Awais, Muhammad
(2018)
Physical Activity Classification Meeting Daily Life Conditions for Older Subjects, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Ingegneria biomedica, elettrica e dei sistemi, 30 Ciclo. DOI 10.6092/unibo/amsdottorato/8270.
Documenti full-text disponibili:
Anteprima |
|
Documento PDF (English)
- Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (3MB)
| Anteprima
|
Abstract
Physical inactivity can lead to several age-related issues such as falls, movement disorders and loss of independence in older adults. Therefore, promoting physical activity in daily life and tracking daily life activities are essential components for healthy aging and wellbeing. Recent advances in the MEMS devices make it happen to wirelessly integrate miniature motion capturing devices and use them in personal health care and physical activity monitoring systems in daily life conditions. Consequently, various systems have been developed to classify the activities of daily living. However, the scope and implementation of such systems are limited to laboratory-based investigations and they are mainly developed utilizing the sample population of younger adults. Therefore, this dissertation aims to develop innovative solutions for physical activity classification, with a specific focus on the elderly population in free-living conditions.
Abstract
Physical inactivity can lead to several age-related issues such as falls, movement disorders and loss of independence in older adults. Therefore, promoting physical activity in daily life and tracking daily life activities are essential components for healthy aging and wellbeing. Recent advances in the MEMS devices make it happen to wirelessly integrate miniature motion capturing devices and use them in personal health care and physical activity monitoring systems in daily life conditions. Consequently, various systems have been developed to classify the activities of daily living. However, the scope and implementation of such systems are limited to laboratory-based investigations and they are mainly developed utilizing the sample population of younger adults. Therefore, this dissertation aims to develop innovative solutions for physical activity classification, with a specific focus on the elderly population in free-living conditions.
Tipologia del documento
Tesi di dottorato
Autore
Awais, Muhammad
Supervisore
Dottorato di ricerca
Ciclo
30
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Physical activity classification, elderly people, free living conditions, inertial sensors, feature selection.
URN:NBN
DOI
10.6092/unibo/amsdottorato/8270
Data di discussione
4 Maggio 2018
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Awais, Muhammad
Supervisore
Dottorato di ricerca
Ciclo
30
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Physical activity classification, elderly people, free living conditions, inertial sensors, feature selection.
URN:NBN
DOI
10.6092/unibo/amsdottorato/8270
Data di discussione
4 Maggio 2018
URI
Statistica sui download
Gestione del documento: