Γα) is a point. We can then partition the set I = IΩ
∐
IΣ

such that if α ∈ IΩ then Γα ⊂ Ω̂v for some v ∈ Ω; if α ∈ IΣ then Γα ⊂ Σ̂w for some

w ∈ Σ0. If α ∈ IΩ the first item follows from R+ε̂⊕R+γ̂ = NE1(Ω̂); if α ∈ IΣ it follows from

kv∗NE1(Σ̂) = R+γ̂. To prove the second item, we use Mori theory. We know we have a fibration

P2 → Ω̂v → Grω(2,Λ1), where the P2 fibre is isomorphic to P(S2A) for any A ∈ Grω(2,Λ1).

If we show that the contraction of the extremal ray R+ε̂ is identified with the contraction of

M̂Dol along this fibration, then by standard Mori theory we have that M̃Dol is smooth. Let Θ

be a line in the fibre of the fibration, then [Θ] = ε̂. What we need to show is that if Γ ⊂MDol

is an irreducible curve such that [C] ∈ R+ε̂, then Γ belongs to the fibre. Notice that Γ · Ω̂ < 0,

hence Γ ⊂ Ω̂. Furthermore, since π̂∗(Γ) = 0, there exists a point v ∈ Ω such that Γ ⊂ Ω̂v. As

R+ε̂⊕R+γ̂ = NE1(Ω̂), then [Γ] ∈ R+ε̂, therefore Γ belongs to the fibre.

Finally we prove the last three items of proposition (2.5.2), that is that M̃Dol is nonsingular.

The proof is a direct consequence of the following lemma. Recall that we have the P2-fibration

P2 → Ω̂→ Grω(2,Λ1) (2.10)

where the fibre over any point [A] is P(S2A).

Lemma 2.5.10. The contraction of R+ε̂ is identified with the contraction of M̂Dol along the

fibration (2.10).

Proof of (ii),(iii), (iv) in proposition (2.5.2) . Consider a line Θ in the fibre of (2.10): then

[Θ] = ε̂. Hence we must prove that if Γ ⊂ M̃Dol is an irreducible curve such that [Γ] ∈ R+ε̂,
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then Γ belongs to a fibre of (2.10). We have seen that Γ · Ω̂ < 0 , hence Γ ⊂ Ω̂. Furthermore,

since π̂∗Γ = 0 there exists a point v ∈ Ω such that Γ ⊂ Ω̂v. Then [Γ] ∈ R+ε̂v, i.e. Γ belongs to

a fibre of (2.10).

We observe that the P2 fibres of Ω̂ that have been contracted are contained in the fibres of π̂.

From the previous lemma we deduce straightforward that Ω̃v
∼= Grω(2,Λ1) for every v ∈ Ω.

Now let v ∈ Σ0. If we again define Σ̂v := π̂−1(v), then Σ̂v is contained in (Σ̂ \ Ω̂). However we

observe that outside of Ω̂ nothing has changed, thus Σ̃v := π̃−1(v) = Σ̂v, which isomorphic to

P1 by lemma (2.5.7).

We are now ready to prove that the map π̃ is semismall.

2.6 Intersection cohomology of MDol

In the previous section we constructed a semismall desingularization M̃Dol
π̃−→ MDol of the

moduli space MDol of Higgs bundles of rank 2, degree 0 and trivial determinant over a curve

of genus 2.

We can thus apply the decomposition theorem for semismall maps (1.5.1) which we restate

here for ease of the reader.

Theorem. Let f : X → Y be a semismall map of algebraic varieties. Let Λrel the set of relevant

strata, and for each Yα ∈ Λrel let Lα the corresponding local system with finite monodromy

defined above. Then there exists a canonical isomorphism in P(Y )

f∗QX [dimX] ∼=
⊕

Yα∈Λrel

ICY α(Lα)

As we have seen in chapter 1, in this case the only supports are the relevant strata, that is,

the strata Yk for which dimYk + k = dimX − k.

In the case of π̃ : M̃Dol → MDol, we have seen in the proof of theorem (2.5.3) that all the

strata satisfy the equality thus they are all relevant. In particular we showed

Ms
Dol =MDol,0 Σ0 =MDol,1 Ω =MDol,3.
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We stratify M̃Dol as follows

M̂Dol = π̃−1Ms
Dol t (Σ̃ \ Ω̃) t Ω̃.

By proposition (2.5.2)

1) π̃ is an isomorphism on the smooth locus of MDol;

2) Ω̃ := π̃−1(Ω) is the union of 16 copies of a nonsingular projective hypersurface Grω(2,Λ1)

in P4;

3) the fibre of (Σ̃ \ Ω̃) = π−1(Σ0) over any point of Σ0 is isomorphic to P1.

Applying the decomposition theorem for semismall maps we get that,

ICM̃Dol
= ICMDol

(LMDol
)⊕ ICΣ(LΣ)⊕ ICΩ(LΩ) (2.11)

We will use the above splitting to compute the intersection E-polynomial IE(MDol) ofMDol.

Definition 2.6.1. The IE-polynomial of a variety X is defined as

IE(X)(u, v) =
2 dimX∑
h=0

(−1)k
∑
h,p,q

ihk,p,qc upvq

where ihk,p,qc = dim GrpFGr
W
p+qIH

k
c (X) and satisfies the following properties:

(i) if Z ⊂ X then IE(X) = IE(Z) + IE(X \ Z)

(ii) IE(X × Y ) = IE(X)IE(Y )

If we consider ordinary cohomology groups instead of intersection cohomology we just call

the polynomial obtained in this way the E-polynomial of X and we denote it by E(X).

Let’s go back to the splitting (2.11). Let us observe that we as the fibres of π̃ over both Ω and

Σ0 are irreducible, then the monodromy of the local system is trivial. Moreover since Ω and

Σ0 are nonsingular we have

ICMDol
(LMDol

)|Ms
Dol

= Q[6] ICΣ(LΣ)|Σ0
∼= Q[4](−1) ICΩ(LΩ)|pt ∼= Q(−3)
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where the shifts (−1) and (−3) correspond to the Hodge structures Q(−1) of respectively P1

and Grω(2,Λ1).

Taking hypercohomology with compact support in (2.11), we obtain the intersection cohomol-

ogy groups and the splitting in the decomposition theorem becomes

H∗c (M̃Dol) = IH∗c (MDol)⊕H∗−2
c (Σ, ICΣ(LΣ))⊕H∗−6

c (Ω, ICΩ(LΩ))

The only contributions from the summands supported on Σ and Ω come from the highest

cohomology groups of the fibres. Therefore, when we consider the cohomology with compact

support to find the IE-polynomial of MDol, we first sum the E-polynomials of each stratum

and compute the E-polynomial of M̃Dol. After that, we subtract the contribution coming from

the top cohomology of the fibres to get the IE-polynomial of MDol. We will have that

Theorem 2.6.1 (Main Theorem).

IE(MDol)(u, v) = u6v6 + u5v5 + 15u4v4 + u5v3 + u3v5 + 15u3v3 + u2v4 + u4v2.

We observe that

E(M̃Dol) = E(Ms
Dol) + E(Σ̃ \ Ω̃) + E(Ω̃) (2.12)

thus in the following sections we compute the E-polynomial of each each summand.

2.7 Cohomology of Ms
Dol

The aim of this section is to compute the cohomology with compact support of the smooth

partMs
Dol of the moduli spaceMDol, which parametrizes pairs (V,Φ) that are stable. We will

show that

Theorem 2.7.1. Let Ms
Dol be the locus of stable Higgs bundles. Then the E-polynomial of

Ms
Dol is

E(Ms
Dol) = u6v6 + u5v5 + 16u4v4 + 11u3v3 − 17u2v2

It is well known that Ms
Dol contains the locus N S of stable vector bundles as open dense

subset, but there are several Higgs bundles whose underlying vector bundle is not stable. This
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is due to the fact that not all vector subbundles of V are Higgs subbundles: for example on

may consider the bundle

V = K−1
C ⊕KC

where KC denotes the canonical bundle onX. This vector bundle is not stable because the

subbundle KC has slope greater than the slope of V ; however KC is not a Higgs subbundle

because to be Φ invariant Hom(KC ,K
−1
C ) ∼= K−2

C should have global sections, which is not not

the case as it is of negative degree.

To compute the E-polynomial ofMs
Dol we will construct a suitable stratification, compute the

E-polynomial of the strata and sum them up. We will sistematically apply the following well

known result.

Proposition 2.7.2 (Addivity property of compact support cohomology). Let Y be a

quasi-projective variety. Let Z be a closed subset of Y and call U its complement. Then, given

the inclusions U �
� j // Y Z? _

ioo there is a long exact sequence in cohomology

. . . // H i
c(U)

j! // H i
c(Y )

i! // H i
c(Z) // . . .

Therefore we will divide stable Higgs pairs in following three strata:

• pairs (V,Φ) with V stable vector bundle;

• pairs (V,Φ) with V strictly semistable vector bundle;

• pairs (V,Φ) with V unstable vector bundle.

2.7.1 The stable case

We want to parametrize all the stable Higgs bundles (V,Φ) where V is a stable vector bundle.

Calling S the locus of stable vector bundles, the stable Higgs pairs (V,Φ) are parametrized by

the cotangent bundle T ∗S. We will show the following:

Proposition 2.7.3. Keep the notation as above. The E−polynomial of the locus T ∗S of stable

Higgs pairs (V,Φ) with V stable vector bundles is

E(T ∗S)(u, v) = u6v6 − u3v5 − u5v3 − 3u4v4



2.7 Cohomology of Ms
Dol 67

Proof. Narasimhan and Ramanan [NR] proved that the locus of semistable vector bundles

with trivial determinant modulo S-equivalence (equivalently polystable vector bundles up to

isomorphism) on a nonsingular projective curve C of genus 2 is isomorphic to CP3. Considering

polystable pairs, a vector bundle V is strictly semistable if and only if is of the form

V = L⊕ L−1, L ∈ Pic0(C)

therefore strictly semistable vector bundles are parametrized by J := Pic0(C)/Z2 where Z2 is

the involution L 7→ L−1. This is a compact Kummer variety with 16 singular points, which are

precisely the fixed points of the involution, whose desingularization is a K3 surface obtained by

blowing up J in the singular points. The locus of stable bundles is precisely the complement of

J inside P3: our strategy will be to compute the compact support cohomology of this locus and

using Poincaré duality to obtain the Betti numbers. First we need to compute the cohomology

of J : observe that this is given by the Z2 invariant part of the cohomology of Pic0(C), which

is a 2-torus. The Betti numbers of Pic0(C) are

b0 = 1 b1 = 4 b2 = 6 b3 = 4 b4 = 1

and the action of Z2 on the cohomology sends every generator γ of H1 in −γ. Therefore the

even cohomology groups are all Z2-invariant, while the odd ones are never; thus the Betti

numbers of J are

b0 = 1 b1 = 0 b2 = 6 b3 = 0 b4 = 1.

Alternatively, one can notice that the cohomology of J differs from the one of its desingular-

ization just in the H2 part, which has in addition the cohomology of the 16 exceptional divisors

isomorphic to P1, and the Betti numbers of a K3 surface are

b0 = 1 b1 = 0 b2 = 22 b3 = 0 b4 = 1.

Such a description is useful to compute the weights of the cohomology: we observe that the

mixed Hodge structure on the cohomology of a K3 surface is pure and so is the cohomology of

J . In particular we have that H0(J ) has weights (0,0), H2(J ) splits in 4(1, 1) + (2, 0) + (0, 2),

and H4(J ) has weights (2, 2). Consider now the inclusions S �
� j // P3 J? _ioo as both P3 and



2.7 Cohomology of Ms
Dol 68

J are compact, we have the long exact sequence:

. . . // Hk
c (S)

j! // Hk(P3)
i! // Hk(J ) // . . .

which splits in the following sequences

0 // H0
c (S) // C i! // C // H1

c (S) // 0 (1)

0 // H2
c (S) // C i! // C6 // H3

c (S) // 0 (2)

0 // H4
c (S) // C i! // C // H5

c (S) // 0 (3)

0 // H6
c (S) // C // 0 ⇒ H6

c (S) ∼= C (4)

First we consider (1): the map i! = i∗ is the restriction to a hyperplane sections, therefore

it is an isomorphism by Lefschetz hyperplane theorem, thus H0
c (S) = H1

c (S) = 0.

Next we have (2): i! is the restriction of the fundamental class of P1 inside P2 which remains

nonzero when we intersect it generically with J , thus i! is an injection and we have H2
c (S) = 0

and H3
c (S) = C5. A similar argument shows that, in (3), i! is an isomorphism and that

H4
c (S) = H5

c (S) = 0.

Using Poincaré duality one has that the Betti numbers are

b0 = 1 b1 = 0 b2 = 0 b3 = 5 b4 = 0 b5 = 0 b6 = 0.

As T ∗S is a vector bundle over S, it inherits the cohomology of its base space, so the

compact support cohomology groups of S are

H9
c (S) = 5 with weights (3, 5) + (5, 3) + 3(4, 4)

H12
c (S) = 1 with weights (6, 6)

H i
c(S) = 0 otherwise.

As a result, the E-polynomial of the stable part is given by

E(T ∗S)(u, v) = u6v6 − u3v5 − u5v3 − 3u4v4
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2.7.2 Strictly semistable case

We want to consider the pairs (V,Φ), where V is a strictly semistable vector bundle, and

investigate when they become stable Higgs pairs. Again, we have to distinguish different cases:

(i) V = L⊕ L−1 where L ∈ Pic0(C) and L 6∼= L−1;

(ii) V is a non trivial extension 0 // L // V // L−1 // 0 with L 6∼= L−1;

(iii) V = L⊕ L−1 where L ∈ Pic0(C) and L ∼= L−1;

(iv) V is a non trivial extension 0 // L // V // L−1 // 0 with L ∼= L−1;

Type (i)

We call S1 the locus of stable Higgs bundles with underlying vector bundle of type (i). We will

show that

Proposition 2.7.4. The E-polynomial of the locus of stable Higgs bundles of type (i) is

E(S1)(u, v) = u5v5 + u3v5 + u5v3 + 3u4v4 − 21u3v3 + 15u2v2

Proof. We have already seen that strictly semistable vector bundles are parametrized by J =

Pic0(C)/Z2. We call J0 locus in J fixed by the involution and we set J 0 := J − J0 to be its

complement. The locus of stable Higgs bundles with underlying vector bundle of type (i) will

be a fibre bundle on J 0. To compute the fibre we consider V = L ⊕ L−1 with L ∈ Pic0(C)

such that L 6∼= L−1. We have that

H0(End0(V )⊗KC) = H0(KC)⊕H0(L2K)⊕H0(L−2KC)

thus a Higgs field Φ ∈ H0(End0(V )⊗KC) will be of the form

Φ =

 a b

c −a


with a ∈ H0(KC), b ∈ H0(L2K), c ∈ H0(L−2KC). A pair (V,Φ) is stable if and only if both

L and L−1 are not preserved by Φ, that is b, c 6= 0. Now we need to understand when two
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different Higgs fields give rise to isomorphic Higgs bundles: since the automorphisms group of

V is (C∗ × C∗) ∩ SL(2,C) ∼= C∗, two Higgs pairs (V,Φ1) and (V,Φ2) for Φ = (ai, bi, ci) are

isomorphic if and only if

Φ1 =

 t 0

0 t−1

φ2

 t−1 0

0 t


that is a1 = a2, b1 = t2b2, c1 = t−2c2. Therefore, the stable Higgs pairs (V,Φ) with fixed

underline vector bundle V are parametrized by

H0(KC)× (H0(L2K)− {0} ×H0(L−2KC)− {0})
C∗

∼= C2 × C∗

(this is an actual quotient as all the points are semistable with respect to the action of C∗).

Letting V vary, we obtain a C2 ×C∗ bundle S1 over J 0 and we now compute the cohomology

of its total space. Contracting the fibre to S1 we can consider S1 as a sphere bundle over J 0

and use the Gysin sequence to compute its cohomology. First, we need to find the cohomology

of J 0: to do that we proceed as before, computing compact support cohomology and applying

Poincaré duality. Consider the two inclusions J 0 � � j // J J0
? _ioo and the long exact sequence

in cohomology

. . . // Hk
c (J 0)

j! // Hk(J )
i! // Hk(J0) // . . .

which splits in

0 // H0
c (J 0) // C i! // C16 // H1

c (J 0) // 0 (1)

Hk
c (J 0) ∼= Hk

c (J ) ∀k ≥ 2 (2)

As J 0 is not compact, H0
c (J 0) = 0 thus H1

c (J 0) ∼= C15. By Poincaré duality and we have

H0(J 0) ∼= C H1(J 0) = 0 H2(J 0) = C6 H3(J 0) = C15 H4(J 0) = 0

with the same weights as the cohomology of J .

Applying the Gysin sequence

. . .→ H i(S1)→ H i−1(J 0)→ H i+1(J 0)→ . . .

this splits in the following sequences

H0(S1) ∼= C H3(S1) ∼= C21 H4(S1) ∼= C15 (2.13)
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0→ H1(S1)→ C→ C6 → H2(S1)→ 0 (2.14)

H i(S1) = 0 ∀i ≥ 5 (2.15)

In (2.14) the map C → C6 is the product by the Euler class of a nontrivial bundle, which is

nonzero, therefore H1(S1) = 0 and H2(S1) = C5. Recalling that in this case both the cup

product with the Euler class and the pushforward increases weights of (1,1), we are able to

compute weights of the cohomology. Therefore, applying Poincaré duality, the compact support

cohomology groups of S1 are

H i
c(S1) = 0 ∀i = 0, . . . 5 and i = 9

H6
c (S1) = C15 with weight (2, 2)

H7
c (S1) = C21 with weight (3, 3)

H8
c (S1) = C5 with weight 3(4, 4) + (3, 5) + (5, 3)

H10
c (S1) = C with weight (5, 5).

As a result, the E-polynomial of S1 is

E(S1)(u, v) = u5v5 + u3v5 + u5v3 + 3u4v4 − 21u3v3 + 15u2v2

Type (ii)

Now we want to compute the cohomology of the locus of stable pairs (V,Φ) where V is a

nontrivial extension of L by L−1 with L 6∼= L−1.

Proposition 2.7.5. Let V be a semistable vector bundle of type (ii). Then there is no Higgs

field Φ such that the pair (V,Φ) is stable.

Proof. Consider the universal line bundle L → J 0 × C and let p : J 0 × C → J 0 be the

projection onto the first factor. It is well known that non trivial extensions of L by L−1 are

parametrized by P(R1p∗L2): as R1p∗L2 is a local system on J 0 of rank one, we conclude
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that there exists a unique nontrivial extension up to isomorphism. Thus we can consider the

universal extension bundle V, which will be a bundle over J 0 × C by the remark above. Such

a bundle fits in the short exact sequence

0→ L → V → L−1 → 0 (2.16)

and parametrizes all the vector bundles V on C of type (ii). Now we have to take the Higgs

field into account and ask for it not preserve the subbundle L, which is the one that makes V

strictly semistable. By an abuse notation, let us denote by KC the pullback of the canonical

bundle on C under the projection J 0 × C → C: if we tensor the sequence (2.16) by KC and

apply the covariant functor Hom(V,−) restricted to traceless endomorphisms we obtain

0→ Hom(V,L ⊗KC)→ End0(V)⊗KC → Hom(V,L−1 ⊗KC)→ 0

If we pushforward to J 0 we obtain the long exact sequence

0→ p∗Hom(V,LKC)→ p∗End0(V)⊗KC → p∗L−2KC → (2.17)

→ R1p∗Hom(V,LKC)→ R1p∗End0(V)⊗KC → R1p∗L−2KC → 0 (2.18)

We have that a Higgs pair (V,Φ) is stable if and only if the Higgs field Φ it lies in the

complement of the kernel of the map p∗End0(V)⊗KC → p∗L−2, that are precisely those Φ for

which L is not invariant.

In order to prove the proposition, we show that the map p∗End0(V) ⊗KC → p∗L−2 is 0.

Starting again from (2.16) and applying the contravariant functor p∗Hom(−,LKC), we end up

with the long exact sequence

0→ p∗LKC)→ p∗Hom(V,LKC)→ p∗KC → (2.19)

→ R1p∗LKC)→ R1p∗Hom(V,LKC)→ R1p∗KC → 0. (2.20)

Consider the fibre of (2.19) on a point L ∈ J 0. One has

H1(L2KC)→ H1(V ∗LKC)→ H1(KC)→ 0,
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as H1(L2KC) = 0 we have that H1(V ∗LKC) ∼= H1(KC) ∼= C, thus R1p∗Hom(V,LKC) is a

local system of rank 1 on J 0 × C. Now we can again consider (2.17) on the fibre over L ∈ J 0

and obtain

0 // H0(V ∗LKC) // H0(End0(V )⊗KC) // H0(L−2KC)
ext // H1(V ∗LKC) //

// H1(End0(V )⊗KC) // H1(L−2KC) // 0

As we have seen, H1(V ∗LKC) ∼= H1(KC) ∼= C and H0(L−2KC) ∼= C: the map ”ext” is either

0 or an isomorphism. However, as V is a nontrivial extension, such a map has to be nonzero,

thus it is an isomorphism. Therefore we have that the map

p∗End0(V)⊗KC → p∗L−2KC

is zero.

Type (iii)

We now consider stable Higgs bundle with underlying vector bundle V = L ⊕ L−1 with L ∼=

L−1 ∈ J0.

Proposition 2.7.6. Let S3 be the locus of stable Higgs bundles with underlying vector bundle

V = O ⊕ O. Then the locus of stable Higgs pairs of type (iii) is the union of 16 copies of S3

and its E-polynomial is

E(16 · S3)(u, v) = 16u3v3 − 16u2v2

Proof. Up to tensor by L ∈ J0 we may restrict to the case L = O, so that V is just the trivial

bundle O ⊕O. In this case H0(End0(V )⊗KC) ∼= H0(KC)⊗ sl(2) ∼= C2 ⊗ sl(2) and the Higgs

field is of the form

Φ =

 a b

c −a

 with a, b, c ∈ H0(KC)
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The bundle is not stable if and only if Φ is conjugate to an upper triangular matrix of elements

of H0(KC). As the action of SL(2,C) on H0(KC)⊗ sl(2) is trivial on H0(KC) we can consider

it as the action of simultaneous conjugation on two matrices of sl(2). Thus we are looking for

the couples of matrices (A,B) ∈ sl(2) ⊕ sl(2) that are not simultaneously triangulable. This

equivalent to say that the matrices have no common eigenspace. By a result of Shemesh [She]

we have that two matrices A,B ∈ sl(2) if and only if Ker[A,B] 6= 0, that is det([A,B]) = 0. If

we write

A =

 x1 x2

x3 −x1

 B =

 y1 y2

y3 −y1

 (2.21)

we have that

[A,B] =

 x2y3 − y2x3 2(x1y2 − x2y1)

2(x3y1 − x1y3) −(x2y3 − y2x3)


and we can interpret the locus of simultaneously triangulable matrices (A,B) ∈ sl(2) ⊕ sl(2)

as the locus

Q : (x2y3−y2x3)2+4(x1y2−x2y1)(x3y1−x1y3) = 0 in C6 with coordinates (x1, x2, x3, y1, y2, y3).

Hence we have the following lemma

Lemma 2.7.7. A Higgs bundle (V,Φ) of type (iii) is stable if and only if Φ lies in

S3 := (C6 −Q)//SL(2,C)

where the action of SL(2,C) is the simultaneous conjugation on the matrices A and B as in

(2.21).

Corollary 2.7.8. The locus of stable Higgs bundles of type (iii) is isomorphic to 16 copies of

S3, one for each point of J0.

We start by looking at the quartic hypersurface Q in C6. If we set

α = x2y3 − y2x3

β = x1y2 − x2y1

γ = x3y1 − x1y3
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then for every (x1, x2, x3, y1, y2, y3) ∈ Q, (α, β, γ) satisfy the equation

α2 + 4βγ = 0.

thus we have a map from our quartic Q to the cone C := {(α, β, γ) ∈ C3 | α2 + 4βγ = 0}

f : Q→ C, (x1, x2, x3, y1, y2, y3) 7→ (x2y3 − y2x3, x1y2 − x2y1, x3y1 − x1y3)

Now let us point out our strategy to compute the cohomology of (C6 −Q):

1) thanks to the map f , we decompose Q as a disjoint union of the close set Q0 = f−1(0) and

its open complement Q−Q0 = f−1(C − {0});

2) we compute the cohomology with compact support of both Q0 and Q − Q0 and use the

additivity property to compute the cohomology with compact support of Q;

3) again, as C6 = Qt(C6−Q), we use the additivity property of the cohomology with compact

support to compute the cohomology of C6 −Q.

To compute the cohomology with compact support of our pieces, we first observe that α, β, γ

are, up to multiplication, nothing but the minors of order 2 of the matrix
x1 y1

x2 y2

x3 y3

 . (2.22)

Also,if we fix a point (α, β, γ) ∈ C we notice that both (x1, x2, x3) and (y1, y2, y3) are

orthogonal to (α, γ2 ,
β
2 ), thus they satisfy the equations

2αx1 + γx2 + βx3 = 0 2αy1 + γy2 + βy3 = 0

If (α, β, γ) 6= (0, 0, 0), let’s say β 6= 0, then have that

x3 =
−2αx1 − γx2

β
y3 =

−2αy1 − γy2

β

and when we substitute these values in (2.22) and compute the minors of order two we

obtain three equations all identical to

x1y2 − x2y1 =
β

2
.
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Therefore we conclude that the fibre of the map f in a point of C − {0} is a quadric in

C4, which is isomorphic to SL(2,C). Also, C − {0} is homotopy equivalent to RP3, thus it has

fundamental group Z2 and the monodromy outside the origin is trivial as it equal to the one

described in [FK, 3.1]. As a result, we can compute the cohomology with compact support of

Q−Q0 = f−1(C − 0) via the Künneth formula. We have:

H4
c (Q−Q0) = C H7

c (Q−Q0) = C2 H10
c (Q−Q0) = C H i

c(Q−Q0) = 0 otherwise

Now, we need to compute the cohomology of Q0: first observe that if α, β, γ are all zero,

one has that the matrix (2.22) has rank ≤ 1 that is (y1, y2, y3) is a multiple of (x1, x2, x3). Thus

points in Q0 are parametrized by (C3−{0})×Ct{0}×C3. We observe that Q0 has dimension

4 and the former is an open set in it, while the latter is closed. Therefore we can apply again

the additivity property of compact support cohomology to find H i
c(Q0). Observe that

H3
c ((C3 − {0})× C) ∼= C H8

c ((C3 − {0})× C) ∼= C H i
c((C3 − {0})× C) = 0 otherwise

H6
c ({0} × C3) ∼= C H i

c({0})× C3) = 0 otherwise
,

hence

H3
c (Q0) ∼= H6

c (Q0) ∼= H8
c (Q0) ∼= C, H i

c(Q0) = 0 otherwise

Again we apply additivity of compact support cohomology to obtain the cohomology of Q:

. . .→ H i(Q−Q0)→ H i(Q)→ H i(Q0)→ H i+1(Q−Q0)→ . . .

Now, H i
c(Q) = 0 for any i ≥ 5 since Q is affine and from the long exact sequence we

conclude that H7
c (Q) ∼= H8

c (Q) ∼= H10
c (Q) ∼= C and H i

c(Q) = 0 otherwise.

Finally, we compute the compact support cohomology of C6 − Q and from the additivity

property it is

H8
c (C6 −Q) ∼= H9

c (C6 −Q) ∼= H11
c (C6 −Q) ∼= H12

c (C6 −Q) ∼= C, H i
c(C6 −Q) = 0

Now we notice that SL(2,C) acts on C6−Q with a stabilizer which is at worst Z2, therefore

we can compute the cohomology by considering C6 − Q as a fibre bundle with fibre SL(2,C)

on S3

As SL(2,C) has the same homotopy type as S3 we can use the Gysin sequence
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. . .→ H i(C6 −Q)→ H i−3(S3)→ H i+1(S3)→ . . .

and we obtain

H0(S3) ∼= H1(S3) ∼= C, H2(S3) = 0 (2.23)

0→ H3(S3)→ C→ C→ H4(S3)→ C→ C→ H5(S3)→ 0 (2.24)

H6(S3) = 0, H4(S3) ∼= H8(S3) ∼= H12(S3) (2.25)

H3(S3) ∼= H7(S3) ∼= H11(S3) H5(S3) ∼= H5(S3) H6(S3) ∼= H10(S3) = 0 (2.26)

Since S3 is nonsingular connected but not compact, H12(S3) ∼= H0
c (S3) = 0, thus H4(S3) ∼=

H8(S3) = 0. Therefore from (2.24) we deduce that H3(S3) ∼= H5(S3) = 0, H7(S3) ∼= H11(S3) =

0 and H9(S3) = 0.

Therefore the E-polynomial of S3 is given by

E(S3)(u, v) = u3v3 − u2v2

Type (iv)

We now consider stable Higgs bundles of type (iv) and we prove the following result.

Proposition 2.7.9. Let S4 be the locus of stable Higgs bundles whose underlying vector is a

nontrivial extension of O by itself. Then the locus of stable Higgs bundles of type (iv) is the

union of 16 copies of S4 and its E-polynomial is

E(16 · S4) = 16u4v4 + 16u2v2

Proof. As before, we can assume L ∼= O. Let V be a nontrivial extensions of O by itself: the

isomorphism classes of such bundles are parametrized by

P(Ext1(O,O)) ∼= P1. (2.27)

Thus there exists a universal extension bundle on P1 × C

0→ O → V → O → 0.
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Let p : P1 × C → CP1 be the projection : as in the type (ii) case we tensor the short exact

sequence above by KC , apply the covariant functor Hom(V,−) and pushforward to P1 and we

end up with the long exact sequence (1)

0 // p∗Hom(V,KC) // p∗(End0(V)⊗KC) // p∗Hom(V,KC)
ext // R1p∗Hom(V,KC) //

// R1p∗(End0(V)⊗KC) // R1p∗Hom(V,KC) // 0

As before, stable Higgs bundles are precisely those with Higgs field in the complement of the

kernel of the map

p∗(End0(V)⊗KC)→ p∗Hom(V,KC).

or, equivalently, the complement of the image of p∗Hom(V,KC) in p∗(End0(V)⊗KC). First we

notice that p∗Hom(V,KC) ∼= p∗KC , which is a vector bundle of rank 2 and similarly we have

that R1p∗Hom(V,KC) ∼= R1p∗KC . As the extension is nontrivial, we have that the map ext is

nonzero and that its kernel has rank 1. Starting again from (2.27), we tensor with KC , apply

the contravariant functor Hom(−,O) restricted to traceless endomorphisms and pushforward

to P1 we obtain another long exact sequence (2)

0 // p∗KC
// p∗Hom(V,KC) // p∗KC

ext // R1p∗KC
// . . .

We observe that since R1p∗KC has rank 1 and the map ext is nonzero, the last map is surjective.

Hence, the cokernel of p∗Hom(V,KC) → p∗KC has rank 1 and consequently p∗Hom(V,KC)

has rank 3. Going back to the previous long exact sequence we conclude that p∗End0(V )⊗KC

is a vector bundle of rank 4, thus the locus of stable pairs is fibrewise the complement of a

hyperplane.

Finally we need to see which Higgs fields define the isomorphic Higgs bundles: the group of

automorphisms of a nontrivial extension of O by itself is the additive group (C,+) ⊂ SL(2,C),

and an element t ∈ C acts on the Higgs field Φ by conjugation:

t.Φ =

 1 t

0 1

 a b

c −a

 1 −t

0 1

 =

 1a+ tc b− 2ta− t2c

c −a− tc


Lemma 2.7.10. S4 is a C2- bundle over a C∗- bundle over P1.



2.7 Cohomology of Ms
Dol 79

Proof. Let A be the kernel of the extension map in (1), minus the zero section: thus A is a

C∗-bundle over P1. We can think of p∗(End0(V) ⊗KC) − p∗Hom(V,KC) as vector bundle of

rank 3 over A. Similarly, the kernel of the extension map of (2) gives rise to a vector bundle U

over A of rank 2 and the map

p∗Hom(V)→ p∗(End0(V)⊗KC)

lifts to a C-equivariant map

[p∗(End0(V)⊗KC)− p∗Hom(V,KC)]→ U

of vector bundles over A whose kernel is of rank 2. Now we have to take automorphism into

account: the action of (C,+) on U is linear a 7→ a+ tc, hence the quotient U/C os actually A

itself. As the map above is equivariant, we have that

[p∗(End0(V)⊗KC)− p∗Hom(V,KC)]/C→ U/C ∼= A

is a vector bundle of rank 2 over A.

Corollary 2.7.11. The locus of stable Higgs bundles of type (iv) is isomorphic to 16 copies of

S4, one for each point of J0.

Thanks to lemma (2.7.10), we can now compute the Betti numbers of S4: first we notice

that it is homotopy equivalent to a C∗-bundle on P1. Using the Gysin sequence we have that

the locus S4 of stable Higgs bundles of type (iv) has the following cohomology with compact

support:

H0(S4) ∼= H0(P1) ∼= C

0→ H1(S4)→ C→ C→ H2(S4)→ 0

H3(S4) ∼= H2(P1) ∼= C

H i(S4) = 0 for all i = 4 . . . 8.

As the central map of the second equation is the cup product with the Euler class of the

bundle A, which is nontrivial, therefore it is nonzero and we have H1(S4) = H2(S4) = 0.

Passing to compact support cohomology with Poincaré duality, the E-polynomial of S4 is

E(S4) = u4v4 + u2v2
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2.7.3 Unstable case

Consider the locus U of stable Higgs bundles (V,Φ) where V is an unstable vector bundle

with trivial determinant. Then there exists a line bundle L of degree d > 0 that fits an exact

sequence

0 // L // V // L−1 // 0

If d > 1 then the bundle L−2KC has no nonzero global section because it has negative

degree, hence L is Φ-invariant for any Higgs field Φ ∈ H0(End0(V ) ⊗ KC). The only case

we have to check is deg(L) = 1. The line bundle L−2KC has degree 0: it has global sections

if and only if it is trivial, that is L is one of the 16 roots of the canonical bundle KC . As a

consequence, if there exists an unstable vector bundle V which is stable as a Higgs bundle,

then it must be an extension of those bundles by their duals. We show the following

Proposition 2.7.12. The locus U of stable Higgs bundles (V,Φ) with V unstable is isomorphic

to C3. As a consequence its cohomology with compact support is given by

H6
c (U) = C H i

c(U) = 0 otherwise.

and the E-polynomial of U is E(U) = u3v3.

Proof. Trivial case

If V = L⊕ L−1 then

H0(End0(V )⊗KC) = H0(KC)⊕H0(L2KC)⊕H0(L−2KC) ∼= C2 ⊕ C3 ⊕ C

Thus the generic Higgs field will be of the form

Φ =

 a b

c −a

 with a ∈ H0(KC), b ∈ H0(L2KC), c ∈ H0(L−2KC).

Two Higgs fields define isomorphic Higgs bundles if and only if they are conjugate by an

automorphism of the bundle, which will lie in C∗× (H0(KC),+) ⊂ SL(2,C). The action of C∗
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on the Higgs field is precisely the one seen in the type (i) case. Therefore isomorphism classes

of stable Higgs bundles are parametrized by the disjoint union of 16 copies of

H0(KC)× (H0(L−2KC)− {0})×H0(L2KC))

C∗
∼= H0(KC)×H0(L2KC) ∼= C5.

Then we have to consider the action of (C2,+): if ζ ∈ H0(KC) = C2 then it acts as 1 ζ

0 1

 a b

c −a

 1 −ζ

0 1

 =

 a− ζc b+ 2ζa− ζ2c

c −a+ ζc

 .

Such an action is linear and free on a ∈ H0(KC) and whenever we fix a− ζc then the value of

b + 2ζa − ζ2c is fixed as well. Therefore the quotient of H0(KC) ×H0(L2LKC) by (C2,+) is

precisely C3.

Non trivial case

Non-trivial extensions of L by L−1 are parametrized by P(H1(L−2)) = P2 and fit the exact

sequence

0→ L→ V → L−1 → 0.

If we again tensor by KC and apply the functor Hom(V,−) restricted to traceless endomor-

phisms, when we take global sections we obtain

0→ H0(V ∗ ⊗ LKC)→ H0(End0(V )⊗KC)→ H0(V ∗ ⊗ L−1KC)→ H1(V ∗ ⊗ LKC)→ . . .

Again, a Higgs bundle that has V as underlying vector bundle becomes stable if and only if its

Higgs field lies in the complement of the kernel of H0(End0(V ) ⊗KC) → H0(V ∗ ⊗ L−1KC).

First we notice that due to trace condition Hom(V,L−1KXC = Hom(L,L−1KC) ∼= C and

H1(L−2KC) ∼= H1(O) ∼= C2. Applying the functor Hom(,−LKC) and taking global sections

we have that the long exact sequence in cohomology splits in

0→ Hom(L−1, LKC)→ Hom(V,LKC)→ Hom(L,LKC)→ 0 = H1(L2KC)

0→ H1(V ∗ ⊗ LKC)→ H1(KC)→ 0.
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From that we deduce thatH1(V ∗⊗LKC) ∼= H1(KC) ∼= C; alsoHom(L−1, LKC) ∼= H0(L2KC) ∼=

C3 and Hom(L,LKC) ∼= H0(KC) ∼= C2 thus Hom(V,LKC) ∼= C5. Coming back to the first

long exact sequence one has

0→ C5 → H0(End0(V )⊗KC)→ C→ C→ H1(End0(V )⊗KC)→ C2 → 0.

As the extension is nontrivial, one has that the map C → C is an isomorphism thus the map

H0(End0(V )⊗KC)→ C ∼= H0(V ∗ ⊗L−1KC) is zero and therefore the destabilizing bundle is

preserved by any Higgs field. We conclude that there are no non-trivial unstable extensions of

L by its dual that give rise to a stable Higgs bundle.

2.8 Computation of the IE(MDol)

Now that we have computed the cohomology with compact support of all pieces we can sum

them up to obtain the cohomology with compact support of Ms
Dol. Let us do first a table to

summarize the Betti numbers we have computed so far

H0
c H1

c H2
c H3

c H4
c H5

c H6
c H7

c H8
c H9

c H10
c H11

c H12
c

S0 0 0 0 0 0 0 0 0 0 5 0 0 1

S1 0 0 0 0 0 0 15 21 5 0 1 0 0

16×S3 0 0 0 0 0 16 16 0 0 0 0 0 0

16×S4 0 0 0 0 0 16 0 0 16 0 0 0 0

U 0 0 0 0 0 0 16 0 0 0 0 0 0

If we sum up all the E-polynomials computed so far we conclude that the E-polynomial of

Ms
Dol is

E(Ms
Dol) = u6v6 + u5v5 + 16u4v4 + 11u3v3 − 17u2v2
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2.8.1 Cohomology of Σ̃ \ Ω̃ and Ω̃

Cohomology of Ω̃

Lemma 2.8.1.

E(Ω̃)(u, v) = 16u3v3 + 16u2v2 + 16uv + 16

Proof. We recall that Ω̃ consists of 16 copies of a nonsingular hypersurface Grω(2,Λ1) in P4.

Therefore its cohomology is given by

H0(Ω̃) = H2(Ω̃) = H4(Ω̃) = H6(Ω̃) = C16

H1(Ω̃) = H3(Ω̃) = H5(Ω̃) = 0,

thus the E-polynomial of Ω̃ is

E(Ω̃)(u, v) = 16u3v3 + 16u2v2 + 16uv + 16

Cohomology of Σ̃ \ Ω̃

Lemma 2.8.2.

E(Σ̃ \ Ω̃)(u, v) = u5v5 + 5u4v4 + u5v3 + u3v5 + 5u3v3 + u2v4 + u4v2 + u2v2 − 16uv − 16

We observe that Σ̃ \ Ω̃ is P1 bundle over Σ0. Observe that Σ0 ∼= (Pic0(C)×H0(KC)/Z2 \

{16 points}. First we notice that Σ = (Pic0(C)×H0(KC)/Z has the same cohomology J thus

by Poincaré duality

H4
c (Σ) ∼= C of weights (2, 2)

H2
c (Σ) ∼= C6 of weights 4(3, 3) + (2, 4) + (4, 2)

H8
c (Σ) ∼= C of weights (4, 4)

H i
c(Σ) = 0 otherwise

As Σ0 = Σ\{16 points}, then it has the same cohomology groups as Σ except for H1
c (Σ0) ∼= C16

of weight 0. By the properties of E-polynomials,

E(Σ̃ \ Ω̃)(u, v) = E(P1)E(Σ0)(u, v) = (uv + 1)(u4v4 + u2v4 + u4v2 + 4u3v3 + u2v2 − 16)

= u5v5 + 5u4v4 + u5v3 + u3v5 + 5u3v3 + u2v4 + u4v2 + u2v2 − 16uv − 16
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As a result we have that

Theorem 2.8.3. Let M̃Dol the semismall desingularization of MDol. The E-polynomial of

M̃Dol is

E(M̃Dol) = u6v6 + 2u5v5 + 21u4v4 + u5v3 + u3v5 + 32u3v3 + u2v4 + u4v2.

By theorem (2.12), if we subtract the top cohomology of the fibres, we get that the E-

polynomial for the intersection cohomology of MDol is

IE(MDol) = u6v6 + u5v5 + 15u4v4 + u5v3 + u3v5 + 15u3v3 + u2v4 + u4v2.



Chapter 3

The cohomology of the nested

Hilbert schemes of planar curves

3.1 Introduction

For the rest of this section curves are assumed to be complex, integral, complete and with

locally planar singularities. We remind what locally planar singularities mean:

Definition 3.1.1. Let C be a complex curve. We say that C has locally planar singularities

if for every p ∈ C the completion ÔC,p of the local ring of C at p can be written as

ÔC,p = C[[x, y]]/(fp)

for some reduced series fp ∈ C[[x, y]].

Let C be a curve of arithmetic genus pa(C) := H1(C,OC).

We consider the Hilbert scheme of points C [m], which parametrizes length m finite subschemes

of C. More precisely the m−th Hilbert scheme of points of C is defined as

C [m] := {zero dimensional closed subschemes Z ⊂ C | dim(OC/IZ) = m}

where IZ is the ideal sheaf of Z. Hilbert schemes have been introduced by Grothendieck in

[Gr] and are now the focus of several works in mathematics. For a general introduction to

85
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Hilbert schemes of points and their properties we refer to [Ko, R]. In [AIK] and [BGS], these

varieties are proved to be nonsingular, complete, integral, m dimensional and locally complete

intersections. Moreover there is a forgetful map ρ : C [n] → C(n) from the Hilbert scheme to

the symmetric product of the curve that map any subscheme Z to his support. Such a map

is an isomorphism of algebraic varieties when the curve C is nonsingular, while it is birational

for singular curves.

We consider here the so called nested Hilbert scheme C [m,m+1] of length m+ 1 subschemes of

C in which an ideal of colength 1 is fixed. More precisely we define C [m,m+1] as

C [m,m+1] : = {(z′, z) | z′ ∈ C [m], z ∈ C [m+1], z′ ⊂ z}

= {(I, J) ideals of OC | I ⊂ J and dim(OC/J) = m,dim(OC/I) = m+ 1}

The theory nested Hilbert schemes of points on a curve have wide application, for example one

may relate the topological invariants of these spaces to HOMFLY invariants for the link of the

singularity of a curve [OS]. One can generalize the definition for C [m′,m+1] in an obvious way

for any m′ ≤ m+ 1, however the nested Hilbert schemes for m′ 6= m is always singular.

Also, we can consider the relative versions of C [m] and C [m,m+1](see [Ko] for details), that

is if π : C → B is a proper and flat family of curves we can define two families

π[m] : C[m] → B, (C[m])b = (Cb)[m]

π[m,m+1] : C[m,m+1] → B, (C[m,m+1])b = (Cb)[m,m+1]

In [Sh], Shende proves that, under some assumptions on the basis, the total space of the relative

Hilbert scheme C[m] is smooth. As a result, the decomposition theorem applied to the map

π[m] asserts that the complexes Rπ
[m]
∗ C decomposes in the derived category of constructible

sheaves Db
c(B) as a direct sum of shifted intersection complexes associated to local systems on

constructible subsets of the base.

Among them we find the intersection complex whose support is the whole base B. More

precisely, if we denote by π̃ : C̃ → B̃ the restriction of the family to the smooth locus, then

any fiber is a smooth curve and its Hilbert scheme coincides with the symmetric product; in

particular the map π̃[m] is smooth. Hence the summand of Rπ
[m]
∗ C[m + dimB] with support
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equal to B is
⊕
ICB(Riπ̃

[m]
∗ C)[−i] (the convention on the shift is the same as in theorem 1.2.1).

Migliorini and Shende showed that this is in fact the only summand.

Theorem 3.1.1 ([MS1], Theorem 1). Let C → B be a proper and flat family of integral plane

curves and let π̃ : C̃ → B̃ be its restriction to the smooth locus. If C[m] is smooth then

Rπ
[m]
∗ Q[m+ dimB] =

⊕
ICB(Riπ̃

[m]
∗ Q)[−i].

Here we prove that an analogous statement holds for the nested case.

Theorem 3.1.2. Let C → B be a proper and flat family of integral plane curves and let

π̃ : C̃ → B̃ be its restriction to the smooth locus. If C[m,m+1] is smooth then

Rπ
[m,m+1]
∗ Q[m+ 1 + dimB] =

⊕
ICB(Riπ̃

[m,m+1]
∗ Q)[−i].

As a corollary, one may show that the perverse filtration on the cohomology groups of the

nested Hilbert scheme does not depend on the map (cfr. [MS1, Prop. 24]).

The strategy for proving the theorem is the following. First we show that under some as-

sumption on the basis, the relative nested Hilbert scheme C[m,m+1] → B is smooth. After that

we prove, thanks to the theory of higher discriminants we introduced in Chapter 1, that the

only candidates for the supports are the strata Bi of points whose fibre in the family is a curve

of cogenus i. Using density of nodal curves in those strata, we verify the support criterion on

weight polynomials for a generic nodal curve of cogenus δ.

3.2 Versal deformations of curves singularities

As we will systematically employ versal deformation of curve singularities (as analytic spaces),

we recall here some known results. For further details we refer to [GLS].

Definition 3.2.1. Let (X,x) be the germ of a complex analytic space.

(i) A deformation (i, φ) : (X,x)
i−→ (X , x)

φ−→ (S, s) is a morphism φ of germs of complex

analytic spaces, together with an injection i such that X ∼= i(X) = Xx.
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(ii) A deformation (i, φ) : (X,x)
i−→ (X , x)

φ−→ (S, s) is called complete if, for any deformation

(j, ψ) : (X,x)
j−→ (Y, y)

ψ−→ (T, t) of (X,x), there exists a morphism θ : (T, t)→ (S, s) such

that (j, ψ) is isomorphic to the induced deformation (θ∗i, θ∗φ).

(iii) A deformation (i, φ) : (X,x)
i−→ (X , x)

φ−→ (S, s) is called versal if, for a given deformation

(j, ψ) as above, the following holds: forn any closed embedding k : (T ′, t) → (T, t) of

complex germs and any morphism θ′ : (T ′, t)→ (S, s) there exists a morphism θ : (T, t)→

(S, s) satisfying

(a) θ ◦ k = θ′, and

(b) (j, ψ) = (θ∗i, θ∗φ).

(iv) A deformation is locally versal if it induces versal deformations of all the singularities of

X.

(v) A versal deformation is called miniversal if, with the notation of (iii), the Zariski tangent

map T (θ) : TT,t → T(S,s) is uniquely determined by (i, φ) and (j, ψ).

Consider a deformation C → B, such that the fibre C over the base point b0 is a singular

curve. The condition of being versal roughly says that any other deformation of C can be obtain

(even though not uniquely) from C → B by pullback. The condition of being locally versal can

be interpreted in the following sense[FGVs]: if V(C) is the product of the versal deformation

spaces of the singularities of C, then there exists a tangent map Tb0B → T0V(C) coming from

the local-global spectral sequence for first order deformations of C. The deformation is locally

versal whenever this map is surjective.

In the following section we will often use miniversal deformations since they can be described ex-

plicitly. More precisely let (C, 0) be the germ at the origin of the zero locus of some f ∈ C[x, y]

such that f(0) = 0. Fix g1 . . . gt ∈ C[x, y] whose images form a basis of the vector space

C[x, y]/(f, ∂xf, ∂yf). Then consider F : Ct × C2 → Ct × C given by F (u1, ..., ut, x, y) =

(u1, . . . , ut, (f + giui)(x, y)). Taking the fibre over Ct × 0 gives a family of curves over Ct;

taking germs at the origin gives the miniversal deformation (C, 0) → (Ct, 0) of C. Moreover,

if g′1, . . . , g
′
s ∈ C[x, y] are any functions and (C′, 0) → (Cs, 0) the analogously formed deforma-
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tion of C, then the tangent map Cs → C[x, y]/(f, ∂xf, ∂yf) is just induced by the quotient

C[x, y] → C[x, y]/(f, ∂xf, ∂yf). As soon as this map is surjective, the family (C′, 0) → (Cs, 0)

is itself versal.

We would like to have a measure of ”how singular” a curve is, for example we could look at

how far a curve is from its normalization. Given a singular curve C and denoted its normaliza-

tion by C, we define the cogenus δ to be the difference between its arithmetic and geometric

genera δ(C) := pa(C)−pa(C). For example, the cogenus of a curve with one node is precisely 1.

The following theorem, show why the cogenus is a good candidate for our purpose. Moreover

it will be the key result to reduce the proof of theorem (3.1.2) to the case of a family of nodal

curves.

Theorem 3.2.1 ([T]). Let C → B be a family of curves. Then the cogenus is an upper

semicontinuous function on B. Local versality is an open condition and in a locally versal

family the locus of δ-nodal curves is dense in the locus of curves with cogenus at least δ. In

particular, the locus of curves of cogenus δ in a locally versal family has codimension δ.

As we are working with the cogenus we would like to have a result that allows us not to

care about pa(C). In [L] Laumon showed that any curve singularity can be found on a rational

curve. We will see that there exist an analogous result for families, that is given a family of

curves C → B then around a point b0 ∈ B one can find a different family of rational curves

such that C′b0 = Cb0 and the two families induce the same deformations of the singularities of

the central fiber. This is a consequence of the following proposition:

Proposition 3.2.2 ([FGVs]). The map from the base of a versal deformation of an integral

locally planar curve to the product of the versal deformations of its singularities is a smooth

surjection.

Corollary 3.2.3 ([MS1], Cor. 6). Let π : C → B be a family of curves. Fix b0 ∈ B, and

let Cb0 be the normalization of Cb0.Then there exists a neighbourhood b ∈ U ⊆ B and a family

π : C′ → U such that C′b0 is rational with the same singularities as Cb0, and C and C′ induce the

same deformations of these singularities on U . In particular, they have the same discriminant
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locus. Moreover, on U, we have an equality of local systems R1π̃′∗C⊕H1(Cb0), where H1(Cb0)

denotes the constant local system with this fiber.

To make use of such a replacement we need to know that C′[m,m+1] is smooth if C[m,m+1] is.

This follows from results on the smoothness of the nested Hilbert scheme which we are going

to show. The results and their proof are closely analogous to [Sh, Prop. 17 and Thm.19], in

which they are stated for C[m].

3.3 Smoothness of the relative nested Hilbert scheme

Let V ⊂ C[x, y] be a finite dimensional smooth family of polynomials and consider the family

of curves

CV := {(f, p) ∈ V × C2 | f(p) = 0}.

If we consider the associated family of nested Hilbert scheme C[m,m+1]
V then it is included in

V ×(C2)[m,m+1]. In [C], Cheah shows that the nested Hilbert scheme (C2)[m,m+1] is nonsingular

for all m. Moreover she gives an explicit description of its tangent space: if (I, J) is a pair of

ideals of C[x, y] with I ⊆ J such that (I, J) defines a point in (C2)[m,m+1], then the tangent

space T(I,J)(C2)[m,m+1] is isomorphic to Ker(φ− ψ) where

φ : HomC[x,y](I,C[x, y]/I)→ HomC[x,y](I,C[x, y]/J)

ψ : HomC[x,y](J,C[x, y]/J)→ HomC[x,y](I,C[x, y]/J)

are the obvious maps and

(φ− ψ) : HomC[x,y](I,C[x, y]/I)⊕HomC[x,y](J,C[x, y]/J)→ HomC[x,y](I,C[x, y]/J)

is defined as (φ− ψ)(η1, η2) := φ(η1)− ψ(η2).

Let us detail this isomorphism a little bit. The tangent space TJ(C2)[m] to the Hilbert scheme

(C2)[m] in an ideal J is canonically isomorphic to HomC[x,y](J,C[x, y]/J) and the isomorphism

is constructed in the following way. Given an element η ∈ HomC[x,y](J,C[x, y]/J) we choose a

lifting η̃ : J → C[x, y] and such a lifting gives a tangent vector Jε,η = J + η̃(J). The fact that η

is a morphism of C[x, y]-modules ensures that Jε,η is indeed an ideal of C[x, y, ε]/(ε2) and thus
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that it defines a tangent vector.

Now we observe that

T(I,J)(C2)[m,m+1] ⊂ TI(C2)[m+1]⊕TJ(C2)[m] ∼= HomC[x,y](I,C[x, y]/I)⊕HomC[x,y](J,C[x, y]/J).

The last isomorphism sends a pair (η, ζ) in a couple of tangent vectors

(Iε,η, Jε,ζ) with Iε,η = I + η̃(I), Jε,ζ = J + ζ̃(J),

that do not satisfy the condition Iε,η ⊆ Jε,ζ a priori; this is ensured precisely by requiring that

(η, ζ) lies in Ker(φ− ψ).

Choose a polynomial f ∈ I ⊂ J . If we write (Ĩ , J̃) for the image of the couple (I, J) in

C[x, y]/(f) then we have an exact sequence of vector spaces

0→ Tf,(Ĩ,J̃)C
[m,m+1]
V → TfV × T(I,J)(C2)[m,m+1] → C[x, y]/I, (3.1)

where the last map is given by

(f + εg, (η, ζ)) 7→ η(f)− g mod I.

Even though ζ do not intervene explicitly in the last map, the condition η(f) − g ≡ 0 mod I

ensures that infinitesimally f + εg is contained in Iε,η. Since (η, ζ) ∈ Ker(φ − ψ), Iε,η ⊂ Jε,ζ ;

thus f + εg belongs to Jε,ζ as well.

Now, we observe that if f is reduced then all the fibers in a neighbourhood U of f are reduced

and the relative nested Hilbert schemes C[m,m+1]
U are reduced of pure dimension dimV + m +

1. Also they are locally complete intersections [BGS]. Then C[m,m+1]
V is smooth at a point

(f, (I, J)) if the tangent space at this point has dimension m+ 1 + dimV .

Looking at dimensions of the vector spaces in (3.1), we notice that dimTfV = dimV as V

is supposed to be smooth, dimT(I,J)(C2)[m,m+1] = 2m + 2 by [C] and finally C[x, y]/I has

dimension m+ 1 by hypothesis: this tells us that dimTf,(Ĩ,J̃)C
[m,m+1]
V = dimV +m+ 1 if and

only if the last map in (3.1) is surjective. The easiest way to ensure this is to ask for surjectivity

already in the case η = ζ = 0, that is TfV → C[x, y]/I is surjective.

We are now ready to prove the smoothness of the relative nested Hilbert scheme.
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Proposition 3.3.1. Let C → V a family of versal deformations with base point 0 ∈ V. For

sufficiently small representatives C → V the relative nested Hilbert scheme C[m,m+1]
V is smooth.

Proof. Suppose f is the polynomial defining C0. Choose V ⊂ C[x, y] containing f such that

CV → V is a versal deformation of the singularity of C0 and TfV contains all polynomials of

degree ≤ m. Then TfV will be of dimension ≥ m + 1, thus for any I of colength m + 1, TfV

will project surjectively onto C[x, y]/I. By the considerations above, the dimensions counting

in (3.1) implies that the relative nested Hilbert scheme C[m,m+1]
V is smooth.

Remark 13. The smoothness of the relative nested Hilbert scheme over any versal deformation

is equivalent to the smoothness over the miniversal deformations. In fact, if C → V is the

miniversal deformations there are compatible isomorphisms V ∼= V× (Ct, 0) and C ∼= C× (Ct, 0)

and hence also C[m,m+1] ∼= C[m,m+1] × (Ct, 0)

For a fixed pair of ideals (I, J) with I of colength m + 1 , if we choose the basis V to be

(m+ 1)-dimensional then the relative nested Hilbert scheme C[m,m+1]
V is smooth by proposition

(3.3.1). We would like to find a basis We will need the following lemma, which is stated and

proved in [Sh].

Lemma 3.3.2. Let O be the completion of the local ring of a point on a reduced curve, and let

O be a finite length quotient of O. Let W ⊂ O a generic k dimensional vector space. Then for

I the image in O of any ideal of colength ≤ k, we have W + I = O.

With this lemma, we are now ready to prove the main theorem of this section.

Theorem 3.3.3. Let (C, 0) be the analytic germ of a plane curve singularity and let (C, 0)→

(V, 0) be an analytically versal deformation of (C, 0). Then, for sufficiently small representa-

tives C → V and a generic disc 0 ∈ Dm ⊂ V, the space C[h,h+1]
Dm+1 is smooth for h ≤ m+ 1.

Proof. As in proposition (3.3.1) it is enough to prove the theorem for any versal deformation

C → V. Let (C, 0) be the analytic germ and let f ∈ C[x, y] be its equation. Choose g1, . . . , gs ∈

C[x, y] such that their images in C[[x, y]]/(f, ∂xf, ∂yf) ∼= Cs form a basis. We have seen that

the miniversal deformation C → V := Cs has as fibres curves whose equation is of the form

f +
∑
tigi = 0.
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Let 0 ∈ Dm+1 ⊂ V be a generic (m+ 1)-dimensional disc. Its tangent space W has dimension

m+1 and lemma (3.3.2) ensures that W ⊂ C[[x, y]]/(f, ∂xf, ∂yf) is transverse to any ideal I of

colength h ≤ m+ 1. Thus for any h ≤ m+ 1the final map of (3.1) is surjective, and C[h,h+1] is

smooth at points over 0 ∈ Dm+1 which correspond to subschemes supported at the singularity.

Finally let z ⊂ C[h,h+1] be any subscheme of length h+ 1 ; let z′ be its component supported at

the singularity, say of length h′. Then an analytic neighbourhood of z in C[h,h+1] differs from

an analytic neighbourhood of z′ in C[h′,h′+1] by a smooth factor.

Corollary 3.3.4. Let C → B be a family of integral locally planar curves, locally versal at

b0 ∈ B. Then for any generic, sufficiently small b0 ∈ Dm+1 the relative nested Hilbert scheme

C[h,h+1] is smooth for h ≤ m.

Proof. Such a situation is analytically locally smooth over that in theorem (3.3.3); a compact-

ness argument yields smoothness uniformly over an open neighbourhood in the base.

From the smoothness of the relative nested Hilbert scheme we can deduce an analogue

result as the one in [MS1, Thm.8].

Corollary 3.3.5. Let C → B a family of curves and let V be the product of the versal defor-

mations of curve singularities. Then given a point b0 ∈ B,

(i) the smoothness of C[m,m+1] depends only on the image T of Tb0B in T0V;

(ii) if C[m,m+1] is smooth along C[m,m+1]
b0

then dim T ≥ min(δ(Cb0),m+ 1);

(iii) if dim T ≥ m+1 and T is general among such subspaces, then C[m,m+1] is smooth C[m,m+1]
b0

;

(iv) C[m,m+1] is smooth along C[m,m+1]
b0

for all m if and only if T is transverse to the image of

the equigeneric ideal. It suffices for T to be generic of dimension at least δ(Cb0).

Proof. To prove (i) take a subscheme z ∈ C[m,m+1]
b0

which decomposes as

z = (z0, . . . , zk)

such that z0 ∈ C[d0,d0+1]
b0

is a subscheme supported at a point c0 and zi ∈ C[di]
b0

are length di

subschemes supported on points ci.
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Let (Ci, ci)→ (Vi, 0) be the miniversal deformations of the singularities (Cb0 , ci) and (B, b0)→∏
(Vi, 0) a map along which

∐
(Ci, ci)→ (B, b0) pulls back. Then analytically locally, the germ

(C[m,m+1], [z]) pulls back from (C[d0,d0+1]
0 , [z0]) ·

∏
(Cdii , [zi]) along the same map. We observe

that the fibres of (Cdii , [zi])→ (Vi, 0) are reduced of dimension di by [AIK] and the total space

is nonsingular by [Sh, Prop. 17]. Moreover the same holds for (C[d0,d0+1]
0 , [z0])→ V0 by propo-

sition (3.3.1).

As the Vi were taken miniversal, the map Tb0B →
∏
T0Vi is uniquely defined and the smooth-

ness of the pullback depends only on the image T of such a map. To check (ii) we might

assume by (i) that the map Tb0B →
∏
T0Vi is an isomorphism and identify locally B with

its image in some representatives B of
∏

(Vi, 0). We can shrink B until it can be written as

B × Dk for some polydisc Dk; as smoothness is an open condition we may shrink Dk further

until C[m,m+1]
|B×ε is smooth for all ε ∈ Dk. By [T], the locus of nodal curves with the same cogenus

as Cb0 in
∏

Vi is nonempty and of codimension δ(Cb0); choose an ε such that B × ε contains

the point p corresponding to such a curve. If m+ 1 ≥ δ the statement is trivial. If m+ 1 ≤ δ,

we can find a point z ∈ C[m,m+1]
p , which is a subscheme supported at m+ 1 nodes. The Zariski

tangent space TzC[m,m+1]
p has dimension 2m + 2, therefore C[m,m+1]

p cannot be smoothed over

a base of dimension less than m+ 1. For point (iii), we assume as above that B is embedded

in B =
∏

Vi. As the dimension of T is greater equal than m + 1, then by lemma (3.3.2) it

is transverse to any ideal of colength ≤ m + 1, therefore the relative nested Hilbert scheme is

smooth. Finally, (iv) if T in T0V is transverse to the equigeneric ideal then the map in (3.1) is

surjective for any I and the relative nested Hilbert scheme is smooth.

3.4 Supports

In Chapter 1 we have defined the supports of a map to be the subvarieties Y α appearing in

the Decomposition theorem with some associated non-zero local systems Lα. In the following

section we want describe the supports of the map π[m,m+1] : C[m,m+1] → B. All the results

we will state in this section holds also for Hilbert schemes and were proved,even though not

stated, in [MS1]. In this section we are using the theory of higher discriminants we presented

in the first chapter. We recall that whenever we have a map f : X → Y with Y nonsingular
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the higher discriminants are defined as

∆i(f) := {y ∈ Y | there is no (i− 1)− dimensional subspace of TyY trasnverse to f}

More precisely we want to construct a stratification of B such that the strata are precisely the

higher discriminants of the map π[m,m+1] : C[m,m+1] → B. Let b0 ∈ B be the base point of B

and suppose Cb0 = C is the curve with the highest cogenus, which we call δ. For any i = 0 . . . δ

Bi := {b ∈ B | δ(Cb) = i}

and we have that B =
⊔
iBi. As in the case of higher discriminants, we notice that B0 is the

nonsingular locus of the family. We want to show the following proposition:

Proposition 3.4.1. Let π : C → B be proper flat family of curves such that the relative nested

Hilbert scheme π[m,m+1] : C[m,m+1] → B is nonsingular for any m. Let δ be the highest cogenus

we can find on a curve in the family. Then for any i = 0 . . . δ

∆i(π[m,m+1]) = Bi.

Proof. Let b ∈ Bi. As the relative nested Hilbert scheme is nonsingular at b, then by items

(ii) − (iv) of corollary(3.3.5) then the image T of TbB into the product of the first order

deformations of the singularities Cb must be of dimension greater or equal than i. Therefore

we have that Bi ⊆ ∆i(π[m,m+1]). Conversely suppose b ∈ ∆i(π[m,m+1]). If the cogenus of C

were < i, then T would have dimension < i contradicting item (ii) of corollary (3.3.5).

As a consequence of theorem (1.6.2) if we have supports different from the smooth locus,

then we will have to look for them in the i-codimensional irreducible components of the Bi’s.

We will prove theorem (3.1.2) by applying the criterion (1.6.3) on weight polynomials we stated

in Chapter 1.

First we show the result for the Hilbert scheme in [MS1] with a direct computation, then we

proceed to prove our theorem for the nested case. We recall that the criterion can be verified

just on the generic points of the strata. By theorem (3.2.1) the generic points of the Bi are the

nodal curves. Therefore we will prove theorem (3.1.2) for family of nodal curves.
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3.5 Proof of theorem 3.1.2

Let π : C → B a proper flat family of nodal curves, locally versal around a base point b0 ∈ B.

Suppose all the curves are rational: as we will see this is not a restrictive hypothesis. Call

δ := δ(Cb0). Consider the nodes {x1, . . . , xδ} of the central fiber Cb0 . Shrinking B if necessary,

we can assume the following facts:

1) The discriminant locus is normal crossing divisor ∆ :=
⋃
Di with i = 0, . . . , δ, where Di is

the locus in which the i−th node xi is preserved.

2) If b ∈ B is such that Cb is nonsingular, then the vanishing cycles {α1, . . . , αδ} associated

with the nodes are disjoint.

As the curve Cb is irreducible, the cohomology classes in H1(Cb) of these vanishing cycles are

linearly independent, and can then be completed to a symplectic basis {α1, β1, . . . , αδβδ}. Let

Ti be the generators of the (abelian) local fundamental group π1(B \ ∆, b) ∼= Zδ where Ti

corresponds to “going around Di”. Then the monodromy defining the local system R1π̃∗Q

on B \ ∆ is given via the Picard-Lefschetz formula, and, in the symplectic basis above, the

images of the generators of the fundamental group in GL(H1(Cb)) = GL(2δ,C) are given by

block diagonal matrices consisting of one Jordan block of order 2 corresponding to a symplectic

pair {αi, βi} and the identity elsewhere. Also, as the vanishing cycles are independent, we can

consider R1π̃∗Q as direct sum of δ modules Vi of rank 2 whose basis is {αi, βi}. This makes

much more easier to compute the invariants of any local system obtained by linear algebra

operations from R1π̃∗Q. In our case we observe that, as Cb is nonsingular then

C[m,m+1]
b = C(m,m+1)

b = C(m)
b × Cb = C[m]

b × Cb.

By the MacDonald formula for the cohomology of the symmetric product we have

Riπ̃
[m]
∗ Q =

[ i
2

]⊕
k=0

i−2k∧
R1π̃∗Q(−k) ∼= R2m−iπ̃∗Q(m− i) (3.2)

where (−k) denotes the weight shift of (k, k) in the mixed Hodge structure on the cohomology.

Call the linear algebra operation above Si,m. Applying the Künneth formula and recalling that
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the cohomology of any curve Cb in the smooth locus has a pure Hodge structure given by

R0π̃∗Q = Q R1π̃∗Q ∼= Q2δ R2π̃∗Q ∼= Q(−1)

we conclude that

(Riπ̃
[m,m+1]
∗ Q)b =

(
(Riπ̃[m]Q)⊕ (Ri−1π̃

[m]
∗ Q⊗R1π̃∗Q)⊕ (Ri−1π̃[m]Q(−1))

)
b

(3.3)

Call Ti,m the linear algebra operation we apply to on R1π̃∗Q to obtain R1π̃
[m,m+1]
∗ :

Ti,m(R1π̃∗Q) :=
2⊕
j=0

Si+j,m(R1π̃∗Q)⊗Rj π̃∗Q

Then there exists natural isomorphisms

(
Si,mH1(Cb)

)π1(B\∆) ∼= H0
(
ICB(Riπ̃

[m]
∗ Q)

)
b0(

Ti,mH1(Cb)
)π1(B\∆) ∼= H0

(
ICB(Riπ̃

[m,m+1]
∗ Q)

)
b0

between the monodromy invariants on Si,mH1(Cb)( resp Si,mH1(Cb) ) and the stalk at b0 of the

first non-vanishing cohomology sheaf of the intersection cohomology complex of Riπ̃
[m]
∗ Q (resp.

Riπ̃
[m,m+1]
∗ Q). The decomposition theorem implies that H∗(C[m]

b0
) and H∗(C[m,m+1]

b0
) contain

respectively the Hodge structures

Hm :=
⊕
i

(
Si,mH1(Cb)

)π1(B\∆)

Im :=
⊕
i

(
Ti,mH1(Cb)

)π1(B\∆)

as a summand. We want to show that this is the unique summand by proving that that the

weight polynomial of the cohomology of the nested Hilbert scheme of the Cb0 is equal to the

weight polynomial of Hm: this is a corollary of the criterion (1.6.3) in chapter 1.

Proposition 3.5.1. [MS1, Prop. 15] Suppose f : X → Y is a proper map between nonsingular

algebraic varieties. Let F be a summand of Rf∗Q[dimX]. If, for all y ∈ Y we have that

w(Fy[−dimX]) = w(Xy), then F = Rf∗Q[dimX].

Proposition 3.5.2. Under the previous assumptions the following holds
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(i) w(C[m]
b0

) = w(Hm)

(ii) w(C[m,m+1]
b0

) = w(Im)

Remark 14. Suppose we have a family of curves of arithmetic genus pa and let Cb be a curve

in the smooth locus. Take a basis {α1, β1, . . . , αd, βd, ωδ+1, ηδ+1, . . . , ω2r, η2r} of H1(Cb) where

the first 2δ terms are the symplectic basis constructed from the vanishing cycles αi. Then

the monodromy acts as the identity on the others and the Hodge structures given by the

monodromy invariants are extensions of Hodge structures Hm and Im on a rational curve C′b
with the same singularities, whose existence is granted by corollary (3.2.3), tensorized with⊕

i Si,mH1(Cb0) or Ti,mH1(Cb0). Passing to weight polynomials, this is equivalent to multiply

w(Hm(C′b)) by the weight polynomial of C
[m]

. The same is true for Im. Summing over all m

we get: ∑
m

w(Hm(Cb))qm =
∑
m

w(Hm(C′b))qm ·
∑
m

w(C
[m]

)qm

∑
m

w(Im(Cb)) =
∑
m

w(Im(C′b)) ·
∑
m

w(C
[m,m+1]

)

On the other hand if C = Cb0 is the central singular fiber of the family, and we denote by C
[m]
x

and C
[m,m+1]
x the (nested) Hilbert schemes supported at one node x, we have that splitting

subschemes according to their support gives the following equality in the Grothendieck group

of varieties:

∑
m

qm
[
C [m]

]
=
∑
m

qm
[
C [m]
reg

]∏
xi

∑
qm
[
C [m]
xi

]
=

∑
m

qm
[
C

[m]
]∏
xi

(1− q)2
∑

qm
[
C [m]
xi

]

∑
m

qm
[
C [m,m+1]

]
=
∑
m

qm
[
C [m,m+1]
reg

]∏
xi

∑
qm
[
C [m,m+1]
xi

]
=

=
∑
m

qm
[
C

[m,m+1]
]∏
xi

(1− q)2
∑

qm
[
C [m,m+1]
xi

]
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where the factor (1− q)2 is given by the analytic local branches of C at the nodes.

As the normalization intervenes in both the formulas we can drop the arithmetic genus infor-

mation in the proof and suppose it coincides with δ.

Remark 15. Even though we are supposing for simplicity that the family of curves is locally

versal around b0 , we may weaken our hypotheses by just asking that the family is regular

around b0 and that the locus of nodal curves is dense in every δ-stratum.

3.5.1 Hilbert scheme case

Let π : C → B a locally versal deformation of a singular rational nodal curve Cb0 =: C. As a

warm up for the nested case, we will compute the weight polynomial of C [m] and the weight

polynomial of the Hodge structure Hm given by the monodromy invariants and show they are

equalm thus proving theorem [MS1, Theorem 1].

Computation of w(C [m])

To compute w(C [m]) we use power series to find a formula for the class of C [m] in the Grothendieck

group. First we notice that∑
m

qm
[
C [m]

]
=
∑
m

qm
[
C [m]
reg

]∏
xi

∑
qm
[
C [m]
xi

]
(3.4)

As Creg = P1 \ 2δ regular points p1, . . . p2δ then∑
m

qm
[
(P1)[m]

]
=
∑
m

qm
[
C [m]
reg

]∏
pi

∑
qm
[
C [m]
pi

]
Now observe that (P1)[m] = Pm; also as the pi are regular points

[
C

[m]
pi

]
= 1 for all m and we

have:
1

(1− q)(1− qL)
=
∑
m

qm
[
C [m]
reg

] 1

(1− q)2δ
⇒
∑
m

qm
[
C [m]
reg

]
=

(1− q)2δ−1

(1− qL)

where L denotes the weight polynomial of the affine line.

Now, in [R] Ran shows that C
[m]
x consists of m − 1 copies of P1 that intersects transversely.

Thus ∏
xi

∑
qm
[
C [m]
xi

]
=
(∑

qm((m− 1)L + 1)
)δ

=

(
1− q + q2L

)δ
(1− q)2δ

.
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Substituting in equation (3.4), we get

∑
m

qm
[
C [m]

]
=

(
1− q + q2L

)δ
(1− q)(1− qL)

The coefficient of qm in the series is given by

w(C [m]) =
m∑
s=0

(−1)s
δ∑
t=0

(
δ

t

)(
t

s− t

)
Ls−t·

m−s∑
l=0

Ll =
m∑
s=0

(−1)s
δ∑
l=0

(
δ

t

)(
t

s− t

)
Ls−t·L

m−s+1 − 1

L− 1
.

(3.5)

Computation of w(Hm)

Let b a point in the smooth locus. We now need to compute the invariants in the cohomology

groups H i(Cb) of the monodromy ρ : π1(B \∆)→ H1(Cb). Also, we recall that all the vanishing

cycles αi have weight 0, while βi have weight 2.

Considering the MacDonald formula to compute the cohomology of Hilbert scheme, we just need

to understand the invariants of
∧lH1(Cb) for any l ≥ 0. As we observed before, H1(Cb) can be

viewed as a direct sum of 2-dimensional representations Vi on which a generator Tj ∈ SL(2δ,C)

of the monodromy acts as the identity if i 6= j and Ti(αi) = αi, Ti(βi) = αi + βi. Thus

H1(Cb) =
⊕δ

i=1 Vi and we have

l∧
H1(Cb) =

⊕
l1+...+lδ=l

l1∧
V1 ⊗ . . .⊗

lδ∧
Vδ, 0 ≤ li ≤ 2. (3.6)

Also, as dimVi = 2

li∧
Vi =


C if li = 0

Vi if li = 1

C(−1) if li = 2

.

The only invariants of Vi are the αi, of weight 0. In conclusion we have that for any i = 0, . . . ,m

we have

I(i, δ) := w
(

(H i(C[m]
b ))π1(B\∆)

)
= (−1)i

[ i
2

]∑
k=0

Lk
[ i−2k

2
]∑

j=0

(
δ

j

)(
δ − j

i− 2k − 2j

)
Lj
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where the index k is the one in MacDonald formula and j represents the number of second

external power we take in (3.6).

Summing over m and taking the duality in (3.2) into account we get

w(Hm) =
m−1∑
i=0

(−1)i(1 + Lm−i)
[ i
2

]∑
k=0

Lk
[ i−2k

2
]∑

j=0

(
δ

j

)(
δ − j

i− 2k − 2j

)
Lj (3.7)

+ (−1)m
[m
2

]∑
k=0

Lk
[m−2k

2
]∑

j=0

(
δ

j

)(
δ − j

m− 2k − 2j

)
Lj (3.8)

Proof of point (i) in Proposition 3.5.2. We start looking at w(Hm). First we notice that due

to properties of binomial coefficient, the sum over j goes to δ while the sum in k can go to

infinity. Also we have that
(
δ
j

)(
δ−j

i−2k−2j

)
=
(

δ
i−2k−j

)(
i−2k−j

j

)
.

Setting l = i− 2k − j and applying the remarks above we get

w(Hm) =
m−1∑
i=0

(−1)i(1 + Lm−i)
∞∑
k=0

Lk
δ∑
l=0

(
δ

l

)(
l

i− 2k − l

)
Li−2k−l+

+ (−1)m
∞∑
k=0

Lk
δ∑
l=0

(
δ

l

)(
l

m− 2k − l

)
Lm−2k−l

Set s = i− 2k and split the sum in two parts with respect to the product with (1 + Lm−i).

w(Hm) =

m∑
s=0

(−1)s
∞∑
k=0

Lk
δ∑
l=0

(
δ

l

)(
l

s− l

)
Ls−l+

+
m∑
s=0

(−1)sLm−s
∞∑
k=0

L−k
δ∑
l=0

(
δ

l

)(
l

s− l

)
Ls−l

Taking out the sums in k and recalling that
∑∞

k=0 Lk =
1

1− L

w(Hm) =
1

1− L

m∑
s=0

(−1)s
δ∑
l=0

(
δ

l

)(
l

s− l

)
Ls−l+

− L
1− L

m∑
s=0

(−1)sLm−s
∞∑
k=0

L−k
δ∑
l=0

(
δ

l

)(
l

s− l

)
Ls−l =

=
1

1− L

m∑
s=0

(−1)s(1− Lm−s+1)
δ∑
l=0

(
δ

l

)(
l

s− l

)
Ls−l

which is precisely w(C [m]).
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3.5.2 Nested Hilbert scheme case

As above suppose π : C → B is a locally versal deformation of a singular rational nodal curve

Cb0 =: C. We now want to show point (ii) of proposition (3.5.2), to conclude the proof of

theorem (3.1.2). Again, we compute the weight polynomials w(C [m,m+1]), w(Im) and show

that their are equal.

Computation of w(C [m,m+1])

We start by stratifying C[m,m+1]
b0

. As the weight polynomial depends only on the class in the

Grothendieck group, we can work there. Let C0,reg := C0 \ {x1, . . . , xδ}. We can consider the

colength 1 ideal of C[m,m+1]
b0

as a copy of C[m]
b0

to which we add a further point p ∈ Cb0 [m]. When-

ever we add a regular point p the class does not change, while when the point is a node we need

to be careful about the number of occurrences of the node in the colength one ideal. In [R], Ran

shows that the nested Hilbert scheme C
[k,k+1]
x supported on one node, is 2k−1 copies of P1 alter-

nating between those coming from C
[k]
x and C

[k+1]
x . As a consequence

[
C

[k,k+1]
x

]
= (2k−1)L+1.

We stratify C[m,m+1]
0 with respect to the number of times the nodes appear in

[
C[m]

0

]
:

[
C[m,m+1]
b0

]
=
[
C[m]

0 × Cb0,reg)
]

+

δ∑
i=1

m∑
k=0

[
(C0 − xi)[m−k] × C [k,k+1]

xi

]
=

=
[
C[m]
b0
× Cb0,reg)

]
+ δ

m∑
k=0

[
(C0 − x)[m−k] × C [k,k+1]

x

]

We observe that for any k ≥ 0 we can write
[
C

[k,k+1]
x

]
=
[
C

[k]
x

]
+ kL. Making a substitution

in the above equation we get[
C[m,m+1]
b0

]
=
[
C[m]
b0
× Cb0,reg)

]
+ δ

m∑
k=0

[
(Cb0 − x)[m−k] × C [k]

x

]
+ δL

m∑
k=0

k
[
(Cb0 − x)[m−k]

]
.

Since
∑m

k=0

[
(Cb0 − x)[m−k] × C [k]

x

]
=
[
Cb0 [m]

]
, we have that the second term of the sum consists

precisely of those δ copies of Cb0 [m] which, added to the first term, give Cb0 [m]×Cb0 . Finally, we

notice that (Cb0−×) can be considered as a curve C̃ with δ−1 nodes minus two regular points p, q.

Then the class of its Hilbert scheme can be computed as
[
C̃[m]

]
=
∑m

k=0

[
(Cb0 − x)[m−k]

]
×C [k]

p,q,
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where C
[k]
p,q is the Hilbert scheme with support p ∪ q. As p and q are regular points,

[
C

[k]
p,q

]
is

just the number of length non ordered k−ple in p, q , which is equal to k.

In conclusion we can write [
C[m,m+1]
b0

]
= Cb0 [m] × Cb0 + δL

[
C̃[m]

]
(3.9)

Computation of w(Im)

We remind that

H i(C[m,m+1]
b ) = H i(C[m]

b )⊕H i−1(C[m]
b )⊗H1(Cb)⊕H i−2(C[m]

b )(−1).

We notice that, by applying the MacDonald formula to second term we get

H i−1(C[m]
b )⊗H1(Cb) =

[ i−1
2

]⊕
k=0

i−1−2k∧
H1(Cb)⊗H1(Cb)(−k)

As a result we will have to find both the invariants of
∧lH1(Cb) and those of

∧lH1(Cb)⊗H1(Cb).

We have seen how to find the invariants of
∧lH1(Cb) in the computation for the Hilbert scheme;

when looking at the invariants of
∧lH1(Cb)⊗H1(Cb) we have to be more careful: there is more

than just the invariant of
∧lH1(Cb) times the invariant of H1(Cb).

Let us be more precise: recall that H1(Cb) =
⊕δ

i=1 Vi and that we have

l∧
H1(Cb) =

⊕
l1+...+lδ=l

l1∧
V1 ⊗ . . .⊗

lδ∧
Vδ, 0 ≤ li ≤ 2. (3.10)

Also, as dimVi = 2

li∧
Vi =


C if li = 0

Vi if li = 1

C(−1) if li = 2

.

Thus
l∧
H1(Cb)⊗H1(Cb) = (

⊕
l1+...+lδ=l

l1∧
V1 ⊗ . . .⊗

lδ∧
Vδ)⊗ (V1 ⊕ . . .⊕ Vδ). (3.11)

By the considerations above, the monodromy invariants of summands of type Vi ⊗ Vj for

i 6= j are just an invariant of Vi tensor an invariant of Vj , while invariants of summands of type
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∧2 Vi ⊗ Vj are just the invariants of Vi with shifted weight.

The invariants which are not the tensor product of an invariant of
∧lH1(Cb) times an invariant

of H1(Cb) come from the summands Vi ⊗ Vi =
∧2 Vi ⊗ Sym2(Vi). These summands provide

additional invariants of weight 2, which are those of
∧2 Vi.

As equation (3.11) is symmetric in the Vi’s it is sufficient to compute the invariants of

(
⊕

l1+...+lδ=l

l1∧
V1 ⊗ . . .⊗

lδ∧
Vδ)⊗ V1

and multiply what we obtain by δ.

If l1 6= 1 then the formula we wrote for the Hilbert scheme still holds, while when l1 = 1 we

have a certain number of invariants of weight 2 to take into account.

w
(

(H i(C[m]
b ⊗H1(Cb)))π1(B\∆)

)
= δ

[ i
2

]∑
k=0

Lk
[ i−2k

2
]∑

j=0

(
δ − 1

j − 1

)(
δ − j

i− 2k − 2j

)
Lj+

+ (1 + L)

(
δ − 1

j

)(
δ − 1− j

i− 2k − 2j − 1

)
Lj+

+

(
δ − 1

j

)(
δ − 1− j
i− 2k − 2j

)
Lj

The first term in the sum represents the case in which l1 = 2, the second one is the case of

l1 = 1 and the last one is l1 = 0. As in the previous formula, the index k is the one in the

MacDonald formula, while the index j represents the number of li 6= l1 that are equal to 2.
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Summing over i we get

w(Im) =

m∑
i=0

(1 + Lm+1−i)

[ i
2

]∑
k=0

Lk
[ i−2k

2
]∑

j=0

(
δ

j

)(
δ − j

i− 2k − 2j

)
Lj+

+ δ

[ i−1
2

]∑
k=0

Lk
[ i−1−2k

2
]∑

j=0

(
δ − 1

j − 1

)(
δ − j

i− 1− 2k − 2j

)
Lj + (1 + L)

(
δ − 1

j

)(
δ − 1− j

i− 1− 2k − 2j − 1

)
Lj+

+

(
δ − 1

j

)(
δ − 1− j

i− 1− 2k − 2j

)
Lj + L

[ i−2
2

]∑
k=0

Lk
[ i−2−2k

2
]∑

j=0

(
δ

j

)(
δ − j

i− 2− 2k − 2j

)
Lj+

+ (−1)m+1δ

[m
2

]∑
k=0

Lk
[m−2k

2
]∑

j=0

(
d− 1

j − 1

)(
d− j

m− 2k − 2j

)
Lj+

+ (1 + L)

(
δ − 1

j

)(
δ − 1− j

m− 2k − 2j − 1

)
Lj +

(
δ − 1

j

)(
δ − 1− j

m− 2k − 2j

)
Lj+

+ 2L
[m−1

2
]∑

k=0

Lk
[m−1−2k

2
]∑

j=0

(
δ

j

)(
δ − j

m− 1− 2k − 2j

)
Lj .

Looking at equation (3.9) we want to separate the invariants which are the tensor product

of invariants of the Hilbert scheme and the invariants of the curve from those coming from the

weight 2 part of the pieces Vi ⊗ Vi, which we will prove to be precisely the invariants of the

Hilbert scheme of the curves with δ − 1 nodes. We want to show that the former are

A =
m∑
i=0

(1 + Lm+1−i)

[ i
2

]∑
k=0

Lk
[ i−2k

2
]∑

j=0

(
δ

j

)(
δ − j

i− 2k − 2j

)
Lj+

+ δ

[ i−1
2

]∑
k=0

Lk
[ i−1−2k

2
]∑

j=0

(
δ − 1

j − 1

)(
δ − j

i− 1− 2k − 2j

)
Lj +

(
δ − 1

j

)(
δ − 1− j

i− 2k − 2j − 1

)
Lj+

+

(
δ − 1

j

)(
δ − 1− j

i− 1− 2k − 2j

)
Lj + L

[ i−2
2

]∑
k=0

Lk
[ i−2−2k

2
]∑

j=0

(
δ

j

)(
δ − j

i− 2− 2k − 2j

)
Lj+

+ (−1)m+12L
[m−1

2
]∑

k=0

Lk
[m−1−2k

2
]∑

j=0

(
δ

j

)(
δ − j

m− 1− 2k − 2j

)
Lj + δ

[m
2

]∑
k=0

Lk
[m−2k

2
]∑

j=0

(
δ − 1

j − 1

)(
δ − j

m− 2k − 2j

)
Lj+

+

(
δ − 1

j

)(
δ − 1− j

m− 1− 2k − 2j

)
Lj +

(
δ − 1

j

)(
δ − 1− j

i− 1− 2k − 2j

)
Lj+

+ 2L
[m−1

2
]∑

k=0

Lk
[m−1−2k

2
]∑

j=0

(
δ

j

)(
δ − j

m− 1− 2k − 2j

)
Lj .
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while the latter are

B = δL
m∑
i=0

(−1)i(1 + Lm+1−i)

[ i−1
2

]∑
k=0

Lk
[ i−1−2k

2
]∑

j=0

(
δ − 1

j

)(
δ − 1− j

i− 2k − 2j − 1

)
Lj +

(
δ − 1

j

)(
δ − 1− j

i− 1− 2k − 2j

)
Lj+

(−1)m+1δL
[m
2

]∑
k=0

Lk
[m−2k

2
]∑

j=0

+

(
δ − 1

j

)(
δ − 1− j

m− 2k − 2j − 1

)
Lj .

Lemma 3.5.3.

A =
[
Cb0 [m] × Cb0

]
= w(Hm)(L− δ + 1)

Proof. First we notice that, due to properties of binomial coefficients, the quantity

[ i−1
2

]∑
k=0

Lk
[ i−1−2k

2
]∑

j=0

(
δ − 1

j − 1

)(
δ − j

i− 1− 2k − 2j

)
Lj +

(
δ − 1

j

)(
δ − 1− j

i− 2k − 2j − 1

)
Lj +

(
δ − 1

j

)(
δ − 1− j

i− 1− 2k − 2j

)
Lj

is equal to
[ i−1

2
]∑

k=0

Lk
[ i−1−2k

2
]∑

j=0

(
δ

j

)(
δ − j

i− 1− 2k − 2j

)
Lj = I(i− 1, δ);

thus

A =

m∑
i=0

(−1)i(1+Lm+1−i)I(i, δ)+δI(i−1, δ)+LI(i−2, δ)+(−1)m+1 (2LI(m− 1, δ) + δI(m, δ)) .

Now, by setting t = i− 1 we see that
m∑
i=0

(−1)i(1 + Lm+1−i)δI(i− 1, δ) + δ(−1)m+1I(m, δ) = −δw(H[m]).

Also,
m∑
i=0

(−1)i(1 + Lm+1−i)I(i, δ) + LI(i− 2, δ) + (−1)m+12LI(m− 1, δ) =

m∑
i=0

(−1)i(1 + Lm+1−i)I(i, δ) +
m∑
i=0

(−1)i(L + Lm+2−i) + (−1)m+12LI(m− 1, δ),

setting t = i− 2 this becomes

(1 + L)
m−2∑
i=0

(−1)iLm−i)I(i, δ) +
m−2∑
i=0

(−1)iLm−iI(i, δ)+

+ (−1)m+12LI(m− 1, δ) + (−1)mI(m, d)(1 + L) + (−1)m−1(1 + L2) =

= (1 + L)

(
m−1∑
i=0

(−1)iLm−i)I(i, δ) + (−1)mI(m, d)

)
= (1 + L)w(Hm).
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Analogously, using properties of binomial coefficients and setting t = i− 1 we can prove

Lemma 3.5.4.

B = δL
[
C̃[m]

]
and this complete the proof of proposition (3.5.2) and theorem (3.1.2).
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groups of compact Käler manifolds, Bulletin of the Amer.Math.Soc. 18 no.2 (1988), 153-

158.

[Gr] A. Grothendieck, Techniques de construction et théorèmes d’existence en géométrie
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