
AAllmmaa  MMaatteerr  SSttuuddiioorruumm  ––  UUnniivveerrssiittàà  ddii  BBoollooggnnaa  
 

 

DOTTORATO DI RICERCA IN 
 

Biomedical, Electrical and Systems Engineering 

 
Ciclo 30th 

 
Settore Concorsuale: 09/G2-BIOINGEGNERIA 

 

Settore Scientifico Disciplinare: ING-INF/06-BIOINGEGNERIA 

ELETTRONICA E INFORMATICA 

 

 
PHYSICAL ACTIVITY CLASSIFICATION MEETING DAILY LIFE 

CONDITIONS FOR OLDER SUBJECTS 
 

 

Presentata da: Muhammad Awais 

 

 

Coordinatore Dottorato     Supervisore 

 

 

Prof. Daniele Vigo                 Prof. Lorenzo Chiari 

 

 

 

 

 

 

Esame finale anno 2018 
 



ii 

ABSTRACT 

 

 Physical inactivity can lead to several age-related issues such as falls, movement disorders and loss 

of independence in older adults. Therefore, promoting physical activity in daily life and tracking daily 

life activities are essential components for healthy aging and wellbeing.  Recent advances in the MEMS 

devices make it happen to wirelessly integrate miniature motion capturing devices and use them in 

personal health care and physical activity monitoring systems in daily life conditions. Consequently, 

various systems have been developed to classify the activities of daily living. However, the scope and 

implementation of such systems are limited to laboratory-based investigations and they are mainly 

developed utilizing the sample population of younger adults. Therefore, this dissertation aims to develop 

innovative solutions for physical activity classification, with a specific focus on the elderly population 

in free-living conditions.   

Firstly, we present an overview of the state of the art methodologies for physical activity 

classification. Then, we propose a fair and unbiased benchmark for the field-based validation of the 

existing state of the art systems for physical activity classification on the older-adults dataset. This 

benchmark study is particularly relevant since the existing systems for physical activity classification 

were developed mainly on younger adults’ data in a laboratory-based environment. Furthermore, these 

systems are not directly comparable, due to the large diversity in their design (e.g., number of sensors, 

placement of sensors, data collection environments, data processing techniques, features set, classifiers, 

cross-validation methods). The finding concludes that the systems developed in controlled settings are 

not capable of performing well in real-life conditions where the activities are performed more naturally. 

Therefore, the newly-developed systems should be trained and tested on the dataset collected in the real-

life conditions. 

Secondly, we propose a wearable sensor-based physical activity classification system for older 

adults in free-living conditions as a continuity of our previous findings. We explore four sensor locations 

(thigh, lower back, chest, and wrist) to obtain the optimal number and combination of sensors by finding 

the best tradeoff between the system’s performance and wearability. Several feature selection techniques 

are implemented on the feature set obtained from the acceleration and angular velocity signals to classify 

the activities of daily living in free-living conditions. The findings show the potential of different 

solutions (single-sensor or multi-sensor) to correctly classify the activities of older people in free living 

conditions. Considering a minimal set-up of a single sensor, the sensor worn at the lower back achieved 

the best performance. A two-sensor solution (lower back and thigh) achieved a better performance with 

respect to a single-sensor solution. Then, we present a physical activity classification system to predict 

unlabeled activities of daily living. This objective is accomplished by training the single sensor based 
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system on the labeled dataset and testing it on the unlabeled dataset of older adults in free-living 

conditions. 

Finally, we report on feasibility study aimed at developing a video-based method to automatically 

label the activities of daily living without the help of observers/raters. This system could be utilized alone 

or in combination with a wearable sensor-based physical activity classification system to validate its 

performance. 
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ABSTRACT (IN ITALIAN)

 

 Nella popolazione anziana l’inattività fisica può portare a diverse affezioni legate all’età, quali 

cadute, disturbi motori e perdita di indipendenza. Pertanto la promozione e il monitoraggio dell’attività 

fisica nella vita quotidiana sono componenti essenziali per perseguire alti livelli di salute e benessere 

durante l’invecchiamento. Gli avanzamenti recenti raggiunti sui dispositivi MEMS rendono possibile 

l’integrazione wireless di sensori miniaturizzati di movimento e il loro impiego in sistemi di 

monitoraggio della salute personale e dell’attività fisica, in condizioni di vita quotidiana. Ciononostante, 

l’ambito di impiego di questi sistemi è limitato a ricerche di laboratorio e questi sistemi sono 

principalmente sviluppati utilizzando un campione di popolazione di adulti più giovani. Perciò scopo di 

questa dissertazione è sviluppare soluzioni innovative per la classificazione dell’attività fisica, con 

particolare riguardo alla popolazione anziana in ambiente non supervisionato. 

In primo luogo, presentiamo una panoramica dello stato dell’arte delle metodologie per la 

classificazione dell’attività fisica. Quindi proponiamo un benchmark imparziale per la validazione basata 

sul campo per i sistemi esistenti in letteratura di classificazione di attività fisica su basi di dati di anziani. 

Questo studio di benchmark è particolarmente rilevante perché i sistemi esistenti di classificazione 

dell’attività fisica sono stati sviluppati principalmente su dati di giovani adulti in ambiente di laboratorio. 

Inoltre questi sistemi non sono direttamente confrontabili, avendo caratteristiche progettuali molto 

diverse (ad esempio numero e posizionamento di sensori, ambiente di raccolta dati, tecniche di 

elaborazione dati, insieme dei parametri, classificatori, metodi di validazione incrociata). Dai risultati si 

conclude che i sistemi sviluppati in ambienti controllati non sono capaci di avere buone prestazioni in 

condizioni di vita reale, dove le attività della vita quotidiana si svolgono più naturalmente. 

In secondo luogo, a seguito di questi nostri risultati, proponiamo un sistema di classificazione di 

attività fisica basato su sensori indossabili per anziani in ambienti non supervisionati. Esploriamo quattro 

configurazioni di posizionamento per i sensori (coscia, schiena lombare, torace e polso) al fine di ottenere 

il numero e la combinazione ottimale di sensori come miglior compromesso tra prestazione e 

indossabilità del sistema. Sono state implementate diverse tecniche di selezione di parametri sull’insieme 

dei parametri ottenuti dai segnali di accelerazione e velocità angolare per la classificazione delle attività 

della vita quotidiana in ambiente non supervisionato. I risultati mostrano il potenziale di diverse soluzioni 

(a uno o più sensori) per classificare correttamente le attività di anziani in ambiente non supervisionato. 

Considerando una configurazione minima a sensore singolo, la migliore prestazione si è ottenuta col 
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sensore indossato all’altezza della quinta vertebra lombare (L5). Una configurazione a due sensori (L5 e 

coscia) ha raggiunto prestazioni migliori rispetto a quella a singolo sensore. Quindi presentiamo un 

sistema di classificazione dell’attività fisica per predire attività della vita quotidiana non verificate. 

Questo obiettivo è raggiunto addestrando il sistema a singolo sensore su un dataset verificato e testandolo 

su un altro dataset non verificato di anziani in ambiente non supervisionato.  

Infine trattiamo di uno studio di fattibilità volto a sviluppare un metodo basato su video per verificare 

automaticamente le attività della vita quotidiana senza l’aiuto di osservatori/valutatori. Questo sistema 

potrebbe essere utilizzato da solo o in combinazione con un sistema di classificazione di attività fisica 

basato su sensori indossabili per validare la sua prestazione.  
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Chapter 1 

Introduction 

Some contents of this chapter are taken from [1], where we presented the review on 

existing methodologies for physical activity classification. 

1.1 Introduction 

Physical activity (PA) is one of the fundamental functionalities of human beings, 

and it is strongly linked with their physical and mental health. It is one of the key 

predictors of healthy ageing and well-being. Ageing is an extensive area of research 

due to the increase in the elderly population. A study conducted by the European 

Commission in 2012 [2] shows that, in Europe, the elderly population (above 65) is 

expected to increase from 87.5 million to 152.6 million during the period from 2010 to 

2060. Therefore, healthcare systems need to be adaptive and robust to promote quality 

of life and active lifestyles for the growing elderly population. A report by the World 

Health Organization (WHO) in the 28 member states of the European Union (EU) 

suggests that physical inactivity in the elderly population correlates with a higher risk 

of falling, mobility disorders, low muscle strength and loss of independence [3]. It also 

shows that the proportion of falls per year is 30% among the elderly, which increases 

to 50% in those aged above 80 [3]. Adopting an active lifestyle can significantly 

minimize the development of many disabling conditions and chronic diseases [4]. The 

WHO recommends older adults to perform a moderate-to-intense physical activity for 

at least 30 minutes, five times per week in bouts (bout: uninterrupted period of any 

specific activity being considered) not shorter than 10 minutes, to achieve the health 

benefits [5]. Therefore, profiling the activities of daily living (ADLs) could provide 
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better knowledge in designing the intervention to prevent inactivity and to improve 

health and functional capacity to achieve healthy aging and well-being.  

Recent advances in the microelectromechanical systems (MEMS) has encouraged 

researchers and scientists to make use of IMU (inertial measurement unit) sensors in 

personal health care systems. This is mainly due to their low power consumption, 

lightweight, miniaturization, wearability, cost-effectiveness, and reliable data transfer 

capabilities [6]. A typical IMU sensor is composed of a tri-axial accelerometer and tri-

axial gyroscope. The accelerometer measures linear acceleration while a gyroscope 

measures angular velocity. Hence, by utilizing the inertial sensor technology in 

conjunction with an appropriate signal processing algorithm aimed at the authentic 

recognition of activities, one can classify the ADLs in a laboratory-based environment 

for short-term recordings but also for long-term recordings in clinical and/or in free-

living conditions.  

1.2 Knowledge Gaps and Challenges in Existing Systems for Physical Activity 

Classification  

A substantial amount of work is available in the literature regarding the 

development of physical activity classification (PAC) systems using inertial sensors [7-

18]. However, there are knowledge gaps and open challenges which needs to be 

addressed in the current systems to make them suitable for usage in free-living 

conditions. A general overview of the common approach found in existing PAC system 

developed in laboratory-based environments and the challenges in implementing them 

in free-living conditions are illustrated in Figure 1. These are discussed in the following 

subsections.  

1.2.1 Laboratory Controlled Environment Vs Free-Living Conditions 

Majority of the existing PAC systems described in the literature are either 

developed in laboratory-based environments with predefined and structured ADLs [10, 

15-18] or designed in a simulated real-world environment with predefined ADLs 
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performed in indoor and outdoor environments [7-9, 11, 12, 14].  However, none of the 

existing systems, to the best of the authors knowledge, has been extensively validated 

in free-living conditions where the subjects are not instructed to perform ADLs in a 

predefined and structured manner.  Furthermore, the ADLs performed in laboratory 

settings are more likely influenced by the experimenter and the surrounding 

environment which biases the true nature of performing ADLs in free-living conditions.   

Model for PA 

Classification

+

 Real Life

 Activities 
Signal Processing and 

Feature Extraction

 Gold Standard  

Model for PA 

Classification

+

Simulated 

Activities
Signal Processing and 

Feature Extraction

Gold Standard

(a)

(b)

Knowledge gaps ?

 PA Labels     

 PA Labels     

 

Figure 1.1: (a) PAC systems for controlled laboratory environment (b) PAC system in 

free-living conditions [1] and relevant knowledge gaps. 

1.2.2 Gold Standard/Validation Procedure 

Another issue highlighted in Figure 1 (with bold rectangle) is the gold standard or 

validation procedure for ADLs. The unavailability of a common gold standard is a 

critical issue in the literature. There are mainly two procedures used to mark the ADLs. 

i.e., structured/predefined protocol and observational methods. In the structured 

protocol, participants have to follow a certain protocol, and the sequence, type, and act 

of performing ADLs are predefined [10, 13, 16, 17]. In observational methods, the 

ground truth information is collected either by the help of video recording captured 

during the experimentation process or with observer [8, 11, 12, 18]. These videos are 
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later processed offline by the trained/expert raters to classify/categorize the ADLs. Both 

of those methods have drawbacks. The structured protocol might work well in 

laboratory-controlled environments, but it is not applicable in real life conditions where 

ADL patterns are unforeseeable and are performed more naturally. On the contrary, 

observational methods are quite accurate in marking ADLs and can provide an excellent 

starting point in validating the PAC system developed in free-living conditions. 

However, these methods are hard to adopt as permanent validations procedure due to 

(i) privacy issues raised during the video capturing in real life conditions (ii) the human 

resources required to mark the ADLs in larger population [19, 20] (iii) observer bias 

during activity labelling. An attempt to counteract the observer bias requires that 

multiple independent raters do the marking offline. 

1.2.3 PA Labels or Classes 

There is no standardized way to define ADLs, which is another challenge 

encountered during the development of PAC systems. There are a variety of ADLs 

performed in free-living conditions such as: sitting, standing, walking, lying, stairs up, 

stairs down, shuffling, leaning, running, etc. Systems developed so far for PAC does 

not specify the definition of each class of activity and use the self-defined definitions, 

which make their performance ambiguous and incomparable. This is an important issue 

since a particular activity defined in one study can be marked with a different activity 

label in another study. For instance, walking can be easily confused with shuffling. 

Furthermore, each activity has certain aspects that can be considered while labeling 

e.g., in case of walking: how many steps can define walking, if the distance is covered 

in a straight path or in curved path, etc. These kinds of issues are relevant for each other 

ADLs mentioned earlier. The good practice would suggest defining the ADLs within 

the study not only to inform others or to allow replicability of the methods, but also to 

create homogeneity in the activity definition process.  

1.2.4 Diversities in the Design Process of PAC Systems 

The performance capabilities of existing PAC systems depend on many factors; 

dataset (sample population, type of ADLs performed, etc.), number of sensors, 
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placement of sensors, feature-set, window-size for features computation and classifiers.  

Each of these factors contributes directly to the overall performance of the PAC system. 

Large diversities in the design process due to the aforementioned factors make the 

existing PAC systems largely incomparable. Furthermore, most of these systems are 

developed using the datasets of younger adults [10, 12-17, 21-24] and very few of them 

are developed using older adults [25-29]. Furthermore, the few systems developed on 

the older adults are not fully validated in free-living conditions. 

1.3 Aims of the Thesis 

The main aim of this thesis is to develop an innovative solution for PAC, 

particularly for the elderly population observed in free-living conditions. For this 

purpose, quantitative analysis of the wearable sensors signals (specifically 

accelerometers and gyroscope) is performed. This step is accomplished by using data 

mining techniques, which discover and interpret the relevant patterns obtained by 

processing the sensors’ data and selecting only the relevant information to classify the 

ADLs objectively. The specific objectives of the thesis are listed below. 

1. To provide a benchmark approach to compare the performance of the state of 

the art systems for physical activity classification (PAC) in a fair and unbiased 

way using a novel dataset collected from older adults in free-living conditions.  

2. To develop a PAC System for older adults with an optimum number of sensors 

validated in ecological conditions, informed by the strengths and weaknesses of 

the current PAC systems. 

3. To evaluate the feasibility of predicting the unlabeled activities of older adults 

in free-living conditions using a single sensor based PAC system. 

1.4 Thesis Outline 

This thesis is organized into six additional chapters, and its comprehensive 

overview is depicted in Figure 1.2. 
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➢ Chapter 2 provides a detailed literature review of the state of the art 

methodologies (SOA) for PAC. It presents a concise overview of the PAC 

systems regarding the type of ADLs classified, data collection environment, 

sample population, type and number of sensors, feature-set, validation 

method and classification approaches used so far.  

➢ Chapter 3 describes the proposed benchmark study to evaluate the 

performance of SOA systems for PAC in laboratory-based environments as 

well as in free-living conditions. The data collection procedure is also 

explained briefly for the semi-structured protocol in the laboratory-based 

environment and for the unsupervised protocol in free-living conditions for 

older adults. Finally, the chapter highlights gaps and limitations within SOA 

systems when tested in free-living conditions and provides possible future 

directions to improve performance.  

➢ Chapter 4 develops the PAC system for older adults in free-living 

conditions, informed by the limitations and gaps highlighted in chapter 3. It 

explains various stages of the proposed PAC system, i.e., data processing, 

feature-extraction, feature selection, computational complexity analysis, 

classification model development and validation, and the performance 

analysis of single versus multi-sensors set-up. 

➢ Chapter 5 presents the PAC system to predict the unlabelled ADLs, 

performed by older adults during long-term recordings in free-living 

conditions. The details of the data collection procedure and the sensing 

devices are also provided. Then, it computes several statistical parameters 

obtained from the predicted labels to identify if there are patterns that can 

be associated with participants’ lifestyle and general health. It also provides 

the correlation analysis between the acceleration based measure and the 

clinical measures. 

➢ Chapter 6 describes a pilot study to develop a video-based PAC system that 

can label the ADLs automatically with the help of image processing 

techniques. It explains the proposed methodology to record the video data 
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and wearable sensors' data simultaneously. Then, it highlights the 

challenges encountered during the data processing stage. Future suggestions 

that can be implemented for the successful development of the video-based 

PAC system are made. 

➢ Chapter 7 concludes and discusses the overall findings of the thesis. It also 

highlights the extension of the work that can be the object of future research 

in order to further advance in the field of activity classification by promoting 

healthy ageing and well-being. 
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Figure 1.2: Comprehensive overview of the thesis 

 



  

Chapter 2 

State of the Art Methodologies for Physical 

Activity Classification 

 

 

Technological advancements in wearable inertial sensors have made them an 

appealing and unmissable component of health monitoring systems. In particular, 

various systems for PAC have been developed and are described in the literature. This 

chapter provides a detailed overview of these systems and reviews the main distinctive 

factors of PAC systems developed so far. 

2.1 Factors Contributing Toward the Overall Performance of a PAC System 

A synthetic overview of the state of the art systems for PAC is presented in Tables 

2.1 and 2.2. Different systems have been proposed for different target groups; our main 

focus in this thesis is physical activity performed by older adults. For this reason we 

present separately state of the art systems developed for young (Table 2.1) and older 

adults (Table 2.2). It is evident from these tabular representations that several 

distinctive factors are different across studies and contribute to the overall performance 

of PAC systems.  



  

Table 2.1:  Overview of the PAC systems developed for young adults 

Sr. 

No. 
Authors 

Data 

collection 

protocol 

Sample 

Population 

(age in years) 

Gold 

standard/ 

labeling  
ADLs Classified 

Sensor Placement 

(no. of sensors; 

sampling 

frequency)  

Features used 

(window size, analyzed signals) 

Classifier, 

validation 

procedure 

(accuracy) 

1 Bao et al 

[9] 

Structured 

protocol in 

home 

environment 

20 young 

adults  

(21.8 ± 6.59) 

Self-labelling 

by the subject  

Walking, sitting, 

standing, watching 

TV, running, folding 

laundry brushing 

teeth, riding elevator, 

bicycling, lying, etc. 

Hip, wrist, ankle, 

arm and thigh (5; 

76.25 Hz) 

mean, energy, frequency domain 

entropy, correlation (6.7s, 

acceleration) 

Decision tree,  

leave-one-subject-

out-cross validation 

(LOSOCV) (84.0%) 

2 Leutheuser 

et al [14] 

Structured 

protocol in 

university 

campus 

23 young 

adults 

(27 ± 7) 

Labelling 

performed by 

the 

experimenter 

Sitting, lying, 

standing, washing 

dishes, vacuuming, 

sweeping. Walking, 

bicycling, ascending / 

descending stairs,  

Wrist, hip, chest, 

ankle (4; 204.8 Hz) 

minimum, maximum mean, 

variance, spectral centroid, 

bandwidth, energy (5s, 

acceleration, angular velocity) 

Hierarchical 

classification,  

LOSOCV 

(89.9%) 

3 Cleland et 

al [22] 

Structured 

protocol in 

laboratory 

settings 

8 young adults 

(26.25 ± 2.86) 

Predefined 

sequences of 

ADLs  

Sitting, lying, 

standing, walking, 

jogging, ascending 

/descending stairs,  

Chest, lower back, 

wrist, hip, thigh, 

foot (6; 51.2 Hz) 

mean, standard deviation, 

skewness, kurtosis, energy and 

correlation of axes separately and 

average over 3 axes (10s, 

acceleration) 

Support vector 

machine (SVM) 

10-fold cross 

validation (97.26%) 
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4 Ravi et al 

[10] 

Structured 

protocol in 

laboratory 

environment 

2 adults 

(NA) 

Self-labelling 

by the subject 

Standing, walking, 

running, ascending 

/descending stairs, 

sit-ups, vacuuming, 

brushing teeth 

Pelvic region (1; 50 

Hz) 

mean, standard deviation, Energy, 

correlation (5.12 s, acceleration) 

Plurality voting, 

10-fold CV 

 (88.8%) 

5 Preece et al 

[12] 

Structured 

protocol in 

university 

campus 

20 young 

adults 

(31 ± 7) 

Offline video 

labeling 

walking, jogging, 

walking upstairs / 

downstairs, running, 

hopping on the left 

and right leg, jumping 

Waist, thigh, ankle 

(3; 64 Hz) 

mean, standard deviation, energy, 

mean, correlation, entropy, 

percentile, FFT magnitude, wavelet 

components (2 s, acceleration) 

K-nearest neighbor 

(KNN) 

LOSOCV  

(95.0%) 

6 Altun et al 

[13] 

Structured 

protocol in 

university 

campus 

8 young adults 

 (20-30) 

Predefined 

sequences of 

ADLs 

sitting, standing, 

lying, walking, 

cycling, jumping 

ascending/descending 

stairs, running etc 

Chest, right wrist, 

left wrist, right leg, 

left leg (5; 25 Hz) 

mean, variance, standard deviation, 

kurtosis, autocorrelation, DFT (5s, 

acceleration, angular velocity, 

magnetometer signal) 

Bayesian decision 

making 

10-fold CV 

(99.2%) 

7 Fida et al 

[23] 

Structured 

protocol in 

university 

campus 

9 young adults  

(22-34) 

Predefined 

sequences of 

ADLs 

standing, sitting, 

walking, 

ascending/descending 

stairs 

Waist (1; 100 Hz) Mean, standard deviation, 

skewness, kurtosis, correlation 

between each axis and magnitude 

signal (1.5s, acceleration) 

SVM 

LOSOCV  (90%) 

8 Trabelsi et 

al 

[15] 

Structured 

protocol in 

laboratory 

environment 

6 young adults  

(25-30) 

Predefined 

sequences of 

ADLs 

standing, sitting, 

transitions, walking 

ascending/descending 

stairs, 

Chest, right thigh, 

left ankle (3; 25 Hz) 

raw signal (window size is equal to 

each activity’s duration, 

acceleration) 

Multiple Hidden 

Markov Model 

Regression 

10-fold CV (91.4%) 



 

12 

9 Guiry et al 

[17] 

Structured 

protocol  

6 young adults  

(30.6 ± 6) 

Predefined 

sequences of 

ADLs 

sitting, standing, 

lying, walking, 

running, cycling 

Chest, thigh (2; 120 

Hz) 

counts per minute, device angle, 

DFT (1s, acceleration) 

Naïve Bayes  

10-fold CV  

(93.0%) 

10 Khan et al. 

[21] 

Structured 

protocol in 

home 

environment 

6 young adults 

(mean age of 

27) 

Self-labelling 

by the subject 

Sitting, standing, 

lying, transitions, 

walking, walking 

upstairs/downstairs, 

running 

Chest (1; 20 Hz) Autoregressive coefficients, signal 

magnitude area, tilt angle (3.2s, 

acceleration) 

Artificial neural 

network (ANN) 

6-fold CV 

(97.65 %) 

11 Karantonis 

et al.  [30] 

Structured 

protocol in 

laboratory 

settings  

6 young adults 

(22-60) 

Predefined 

sequences of 

ADLs 

Sitting, standing, 

lying, transitions, 

falls 

Waist (1; 45 Hz) Tilt angle, signal magnitude area, 

signal vector magnitude (2s, 

acceleration) 

Thresholding  

(90.8%) 

12 Hickey et 

al.  [31] 

ADLs in free-

living 

conditions 

10 young 

adults (27.5 ± 

4.7) 

Offline video 

labeling 

Gait analysis Lower back (1; 100 

Hz) 

Mean, standard deviation, wavelet 

(0.1s, acceleration) 

Intra-class 

correlation ≥0.941 

for walking (N.A.) 

13 Torres et al. 

[18] 

Semi-

structured 

protocol in 

laboratory 

environment 

6 young adults 

(27.5 ± 4.7) 

Offline video 

labeling 

walking, running, 

stair ascent, stair 

descent, brushing 

teeth, drinking, 

writing, cutting and 

peeling food.  

Chest, right and left 

wrist, wrist, right 

and left ankle (5; 50 

Hz) 

 

mean, standard deviation, variance, 

inter quartile range, signal 

magnitude area, correlation, time 

and frequency domain kurtosis, 

entropy, energy, maximum 

frequency component, RMS value, 

percentile (2.56s, acceleration, 

angular velocity, barometric 

pressure) 

KNN 

LOSOCV  

(95.0%) 
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14 Mannini et 

al. [32] 

Structured 

protocol in 

home 

environment 

13 young 

adults  

(21.8 ± 6.59) 

Self-labelling 

by the subject 

Sitting, lying, 

standing, walking, 

stairs climbing, 

running, cycling 

Hip, wrist, ankle, 

arm and thigh (5; 

76.25 Hz) 

DC component, energy, frequency 

domain entropy, correlation (6.7s, 

acceleration) 

Continuous 

emissions hidden 

markov model 

(99.1%) 

15 Lee et al. 

[33] 

ADLs in free 

living 

conditions 

2 young adults 

(NA) 

GPS tracker 

trajectory 

Jogging, walking, 

sitting, and 

Thigh (1; 21 Hz) Mean, standard deviation, binned 

range, min-max, peak duration, 

peak count, mean dominant 

frequency, mean energy of 

frequency (10s, acceleration) 

Random forest 

Predicted results in 

free living 

conditions 

(95%) 

16 Zhang et al. 

[34] 

Structured 

protocol in 

outdoor 

environment 

14 young 

adults 

(30.1 ± 7.2) 

Using sparse 

representation 

Walk forward, walk 

left, walk right, go 

upstairs, go 

downstairs, jump up, 

run, stand, and sit 

right front 

hip (1; 100 Hz) 

Mean, median, standard deviation, 

variance, RMS, interquartile range, 

first and second order derivate, 

skewness, kurtosis, zero and mean 

crossing rate, correlation, energy, 

dominant frequency, spectral 

entropy, movement intensity, signal 

magnitude area, acceleration 

correlation, average acceleration 

energy, average velocity, 

eigenvalues of dominant direction, 

average rotation angle and energy 

(4s, acceleration, angular 

velocity) 

Sparse 

representation 

LOSOCV  

(96.1%) 
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17 Veiga et al. 

[35] 

Structured 

protocol in 

laboratory 

environment 

82 young 

adults 

(24.68 ± 4.91) 

Predefined 

sequences of 

ADLs 

squat, lunge, deadlift, 

single-leg squat, and 

tuck jump data 

Lower back (1; 51.2 

Hz) 

Raw low pass filtered signal of IMU 

sensor (activity based, 

acceleration, angular velocity)  

Convolutional 

neural networks 

LOSOCV  

(95.9%) 

18 Ordóñez et 

al. [36] 

Structured 

protocol in 

laboratory 

environment 

3 adults 

(NA) 

 

 

Offline video 

labelling 

Sitting, standing, 

walking, lying, 

closing and opening 

of the doors, drawer, 

dishwashers and 

fridge, cleaning table, 

drinking, switch 

toggling. (opportunity 

dataset [37]) 

Upper and lower 

body (17; 30 Hz) 

Raw signal of IMU sensors (500ms, 

acceleration, angular velocity, 

magnetometer) 

Deep coevolution 

long term short 

memory 

(DeepConvLSTM) 

neural networks 

Manual division for 

training/testing 

(93.0%) 

19 Hammerla 

et al. [38] 

Structured 

protocol in 

laboratory 

environment 

9 young adults 

(27.22 ± 3.31) 

Predefined 

sequences of 

ADLs 

lie, sit, stand, walk, 

run, cycle, Nordic 

walk, iron, vacuum 

clean, rope jump, 

ascend and descend 

stairs (PAMAP 

dataset [39]) 

Chest, wrist, ankle 

(3; 100 Hz) 

Raw time series signal and feature 

selection using machine learning 

approaches, e.g. restricted 

Boltzmann machines (5.12s, 33.3 

Hz, acceleration, angular velocity, 

magnetometer, temperature, and 

heart rate) 

Convolutional 

neural network 

Manual division for 

training/testing 

(93.7% for 

PAMAP) 

20 Altini et al. 

[40] 

 

Structured 

protocol in 

laboratory 

environment 

15 young 

adults 

(29.8 ± 5.2) 

Labelling 

performed by 

the 

experimenter 

Lying, sitting, 

reading, writing, 

working on a PC, 

watching TV), 

Ankle, thigh, wrist, 

waist, hip (5; 60 Hz) 

Mean, interquartile range, mean 

distance between axes, median, 

variance, standard deviation, zero 

crossing rate, main frequency peak, 

SVM 

LOSOCV (98%) 
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standing, walking, 

biking, running etc. 

low and high-frequency band signal 

power (4s, acceleration) 

21 Lester et al. 

[41] 

Structured 

protocol in 

university 

campus 

12 young 

adults 

(20-30 years) 

Labelling 

performed by 

the 

experimenter 

sitting, standing, 

walking, jogging, 

walking up/down 

stairs, riding a bicycle, 

driving a car, and 

riding an elevator 

up/down. 

Accelerometer, 

digital compass, 

light, temperature, 

IR, pressure and 

microphone sensors 

on shoulder, waist, 

wrist (7; 2Hz-16 

kHz) 

linear and log-scale FFT frequency 

coefficients, cepstral coefficients, 

spectral entropy, band-pass filter 

coefficients, correlations, integrals, 

means, and variances. (0.25s, 

acceleration, pressure, 

temperature, IR sensor, 

microphone) 

Static and HMM 

4-fold CV 

(90%) 

 

22 Chowdhury 

et al. [42] 

Structured 

protocol in 

laboratory 

environment 

9 young adults 

(27.22 ± 3.31) 

Predefined 

sequences of 

ADLs 

lie, sit, stand, walk, 

run, cycle, ascend and 

descend stairs (from 

PAMAP) 

Chest, wrist, ankle 

(3; 100 Hz) 

Standard deviation, minimum, 

maximum, variance, median, 

skewness, kurtosis, energy, 

correlation, principal frequency, 

magnitude of principal frequency, 

median crossing, 21th and 75th 

percentiles (2s, acceleration) 

Posterior-adapted 

class-based fusion 

with random forest 

classifier 

LOSOCV 

(92.32%) 

 

23 Gupta et al. 

[43] 

Structured 

protocol in 

laboratory 

environment 

7 young adults 

(22-28 years) 

 

Predefined 

sequences of 

ADLs 

Walking, jumping, 

running, sit-to-stand 

/stand-to-sit, sitting, 

sit- to-kneel-to-stand 

Waist (1; 126 Hz) Energy, entropy, mean, variance, 

mean trend, windowed mean, 

variance trend, windowed variance, 

detrended fluctuation analysis, 

spectral energy, max. difference 

acceleration (6s, acceleration) 

KNN classifier 

LOSOCV 

(97.8%) 

 

 



 

16 

Table 2.2: Overview of the PAC systems developed for older adults 

Sr. 

No. 
Authors 

Data collection 

protocol 

Sample 

Population 

(age in years) 

Gold standard/ 

labeling 
ADLs Classified 

Sensor 

Placement 

(no. of sensors; 

sampling 

frequency) 

Features used 

(window size, analyzed 

signals) 

Classifier, 

validation 

procedure, 

(accuracy) 

1 Najafi et 

al. [25] 

Semi-structured 

protocol in home 

environment 

9 older adults 

 (66 ± 14) 

Labelling performed 

by the experimenter 

Sitting, standing, 

walking, lying 

Chest (1; 60 Hz) features derived from discrete 

wavelet transform i.e. tilt angle 

vertical acceleration and 

displacement (60s, acceleration, 

angular velocity) 

thresholding 

(mean 

sensitivity of 

93.6%) 

2 Godfrey et 

al. [27] 

Structured 

protocol in home 

environment 

10 young 

adults 

(23.7 ± 2.2) 

10 older adults 

(77.2 ± 4.3) 

Predefined 

sequences of ADLs 

Sitting, standing 

and lying on 

various objects, 

transitions 

Waist (1; 1 kHz) Velocity estimate, tilt angle 

(activity based, acceleration) 

thresholding 

(mean 

sensitivity of 

92.5% for 

older subjects) 

3 Rosario et 

al [29] 

Structured 

protocol in 

university 

campus 

20 young 

adults  

(21.9 ± 1.65) 

37 older adults 

 (83.9 ± 3.4) 

Offline video 

labelling 

standing, sitting, 

lying, walking on 

stairs up/down,  

riding an elevator 

up and down, 

transitions 

Smartphone in 

front pocket of 

the trouser (1; 

100 Hz) 

cumulative sum of various 

angular velocity component, 

acceleration component due to 

gravity, differential pressure 

(2.5s, acceleration, angular 

velocity, barometric pressure) 

Decision tree 

classifier 

LOSOCV  

 (82.0% for 

older subjects) 
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4 Gao et al 

[16] 

Structured 

protocol in home 

environment 

8 older adults  

(76.50 ± 4.41) 

Predefined 

sequences of ADLs 

Sitting, standing 

and lying on 

various objects, 

transitions 

chest, thigh, 

waist and left 

under arm (4; 20 

Hz) 

mean, standard deviation, 

variance, zero crossing rate, 

RMS, peak count, spectral 

energy, entropy, centroid, signal 

magnitude area, correlation, tilt 

angle, angle velocity (1s, 

acceleration) 

Decision tree 

classifier  

10-fold CV 

 (96.4%) 

5 Khan et al. 

[44]  

Structured 

protocol in home 

environment 

6 older adults 

(65 ± 3) 

Self-labelling by the 

subject 

Walking, resting, 

running, running, 

cycling 

vacuuming, 

walking up/down 

stairs 

Single sensor 

tested on chest, 

front and back 

trouser pocket, 

inner jacket (1; 

90 Hz) 

Spectral entropy, autoregressive 

coefficients, signal magnitude 

area (1s, acceleration) 

ANN 

LOSOCV  

(94.4%) 

6 Lyons et 

al. [26] 

Semi-structured 

protocol in rehab-

center 

1 older adult 

(NA) 

Labelling performed 

by the experimenter 

Sitting, standing, 

lying, moving 

Thigh, trunk (2; 

50 Hz) 

Mean, standard deviation, tilt 

angle, (1s, acceleration) 

Thresholding 

(90%) 

7 Kamada et 

al. [45] 

ADLs in free-

living conditions 

94 older adults 

(71.9 ± 6) 

Self-labelling by the 

subject 

Walking Waist, wrist (2; 

30 Hz) 

Vector magnitude (60s, 

acceleration) 

Manual 

(71%) 

8 Ayachi et 

al. [46] 

Structured 

protocol in 

laboratory 

environment 

7 older adults 

(73 ± 4) 

Labelling performed 

by the experimenter 

Sitting, standing, 

walking, reaching 

ground, step over 

obstacle, reach 

up/down, release 

mid/down, turn 

right/left 

Various body 

locations (17; 60 

Hz) 

Discrete wavelet transforms, 

(160ms, acceleration, angular 

velocity) 

Thresholding 

(97.5%) 

 



  

In summary, a graphical representation of the distinctive factors of existing PAC 

systems is depicted in Fig. 2.1. These factors consist of: datasets, number of sensors, 

placement of sensors, feature set, window size used for feature computation, and the 

classification approach used for the development of the model for PAC. We shall 

review them one by one in the following. 

No. of SensorsDataset

Sensor’s 

Placement

Classifier

Features Set

Window Size

Overall 

Performance

 

 

Figure 2.1: Factors that contribute to the overall performance of the PAC systems 

presented in the literature [47] 

2.1.1 Dataset or Nature of the Dataset 

Nature of the datasets differs regarding the sample population (younger or older), 

how and where the ADLs are performed (laboratory controlled environment or free-

living conditions), and the type of ADLs (sitting, standing, walking, etc.) included in 

the dataset.  

2.1.1.1 Younger vs Older Adults 

  The concise summary presented in Tables 2.1 and 2.2 shows that majority of the 

PAC systems (three fourths) have been developed and tested on younger adults’ dataset 
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and only a few PAC systems (one fourth) have collected and analyzed data of older 

adults. Therefore, it is important to investigate the peculiarities and assess the 

performances of such systems in order to develop PAC systems that are suited for the 

ever-increasing elderly population, with a higher overall quality.  

The systems developed for younger adults’ data cannot be directly transferred to 

older subjects’ data without a loss in accuracy, since the quantity and quality of ADLs 

may be very different between the two age groups. This is because relevant 

characteristics of the ADLs performed by younger subjects are possibly different than 

the ones performed by the older subjects, even if the environmental conditions are 

comparable. In fact, a recent study by Rosario et al. [29] found that misclassification 

rate of the several ADLs (walking, sitting, stairs ascend/descend) was much higher for 

older adults as compared to younger adults considering the same system design (feature 

set, classifier, cross-validation procedure) and data collection environment. This study 

[29] also investigated if the same PAC system developed for the younger population is 

transferable to the elderly population. For this purpose, they trained the PAC system on 

younger adults’ activity data and tested it on the older adults in a laboratory 

environment. Their findings showed that the performance of the system trained on 

younger adults and tested on older adults degraded significantly as compared to 

performance when the PAC system is trained and tested on older adults.   

Another important factor to emphasize is the environmental conditions where the 

data collection is performed. It is worth noting that 21 out of 23 PAC systems developed 

for younger adults (Table 2.1) are using structured protocols where the ADLs are 

sequenced and mostly performed in a laboratory environment [10, 12, 14, 17, 21-23, 

34, 36]. There are only two PAC systems developed in free-living conditions (Table 

2.1): Hickey et al. [31] and Lee et al. [33]. The system by Hickey et al. only classify 

the walking bouts and did not explore other commonly performed ADLs (e.g. sitting, 

standing, lying). The system by Lee et al. uses the GPS trajectories to keep the ground 

truth information, which might not be much reliable to fully validate the PAC system 

in free-living conditions, as compared to the validation performed by Hickey et al. using 

offline video marking. Furthermore, the system by Lee et al. is developed using only 
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two subjects and its use is limited to outdoor environment because of the erroneous 

behavior of the GPS signal in indoor environments. 

Similarly, majority of the PAC systems (5 out of 8) developed for older adults in 

Table 2.2 uses structured protocols for data collection. Only the PAC system developed 

by Kamada et al. [45] use the dataset collected in free-living conditions. However, their 

system mainly focuses on the detection of walking activity, and other ADLs were not 

classified. Moreover, in the system by Kamada et al., ADLs were self-annotated, which 

certainly biased the quality of the assessment procedure. The PAC system developed 

by Najafi et al. [25] and Lyons et al. [26] (Table 2.2) utilizes semi-structured protocols, 

where the subjects were instructed to perform certain ADLs at their usual pace. 

However, the ADLs were performed with the presence of an observer, who labeled the 

ADLs, which might influence the natural behavior of performing ADLs, as performed 

in free-living conditions where subjects have more freedom in performing their ADLs 

more naturally and without any sequence. Secondly, these two systems use a few 

number of subjects (below 10), which are insufficent for the generalisibility of the 

findings.  

2.1.2 Number of sensors 

The number of sensors in PAC systems varies from a single sensor setup [10, 27] 

to multiple sensors setup [9, 12, 13]. The multi-sensor sensor set-up ranges from two 

sensors [17, 34] to as many as 17 sensors [36, 46].  

These sensors also differ in terms of sampling rates, ranging from 20 Hz [16] to 1 

kHz [27]. Certainly, the larger the sampling frequency the higher the power 

consumption of the sensors as well as the computational complexity of the system. 

Furthermore, high sampling frequencies of movement signals has no significant 

contribution as all body movements can be captured below 20 Hz [48]. The most 

commonly analyzed signal for activity classification is acceleration and the second is 

angular velocity (Table 2.1 and 2.2). This could be because of the low power 

requirement of the acceleration signal as compared to angular velocity signal, which 

increases the data recording time significantly. 
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2.1.3 Placement of sensors 

As shown in Tables 2.1 and 2.2, the sensors’ placement may be very different, 

covering several body locations to record the upper and lower body movements. The 

sensors locations used for the development of the PAC systems in the literature (Table 

2.1 and 2.2) are presented in Figure 2.2 and the number indicates how many studies 

used such locations. The most commonly used sensor locations are: chest, wrist, waist, 

thigh and feet.  

 

Figure 2.2: Sensor locations used by the PAC systems in the literature and a 

number indicating how many systems used such locations 

2.1.4 Features set 

Existing PAC systems have used numerous time and frequency domain features, 

statistical features and biomechanical features [49, 50] as shown in Table 2.1 and 2.2. 
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These features include summary statistics measures (i.e. mean, standard deviation, 

minimum, maximum, variance, median, skewness, kurtosis, root means square, etc.), 

signal magnitude area, energy, spectral measures (i.e. centroidal frequency, principal 

frequency, power at the principal ftrequency, etc.), non-linear measures (i.e. entropy), 

etc. Thus, depending upon the intended objectives, various kind of features can be 

considered for the development of PAC system. 

2.1.5 Window size  

Window size and overlapping intervals used for the feature computation are also 

very different across studies, and these may affect the performance of machine learning 

algorithms. The window size largely differs across the PAC systems proposed in the 

literature: 2 sec [12], 2.5 sec [29], 5 sec [13], 5.12 sec [10], 6.7 sec [9], 10 sec [22]. The 

overlapping interval used in most of the PAC systems is 50% of the window size [49]. 

Therefore, large diversities exist in the literature in choosing the window size and 

overlapping intervals.  

2.1.6 Classifiers/ Machine Learning Approaches  

In most of the PAC systems, a single classifier is used to differentiate between all 

the different ADLs in the dataset. A common choice for such classifiers may include a 

decision tree classifier [9], Support Vector Machine (SVM) [51], Artificial Neural 

Network (ANN) [16], random forest [52], Naïve Bayes [53] and K- Nearest Neighbors 

(KNN) [54]. However, some PAC systems are developed by integrating base level 

classifiers either by plurality voting [10] or by defining a hierarchical classification 

process which uses different classifiers for each subset of ADLs [14, 21, 55]. 

There are also some newly developed systems [35, 36, 38] which skip the feature 

computation stage and implement machine learning approaches (e.g. convolutional 

neural networks (CNN), deep convolution long-term-short memory  (DeepConvLSTM) 

neural networks) directly to the raw dataset. However, these systems are not yet fully 

exploited in the free-living conditions and on the older adults. Therefore, these methods 
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and also the feature-based methods require further investigation, in order to objectively 

classify the ADLs of the elderly population in free-living conditions. 

Another important factor to highlight is the cross-validation procedure to compute 

the performance of PAC systems. The more common validation procedures are the 10-

fold cross-validation procedure and the leave-one-subject-out cross-validation 

(LOSOCV) procedure. In 10-fold cross validation, 90% of the data samples are used to 

train the classifier, and the remaining 10% of data is used to test the performance of the 

classifier. This process is repeated 10 times to test all data samples. In LOSOCV, the 

classifier is trained on all subjects except the one that is being tested. This process is 

repeated until all subjects get tested. 

2.2 Conclusions 

The review suggests that majority of existing systems are developed using the 

younger subjects’ data and a few systems are developed using the older subjects’ data. 

The scope of such systems is limited to stimulated and structured activities which differ 

from real life activities, where the activities are more naturally performed and in an 

unstructured way. Consequently, there is a need to develop PAC system for the elderly 

population, validated in free-living conditions. A group of researchers [56] recently 

proposed a set of recommendations about the standardization of validation procedures 

for PAC systems in older people. It emphasizes the need to develop and validate the 

PAC using a semi-structured protocol where ADLs are pesrformed in real life 

conditions, in addition to the validation performed in the laboratory-based settings. 

Moreover, the choice of every single factor discussed above (Fig. 2.1) is crucial in 

the development of a robust PAC system since all these factors contribute directly to 

overall performance. Due to the large diversity in the design process, the existing PAC 

systems are not easily comparable which hinders the development of new techniques 

informed by the strengths and the gaps of current systems. 
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Chapter 3 

Performance Evaluation of State of the Art Systems 

for Physical Activity Classification of Older 

Subjects Using Inertial Sensors in A Real-Life 

Scenario: A Benchmark Study 

This chapter is largely taken from our published work [47], which is about the 

performance evaluation of the state of the art methodologies for physical activity 

classification of the older subjects.  

 

3.1 Introduction 

The conclusion drawn from the review of the existing methodologies for PAC has 

shown that the current PAC systems are not directly comparable, due to the large 

diversity in their design (e.g., number of sensors, placement of sensors, data collection 

environments, data processing techniques, features set, classifiers, cross-validation 

methods). In the past, some researchers [14, 51, 57] have tried to compare the 

performance of their proposed PAC systems with existing systems. However, in our 
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opinion, they failed to provide a fair comparison, since they did not consider that the 

factors reported in Figure 2.1 were not comparable. 

Therefore, this analysis aims to propose a fair and unbiased benchmark for the field-

based validation of existing state of the art (SOA) systems for PAC of older subjects 

highlighting the gap between the laboratory and real-life conditions. The specific aims 

are as follows: 

• To compare the performance of existing PAC systems in a common dataset 

of activities of older subjects in an unbiased way (i.e., with the same 

subjects, sensors, sampling frequency, window size and cross-validation 

procedure) and to investigate the effect of varying window size on system’s 

performance.  

• To validate and compare the performance of the PAC systems in real life 

scenarios compared to an in-lab setting to check if these systems are 

transferable to real-life settings.  

• To evaluate the impact of the number of sensors on the performance in the 

analyses in 1) and 2) using a reductionist approach (i.e., analyzing only the 

sensing unit worn at the lower back instead of the multi-sensor setup). The 

lower back location is chosen since it is commonly used for elderly 

population and does not show any major drawbacks for long term activity 

monitoring in terms of feasibility. 

For the presented aims, we selected three representatives SOA systems for PAC [9, 

14, 22] motivated by the following reasons: i) diversity in the number of sensors used; 

ranging from four sensing units by Leutheuser et al. [14] up to six sensing units by 

Cleland et al.[22]; ii) use of different time intervals for windowing (ranging from 5 sec 

[14] to 10 sec [22]); iii) different classification techniques i.e. decision tree classifier 

by Bao et al. [9], SVM by Cleland et al. [22], and hierarchical classification by 

Leutheuser et al. [14]. Four ADLs (sitting, standing, walking, and lying) are studied in 

this work to provide a fair comparison. These ADLs are chosen as they are the most 
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common in this kind of studies and due to these four activities being present in all of 

the selected systems. 

3.2 Materials and Methods 

3.2.1 Data Collection in Real-Life Scenarios 

The data collection was performed at the Department of Neuroscience, Faculty of 

Medicine, at the Norwegian University of Science and Technology (NTNU) Norway, 

by the research group on Geriatrics, Movement, and Stroke, as part of the ADAPT 

project (A Personalized Fall Risk Assessment System for promoting independent 

living). A detailed description of the ADAPT dataset and the video annotation process 

is presented in the study protocol by Bourke et al. [58]. The data collection protocol 

was composed of two sessions: a semi-structured supervised protocol (in-lab) and a 

free-living unsupervised protocol (out-of-lab). Twenty older subjects (76.4 ± 5.6 years) 

participated in the study. For both data protocol sessions, video recording was used as 

a gold standard. Various inertial sensing units were placed on different body locations, 

and a subset of these sensors was used in our analysis: chest, lower back (L5- 5th lumbar 

vertebrae), dominant wrist, waist, left thigh, and right foot. The details of the sensors 

used, and their respective placements are presented in Table 3.1.  

All sensors were part of in-lab and out-of-lab protocols except the sensor on the feet 

which was excluded from out-of-lab data recording for usability issues. Each subject 

performed a variety of ADLs in both sessions with the ADLs analyzed in our study 

being sitting, standing, walking, and lying. The in-lab session was performed in a smart 

home environment where subjects were supervised and instructed to perform ADLs. 

Video recording was performed using the ceiling-mounted cameras at 25 fps. The in-

lab session was followed by an out-of-lab session on the same day where subjects 

performed their daily routine activities in an unsupervised way. They were instructed 

to perform as much ADLs as possible and to incorporate certain tasks into their daily 

routine. A GoPro camera unit with a frame rate of 29 fps (fixed to the chest pointing 
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downward towards the feet) was used to video record the gold-standard information of 

the ADLs performed in free living protocol.  

Table 3.1: Description of the sensors used from the ADAPT dataset. 

Sensor 

Type 
Location 

Sampling 

Frequency 
Measured Signals 

uSense Thigh 100 Hz 
3D Accelerometer, 3D 

Gyroscope 

uSense L5 100 Hz 
3D Accelerometer, 3D 

Gyroscope 

ActiGraph Waist 100 Hz 3D Accelerometer 

uSense Chest 100 Hz 
3D Accelerometer, 3D 

Gyroscope 

Shimmer Wrist† 200 Hz 
3D Accelerometer, 3D 

Gyroscope 

uSense Feet * 100 Hz 
3D Accelerometer, 3D 

Gyroscope 

† Initially collected at 200Hz but later down sampled. 

* Sensor on the feet were not included in out-of-lab data collection. 

 

Video annotation of the camera units used in the in-lab and out-of-lab protocols was 

performed by the recruited raters. Raters were instructed on the marking procedures 

and activity definitions. For both sessions, video annotation agreement was around 

90%. The original sampling frequency (25 Hz) of the annotations was up-sampled to 

100 Hz [58]. Due to technical issues with the wrist sensor, 16 subjects were used for 

analysis purposes as the authenticity of sensed data was compromised in rest of the 

cases due to missing data at the time of recording. Therefore, four subjects were 

excluded from the analysis as all selected PAC systems make use of the wrist sensor 

data.  

A summary of the ADLs from 16 subjects analyzed from the in-lab and the out-of-

lab protocols is presented in Tables 3.2 and 3.3, respectively. Statistical analysis was 

performed and various parameters were computed: occurrences (how many times a 
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single ADL occurred in all subjects), mean (average duration of each ADL in seconds), 

STD (standard deviation of each ADL in seconds), min (minimum duration of each 

ADL in seconds), max (maximum duration of each ADL in seconds), and range 

(difference between min and max in seconds). 

Table 3.2: In-lab ADLs. 

ADL 
Total 

(hours) 
Occurrences Mean * STD * Min * Max * Range * 

sitting 1.67 708 8.50 18.90 0.03 267.36 267.33 

standing 2.67 1319 7.28 16.40 0.03 296.97 296.94 

walking 0.90 613 5.29 2.79 0.96 20.07 19.11 

lying 0.28 187 5.47 9.87 0.13 113.23 113.10 

* The values are in seconds. 

Table 3.3: Out-of-lab ADLs. 

ADL 
Total 

(hours) 
Occurrences Mean * STD* Min * Max * Range * 

sitting 13.45 497 97.44 200.74 0.04 2075.64 2075.60 

standing 6.52 4304 5.45 12.27 0.03 388.52 388.49 

walking 4.10 2617 5.64 8.75 0.28 139.56 139.28 

lying 0.36 12 106.69 154.02 3.48 583.84 580.36 

* The values are in seconds. 

3.2.2 Implementation of the SOA Systems for PACs Using Their Original 

Framework 

The set of sensors used in our work for the in-lab (SIN) and out-of-lab (SOUT) 

analysis performed on the ADAPT dataset is shown in Table 3.4. The brief description 

of the three PAC systems, selected for the comparative analysis is presented in Table 

3.5. It is much evident from Table 3.5 that all PAC systems possess different solutions 

for a number of sensors, sensor locations, set of features, classifiers, and time window 

used for feature computation.  
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To investigate the sensitivity of the classification accuracy to window size (first 

specific objective), all systems are trained and tested in the in-lab data with a window 

size ranging from w = 1 s to w = 10 s in steps of 1 s. To overcome any bias in the 

training process, the leave-one-subject-out cross validation procedure was used to split 

the training and testing datasets. In this way, features from all but one subject were used 

in the training process while the remaining subject was tested. This process was 

repeated until all subjects had been tested. 

Table 3.4: Sensors used from ADAPT dataset to assess the performance on three 

PAC systems. 

Author SIN SOUT 

Cleland et al. [9] 
Chest, L5, Wrist, Waist, Thigh, 

Foot 

Chest, L5, Wrist, Waist, 

Thigh 

Bao et al. [2] L5, Wrist, Thigh, Foot L5, Wrist, Thigh 

Leutheuser et al. Wrist, L5, Chest, Foot Wrist, L5, Chest 

SIN —Sensors used in our data analysis from In-lab protocol of ADAPT 

dataset; and SOUT —Sensors used in our data analysis from out-of- lab protocol 

of ADAPT dataset. 

Analysis of the out-of-lab data is performed by training and testing all systems with 

the real-life data. The window size of 5s is used with the sensor set SOUT (Table 3.4) 

and leave-one-subject-out cross-validation is performed. The window size of 5 s is 

chosen, since it is closer to the window size used by two out of three PAC systems 

(Table 3.5). 

To address the second specific objective, each PAC system is trained with the in-

lab data and tested on the out-of-lab data. To overcome any bias in the training process, 

the in-lab data of all subjects except one is included in the training stage. The left-out 

subject is tested in free-living conditions (i.e., with the out-of-lab data). In this way, all 

participants are tested in free-living condition using this leave-one-subject-out strategy. 

The sensor set SOUT is used with the window size of 5 s.  



  

Table 3.5: Overview of the three SOA systems for PACs implemented in this study for performance analysis. 

Author 
Fs  

(W) 
SO 

Experiment 

Setting 

(Population) 

Features Activities 
Accuracy 

Reported 

Cleland 

et al.  

[22] 

51.2  

(10 s) 

Chest, lower 

back, wrist, 

hip, thigh, 

foot 

Laboratory setting 

(8 young adults) 

(26.25 ± 2.86 

years) 

Mean, standard deviation, skewness, 

kurtosis, energy and correlation of 

axes (separately and average over 3 

axes) 

Walking, jogging on a 

treadmill, sitting, lying, 

standing, walking up stairs, 

walking downstairs 

SVM: 97.26% 

Bao et 

al. [9] 

76.25  

(6.7 s) 

Hip, wrist, 

arm, thigh, 

ankle 

Semi-naturalistic 

conditions (20 

subjects) age 

group not reported  

Mean, energy, frequency domain 

entropy, correlation between the 

acceleration signals 

Walking, sitting, standing, 

eating or drinking, watching 

tv, reading, running, 

bicycling, stretching, 

strength-training, scrubbing, 

vacuuming, folding laundry, 

lying, brushing, climbing 

stairs, riding elevator, riding 

escalator 

Decision tree: 84% 

Leutheu

ser et al. 

[14]  

204.8  

(5 s) 

Wrist, hip, 

chest, ankle 

Laboratory setting 

(23 young adults) 

(27 ± 7 years) 

Minimum, maximum, mean and 

variance, spectral centroid, 

bandwidth, energy, gravitational 

component 

Sitting, lying, standing, 

washing dishes, vacuuming, 

sweeping, walking, running, 

stairs climbing, bicycling, 

rope jumping 

Hierarchical 

classifier : 89.6% 

 

Fs—Sampling Frequency in Hz, W = Window Size, SO—Original set of sensors used by the authors to develop PAC system, Activities—

Set of Activities used by authors to develop their PAC system. 



  

The overlap is set to 50% of the window size for all the analysis. Furthermore, a 

majority voting scheme is implemented to assign the window labels, i.e., if a window 

of 5 s (500 samples) contains 400 samples of sitting and 100 samples of standing then 

the assigned label to this window would be sitting. 

All of the PAC systems are implemented in MATLAB (Release 2014b, The 

MathWorks, Inc., Natick, MA, USA) and respective classifiers are implemented using 

the libraries of Weka data mining software (University of Waikato, Version 3.6.12 

[59]). The analysis is performed on a Dell laptop (Model # M3800, Intel® Core™ i7-

4712HQ, CPU @2.30Gz, 16GB RAM, 64-bit operating system). For all systems, 

overall accuracy, accuracy by class, and sensitivity by class of all activities is computed 

in the in-lab training/out-lab testing scenario. The overall accuracy term will be used 

interchangeably as accuracy or performance in the upcoming sections. The formulas 

used for the computation of performance metrics are reported in Appendix A, and the 

respective classification methods implemented for each PAC system are described in 

Appendix B. 

3.2.3 Implementation of the SOA Systems for PAC Using a Reductionist 

Framework 

The performance of all systems is also computed in the reductionist framework 

implemented using only the sensor data collected at waist-level in L5 (third specific 

objective). The steps in the analysis are the same as described in Section 3.2.2. 

3.3 Results and Discussion 

3.3.1 Performance Comparison of the PAC Systems in the In-Lab Setting Using 

Their Original Framework and Sensitivity Analysis to the Window Size 

Overall accuracy computed for the sensitivity analysis of the in-lab data to different 

window sizes (w = 1 s to 10 s) is presented in Figure 3.1.  
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Figure 3.1: Sensitivity analysis of the overall accuracy of in-lab data when window 

size is increased from w = 1 s to w = 10 s using sensor set SIN (Table 4). The symbol 

( ) specifies the window size used in the original PAC system by the authors. 

The system by Cleland et al. [22] performs best in our framework, with an overall 

accuracy ranging from 98.4% for w = 1 s to 94.6% for w = 10 s. Hence, it shows a 

degradation by 3.8% when increasing the window size. Our result for in-lab data 

compares well with the original paper that, for w = 10 s, reported an overall accuracy 

of 97.3%. The second-best performance we obtained is with the system proposed by 

Bao et al. [9]. It also shows a decreasing trend in the overall accuracy from 97.3% (for 

w = 1 s) to 94.4% (for w = 10 s) with a difference of 2.9%. The original system was 

implemented with w = 6.7s and had an overall accuracy of 84%; our closest term of 

comparison is the window with w = 7 s, which produces an accuracy of 95.4%. The 

accuracy of the system by Leutheuser et al. [14] is below the aforementioned. In the 

system by Leutheuser et al., we obtain an overall accuracy which, unlike previous 

systems, increases by 2.3%, from 83.7% (w = 1 s) to 86.0% (w = 10 s). Results obtained 
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in our framework (overall accuracy of 86.4%) fits well with the original one at w = 5 s 

(overall mean classification rate of 89.6%). A possible reason for the increase in the 

performance (although the performance is the worst of the three) for increasing window 

sizes of the system by Leutheuser et al. is the difference in the classifier design. Their 

work is the only one that uses a hierarchical classification approach. 

The systems by Bao et al. [9] and Cleland et al. [22] achieved very high accuracies, 

at the cost of using a large number of sensors, which is a practical issue in real-life 

conditions. The system developed by Bao et al. uses four sensors and the system 

proposed by Cleland et al. uses six sensors, which raise feasibility and computational 

complexity issues for these systems, which could make them less practical in real life 

conditions. 

The probable cause in the overall lower performance of the system by Leutheuser 

et al. could be the fact that in their original implementation, six subsets of ADLs were 

considered (1: HOUSE (vacuuming, sweeping); 2: REST (sitting, standing, and lying); 

3: WALK (walking, running, ascending stairs, descending stairs); 4: bicycling; 5: rope 

jumping; 6: washing dishes). Instead, in our analysis, only two sub-systems are used 

i.e., REST (sitting, standing, lying) and WALK (walking). The subdivision of ADLs 

which characterizes this hierarchical classification can be a limitation in implementing 

the original work when choosing only a subset of activities, as in our case. It could also 

be an issue if a hierarchical classification approach is implemented on a set of activities 

which is not the same as the original PAC system. 

Our findings regarding the decrease in performance are in line with the recent work 

by  Fida et al. [23] who analyzed the effect of varying window size from w = 1 s to 3 s 

and suggests that 1 s to 2 s window size gives a better tradeoff when analyzing static 

and dynamic activities. On the contrary, more recently Shoaib et al. [24] proposed a 

system for complex human activity recognition by varying window sizes from 1 s to 30 

s and found that increasing window size improves the recognition rate of complex 

activities. However, our analysis is novel due to the demographics of the studied 

population. Our work investigates the activities of older adults, whose ADLs differ 

from those analyzed by Fida et al. and Shoaib et al. on the younger subjects.  
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It is possible that the performances of all the three PAC systems would decrease if 

the number of the ADLs are scaled up. This is because more robust set of features would 

be required to build the system model instead of using the same feature set.  

3.3.2 Performance of the PAC Systems in Real-Life Scenarios 

3.3.2.1 In-Lab vs. Out-of-Lab 

The results of the out-of-lab analysis show a decreased accuracy concerning the in-

lab across all systems. Figure 3.2 (first and last point on time axis), shows the overall 

accuracy of the three systems in the in-lab and out-of-lab with w = 5 s, chosen as a 

representative window size. A slight decrease of 1% (96.4%–95.4%) in work by 

Cleland et al. and 1.3% (94.7%–93.4%) in work by Bao et al., is observed.  

 

Figure 3.2: Performance analysis of in-lab, out-of-lab, and in-lab training/out-lab 

testing scenario for all PAC systems using sensor set SOUT (Table 3.4). 
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However, such degradation is larger in work by Leutheuser et al. with a decline of 

6.2% (83.7%–77.5%). The best performance of 95.4% is obtained (when trained and 

tested on the real-life data) by the system of Cleland et al. which is quite encouraging, 

but at the cost of using five sensors and large features set, which may not be feasible in 

real-life conditions. 

3.3.2.2 In-Lab Training/Out-Lab Testing 

We then evaluated the performance of in-lab trained systems in the real-life setting. 

In the in-lab training/out-lab testing scenario, the performance of all the SOA systems 

decreased between 4–6% when compared to the in-lab results (Figure 3.2).  

Table 3.6: Confusion matrix for the systems; (a) Bao et al.; (b) Cleland et al.; and 

(c) Leutheuser et al.; in the in-lab training/out-lab testing scenario. 

 (a) Bao et al. 

Predicted Class 

A
ct

u
a
l 

C
la

ss
 stand walk sit lie ←classified as 

9214 571 4 0 stand 

2329 4000 2 9 walk 

24 16 19,260 197 sit 

233 0 2 278 lie 

 (b) Cleland et al. 

Predicted Class 

A
ct

u
a
l 

C
la

ss
 stand walk sit lie ←classified as 

9712 73 4 0 stand 

2474 3857 9 0 walk 

1 1 19,492 3 sit 

0 0 234 279 lie 

 
(c) Leutheuser et al. 

Predicted Class 

A
ct

u
a
l 

C
la

ss
 stand walk sit lie ←classified as 

7423 350 1572 16 stand 

395 5397 94 0 walk 

5289 107 13,950 0 sit 

0 0 15 480 lie 

Each individual instance in the table corresponds to 5 s or 500 samples of data 
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Table 3.7: Accuracy and sensitivity by class for all SOA systems for PAC in the in-

lab training/out-lab testing scenario. 

Authors Accuracy 

Accuracy by Class Sensitivity by Class 

Stand Walk Sit Lie Stand Walk Sit Lie 

Bao et al. 90.6 91.3 91.9 99.3 98.8 94.1 63.1 98.8 54.2 

Cleland et al. 92.3 92.9 92.9 99.3 99.3 99.2 60.8 100.0 54.4 

Leutheuser et 

al. 
77.7 78.3 97.3 79.8 99.9 79.3 91.7 72.1 97.0 

 

The respective confusion matrix for each SOA system for PAC is shown in Table 

3.6, where sensor set SOUT (Table 3.4) is used for implementation of all systems. Each 

sample of the confusion matrix corresponds to a 5s window.  

Moreover, the accuracies by class and the sensitivities by class for all PAC systems 

in the in-lab training/out-lab testing scenario are listed in the Table 3.7. The decreases 

in accuracy are: from 96.4% to 92.3% (4.1%) in the work by Cleland et al., from 94.7% 

to 90.6% (4.1%) in the work by Bao et al., and from 83.7% to 77.7% (6.0%) in the work 

by Leutheuser et al.  

The degradation of performance in all the systems in this scenario reflects the lack 

of field-based validity as highlighted more recently by Lindemann et al. [56]. The 

reason for this degradation is due to the fact that:  

• Most of the existing PAC systems are developed using a standardized protocol 

which does not include the ADLs performed under real-life conditions.  

• The order and way of performing these activities in a more natural and quite 

different environment to the one performed in a laboratory environment. 

Therefore, these PAC systems are unable to recognize unstructured and unplanned 

activities in real-life conditions, which emphasizes the need of developing in-field, 

validated, PAC systems, as we did when considering the out-of-lab scenario. 
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Our findings are in-line with the work by Ganea et al. [28], where performance 

deteriorated when the laboratory-trained system was tested in real life. Our analysis 

generalizes the fact of performance deterioration over several activities in real life 

conditions by analyzing sitting, standing, walking, and lying instead of only postural 

transitions, as analyzed by Ganea et al. 

3.3.3 Computational Complexity/Burden in the Real-Life Settings 

The computational complexity/burden of testing out-of-lab data (when trained on 

in-lab) is also analyzed by measuring the time required for the feature extraction and 

for classification (Table 3.8). The feature computation time is the time required to 

compute the features of all 16 subjects from out-of-lab data using the sensor set SOUT 

(Table 3.4). The testing out-of-lab time is the total time to test all the out-of-lab data for 

16 subjects. Mean and standard deviation of 10 runs (to account for computer 

performance variability) are reported in Table 8. The total window instances obtained 

(after the feature extraction of the out-of-lab data) for all systems are 36,139 except the 

system by Leutheuser et al. [10], for which the samples are 35,088 because of the 

software dependencies.  

Table 3.8: Computational complexity in the in-lab training/out-lab testing 

scenario. 

Author 
Feature Computation  

Mean  ±  Std (s) 

Testing Out-of-Lab  

Mean  ±  Std (s) 

Bao et al. 337.07 ± 3.10 25.27 ± 0.95 

Cleland et al. 458.79 ± 6.57 738.21 ± 1.09 

Leutheuser et al. 772.41 ± 11.99 957.83 ± 18.38  

The time consumption analysis of the features computation shows that the time 

required to compute the features has a direct relationship with the number of sensors. 

All three systems used multiple sensors and took longer time for feature computation. 
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Moreover, the number of features, and the nature of the features, also plays an important 

role in the computational complexity of the system. For instance, in the work by 

Leutheuser et al., activity-specific features and hierarchical structure increased the time 

consumption for the validation. The complexity of the classifier, along with the number 

of sensors increased the computational time in the systems by Leutheuser et al., and 

Cleland et al. On the other hand, the time taken by Bao et al. is much shorter since it 

utilizes a simpler classifier approach (decision tree classifier). The computational 

analysis suggests that to make the PAC system operational in real time, the optimum 

number of sensors, proper feature selection to eliminate redundant features, and the 

choice of simpler and more robust classifiers, is very critical. Most of the existing 

systems do not highlight these factors, especially the selection of features, and of a 

reduced set of sensors. These factors are crucial for the practical implementation of 

these systems out of the laboratory. 

3.3.4 Performance Comparison of the PAC Systems in the In-Lab Setting Using 

a Reductionist Approach and Sensitivity Analysis to the Window Size 

The overall performance of the PAC systems using a reductionist approach obtained 

from the in-lab sensitivity analysis to window size is depicted in Figure 3.3. In-lab 

sensitivity analysis using a single sensor at L5 location (Figure 3.3) follow a decay in 

performance with the increase in window size (similar to that presented in Section 3.1) 

for the systems by Bao et al. and Cleland et al. The deterioration in accuracy from w = 

1 s to w = 10 s was 5.3% by Bao et al. and 4.8% by Cleland et al. However, an 

improvement of 1.7% in accuracy is observed in the work by Leutheuser et al. In this 

case, the use of activity specific classification systems instead of using the generalized 

systems for ADLs seem to be the probable cause. 

 



 

39 

 

Figure 3.3: Sensitivity analysis of overall accuracy of in-lab data when window size 

is increased from w = 1 s to w = 10 s using reductionist approach. The symbol (

) specifies the window size used in the original PAC system by the authors. 

3.3.5 Performance of the PAC Systems in Real-Life Scenarios Using a 

Reductionist Approach 

3.3.5.1 In-Lab vs. Out-of-Lab 

The analysis using the reductionist approach (Figure 3.4) shows that accuracy of all 

systems is decreased except for Cleland et al. in the out-of-lab when compared to in-

lab.  

The decrease is: 2.7% in the work by Bao et al., 6.4% in the work by Leutheuser et 

al. The slight increase of 1% is observed in the work by Cleland et al. The best 

performance of 80.9% is achieved by the work of Cleland et al. (similar to Section 
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3.3.2.1) when trained and tested on the real-life data which show the potential of using 

a single sensor in real life conditions. This performance can be enhanced by developing 

a PAC system which incorporates more discriminative features (e.g., biomechanical 

features) and a robust classifier. 

 

Figure 3.4: Performance analysis of in-lab, out-of-lab, and in-lab training/out-lab 

testing scenario for all PAC systems using a reductionist approach. 

3.3.5.2 In-Lab Training/Out-Lab Testing 

The in-lab training/out-lab testing analysis on the single sensing unit also followed 

the deterioration in overall accuracy and the differences are a bit larger (between 6–8%) 

than in the multi-sensor setting (Section 3.3.2.2) as described by Figure 3.4. The 

reduction in the accuracies are: 79.8% to 73.3% (6.5%) by Cleland et al., 84.4% to 

77.8% (6.6%) by Leutheuser et al., and 78.0% to 70.3% (7.7%) by Bao et al. 

The performance of all systems, both in the original framework and in the 

reductionist approach degrades for the in-lab testing/out-lab training scenario (when 

compared to in-lab analysis). Therefore, it is very important to develop a PAC system 
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in the real-life data before releasing it for real life applications, as we did in the out-of-

lab analysis. Most of existing system lack this perspective so their performance cannot 

be generalized for the real-life conditions. 

3.4 Conclusions 

A benchmark study is presented which investigates the performance of various 

SOA systems for PAC in the in-lab and out-of-lab environment. The sensitivity analysis 

to window size shows that the increase in window size generally degrades the 

performance. The in-lab training/out-lab testing analysis concludes that the systems 

developed in controlled settings are not capable of performing well in real-life 

conditions where the ADLs are performed more naturally. Therefore, the newly 

developed systems should be trained and tested on the dataset collected in the real-life 

conditions. The reductionist approach also obtained similar results for all analyses (in-

lab sensitivity analysis to window size, out-of-lab analysis, in-lab training/out-lab 

testing) but the degradation is much larger than the multi-sensor setup. Furthermore, 

investigation of the computational complexity is conducted for the feature extraction 

stage and the classifier testing stage of out-of-lab data. The findings, as we expected, 

show that the systems with more complex classifier approaches and large numbers of 

sensors increases the computational complexity of the system. 

The reductionist approach we developed, derived from existing systems, is an 

important first step to study the effect of reducing the number of sensors to find an 

optimal trade-off between usability and performance (the use of multiple sensors on 

various body locations can be impractical in real-life). 

Our future aim is to develop a physical activity classification system in real life 

conditions with an optimal number of sensors (by exploring various sensor locations), 

improved feature set (using various feature selection approaches), and robust 

classification methods to perform comparably to, or better than, existing systems. 
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Chapter 4  

Physical Activity Classification for Elderly 

Population in Free-Living Conditions 

The findings of this chapter have been submitted as an article (currently under review) 

to the IEEE Journal of Biomedical and Health Informatics.   

 

4.1 Introduction 

Our previous findings (Chapter 3) suggested that the performance of laboratory-

based systems is degraded when exposed to real-life conditions, emphasizing the need 

to design and develop PAC systems that are natively fed by real-life data [47]. 

Therefore, the present work is in continuity with earlier works. It presents and validates 

an inertial sensors-based physical activity classification system developed in free-living 

conditions with older adults as the target population. The main objectives of this work 

are as follows. 

• To develop an inertial sensors-based PAC system trained and tested in free-

living conditions for older adults;  

• To analyze the impact on its performance (accuracy and computational 

complexity) of various feature selection techniques; 

• To analyze multi-sensor versus single-sensor solutions, to highlight the optimal 

number of sensors that can achieve an acceptable level of performance. 

The flow diagram of data analysis performed to achieve the aforementioned 

objectives is presented in Figure 4.1. Before developing the PAC system for the elderly 
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population in free-living conditions, we also developed a PAC system [60] on younger 

adults’ data in the laboratory controlled environment. The results were compared with 

the state of the art methodology [14] using the same benchmark dataset. Our proposed 

PAC system outperformed the state of the art methodology [14] and this study findings 

are presented in Appendix C. 

Feature Selection

Data Processing and Feature Extraction

Model development of PAC system 
and validaiton 

Computational Complexity Analysis

Input inertial sensors’ data from the 
ADAPT project and ground truth data

Selecting Single Versus Multi-Sensor 
Based PAC System

 

Figure 4.1:  Flow diagram of the data analysis performed to develop PAC system 
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4.2 Materials and Methods 

4.2.1 Data Collection in Free-Living Conditions. 

This work utilized the free-living protocol dataset as described in Section 3.2.1 

(Table 3.3) collected by the Norwegian University of Science and Technology (NTNU) 

under the ADAPT project. The dataset was collected in free-living conditions, where 

the subjects were free to perform ADLs in an unsupervised way. The ways of 

performing activities were natural and unstructured. A total of 20 older adults (76.4 ± 

5.6 years) participated in the protocol, performing a variety of ADLs.  Subjects were 

instructed to do their usual ADLs in a natural way, but in addition include defined 

activities as a part of free-living protocol (see Table 4.1) without any instruction or 

supervision on how to perform them. Therefore, they could choose whether to perform 

these tasks (Table 4.1) or not and chose how and when they wished to perform the 

activities. The subjects performed the free-living protocol at their home environment 

resulting into more natural pattern and distributions of ADLs. Predetermined categories 

of ADLs used for the analysis were: sitting, standing, walking, transitions, shuffling, 

leaning, lying, ascending stairs, descending stairs, picking, leaning. The total length of 

recording were 28.7 hours for the 20 subjects [61]. Data from the wrist sensor was 

missing for four subjects due to technical issues during recordings, and these subjects 

were excluded from analysis. Consequently, the analyses have been performed on the 

remaining 16 subjects. The ADLs analyzed in this particular the study were: sitting, 

standing, walking and lying and the detailed summary of these ADLs is provided in 

Table 4.2. Various parameters were computed i.e. quantity (how many times a single 

ADL occurred in all subjects), mean (average duration of each ADL in sec), STD 

(standard deviation of each ADL in sec), min (minimum bout duration of each ADL in 

sec) and max (maximum bout duration of each ADL in sec). 

The mean length of the analyzed data was 1.5 hours per subject. A total of nine 

inertial sensors were part of the ADAPT project and a subset of these sensors were used 

in our analysis: chest (C), wrist (W), lower back (L5), and thigh (T) as shown in Figure 

4.2. The synchronization between the sensors and the camera unit was accomplished 

by performing a series of static and dynamic movements of the sensors in view of the 
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camera unit, before attaching the sensors to the subjects. These movements were 

evident in the root-sum-of-squares of accelerometer signal and by correlating this point 

in video, the synchronization between the camera and sensors was achieved. 

Table 4.1: Free Living Unsupervised and Unstructured Task Based Protocol [61] 

Free-Living Protocol 

Sit at a table and write a letter/list or read 

Sit on an armchair watch TV/video, or read a magazine 

Sit on a low stool or toilet seat (lid down clothes on, simulation only) 

Lie on a bed, clothes on 

Get in and out of a car or sit on a bed 

Prepare and consume a drink or food while standing 

Set a table for dinner or move from one counter to another many times (up to 

10) (shuffling) 

Simulate unloading a washing machine for 10 s or prepare a fireplace 

Pick an object off the floor then replace or tie/untie shoe laces 

Climbing and descending stairs or walking up and down an inclined path 

Remove clothes from washing machine and hang on clothes rack or remove 

rubbish from bin and dispose 

Sit and prepare and eat something 

Clean mirror or clean a window 

Wash and dry hands 

Sit at a table and read 

Table 4.2: Characteristics of the total dataset of ADLs analyzed from the free-

living conditions (N=16) as labelled from the video data 

ADLs 
Total 

(s) 

Quantity 

(s) 

mean 

bout (s) 
STD (s) 

Min. 

bout 

(s) 

Max. 

bout 

(s) 

sitting 48425.80 497 97.44 200.74 0.04 2075.64 

standing 23462.72 4304 5.45 12.27 0.03 388.52 

walking 14771.81 2617 5.64 8.75 0.28 139.56 

lying 1280.32 12 106.69 154.02 3.48 583.84 
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Figure 4.2:  Sensors’ placements chosen from the free-living protocol 

Table 4.3: Description of the Sensors Used for Data Analysis [61] 

 

Device uSense Shimmer3 

Location Thigh, L5, Chest Non-dominant Wrist 

Size 67 × 42 × 10 (mm) 51 × 34 × 14 (mm) 

Weight 36 g 23.6 g 

Sampling frequency 100 Hz 200 Hz 

Battery Life /Recording 

time 
72 h 

11.75 days @, 10 

Hz/4.6 days @ 

1 kHz (450 mAh) 

Sensor 

3D accelerometer, 

gyroscope, 

magnetometer 

3D accelerometer, 

gyroscope, 

magnetometer 

Measurement range 
±2 g, ±250_/s, 

±1200 _T 

±8 g, ±1000_/s, 

±1900 µT 

Company/ Institution 
University of 

Bologna, Italy 

Shimmer, DCU 

Alpha, Dublin 11, 

Ireland 
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The subjects were instrumented in the lab and they went home afterwards to 

perform the ADLs in free-living conditions. The detailed description of the sensors used 

for data analysis is presented in Table 4.3. The wrist sensor from Shimmer was down 

sampled to 100 Hz to keep the same frequency for all sensing units. The detailed 

description of the ADAPT dataset is presented in the study protocol by Bourke et al. 

[61]. 

4.2.2 Ground Truth for ADLs 

The ground truth information was captured using the video recordings of GoPro 

camera unit (Fig. 1). The original sampling frequency (25Hz) of the camera was up-

sampled to 100Hz to maintain the uniformity in the sampling frequencies of all sensors. 

Furthermore, a majority voting scheme was implemented to assign the window labels, 

i.e. if a window of 5 s (500 samples) contains 400 samples of standing and 100 samples 

of walking then the assigned label to this window would be standing [29]. The video 

recordings were annotated by five raters, which were instructed about the marking 

procedures and activity definitions. The overall agreement of video labelling assessed 

with Cohen’s kappa was 90.05%. The inter- rater reliability statistics are provided in 

Table A2. 

It should be noted that there were spurious bouts in the labelled data. For instance, 

the minimum duration of a walking bout was 0.28 s (see Table I). Such short bouts are 

not clinically relevant. However, the impact of these short bouts in the final labelling 

was limited since they provided only small percentages in the majority voting i.e., a 

bout of 0.28 s would correspond to less than 6% of a window of 5 seconds. 

4.2.3 Features 

Several features were extracted from acceleration and angular velocity (Table 4.4) 

which are described in detail in the following subsections. The computed features were 

of different categories: biomechanical features, statistical features, orientation free 

features and across sensor features. The aim was to collect maximum information from 



 

48 

the sensors’ data and then apply the feature selection process to select the robust 

features. Each of the features listed in Table 4.4 were computed across a time window 

of N samples (N=500, i.e. 5 seconds of data) with a 50% overlap. The letters 𝑥, 𝑦, and 

𝑧 in Table 4.4 represent the mediolateral, anteroposterior, and vertical axes, 

respectively. However, it is important to note that the sensor frame is moving in the 

world, so the axes of the sensors are approximately aligned with this body-centric axes. 

Table 4.4: Features Computed from Each Signal 

Feature # Feature description 

1-3 Mean of acceleration (x, y, z) a 

4-6 Variance of acceleration (x, y, z) 

7-9 Correlation between axes of acceleration (x, y ,z) 

10-12 Energy of BA component (x, y, z) 

13 Signal magnitude area (SMA) of BA component  

14 
Tilt angle obtained from gravitational acceleration (GA) 

component in vertical direction 

15-17 Mean of GA components (x, y, z) 

18 
Mean of magnitude vector (MV) of bodily acceleration (BA) 

component 

19 Variance of MV of BA component 

20 Energy of MV of BA component 

21-23 Mean of jerk signal from acceleration (x, y, z) 

24-26 Variance of jerk signal from acceleration (x, y, z) 

27-29 
Correlation between the axes of jerk signal from acceleration (x, 

y, z) 

30-32 Energy of the jerk signal from acceleration (x, y, z) 

33 SMA of the jerk signal from acceleration 

34 Mean of MV of jerk signal from acceleration 

35 Variance of MV of jerk signal from acceleration 

36 Energy of MV of jerk signal from acceleration 
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37-39 Mean of angular velocity (x, y, z) 

40-42 Variance of angular velocity (x, y, z) 

43-45 Correlation between axes of angular velocity (x, y, z) 

46-48 Energy of angular velocity (x, y, z) 

49 SMA of the angular velocity 

50 Mean of MV of angular velocity 

51 Variance of MV of angular velocity 

52 Energy of MV of angular velocity 

53-55 Mean of jerk signal from angular velocity (x, y, z) 

56-58 Variance of jerk signal from angular velocity (x, y, z) 

59-61 
Correlation between the axes of the jerk signal from angular 

velocity (x, y, z) 

62-64 Energy of jerk signal from angular velocity (x, y, z) 

65 SMA of the jerk signal from angular velocity 

66 Mean of MV of jerk signal from angular velocity 

67 Variance of MV of jerk signal from angular velocity 

68 Energy of MV of jerk signal from angular velocity 

69-71b 
Attenuation constant between sensor combinations of 

acceleration (x, y, z) 

72-74 b Correlation between sensor combinations of acceleration (x, y, z) 

75-77 b 
Correlation between sensor combinations of angular velocity 

signal (x, y, z) 

a x, y, z show that all three axes of the signal (can be raw acceleration, BA component, 

angular velocity, jerk, etc.) are used to compute the respective features.     

 b Features from 69-77 were considered only if a sensor combination was analyzed. 

4.2.3.1 Features Extracted from Acceleration 

AThe mean, variance, and correlation between axes were computed from the raw 

acceleration (Table 4.4; features # 1-9). The gravitational acceleration (GA) 

components were obtained by low-pass filtering the signal with a third-order low-pass 

elliptic filter of infinite impulse response with a cutoff frequency at 0.25 Hz [30]. The 
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mean of all three GA components [14] was used as a separate feature. The GA 

component was also used to compute the tilt angle [21, 30] from the expression below: 

tiltangle = acos(𝑧)                                                                      (4.1) 

where 𝑧 represents the gravitational component along the vertical axis computed by 

taking the mean of N samples, resulting into a single value for the tilt angle obtained 

from each window of N samples. 

The bodily motion components of acceleration (BA) were extracted by subtracting 

the raw acceleration from the GA component. The BA components were used to extract 

the signal magnitude area (SMA) [30, 49], energy [22], and the magnitude vector (MV) 

[51] from the expressions below (Eqs. 2-4, Table 4.4: features # 10-20): 

𝑆𝑀𝐴 =
1

𝑁
∑(|𝑥(𝑖)| + |𝑦(𝑖)| + |𝑧(𝑖)|)

𝑁

𝑖=1

                                                  (4.2) 

𝐸𝑛𝑒𝑟𝑔𝑦 =
1

𝑁
∑(|𝑋(𝑖)|2

𝑁

𝑖=1

)                                                                      (4.3) 

where the energy of the signal was computed by the sum of the time series samples 

squared.  

𝑀𝑉 = √𝑥2 + 𝑦2 + 𝑧2                                                                             (4.4) 

where 𝑥,𝑦, 𝑧 in Eq. 2-4 are from BA components. The mean, variance, and energy were 

then computed from the MV.  

Note: The sqrt is monotonic and does not add any extra information.  Thus, MV was 

computed without sqrt operation to reduce the computational time. 

The jerk signal was derived by low-pass filtering the raw acceleration (4th order 

Butterworth infinite impulse response low-pass filter with a cutoff frequency at 20Hz) 

and then taking the first derivative of acceleration. Features extracted from the jerk 

signal include the mean, variance, correlation between the axes, energy, and SMA 

(Table 4.4; features # 21-33). Furthermore, the mean, variance, and energy were also 

computed (Table 4.4: features #: 34-36) from the MV (Eq. 4.4) of the jerk signal from 

acceleration. 
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4.2.3.2 Features Extracted from Angular Velocity 

The mean, variance, correlation between axes, SMA, and energy (Table 4.4; 

features # 37-49) were extracted from angular velocity and jerk signal of angular 

velocity (Table 4.4; features # 53-65). The mean, variance, and energy of the MV from 

angular velocity (Table 4.4; features # 50-52) and MV from the jerk signal (Table 4.4, 

features #: 66-68) were also derived. The jerk signal was obtained by low-pass filtering 

(4th order Butterworth low-pass filter with a cutoff frequency at 20Hz) the angular 

velocity and then taking its second derivative. 

4.2.3.3 Features Extracted from the Sensor Combinations 

Apart from features extracted from signals of a specific sensor, there are features 

derived from sensor combinations (i.e. acceleration attenuation constant and correlation 

across each sensor combination). Both of these features were computed by filtering the 

raw acceleration with 4th order Butterworth low-pass filter with a cutoff frequency at 

20Hz [62]. The ability to attenuate the acceleration from the lower body segments (i) 

to the upper body segments (j) was described by the acceleration attenuation constant 

[62]: 

𝐶𝑖𝑗 = (1 −
𝑅𝑀𝑆𝑗

𝑅𝑀𝑆𝑖
) ∗ 100                                                                     (4.5) 

Therefore, a total of 6 sensor combinations ( 𝐶𝑇𝑊, 𝐶𝑇𝐿 ,  𝐶𝑇𝐶 , 𝐶𝑊𝐿 , 𝐶𝑊𝐶 , 𝐶𝐿𝐶  ) were 

formed from the four sensor locations (T, W, C and L5) resulting in 18 features (6×3). 

The correlation between each sensor combination was also analyzed resulting in 36 

features (18 from acceleration, 18 from 18 from angular velocity) obtained from 6 

sensor combinations (ρ𝑇𝑊, ρ𝑇𝐿 , ρ𝑇𝐶 , ρ𝑊𝐿 , ρ𝑊𝐶 , ρ𝐿𝐶). These features were considered 

only if a combination of sensors (see Table 4.5) was available in the chosen sensor 

solution (e.g. if the performance of the single sensor on L5 was analyzed then none of 

the across sensor features were considered).  

Then, if the performance of a sensor combination is being analyzed (e.g. thigh and 

L5), then 3 features are obtained from attenuation constant and 6 features from 

correlation (3 form acceleration, 3 from angular velocity) resulting into 9 additional 
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features (Table 4.4; features # 69-77). Therefore, the total number of features in a sensor 

combination will be 145 (i.e. 68 features from the thigh sensor, 68 features from L5 

sensor, 3 features from attenuation constant 𝐶𝑇𝐿, and 6 features from correlation ρ𝑇𝐶). 

Similar comparisons were done for other multi-sensor solutions (231 features from 

three sensors, 326 features from four sensors). 

4.2.4 Class Distribution in the Dataset 

The dataset [58] originally contained eleven ADLs. We considered only four ADLs 

(standing, walking, sitting, and lying) for analysis. The choice behind the selection of 

4 classes is motivated by the fact that these are the most commonly performed activities 

in the elderly population and to keep consistency with our previous work [47]. The pie 

chart in Figure 4.3 shows the percentage distribution of the four ADLs of the 16 

subjects. The values inside the legend show the number of instances belonging to each 

class (an individual instance corresponds to 5 seconds or 500 samples of data). 

 

Figure 4.3:  Percentage distribution of the four ADLs (sitting, standing, walking, 

and lying) for the 16 subjects in the dataset. 

4.2.4 Feature Selection 

The selection of a subset of features is an important step as the feature vector may 

contain redundant features. This procedure not only reduces the computational 
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complexity of the system but also reduces the feature extraction time and classification 

time of the machine learning algorithm. Therefore, to eliminate redundant and 

irrelevant features, we implemented and compared the following feature selection 

methods: correlation-based feature selection (CFS), fast correlation-based filter 

(FCBF), and ReliefF. 

In CFS, the correlation between features and class labels are computed along with 

inter-correlation between features to find the redundancy between them. The final 

feature subset consists of features exhibiting high correlation with the classes and very 

low correlation between features. A feature subset is determined by computing linear 

correlation [63]. 

The FCBF method computes the predominant correlation among features and 

classes and selects predominant features by eliminating redundant features. 

Predominant correlation uses the concept of symmetrical uncertainty to select the 

feature subset. This method effectively handles the feature redundancy resulting in fast 

selection of a small subset of features [64]. 

The third method used for feature selection is ReliefF [65]. This algorithm 

statistically assigns weights to each feature by estimating its relevance in terms of how 

well it can differentiate the data points of same and different classes. The features with 

higher weights are more important than others. Since this method only ranks the 

features according to their weights and does not select a subset of features, a user-

defined threshold is necessary to produce the final subset. The threshold in our case was 

calculated by averaging all of the positive weights in the feature-ranked list and 

selecting only the features with weights equal to or higher than the average threshold 

value [18]. 

4.2.5 Classification and Cross-Validation 

A support vector machine (SVM) classifier was implemented to analyze the 

performance of the PAC system using the LibSVM library with the default settings 

[66]. To overcome any bias in the training process, the leave-one-subject-out cross 

validation procedure was used to split the training and testing datasets. In this way, 
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features from all but one subject were used in the training process while the remaining 

subject was tested. This process was repeated until all subjects had been tested. The 

effect of class imbalance was compensated by using the weighted SVM. The classifier 

weighting was implemented using the process described by Huang et al. [67] by setting 

the weights of the different classes to the inverse ratio of the training classes sizes. In 

this way, the class with largest samples size will have the lowest weight and the class 

with lowest data samples will have the highest weight. The weights were calculated 

using the training samples and the calculation was repeated for each fold. The training 

and testing samples were normalized using the z-score normalization process. The z-

score parameters (mean, standard deviation) obtained from the normalization of the 

training data were used to normalize the testing data. The z- score normalization was 

followed by the feature selection process where the feature selection techniques were 

implemented only using the training data. This process was repeated across all the 

iterations (folds) of the cross-validation procedure. 

Overall accuracy (𝐴), F-measure, specificity and sensitivity by class (𝑆𝐶) were 

computed as performance metrics using the expressions described in Appendix B. The 

accuracy measure is not the best metric to evaluate the performance in our dataset 

because of the of unbalanced class sizes. Thus, more balanced parameter F-measure 

was analyzed and is interchangeably with the term “performance” throughout the 

remainder of this paper.  

The standard error (SE) is also computed for F-measure and accuracy across each 

sensor combination as shown in Eq. 5. 

𝑆𝐸 =
SD

√16
                                                     (5) 

where SD is the standard deviation across 16 folds (total number of subjects analyzed).  

4.2.6 Single Sensor vs Multi-Sensor Solution 

One of the objectives of this study was to identify the optimal number of sensors 

by analyzing the performance of all possible sensors combinations. Therefore, the 

performance of 15 sensor combinations listed in Table 4.5 was analyzed and compared. 
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Table 4.5: Sensor Combinations Analyzed for Performance Comparison 

Sensor 

Combinations 
Thigh Wrist L5 Chest 

1     

2     

3     

4     

5     

6     

7     

8     

9     

10     

11     

12     

13     

14     

15     

4.2.7 Computational Complexity Analysis 

Computational complexity was also evaluated consisting of two measures; 1) 

feature extraction time - the total time required to extract (compute or calculate) the 

features; and, 2) classifier testing time - the total time it takes to test the classifier. This 

process was completed for both categories: the whole feature set (without feature 

selection) and the subsets obtained from all feature selection approaches. Our earlier 

work [47] reported the total classification time by computing the classifier training time 

and testing time. However, the current work presents only the classifier testing time 

(excluding the classifier training time) as this can give a better idea of how much time 

is needed by the system to classify an instance in real-life conditions. 



  

Table 4.6: Performance Analysis of Multiple-Sensor Combinations 

  F-measure (%) Accuracy (%) 

No Sensors ALL (SE) CFS (SE) FCBF (SE) ReliefF (SE) ALL (SE) CFS (SE) FCBF (SE) ReliefF (SE) 

1 T 75.7 (1.5) 68.9 (1.7) 68.4 (1.3) 73.5 (1.5) 92.9 (1.1) 82.7 (2.8) 82.2 (2.8) 91.5 (1.1) 

2 W 58.1 (2.2) 55.1 (2.4) 49.4 (2.1) 56.3(1.5) 75.8 (2.5) 71.2 (3.2) 61.1 (2.3) 75.7 (2.3) 

3 L5 79.8 (2.7) 80.8 (2.1) 63.0 (1.8) 78.7 (3.1) 88.3 (1.1) 87.8 (0.6) 77.7 (1.0) 85.5 (2.3) 

4 C 70.8 (3.3) 78.4 (2.9) 72.6 (2.3) 70.0 (3.6) 81.7 (1.6) 83.2 (1.5) 77.7 (1.6) 79.8 (2.2) 

5 T, W 73.0 (1.5) 69.5 (1.2) 68.7 (0.8) 72.1 (0.4) 93.9 (0.6) 87.8 (2.3) 87.0 (2.2) 94.8 (0.5) 

6 T, L5 88.1 (2.9) 86.7 (2.6) 86.8 (2.6) 87.2 (2.3) 96.8 (0.5) 95.5 (0.7) 95.4 (0.6) 95.6 (1.1) 

7 T, C 83.5 (3.0) 80.1 (2.6) 79.5 (2.5) 81.2 (2.8) 96.0 (0.6) 94.5 (0.7) 94.3 (0.7) 95.6 (0.9) 

8 W, L5 82.3 (2.7) 82.5 (2.2) 73.8 (2.8) 81.3 (3.1) 88.0 (2.6) 88.4 (1.6) 82.2 (1.7) 87.2 (2.7) 

9 W, C 72.8 (3.2) 78.3 (3.1) 74.9 (2.7) 73.5 (2.9) 84.3 (2.0) 84.6 (1.8) 79.8 (1.7) 84.3 (1.8) 

10 L5, C 83.2 (2.5) 80.1 (2.0) 68.4 (3.1) 79.7 (3.7) 89.0 (1.4) 88.2 (1.1) 79.2 (1.6) 86.5 (2.3) 

11 T, W, L5 87.8 (2.6) 81.6 (2.8) 84.3 (2.6) 87.9 (2.3) 96.2 (0.5) 95.3 (0.7) 95.3 (0.6) 96.0 (0.8) 

12 T, W, C 80.6 (2.8) 71.1 (1.1) 73.4 (1.5) 81.8 (2.8) 95.4 (0.6) 92.8 (1.6) 94.1 (0.6) 95.8 (0.7) 

13 T, C, L5 86.8 (2.1) 83.3 (2.8) 86.2 (2.8) 88.6 (1.7) 96.5 (0.5) 95.3 (0.6) 95.3 (0.6) 96.1 (0.7) 

14 W, L5, C 83.2 (2.5) 80.7 (2.1) 75.0 (2.7) 82.2 (2.6) 89.6 (1.6) 89.2 (1.3) 82.6 (1.5) 89.4 (1.5) 

15 T, W, L5, C 85.9 (2.8) 77.3 (2.0) 84.4 (2.7) 88.8 (1.7) 96.1 (0.5) 95.2 (0.6) 95.2 (0.6) 96.4 (0.6) 

 



  

All feature selection methods were implemented in MATLAB (Release 2014b, The 

Math Works, Inc., Natick, MA, USA) using the feature selection repository [68]. The 

SVM classifier was implemented using the LibSVM library [66] for MATLAB. The 

analysis was performed on a Dell laptop (Model # M3800, Intel® Core™ i7-4712HQ, 

CPU @2.30Gz, 16GB RAM, 64-bit operating system).  

4.3 Results and Discussion 

4.3.1 Performance Analysis of Single-Sensor vs Multi Sensor Solution Using All 

Features 

The results obtained from the performance analysis of all 15 sensor combinations 

are presented in Table 4.6 for the F-measure and for accuracy.   

 

Figure 4.4:  F-measure analysis using SVM Classifier with and without feature 

selection methods across various sensors combinations. 
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Figure 4.5:  Accuracy analysis using SVM Classifier with and without feature 

selection methods across various sensors combinations 

 The F-measure for all single-sensor solutions and the best multi-sensor solutions 

(with 2, 3, and 4 sensors) are presented in Figure 4.4.  

For every sensing solution, each of the four columns in Figure 4.4 the respective 

performance measure obtained from a given feature selection approach (i.e. column 1: 

All features without using any feature selection method, column 2: using CFS, column 

3: using FCBF, column 4: using ReliefF) and the values in parentheses above each 

column show the associated standard error, as computed in Eq. 5.  

Among all single-sensor solutions, the best performance was accomplished by the 

sensor at the lower back (L5), with an F-measure of above 80% using the subset selected 

by CFS (Figure 4.4). Sensors at the chest and the thigh also performed considerably 
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well (above 75%) as compared to the sensor on the wrist which performed worst among 

all single-sensors with performance below 60%. Comparing the best solutions in Figure 

4.4, we observed a noticeable improvement in the performance of 7.3% from single 

sensor solution (L5) to two-sensor solution (C, L5). Furthermore, improvement in the 

performance is almost negligible by increasing number of sensors from two to four. 

These results are relevant as this suggests that a plateau is reached at a two sensor 

solutions, beyond which the performance cannot be improved further even by 

increasing the number of sensors.   

Similar kind of behavior is observed (Figure 4.5) without any improvement in 

accuracy even if the number of sensors is increased over two. However, having an 

unbalanced problem (Table 4.3), directly suggests that using accuracy as a metric is not 

appropriate. This is because the accuracy metric will not decrease significantly even if 

the under-represented class (lying in our case) is completely misclassified. Therefore, 

to avoid this, we used a more balanced and accurate metric F-which takes into account 

the instances of each ADL including the minority classes, while computing the 

performance.  

The use of weighting scheme is also helpful if the intentions are to improve the 

classification rate of under-represented class, having small number of samples as 

compare to other classes. For example, if the goal is to classify the instances of 

moderate to vigorous activity as it is shown to be beneficial for health, but this activity 

is performed quite rarely around 2% of the day with bouts less than 30 s. This can be 

achieved by tuning the weights of each ADL in such a way that the trained PAC system 

accurately classifies the rarely performed ADL. Moreover, the short bouts of 30 s or 

below can easily be classified using the 5 s windowing process used in our PAC system. 

4.3.2 Comparison with State-of-the-Art Systems 

The performance of three representative systems for PAC  tested in our earlier work 

[69] is also presented in Figure 4.4 (solid lines) to provide a direct comparison with the 

newly proposed system. All the three systems by; Bao et al. [9], Cleland et al. [22]  and 

Leutheuser et al. [14] were implemented using the same dataset, type of ADLs, 
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windowing approach, and cross validation procedure. The performances (F-measure, 

Figure 4.4) obtained by these systems are: 83.7% by Leutheuser et al. which uses three 

sensors (chest, wrist, L5), 83.3% by Cleland et al. which uses five sensors (chest, L5, 

wrist, waist, thigh) and 78.4% by Bao et al. which uses three sensors (L5, wrist, thigh). 

The performance of our single-sensor based solution at L5 is better (increase of 

2.4%) than the system by Bao et al. Furthermore, its performance is also comparable 

with the systems by Cleland and Leutheuseur with a slight decrease (less than 2%) in 

the performance. Therefore, these findings show the potential of using our single-

sensor-based solution in real-life conditions instead of such multi-sensor solution. 

Additionally, the performance of our two-sensor system (T+L5) is much better than the 

state of art systems and still uses less number of sensors than these systems (3 or more). 

4.3.3 Effect of Feature Selection on System Performance  

Three feature selection methods were implemented on the whole feature set and the 

respective performances obtained from each method have been shown in Figure 4.4. 

The number of features obtained through all single sensor based systems and from the 

best (in terms of performance) multi-sensor based systems are presented in Table 4.7. 

These results are computed across 16 folds and the corresponding mean and standard 

deviation reported for each of the seven systems. The highlighted text in Table 4.7 

corresponds to the best feature selection method. The type of features selected by the 

best feature selection method are listed in Table 4.7. 

The performance of the single-sensor systems using L5 or chest increased using the 

CFS method as compared to the performance obtained without using feature selection. 

This improvement was larger (7.4%) in chest based PAC system and smaller (1%) in 

L5 based PAC system. For wrist and thigh based single-sensor systems, the feature 

subset of ReliefF performed better than others but the performance was much lower 

than the one obtained using all feature set.  
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Table 4.7: Statistics of the Features Selected by the Three Feature Selection 

Approaches for the Sensor Combinations Presented in Figure 4.4 

No. Sensors 
CFS 

(mean ± std)* 

FCBF 

(mean ± std) 

ReliefF 

(mean ± std) 

1 W 28.9 ± 1.8 2.8 ± 0.8 22.1 ± 0.3 

2 T 8.7 ± 1.1 5.1±0.9 12.7 ± 0.7 

3 C 21.9 ± 1.5 4.3±0.9 26.3 ± 0.9 

4 L5 17.9 ± 0.7 4.1±1.1 22.6 ± 0.8 

5 T+L5 10.8 ± 0.9 12±1.8 39.8 ± 0.8 

6 T+C+L5 16.8 ± 1.8 17.6±1.8 70.9 ± 1.0 

7 T+C+W+L5 19.9 ± 1.4 21±2.5 104.9 ± 1.2 

*  Mean and standard deviations were obtained from the number of features selected 

by each of the feature selection algorithm across 16 folds. 

On the contrary, the performance using FCBF was the poorest within this dataset using 

single-sensor solutions. This might be due to the fact that FCBF is an aggressive method 

of selecting features and selected less features (Table V) as compared to other methods 

and resulted in losing important features. These findings are in line with the work in 

[70], where the subset of features chosen by FCBF was smaller than the subset chosen 

by CFS using single-sensor based system.  

For multi-sensors based systems, the feature subset selected by ReliefF performed 

better than the whole feature set (without feature selection) for two out of three systems 

(Figure 4.4). The improvement in the performance was between 2-3%. The 

performances of all three feature selection approaches were quite close to each other in 

multi-sensors based systems (Figure 4.4). It is worth noting that there is not a single 

feature selection method that performed better, both for single-sensor based solutions 

and multi-sensor solutions.  

In addition to the improvement in performance, a substantial decrease in the number 

of features (above 70%) was observed in both systems i.e. single-sensor and multi-
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sensor. Reduction in the feature set is quite important since it is directly related to the 

computational complexity of the system. 

In this study, we focused on filter-based methods to select the feature subset by 

looking at the general characteristics of the data, without involving a specific classifier. 

In this way, the selected feature subset will be more generalized and can be used to 

compute and analyze the performance of different classifiers. It is possible that other 

features selection approaches (wrapper methods, embedded methods) may lead to 

different results. However, these approaches involve a specific classifier to find the 

feature subset, which may not be useful to compute the performances of other 

classifiers. 

4.3.5 Computational Complexity of the System 

The computational complexity of the best single-sensor solution was analyzed for 

a subject (all window instances) and a single window instance (consisting of 5 seconds 

or 500 samples) of the same subject. The subject was chosen in such a way that it 

contained enough instances of each class (standing: 449 instances; walking: 237 

instances; sitting: 1001 instances; lying: 54 instances; resulting into 1741 instances). 

Computational costs obtained from a single window instance and a subject containing 

1741 instances are shown in Figure 4.6 and 4.7 respectively. Such computational costs 

were estimated as the mean and standard deviation of 10 runs in order to account for 

computer performance variability. 

As expected, the feature extraction (computation) time for single window instance 

(Figure 4.5 (a)) was low in the selected feature subsets compared to the time taken to 

compute the whole feature set. The total number of features for the L5 sensor for the 

chosen subject are: 68 (no feature selection), 19 (CFS subset), 6 (FCBF subset) and 23 

(ReliefF subset). Among the three feature selection methods, the feature subset selected 

by FCBF took shorter time to extract (compute), a possible reason being the smaller 

subset of features chosen by FCBF than the other two subsets. Moreover, the feature 

extraction time taken by the subset of CFS was smaller than the time taken by the subset 
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of ReliefF. The reason behind this behavior is the lower number of features selected by 

CFS and compared to Relief.  

 

Figure 4.6:  Computational complexity analysis of single window instance: a) 

feature extraction time, b) classifier testing. 

Table 4.8: Computational Complexity Analysis of Single Window Instance 

Measure  All Features  CFS FCBF ReliefF 

feature extraction 

time (ms) 
636.40 ± 31.96 430.90 ± 5.44 368.64 ± 15.47 511.88 ± 15.43 

classifier testing 

time (ms) 
21.92 ± 1.14 6.15 ± 0.19 2.36 ± 0.13 6.65 ± 0.28 

The analysis of classifier testing time shows that the feature selection approaches 

have improved the time consumption by taking less time to classify the single instance 

with respect to the whole feature set (Figure 4.5 (b), Table 4.8). Among the three feature 

subsets, the feature subset of FCBF took less time to classify the instance than the 

feature subsets of CFS and ReliefF. These results are also coherent showing that larger 
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subset of features takes more time to classify the data instance as compared to the subset 

with small number of features.  

The time taken by the PAC system in real-life conditions is the sum of the feature 

extraction time and the classifier testing time. Therefore, feature selection can play an 

important role in reducing the time required to classify any window instance. The 

overall behavior of computational complexity analysis of a single subject (Figure 4.6, 

Table 4.9) was quite similar to the one obtained from single window instance. Also in 

this case feature selection reduces the computational cost of the system. The single 

subject analysis gives a broader picture of computational complexity, which can be 

helpful in building a personalized (subject-dependent) PAC system for older adults in 

real-life conditions. The proposed PAC system was implemented on a personal 

computer and it would be interesting to see how computational complexity measures 

behave when implemented in mobile wearable platforms. Still, this is beyond the aims 

of this thesis and should be considered for future analyses. 

 

 

Figure 4.7:  Computational complexity analysis of single subject’s data: a) feature 

extraction time, b) classifier testing time. 
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Table 4.9: Computational Complexity Analysis for Single Subject 

Measure All Features  CFS FCBF ReliefF 

feature extraction 

time (s) 
5.54 ±0.18 1.45±0.02 1.13±0.03 2.82±0.12 

classifier testing 

time (s) 
4.98±0.30 1.63±0.12 1.12±0.07 1.88±0.10 

4.3.6 Single-Sensor vs Multi-Sensor Solution: What to Choose? 

To get more insight, let us consider, as an example, the performances obtained by 

three sensing solutions: a) chest, b) L5, c) thigh and L5. The respective confusion 

matrices are presented in Table 4.10 along-with F-measure for each case. The 

sensitivities and specificities are presented in Table 4.11. In the first solution, a sensor 

at the chest successfully classified walking and sitting but did not performed well in 

classifying standing and lying (Figure 4.8). The true positives of lying class are quite 

high but the large number of false positives (432) has reduced the performance. Still, if 

we are interested in improving the classification of the standing and sitting class, the 

single-sensor system using L5 is the appropriate choice with an additional improvement 

in the overall performance (80.8%).  

Furthermore, the overall performance and the performance of each class can be 

improved by adapting a multi-sensor based solution, i.e. combining the thigh and L5 

sensors with performance of 87.2% and a significant improvement in the performance 

of walking, sitting and standing class (Figure 4.8).  The performance of lying was not 

good both for the single-sensor based system and the two-sensor based system, 

suggesting that the number of samples of lying class are too small even with weighted 

SVM classifier. 

These findings have shown the potential of using various modalities (single-sensor 

or multi-sensor based solutions) to classify the ADLs of elderly people in free-living 

conditions. Certainly, there is not a one-fits-all solution that offers a global optimum, 

regardless specific objectives. Considering the comfort level of the user, a single 



 

66 

sensor-based PAC system at the L5 is the best option to achieve the highest overall 

accuracy. Moreover, a multi-sensor PAC system may be the desired option to obtain 

better overall performance as well as performance by class, while compromising the 

comfort level of user as well as the computational cost of the system.  

Table 4.10: Confusion Matrix Using SVM Classifier (all features) for the Sensors 

at (a) Thigh (b) L5 (C) Chest (D) Thigh +Chest 

F-measure 

78.4% 

(a) Chest Sensor (CFS subset) 

Predicted Class 

A
ct

u
a

l 
C

la
ss

 

classified as  walk  stand sit lie 

walk 5796 519 25 0 

stand 730 7291 1768 0 

sit 110 2421 16534 432 

lie 39 0 26 448 

F-measure 

80.8% 

(b) L5 Sensor (CFS subset) 

Predicted Class 

A
ct

u
a
l 

C
la

ss
 

classified as  walk  stand sit lie 

walk 5573 754 13 0 

stand 776 7673 1337 3 

sit 103 1124 18197 73 

lie 0 1 235 277 

F-measure 

87.2% 

(c) Thigh + L5 (ReliefF subset) 

Predicted Class 

A
ct

u
a
l 

C
la

ss
 

classified as  walk  stand sit lie 

walk 5688 498 154 0 

stand 421 9151 217 0 

sit 5 2 19470 20 

lie 0 0 256 257 
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Figure 4.8:  F-measure by class for three sensing solutions: a) Chest, b) L5, c) 

Chest, d) Thigh + L5. Value in parenthesis show the averaged F-measure. 

Table 4.11: Sensitivity and Specificity by Class for three sensing Solutions  

Sensor 
Mean 

Sens. 

Sensitivity by Class Mean  

Spec. 

Specificity by Class 

Walk Stand Sit Lie Walk Stand Sit Lie 

Chest 84.5 91.4 74.5 84.8 87.3 93.4 97.1 88.8 89.1 98.8 

L5 78.4 87.9 78.4 93.3 54.0 95.0 97.1 92.9 90.5 99.8 

Thigh 

+ L5 
84.5 94.7 94.6 99.8 48.9 98.9 98.1 97.8 99.8 100 

Sens.— Sensitivity, Spec.— Specificity. 
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It must be noted that the obtained results depend on the available data that is used 

for training the classifiers and the ADLs chosen. The dataset analyzed in this study was 

collected in free-living conditions. Participants were unsupervised and able to perform 

their tasks freely thus resulting in unbalanced data samples of ADLs, where certain 

ADLs (lying) were less frequent than others (sitting, standing). This unbalanced class 

distribution also creates classification bias when PAC systems are developed using 

machine learning approach (e.g., if there are few instances of lying it is difficult for the 

classifier to learn the lying pattern). However, the unbalanced data samples are a true 

reflection of real world conditions where frequency and act of performing ADLs cannot 

be controlled and supervised. 

To the best of our knowledge, none of the existing activity classification systems 

developed for older adults using inertial sensors have been fully validated in free-living 

conditions. The study outcomes suggest the potential benefits of incorporating inertial 

sensors to monitor the mobility patterns of elderly people in home environments, which 

can be helpful in determining quality of life and promoting healthy ageing. 

4.4 Conclusions 

This study presents a new PAC system that can accurately classify the ADLs of 

elderly people performed in free-living conditions. The analysis shows very 

encouraging results, where a single sensor’s overall performance is close to that 

obtained by multiple sensors based state of the art systems, disclosing the potential of 

using a single sensor for activity classification. In addition, our proposed two-sensor 

based system improved the system’s performance further while still using less sensors 

than start of the art systems. 

Based on presented results a single sensor-based PAC system is highly 

recommended for real-life conditions when the objective is to have a good overall 

performance. Some classes may have lower performance than others, but the system 

would be less computationally complex and more comfortable to wear. On the other 

hand, the multi-sensor solutions may be recommended when, e.g. designing a 
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surveillance system for fragile older adults, higher performance are desired, even at the 

cost of reducing the wearability of the system.  

The use of feature selection approaches can not only enhance the system’s 

performance but also reduce the computational cost of the system, with the payoff of 

reducing power consumption and lengthening battery life in real-life conditions.  

The main limitation of the current study is the small number of subjects involved 

as well as the limited number of ADLs included. However, the dataset analyzed is 

among the largest of its kind, so far collected in free-living conditions for older adults 

and annotated manually with very high frequency of 25Hz (annotation every 0.04 s) 

[58].  

  



  

Chapter 5  

Predicting Unlabelled Activities of Daily Livings 

Using a Single Sensor Based Physical Activity 

Classification System for Elderly Populations in 

Free-Living Conditions 

The findings of this chapter will be submitted as a journal publication in MDPI Sensors.   

5.1 Introduction 

Obtaining ground truth information in free-living conditions is not an easy task, 

especially when the aim is to perform the activity monitoring for a longer duration. This 

is because the commonly used labeling procedures such as video observation, marking 

by the experimenter/observer or subject itself [71, 72] have their own limitations and 

concerns [73]. The direct annotation methods such as video recordings or presence of 

observer is not always feasible because of ethical considerations and privacy issues. 

Although, these methods are reliable and accurate, the associated costs and resources 

make the labelling procedure time consuming and expensive.  On the other hand, self-

labelling by the subject is not as accurate and reliable as direct observation and it also 

interfere with the activities of the subject. 

Conversely, the data collection of unlabeled data is much easier than the labeled 

data since it only requires a data collection device (smartphone/smartwatch/body-worn 

sensor) carried by the subject. Furthermore, another benefit is that the subjects can 

freely perform their daily life activities more naturally, without the need to self-label 

their ADLs or to be observed by somebody else. 
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Consequently, an effort has been made in this work to predict the unlabeled ADLs 

of daily living. This aim was accomplished by developing the single-sensor based PAC 

system on the labeled dataset (ADAPT dataset) and testing it on the unlabeled dataset 

of older adults (PreventIT) in free-living conditions. The sensor placed at the lower 

back (L5) was used from both datasets for data analysis. The PAC system developed in 

chapter 4 was adapted for being applicable to the specific dataset. A complete flow 

diagram of the data analysis performed is presented in Figure 5.1. 

Develop PAC model on the  ADAPT 
labeled data

Data Processing, Feature Extraction

Compute performance of single-sensor 
based PAC system using ADAPT dataset

Input acceleration data of L5 sensor from 
the unlabeled PreventIT dataset

Input acceleration data of L5 sensor from 
the labeled ADAPT dataset

Data Processing, Feature Extraction

Predict the unlablled ADLs of PrevenIT 
dataset using the PAC model developed 

on the ADAPT dataset

Analyze the association between the 
accelerometer outcome and the Clinical 

variables of the PrevenIT dataset  

Figure 5.1: Flow diagram of the analysis performed to predict unlabeled ADLs 
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5.2 Materials and Methods 

5.2.4 Data Processing and Model Development of PAC System Using the ADAPT 

Labeled Dataset 

The ADAPT dataset was used to develop the PAC system model. The 

aforementioned dataset contains labeled ADLs, annotated by multiple raters using the 

video recordings and the brief description is provided in Chapter 3. The PAC system 

model is developed using only the sensor at lower back (L5). Several features were 

extracted from the acceleration signal of L5 sensor as described in Table 5.1.  

Table 5.1: Feature Computed from Acceleration 

Feature # Feature description 

1-3 Mean of acceleration (x, y, z) a 

4-6 Variance of acceleration (x, y, z) 

7-9 Correlation between axes of acceleration (x, y, z) 

10-12 Energy of BA component (x, y, z) 

13 Signal magnitude area (SMA) of BA component  

14 Tilt angle obtained from GA component in vertical direction 

15-17 Mean of GA components (x, y, z) 

18 Mean of MV of BA component 

19 Variance of MV of BA component 

20 Energy of MV of BA component 

21-23 Mean of jerk signal from acceleration (x, y, z) 

24-26 Variance of jerk signal from acceleration (x, y, z) 

27-29 Correlation between the axes of jerk signal from acceleration (x, y, z) 

30-32 Energy of the jerk signal from acceleration (x, y, z) 

33 SMA of the jerk signal from acceleration 

34 Mean of MV of jerk signal from acceleration 

35 Variance of MV of jerk signal from acceleration 

36 Energy of MV of jerk signal from acceleration 
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The feature set is described in Table 5.1. Each of the features listed in Table 5.1 

were computed across a time window of N samples (N=500, i.e. 5 seconds of data) with 

a 50% overlap.  

5.2.2 Relabeling ADAPT Dataset Annotation into Hierarchical Way 

The ADLs of the ADAPT dataset was divided into four main classes, i.e., active, 

sedentary, walking and lying as listed in Table 5.2. This was done to analyze the general 

profile of the subject in terms of active periods and sedentary periods throughout the 

days as these can provide better insight of the daily life activity patterns. 

Table 5.2: Reassigning ADAPT classes into Hierarchical Distribution 

Reassigned Class Label ADLs from ADAPT Dataset 

Lying 1 Lying 

Sedentary 2 
Sitting 

Standing 

Active 3 
Shuffling 

Transitions 

Walking 4 

Walking 

Stairs Up 

Stairs Down 

5.2.3 Performances Evaluation of Single Sensor Based PAC System Using the 

ADAPT Labeled Dataset 

Before predicting the unlabeled ADLs, we evaluated the single sensor based PAC 

system to observe the performance on an annotated dataset of ADAPT collected in the 

free-living protocol (Chapter 4, Figure 4.3). For this purpose, we implemented SVM 

classifier and random forest (RF) classifier for performance computation with leave-

one-subject-out cross-validation procedure. The four ADLs classes to be classified 

were: lying, sedentary, active and walking. 
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5.2.4 Data Collection of Unlabeled PreventT Dataset in Free-Living Conditions. 

The unlabeled dataset was collected in the framework of the European project 

PrevenIT (http://www.preventit.eu/) from which the University of Bologna is one of 

the partner Institution. This dataset was collected in three different locations, i.e. 

Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Vrije 

Universiteit (VU) Amsterdam, Netherlands, and Robert Bosch Hospital (RBK), 

Stuttgart, Germany. The dataset was collected in two sessions, pre- and post- 

intervention, in a group of young elderly subjects, 60 to 70 years old. Each session 

comprised of 7 to 8 days of continuous recordings of accelerometer data (sampling at 

100Hz) by placing only one sensor at Lower back (L5) position. The L5 sensor did not 

embed a gyroscope due to practical considerations in terms of battery life. The 

intervention program consisted of a list of exercise that subjects performed at home. 

Not all the subjects were part of the pre- and post-intervention, since some subjects only 

participated in the pre- intervention session while others joined later and participated 

only in the post-intervention session. Furthermore, for some of the subjects, 

accelerometer recordings lasted for less than 7 days (2 days, 3 days etc.). Therefore, we 

shortlisted the subjects so that each subject had the accelerometer recordings in both 

sessions (pre- and post- intervention) for at least 6 days long. From the aforementioned 

criteria, a total of 16 subjects were shortlisted for the analysis of predicting unlabeled 

ADLs (Table 5.2) in free living conditions. The subjects performed their daily living 

tasks naturally in free-living conditions without any scripted guidelines on the sequence 

and act of performing ADLs. The accelerometer data was collected throughout the day, 

i.e., both for the daytime as well as for the nighttime when the subjects were sleeping.  

5.2.5 Data processing and Predicting Unlabeled ADLs of PreventIt Dataset 

Similar set of features was extracted from acceleration signal of L5 sensor of 

PreventIT dataset as described in Table 5.1. Each feature was computed across a time 

window of N samples (N=500, i.e. 5 seconds of data) with a 50% overlap. 

The prediction of unlabeled ADLs was accomplished by building the PAC system 

model (Section 5.2.3) on the annotated dataset (ADAPT) and testing it on the unlabeled 
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dataset (PreventIT) of older adults collected in free-living conditions. Then, activity 

intensity [74] (i.e., metabolic equivalents- METS) was computed for each class apart 

from calculating the activity duration/bout for each class and the number of steps/bout 

for walking class. 

5.2.5.1 Acceleration Based Outcomes Computed from the Predicted Labels Obtained 

Through the Pre- and Post- Intervention Sessions of PreventIT Dataset  

Pre- and post-intervention analysis was conducted on the predicted labels to observe 

if there exist any differences in the activity behaviors. For this purpose, several features 

were computed such as: the proportion of the measurement time [75] total activity time 

of each class/day [76], steps counts per day [77] etc. A list of the features analyzed for 

the pre- and post- analysis is presented in Table 5.3.   

Table 5.3: Features Computed for the Predicted Labels of Pre- and Post- 

Intervention Sessions 

Feature # Feature description 

1-4* the proportion of total activity time (for each class) 

5-8 total activity time/day by taking the mean across 6 days (for each class) 

9-12 total activity time/day by taking the median across 6 days (for each class) 

13-17* 5th, 10th, 50th, 90th ,95th percentiles of lying class duration/bout  

18-22* 5th, 10th, 50th, 90th ,95th percentiles of sedentary class duration/bout  

23-27* 5th, 10th, 50th, 90th ,95th percentiles of active class duration/bout  

28-32* 5th, 10th, 50th, 90th ,95th percentiles of walking class duration/bout  

33-37* 5th, 10th, 50th, 90th ,95th percentiles of active class intensity/bout  

38-42* 5th, 10th, 50th, 90th ,95th percentiles of walking class intensity/bout  

43-47* 5th, 10th, 50th, 90th ,95th percentiles of walking class number of steps/bout  

48 number of steps per day by taking the mean across 6 days 

49* number of steps per day by taking the median across 6 days 

50* total number of steps 

* features were computed across 6 days, i.e., the total duration of the data analyzed 
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The appropriate statistical test was then applied to check the significance of each 

feature across the pre-and post-intervention. The data normality was checked using the 

Kolmogorov-Smirnov test [78]. Then, we selected non-parametric test, i.e., paired 

Wilcoxon signed rank test [79] since the data was not normally distributed. 

5.2.5.2 Clinical Variables Obtained from PreventIT Dataset 

We analyzed the associations between clinical variables and the accelerometer 

measures described in Table 5.3. The clinical variables have been divided into four 

categories: functional capacity, cognition, strength, and balance. Categories and 

variables are described in Table 5.4.  Correlation coefficient and the statistical 

significance were computed between the acceleration based measures (Table 5.3) and 

the clinical measures (Table 5.4) using the spearman correlation [80]. We also analyzed 

the association with weight, height, and body mass index (BMI).  

Table 5.4: Clinical tests analyzed for the correlation analysis 

Category Test 

Functional Capacity 

1- Time to complete gait 7 meters 

2- Time to complete gait 7 meters (repeat) 

3- Time to complete gait 400 meters 

Cognition Montreal Cognitive Assessment (MoCA) [81] 

Strength Chair stands (number of repetitions in 30s) 

Balance Fullerton Advanced Balance (FAB) scale [82] 

5.3 Results and Discussion 

5.3.1 Performance Analysis of the Single Sensors Based PAC system on Labeled 

ADAPT Dataset 

The results obtained from the performance analysis of L5 sensor of ADAPT dataset are 

presented in Table 5.5. The overall accuracy of both classifiers was quite good (around 
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90%), considering the single sensor solution and only the features from acceleration 

signal. The random forest classifier performed slightly better than SVM, but the 

difference in the performance was quite negligible (1.1% improvement). To get a better 

insight of the classifiers’ performance against each class, we computed the accuracies 

by class and sensitivities by class as shown in Table 5.6. The sensitivities by class 

provide better knowledge of the classifiers’ effectiveness in terms of identifying true 

positive labels. 

For better understanding, sensitivities by class for both classifiers are depicted in Figure 

5.2 against each class, i.e., sedentary, walking, active and lying. The sensitivities by 

class of both classifiers were quite close to each other in classifying sedentary and lying 

classes. However, random forest classifier performed better than SVM in classifying 

walking and active class with a difference of 3.8% and 8.2% respectively. Therefore, 

random forest classifier was selected to perform the prediction of unlabeled ADL. 

Table 5.5: Performance analysis using ADAPT dataset  (a) SVM Classifier(b) 

Random Forest Classifier 

Accuracy 

88.67% 

(a) SVM Classifier 

Predicted Class 

A
ct

u
a
l 

C
la

ss
 

Classified as  Sedentary Walk Active Lie 

Sedentary 28241 466 419 160 

Walking 758 5875 382 15 

Active 1497 574 1127 14 

Lying 254 0 3 256 

Accuracy 

89.68% 

(b) Random Forest (RF) Classifier 

Predicted Class 

A
ct

u
a
l 

C
la

ss
 

Classified as  Sedentary Walk Active Lie 

Sedentary 28113 428 694 51 

Walking 541 6154 335 0 

Active 1235 583 1392 2 

Lying 255 0 6 252 
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Table 5.6: Accuracy by Class and Sensitivity by Class for SVM and RF classifiers 

using single sensor at L5 

Classes of ADLs 
Accuracy by Class Sensitivity by Class 

SVM RF SVM RF 

Sedentary 91.1 92.0 96.4 96.0 

Walking 94.5 95.3 83.7 87.5 

Active 92.8 92.9 35.1 43.3 

Lying 98.9 99.2 49.9 49.1 

 

Figure 5.2: Sensitivity by Class Using SVM and Random Forest Classifier 

It is important to highlight that both classifiers were not able to perform well in 

classifying lying and active class (Figure 5.2). The reason for misclassifying lying is 

possibly the low data samples of this class as stated earlier (chapter 4, Figure 4.3). 

Although there are resampling techniques [83, 84] which can be adapted to overcome 
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the class unbalancing. However, the ADAPT dataset closely reflects the proportion of 

activities that can happen in real life conditions.  

The second class is active, whose performance was the worst among all classes. 

The possible reason could be the diverse nature of this class since it is composed of 

transitions and shuffling. This class was mainly confused with the sedentary class and 

the walking class (Table 5.5). The reasons for this behavior are twofold. Firstly, the 

type of transitions included inside active label was composed of more than 50 types of 

transitions [58], e.g., stand to lean, stand to lie, stand to pick, sit to stand, etc. Thus, 

accurate classification of this diverse nature transitions using a single feature set with 

machine learning approach is not an easy task. Secondly, the inclusion of shuffling 

activity inside active class, since shuffling also comprised stepping in place and feet 

movements on the spot, which could have been confused with walking.  

5.3.2 Classifying Unlabeled ADLs of the PreventIT Dataset Using the PAC 

System Model Developed on the ADAPT dataset 

The model of the PAC system trained on the ADAPT dataset was applied to the 

PreventIT dataset to predict the unlabeled activities into one of the four classes 

described in Table 5.2.  

The raw dataset and class predictions obtained from one of the subjects analyzed 

from PreventIT dataset are shown in Figure 1 (a) and (b) respectively. The time axis is 

in hours and the analyzed data length is about one-week time. We also implemented 

conditioning on the nighttime predictions. This is because the ADAPT dataset 

contained very few instances of lying as compare to sitting, standing and walking 

instances and none of the lying periods were recorded at nighttime while per subject 

was sleeping. Nighttime was defined as the time window between 11:00 PM and 6:00 

AM, except for walking bouts activities are labelled as lying at nighttime. Apart from 

this condition, there were no other conditions defined for the rest of the analysis. 



  

 

Figure 5.3: (a) Raw accelerometer data of L5 sensor collected across one week of recordings (b) ADLs predictions using color coding, i.e., 

Blue- Lying; Red- Sedentary; Active- Yellow; Walking- Green 



  

5.3.2.1 Analysis on Predicted Labels Obtained Through the Pre- and Post- 

Intervention Sessions of PreventIT Dataset 

We also went one step further to extract the patterns form the predicted labels 

(Figure 5.3) to observe if there exists any difference in the activity proportions of each 

class in the pre- and post- intervention sessions. 

The proportion of the predicted classes for a single subject are depicted in Figure 

5.4 (a) and (b) for the pre- and post-intervention sessions (measurement time of each 

session is 6 days), respectively. The proportions can provide a general knowledge of 

the subject’s activity profile before and after the intervention. However, it cannot 

provide a clear indication of significant increases or decrease in the activity distribution 

of each class across pre- and post- sessions. Thus, paired Wilcoxon signed rank test was 

applied on the feature-set (Table 5.3) obtained from the pre- and post- interventions 

session. The statistical analysis showed that only one feature was significant (p<0.05) 

between the pre- and post- sessions, i.e., total sedentary time per/day computed by 

taking the median across 6 days. These results are listed in Table 5.7, which shows the 

mean and standard deviations of the total sedentary time/day (minutes) of 16 subjects 

in the pre- and post- sessions. The analysis highlighted that there was a significant 

decrease in the total sedentary time/day of about one hour (Table 5.7) between the pre- 

and post- intervention sessions. 

Table 5.7: Pre- and Post- Intervention Sessions Statistical Findings 

 

Feature Pre- Intervention 

(mean ± std) 

Post- Intervention 

(mean ± std) 

p-value 

Total sedentary 

time per day 

(median across 6 

days) 

678.84 ± 100.94 min 607.68 ± 159.71 min 0.03 
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Figure 5.4: Proportion of the predicted classes of a single subject in (a) Pre-intervention 

session (b) Post-intervention session using the PreventIT dataset 

5.3.2.2 Correlation Analysis Between the Acceleration Based Measures and the 

Clinical Variables of PreventIT Dataset 

The findings of the correlation analysis performed between the clinical variables 

and the acceleration measures are presented in Table 5.8. Results are presented only for 

the significant pairs along-with their p-values and correlation coefficients. 



  

Table 5.8:   Analysis between the clinical measures and the accelerations based measures of PreventIT dataset 

Class 

Feature 

(p, r) 

BMI 

(p, r) * 

Weight (kg) 

(p, r) * 

Gait 400m 

(p, r) * 

Chair Stand 

(p, r) * 

FAB Scale 

(p, r) * 

Walking 

duration across 

6 days 

Percentage distribution 0.045, -0.564    

Duration per day (median 

across 6 days) 
0.042, -0.569    

Duration per day (mean 

across 6 days) 
0.045, -0.564    

Intensity per 

bout† of active 

class (across 6 

days) 

10th percentile     0.042, 0.570 

50th percentile   0.043, -0.577  0.040,0.575 

90th percentile   0.045, -0.571   

95th percentile   0.043, -0.577   

Walking class 

bout duration 

(across 6 days) 

95th percentile    0.016, 0.653  

number of 

steps/bout 

(across 6 days) 

95th percentile    0.021, 0.630  

Total steps/day Median across 6 days 0.024, -0.619 0.027, -0.608   

* p is the significance value, r is the correlation coefficient, † bout: uninterrupted period of any specific activity being considered  



  

The correlation between the BMI was significant with the total walking duration 

and the total number of steps. Both these associations exhibited negative correlations, 

emphasizing on the fact that an increase in the body mass index has a negative influence  

on the walking activity of the subjects with a significant decrease in the total 

walking duration and the number of steps per day. Similar findings were obtained 

between the body weight and the number of steps, showing that high body weight has 

a negative impact on the number of steps. It is likely that the association between the 

weight/BMI and walking time and number of steps is within a vicious circle since and 

increased weight can cause a reduction of walking time/number of steps and at the same 

time a reduction of walking time/number of steps can lead to an increased wright/BMI, 

The 400m walk test used as a measure of functional capacity showed statistical 

significant association with the 50th, 90th and 95th percentiles of the active class’ 

intensity per bout. All these acceleration measures were negatively correlated with the 

duration of 400 m test.  These findings suggested that the more it takes to complete the 

400m test, the lower functional capacity is; a lower function capacity would also have 

an impact on the intensity of the active class. The cognitive measure MOCA was not 

significantly correlated with any of the acceleration based measures. 

The chair stands test used as a measure of strength was significant and positively 

correlated with the 95th percentiles of the walking duration/bout and the number of 

steps/bout. These results are also coherent, as the higher is the number of chair stand 

repetitions the higher is the time the subject can walk continuously. Similarly, for the 

number of steps in a waking bout.   

The association of the FAB scale was statistically significant with the 10th and 50th 

percentiles of the intensity/bout of active class. A high FAB value corresponds to a 

better balance. The positive correlation suggests that a better balance allows the subject 

to perform the activities with a generally higher intensity. 

The labelling procedure used for some of the hierarchical classes is in contrast with 

the literature. A terminology consensus project conducted by the sedentary behavior 

research network (SBRN) [85] provides a standardized definitions of various 
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terminologies: physical inactivity, sitting, lying, reclining, sedentary behavior, 

stationary behavior, screen and non-screen time based sedentary time etc. The labelling 

procedure presented by SBRN should be adapted in the future studies to maintain a 

common taxonomy. 

This study comes with some limitations. One of the major limitations is the sample 

size. The samples size used in this study is 16 which is insufficient for the generalization 

of the findings. Thus, use of a relatively large sample size in the future can provide a 

better overview of the proposed method. Secondly, the PAC system trained in the 

annotated dataset contains very diverse types of transitions under one category (active 

class) which can be avoided in the future either by creating more robust feature-set to 

classify transitions or by reducing the transitions’ types to only those which are most 

commonly performed in real life conditions. This will improve the prediction 

capabilities of the activity classification system when tested in free-living conditions. 

5.4 Conclusions 

This chapter presents a single sensor based PAC system to classify the unlabeled 

ADLs of young older adults in free living conditions. Initially, the performance of PAC 

system is verified on the ADAPT annotated dataset using only the L5 sensors and only 

the accelerometer, and an overall accuracy of about 90% is achieved using the random 

forest classifier. Then, the same training model built on the ADAPT dataset is tested on 

the PreventIT dataset to predict the unlabeled ADLs. The predictions are performed 

both for the pre- and post- intervention sessions. 

We analyzed several statistical features from the predicted labels to observe if there 

exists any difference in the distribution of activity classes during the pre- and post- 

interventions sessions. The statistical analysis found a significant decrease in the total 

duration of sedentary class/day, suggesting that the PreventIT intervention program had 

a positive effect in terms of reducing sedentariness. Furthermore, the correlation 

analysis between the clinical variables and the acceleration measures was also 

performed. The finding showed that high BMI values are negatively correlated with the 

total walking duration as well as the number of steps/day. Furthermore, the associations 
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found between the clinical variables and acceleration measures were also coherent i.e.; 

1) increase in the time require to complete gait 400m is associated with the decrease in 

the active class intensity/bout, 2) high number of chair stands performed in 30s are 

positively correlated with the increase in the walking bout duration and the number of 

steps, 3) high values of FAB scale are associated positively with the increase in the 

intensity/bout of active class. These findings suggest that the accelerometer based 

measures can be helpful in determining the health profile of the elderly population in 

unsupervised settings.   



  

Chapter 6  

A Pilot Study to Develop Automated Video-Based 

Labelling Procedure for Activities of Daily Living 

Some of the material presented in this chapter is taken from our earlier published work 

[86]. 

6.1 Introduction 

The most commonly used and precise method to obtain ground truth information of 

the ADLs is by capturing the video information [8, 11, 12, 29]. However, this approach 

consumes resources and is very costly. It also adds bias in the video annotation process 

as video marking is done by different raters. Therefore, inter-rater reliability must be 

carefully investigated. Although the direct video recordings raise privacy concerns, 

these can be avoided or reduced to a minimal level by designing the video capturing 

system in such a way that it only captures the relevant information and ignore the 

surrounding objects in the frame, e.g., third person view.  

There are various systems developed in the literature using the image processing 

and computer vision techniques to classify human activities. However, they focused 

mainly to detect either the actions performed by the third person view in the scene or 

the gestures/activities performed during the hand movement of the first-person view 

[87-92]. These systems ignored the commonly performed ADLs in free-living 

conditions, i.e., sitting, standing, walking, ascending stairs, descending stairs, lying, etc. 

An effort has been made by Kim et al. [93] to automatically detect the walking activity 

of the subject using a first-person view camera pointing downwards toward the feet of 

the subject. However, they only focused on the detection of walking activity and other 

commonly performed ADLs were not detected.  
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This study aims to automatically label/classify these ADLs in free-living conditions 

without the presence of an observer in the field or the help of a rater to perform the 

offline video marking/annotation.  The successful development of this the proposed 

system will provide a state of the art solution for video annotation, which make it 

possible to simultaneously validate the performance of wearable sensor based activity 

classification system.   

6.2 Materials and Methods 

6.2.1 Data Collection and Experimental Protocol 

The data collection was performed at the Department of Electrical, Electronic and 

information engineering (DEI), University of Bologna, Italy. Three subjects aged 

between 25 to 30 years participated in the pilot study.  A relatively small sample size is 

chosen for data collection to check the feasibility of the proposed methodology before 

implementing on a larger population. Various types of equipment were used in the data 

collection procedure: IMU sensors, GoPro cameras (GoPro, Inc., San Mateo, CA, USA, 

1920x1080 pixels), and smartphone Samsung Galaxy S3® mini (Samsung Electronics 

Co., Suwon, Republic of Korea). 

Table 6.1: Description of the IMU Sensors Used for Data Collection 

Device uSense 

Location Thigh, L5, Chest 

Size 67 × 42 × 10 (mm) 

Weight 36 g 

Sampling frequency 100 Hz 

Battery Life /Recording time 72 h 

Sensor 
3D accelerometer, gyroscope, 

magnetometer 

Measurement range ±2 g, ±250_/s, ±1200 _T 

Company/ Institution University of Bologna, Italy 
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Three IMU sensors were placed at three different location; lower back (L5), right 

and left feet and the details are presented in Table 6.1. The IMU sensing device is 

comprised of accelerometer, gyroscope, and magnetometer. The sampling frequency 

was 100 Hz for IMU sensor and 60fps for the camera units. The Smartphone acted as a 

sink device to wirelessly collect the data for all IMU sensors. The experimental set-up 

is shown in Figure 6.1. 

Two camera units were used; one was placed at the chest of the subject for the first 

person's view pointing downward towards the subject’s feet, and the other unit was 

carried by the observer for the third person view.  The video recordings obtained from 

the first-person camera unit were processed only to develop automated video labeling 

method. Three different shapes (circular, square and triangular) of markers were placed 

on both legs, with a different color on each leg. The markers’ location was; feet, shank, 

and thigh.  

 

Figure 6.1: Placement of IMU sensors, wearable camera unit for data acquisition 

and multiple markers 
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Figure 6.2: Sequence of ADLs followed by the subjects during data collection 

These markers aimed to facilitate the image processing algorithm in recognizing the 

type and duration of each ADL activity performed. 

The experimental protocol consisted of a sequence of ADLs performed by the 

subjects as shown in Figure 6.2. The ADLs performed by the subjects were: sitting, 

standing, walking, ascending stairs, descending stairs and various transitions. The 

estimated length of the experiment was 7 minutes. Synchronization was performed 

twice between the IMU sensors and the camera units, once at the start of the experiment 

and then at the end of the experiment. This was accomplished by putting all three sensor 

Experiment Starts

Walking (Corridor of 2nd floor)

Sitting

Standing

Walking

Stairs down (Towards 1st floor )

Walking (Corridor of 1st floor)

Sitting (About 10 sec)

Standing (About 03 sec)

Walking 

Stairs up (Towards 2nd floor)

Walking (Corridor of 2nd floor)

Experiment Ends
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units on top of one another and hitting them from an object (marker pen) thrice in the 

view of camera units. After the synchronization, the sensors and camera units were 

attached to the subject. The movements were evident in the acceleration signals as well 

as in the video recordings. 

6.2.2 Data Analysis and Description of Methodologies 

The proposed methodology for the data analysis is shown in Figure 6.3. The inertial 

sensor based PAC system is the same as we proposed in Chapter 4. The image 

processing based PAC system is the one that replaces the traditional offline video 

labeling procedure (e.g., the video annotation process used in the ADAPT project with 

the help of raters, Chapter 3).  

Data Collection through Inertial Sensors and Camera 
Unit

Development of inertial sensors 
based  PAC system

Development of video based PAC 
system to automatically annotate 

the  ADLs for ground truth

Classification/Performance Evaluation/ Validaiton
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u
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Figure 6.3: Flow diagram of the proposed methodology for the development of 

PAC system 
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6.3 Pilot Results and Discussion 

The development of the inertial-sensor based PAC system is already achieved in 

Chapter 4, where the findings are quite encouraging and suggests to use a single/multi 

sensor based activity classification system to accurately classify the ADLs of elderly 

population in free living conditions. The same PAC system will be used to replace the 

left column of Figure 6.3. 

The development of image processing-based PAC system includes preprocessing 

of the images as well as implementation of object detection algorithms. The raw images 

obtained through the first-person view camera are shown in Figure 6.4 for each of the 

ADL performed by the subject.  

The image processing step was initiated by first converting the raw RGB (red, green 

blue) into the HSV (hue, saturation, value) image. The color space of HSV is less 

variant to noise as compared to RGB image and is commonly used when the aim is to 

separate the color components of the image from the intensity components. This is 

helpful in light varying conditions and to remove the objects’ shadows. The raw RGB 

image and HSV images are presented in Figure 6.5 (a) and (b) for the sitting posture. 

Then, the selected thresholding values each of the hue, saturation and value spaces 

was applied to separate the colored objects from the environment (Figure 6.5 (c)). 

Border smoothing of the detected objects and masking was applied. Finally, the color 

objects detected were mapped again to the RGB image as shown in Figure 6.5 (d). 

In most of the ADLs, the image processing algorithm was able to detect the markers 

quite reasonably as shown in Figure 6.5 (d)-(h). However, there were also other objects 

detected in the image that were not of interest. This is because of the fixed thresholding 

of HSV parameters for all activities which means that fixed thresholding cannot be a 

permanent solution to detect all ADLs. Furthermore, there were no conditioning applied 

to the images to get rid of the connected components (objects) that are smaller than 

certain pixels. Therefore, further investigation is required to apply the appropriate 

algorithm for marker detection and to implement a connected component approach to 

get rid of the irrelevant objects in the scene. 
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a) Walking (green marker) b) Walking (red marker) 

  

c) Sitting d) Standing 

   

e) Ascending stairs f) Descending stairs 

 

Figure 6.4: First person camera view of the various ADLs performed by the subject 
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(a)   Original Image (Standing) 

 

(b)   HSV Image (Standing) 

 

(c)   After Thresholding 

 

(d)   Mapping and Markers Detection 

 

(e)   Sitting 

 

(f)   Walking 

 

(g)   Ascending Stairs 

 

(h)   Descending Stairs 

Figure 6.5: Various stages of the image processing algorithm and along with the 

marker detection for each ADL 
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There were also other important issues which we did not expect during the data 

collection, but we faced at the image processing stage. During the walking episode or 

the ascending/descending stairs activity, the image patterns were heavily blurred (2 out 

of 3) due to the to the relatively fast motion of a feet when the person is moving 

compared to the acquisition time of GoPro camera. This issue is particularly related to 

the exposure time of the camera and can be fixed by lowering the exposure time as 

much as possible. However, lowering exposure time will make the image much darker 

which can be controlled by increasing the camera gain. The ideal adjustment of these 

two parameters could be performed in such a way that the obtained images are slightly 

or not blurred for moving objects, and at the same time are neither too dark nor too 

bright in different lighting conditions and less noisy.  

The second issue we encountered was the lighting variations. During the data 

recording of the subjects, it happened quite often that the lighting conditions were quite 

fluctuating (bright, dark, moderate) in the hallways. Due to these extreme variations, 

the performance of the color detector based image processing algorithm was highly 

affected. In the future trials, lighting variations should be limited by performing the 

data collection in the areas where the lighting conditions are not very bright as well as 

not very dark. Then, further trials can be conducted in light varying conditions, after 

the successful development of the image processing algorithm in controlled lighting 

environment. 

6.4 Potential Applications 

The automated video-based labeling method can be utilized in various domains 

other than the area of physical activity recognition. This is mainly possible because of 

the reliability of this method in terms of providing accurate ground truth, non-fixed 

nature of the first-person view camera and the placement of the camera unit. Firstly, the 

reliable nature of ground truth has a significant impact, since the ground truth keeping 

by the subject’s self-observation or by the help of external observer affects the natural 

flow of the performed activities in real life conditions. Secondly, the non-fixed nature 

is important, because the fixed camera-based systems (e.g., wall mounted) limits the 
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usability only to the indoor controlled environment. Furthermore, these systems then 

require multiple camera units to be placed in each portion of the facility if the intended 

application is in the home environment. Lastly, the placement of first-person view 

camera towards the subject’s feet reduces the privacy concerns and ethical 

consideration because of not capturing the irrelevant information and objects in the 

scene.   

The successful development of the automated video-based labeling procedure has 

many implications for health care.  For instance, the image processing based event 

detector can be utilized for the surveillance of epilepsy patients as well as the validation 

of epileptic seizures. The performance of wearable sensors based epileptic seizure 

detector can be validated through a first-person camera based event detector. Similarly, 

the video-based event detector can also be used for the detection and validation of 

freezing events in Parkinson Diseases (PD) patients and the detection of fall events in 

the elderly population. For these applications, the image processing based approach can 

be used alone or in an integrated manner by providing the ground truth information for 

the validation of the wearable sensor-based event detector.  

 

  



  

Chapter 7 

Conclusions/Final Remarks and Future Directions 

 

 

 

7.1 Conclusions/Final Remarks 

This dissertation has mainly focused on the development of wearable solutions for 

the activity classification of elderly populations. The state of the art methodologies for 

inertial sensors based physical activity classification were deeply reviewed to get an 

adequate insight of the strengths and weaknesses of the existing systems. Then, we 

proposed a benchmark approach to analyze the performance of the state of the art 

methodologies in an unbiased and fair way. The findings suggested that the 

performance of the existing systems is highly deteriorated when a laboratory-trained 

system is tested in free-living conditions. This analysis also highlighted that the newly 

developed systems should be trained and tested on the dataset collected in real-life, 

where the activities are performed in a more natural and unstructured way. 

The gaps and limitations inferred by the benchmark study were addressed in the 

development of a novel physical activity classification system for older adults in free-

living conditions. The performance of single-sensor and multi-sensors solutions were 

analyzed by implementing the filter-based feature selection approaches on the feature-

set obtained from the acceleration signals and the angular velocity signals. The findings 

showed the potential of different solutions (single-sensor or multi-sensor) to accurately 

classify the ADLs of older people in free-living conditions.  
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Then, a single sensor based physical activity classification was developed to predict 

the unlabeled activities of daily living. This aim was due to the fact that collecting a 

large amount of unlabeled data in free-living conditions is quite straightforward because 

of the availability of IMU sensors in almost every smartphone and smartwatch. This 

study was implemented on a relatively small sample size and will be validated in future 

studies in a broader database.  

Lastly, a preliminary study was proposed to automatically label the activities of 

daily living using the first person based camera system. Obtaining ground truth 

information using supervised methods is costly and time-consuming. Therefore, 

successful implementation of image processing based activity labeling method will help 

to save time and money, and to more easily test and/or (re)design systems for automated 

physical activity classification. The feasibility study faced several challenges regarding 

data collection and data processing which will be addressed in the future study to 

achieve the intended goals.  

The wearable sensors-based activity classification system has implications in 

clinical practice as well as in home environments. Our findings regarding the single 

sensor-based system could enable real-time decision making, by implementing the 

activity classification algorithm in smartphones which will gather data from built-in 

IMU sensors. The activity patterns obtained from such activity classification systems 

can guide the healthcare practitioners to make informed decisions about the physical 

conditions and the onset of several diseases in elderly. These patterns can also guide 

the general population to adopt active and healthier lifestyle by observing the active 

and sedentary periods of long-term recordings.  

7.2 Possible Future Directions 

1. The set of ADLs analyzed in the developed PAC system were limited to 

four (sitting, standing, walking, lying) since these are the commonly 

performed activities by the elderly population. However, it would be 

interesting to see how the developed system behaves when the ADLs to be 

classified are scaled up with more complex activities e.g. transitions (sit-
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stand, stand-sit, stand-walk, walk-stand, sit-lie, lie-stand etc.), shuffling, 

leaning, stairs-up, stairs-down etc.  

2. The ADAPT dataset analyzed in this dissertation is unique of its kind since 

it is the largest dataset so far collected in free living conditions for older 

adults and ground truth is maintained with very high frequency (annotations 

every 0.04 s). The subjects were not supervised to perform a certain activity 

more frequently than others due to the nature of the free-living protocol. As 

a consequence, the data samples of lying were less than those in the other 

three classes, i.e. sitting, standing, walking.  In the future studies, it is 

important to collect the dataset for longer duration (couple of days or more) 

to capture sufficient samples of each activity class, for better generalization 

of the developed PAC system.  

3. The use of deep-learning based approaches in health informatics has grown 

rapidly in recent years due to the advancements in computational power and 

data storage devices. These methods provide an automatic feature set, 

derived directly from the raw data to extract complex behaviors instead of 

using hand-crafted features with human intervention [94]. Therefore, it 

would be interesting to see how deep-learning based PAC system will 

classify the activities of older adults in free living conditions. 
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APPENDIX A  

 

Computation of Performance Metrics: F-measure, 

Accuracy, and Specificity and Sensitivity 

 

 

 

 

This section provides the details about the computation of the performance metrics 

used in this study. The expressions to calculate overall accuracy, accuracy by class, and 

sensitivity by class are described below: 

 

𝐹𝑐 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ 𝑇𝑃𝑐

2 ∗ 𝑇𝑃𝑐 + 𝐹𝑃𝑐 + 𝐹𝑁𝑐
× 100 (A1) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
× 100    

 
(A2) 

𝐴𝑐 =
𝑇𝑃𝑐 + 𝑇𝑁𝑐

𝑇𝑃𝑐 + 𝐹𝑁𝑐 + 𝐹𝑃𝑐 + 𝑇𝑁𝑐
× 100 (A3) 

𝑆𝑐 =
𝑇𝑃𝑐

𝑇𝑃𝑐 + 𝐹𝑁𝑐
× 100 (A4) 

whereas, TP= True Positive, TN = True Negative, FN = False Negative, FP = False 

Positive. subscript “c” is used with TP, TN, etc., to represent the metrics by class. For 

instance, if we are interested in calculating the performance metrics for standing class 

using sensor at L5 (Table V (b)): 

TPc = 7673, FNc = 2116, FPc = 1879, TNc =24471. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
9468 + 5939 + 19494 + 1

36139 (𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙)
× 100 = 96.6% 

𝐹𝑐 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
2 ∗ 7673

2 ∗ 7673 + 1879 + 2116
× 100 = 79.3% 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝐶 =  
7673

7673 + 2116
× 100 = 78.4% 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦𝐶 =  
7673

7673 + 24471
× 100 = 92.09% 
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Table A.1: Confusion matrix of the PAC system by Bao et al. in in-lab training/out-

lab testing scenario. 

classified as  walk  stand sit lie 

walk 5573 754 13 0 

stand 776 7673 1337 3 

sit 103 1124 18197 73 

lie 0 1 235 277 
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APPENDIX B 

 

Detailed Description of the Training and 

Classification Process Used  

 

 

 

 

This section provides the details about the classifiers used and the training process 

adapted. The details about the classification procedure and cross-validation procedure 

are described in Table B.1. 

The cross-validation process is leave-one-subject-out for the in-lab windowing 

analysis (trained and tested on in-lab data) and for the out-of-lab analysis (trained and 

tested on out-of-lab data). The training and testing procedure was different in the in-

lab-training/out-lab-testing analysis. In this case, the model was trained using the in-lab 

data of all subjects, but one, which is being tested on the out-of-lab data. 

Table B.1: Classification procedure used for each PAC system 

Authors Classifier Used Cross-Validation Procedure 

Cleland et al. 

SVM Classifier (with universal Pearson VII 

function based kernel and complexity value 

of 100 using WEKA libraries) 

Leave-one-subject-out-cross-

validation 

Bao et al. 
Decision Tree Classifier (J48 with default 

parameters using WEKA libraries) 

Leave-one-subject-out-cross-

validation 

Leutheuseur et 

al. 

Hierarchical Classification (KNN and SVM 

using WEKA libraries) 

Leave-one-subject-out-cross-

validation 
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APPENDIX C 

Physical Activity Classification Using Body-Worn 

Inertial Sensors in a Multi-Sensor Set-Up 

 

 

 

This study presents a novel approach to classify ADLs using a multi-sensor 

configuration: multiple inertial sensors, each mounted to a different body location, are 

used to capture a variety of movements from both the upper- and lower-body segments. 

Section II describes the methods and dataset used to develop the PAC algorithm. 

Section III reports the PAC algorithm classification performance and interprets the 

classification results. Section IV discusses the findings of the current study and presents 

a comparison with existing work. Section IV also discusses the limitations of this study 

and proposes ways to overcome said limitations to make the PAC algorithm more 

effective in real-life conditions. 

C.1  Materials and Methods 

The study uses a benchmark DaLiAc dataset [14] acquired from the University of 

Erlangen in Germany. Nineteen healthy young subjects participated in the data 

collection protocol by performing a series of prescribed ADLs on the university 

campus. The activities were: sitting (SI), lying (LY), standing (SD), washing dishes 

(WD), vacuuming (VC), sweeping (SW), walking (WK), ascending stairs (AS), 

descending stairs (DS), treadmill running (TR), bicycling (50W) (B50), bicycling 

(100W) (B100), and rope jumping (RJ). Wearable inertial sensors (Shimmer Research, 
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Dublin, Ireland) [95] were positioned and mounted on the left ankle, right wrist, chest 

and right hip (Figure C.1), for a total of four inertial sensors (sampling at 204.80 Hz) 

used to collect the raw 3D accelerometer and 3D gyroscope data. Additional, more-

detailed information about the DaLiAc dataset is available online [14].  

 

 

 

 Figure C.1: Sensor placement, courtesy of Leutheuser et al [8]. 

C.2  Feature Extraction 

Feature extraction is necessary before PA classification because pattern recognition 

algorithms cannot analyze raw signals. The below features were extracted from the raw 

3D accelerometer and 3D gyroscope signals and were computed across a window 

length of 5 sec with 50% overlap.  

• Mean  

• Standard Deviation 

• Variance 
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• Median 

• Range 

• RMS [49] 

• Skewness [50] 

• Kurtosis [50] 

• Energy 

𝐸 =
1

𝑁
∑ |𝑋(𝑖)|2

𝑁

𝑖=1
 

The energy of the signal was computed by the sum of the squared FFT components 

X(i), divided by the total length of the window N for normalization [10]. 

• Signal Magnitude Area (SMA) 

𝑆𝑀𝐴 = ∑ |𝑥(𝑖)| + |𝑦(𝑖)| + |𝑧(𝑖)|

𝑁

𝑖=1

 

SMA was derived by summing up the absolute values of all the axes across window 

length of N samples [21]. 

The feature set obtained after the processing of raw data contained a total of 224 

features, from which each feature was computed for every single axis of accelerometer 

and gyroscope of the four sensing units except the feature SMA, which combined the 

three axes of accelerometer and gyroscope separately in order to get a single value for 

each, against a single inertial sensor.  

C.3  Physical Activity Classification 

The KNN clasifier was used as a pattern recognition algorithm. It was evaluated 

with 10-fold cross-validation and K was set to 1 as a default setting to classify the 13 

ADLs detailed above in Section II, A. Weka data mining software (University of 

Waikato, Version 3.6.12 [59]) was used to build the classifier on the computed feature 

set. The metrics computed after performing the classification algorithm on the feature 

set are shown below. 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =   
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =   
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Where, TP-True Positive, TN-True Negative, FP-False Positive, and FN-False Negative 

derived from the confusion matrix in Table I. 

C.4  Results 

The classification algorithm was implemented on the entire features set of 224 

features and an overall classification rate was computed. The classifier output was 

compared with the original ADL labels across a window of 5 sec and is presented in 

the form of confusion matrix in Table C.1. From the confusion matrix, accuracy, 

specificity, sensitivity, and precision were computed for each ADL and are reported in 

Table C.2. The classification rate of the proposed PAC algorithm was compared with 

the original PAC algorithm by Leutheuser et al. [14], presented in Table C.3. The 

performance metrics computed from the confusion matrix showed remarkably high 

detection rates of above 90% to differentiate each activity. The comparison of the 

proposed algorithm with the original work by Leutheuser et al. [14] also shows quite 

promising results in classifying the ADLs. The overall mean classification rate of the 

proposed PAC algorithm (97.38%) exceeded that of the original Leutheuser PAC 

algorithm (89.6%). 



  

 Table C.1: Confusion Matrix of the PAC Algorithm Where Every Value Corresponds to Window of 5 sec Activity 

 

SI LY ST WD VC SW WK AS DS TR B50 B100 RJ  Classified   as 

446 0 1 1 1 0 0 0 1 0 0 0 0 SI 

1 455 0 0 0 0 0 0 0 0 0 0 0 LY 

1 0 441 8 1 0 0 1 0 0 1 0 0 ST 

0 0 0 927 7 1 1 0 0 0 0 1 0 WD 

0 0 0 3 443 6 1 0 0 0 0 1 0 VC 

0 0 1 3 37 683 7 6 2 0 1 3 0 SW 

0 0 0 1 1 2 2009 10 10 5 2 1 0 WK 

0 0 0 0 0 0 12 305 3 0 0 0 0 AS 

0 0 0 0 0 0 6 3 264 0 0 0 0 DS 

0 0 0 0 0 0 3 0 0 905 3 0 0 TR 

0 0 1 1 0 0 3 0 1 4 876 37 0 B50 

0 0 0 1 0 0 0 0 0 0 37 882 2 B100 

0 0 0 0 0 0 0 0 0 0 0 0 243 RJ 



  

Table C.2: Classification Rates Comparison of the Proposed System with the 

Previous Work by Leutheuser  [8] 

No. Activity Leutheuser et al.[8] Proposed 

1 SI 88.90 99.33 

2 LY 100.00 99.78 

3 ST 89.80 97.35 

4 WK 99.00 98.53 

5 AS 95.50 95.63 

6 DS 95.20 96.70 

7 WD 98.1 98.72 

8 VC 85.4 97.8 

9 SW 89.9 91.79 

10 TR 100.00 99.45 

11 B50 69.10 95.12 

12 B100 53.50 95.99 

13 RJ 100.00 100.00 

Mean 89.6 97.38 

The bold values show that the proposed PAC algorithm performed better than the original. 

Table C.3: Performance Metrics Derived from the Confusion Matrix 

Activity Accuracy Specificity Sensitivity Precision 

SI 99.96 99.99 99.33 99.78 

LY 99.99 100.00 99.78 100.00 

ST 99.82 99.95 97.35 99.10 

WK 99.34 99.58 98.53 98.53 

AS 99.63 99.77 95.63 93.87 

DS 99.75 99.84 96.70 94.96 

WD 99.65 99.76 98.72 97.88 

VC 99.36 99.45 97.8 90.24 
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SW 99.23 99.89 91.79 98.7 

TR 99.86 99.90 99.45 99.12 

B50 99.08 99.52 95.12 95.75 

B100 99.11 99.46 95.99 95.26 

RJ 99.98 99.98 100.00 99.18 

C.5  Discussion and Conclusion 

The mean classification rate of the proposed PAC algorithm is high and exceeds 

that of the original PAC algorithm described by Leutheuser et al. [14], emphasizing the 

significant impact of this work. The proposed PAC algorithm outperformed the existing 

PAC algorithm when classifying nine out of the 13 total ADLs; the two algorithms 

performed the same for one ADL, and the original algorithm slightly outperformed the 

proposed algorithm for the remaining 3 ADLs (Table II). The proposed PAC algorithm 

outperformed the original PAC algorithm when classifying two out of the three 

sedentary ADLs (sitting and standing). One possible reason is that the energy feature 

(along with other features) was computed for every single axis in our case while in the 

original algorithm described by Leutheuser et al., the energy feature was derived by 

combining all the axis to get a single value for each sensor. This possibly minimized 

the information about variation in a single axis (e.g. vertical axis). The proposed 

algorithm performed slightly better in the ascending stairs and descending stairs 

activities and slightly worse for the walking activity. This could be because in this study 

a generalized classification method was used for all activities instead of using 

hierarchical classification approach used in [14]. In the ADLs: lying, walking, and 

treadmill running, our proposed PAC algorithm performed slightly worse than the 

original PAC algorithm by Leutheuser et al., but the difference was less than 0.6%. 

Furthermore, in the ADLs: ascending stairs and washing dishes, the improvement of 

proposed PAC algorithm over the original was less than 0.75%. Most importantly, the 

improvement in the classification rate of the proposed PAC algorithm was significantly 

higher for the activities: sitting, standing, sweeping, vacuuming bicycling (50W) and 

bicycling (100W), making the proposed PAC algorithm superior to the original by 

Leutheuser et al. The reason behind the overall higher classification rates in detection 
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of the ADLs is related to the utilization of features which show significant variations in 

behavior when compared between static and dynamic activities (i.e. energy and SMA). 

The SMA values were lower when there were sedentary ADLs such as sitting, standing, 

and lying, while in dynamic ADLs (i.e., walking, stairs up, stairs down and running) 

the SMA values were comparatively high. The SMA feature enabled us to discriminate 

between static and dynamic ADLs, which in turn resulted in higher overall 

classification rates for the proposed algorithm. 

Additionally, the proposed algorithm is preferable to the existing algorithm due to 

its simple, efficient design. Instead of using a different classification approach for each 

subset of ADLs, we used a single procedure to classify all 13 ADLs. The algorithm 

described by Bao and Intille [9] was also implemented in [14] using the same 

benchmark dataset and achieved an overall mean classification rate of 80%, which is 

significantly less than the classification rate achieved in this study. Specifically, the 

proposed algorithm outperformed the algorithm described by Bao and Intille when 

classifying activities 1-6 in Table III, the six basic ADLs for activity classification 

algorithm development and testing [9, 10, 13, 14, 21, 22, 29]. This is likely because 

Bao and Intille used only accelerometers signals for feature extraction and algorithm 

development. In contrast, both accelerometer and gyroscope signals were used in this 

study. 

In sum, the proposed algorithm has shown encouraging results in classifying both 

sedentary and mobile ADLs. It is important to note though that most of the analyzed 

features in this study are based on statistical computations and are quite sensitive to 

change. Slight variations in sensor placement can significantly influence the feature 

values, which will, in turn, affect the algorithm’s classification performance rate. There 

is a need to explore the use of biomechanical features to enhance algorithm 

classification performance under various sensors orientations. Integrating 

biomechanical features with the current features used in this study will help compensate 

for variations in sensor placement and in turn will make the algorithm more robust and 

versatile. It is also worth mentioning that in most of the previous studies, not many 

efforts were spent on the selection of feature set prior to classification if any at all. This 

stage is often neglected. Mindful feature selection is very important and, if performed 
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properly, can easily rid redundancies within the feature set that could affect the 

detection capabilities of the PAC algorithm. 

The benchmark dataset used in this study was based on a structured protocol in a 

restricted environment where subjects were instructed to perform prescribed ADLs. 

Both the duration and the way of performing these ADLs were predefined. These 

conditions are quite different to those of real life where ADLs are not structured (e.g., 

walking in a laboratory environment can be totally different to walking in the home 

environment). A possible solution to this issue would be to measure ADLs in daily life 

conditions using the same data acquisition methods detailed in this study to capture 

more realistic behaviors. In addition, testing the existing algorithms for PAC on this 

new dataset would give more insight to the challenges and gaps that must be addressed 

in the new PAC algorithms in order to make them more robust and practical in daily 

life settings.  

The benchmark dataset used in this study was based on a structured protocol in a 

restricted environment where subjects were instructed to perform prescribed ADLs. 

Both the duration and the way of performing these ADLs were predefined. These 

conditions are quite different to those of real life where ADLs are not structured (e.g., 

walking in a laboratory environment can be totally different to walking in the home 

environment). A possible solution to this issue would be to measure ADLs in daily life 

conditions using the same data acquisition methods detailed in this study to capture 

more realistic behaviors. In addition, testing the existing algorithms for PAC on this 

new dataset would give more insight to the challenges and gaps that must be addressed 

in the new PAC algorithms to make them more robust and practical in daily life settings.  

Proper selection of sensor type, count, and placement are all important 

considerations when developing and validating PAC algorithms for real-life 

applications. This study used four sensors, which is a relatively large number when 

considering a PAC system in real life environment (as sensor count increases, issues 

such as sensor wearability, battery life and data storage limitations arise). Therefore, 

sensor selection and placement are a critical task that must be solved efficiently so that 

the classification performance of the PAC algorithm is minimally affected by 

decreasing the number of sensing units. Smartphones and smartwatches may serve as 
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suitable alternatives in terms of wearability and user-friendliness as compared to body-

worn inertial sensors alone since most smartphones and smartwatches on the market 

today come embedded with the inertial sensors. These devices also have their 

limitations such as low data storage, shorter battery life and limited computational 

capabilities, which is another topic that must be addressed by the research community.  
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