Harnack Inequality and Fundamental Solution for Degenerate Hypoelliptic Operators

Battaglia, Erika (2017) Harnack Inequality and Fundamental Solution for Degenerate Hypoelliptic Operators, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Matematica, 29 Ciclo. DOI 10.6092/unibo/amsdottorato/7784.
Documenti full-text disponibili:
[img]
Anteprima
Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (941kB) | Anteprima

Abstract

In this thesis we study subelliptic operators in divergence form on R^N, and we are interested in establishing Harnack inequalities related to these operators in various contexts. As a first result of the thesis, we prove a non-invariant Harnack inequality, passing through a Strong Maximum Principle; in doing so, we require the hypoellipticity of the operator to construct a Green function, that we have used (by means of techniques of Potential Theory) in order to obtain the Harnack inequality. In the second main result of this thesis, we prove a non-homogeneous invariant Harnack inequality for these subelliptic operators under low regularity assumption. Currently, it is known that the natural framework for Harnack-type theorems is the setting of doubling metric spaces; we suppose that the quadratic form of the operator can be naturally controlled by a family of locally-Lipschitz vector fields. Moreover, we assume that, with the associated Carnot-Carathéodory metric d, N-dimensional Euclidean space is endowed by d with the structure of a doubling space (globally) and a Poincaré inequality on any d-ball holds true. We use a Sobolev type inequality and the Moser iterative technique to prove a non-homegeneous invariant Harnack Inequality; as a consequence, we show the existence of the Green function using only the Harnack inequality.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Battaglia, Erika
Supervisore
Dottorato di ricerca
Ciclo
29
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Divergence-form operator, Harnack inequality, Green function, Integral representation, doubling metric space, Poincaré-Sobolev inequality, Fundamental Solution
URN:NBN
DOI
10.6092/unibo/amsdottorato/7784
Data di discussione
10 Febbraio 2017
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^