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Introduction

The aim of this thesis is to give a contribution to the theory of subelliptic operators. We study

a class of real second-order PDOs £ in divergence form on RY of the following type

1 X oo 9]
£ i 2 o (VA ) O

J=1 J
where V() > 0 and the matrix A(x) is symmetric and positive semi-definite for every z e RY.
Further assumptions of the regularity of the coefficients A(z) and V (z) will be clarified later.
The above class of PDOs comprises sub-Laplacians on Carnot groups, subelliptic Laplacians
on arbitrary Lie groups, elliptic operators in divergence form, as well as the Laplace-Beltrami

operator on Riemannian manifolds.
We are interested in establishing Harnack Inequalities related to £ in various contexts.

As a first result of the thesis, we describe how we obtained a non-invariant Harnack in-
equality for (1), passing through a Strong Maximum Principle, following the ideas by Bony in
his celebrated paper [16]. In doing so, we require £ to have C* coefficients and to satisfy the

following hypotheses:

(NTD) L is non-totally degenerate at every point of RY, or equivalently (recalling that A(z) is

symmetric and positive semi-definite),

trace(A(z)) >0, for every z ¢ R,

(HY) L is C*-hypoelliptic in every open subset of R" .
(HY). There exists € > 0 such that £ - ¢ is C*°-hypoelliptic in every open subset of RY.

Under these assumptions we prove the following:

Harnack Inequality: For every connected open set O ¢ RN and every compact subset K of O,

there exists a constant M = M (L, O, K) > 1 such that

supu < M inf u,
K K

for every non-negative L-harmonic function u in O.
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Introduction

Before presenting some further details on our approach (and the roles of our assumptions
(NTD), (HY) and (HY).), we recall some references from the literature on Maximum Principles

and the Harnack inequality for operators as in (1).

Starting from the 50’s/60’s seminal works by De Giorgi [28], Moser [80], Nash [81], Serrin
[89], the literature on Harnack inequalities and on regularity issues for divergence-form op-
erators like ours has widely grown in the uniformly-elliptic case. The same is true of the vast
literature on Hérmander operators, starting from the 60’s/70’s pioneering papers by Bony [16],
Fefferman and Phong [35, 36], Folland [37], Folland and Stein [38], Hormander [58], Rothschild
and Stein [86].

It is during the 80’s that many important results on degenerate-elliptic operators under
the divergence-form (1) were established, with a special emphasis to the mentioned Harnack
Inequality and Maximum Principles; see e.g. the results by: Jerison and Sanchez-Calle [60];
Chanillo and Wheeden [21]; Fabes, Jerison and Kenig [31, 32]; Fabes, Kenig and Serapioni [33];
Franchi and Lanconelli [42, 43]; Gutiérrez [51].

As for the assumptions made in the previous papers on the involved PDOs, in [60] a suit-
able subellipticity hypothesis is assumed, whereas in the other cited papers, operators like ours
are considered with very low regularity assumptions on the coefficients, but under the hy-
pothesis that the degeneracy of the principal matrix be controlled on both sides by some ap-
propriate weights: for example, by Muckenhoupt-type weights, [31, 32, 33, 51]; or by doubling
weights, [21]; or by a family of diagonal vector fields, [42]. The Muckenhoupt-type condition
on the degeneracy is still one of the most frequently assumed hypotheses in obtaining Harnack
theorems: see e.g. recent investigations in [27, 74, 93]; see also [64] for a Harnack inequality in
the case of the so-called X-elliptic weight condition.

Another type of assumption can be made in facing with potential-theoretic problems for
operators L£: indeed, very recently a systematic study of the Potential Theory for the har-
monic/subharmonic functions related to £ has been carried out in the series of papers [1,
7, 13, 14], under the assumption that £ possesses a smooth, global and positive fundamen-
tal solution. For the use of the fundamental solution in obtaining the Harnack Inequality for
Hormander sums of squares, see: Citti, Garofalo and Lanconelli [23]; Garofalo and Lanconelli
[46, 47]; Pascucci and Polidoro [83, 84]; see also the recent survey by Bramanti, Brandolini,
Lanconelli and Uguzzoni, [17], for the same relevant use of the fundamental solution for heat

PDOs structured on Hormander vector fields.

After this long excursus of related references, we now describe our first result. Thanks to
the assumptions (NTD) and (HY), we are able to recover Bony’s approach in establishing the
Strong Maximum Principle for £. Once this has been done, we obtain the Harnack inequality
for £ by means of the well-behaved properties of the Green function g. related to £ - ¢: it is at

this point that hypothesis (HY). is required. Some Potential Theoretic results are also used in
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Introduction vii

a crucial way. All this is presented in Chapter 2.

As our assumptions are only (NTD), (HY), (HY). above, we want to stress that in this thesis
we do not require £ to be a Hormander operator; in particular in Chapter 2 we will show that
the Strong Maximum Principle and the Harnack inequality hold true in the infinitely-degenerate
case as well, nor we make any assumption of subellipticity or Muckenhoupt-weighted degen-
eracy (see Example 2.1.2); furthermore, we do not assume the existence of any global funda-
mental solution for £: summing up, our results are not contained in any of the aforementioned
papers.

As a counterpart of allowing for less assumptions (our hypotheses are, broadly speaking,
more qualitative than quantitative), we will have to renounce to lower the regularity of the
coefficients (as in Moser-type techniques) or to obtain an invariant Harnack inequality (which
is roughly put, an inequality with a constant independent of the radius of the balls involved).
The main novelty of our work is to obtain the Strong Maximum Principle and the Harnack In-
equality for hypoelliptic operators with infinitely degenerate coefficients, allowing some eigen-
values of the principal matrix of £ to vanish at infinite order, as in Fedii operator, [34],

F = 88;% + (exp(—l/x%) %)2 in R?
(see also Example 2.1.2 for other models of infinitely-degenerate PDOs to which our theory
applies). Note that this operator violates the Hormander maximal rank condition on {z; = 0},
it does not satisfy subelliptic estimates, and its quadratic form does not satisfy Muckenhoupt-
type weight conditions. Yet, F fulfills a maximum propagation principle as one can verify
straightforwardly: this is not by chance, indeed, by means of a deep Control Theoretic result
by Amano [3] using (HY) and (NTD), we show that a Maximum Propagation holds along
the vector fields X1, ..., Xy associated with the rows of the matrix A(x). The mentioned (long-
forgotten) result by Amano ensures that the sole hypoellipticity of £ (plus (NTD)) guarantees
that the reachable set of X,..., Xy is the whole space. It is for this reason that the ideas of

Bony can be used.

Now we pass to the second main result of the thesis: a Harnack inequality for £ under low
regularity assumption.

Currently, it is known that the natural framework for Harnack-type theorems is the set-
ting of doubling metric spaces: see e.g., Aimar, Forzani and Toledano [2]; Barlow and Bass [4];
Di Fazio, Gutiérrez and Lanconelli [30]; Grigor’yan and Saloff-Coste [50]; Gutiérrez and Lan-
conelli [52]; Hebisch and Saloff-Coste [54]; Indratno, Maldonado and Silwal [59]; Kinnunen,
Marola, Miranda and Paronetto [62]; Mohammed [77]; Saloff-Coste [88]. In this framework
it appears that the Harnack Inequality holds true whenever some axiomatic assumptions are
satisfied: a doubling condition and a Poincaré inequality.

We follow this trend of research and we make the following assumptions:
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Introduction

(E) There exists a family of locally Lipschitz-continuous vector fields X = {X3,...,X,,} on
Euclidean space RY, and two constants A\, A > 0 such that

m

ZX(x)f < (A(2)€,€) <AZX(:E)€ ¥ 2,6 eRY,
and we consider the metric of Carnot-Carathéodory d related to the family X.

If 11 is the measure associated with £: du = V(z)dz with V asin (1),

(D) (RY,d,p) is a doubling metric space, that is, there exists ) > 0 such that

1(Ba(z,21)) <29 u(By(z, 1)), for every = e R and every r > 0.

(P) The following global Poincaré inequality is satisfied: there exists a constant C'p > 0 such that,

for every z e R, r > 0 and every u which is C" in a neighborhood of Ba,(z) one has

AN TSN

(There is also a further technical topological assumption on (RY, d), see Section 4.2).

dSCr][ Xu|dp.
H=sCp B()| [du

2r (T

Under these assumptions, we are able to prove in Chapter 4 the following result:

Non-Homogeneous Invariant Harnack Inequality: Let Q ¢ RY be an open set, and let
g € LP(Q2), with p > Q2. Then there exists a structural constant C' > 0 (only depending on the
doubling/Poincaré constants @, Cp, on the X-ellipticity constants A, A in (E) and on p) such that, for
every d-ball Br () satisfying Bar(z) c Q, one has

1
sup uSC(inf u+R2(][ Pq )p),
e A an(o) lgl” dpe

for any nonnegative W,._-weak solution u of ~Lu = g in Q.

We provide a very brief list of related references. In the setting of doubling metric spaces,
several authors have dealt with operators related to a family of uniformly subelliptic vector
fields: see e.g. Kogoj and Lanconelli [65, 66] where a Harnack inequality was proved for the
equation Lu = 0; moreover, in [52] Gutiérrez and Lanconelli have showed maximum principle
for these operators with lower order terms and, in the case of dilation invariant vector fields,
a non-homogeneous Harnack inequality; a yet improved result was obtained by Uguzzoni in
[92] where, removing the assumption on the dilation invariance, the author has showed a local
Harnack inequality under hypothesis of local doubling condition and Poincaré inequality. The
result by Uguzzoni gives a non-homogeneous and invariant Harnack inequality with the only
drawback that inequality is local, in that it holds for small radii and for centres confined to a

compact set. In this framework our result above Harnack inequality is a further improvement:
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Introduction

it is a non-homogeneous invariant Harnack inequality, with no restriction on the radii and on the
centres.

The most important consequences of this Harnack inequality are (inner and boundary)
Holder estimates and the construction of the Green function on bounded domains. This is
accomplished in Section 4.4.1 and Section 5.1.

As a part of our future investigations, the invariant Harnack inequality will be the main

tool to show the existence of a global fundamental solution for £, as outlined in Chapter 5.

Before giving an outline of the thesis, we would like to underline the crucial role of Green
functions in this thesis. In Chapter 2 we have been able to construct a Green function thanks
to the assumption of hypoellipticity of L, and then we have used the Green function (by means
of techniques of Potential Theory) in order to obtain a non-invariant homogeneous Harnack
inequality; with a completely different approach, in Chapter 5 we have proved the existence
of a Green function for £ as a by-product of the Harnack inequality. Hence, in the framework
of Harmonic spaces, the Green function is a tool to prove the Harnack inequality; conversely,
in the context of doubling metric spaces, the Green function related to £ is an important con-

sequence of the Harnack inequality.

Outline of the Thesis.

We conclude the introduction by giving a general outline of the thesis and a short descrip-
tion of our main results.

In Chapter 1 we give some results of Potential Theory: we consider a linear second order
PDO £ as in (1) and we assume that £ is endowed with a positive fundamental solution,
defined out of the diagonal of R" x RY, with some well-behaved properties. We characterize
the solutions to Lu = 0 as fixed points of suitable mean-value operators with non-trivial kernels
(Koebe-type Theorem) and our aim is to study the topology of family of £-harmonic functions.
For this purpose, we obtain a generalization of a classical theorem of Montel, for holomorphic
functions, in the subelliptic setting of families of solutions u to Lu = 0. Finally, we will show a
Heine-Borel theorem for the space of the £-harmonic functions.

In Chapter 2 we prove one of the most important results of the thesis. We consider a PDO £
as in (1) and we prove the Harnack inequality for £ mentioned above. To this aim, a first step
is to show the solvability of the Dirichlet problem in order to obtain the existence of the Green
function for £; then we prove a Weak Harnack inequality and we use these results, together with
means of Potential Theory, to obtain the Harnack inequality.

In Chapter 3 we will show some further Potential Theoretic results, closely related to the

arguments in Chapter 2. In particular, we use the Harnack inequality and the solvability of

ix



Introduction

the Dirichlet problem for L to prove integral representation theorems and a characterizations
of superharmonic functions related to L.

In Chapter 4 we will show another main results of the thesis: we let £ in (1) be associated
with a family of vector fields, and we use the Carnot-Carathéodory metric d related to this
family. We suppose that (RY,d, ) is a doubling metric space, where dy is V(z)dz, and we
further require a global Poincaré inequality. Our study is focused on length spaces, properties
of CC metric and Sobolev spaces related to a family of vector fields; several contributions
have already been given in the literature for the study of these geometric conditions in the
context of PDEs modeled on vector fields, see e.g. Hajtasz and Koskela [53]. In this framework,
we prove the mentioned non-homogeneous invariant Harnack inequality, with consequent
Holder-continuous estimates, using the Moser-type technique.

In Chapter 5 we give some results of our future investigations. We use the non-homogeneous
Harnack inequality (proved in Chapter 4) to construct a Green function on the bounded do-
mains, following the ideas of Fabes, Jerison and Kenig in [31] (see also Uguzzoni in [92]). Our
future aim will be to prove the existence of a global fundamental solution for £. Thus we con-
struct a suitable basis for the d-topology on RY: the idea is to consider the Green functions
related to this basis and then, by an exhaustion argument, to show the existence of a global
non-negative fundamental solution, continuous out the diagonal of R x RY, using the invari-

ance of the Harnack inequality.



Chapter 1

Some Potential Theoretic results for

subelliptic operators

In this chapter we provide for operators £ in divergence form on R" a subelliptic version
of a remarkable result, due to P. Koebe, characterizing harmonic functions as fixed points of
suitable mean-value integral operators. The presence of non-trivial and possibly unbounded
kernels (see (1.1.6)) in this mean-value operators is one of the main novelty with respect to
the classical elliptic case. Then we study the topology of the harmonic space related to £, and
to this aim we will show a generalization of a classical theorem of Montel in the subelliptic

setting of families of solutions u to Lu = 0.

1.1 Main assumptions and notation

We need to fix some notations. We shall be concerned with linear second order PDOs in RY of

the form

(V(:E)a”(x) Z) zeRY, (1.1.1)

V()Z

%] 1
where V is a C! positive function on RY, the matrix A(z) := (a; j(z))i j<n is symmetric and

positive semi-definite at every point z ¢ R", and it has C"! entries.

Given a > 0, if H® is the a-dimensional Hausdorff measure on RY, we set
dVve =V dH® (1.1.2)

to denote the absolutely continuous measure with respect to H< with density V.
We shall be interested only in the casesa = N and o= N - 1.

Our main assumption on £ is the following:
(S) We assume that £ is equipped with a positive global fundamental solution
F:D:{(xay)ERNXRN : $¢y}—> (0,00)

1



1.1 Main assumptions and notation 1. Some Potential Theoretic results

with the following properties:

(@) T is (at least) of class C® on D and VI'(z,-) # 0 on RN \ {z};
(b) for every fixed z € R", we have lim I'(z,y) = co and lim I'(z,y) = 0;

(© I'eL{ (R?*MN)and, for every z e RY,
fRN T(x,y) Lo(y) AV (y) = —p(z), forevery p e C5°(RY,R). (1.1.3)

If Q c RY is open, we say that u is L-harmonic in Q if u € C%(Q,R) and Lu = 0 in Q. The set
of the £-harmonic functions in 2 will be denoted by H(£2).

Given any 7 > 0 and any = € RY, we introduce the super-level set of I
O (x) = {y eRY : I(z,y) > l/r} u{z}, (1.1.4)

that will be referred to as the I'-ball of center « and radius r.
Observe that, from property (b) of the assumption (S), we derive that every I'-ball Q,.(x)
is a bounded open neighborhood of = and that

Nrs0 Qr(x) = {1’}, Urso Qr(z) =RV, (1-1-5)

Moreover, from property (a) we infer that 9Q, = {y : I'(z,y) = 1/r} is a C3-manifold. (Through-
out the chapter, a C'-assumption on 99, () would actually suffice; we use the C* hypothesis
on I' only in the proof of Theorem 1.2.3.)

Let 2 € RV and let us consider the functions, defined for y # z,

A(y)VI.(y), V. (y))
IV (y)|

If v is a continuous function on 99, (x), we introduce the following mean-value operator

L) =T, Ky

(1.1.6)

me()@) = [ u(y) K () V). (117)
0Q, ()
Note that the measure K (z,y)dV"~1(y) is non-negative since A is positive semi-definite (we

shall also prove that 99,.(z) has measure 1 w.r.t. K (z,y) dV™"1(y)).

We end this notational section by recalling some terminology from the theory of topolog-
ical vector spaces. We only recall, for convenience of reading, a few definitions, referring to
[87, Chapter 1] for the missing ones. (This last part of the section only contains basic material,
but it is meant to fix notation and definitions.)

Let V be a real vector space and let P = {p,, }»en be a countable family of seminorms on V'
which is separating, that is for every « € V'~ {0} there exists n € N such that p,,(z) # 0. We denote
by 7 (P) the smallest topology on V' making any p,, : V' — R continuous and turning V" into a

topological vector space (t.v.s., for short). Since P is at most countable, the topological space

2



1. Some Potential Theoretic results

(V, T (P)) is first-countable, hence the convergent sequences characterize 7 (P). For example,
a sequence {zy}r in V converges to € V w.r.t. 7 (P) if and only if, for every fixed n € N, one
has limy_, e pr (2 — ) = 0. Moreover, (V,T(P)) is a locally convex t.v.s., and a base of convex

neighborhoods of 0 is given by
{yeV:p,(y)<1/m}, n,meN.

It is well-known that 7 (P) coincides with the metric topology induced by the distance d on V'
defined by

1 n (2 —
d(z,y) = max — Pz =y)

T L\l £ : : 1.1.
X S Thpu(z—1)’ z,yeV. (1.1.8)

Clearly, d(x,y) < 1 for every z,y,¢ V, thus boundedness in the metric space (V,d) is of no

relevance. The relevant notion is, instead, the following one.

Definition 1.1.1. A set E' ¢ V is said to be bounded in the t.v.s. (V, T (P)) (or T (P)-bounded, for
short) if, for every open neighborhood {2 of 0, there exists s > 0 such that

EcsQ:={sw: we}.

It is easy to verify that E ¢ V' is T (P)-bounded if and only if every function p, | : E - R
is bounded (by a constant possibly depending on n ¢ N).

Here we are only interested in the topologies induced on V' := C() by the following
families of seminorms. We say that a sequence of bounded open sets €2,, (in the usual Euclidean

metric of RV) is an exhaustion of the open set {2 if
Unen Q0 =Q,  K,p:=0,cQ, YneN (1.1.9)

With this notation, for every n € N, we set, for f € C(Q),

pu)= [ 1f@)dH" @), P = {paner
qn(f) = Sg? |f((£)|, Q:= {qn}neN (1.1.10)

We say that T(P) and 7 (Q) are, respectively, the L] -topology, and the L;?

1o .~topology of C(2).
Indeed, from what we recalled above, given functions f,, f € C(Q?) we have lim,,, fr, = f
w.rt. T (P) (w.rt. T(Q), respectively) if and only if, for every fixed compact set K c €, one has
limy, o0 (fn)|x = fli in L*(K) (in L (K), respectively). This also shows that 7(P) and 7(Q)
are independent of the exhausting sequence {(2,, },, of €.

Clearly, T(P) c T(Q), i.e., T(Q) is a topology (strictly) finer than 7 (P). Instead, we shall
show that

T(P)nH(Q) =T(Q) nH(Q).

Thanks to the above mentioned characterization of boundedness in terms of the seminorms,

we recognize that, given F ¢ C(Q),



1.2 Integral representations and Koebe-type Theorem 1. Some Potential Theoretic results

(i) F is T(Q)-bounded if and only if, for every compact set K c (2, there exists a constant
M (K) > 0 such that supy | f| < M (K), for every f € F;

(ii) F is 7 (P)-bounded if and only if, for every compact set K c , there exists a constant

M(K) > 0such that [ |f|dHY < M(K), for every f € F.

One of the main results of this chapter will be to relate the notion of a normal family to that

of precompactness, using a Montel-type result.

1.2 Integral representations and Koebe-type Theorem

In this section we want to show representation formulas for £, with respect to which we are
assuming hypothesis (S).
Thanks to the surface mean-value formula for £, then we can characterize the harmonic

functions as fixed points of the mean-value operator in (1.1.7).

Lemma 1.2.1. Let notation be as in Section 1.1. For every function u of class C* on an open set

containing the T'-ball Q,.(x), we have

u@) =me@)(@) = [ (D) - ) Luly) V(). (1.2.1)

Q- (x)

We shall refer to (1.2.1) as the surface mean-value formula for £. As a consequence, a function u of

class C? in the open set Q ¢ RN is L-harmonic if and only if
u(x) =m,(u)(z), forevery I-ball such that Q,(z) c Q. (1.2.2)

Formula (1.2.1) extends the result in [13, Theorem 3.3] to our operators (1.1.1), a class which
strictly contains the PDOs considered in [13]. We shall prove Lemma 1.2.1 by exploiting the

quasi-divergence form (1.1.1) of £ and integration by parts.

Proof. To begin with, let Q2 ¢ RY be a bounded open set, with 092 of class C*. If u,d € C*(, R),
we can apply the Divergence Theorem in order to derive, by exploiting the quasi-divergence
form (1.1.1) of £ and the symmetry of the matrix A, the following Green-type identity (see also
the notation in (1.1.2)):

fﬂ (uLd—dLu)dV™ = faQ (u(AVd, No) - d(AVu, No)) dV 1, (1.2.3)
Here N denotes the exterior normal vector on 0f). The choice d = -1 yields
fﬂ Ludvh = fa (AVU No)dVYL we CAQLR). (1.2.4)
This proves, in particular, that
fQ LudVN =0, forevery ueCa(,R). (1.2.5)

4



1. Some Potential Theoretic results

Let z € RY and 7 > 0 be fixed and consider the (regular) open set
Qrp=Q(2)\Qy(x), forO<p<r.

Let u € C*(Q2,.(z),R) and choose d(y) := ', (y). We are entitled to apply (1.2.3) when Q = Q, .
Recalling that £T", = 0in RY \ {z} (see hypotheses (S.a) and (S.c) on the fundamental solution
I'), and since Nq = #VI',/|VI';| on 09, (z) and on 012, (z), respectively, we obtain

- f r, LudVy
.,

(AVD,,VT,) — yog 1 [ N1
- BV 2, Vie) qy/N-1 _ 1 AVu, Ng () dV 2.
fanr(mu |V, | r 8Qr(m)( Vi No @) ’ (12.6)

AVI,, VI a1 -
+ f uMdVN 1 + = [ (AV%NQ (x))dVN 1.
0Q, () |VF:E| p JoQ,(x) g

Here we used the fact that the exterior normal vector to the domain 2, , coincides, on 09, (x),
with the exterior normal vector to Q,.(x), whereas it coincides, on 9Q,(x), with the opposite
of the exterior normal vector to 2,(z).

If we introduce the notation

1 -
@) == [ (AU No, ) aV T,

Q- (z)

(1.2.6) can be rewritten as follows (see also (1.1.6) and (1.1.7))
- /s; Ty LudVY = —m,(u)(z) - J,(u)(x) + m,(u)(x) + J,(u)(z). (1.2.7)

We now aim to let p tend to 0 in (1.2.7).
As for the left-hand side of (1.2.7), we have I' € L{, (dV") (indeed L{ (dH™) = L (dV?")

since V' is positive and continuous), whence

- f T, LudvN 2% _ T, LudV™N.
Qr (z)NQ, () Q- ()

Moreover, we claim that the last summand in the right-hand side of (1.2.7) vanishes as p — 0.

First we observe that this is true of H" (Q,(x))/p; indeed, since "¢ L] ,

HY(0 1 =
0< 7 (%@) 1 [ arw)s [ Ty)aa® ) S,
p p I, () 2o (@)

in view of N,50 Q, () = {x}. Next, thanks to (1.2.4) we have
| o, oy LudV™|

lim [J,(u)(x)| = lim ————— <lim | sup |V Lu|
p=0 p=0 p P20\ Q,(2)

HN(Qp(x))) -0
P

Summing up, from (1.2.7) we derive that lim, o m,(u)(z) exists and (1.2.7) gives

1
ooy e LV =) @) = [ Ludv sl (n)(@). (128

r

Before we can calculate the limit of m,(u)(x), we need some preliminary work.

5
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Suppose that u € Cg°(RY,R) and choose 7 > 0 large enough so that the support of u is
contained in €2, (z). With these assumptions, note that the left-hand side of (1.2.8) is equal to
— Jan D(z,y) Lu(y) VN (y) = u(z), since T is a fundamental solution for £, see (1.1.3). More-
over, the first summand of the right-hand side of (1.2.8) is null, since u = 0 on 9Q,.(x). The
same is true of the second summand, thanks to (1.2.5). As a consequence, with the assumption

that v is smooth and supported in €2,.(x), (1.2.8) is equivalent to
u(x) = lir%mp(u)(x). (1.2.9)
p—

A simple argument of cut-off functions implies that (1.2.9) also holds true for any u € C** (R™,R)
and any z € R, when  is not necessarily compactly supported. In particular, choosing u = 1

we get (recalling (1.1.7))

Tim / K(z,5)dVV(y) =1, forevery z ¢ RV. (1.2.10)
p—0J0Q,(z)

This allows us to remove the hypothesis of smoothness of « in (1.2.9) and replace it with the

sole continuity of u. Indeed, if u € C(Q,(x),R), we have

my@)()= [ )~ @) K V@) ute) [ K av )

and, as p - 0, the second summand tends to u(z), due to (1.2.10). We claim that the first
summand vanishes too. This is a consequence of the following argument: if u is continuous,
given e > 0 (since (2, () shrinks to {z} as p | 0), there exists p > 0 such that sup .9 (2) [u(¥) -
u(z)| < e, for p € (0,p); hence, if p € (0,p), we have (as K > 0)
- K(z,p)|dvV1(y) < f K(z,y)dvN-1 2% ¢
o [@@) —w@) K@ av ) <e [ Ky a2

p €T

In passing to the limit we invoked again (1.2.10). This proves the claim. We thus have

ll)i_r% mp(u)(x) =u(z), foreveryueC(Q.(x),R). (1.2.11)

Let us now go back to the case u € C?(Q,(x),R). Inserting (1.2.11) in (1.2.8) gives

w@) =)@ = [ (D) - ) Luly) VY (), (12.12)

r(2)
This is precisely (1.2.1) in Lemma 1.2.1.
Note that (1.2.12) improves (1.2.10): indeed, taking v = 1 in (1.2.12) yields

my(1)(z) = /69 o K@) a7 () =1, foreveryx <RV andr >0. (1.2.13)

We pass to the last statement of Lemma 1.2.1. On the one hand, if u is £-harmonic on {2,
formula (1.2.1) directly implies (1.2.2) since Lu = 0. On the other hand, if u € C?(,R) is such
that Lu # 0 at some point = € Q (say, to make a choice, Lu(x) > 0), there exists r > 0 such that
Lu > 01in Q,(x) (see (1.1.5)); by (1.2.1) and the positivity of I'(z,y) — 1/r on £,.(z), this gives
u(z) $ m,(u)(z), which contradicts (1.2.2).

This ends the proof. o
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We should observe that identity (1.2.2) in Lemma 1.2.1 plays the role, for our I'-balls,
played by the Cauchy integral formula for holomorphic functions. Moreover, if A is the N x N
identity matrix and V' = 1, then £ = A is the classical Laplace operator in RY; thus m,.(u)(x) is
the usual mean-value of u over the sphere 092,.(z), and (1.2.2) gives back the Gauss represen-

tation theorem for harmonic functions.

We next introduce solid mean-value operators, by a superposition argument. First we need

some notation. If 2 ¢ RY is an open set and if z € Q is fixed, we set
R(x) :=sup{r>0:Q,(z) cQ}. (1.2.14)

Let x € Q) be fixed. Let ¢ : [0, R(z)) — R be a non-negative L' function, with compact support,
and such that

R(x)
fo e(p)dp=1. (1.2.15)

For every continuous function u : 2 - R, we set

R(x)
ew)(@)= [ p(p)my(u)(@)dp. (1.2.16)

The definition is well posed, since, denoted by [0, 7] a compact subinterval of [0, R(x)) con-
taining the support of ¢, one has (see also (1.1.7) and (1.2.13))
R(zx) r
[ @ mp@@ldp< [ o(p) sup fulm,(1)(@)dp = sup Ju] < oo.
0 0 Q. () Q. ()

Since 09Q,(z) = {y : 1/I'(x,y) = p}, if we insert the very definition (1.1.6) of K(z,y) in

m,(u)(x), and if we apply Federer’s Coarea Formula, we obtain

O(u)(z) =
’ N-1
- fOR( )(p(p)(/l/r(%y)_l)U(y) (A(y)vrw(y),vrz(y))‘W)d

(set f(y) = 1/T(z,y) and note that VI, (y) = -T'*(z, y) (Vf)(y))

R 1\ (AW)VT.(y), V. (v)) dH N‘l(y))
-, (ffw)—p“(y)v(y) Anw) r2(y) il )Y
. 1\ (AW)VT(y), V. (y))
- fo<f<y><R(x) uy) (p(Fx(y)) I'2(y)

that is, by recalling (1.1.4) and (1.1.2),

V(y) dH™ (y),

dv¥(y). (1.2.17)

. 1\ (A@) VT (), VTa ()
@ = [, (5 ) I2(y)

Remark 1.2.2. Given a > -1, if we take any r € (0, R(z)) and if we set

| (ar 1) p et ifpef0,r]
or(p) = ,
0, if p e (0, R(x)),
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we obtain the family {®,.(u)(z)}, of solid mean-value operators

dv¥(y), 0<r<R(z).

a+1 (A(y)VT2(y), VT4 (y))
@, (u)(2) = [W) u )

When V = 1, these are precisely the operators M, (u)(z) employed in the papers [1, 13]. (and,
for the special case of Carnot groups, in [10, 11, 12]) We shall use our more general operators

®(u)(z) in the proof of Koebe-type theorem.

Theorem 1.2.3 (Koebe-type Theorem for H()). Let Q € R be an open set. Suppose u € C(Q)

satisfies the following condition:
u(z) =my(u)(x), forevery I'-ball such that Q,(x) c Q. (1.2.18)
Then w is of class C* and it is L-harmonic in Q.

For the case of sub-Laplacians on Carnot groups (a sub-class of our operators (1.1.1)),
an analogous result was proved in [15, Theorem 5.6.3], referred to as the Gauss-Koebe-Levi-
Tonelli Theorem: identity (1.2.18) for classical harmonic functions in R? is traditionally named
after Gauss; it was Koebe in [63] who proved that, vice versa, (1.2.18) actually implies har-
monicity (see also Kellogg [61] for some extensions of this result); Levi and Tonelli relaxed
the continuity hypothesis with an L] . assumption, by also replacing (classical) surface mean-

values with solid ones. This L}

e assumption will reappear also in our Theorem 1.3.5 (see

Section 1.3).

Proof (of Theorem 1.2.3). With the notation in (1.2.14) for R(z), suppose that u € C'(12) satisfies

the following condition:
u(x) =m,(u)(z), foreveryre (0,R(x)). (1.2.19)

It suffices to show that (1.2.19) implies that u is of class C? on ; indeed, the same argument
ending the proof of Lemma 1.2.1 shows that (1.2.19), whenu € C 2 implies that u is £-harmonic.

Let 2, be a sequence of bounded open sets such as Q, c Qi1 and Q = U, Q,,. Fixed any
n € N, it suffices to show that u € C%(€2,,). To this end, arguing as in the proof of [1, eq. (3.4)],
a compactness argument shows that there exists ¢ > 0 (also depending on n) so small that
Q. (z) c Q, for every z € Q,,. Fixed a,b such that 0 < a < b < ¢, we take any smooth function
¢ > 0 supported in [a, b] such that jab ¢ = 1. Since R(x) > ¢ for every z € ,,, we can define on

the whole of €2,, the function ®(u)(z) as in (1.2.16):

b
D(u)(x) = L e(r)m,(u)(x)dr, €y, (1.2.20)

Due to our assumption (1.2.19), if we take = € Q,,, if we multiply both sides of (1.2.19) times

¢(r) and we integrate w.r.t.7 € [a,b], we get
u(x) = ®(u)(z), foreveryxell,. (1.2.21)

8
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On the other hand, an application of (1.2.17) gives

. 1\ (AW VT (v), VL (y))
)@= [, w5 g) I2(y)

By our assumption on the support of ¢, the integral in the above right-hand side actually

dv¥(y). (1.2.22)

performs over the compact I'-annulus A, ;(x) := Q(x) \ Q,(z); with the convention that the
integrand function in (1.2.22) is prolonged to be 0 outside A, ;(z), from (1.2.21) and (1.2.22)

we derive that

dv¥(y), VaeQ,. (1.2.23)

1\ (A@W)VT.(y), VT (y))
u(x) = u(y) ¢

@+ fou 10 e(55) I2(y)
By assumption (S.a) in Section 1.1, I';, is of class C% on A, p(x), and it is bounded on this same
set away from zero (indeed, I';(y) € [1/b,1/a] for every y € A, (2)). As a consequence, the

function

A T ) xT
1 ))( W)V (), VT2 (y)) Vi)

(@)= u) (s 20

is of class C? w.rt.z € , and it is continuous and compactly supported w.r.t.y € RY. By
a simple Dominated Convergence argument applied to (1.2.23), we are therefore entitled to
perform two partial derivatives w.r.t. the = variable and to pass them under the integral sign,

so that u € C%(,,). This ends the proof. m

1.3 Topology of #(12)

In this section we want to study the topology of 7(£2). In particular, we will prove that #({2)
with the L;?

loc

-topology inherited from C(2) is a Heine-Borel space, that is the compact subsets
of H () are precisely the closed and bounded subsets of #({2) (boundedness is meant in the
sense of topological vector spaces). For this purposes, we will extend a celebrated theorem by
P. Montel on normal families of holomorphic functions to our subelliptic setting.

Among the normality theorems usually named after Montel, [78], we are interested in the
following one, concerning locally bounded families (see e.g., [69, Theorem 4, p. 80]): let F be
a family of holomorphic functions on a domain 2 ¢ C, uniformly bounded on the compact
subsets of {); then F is a normal family, that is, given any compact set K c {), every sequence
in F admits a subsequence which is uniformly convergent on K. Therefore, we fix some

terminology.

Definition 1.3.1. Let 2 ¢ RY be an open set, and let f,,, f : Q - R (with n € N). We say that
{fn}n is normally convergent to f if, for every € > 0 and for every compact set K c (2, there exists

7 =n(e, K) € N such that

Sup|fn(l‘)—f(a:)|<g, Yn>n.
xeK

9



1.3 Topology of H({2) 1. Some Potential Theoretic results

Then, it is clear that normal convergence means uniform convergence on the compact sub-
sets of ().

Let F be a family of real valued functions on §2; we say that F is a normal family if, for
every sequence { f, },, in F, there exists a subsequence of { f,, }, which is normally convergent
to a function f : 2 — R. We are interested in characterizing normal families of £-harmonic
functions: if F is such normal family, and if f is the limit function as above, it is not at all
obvious whether f is £-harmonic or not. As a consequence of the Koebe-type Theorem 1.2.3,

in the following lemma we shall prove that, in fact, f € H ().

Lemma 1.3.2. Let Q ¢ RY be an open set and suppose that the sequence { f,, }, c H () converges to
f:Q - Rin the LS -topology. Then f e H().

loc

Proof. Since H () c C(£), one clearly has f € C(2). We aim to prove that f € H(Q2). By the
Koebe-type Theorem 1.2.3 it suffices to show that

f(x)=m,(f)(x), wheneverQ,(z)cQ. (1.3.1)

If Q,(z) c Q, since f,, € H(2) for every n € N, by Lemma 1.2.1 we derive that

fo(z) =m,(f,)(z), foreveryneN.

We aim to let n — oo in the above identity, claiming that this passage to the limit produces
(1.3.1). On the one hand, we have lim,,_,., f,(z) = f(z), since f,, converges locally-uniformly,

hence everywhere point-wise, to f. We finally show that

Tim m (f)(2) = m (£)(2). (132)

This will prove (1.3.1). Now, (1.3.2) is a consequence of the following computation:

Q- ()

< sup |fn—f|-/89 K (z,y) VYY) = sup [f - f]-
09, (z) r(x) 00, (z)

For the last identity we have exploited (1.2.13). The last term in the above estimate vanishes
with n - o0, as 9Q,.(x) is a compact subset of 2, and since (by construction) f,, converges to

f,as n — oo, uniformly on the compact sets. o

1.3.1 Montel-type Theorem for 7(£2)
We recall the notion of locally bounded family.

Definition 1.3.3. Let F be a family of real valued functions on 2 ¢ RN open set; F is said to be
locally bounded (for some authors, locally uniformly bounded) if, for every compact set K c €2,

there exists M = M (K) > 0 such that

sup|f(z)| <M, forevery feF. (1.3.3)
reK

10
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We can introduce the Montel-type Theorem.

Theorem 1.3.4 (Montel-type Theorem for H(<2)). Let Q € RY be an open set. Any locally bounded

family of L-harmonic functions in ) is normal.

This result will straightforwardly derive from the following one (resemblant to the classical
Levi-Tonelli result, in that L™ norms are replaced by L' ones), which is of an independent

interest in its own right.

Theorem 1.3.5. Let Q € RY be an open set. Let F be a family of L-harmonic functions in Q. Suppose
that, for every compact set K c €, there exists a constant M = M (K) > 0 such that

fK If|AHY < M, for every f € F. (13.4)
Then F is a normal family.

Clearly, Theorem 1.3.5 implies Theorem 1.3.4, as condition (1.3.3) ensures condition (1.3.4)

since
[ 17 @)IABY (@) < sup|f ()] HY (5,
reK

We observe that in Lemma 1.3.6 we will show that the conditions in Theorems 1.3.4 and 1.3.5
are not only sufficient for normality, but they are also necessary. We shall prove Theorem 1.3.5
by making use of some solid counterparts of the mean-value operators (1.1.7), conveniently
modeled on the geometry of the I'-balls and of the compact subsets of Q. The proof is unex-
pectedly delicate, due to the presence of the kernel K (z,y) in (1.1.7), the novelty lying in the
(possible) unboundedness of K (x,y) along the diagonal. This fact is not visible in the clas-
sical case of harmonic functions (since in this case K = 1), nor in the case of sub-Laplacians
on Carnot groups, since suitable superpositions can be made in order to obtain mean-value
operators with bounded kernels.

Now, we prove Theorem 1.3.5; as already observed, this also provides the proof of the

Montel-type Theorem 1.3.4.

Proof (of Theorem 1.3.5). Let notation be as in the statement of Theorem 1.3.5. We consider an
exhaustion of 2 by means of bounded open sets (2, and we let K,, be as in (1.1.9). Letn € N
be fixed and let €,, > 0 be so small that U<k, m lies inside a compact subset of K,,;. (For
the existence of ¢, see the already mentioned arguments in [1, eq. (3.4)].) Fixed a,, b, such
that 0 < a,, < b, < &,,, we consider a non-negative cut-off function ¢,, € C§°(R,R), supported
in [an, by ], such that [ ¢, = 1. Since F ¢ H({2), arguing as in the proof of Theorem 1.2.3, we

derive, for every z € (), and every f e F,

V(y)dHY (). (1.3.5)

1 ) (A(y) VL. (y), VT (v))

1@ = [ el I2()

11
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The above integral extends over the compact set A,,(x) := Q, (z) \ Q4, (z), which is a subset
of K1, for every x € K,,. By our hypothesis (1.3.4), there exists a constant M (K,,+1) > 0 such
that

f |FlAHY < M (K1), for every f € F.
Kn+1

Consequently, by means of (1.3.5) we derive the estimate

s U@l [ 1PN 0) s s [Aaan) < M) -0

reK, e K\ yeA, (x)

where we have set M, := sup{|A,.(z,y)|: 7€ K,y € A,(z)} and

1\ (A@W)VT.(), VTa(y))
=) r2(y) V)

Since A, (x) = {y: 1/b, <T2(y) <1/a,}, we have

A (2, ) = o

My <0, ol sup (V) [IAWID - sup  [VTu(y)l* = M,

yeKni1 zeK,,,yeA, (x)

Here ||A(y)|| stands for the operator norm of the matrix A(y). We crucially remark that the
set {(z,y) e R*N : w e K,,,y € A, (v)} is a compact subset of R?Y far from the diagonal {z =y},
since it does not intersect the set {(z,y) € R*" : y € Q,, (x)} which is a “tubular” neighborhood
of the diagonal.

By our regularity assumption on T, this proves that M, is finite (and independent of f € F).
The arbitrariness of n shows that F is a locally bounded family of functions. (Indeed, for every
compact set K c () there exists n € N such that K ¢ K,,.) We next prove that F is also locally
equicontinuous. By a simple dominated convergence argument, from (1.3.5) we obtain that,
forevery je{l,...,N},

Of(x) _ f fly )8A @Y Ny, e, (1.3.6)

a(L'j ]

By the same arguments used to prove the local boundedness of F, we can show the existence
of a finite constant M, depending on the compact set K, such that

ek (2) 6ABZ7 s <
Thus (1.3.6) and the assumption (1.3.4) show that the family of vector-valued functions {(V f)|x,, :
f € F} is uniformly bounded. The arbitrariness of K,, shows that the family {Vf: f € F} is
locally bounded on the compact subsets of ). A standard argument based of Lagrange’s Mean
Value Theorem yields the equicontinuity of F on the compact subsets of .

We are now in a position to prove that F is a normal family. Indeed, given a sequence
{fn}nen in F, the family {f,|x, }» is uniformly bounded and equicontinuous; thus, by the

Arzela-Ascoli Theorem, we can select a subsequence { f,,(1,) } ken Which is uniformly conver-

gent on K to a function, say g; : K1 - R. The family {f,,1,x)|x, } ken is uniformly bounded

12
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and equicontinuous, so that we can select a subsequence { fy,(2,x) }ren Of { fpn(1,%) } ke Which is
uniformly convergent on K> to a function, say g2 : K> — R. Since K; c K, we have g1 = g2 on

K. Inductively, for every j € N we can construct sequences

{frtnens  Afocmytren,  {fu@ryteens oo {fn@r) rens

where each is a subsequence of the preceding one, and such that { f,,(; i) }ren is uniformly

convergent on K to a function, say g, : K; -~ R. We define
[:Q->R, flg, =g; foreveryjeN.

Due to our discussion above, this definition is well-posed and f is continuous on §2; more-
over, the Cantor-diagonal sequence { f,, (k) }ken is a subsequence of {f,},, which converges
uniformly to f on every Kj, for any j € N. This proves that F is normal; by Lemma 1.3.2 we

know that f € H () since it is the L;° -limit of a subsequence of £-harmonic functions. o

1.3.2 Heine-Borel Theorem for #(2)

In order to introduce our last main result in this section, we want to recall some notations of
Section 1.1 to restate the Theorems 1.3.4 and 1.3.5 with the usual terminology of the theory of
topological vector spaces.

With 7 (P) and T(Q) we denote, respectively, the L] _-topology and the L{° -topology on
X = C(9Q). Then, a subset F of X is bounded in the topological vector space (X,7(Q)) if
and only if F is locally bounded, i.e., if and only if, for every compact set K c (2, there exists

M = M(K) > 0 such that
sup|f(z)|< M, forevery feF,
zeK

that is (1.3.3) is fulfilled.
Furthermore, F is bounded in the topological vector space (X, 7 (P)) if and only if, for
every compact set K c €, there exists M = M (K') > 0 such that

/;{ |f(x)|dHN (z) < M, forevery f e F,

that is (1.3.4) is fulfilled.
Hence, Theorems 1.3.4 and 1.3.5 can be restated by saying that bounded subsets of the topo-
logical vector spaces (H(2), T (Q)) and (H(2), T (P)) are normal families.

Moreover, since normal convergence is evidently equivalent to the convergence with re-

oo
loc

spect to the Li? -topology, a family F ¢ C(Q) is normal if and only if F is a precompact set

oo _

(i.e., it has compact closure) in the topological space (C'(2),7(Q)). Even if the L} -topology

1

is, in general, strictly finer than the L; .

-topology, they coincide on #((2), as the following

useful result states.

13
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Lemma 1.3.6 (Topology of H((2) and normality). Let 2 € R be an open set. The topology of H(£2)
as a subspace of (C(Q2),T(Q)) coincides with the topology of H(§Y) as a subspace of (C(2), T (P)).
With these equivalent topologies, H(2) is a complete subspace of C (), hence it is a Fréchet space.

Furthermore, given a set F < H(2), the following conditions are equivalent:
1. F is a normal family;
2. F is a precompact subset of H () (in the topologies T (P) or T (Q));

3. Fis T(Q)-bounded, i.e., for every compact set K c §Q, there exists a constant M (K) > 0 such
that supy | f| < M(K), for every f € F;

4. Fis T (P)-bounded, i.e., for every compact set K c Q, there exists a constant M (K) > 0 such
that [ |f|dHYN < M(K), for every f € F.

The proof is split in three steps.

Proof. Let Q ¢ RY be an open set and let X := C(2). We remind that 7(Q) is the L{°_-topology
of X, while 7(P) is the L]

loc

-topology of X.

STEP I. We begin with showing that the topology of #(f2) as a subspace of (X,7(Q))
coincides with the topology of 7(£2) as a subspace of (X, 7 (P)). This amounts to proving

that the following map is a homeomorphism
v (H(Q), T(Q)) - (H(Q), T(P)), «(f):=F.

The continuity of ¢ is trivial since 7(P) c 7(Q). Since P and Q are countable families of
seminorms, 7 (Q) and T (P) are first-countable topologies. Therefore the continuity of ¢! can

be proved sequentially. Given f,,, f € H(£2) such that
lim f, = f wrt. T(P), (1.3.7)

we need to show that lim,, . fr, = f wrt. 7(Q) too. If K is any compact subset of (2, by
definition of 7 (P) we have that f,|x converges to f|x in L'(K). In particular, {f,|x}, is a
bounded set in the norm of L!(K). Due to the arbitrariness of K, we are in a position to apply
Theorem 1.3.5 to F := {f, : n € N}, deriving that F is a normal family. This is equivalent
to saying that every subsequence { f,,(x)}x of {f}» admits a subsequence {f, ;) }; which
converges w.r.t. 7(Q) to some function g. Since 7(P) c 7(Q), we have lim; o fr(k(j)) = g in
T (P) too. Now, by assumption (1.3.7) we derive that g = f. Summing up, we demonstrated
that every subsequence of {f,}, admits a further subsequence which 7 (Q)-converges to f.

This is possible if and only if { f,, },, itself is 7 (Q)-convergent to f.

STEP II. Next we show that () is a closed subspace of C'(Q2) w.r.t. the 7 (Q)-topology;
since, as it is well-known, (C(2),7(Q)) is a Fréchet space, this will prove that H(Q2) is a
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complete subspace of (C(£2),7(Q)), hence a Fréchet subspace if equipped with the 7(Q)-
topology (or, equivalently, with the 7 (P)-topology; see Step I). Now, the fact that () is a
T (Q)-closed subspace of C(£) is exactly the statement of Lemma 1.3.2.

STEP III. Finally, given a set F ¢ H(2), we are left to proving that conditions (1)-to-(4) in

the last part of Lemma 1.3.6 are equivalent.

(1)>(2): Conditions (1) and (2) are equivalent; indeed, in every metrizable space, precom-
pactness of a set F is equivalent to the condition that every sequence in F admits a convergent
subsequence. Now, (H(£2),7(Q)) is indeed a metrizable space since 7(Q) is induced by a
metric (see Section 1.1).

(2)=(3): Thisis generally true in topological vector spaces;! for completeness, we provide
a direct proof. Let F be a precompact subset of (H(£2),7(Q)) and suppose, by contradiction,
that there exists a compact set K c Q and a sequence {f,}, ¢ F such that sup |f,| > n for
every n € N; since F is T (Q)-compact, we can select a subsequence { f,,(x) }» which is 7(Q)-
convergent in H (). In particular, {supg |f, )|} must be bounded, and this conflicts with
the condition supy | f,,(x)| > n(k) for every k € N, and the fact that n(k) — oo as k — oco.

(3)=(4): This is a direct consequence of [, |f|dH"Y <supg |f|- HY (K).

(4)=(1): This is the precisely the statement of Theorem 1.3.5. O

From Lemma 1.3.6 we straightforwardly derive the following result.

Theorem 1.3.7 (Heine-Borel for H((2)). Let € RY be an open set. The set H(S2) of the L-harmonic

1
loc

functions in Q endowed with the L, -topology inherited from C'(2) (ore, equivalently, endowed with

the Ly -topology) is a Heine-Borel topological vector space.

Proof. Let Q2 ¢ RY be an open set. We equip #(2) with the L;? -topology 7(Q) inherited from
C(9) (this is equivalent to equip it with the L -topology, see Lemma 1.3.6). Since (in every
topological vector space) any compact set is closed and bounded, in order to prove that 7 ()
is a Heine-Borel space we are left to show that a closed and 7 (Q)-bounded set F c H () is
compact. From condition (3) in Lemma 1.3.6, the 7(Q)-boundedness of F implies that F is

compact; since F = F (for F is closed), the proof is complete. o

1f F is compact, then F is 7(Q)-bounded whence F is 7 (Q)-bounded.

15



1.3 Topology of H({2) 1. Some Potential Theoretic results

16



Chapter 2

Harnack Inequality for degenerate

hypoelliptic operators

In this chapter we consider a class of hypoelliptic second-order partial differential operators
L in divergence form on RY, for which we have showed the Strong and Weak Maximum
Principles in [5]; here our aim is to prove the Harnack Inequality for £.

In order to prove the Harnack theorem, we need to show the solvability of the Dirichlet
problem for £ on a basis of the Euclidean topology; then we prove a Weak Harnack inequal-
ity and we use these results, together with means of Potential Theory, to obtain the Harnack

inequality.

2.1 Main assumptions and notation

We shall be concerned with linear second order partial differential operators (PDOs, in the

sequel), possibly degenerate-elliptic, in divergence form

1 X o 9 N
L= V(x)iélaxi(V(x)ai,j(a:)BTj), zeRY, 2.1.1)

where V is a C* strictly positive function on RY, the matrix A(x) := (a; ;()); ; is symmetric
and positive semi-definite at every point x € R", and it has real-valued C* entries. In particular,
L is formally self-adjoint on L?(R”,dv) with respect to the measure dv(z) = V(x) dz, which

clarifies the role of V.

In order to describe our results, we need to fix some notation and definition: we say that a

linear second order PDO on RY

N 82 N o
I . ’ 212
X s g+ R Bi) g +1(@) 212)
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2.1 Main assumptions and notation 2. Harnack Inequality for hypoelliptic operators

is non-totally degenerate at a point z € RY if the matrix (a; ;(z)); ; (which will be referred to as
the principal matrix of L) is non-vanishing. We observe that the principal matrix of an operator
L of the form (2.1.1) is precisely A(x) = (a; ;(x))i ;-

We also remind that L is said to be (C*-)hypoelliptic in an open set Q ¢ RY if, for every
ueD'(Q2), every open set U ¢ Q and every f € C*°(U,R), the equation Lu = f in U implies that
u is (a function-type distribution associated with) a C'"** function on U.

In the sequel, if 2 ¢ RY is open, we say that u is L-harmonic (resp., L-subharmonic) in €2 if
u € C*(Q,R) and Lu = 0 (resp., Lu > 0) in Q. The set of the L-harmonic functions in  will
be denoted by H,(£2). We observe that, if L is hypoelliptic on every open subset of RY, then
Hr(Q2) c C=(,R); under this hypoellipticity assumption, H () has important topological
properties, which will be crucially used in the sequel (Remark 2.3.9).

In order to introduce our first main result we assume the following hypotheses on L:

(NTD) L is non-totally degenerate at every point of RY, or equivalently (recalling that A(z) is

symmetric and positive semi-definite),

trace(A(x)) >0, forevery zeR"Y. (2.1.3)

(HY) L is C*-hypoelliptic in every open subset of R" .

Under these two assumptions we have showed in [5] the Strong Maximum Principle for L (see

also Section 2.2).

Condition (NTD), if compared to the Muckenhoupt-type weights on the degeneracies of
A(z), does not allow a simultaneous vanishing of the eigenvalues of A(z), but it has the advan-
tage of permitting a very fast vanishing of small eigenvalues (see Example 2.1.2) together with
a very fast growing of large eigenvalues (see Example 2.1.1); both phenomena can happen at

2 . . . .
1/27 a5 2 — 0 in the first case, and like e* as z — oo in the second

an exponential rate (e.g., like e”
case), which is not allowed when Muckenhoupt weights are involved.

Meaningful examples of operators satisfying hypotheses (NTD) and (HY), providing pro-
totype PDOs to which our theory applies and a motivation for our investigation, are now

described in the following two examples.

Example 2.1.1. The following PDOs satisfy the assumptions (NTD) and (HY).

(a.) If RY is equipped with a Lie group structure G = (RY, ), and if we fix a set X :=
{X1,...,X,,} of Lie-generators for the Lie algebra g of G (this means that the smallest Lie
algebra containing X is equal to g), then a direct computation shows that

Lx:=-Y X;X; (2.1.4)
j=1
is of the form (2.1.1), where V(x) is the density of the Haar measure v on G, and (a;;);,; is

equal to SST, where S is the N x m matrix whose columns are given by the coefficients of

18
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the vector fields Xj,..., X;,; here X denotes the (formal) adjoint of X; in the Hilbert space
L*(RY dv). Most importantly, £x in (2.1.4) satisfies the assumptions (NTD) and (HY) above.
Indeed:

* The non-total-degeneracy is a consequence of X being a set of Lie-generators of g.

* Lx is a Hormander operator, of the form Z;’il X JQ + Xy, where X is a linear combi-
nation (with smooth coefficients) of X;,...,X,,. Therefore Lx is hypoelliptic due to
Hoérmander’s Hypoellipticity Theorem, [58], jointly with the cited fact that X is a set of

Lie-generators of g.

The density V need not be identically 1, as for example for the Lie group (R?, *), where
(w1,22) * (y1,¥2) = (21 + 1™, 22 + 42),

since in this case V(z) = e 2. The left-invariant PDO associated with the set of generators

X = {e™ 6%, a%} has fast-growing coefficients:

2 @ P 0

4+ — = —

Lx = .
x=e ox3  0x%  Ozo

Note that the eigenvalues of the principal matrix of Ly are ¢**2 and 1, so that the largest

eigenvalue cannot be controlled (for z; > 0) by any integrable weight.

(b.) More generally (arguing as above), if X = {X1,...,X,,} is a family of smooth vector
fields in R" satisfying Hormander’s Rank Condition, if dv(z) = V(z) dz is the Radon measure
associated with any positive smooth density V on R, then the operator - ¥} X 7 Xjisof the
form (2.1.1) and it satisfies (NTD) and (HY). Here X denotes the formal adjoint of X; in
L*(RY dv). The PDOs of this form naturally arise in CR Geometry and in the function theory

of several complex variables (see [60]).

The above examples show that geometrically meaningful PDOs belonging to the class of
our concern actually fall in the hypoellipticity class of the Hormander operators. Nonetheless,
hypotheses (NTD) and (HY) are general enough to comprise non-Hormander and non-subelliptic
operators, as it is shown in the next example. Applications to this kind of infinitely-degenerate

PDOs also furnish one of the main motivation for our study.

Example 2.1.2. Let us consider the class of operators in R? defined by

2

0 0 2
L, = 922 + (a($1) 8762) ; (2.1.52)

with a € C*(R,R), a even, nonnegative, nondecreasing on [0, o) and vanishing only at 0.
Then L, satisfies (NTD) (obviously) and (HY), thanks to a result by Fedii, [34]. Note that £,
does not satisfy Hérmander’s Rank Condition at ; = 0 if all the derivatives of @ vanish at

0, as for a(x1) = exp(-1/z?). Other examples of operators satisfying our assumptions (NTD)
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2.1 Main assumptions and notation 2. Harnack Inequality for hypoelliptic operators

and (HY) but failing to be Hérmander operators can be found, e.g., in the following papers:
Bell and Mohammed [9]; Christ [22, Section 1]; Kohn [67]; Kusuoka and Stroock [70, Theorem

8.41]; Morimoto [79]. Explicit examples are, for instance,

2 6 2 8 9 .
922 (eXP(—1/|$1|) 6732) + (eXP(—l/lel) 87:3) in R?, (2.1.5b)
0? d\2 92 .
022 + (exp(—l/\/ |1]) 87332) + 92 in R?, (2.1.5¢)

;;%+(x2£)2+§;1+(exp(_1/m)£3)2 in R*. (2.1.5d)
For the hypoellipticity of (2.1.5b) see [22]; for (2.1.5¢c) see [70]; for (2.1.5d) see [79]. Later on,
in proving the Harnack Inequality, we shall add another hypothesis to (NTD) and (HY) and,
as we shall show, the operators from (2.1.5a) to (2.1.5d) (and those in Example 2.1.1) will fulfil
this assumption as well. Hence our main results fully apply to these PDOs.

Moreover, since the PDOs (2.1.5a)-to-(2.1.5d) are not subelliptic (see Remark 2.1.3), they do
not fall in the class considered by Jerison and Sanchez-Calle in [60]. Finally, note that the
smallest eigenvalue in all the above examples vanishes very quickly (like exp(-1/|z|*) for
x — 0, with positive «) and it cannot be bounded from below by any weight w(z) with locally

integrable reciprocal function.

In order to prove the main result of the chapter (namely, the Harnack Inequality for £),
we shall need a further assumption, very similar to (HY) (and, indeed, equivalent to it in
many important cases), together with some technical results on the solvability of the Dirichlet

problem related to £. Our next assumption is the following one:
(HY). There exists € > 0 such that £ — ¢ is C*°-hypoelliptic in every open subset of RY.

For operators L satisfying hypotheses (NTD), (HY) and (HY). we are able to prove the Harnack
Inequality (see Theorem 2.4.3).

We postpone the description of the relationship between assumptions (HY) and (HY), (and
their actual equivalence for large classes of operators: for subelliptic PDOs, for instance) in
Remark 2.1.3 below. Instead, we anticipate the role of the perturbation £ — ¢ of the operator L:
this is motivated by a crucial comparison argument (which we generalize to our setting), due

to Bony [16, Proposition 7.1, p.298], giving the lower bound

U(xo)zsfgu(y)ka(xo,y)‘/(y)dy Ve, (2.1.6)

for every nonnegative £-harmonic function u on the open set {2 which possesses a Green kernel
k. (z,y) relative to the perturbed operator £ — ¢ (see Theorem 2.3.7 for the notion of a Green
kernel, and see Lemma 2.4.1 for the proof of (2.1.6)). This lower bound, plus some topological
facts on hypoellipticity, is the key ingredient for a weak Harnack Inequality related to £, as we

shall explain.
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Some remarks on assumption (HY), are now in order.

Remark 2.1.3. Hypothesis (HY), is implicit in hypothesis (HY) for notable classes of operators,
whence our assumptions for the validity of the Harnack Inequality for £ reduce to (NTD) and

(HY) solely: namely, (HY) implies (HY). in the following cases:

¢ for Hormander operators, and, more generally, for second order subelliptic operators (in
the usual sense of fulfilling a subelliptic estimate, see e.g., [60, 67]); indeed, any operator
L in these classes of PDOs is hypoelliptic (see Hormander [58], Kohn and Nirenberg

[68]), and L still belongs to these classes after the addition of a smooth zero-order term;

e for operators with real-analytic coefficients. Indeed, in the C* case, one can apply known
results by Oleinik and Radkevi¢ ensuring that, for a general C* operator L as in (2.1.2),
hypoellipticity is equivalent to the verification of Hérmander’s Rank Condition for the
vector fields X, X1, ..., Xy obtained by rewriting L as Zﬁl 0;(X;)+Xo+7; this condition
is clearly invariant under any change of the zero-order term «y of L so that (HY) and (HY).

are indeed equivalent.

The problem of establishing, in general, whether (HY) implies (HY). seems non-trivial and
it is postponed to future investigations.! In this regard we remind that, for example, in the
complex coefficient case the presence of a zero-order term (even a small €) may drastically
alter hypoellipticity (see for instance the example given by Stein in [90] and the very recent
paper [82] by Parmeggiani).

We explicitly remark that the operators (2.1.5a)-to-(2.1.5d) are not subelliptic (nor C*), yet
they satisfy hypotheses (NTD), (HY) and (HY).. The lack of subellipticity is a consequence of
the characterization of the subelliptic PDOs due to Fefferman and Phong [35, 36] (see also [67,
Prop.1.3] or [60, Th.2.1 and Prop.2.1], jointly with the presence of a coefficient with a zero of
infinite order in (2.1.5a)-to-(2.1.5d)). The second assertion concerning the verification of (HY).
(the other hypotheses being already discussed) derives from the following result by Kohn,
[67]: any operator of the form

L1+>\($) L2 in RZ XRZL

is hypoelliptic, where A € C*°(R,), A > 0 has a zero of infinite order at 0 (and no other zeroes
of infinite order), and L, (operating in « € R") and L, (operating in y € R"™) are general second
order PDOs (as in (2.1.2)) with smooth coefficients and they are assumed to be subelliptic. It
is straightforward to recognize that by subtracting ¢ to any PDO in (2.1.5a)-to-(2.1.5d) we get

an operator of the form (L; —¢) + A(x) Lo, where A has the required features, L, is uniformly

1t appears that having some quantitative information on the loss of derivatives may help in facing this question

(personal communication by A. Parmeggiani).
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elliptic (indeed, a classical Laplacian in all the examples), and L; — € is a uniformly elliptic

operator (cases (2.1.5a)-to-(2.1.5¢)) or it is a Hormander operator (case (2.1.5d)).

2.2 The Strong and Weak Maximum Principles

The aim of this section is to give some recall on the Strong and Weak Maximum Principle for
L (for proofs of the main results see [5]). Clearly, a fundamental tool is played by a suitable
Hopf-type lemma, furnished in Lemma 2.2.1. (For a recent interesting survey on maximum
principles and Hopf-type results for uniformly elliptic operators, see L6pez-Gémez [73].)
First the relevant definition and notation: given an open set 2 ¢ R" and a relatively closed

set F' in ), we say that v is externally orthogonal to F at y, and we write
viFaty, (2.2.1)

if: y € QnIF; v e RV~ {0}; B(y + v, |v|) is contained in  and it intersects F' only at y. Here
and throughout this chapter B(zg,r) is the Euclidean ball in R" of centre z( and radius r > 0;
moreover |- | will denote the Euclidean norm on RY. The notation (2.2.1) does not explicitly
refer to externality, but this will not create any confusion in the sequel. It is not difficult to
recognize that if (2 is connected and if F' is a proper (relatively closed) subset of (2, then there

always exist couples (y,v) such that vL F at y.

Lemma 2.2.1 (of Hopf-type for £). Suppose that L is an operator of the form (2.1.1) with C" coeffi-
cients V > 0 and a; j, and let us set A(x) = (a; j(x))i ;. (We remind that A(x) > 0 for every x e RV .)
Let Q ¢ RY be a connected open set. Then, the following facts hold.

(1) Let u e C?(Q,R) be such that Lu > 0 on ; let us suppose that
F(u):= {m eQ:u(x) = mgxu} (2.2.2)
is a proper subset of ). Then

(A(y)v,v) =0 whenever v1 F(u) at y. (2.2.3)

(2) Suppose c € C(RN,R) is nonnegative on RY, and let us set L. := L —c. Let u € C*(Q,R)
be such that L.u > 0 on §; let us suppose that F(u) in (2.2.2) is a proper subset of Q) and that
maxq u > 0. Then (2.2.3) holds true.

Our main result under conditions (NTD) and (HY) is the following one.

Theorem 2.2.2 (Strong Maximum Principle for £). Suppose that L is an operator of the form
(2.1.1), with C* coefficients V > 0 and (a; j); ; > 0, and that it satisfies (NTD) and (HY). Let Q ¢ RN
be a connected open set. Then, the following facts hold.
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(1) Any function u € C*(Q,R) satisfying Lu > 0 on 2 and attaining a maximum in ) is constant

throughout €.

(2) Ifce C=(RYN R) is nonnegative on R, and if we set
L.:=L-c, (2.2.4)

then any function u € C* (S0, R) satisfying L.u > 0 on 2 and attaining a nonnegative maximum

in  is constant throughout €.

The role of the nonnegativity of the zero-order term c in the above statement (2) in obtaining

Strong Maximum Principles is well-known (see e.g., Pucci and Serrin [85]).

Remark 2.2.3. We have seen that, in order to obtain the SMP and WMP for L - ¢, it is also suffi-
cient to replace the hypothesis on the hypoellipticity of £ with the (more natural hypothesis of
the) hypoellipticity of £ - ¢, still under assumption (NTD) and the divergence-form structure

of £; see Remark 2.2.7 for the precise result.

The proof of the SMP in Theorem 2.2.2 follows a rather classical scheme, in that it rests on
a Hopf Lemma for £ (see Lemma 2.2.1). However, the passage from the Hopf Lemma to the
SMP is, in general, non-trivial and the same is true in our framework. For example, in the
paper [16] by Bony, where Hormander operators are considered, this passage is accomplished
by means of a maximum propagation principle, crucially based on Hérmander’s Rank Condi-
tion, the latter ensuring a connectivity property (the so-called Chow’s Connectivity Theorem for
Hormander vector fields). The novelty in our setting is that, since hypotheses (NTD) and (HY)
do not necessarily imply that £ is a Hérmander operator (see for instance Example 2.1.2), we
have to supply for a lack of geometric information.

We are able to supply the lack of Hormander’s Rank Condition by using a notable control-
theoretic property encoded in the hypoellipticity assumption (HY), proved by Amano in [3]:
indeed, thanks to the hypothesis (NTD), we are entitled to use [3, Theorem 2] which states that
(HY) ensures the controllability of the ODE system

N
Y =6Xo() + D EXi(Y),  (&o.ér,... En) e RV
=1

on every open and connected subset of R". Here X, ..., Xy denote the vector fields associ-
ated with the rows of the principal matrix of £, whereas X is the drift vector field obtained
by writing £ (this being always possible) in the form

N

Euzzaa_

i=1 4

(XLU) + Xou.

By definition of a controllable system, Amano’s controllability result provides another geo-

metric connectivity property (a substitute for Chow’s Theorem): any couple of points can be
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joined by a continuous path which is piece-wise an integral curve of some vector field Y be-
longing to spany{Xo, X1,...,Xn}. The SMP will then follow if we show that there is a pro-
pagation of the maximum of any £-subharmonic function u along all integral curves vy of
every Y e spany{Xo, X1,..., Xn}. In other words, we need to show that if the set F'(u) of the
maximum points of v intersects any such vy, then 7y is wholly contained in F'(u): briefly, if
this happens we say that F'(u) is Y-invariant. In its turn, this Y-invariance property can be
characterized (see Bony, [16, §2]) in terms of a tangentiality property of Y with respect to F'(u).

Now, the self-adjoint structure of our PDO £ in (2.1.1) ensures that X is a linear combina-
tion with smooth coefficients of X, ..., Xn. Hence, by the very definition of tangentiality, the
tangentiality of X w.r.t. F'(u) will be inherited from the tangentiality of X1, ..., Xy w.r.t. F(u).
By means of the above argument of controllability / propagation, this allows us to reduce the
proof of the SMP to showing that any of the vector fields X7, ..., Xy is tangent to F'(u). Luck-
ily, this tangentiality is a consequence of the choice of X1, ..., X as deriving from the rows of

the principal matrix of £, together with the Hopf-type Lemma 2.2.1 for L.

Remark 2.2.4. We explicitly remark that, as it is proved by Amano in [3, Theorem 1], the above
controllability property ensures the validity of the Hormander Rank Condition only on an
open dense subset of RY which may fail to coincide with the whole of R". This actual pos-
sible lack of the Hoérmander Rank Condition is clearly exhibited in Example 2.1.2 (of non-
Hormander operators which nonetheless satisfy our assumptions (NTD) and (HY), and hence
the SMP).

To the best of our knowledge, Amano’s controllability result for hypoelliptic non-totally-
degenerate operators has been long forgotten in the literature; only recently, it has been used
by B. Abbondanza and A. Bonfiglioli [1] in studying the Dirichlet problem for £, and in obtain-

ing Potential Theoretic results for the harmonic sheaf related to L.

As a Corollary of Theorem 2.2.2 we immediately get the following result.

Corollary 2.2.5 (Weak Maximum Principle for £). Suppose that L is an operator of the form
(2.1.1), with C*° coefficients V > 0 and (a; ;) > 0, and that it satisfies (NTD) and (HY). Suppose also
that c e O (RN ,R) is nonnegative on RY (the case ¢ = 0 is allowed), and let us set L. := L — c. Then,

L. satisfies the Weak Maximum Principle on every bounded open set Q2 € RY, that is:

ue C?(Q,R)
Leou>0o0n$) = u <0 on Q. (2.2.5)

limsup u(x) < 0 for every zq € 9Q

r—>x0

As a consequence, if Q € RY is bounded, and if u € C*(2)nC(Q) is nonnegative and such that L.u > 0

on 1, then one has supg u = supyq, U.
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Since Amano’s results on hypoellipticity /controllability are independent of the presence

of a zero-order term, we have the following remarks.

Remark 2.2.6. Suppose that L is an operator of the form (2.1.1), with C* coefficients V' > 0 and
(a;j) > 0, and that it satisfies (NTD). Let ¢ € C*(RY,R) be nonnegative and suppose that the
operator L. := L — c is hypoelliptic on every open subset of RY.

If Q c RY is a connected open set, then any function u € C*(Q,R) satisfying Lou > 0 on Q and

attaining a nonnegative maximum in §Q is constant throughout Q.

Remark 2.2.7. Suppose that L is an operator of the form (2.1.1), with C*° coefficients V' > 0 and
(a; ;) > 0, and that it satisfies (NTD). Let ¢ € C* (RN R) be nonnegative and suppose that the
operator L. := L — c is hypoelliptic on every open subset of RY.

Then L. satisfies the Weak Maximum Principle on every bounded open set ¢ RY.

As a consequence, if 2 € RY is bounded, and if u € C*(Q2) n C(Y) is nonnegative and such that

Leu > 0 on Q, then one has supg u = supyg, u.

2.3 The Dirichlet problem for £

Before describing the approach to the Harnack Inequality in Section 2.4, inspired by the tech-
niques in [16], we state the main needed technical tools on the solvability of the Dirichlet

problem for £ and for the perturbed operator £ —¢.

Lemma 2.3.1. Suppose that L is an operator of the form (2.1.1), with C* coefficients V' > 0 and
(ai,j) > 0, and that L satisfies (NTD). Let ¢ > 0 be fixed (the case € = 0 being admissible). We set

L. := L - ¢ and we assume that L. is hypoelliptic on every open subset of R".

Then, there exists a basis for the Euclidean topology of RY, independent of e, made of open and
connected sets 2 (with Lipschitz boundary) with the following properties: for every continuous function
f on Q and for every continuous function ¢ on 05, there exists one and only one solution u € C(,R)

of the Dirichlet problem

L.u=—f onQ (in the weak sense of distributions),
(2.3.1)

U= on 0§)  (point-wise).

Furthermore, if f, > 0 then u > 0 as well. Finally, if f belongs to C*(Q,R)nC(Q, R), then the same

is true of u, and w is a classical solution of (2.3.1).

We prove this theorem for a considerably larger class of operators than the £. above; see
Theorem 2.3.2: our slightly more general framework (we indeed deal with general hypoelliptic
operators which are non-totally degenerate at every point) compared to the one considered

by Bony in [16] (where Hormander operators are concerned) does not present much more
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difficulties than the one in [16, Section 5], and the proof is given for the sake of completeness

only.

Theorem 2.3.2. Suppose that L is an operator on RY of the form

N 82 N o

L= ii———— + =+, 232
ZZ; @ 7 81628337 ;B 8.%‘1 v ( )
with o ;, Bi,y € O (RN, R), with (o ;) symmetric and positive semi-definite. We assume that L is

non-totally degenerate at every x € RY and that L is C*-hypoelliptic in every open set.

Then there exists a basis for the Euclidean topology of R made of open sets Q with the following
properties: for every continuous function f on Q and for every continuous function ¢ on 95, there

exists one and only one solution u € C(Q,R) of the Dirichlet problem

Lu=-f onQ (in the weak sense of distributions),
(2.3.3)

U= on 0N2 (point-wise).

Furthermore, if f, > 0 then u > 0 as well. Finally, if f belongs to C*(Q,R)nC(Q, R), then the same
is true of u, and w is a classical solution of (2.3.3).
Finally, if the zero-order term ~ of L is non-positive on R, the above basis {2} does not depend on

v. If v <0, the basis {Q} only depends on the principal matrix («; ;) of L.
The key step is to construct a basis for the Euclidean topology of RY as follows:

Lemma 2.3.3. Let A(x) = (a; j(x)) be a matrix with real-valued continuous entries on RY , which is
symmetric, positive semi-definite and non-vanishing at a point xo € R".
Then, there exists a basis of connected open neighborhoods By, of xo such that any ) € By, satisfies
the following property: for every y € O there exists v € RN « {0} such that B(y + v, [v|) intersects Q
at y only, and such that
(A(y) v,v) > 0. (2.3.4)

Proof. By the assumptions on A(z) there exists a unit vector kg such that
(A(20)ho, ho) > 0. (2.3.5)
Following the idea of Bony [16], we choose the neighborhood basis B,, = {Q(¢)} as follows:
Q(e):= B(zog+e  ho,e b +€2)nB(xg -t ho e +£2).

It suffices to show that there exists € > 0 such that every Q(¢) with 0 < ¢ < € satisfies the
requirement of the lemma. Now, the set (¢) (which is trivially an open neighborhood of )
shrinks to {z(} as ¢ shrinks to 0. Moreover, every y € 0€(c) belongs to one at least of the

spheres OB(z¢ + e~ hg,e™! + £?); accordingly, we choose
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to get the geometric condition B(y + v, |v]) n Q(e) = {y}. It obviously holds that v.(y) tends
to h(zo) as € » 0 (uniformly for bounded zg,y, ho), so that (2.3.4) follows from (2.3.5) by

continuity arguments, for any 0 < € < g, with € conveniently small. o

We proceed with the proof of Theorem 2.3.2 by constructing, for any given zo € RY, a
basis of neighborhoods of z( as required. The crucial step is to reduce L to some equivalent
operator L with zero-order term Z(1) which is strictly negative around x. We observe that
this procedure is not necessary if v = L(1) is already known to be negative on R". In general,
we let

Lu:=wL(wu), wherew(x)=1-M |z -z,

with M > 1 to be chosen. Let us denote by B(z) the Euclidean ball of centre z( and radius
1/v/M. Tt is readily seen that the second order parts of L and I are equal, modulo the factor
w?. This shows that I is non-totally degenerate at any point of B(z() and that the principal
matrix of I is symmetric and positive semi-definite at any point of B(x). Since

N

L(1)(x) = w?(x) y(x) - 2Mtrace(A(z)) —=2M Y Bi(x) (z - x0)i,

i=1
if we choose M so large that M > ~v(zo)/(2trace(A(zo))) (We remind that trace(A(x)) > 0 at
any z since L is non-totally degenerate at any point), then L(1)(zo) < 0. By continuity, there
exists r > 0 small enough such that B'(z) := B(zo,7) € B(z) and such that Z(1) < 0 on the
closure of B'(z(). We explicitly remark (and this will prove the final statement of the theorem)

that the condition « < 0 allows us to take M =1 for all o and to use the bound

N
Z(l)(x) < —2trace(A(z)) -2 Z Bi(x) (x = x0)s,
i=1
in order to chose r independently of ~.

Remark 2.3.4. Classical arguments, [71], show that, due to the strict negativity of Z(l) on
B'(x0), the operator L satisfies the Weak Maximum Principle on every open subset of B'(z),

that is:
Qc B'(z0), ue C*(Q,R)

Lu>0o0nQ — 1 <0on Q. (2.3.6)
limsup u(x) <0 for every y € 9Q

=Y

The rest of the proof consists in demonstrating the following statement:

(S) there exists a basis By, of neighborhoods ) of x¢ all contained in B'(xo) with the properties re-

quired in Theorem 2.3.2 relative to L (in place of L).
Once this is proved, given any Q € B,,, any f € C(€,R) and any ¢ € C(9€,R), we obtain the

solution % of the problem

(2.3.7)

Lu=-wf onQ (in the weak sense of distributions),
u=pw on 05} (point-wise);
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then we set u := w@, and a simple verification shows that u solves (2.3.3), so that existence is
proved. As for uniqueness, it suffices to observe that for any fixed €2 € B,,, to any solution u
of (2.3.3) on (2, there corresponds a solution @ = u/w of (2.3.7) (which is unique, as it is claimed
in (S)). Finally all the other requirements on u in the statement of Theorem 2.3.2 are satisfied,

since w is positive and smooth on Q ¢ B(zg).

Remark 2.3.5. We remark that the operator L is C*°-hypoelliptic on every open subset of B(x).

Indeed, for any open sets V, V' such that V ¢ V' ¢ B(xy), a distribution « € D'(V") such
that Lu = f € 0= (V,R) satisfies L(wu) = f/w € C*=(V,R); thus, by the hypoellipticity of L, we
infer that wu € C*(V,R) so that u € C*°(V,R) (recalling that w # 0 on B(x)).

We are then left to prove statement (S). From now on we choose a neighborhood basis 3,
of o consisting of open sets (contained in B’(x()) as in Lemma 2.3.3 relative to the principal
matrix A of the operator I (the matrix A(z() is symmetric, positive semi-definite and non
vanishing, as already discussed). We will show that any ) € B,, has the requirements in
statement (S). For the uniqueness part, it suffices to use in a standard way the WMP in Remark
2.3.4 jointly with the hypoellipticity condition in Remark 2.3.5. As for existence, we split the

proof in several steps and, to simplify the notation, we write P instead of L.
(1): f smooth and ¢ = 0. We fix Q as above, f € C*(Q,R) n C(,R) and ¢ = 0. We use a

standard elliptic approximation argument. For every n € N we set

P=P+-Y(—

1 X 3)2.

We observe that:

P, is uniformly elliptic on R;

the zero-order term P, (1) = P(1) (= L(1)) is (strictly) negative on ©;

Q) satisfies an exterior ball condition, due to Lemma 2.3.3;

feC=(Q,R).

These conditions imply the existence (see e.g., Gilbarg and Trudinger [49]) of a classical solu-

tion u,, € C*°(Q,R) n C(2, R) of the Dirichlet problem

Poup,=-f onQ
Up =0 on 0f).

Let ¢y > 0 be such that P(1) < —¢ on the closure of B’(xz(). With this choice, we observe that

(setting | f] e = supg|f])

Pn( + Up — Lf”“’) =Ff- [l P)>Ff+ [£]e cp>20 on
Co Co Co
iun—m:—”‘fﬂm <0 on 0f).
Co Co
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Arguing as in Remark 2.3.4, the Weak Maximum Principle for P, proves that

|.flloo
co

|tn o = sUp [un ()] < uniformly for every n € N. (2.3.8)

€2
This provides us with a subsequence of u,, (still denoted by u,) and a function u € L*°(Q2) such

that u,, tends to v in the weak* topology, that is
Tim fﬂ un h = /Q wh, forall heL'(Q). (2.3.9)
Moreover one knows that
|w| Loy < imsup |Jug || Ly, forallU <. (2.3.10)

From (2.3.9) it easily follows that

fQqu:_fow, for all ¢ € C2° (9, R).

This means that Pu = —f in the weak sense of distributions. As P is hypoelliptic on every
open set (Remark 2.3.5), we infer that v can be modified on a null set in such a way that
u e C*(Q,R). Thus Pu = —f in the classical sense on 2. We aim to prove that u can be
continuously prolonged to 0 on df2. To this end, given any y € 09, in view of Lemma 2.3.3
(and the choice of 2), there exists v ¢ RN ~ {0} such that B(y + v, |u|) intersects Q2 at y only, and
such that (see (2.3.4))

(A(y)v,v) > 0. (2.3.11)

As in the Hopf-type Lemma 2.2.1, we consider the function

U)((E) . e—)\\I—(y-H/)\Q _ e—)\\u|2’
where ) is a positive real number chosen in a moment. For every n and for every x one has
L Na—(y))? (412 2
Pyw(z) = Pu(z) + — e 0 (432l - (y+ )2 - 2)\N)
" (2.3.12)
> Pw(z) - AN M=)l

Iftweset P=%, ;d;;0;;+%; b,0; + T, a simple computation shows that

(Pw(:z:) - 2>\N€7)\‘x’(y+y)‘2)

=y

N
= e (4)\2<A(ZU v,v) Z (@5(y) gj(y)Vi) - QAN)'

Thanks to (2.3.11), there exists A > 1 such that the above right-hand side is strictly positive.
Therefore, due to (2.3.12) there existe > 0 and an openball V' = B(y, d) (with € and ¢ independent
of n) such that

P,w(x)>e forevery z eV and every n e N. (2.3.13)
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We are willing to apply the Weak Maximum Principle for the operator P,, on the open set 2nV,

and for the functions M w + u,,, where M > 1 is chosen as follows. First we have
Po(Mw+tu,)=MP,w+Pyu,=MP,awFf>MeFf>Me—|f|ew, InQnV.
Consequently we first chose M > || f||o/c. Then we study the behavior of M w + u,, on
AQANV)=[VnoQ]u[QnoV] =T uls.

Firstly, on T'; we have M w + u,, = M w < 0 since I'; € RY \ B(y + v, |v|). Secondly, on I'y,

239 11
Muwztu, <M maxw+ |upeo € M maxw+ ———.
Ty 1Y Co

Since I'; is a compact set on which w is strictly negative, we have maxr, w < 0 and the further

choice M > —| f| e /(co maxr, w) yields M w + u, < 0 on I's. Summing up,
P,(Mw+tup,)20 onQnV
Mwz+u, <0 ond(QnV).

The Weak Maximum Principle yields M w + u,, <0 on Q2 nV, that is (since w < 0 on )
|un(x)] < M|w(x)| forevery z e 2nV and for every n € N.

Since w(y) = 0, for every o > 0 there exists an open neighborhood W c V of y such that
|lw] = wy < o; the above inequality then gives |uy | =wno) < M o. Jointly with (2.3.10) we
deduce that |ul|L~(wno) < Mo, so that limgs,-,u(x) = 0. From the arbitrariness of y, we
obtain that u prolongs to be 0 on 02 with continuity.

In order to complete the proof of (S), we are left to show that if f e C*(Q,R) n C(Q,R) is

nonnegative, then the unique solution u € C(Q,R) of

Pu=-f on{ (in the weak sense of distributions)

u=0 on 0f2 (point-wise)

is nonnegative as well. From the hypoellipticity of P (see Remark 2.3.5), we already know that
ue C*(Q,R), and we can apply the WMP to —u (see Remark 2.3.4) to get —u < 0.

(ID): f and o smooth. We fix Q as above, and f is in C*° (2, R)nC(Q,R) and ¢ is the restriction
to 092 of some function ® which is smooth and defined on an open neighborhood of 2. As in

Step (I), we consider the unique solution v € C*(Q,R) n C(Q,R) of

Pv=-f-P® on(
v=0 on 02,

and we observe that u = v + ® is the (unique) classical solution of

Pu=-f on 2
u=®lpn =¢ on .
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If furthermore f, ¢ > 0, the nonnegativity of u is a consequence of the WMP as in Step (I).

(I0): f and ¢ continuous. Finally we consider f € C(Q,R) and ¢ € C(99,R). By the Stone-
Weierstrass Theorem, there exist polynomial functions f,, ¢, uniformly converging to f,¢
respectively on Q,0Q as n - oo. As in Step (II), for every n € N we consider the unique

classical solution u,, of

Pu, =-f, on
Uy = Pn on 0f).

From the fact that —c; := maxg P(1) < 0, we can argue as in Step (I), obtaining the estimate

1
— < - _ _ — .
Hun um”C(Q) = maX{CO ”fn meC(Q)a Hgon ¢m|C(8Q)}

This proves that there exists the uniform limit u := lim,,_, u,, in C(©,R). Clearly one has:
u = ¢ point-wise on 92 and Pu = —f in the weak sense of distributions on 2. From the
hypoellipticity of P (Remark 2.3.5) we infer that f smooth implies u smooth. Finally, suppose
that f, ¢ > 0. By the Tietze Extension Theorem, we prolong f out of Q to a continuous function
F on RY; we consider a mollifying sequence F,, ¢ C*°(RY R) uniformly converging to F' on
the compact sets of R". Since mollification preserves the sign, the fact that Flg = f > 0 on Q

gives that F}, > 0 on Q. As above in this Step, we solve the problem

PU, =-F, onf _
with U, e C*(Q,R) nC(, R),

U,=¢p on 02,

and we get that U,, uniformly converges on Q to the unique continuous solution u of

Pu=-f inD'(Q)
U= on 0f).

From the WMP for -U,, (recalling that F,, > 0 and ¢ > 0), we derive U,, > 0 on Q ; this gives

u(x) = limy, e Up(x) > 0 for all z € Q. This completes the proof. O

2.3.1 The Green function and the Green kernel for £ — ¢

Thanks to the existence of the weak solution of the Dirichlet problem for £. on a bounded

open set €2, we can define the associated Green operator as usual:

Definition 2.3.6 (Green operator and Green measure). Let ¢ > 0 be fixed, and let £. and Q
satisfy, respectively, the hypothesis and the thesis of Lemma 2.3.1. We consider the operator
(depending on L. and 2; we avoid keeping track of the dependency on {2 in the notation)

G.:C(QLR) — C(Q,R) (2.3.14)
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mapping f € C(Q,R) into the function G.(f) which is the unique distributional solution u in
C (2, R) of the Dirichlet problem

Lau=-f on§ (in the weak sense of distributions),
(2.3.15)

u=0 on 0N (point-wise).
We call G, the Green operator related to L. and to the open set €.
By the Riesz Representation Theorem (which is applicable thanks to the monotonicity pro-
perties in Lemma 2.3.1 with respect to the function f), for every z € Q there exists a (nonnega-

tive) Radon measure )\, . on (2 such that

G-(N@) = [ @) drcly). forevery f e C(LR). (2316)
We call \; . the Green measure related to L. (to the open set Q and to the point x).

Let £ be as in (2.1.1); in this chapter, we set once and for all
dv(z) = V(z) d, (2.3.17)

that is, v is the (Radon) measure on R” associated with the (positive) density V in (2.1.1),
absolutely continuous with respect to the Lebesgue measure on R . It is clear that the measure

v plays the following key role:

f pLydv = [ Y Lpdy, forevery v, e CF° (RV,R), (2.3.18)

thus making £ (formally) self-adjoint in the space L?(R",dv). We observe that (in general)
our operators £ in (2.1.1) are not classically self-adjoint; indeed the classical adjoint operator

L* of L is related to £ by the following identity (a consequence of (2.3.18))
L*u=V L(u/V), forevery u of class C. (2.3.19)

The possibility of dealing with non-identically 1 densities V' (as in the case of Lie groups,
see Example 2.1.1-(a)) makes it more convenient to decompose the Green measure A, . with

respect to v in (2.3.17), rather than w.r.t. Lebesgue measure. Hence we prove the following:

Theorem 2.3.7 (Green kernel). Suppose that L is an operator of the form (2.1.1), with C* coefficients
V >0and (a; ;) >0, and that L satisfies (NTD). Let € > 0 be fixed. We set L. := L — € and we assume
that L. is hypoelliptic on every open subset of RY.

Let Q be an open set as in Lemma 2.3.1. If G, and A, . are the Green operator and the Green
measure related to L. (Definition 2.3.6), there exists a function k. : Q x @ - R, smooth and positive

out of the diagonal of 2 x 2, such that the following representation holds true:

G-(N@) = [ 1) ke(e.y)dv(y), for every <, (2320)
and for every f € C(Q,R). We call k. the Green kernel related to L. (and to the open set ).

Furthermore, we have the following properties:
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(i) Symmetry of the Green kernel:

ke(z,y) = k(y,x) for every x,y € Q. (2.3.21)

(ii) For every fixed x € ), the function k.(x,-) is L.-harmonic in Q \ {z}; moreover G.(L.p) =

—p=L(G:(p)) for any ¢ € C° (L, R), that is

(@) = [ Lop) kel y) dv(y)

(2.3.22)
~ £ [ e ke y)dv(y)),  forevery o CF (U R).
(iii) For every fixed x € 2, one has
lim k.(z,y) =0 forany yo € OS2 (2.3.23)
Y=Yo

(iv) For every fixed x € Q, the functions k.(z,-) = k.(-, ) are in L*(Q2), and k. € L' (Q x Q).

The key ingredients in the proof of the above results are the following facts:

the hypoellipticity of L. (as assumed in the hypothesis) which will imply the hypoellip-
ticity of the classical adjoint of L. (see Remark 2.3.8);

1

the C**-topology on the space of the £.-harmonic functions is the same as the L; -

topology, another consequence of the hypoellipticity of £. (Remark 2.3.9);

the fact that £ is self-adjoint on L*(R",dv) (see (2.3.18)) so that the same is true of L.

(this will be crucial in proving the symmetry of the Green kernel);

the Strong Maximum Principle for the perturbed operator £. = £ — ¢, which we obtain
as a consequence of our previous Strong Maximum Principle for £ in Theorem 2.2.2 (see
precisely Remark 2.2.6, where nonnegative maxima are considered): this is a key step for

the proof of the positivity of k.;

the Schwartz Kernel Theorem (used for the regularity of the Green kernel).

In the first part of the proof (Steps I-1II) we follow the classical scheme by Bony (see [16,

Theorem 6.1]), hence we skip many details; it is instead in Step IV that a slight difference is

presented, in that we exploit the measure dv(z) = V(2)dz in order to obtain the symmetry

property of the Green kernel even when our operator £ is not (classically) self-adjoint. The

problem of the behavior of the Green kernel along the diagonal is more subtle, as it is shown

by Fabes, Jerison and Kenig in [31] who proved that, for divergence-form operators asin (2.1.1)

(when V' = 1 and, roughly put, when the degeneracy of A(z) is controlled by a suitable weight)

the limit of the Green kernel along the diagonal need not be infinite.

We are ready for the proof.
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Proof (of Theorem 2.3.7). We fix an operator £ of the form (2.1.1), with C*° coefficients V' > 0
and (a; ;) > 0, and we assume that £ satisfies (NTD). Moreover, we also fix € > 0 (note that the
case ¢ = 0 is allowed) and we set L. := £ — €; we assume that L. is hypoelliptic on every open
subset of R”. Finally,  is a fixed open set as in Lemma 2.3.1, such that the Dirichlet problem
(2.3.1) is (uniquely) solvable.

From Lemma 2.3.1, we know that there exists a monotone operator G. (which we called
the Green operator related to £. and 2); since € > 0 is fixed, in all this section we drop the
subscript € in Ge, ke, Az« and we simply write G, k, \,. Hence we are given the monotone

operator

G:C(Q,R) — C(O,R)

mapping f € C(©,R) into the unique function G(f) € C(€, R) satisfying

LAG(f))=-f onQ (inthe weak sense of distributions), (2.324)
G(f)=0 on J} (point-wise). a
We also know that the (Riesz) representation
G(f)(z) = fﬁf(y) d\.(y) forevery f e C(,R) and every z € Q2 (2.3.25)

holds true, with a unique Radon measure A, defined on Q (which we called the Green measure
related to L.,  and z).
Finally, we set dv(z) := V(z) do and we observe that (as in (2.3.18))

[@ﬁswduzf¢£€¢du, for every ¢, 1 € C°(RY R). (2.3.26)

STEP I. We fix x € Q2. We begin by proving that A, is absolutely continuous with respect to
the Lebesgue measure on (2. To this end, let ¢ € C5°(2, R); by (2.3.24) it is clear that G(L.p) =
-, so that (see (2.3.25))

—p(x) = [ﬁﬁsgo(y) dX\;(y), forevery p e C5°(Q,R).
If we consider A, as a distribution on 2 in the standard way, this identity boils down to
(L:)*A\; =-Dir, inD'(Q), (2.3.27)

where Dir,, denotes the Dirac mass at z, and (£.)* is the classical adjoint operator of £.. It is
noteworthy to observe that, in general, (£.)* is neither equal to £. nor of the form £ - ¢ for
any £ a divergence operator as in (2.1.1).

However, the following crucial property of (£.)* is fulfilled:
Remark 2.3.8. The operator (L.)* is hypoelliptic on every open subset of R™.
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Indeed, let U ¢ W be open sets and let u € D'(W) be such that (£.)*u = h in D'(U), where

h e C*(U,R). This gives the following chain of identities (here ¢ € C§°(U,R) is arbitrary)

f W = (u, L) = (u, Ly - epp) “E (% % - s¢>
- <%’5*(Vw) —ey V) = (%, (LE)*(WJ)),

If we write [ htp = [ £ (4 V), and if we observe that C°(U,R) = {:V : ¢ € C¢°(U,R)}, the

above computation shows that £.(u/V') = h/V in D'(U). The hypoellipticity of £. now gives
u/V e C*(U, R) whence u e C*°(U, R), as V is smooth and positive.

Identity (2.3.27) gives in particular (£ )* Ay = 0in D' (2 \ {z}); thanks to Remark 2.3.8, this

ensures the existence of g, € C*(Q \ {z},R) such that the distribution A, restricted to Q \ {z}

is the function-type distribution associated with the function g¢,; equivalently

f@(y)d/\x(y)=f@(y)gw(y)dy, for every p € C5° (2~ {z},R). (2.3.28)

Clearly g, >0 on Q~ {z} and (£.)*g, = 0in Q~ {z}. This temporarily proves that A, coincides

with g, (y) dy on @\ {z}. We claim that this is also true throughout 2. This will follow if we

show that C':= X\, ({z}) = 0. Clearly, by the definition of C, on 2 we have

Az = C Dirg + ()\x)|Q\{z} = C Dir, + g.(y) dy.

Treating this as an identity between distributions on €2, we apply the operator (£.)* to get

C (L:)*Dir, = -Dir, - (L) (92 (v) dy).

Here we used (2.3.27). We now proceed as follows:

we multiply both sides by a C*° function y compactly supported in {2 and x = 1 near z;
we compute the Fourier transform of the tempered distributions obtained as above;
on the left-hand side we obtain a function-type distribution associated with function
y~C e‘“w’y)( - Z a; j(x) yiy; + {polynomial in y of degree < 1})7
%,]
where (a; ;) is the principal matrix of £;

on the right-hand side we obtain a function-type distribution associated with a function
which is the sum of y — —e~#*¥) with a function of the form
y - > a;(z,y) yiy; + {polynomial in y of degree <1},

i,J
where

0ii(@,y) == [ 9 X(©) aig(©) e e,
By the Riemann-Lebesgue Theorem one has «; ;(x,y) — 0 as |y| = co. This implies that C' =
0, since at least one of the entries of (a; ;(x)) is non-vanishing, due to the (NTD) hypothesis

on L.
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We have therefore proved that, for any « € (2,

dAz(y) = 9. (y) dy on Q. (2.3.29)
Since ), is a finite measure (recalling that ) is compact), from (2.3.29) we get g, € L'(Q) for
every x € .

STEP II. We next show that A\, (992) = 0 for any z € Q. For small 6 > 0, we let Ds denote the
closed §-neighborhood of 92 of the points in R having distance from 052 less than or equal
to &; we then choose a function F' € C(R”, [0, 1]) which is identically 1 on 02 and is supported
in the interior of Ds. We denote by f the restriction of F' to . From (2.3.25) we have

0<G(f)(x) = fﬁ Fy) D (y) < fﬁ a(y) = G(1)(z), forevery x ¢ Q. (2.3.30)

For any = € Q we have

L0 = [ @)= [ f@ ) < [ 1) dam) - 6(H@)

<supG(f) = max{ sup G(f), sup G(f)} =: max{[, II}.
Q QnDg O\Djy

We claim that I and II in the above right-hand side are bounded from above by supg,,,, G(1).
This is true of I, due to (2.3.30); as for II we invoke the last assertion in Remark 2.2.7 applied

to:
- the hypoelliptic operator £, = £ -,
- the bounded open set Q; := Q \ Dy,

- the nonnegative function G(f), which satisfies £.G(f) = —f = 0 on ; both weakly and
strongly due to the hypoellipticity of £..

The mentioned Remark 2.2.7 then ensures that the values of G(f) on Q\ D; are bounded from

above by the values of G(f) on the boundary of this set, so that II < I. Summing up,

A (0Q) < max{L,II} < sup G(1).
ﬁﬁDg

As § goes to 0, the right-hand side tends to supy G(1) = 0 by (2.3.24). This gives the desired
A:(082) = 0, for any = € Q. By collecting together (2.3.29) and A, (0f2) = 0, we infer that (for

every f € C(Q,R) and z € ()
(23.25

a(N@ Y [manw = [ 1@ = [ 1o dy

This proves the identity
G(f)(z) = /Q f(v) g (y)dy, forevery feC(Q,R)and every = € Q. (2.3.31)
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If p € C§° (2, R), since we know that G(L.¢) = —p, we get
-p(x) = fQ Leo(y) 92 (y)dy, forevery x € Q. (2.3.32)
This is equivalent to
(L.)*g, = -Dir, forevery x € Q. (2.3.33)
STEP III. If g, is as in Step I, we are ready to set

g:(y) ifxzy
g:AxQ—[0,00],  g(x,y):=

) ifx=y.
Hence the representation (2.3.31) becomes
G(f)(z) = fﬂ f(y)g(z,y)dy, forevery f e C(Q,R)and every z € (. (2.3.34)

We aim to prove that g is smooth outside the diagonal of Q2 x Q2.
Remark 2.3.9. Let O be any open subset of RY. The hypoellipticity of a general PDO L as in (2.1.2)
ensures the equality of the topologies on H,(O) inherited by the Fréchet spaces C*(O) and Li. .(O).

Indeed, let X and Y denote respectively the topological space H,(O) with the topologies
inherited by C*(0) and L}, _(O). Then X and ) are Fréchet spaces, since, if a sequence u,, €

loc

1

H1(O) converges to u uniformly on the compact sets of €2 or, more generally in L; ,

O:funL*gon_)—oi uL%p, V e C(O,R).

Now, the identity map ¢ : X — Y is trivially linear, bijective and continuous, whence, by the

Open Mapping Theorem, ¢ is a homeomorphism, whence the mentioned topologies coincide.

We next resume our main proof. The set {g, } zeq is bounded in L'(Q), since

OS[Qgi(y)dy:G(l)(x)SmﬁaxG(l).

A fortiori, the set {g, }scq is also bounded in the topological vector space Li. .(€2). We next fix

two disjoint open sets U, W with closures contained in 2. The family of the restrictions

{@ls}

is contained in the space of the (£.)*-harmonic functions on U. By Remark 2.3.9, the set G is

also bounded in the topological vector space
’H( L) (U), endowed with the C*°-topology.

This means that, for every compact set K c U and for every m € N, there exists a constant

C(K,m) > 0 such that

sup sup
lojgm yeK

<C(K,m), uniformly forzeW. (2.3.35)

(;y)ag(w,y)
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Following Bony [16, Section 6], we introduce the operator F' transforming any distribution T

compactly supported in U into the function on W defined by
F(T): W —R, F(T)(x):=(T,g9:) (zeW).

The definition is well-posed since g, € C*(U,R) (and T is compactly supported in U). We
claim that F'(T") € C*°(W,R). Once this is proved, by the Schwartz Kernel Theorem (see e.g.,
[29, Section 11] or [91, Chapter 50]), we can conclude that g(x,y) is smooth on W x U. By
the arbitrariness of the disjoint open sets U, W this proves that g(z,y) is smooth out of the
diagonal of Q x €2, as desired.

As for the proof of the claimed F(T') e C*(W,R), we can take (say, by some appropriate
convolution) a sequence of continuous functions f,, supported in U, converging to T in the
weak sense of distributions; due to the compactness of the supports (of the f,, and of 7)),

lim Ufn<p:(T,<p), for every ¢ € C*(U,R).

n—oo

We are hence entitled to take ¢ = g, (for any fixed x € W). From (2.3.34) we get
lim G(fn)(x) =(T,9.) = F(T)(xz), foranyxzeW. (2.3.36)

We now prove that F/(T') € L*(W); this follows from the next calculation (here C' > 0 and

m € N are constants depending on 7' and on the compact set U/)

9\ (23.35) ~
|E(T)| g = su£|(T7gw)| <sup C Z sup ( ) g(amy)‘ < C(U,m) < oo.

zeW  |a|<m yeU 8y

We finally prove that £.(F(T')) = 0 in the weak sense of distributions on W; by the hypoellip-
ticity of L. this will yield the smoothness of F'(7") on W. We aim to show that,

/;VF(T)(.Z‘) (L) o(x)dz =0 for any ¢ € C°(W).

Now, the left-hand side is (by (2.3.36))

[ Jim G (@) (£2) (@) da

If a dominated convergence can be applied, this is equal to

lim [ G(f)(@) (£)" p(@) dr@324)=- lim [ f(@) () dar =0,

n—o0

the last equality descending from the fact that the f,, are supported in U for every n. We are
then left with showing that the dominated convergence is fulfilled: this is a consequence of
(2.3.35), of the boundedness of F/(T') on W, and of the fact that the convergence in (2.3.36) is
indeed uniform w.r.t.z € W (a general result of distribution theory: the uniform convergence

for sequences of distributions on bounded sets).
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STEP IV. We are finally ready to introduce our kernel
kiQxQ—[0,00),  k(z,y):= 9(@,y) (2.3.37)
Vi(y)
Clearly, from (2.3.34) and (2.3.18) we immediately have
G(f)(x)= /Q f(y) k(z,y)dv(y), forevery feC(Q,R)and every x € Q. (2.3.38)

This gives the representation (2.3.20) whilst (2.3.22) follows from (2.3.32).
The integrability of k(z,-) in 2 is a consequence of g, € L'(2) (and the positivity of the
continuous function V on RY). Moreover, k is smooth on 2 x Q2 deprived of the diagonal by

Step IIL. Also, the nonnegative function £ is integrable on 2 x {2 as this computation shows:

0< [, o Mevdrdy= [ ( [ ﬁ k. y) dv(y))de “20 [ GQYV)(@) do < oo,

the last inequality following from the continuity of G(1/V') on the compact set Q.
For fixed z € , the £.-harmonicity of the function k(x,-) in @\ {z} is a consequence of the
following computation

2.3.33 * 2.3.19 Tz 2.3.37
0V (£)7g, OV L () BEVV Lo(k(a. ).

The fact that V is positive then gives L. (k(z,-)) = 0in Q \ {z}. From the SMP for £. = L - ¢
in Remark 2.2.6, we deduce that the nonnegative function k(z,-) (which is £.-harmonic in
Q\ {z}) cannot attain the (minimal) value 0; therefore k(z,-) > 0 on the connected open set
QN {x}.

A crucial step consists in proving the symmetry property (2.3.21). We take any nonnegative

¢ € C3° (2, R) and we set (note the reverse order of x and y, if compared to G(¢))

2@) = [ oW k@) dvy),  ae

We claim that ® > G(¢) on €; once the claim is proved, from (2.3.38) we infer that

ek < [ ko)), s

The arbitrariness of ¢ will then give k(z, y) < k(y, z) (recalling that dv = V (y) dy with positive
V) for every y € €); since z,y € Q are arbitrary, we get k(x,y) = k(y,x) on Q x Q. We prove
the claim. We observe that ¢ is continuous on 2 and that £.® = —¢ in D’(2), as the following
computation shows (¢ € C3° (€2, R) is arbitrary):

Je@ ey v@ar= [ o@)( [ ko) (L) (@) dr)av(y)

L) Y(x
:ngp(y)([Qk(y,w) (‘g(z)()du(x))dV(y)

<z,3:.19>fﬂ<p(y)(fﬂk(y,x) Ee(‘%)dV(z))du(y)

‘23:-22)_]990@) ii((z)) dz/(y)=—/Q<P(y)¢(y)dy~
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From the hypoellipticity of £. we get ® € C=(Q2,R) and L.® = —¢ point-wise. We now apply
the WMP in Remark 2.2.7 to the operator £, = £ - ¢ and to the function G(¢) — ®: this function
is smooth and £.-harmonic on 2, and G(¢) - ® < G(¢) on 2 (since ® is nonnegative), so that

limsup(G(p) - ®)(z) < limsupG(p)(z) =0 for every x( € I.

Therefore G(p) - ® < 0 on 2 as claimed.
We finally prove (2.3.23). Due to the symmetry property of k, (2.3.23) will follow if we

show that, given z € 2 and y € 052, one has
lim k(yn,x0) =0, (2.3.39)

for every sequence y,, in §2 converging to yo. To this end, we fix an open set 2’ containing x
and with closure contained in 2, and it is non-restrictive to suppose that y,, ¢ Q' for every n.
The functions

kn:Q — R, kn(z) = k(yn, 1), zeQ

are smooth and £.-harmonic in ©’. We also have k,, — 01in L' (), as it follows from

_ [ 9(n, )
Osfwkn(m)dxsfﬂk(yn,x)dx— 0 V(z) dz
1 n—oo

1
<sup — n, ) dz =sup = G(1)(y,) — 0.
blslzpvfﬂg(y r)dw SUp (D) (yn)

From Remark 2.3.9 we get that k,, — 0 in the Fréchet space # ., (") with the C*-topology,

so that k,, — 0 uniformly on the compact sets of 2" and in particular point-wise on €2'. o

2.4 The Harnack Inequality

In this section we will prove the main result of this chapter.
We begin by proving the next crucial lemma. This is the first time that, broadly speaking,
the PDOs £ and the perturbed £ - ¢ clearly interact.

Lemma 2.4.1. Let £ be as in (2.1.1) and let it satisfy (NTD) and (HY).. Let 2 be an open set in R™
as in the thesis of Lemma 2.3.1, and let ' be an open set containing Q). Finally, we denote by k. the
Green kernel related to L. and to the set Q2 (as in Theorem 2.3.7).

Then we have the estimate

u(@) e [ uy)ke(zy)dv(y), Voo, (24.1)
holding true for every smooth nonnegative L-harmonic function w in Q'

Proof. We consider the function v(z) = [, u(y)k-(z,y)dr(y) on Q. From (2.3.20) (and the

definition of Green operator) we know that v = G (u), where G. is the Green operator related
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to L. (and to the open set (2); moreover, since u is smooth (by assumption) on €2, we know

from Lemma 2.3.1 (and the hypoellipticity of £.) that v € C*(2) n C(Q) is the solution of

Lov=-u onf),

v=0 on Jf).

(2.4.2)

This gives L. (cv—-u) = —cu-(L—-¢)u = —cu+eu =0 on{; moreover, on 9, ev—-u = -u <0, by
the nonnegativity of u. By the WMP in Remark 2.2.7, we get e v—u < 0 on 2 which is equivalent
to (2.4.1). O

We are ready for the proof of the Weak Harnack Inequality (for higher order derivatives)?.

Theorem 2.4.2 (Weak Harnack inequality for derivatives). Let £ satisfy (NTD), (HY) and
(HY).. Then, for every connected open set O ¢ RN, every compact subset K of O, every m € Nu {0}
and every yo € O, there exists a positive C(yo) = C(L,e,0, K, m,yo) such that

a(X
5 sup| 2D | < 0y o). 243)
laf<m TeK x

for every nonnegative L-harmonic function w in O.

Proof. We distinguish two cases: yo ¢ K and yo € K. The second case can be reduced to the
former. Indeed, let us assume we have already proved the theorem in the former case, and let

yo € K. If we take any y € O \ K, and we consider the inequality

u(yy) < C ulyo),

resulting from (2.4.3) by considering m = 0 and the compact set {y;}, we get

0%u(z)| 243) , ,
> sup‘%‘ < Culyy) <CC ulyo).

(0%
|al<m zeK

We are therefore entitled to assume that y ¢ K. By the aid of a classical argument (with a chain
of suitable small open sets {2, }? _; covering a connected compact set containing K U {yo}), it
is not restrictive to assume that K U {yo} c Q c Q c O, where Q is one of the basis open sets
constructed in Lemma 2.3.1.
Let ¢ € K be arbitrarily fixed. The function k. (xo,-) (the Green kernel related to £. and
Q) is strictly positive in 2 \ {zo} (this is a consequence of the SMP applied to the £.-harmonic
function k. (zo,-); see Theorem 2.3.7). In particular, since yo ¢ K, we infer that k.(zo,y0) > 0.
Hence, there exist a neighborhood W of z (contained in ) and a constant ¢ = c(e, yo, zo) > 0
such that
213/5 ke(2,50) 2 ¢ >0. (2.4.4)

2The naming ‘Weak’ or ‘Strong’ Harnack Inequality is non-standard: for example some authors refer to weak
Harnack inequalities when at least one side of (2.4.7) is replaced by some LP-norm of u; we follow the naming from

Potential Theory used by Loeb and Walsh in [72], with the hope that this does not lead to any ambiguity.
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Our assumptions allow us to apply Lemma 2.4.1: hence, for every nonnegative u € H.(0O), we

have the following chain of inequalities
241)
u(o) = e [ u() ke ) av(z) 2 e [ uz) k(. ) v (=)
(2'3:‘21)5/ u(z) ke(z,y0) dv(z) (2§4)€c/ u(z)dv(z) zecinfV f u(z)dz.
W W wo Jw

Summing up, for every z( € K there exist a neighborhood W of z( and a constant c¢; > 0 (also

depending on zo but independent of u) such that

u(yo) > ¢1 fw u(z)dz, (2.4.5)

for every nonnegative u € H.(O).
Next, from Remark 2.3.9, we know that the hypothesis (HY) for £ ensures the equality of
the topologies on H (W) inherited by the Fréchet spaces C* (W) and L}

loc

(W). In particular,
to any chosen open neighborhood U of zg (with U c W) we are given a positive constant
co = co(U, W, m) such that

0%u(x)

z sup‘

‘ <co [ u(z)dz, (2.4.6)
|or|<m xeU w
for every nonnegative u € H-(O). Gathering together (2.4.5) and (2.4.6), we infer that, for
every zy € K there exist a neighborhood U of g and a constant ¢z > 0 (again depending on x¢

but independent of u) such that

u(yo) 2 c3 Z Sup|6“u(:c)|’

laf<m ©€U Oz

for every nonnegative u € 7. (O). The compactness of K allows us to derive (2.4.3) from the

latter inequality, and a covering argument. o

Our aim is to prove the following result:

Theorem 2.4.3 (Strong Harnack Inequality). Suppose that L is an operator of the form (2.1.1), with
C= coefficients V' > 0 and (a; ;) > 0, and suppose it satisfies hypotheses (NTD), (HY) and (HY)..
Then, for every connected open set O € R and every compact subset K of O, there exists a constant
M =M(L,0,K) >1 such that
szpu <M i%fu, (2.4.7)
for every nonnegative L-harmonic function u in O.

If L is subelliptic or if it has C* coefficients, then assumption (HY). can be dropped.
The last assertion follows from Remark 2.1.3.

The main step towards the Strong Harnack Inequality is the following Theorem 2.4.4 from
Potential Theory. A proof of a more general abstract version of this useful result, in the frame-

work of axiomatic harmonic spaces, can be found in the survey notes [18, pp.20-24] by Brelot,
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where this theorem is attributed to G. Mokobodzki. (See also a further improvement to har-
monic spaces which are not necessarily second-countable, by Loeb and Walsh, [72]). Instead
of appealing to an abstract Potential-Theoretic statement, we prefer to formulate the result
under the following more specific form (where a harmonic sheaf related to a smooth PDO is

considered).

Theorem 2.4.4. Let L be a second order linear PDO in RN with smooth coefficients. Suppose the

following conditions are satisfied.

(Regularity) There exists a basis B for the Euclidean topology of RY (consisting of bounded open sets)
such that, for every Q € B\ {@} and for every ¢ € C(9Q,R), there exists a unique L-harmonic
function HY} € C*(2) n C(§2) solving the Dirichlet problem

Lu=0 in§
u=p ondf,

and satisfying HS! > 0 whenever ¢ > 0.

(Weak Harnack Inequality) For every connected open set O < RN, every compact subset K of O
and every yo € O, there exists a constant C(yo) = C(L, 0, K, yo) > 0 such that

supu < C(yo) u(yo),
for every nonnegative L-harmonic function v in O.

Then, the following Strong Harnack Inequality for L holds: for every connected open set O and every
compact subset K of O there exists a constant M = M (L, O, K) > 1 such that

supu < M inf u, (2.4.8)
K K

for every nonnegative L-harmonic function w in O.

Proof. As anticipated, the proof is based in an essential way on the ideas by Mokobodzki-Brelot
in [18, Chapter I], ensuring the equivalence of the Strong Harnack Inequality with a series of
properties comprising the Weak Harnack Inequality, provided some assumptions are fulfilled.
We furnish some details in order to be oriented through these equivalent properties.

We denote by #;, the harmonic sheaf on RY defined by O ~ H(O) (here O c R is
any open set). Under the assumptions of (Regularity) and (Weak Harnack Inequality), Brelot
proves that (see [18, pp.22-24]), for any connected open set O ¢ RY, and any z, € O, the set

By 1= {h e HL(0) : h20, h(zg) =1} (2.4.9)

is equicontinuous at zo. The proof of this fact rests on some results of Functional Analysis

related to the family of the so-called harmonic measures { ug}ﬁag associated with L (and on
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basic properties of the harmonic sheaf 7). Next, we show how to prove (2.4.8) starting from
the equicontinuity of ®,, at xo. Indeed, let K c O, where K is compact and O is an open and
connected subset of RY. By possibly enlarging K, we can suppose that K is connected as well.
Let u € H1(O) be nonnegative. If u = 0 then (2.4.8) is trivial; if u is not identically zero then
(from the Weak Harnack Inequality) one has v > 0 on O. For every z € K, the equicontinuity

of @, ensures the existence of 6(x) > 0 such that (with the choice k = u/u(z) in (2.4.9))
1 3
B u(x) <u(f) < B u(z), forallée B, := B(z,6(x)). (2.4.10)

From the open cover {B, }..x we can extract a finite subcover B, ,...,B,, of K. It is also
non-restrictive (since K is connected) to assume that the elements of this subcover are chosen

in such a way that
By NByy #@, (ByyUBg,)NByy #8, ... (Byyu-UB,, )NB,, #@.

From (2.4.10) it follows (2.4.8) with K replaced by B,, (with M = 3); since B,, intersects By,
one can use again (2.4.10) in order to prove (2.4.8) with K replaced by B,, u B,, (with M = 3?);
by proceeding in an inductive way, one can prove (2.4.8) with K replaced by B,, u---u By,

(and M = 37), and this finally proves (2.4.8), since B,, u---U B, covers K. |

Remark 2.4.5. Following Brelot [18, pp.14-17], it being understood that axiom (Regularity) in
Theorem 2.4.4 holds true, the axiom (Weak Harnack Inequality) can be replaced by any of the

following equivalent assumptions (see also Constantinescu and Cornea [25]):

(Brelot Axiom) For every connected open set O ¢ RY, if F is an up-directed® family of L-

harmonic functions in O, then sup u is either +oo or it is L-harmonic in O.
ueF

(Harnack Principle) For every connected open set O ¢ R”, if {u,}, is a non-decreasing se-
quence of L-harmonic functions in O, then lim wu, is either +co or it is an L-harmonic
n—00

function in O.

We are ready to derive our main result for this section: due to all our preliminary results, the

proof is now a few lines argument.

Proof (of Harnack Inequality, Theorem 2.4.3). Due to Theorem 2.4.4, it suffices to prove that our
operator L as in the statement of Theorem 2.4.3 satisfies the properties named (Regularity)
and (Weak Harnack Inequality) in Theorem 2.4.4: the former is a consequence of Lemma 2.3.1

(with f = 0), whilst the latter follows from Theorem 2.4.2. ]

We remark that topological properties similar to those mentioned above for the space of

the £-harmonic functions are also valid when £ in (2.1.1) is not necessarily hypoelliptic, provided

3 F is said to be up-directed if for any u, v € F there exists w € F such that max{u,v} < w.
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that it possesses a global positive fundamental solution (not necessarily smooth): see e.g. [7],
where Montel-type results are proved (in the sense of [78]), jointly with the equivalence of the

topologies induced on H () by L. and by L{*, under no hypoellipticity assumptions.
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Chapter 3

Integral Representation of

Superharmonic functions

In this chapter we want to study the integral representation and characterization of superhar-
monic functions related to a real second-order PDO in divergence form on R". In particular,
we consider the hypoelliptic operator £ in (2.1.1) and we use the Harnack inequality proved in
Chapter 2 in order to prove global and local representation theorems for superharmonic func-
tions, and to characterize a superharmonic function v as a L{, -function such that Lu < 0 in the

weak sense of distributions.

More precisely, throughout the chapter we assume the following hypotheses on L:

(NTD) L is non-totally degenerate at every point of R, or equivalenty (recalling that A(x) is

symmetric and positive semi-definite),

trace(A(z)) >0, forevery z e RY.

(HY) L is C*-hypoelliptic in every open subset of R" .
(HY). There exists ¢ > 0 such that L — € is C*°-hypoelliptic in every open subset of R™.

We remind that under these hypotheses we have showed the solvability of the Dirichlet
problem on a basis of Euclidean topology and the Harnack inequality for £ (see Sections 2.3

and 2.4).
We recall the following definitions.

Definition 3.0.1 (Regular set). We say that an open set w € RY is regular if for any f e C(w)

and ¢ € C(0w) there exists a unique solution of the Dirichlet problem

{ Lu=-f onw (in the weak sense of distributions), (3.0.1)

U= ondw (point-wise).
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Definition 3.0.2 (Strongly regular set). We say that an open set w ¢ RY is strongly reqular
(below SR) if for any y € Ow there exists an outer normal vector for w in y non characteristic for

L, i.e. avector p # 0 such that the open ball B(y + p, |p|) contains no points of w and

aij(y)pipj > 0.
1

7=

i
In the same way as in [16], it can be proved that any SR set is a regular set. Furthermore it

is clear that if w,w> are SR sets, then w; Nw- is a SR set.

Remark 3.0.3. Let w be a regular open set. In Lemma 2.3.1, for any f € C (@), we have showed

the existence and uniqueness of the distributional solution for the Dirichlet problem

(3.0.2)

Lu=-f onw (in the weak sense of distributions),
u=0 on dw (point-wise).

In particular, we have showed that there exists a basis of SR connected open sets of R
such that, for any w SR set, the solution of the Dirichlet problem (3.0.2) can be represented in

the following way

u(z) = Gf(x) = /w k(z,y)f(y)dv(y), foreveryx ew, (3.0.3)

where G is the Green operator and k is the Green kernel related to £ and to the open set w.

We know that £ is a positive smooth function out of the diagonal w x w; on this diagonal

we put:

k(y,y) = liminf k(z,y). (3.0.4)
yFz—y

In this chapter we want to give a characterization of superharmonic functions w.r.t. £,

1

e and Lu < 0 in the sense of distributions.

showing that u is superharmonic if and only if u € L
Furthermore, we will prove the representation theorems for superharmonic functions. To this

aim, we need to introduce some notation of Potential Theory (for further details see [15]).

Let 2 be an open set of RY, and we consider the map
Q— H,(9).

It is easy to see that this map is a harmonic sheaf on RY. Moreover, thanks to the hypothesis on
the operator £ and its construction in (2.1.1), it can be proved that this harmonic sheaf gives
to RY a structure of harmonic space, in which the axiom of Brelot holds. Below we will write

H(S2) in place of H ().
We introduce the following definitions.
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Let © ¢ RY be an open set. We remind that a function u : Q — ] - oo, +o0 | is called lower

semicontinuous (L.s.c.) at x € Q if
u(x) =liminf u(y) := sup ( inf u) )
y—x Veld, VnQ
where U, denotes the family of the neighborhoods of z.
A function u : Q — [—o0, +o0 [ is called upper semicontinuous (u.s.c.) at z € Q if

u(x) = limsupu(y) := inf (sup u)
Yy—>x Veld, vVnQ

Definition 3.0.4 (Hyperharmonic Function). Let Q ¢ R" be an open set. A Ls.c. function
u:Q - ]-o00,+00 | is called hyperharmonic function in Q2 if for every regular' openset U c U c (2

H xX) = u y (lﬂ . u\xr f()] a“y X € 1), .().5

where ;¥ denotes the £-harmonic measure related to U and .

We shall denote by #*(£2) the set of the hyperharmonic functions in (2.

A function v : Q — [—o0,+0o[ will be called hypoharmonic if —v € H*(Q2). We denote by
H.(Q) = -H*(Q) the family of hypoharmonic functions in €.

Remark 3.0.5. We want to remind that a function v : - ] — oo, +o0 ] is Ls.c. in Q if and only if
the set

A(t) ={xeQ :u(z) >t}
is an open set in €, for any ¢ € R.
Definition 3.0.6 (Superharmonic Function). Let u be a hyperharmonic function in 2. We say
that u is a superharmonic function in € if, for every regular open set U ¢ U c (), the function

HY in (3.0.5) is harmonic in U. The set of the superhamonic functions in 2 will be denoted by

S(Q).

A function v : @ — [~o0, +oo[ will be said subharmonic in Q if v € S(2). We denote by
S() = -5(9) the set of the subharmonic functions in 2.
Remark 3.0.7. Since the harmonic sheaf # satisfies the axiom of Brelot, it can be proved the
following characterization of S(Q2):

ueS(Q) if and only if u e H*(Q) and the set {z € Q : u(x) < oo} is dense in Q.

Moreover, as a consequence of the Weak Maximum Principle for £ (see Corollary 2.2.5), we

know that if u € C?(Q;R) we have:

ueS(Q) < Lu<0inQ.

1Since (R™V,#) is a harmonic space and L satisfies (HY), it is easy to show that the reqular open sets seen in the

classical sense of Potential Theory are equivalent to our regular open sets that we have introduced.
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In the end we want to introduce the following definition.

Definition 3.0.8 (Potential Function). Let u € S(2), u > 0. We say that u is a potential on  if
the greatest harmonic minorant of « in €2 is the zero function. We shall denote by P(€2) the set

of the potential functions in €.

The following result gives us necessary and sufficient conditions so that a function u is a

potential (see [26, Proposition 2.2.1]).

Proposition 3.0.9. Let u be a superharmonic function on an open SR set w such that w > 0. The

following assertions are equivalent:
@) ueP(w);
(ii) if v is a hyperharmonic function on w for which uw +v > 0, then v > 0;

(iii) if v is a hypoharmonic minorant of u, then v < 0.

The most important results of this chapter are the following theorems.

Theorem A (Characterization Superharmonic Functions). Let Q2 be an open subset of RY and
u:Q— | —oco,+o0 |. Then the following statements are equivalent:

(i) weS(Q2), more precisely: there exists v € S(Q) such that u = v a.e. in Q.

(i) we Ll (Q)and Lu<0inD'(Q).

loc

Observe that (ii) means

fQ u(z) L p(x)dx <0, for any ¢ € C5°(2), ¢ 2 0.
Now we denote with M*(2) the set of non negative Radon measure on 2.

Theorem B (Local Representation Theorem). Let €2 be an open set, w be an open SR set such that
wcwcQcRY and u e S(Q). Then there exists a unique p € M*(w) and a unique h € H(w) such

that p(w) < +oo and

u(z) = fw k(x,y)V(y)du(y) + h(z) for almost every x € w, (3.0.6)

where k is the Green kernel for w, and V' is the smooth positive function in (2.1.1).

Theorem C (Global Representation Theorem). Let w be an open SR set such that w € RY, and let
K be a compact set with K € w. If u € S(w) nH(w \ K), then there exists a unique p € M*(w) and a
unique h € H(w) such that p(w) = p(K) < co and

u(z) = fw k(x,y)V(y)du(y) + h(z) for almost every x € w, (3.0.7)

where k denotes the Green kernel for w, and V' is the smooth positive function in (2.1.1).

If furthermore u € P(w) then (3.0.7) holds with h = 0.
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3.1 Notions of Potential Theory for the Green operator and its

kernel

Here we want to prove some result for the Green operator and its kernel related to £ and a SR

open set w.

Lemma 3.1.1. Let w bea SR open set of RY. For every y € w, there exists a sequence {p,,} of potentials

on w such that:

(i) there exists a compact set C' C w such that suppy (py,) € C, for any n € N, that is

pn € H(wNC), foranyneN;

(i1) lim,,— e pn(x) = k(z,y) uniformly on compact sets of w ~ {y}.

Proof. Fix y € w and let r be a positive number such that B(y, 2r) € w.

We consider now a sequence {f,} € C5°(R™;R) such that:
1. f,20inRY, foranyneN;

2. supp(fn) € m Cw, forany neN;

3. [ fu(t)dv(t) =1, for any n e N.

For any n € N, we put

Pu(@) = G(f)@) = [ aOk(@.av(t),  Vaew. (3.1.1)

We want to prove that {p,, } is a sequence of potentials on w such that the properties (i) and (ii)
are satisfied.
Thanks to hypothesis on { f,,}, we know that {p,,} ¢ C(&;R) n C*(w;R) and p,, > 0 on w,

for any n € N. Moreover, for any n € N we have

Lpn(x):E(G(fn))(x):—fn(x)ﬁQ Vaew,

hence p,, € S(w), thanks to Remark 3.0.7.

Now fix n € N; if h € H(w) such that h < p,, in w, for every £ € w we have

limsup A(z) < limsup p, () = pr(§) =0,
=&

=€
since p,, € C(w,R) and p,, = G(f,,) = 0 on dw. Therefore, we can apply the Weak Maximum
Principle (for £) and we get A <0 in w.
Then we have showed that

sup{h e H(w) : h<p, inw} =0,
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S0 p, € P(w), for any n e N.

We prove now point (i). Observe that, for any n € N,
Lpn(x) = L(G(fn))(x) = =fn(x) =0, foranyzew~ B(y,2r),

then we have obtained point (i), with C := B(y, 2r).

In the end, we want to show point (ii).

Let K cw ~ {y} be a compact set. Since y ¢ K, there exists j € N such that B(y, §) NnK=g;
hence K x B(y, %) € (wxw)NA, where A = {(z,y) e wxw : x =y}. We know that k is a
continuous function on (w x w) \ A, then for any € > 0 there exists m = m(¢) € N such that for

any t € B(y, 7), with |t -yl < -, we have
|k(x,t) — k(z,y)|<e, VzekK.
Therefore, for any n > max{j,m} and z € K, we get

o) = k()| = | [ Gat) = ko) £ (D00

< [ It t) - K| (1) (1) =
:/B(y’r)|k(ﬂt,t)—k(m,y)|fn(t)d1/(t)<5(fB(y’:;)fn(t)dz/(t))=5.

Then we have showed that p,,(z) — k(x,y) uniformly on K, as n — oo, and this proves point
(ii). |
Proposition 3.1.2. Let w be a SR open set of RY and y € w; we put k,(x) = k(z,y) for any x € w.

Then k, is a nonnegative superharmonic function on w such that k, € H(w ~ {y}).

Proof. Since k is a nonnegative smooth function on (w x w) N A, where A = {(2,y) e wx w :
x =y}, ky is a nonnegative Ls.c. function on w (see Remark 3.0.3 and (3.0.4)). In particular, we
know that 0 < k() < +oo for any = € w \ {y}.

Let U be a regular open set such that U ¢ w and 9U € w ~ {y}; now we choose a sequence
{pn} of potentials on w as in Lemma 3.1.1.

Since {p,} ¢ S(w), for any n € N, we have

pn(x)ZfaUpn(t)du;’(t), Vzel.

Now, thanks to point (ii) of Lemma 3.1.1, as n - oo we get

ky(@)> [k (Ol (o), (3.1.2)

forany z € U ~ {y}.
Therefore, we have showed that k, € L'(9U, 1Y), for any z € U ~ {y}, and so the function

Usar— Y (@)= [k (Odet (1)
Y U
is harmonic in U. Moreover, if y ¢ U then (3.1.2) holds for any x € U.
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On the other hand, if y € U, thanks to continuity of H }j/ on U, we have:

ky(y) = liminf ky(x)= lminf ky(z)>

w\{y}3z—>y U~{y}sz—y
> liminf HY - gY :[ktht.
U\I{I;l}lafwl_)y ky(af) ky (v) o (1) Ny( )

Then, in any case, we get that (3.1.2) holds for any x € U.

Now we know that, for any z¢ € w, the family
B(zo) = {U regular openset: zg e U U cw, U Cw {y}}
is a base of neighborhoods of z(, and moreover, thanks to (3.1.2), we get

ky (20) > fa k(DA (1), forany U € B(ay).

Hence we can say that k, € S(w), thanks to Remark 3.0.7.
In the end, since we know that k, is harmonic on w \ {y} but not all w, we obtain that

kyEH(W\{y}). O

Proposition 3.1.3. Let w be a SR open set of RN. Then, for any y € w, the function defined on w
ky () := k(-,y) is a potential on w.

Proof. From Proposition 3.1.2 we know that k, is a nonnegative superharmonic function on w.
To prove that k, € P(w), it is sufficient to show that for any ¢ € #(w), such that ¢ < k, on w,
we have ¢ <0 on w.

Let U be a regular open set such that y € U ¢ U ¢ w. We put

P() =G (@) = [ k,)dv(b),

for any z € w; then we know that P € C(@;R) n C*°(w,R).
As in Lemma 3.1.1, we can prove that P € P(w). Moreover, thanks to Strong Maximum
Principle (see Theorem 2.2.2) related to £ and connected components of w, we get P >0 on w.

Now we want to prove that there exists M > 0 such that
ky(x) < MP(z), Veew~NU. (3.1.3)

Since y € U, we can say that k, is continuous on 90U < w \ {y}. Hence, if we put A := maxgy ky

and m := mingy P, we have \,m > 0 and
A A
ky(z) <A=—m< —P(z), Vzedl.
m m

Now we consider the function u := k, — M P in w, with M := 2 > 0.
Note that u € C*(w \ {y}), and in particular « is a smooth function on w \ U ¢ w \ {y}.

Moreover, u is subharmonic on w \ U, because k, € H(w ~ {y}) and M P € S(w).
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A consequence is that

limsup u(z) = u(§) = ky(§) - MP(&) <0, for any £ € 9U,

w\Usz—¢€

then for the Weak Maximum Principle we get that « < 0 on w \ U, and so we have showed
(3.1.3).

Now, fix ¢ € H(w) such that ¢ <k, in w.

From (3.1.3), we have ¢ < M P onw\U. Then, thanks to Weak Maximum Pronciple related
to U and applied to the subharmonic function v := ¢ - M P € C*(w), we get

o(z) < MP(x), Vreuw.

Since M P € P(w), we have ¢ <0 on w and then k, € P(w). i
Now we are ready to prove a main result for the Green kernel k(z, y).

Proposition 3.1.4. Let w be a SR open set and k be the Green kernel related to £ and w. Then k is Ls.c.

on w X w.

Proof. Observe that the function k is smooth out of the diagonal w x w, then to show that k is
Ls.c. on w x w it is sufficient to prove that for any ¢ € w and for any A < k(xo, o), there exists
a neighborhood V' of z( such that k(x,y) > A for any (x,y) € V x V. In fact, if we prove this,
thanks to Remark 3.0.5 we show that the function £ is Ls.c. on the diagonal w x w, and then &k
isl.s.c. on w x w.

Fix zp € w and A € R such that A < k(x¢,20). From Proposition 3.1.2 we know that &, €
S(w), then there exist a real number 3 > X and a regular open set 1 ¢ Vi € w, such that zg € V}

and

kyo(t) 28> X, foranyteVj.

We choose a > 0 such that 5(1 — «) > A; it can be proved that there exists a connected regular

open set wy € wy € Vo, such that zg € wy and p;? (Owp) > 1 - a. Then we get

L ke Odps ()28 [ dpio(6) = By (9wn) > B(1 - ) > A

Hence we put
2e= [ kap(©)dus(€) - X
wo

it is clear that € > 0.
Remind that % is continuous out of the diagonal w x w. Then, if we fix £ € Jwy, there exists

an open neighborhood U of z such that U ¢ wy and

-1
|k(f’y)—k(f,$o)|<€(fa du‘;g) , foranyyeU.
wo
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So, for any y € U, we have
wo wo — — “wo =
J REna© = [ k(Ero)anss(©) - [ h(ga0) - K(E)Iduss (©)

—2e A fawo k€, ) - B(€,y)|due (€) > (3.1.4)

>2e+A-e=A+e.
If y e U and z € wy, we put:

uy(2) = B2 (2) = [ k(€ p)dus (©). (3.15)

It is obvious that u, is harmonic in wy, since wy is a regular set. Moreover by (3.1.4), for any
y € U, we have

uy(zo) > A +e.

Now, we want to show that for any z € wy, the set {u,(z) : y € U} is bounded. In fact, fixed

z € wy, it’s clear that
(< [ k(E D) (©) <
(s wen) [ a© =) <o,

nel,{edwg

where the constant ¢(z) depends only on z.
Making use of Theorem 2.4.2 we can prove that the set .# := {u, : y € U} is equibounded
and equicontinuous on any convex compact subset of wy. Let K < wy be a convex compact set,

then we have:

(i) let x € wg be a fixed point; from Weak Harnack Inequality we know that there exists a

positive constant C' = C'(L£,wy, K, x) such that
sg{p luy| < Cuy(z) < C-c(x), forany y e U.
Therefore, if we put M := C' - ¢(z) > 0, we have showed that
luy(2)| <M, VYyeUandVzeK,
that is .7 is a equibounded family on K;

(ii) let x € wy be a fixed point, and fix zy € K; we want to prove that .Z is equicontinuous in zj.

From Weak Harnack Inequality we know that there exists a positive constant C such that

N
sup |0;uy| < Cuy(x) < C-c(z),
il

N
Z sup |0;uy| < sup |uy| +
1K K s

J

Ju

forany y e U. If we put M := C - ¢(z) > 0, we get
|Vuy(2)| <M, VyeUVzekK.
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On the other hand, if z € K, since K is a convex set we have [z, z9] ¢ K; then from Mean

Value Theorem we know that there exists ¢ € int[z, zo ] such that
luy (2) = uy (20)] < [Vuy ()] - 2 = 20| < M |z = 20,

forany y e U.

Hence . is a equicontinuous family on K.

In particular, there exists a neighborhood W of the point g such that
[uy (x) —uy(z0)| <&, foranyz e Wand y €U,
from which it follows u, (x) > uy(z9) —e>A+e—ec=Aforany z € W and y € U, that is

fa K(E,y) i (€) > A, forany (z,y) e W x U.

On the other hand, since £, is superharmonic in w, we have

k(@) [ k(€ (©),
for any x € W and y € U, then we have obtained that k(x,y) > A, for any (z,y) € W x U, which

is what we wanted to show. |

Let w be an open SR set, k the Green kernel for w. For any y € M*(w), we put:

Gu(z) = f k(x,y)du(y), for any z € w. (3.1.6)
We can to prove that Gy is integrable in w and moreover, it is a potential.

Lemma 3.1.5. Let w € Q be an open SR set; let k the Green kernel for w. Let y € M*(w) be such that
p(w) < +oo. Then Gu € L* (w) and LGy = -3y in D' (w), where V. is the smooth positive function in
2.1.1).

Proof. We prove that G is integrable on w.
By (3.1.6) and Tonelli’s theorem, we have:

wau(x)dx:/w(/wk(rf,y)du(y))dﬁ/w(fwk‘(%y)dx)du(y)=
- [ ([ ko)dz) duto.

where the last equality is been obtained by the symmetry of k.

Now we want to remind that for our operators dv(z) := V(z)dz, so we have

[ ez [ ( [k mar)ant = [ ( i k(y,x)v(lﬂduu))du(y):

- wa(l/V)(y)du(y),
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where in the last equality we have used the identity (3.0.3) for the Green operator G.
Observe that G(1/V) € C(w) and w is a compact set; then

[ Gu@dz = [ GOV @Anty) < Cuw) < +oo,

hence Gy e L' (w).
Now we can consider Gy € D' (w), so for any ¢ € C5° (w) we have:
(LG ) = (G £70) = [ Gu)ee@yde= [ ([ Kapdu() £ pe)de -
:fw(fwk(x’y)ﬁ“”(x)dx)d“(y):fw(fwk(%y)V(I)E(w/V)(z)dz)dﬂ(y):
- [ [ 3£ @)av@) duy) -
- [ (L £em @t ai@) ) - - [ 284w = -0 ).

where we have used (2.3.19), for the expression of the adjoint operator £L* of £, and (2.3.22).

Therefore we have showed that

(LGp, @) = (=(1/V)p, ¢}, forany ¢ e G5 (w),
so we get LGy = —pin D' (w). O
We want to introduce the following important definition.

Definition 3.1.6. Let 2 be an open set. Given u € H*(Q2) and a regular open set W ¢ W ¢ ),

define uy : 2 - | - 00, +o0 ] in the following way:

() u(z), forz ¢ W, (3.17)
uw () = 1.
Low udpl,  forzeWw.

The function uyy is called the Perron-reqularization of u related to W.
The Perron-regularization of a hyperharmonic function has many important properties.

Proposition 3.1.7. Suppose that u € H*(Q) and let W be a regular open set such that W ¢ W < Q,
then:

() uw <uinQ,

(i) uw e H* (),

(i) ww <oy ifu,v e H* () and u < v.
Moreover, if u € S(2), then

(V) uw € S(Q) and uy € H(W).

The proof of this result can be seen in [15, Theorem 6.5.6].

Now, we want to give the following definition.
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Definition 3.1.8 (Perron Set Generated by a Function). Let u be a superharmonic function on
2 such that u possesses a subharmonic minorant, and let % = {B; } jey be a covering of €); the

following set of functions
F :={up,,.B,,...B., : {Bi,}s_1.., isa finite sequence in Z }
is called the Perron set generated by u and 2.

Remark 3.1.9. Let u > 0 be a superharmonic function on 2, and let & = {B;} v be a basis of
open SR sets for 2 such that, for any n € N, the set 4,, := {j e N : B; = B, } is infinity.

We define by recurrence the following sequence:
ur =up,, U1 = (U)) By

thanks to Proposition 3.1.7, we can observe that 0 < u;,; < u; and u; < u, for any j € N. Then,
if we put ueo := lim; o uy, it is clear that ue = infjey u;.

Now we want to consider the Perron set .# generated by v and & as in the Definition 3.1.8.
It is obvious that {u;} c %, then inf .# < inf enyu,;. We want to show that inf.% = inf oy u;; to
this end, we will prove that ue € H(2).

Fix n e Nand let {j;} ¢ A, be such that ji < ji1; then {u;, }; is a decreasing subsequence

of {u;}, 50 limy_e0 uj, = Ueo. Moreover {u;, } c H(B,,), since for any k ¢ N

Ujy, = (ujk—l )Bjk

and by point (iv) of Proposition 3.1.7 we have u;, € H(Bj, ); but B, = B, for any k € N, so we
obtain that u;, € #(B,,), for any k € N. In the end, it is clear that the sequence {u;, } is a down
directed farnily2 and u., > —oo in a dense subset of ; then, thanks to a note result of Potential
Theory (see [15]), we have that ue, € H(B,,), and it is true for any n € N.

Therefore, we have showed that ue, € H(2). On the other hand, we know that ue < u on
1, and by [26, Theorem 2.2.2] we have that inf .# is the greatest harmonic minorant of « in €,
so we get that u., <inf.# and this gives us the thesis.

Hence, uo. is the greatest harmonic minorant of « in (.
Proposition 3.1.10. Let w be an open SR set and k the Green kernel for w. Let € M™*(w) be such
that p(w) < +oo. Then Gu € P(w).

Proof. First observe that Gy is L.s.c. on w (see [45, Lemma 2.2.1]), then from Lemma 3.1.5 we

know that G is finite on a dense subset D of w.

2A family F is called down directed if for any v, w € F there exists a function f € F such that

v>fand w> f.
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Hence, thanks to Remark 3.0.7, we need to show that G is a hyperharmonic function to
prove that G e S8 (w).

If U is a regular open set such that U € w, for any z € U we have:
1) = [ 6u©al©= [ ([ renduw)du © -
= /w (faU k(&y)dug(&))du(y) = fw Hy, (x)du(y) <
< [ ky@3an() = [ ka.)dny).

where we obtain the last inequality thanks to Proposition 3.1.4. Therefore we know that

ng(x) < [u k(z,y)du(y) = Gu(z), foranyxeU,

then G is hyperharmonic in w, and so G € S (w).

Now, to prove that Gu € P(w), we show that the greatest harmonic minorant of Gy is
identically 0.

Let B = {B;} be a basis of open SR sets for w as in the Remark 3.1.9, and now we take
u = Gp. We want to consider the sequence {u;} as in the Remark 3.1.9; we have showed that
the function ., := lim;_o u; is the greatest harmonic minorant of . Our aim is to prove that
Uoo = 0.

For any fixed y € w and j € N, we define k;(-,y) as in the Remark 3.1.9; hence we observe

that:

ki(x,y) ifx ¢ Bji,

kj+ (a;y) = (k(xvy)) i1 T )
" ’ " { Jon,., ki (€,y)duz " (€)  if x € By

Therefore, if we define

Bji1

N Oz ifzx ¢ Bj,
’ Mz ifze Bj+1

we have

kay) = [ ki(Epdn(E).  foranyaew.

Since limg g, Az = Ag, in M*(w), thanks to [45, Lemma 2.2.1] we can say that k; is Ls.c. as a
function of (z,y).

By Proposition 3.1.3, we know that &, := k(-,y) € P(w), so for any y € w we have:
_711)12 ki(z,y)=0, Vzew.
Now we want to prove by induction that the following equality
uj(z) = /w kj(z,y)du(y) for any z € w (3.1.8)
holds for any j € N.
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By definition we know that

wi () = u(w) = [, k(z,y)du(y) ifz¢ B,
Jos, (Lo k(& v)du(y)) dul (€) ifz e By

Then, if « € B;, by Fubini’s Theorem we obtain:
_ B _
w@ = [ ([ ke ©)anw) = [ k@)

On the other hand, if = ¢ By, we have k1 (x,y) = k(x,y), hence (3.1.8) is true for j = 1. Now we
suppose that (3.1.8) is true for j € N, and we show that it holds for j + 1.
If x ¢ Bj.1 we know that k;.1(z,y) = k;(z,y), then we have:

ujp1(x) =uj(w) = /w/fj(%y)dﬂ(y) = /wkjﬂ(%y)dﬂ(y)-
On the other hand, if « € B;,1, we observe that:
wa@ = [ @l ©= [ ([ )@ -
-/ ( Lo, kj(z,wdufﬂ%&)) d(y) = [ ker (o, 9)du(y),

so we have showed that (3.1.8) holds for any j € N.
By Proposition 3.1.7 we can say that 0 < k;(x,y) < k(z,y), for any z,y € wand j € N, and
k € L'(w x w); moreover, we have seen that lim;_,« k;(z,y) = 0, then by Lebesgue’s theorem

on the dominated convergence and (3.1.8) it follows that
Uoo () = lim u;(x) = lim f kj(xz,y)du(y) =0 for almost every = € w,

hence uo, = 0 for almost every x € w.

On the other hand, u. € H(w) and £ satisfies (HY), then v = 0 onw. Therefore, Gu € P(w).

3.2 Integral Representation Theorems

In order to prove Theorems B and C, we give some important result.

Theorem 3.2.1. Let Q ¢ RY be an open set, u € L () be such that Lu < 0 in D'(Q2). Then there

loc

exists pp € M*(Q) such that for any open SR set w, with w € @ < Q, we have:

u(z) = f k(x,y)V(y)du(y) + h(z) for almost every x € w, (3.2.1)
where k is the Green kernel related to L and w, and h € H(w).

Proof. Since Lu < 0 in D'(2), there exists a unique p € M*(2) such that -Lu = p. Let w be
an open SR set with @ ¢ Q; we put pu, = p,. Itis clear that p, € M*(w) and g, (w) < +oo.

Moreover, we get Lu = —p,, in D’ (w).
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On the other hand, by Lemma 3.1.5 we know that £L(G(V ) = —f in D' (w). Hence, we
have

L(u-G(Vp,))=0inD'(w),

then there exists h € H(w) such that
u(x) - G(Vpy,)(x) = h(z), for almost every x € w.

Therefore, we get (3.2.1) if we remind that

GVi)@) = [ ke )V @) = [ @V Eduw).

Let © ¢ RY be an open set. We have need to show some result in order to prove that if
ueS(Q)nLL_(Q)then Lu < 0in D'(Q).

loc
We define in L] _(Q2) the set

loc

S(Q) = {veS(Q) : ve C2(Q,R)}
equipped with the seminorm

v — f |v(z)|dz, K cacompact set.
K

Lemma 3.2.2. If u € S3(R2), then Lu < 0in D'(Q), that is
fQ u(x)Lp(x)dz <0, Vel (Q,R) with ¢ > 0.

Proof. If u € So(f2), then there exists a sequence {u, } ¢ S(Q2) n C%(Q,R) such that u,, — u, as
n = oo, in L ().

Therefore, we know that Lu,, < 01in {2, for any n € N (see Remark 3.0.7). In particular, it is
obvious that Lu,, <0in D'(Q2), for any n € N; hence we have

lim Qun(x)ﬁ*cp(a:)dx:/Qu(x)ﬁ*go(:r)dx,

n—oo

for any ¢ € C5° (2, R), with ¢ > 0, and we get Lu < 0in D'(Q). i

Lemma 3.2.3. Let u,v be superharmonic functions on Q such that u,v € C*(Q,R). If ¢ € C*(R) is
a concave function such that |¢'(z)| < 1, for any x € R, then the function w = u+v+po (u—-v)isa

superharmonic function in Q and w € C*(Q,R).

Proof. It is obvious that w € C%(2,R), so we need to prove that w € S(2). To this end, we can
prove that Lw < 0in .
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By construction of £ in (2.1.1), for any z € {2, we get

L0 = g & o (Ve (0 250 -
1 N oo N Ou(z) Ov(x) Jp((u-v)(x))\) _
V(a) z;l Ox; (V(x)al’](x)( gr; | 0w, Oz ))_

9(u - v)(x))

J

:me+cmm+v(%;l (vwmmuwxw 2)(2))

= Lu(x) + Lo(x) + ' ((u-v)(2))L(u—-v)(x)+

4o (u-v) (@) Za”( 3(u v)(x) O(u-v)(x) _

4,5=1 i 8xj

= Lu(z) [1+¢"((u-v)(@))] + Lo(@) [1-¢'((u-0) ()] +
+ S0//((u ’U)(ZL')) Z al]( a(u ’U)(I’) 8(“ U)(IZ?)

i,5=1 i 8m]

since ¢ is a concave function on R and the matrix A(z) = (a; ;(x)) is positive semi-definite at
every point z € R”, the last term of the equation is non positive on {2; moreover, Lu, Lv < 0 in
N and |¢'| < 1in R, so also the first two terms of the equation are non positive. Therefore, we

obtain Lw < 0 in , which gives w € S(9). O

Lemma 3.2.4. Let u,v € So(Q2) and let p € C*(R) be a concave function such that |’ (x)| < 1, for any
zeR. Ifweput wi=u+v+@o(u—v), then w e Sz(Q).

Proof. We know that L{. () is a metrizable space, so we can think in the following way.
Since u, v € S3(2), there exist the sequences {u,, }, {v,,} € S(Q)nC?(2, R) such that u,, — u
and v, — vin L, (), as n — oo.
On the other hand, if we fix x € Q and n € N, we can apply the Mean Value Theorem to the

function ¢ in the interval of extremes (u,, — v, )(z) and (u - v)(x); then we get

o ((un = vn) (@) = p((u =) (2))] = [(un = vn) () = (u=0) (@) ()] < |(un = vn) (@) = (u - v)(2)],

which gives

|o((un = vn) () = p((u=v)(2))] < [un(x) = ul@)] + |vn(x) - v(2)], (322

forany z € Qand n e N.
Now, if we put w,, := u,, + v, + o (u, —vy,) for any n € N, itis clear that w, — win Llloc(Q),
as n — oo. Moreover, by Lemma 3.2.3 we know that w,, € S(Q) n C?*(Q,R), for any n € N;

therefore, we obtain w € So (). i
Lemma 3.2.5. If u,v € So(Q2), then inf {u,v} € S2().
Proof. Tt is known that 2inf{u,v} =u+v - Ju—v|.
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Now we consider a sequence {¢,} ¢ C?(R) of concave functions such that |¢/| < 1in R,
for any n € N, and

lim ¢ (t) =-[¢t|, uniformly inR.

For example, we can choose the function ¢, (t) = + =/t + % forany n e N.
Itis clear that ¢, 0 (u—v) — —|u-v|in L{ (), as n — co. Now we put w;, := u+v+p;,0(u-v)
for any n € N; by Lemma 3.2.4 we know that w,, € S2(f2), for any n € N, and moreover w,, —

2inf{u,v} in L{

loc

(2), as n — oo, then we get that inf{u, v} € So(). i

Corollary 3.2.6. If u is locally the lower envelope in Q) of a finite number of superharmonic functions

of class C?, then Lu < 0 in D'().

Proof. Thanks to Lemma 3.2.5, we know that for any « € ) there exists an open set W, ¢ Q
neighborhood of z such that u € S3(W,); hence, from Lemma 3.2.2 we get that Lu < 0 in
D'(Wy,).

It is clear that the family {1V, } is a covering of ©; then there there exists a sequence {p;} c

Cs° (Q2), with p; > 0, such that
1. suppp; € Wj, for any j € N;
2. X321 pj(x) =1forevery x e Q;
3. to every compact A c € correspond an integer m and an open set U > A such that

p1(z)+ ...+ pm(x) =1, Vzel.

Fix ¢ € C§°(92;R) with ¢ > 0 on §; we want to prove that (Lu, @) < 0.

We put K :=suppy < 2, and for any j € N we consider the positive smooth functions
i(z) = pi(x)p(x), Ve
It is easy to see that for any j € N, ; € C§5° (W), then we know that
fW‘ u(x)L*pj(z)dz <0, foranyjeN. (3.2.3)

J

On the other hand we have:
fﬂ u(x)L¥p(x)dx = [U u(z)Lp(x)dx = /U u(z)L* (;Zjb:l pj(x)@(x)) dx =
Z [ w@)e g @y - z S 1L s (@) <
< ZT_n;fW u(x) L pj(x)dz <0,

then we have showed that Lu < 0in D’ (). o
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Lemma 3.2.7. Let Uy,Us,...,U, be p reqular open sets such that U; < Q, for i = 1,2,...,p, and
define U = UY_, U;. If u € S(Q) strictly, that is u is not harmonic in any regular open set of 2, and
v = inf{uy,, up,,...,uy,}, then v € S(Q) n LY (U) (it is also a continuous function on U) and

Lo <0in D' (V).

Proof. Since u € S(2), by Proposition 3.1.7, we know that uy, € S(2), forany i = 1,.. ., p; hence
veS(Q).

We fix zg € U = UY_, U;, so there exists ¢ € N, with 1 < ¢ < p, such thatzg e Uy n...n U, N
(AN Ugs1)n...n (2N Up). Since u is strictly superharmonic in €2, by construction of the Perron

regularization of v and Proposition 3.1.7, we have

uy, (20), ..., uv, (o) <u(xo) = uv,,, (o) = ... = uy, (o). (3.2.4)
Moreover, uy, € H(U;), forany i = 1,.. ., p; in particular, uy, is a continuous function in z, for
i=1,...,q,and uy, is a Ls.c. function in xq, for j = ¢+ 1,...,p. Therefore, thanks to (3.2.4),

there exists a neighborhood W ¢ (N, U;) n ( [IRR O U;) of the point z such that uy, < uy,
on Wforanyi=1,...,gand j = ¢+ 1,...,p. Now we can observe that inf{uy,,...,uy,} <uy,
on W, forany k = 1,...,p, and so we get that inf{uy,,...,uy, } <von W. On the other hand, it

is obvious that v < inf{uy,,...,uy, }, then
v=inf{uy,,...,uy,} onW.

Therefore, we have obtained that v is locally in U the lower envelope of a finite number of

harmonic functions; then we can apply Corollary 3.2.6 and we obtain that Lv < 0 in D'(U).

1

Moreover, it is clear that v € L; .

(U), since v is a continuous function on U (v is locally the

lower envelope of a finite number of smooth functions). o

Now we are ready to prove the following result.

Proposition 3.2.8. Let Q ¢ RY be an open set. If u € S(Q) n L (Q), then Lu < 0 in D' (Q).

loc

Proof. We will prove the proposition in two steps.

STEP I We want to show that for any z € (2, there exists w ¢ w ¢ 2 bounded open set such

that z¢p € w and Lu < 0 in D'(w).

Fix zg € Q, then there exists a regular open set w € W ¢ ) such that ¢ € w. At first we

suppose that v is a strictly superharmonic function in €.

Let ¢ € C§°(w; R) be a nonnegative function on w. If we put K := suppy € w and fixn € N,
then we can cover K with a finite number of regular open sets with diameter < £. By

Lemma 3.2.7, we can match a superharmonic function v,, on {2, such that:
(i) v, <uwonQ, then in particular v, < uon K;
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(i) v, € L}(K) and
f vn(z) L @(z)dx < 0.
K
Therefore, for n € N we get the sequence {v, }; thanks to construction of v,, it is clear that
when n — oo (that is the diameters tend to zero) we have v,, — u point-wise in Q.

On the other hand, let m < 0 be a constant such that m < inf; u. Since £ is homogeneous,

m is a harmonic function; then, for any W ¢ W ¢ w regular open set, we have
m =mw(z) <uw(x) <u(z), Varew.

Hence, thanks to construction of v,,, we get m < wv,, on K, for any n € N.

Now we observe that we can apply the Dominated Convergence Theorem (remind that
ue L (Q)):

lim . vp ()L p(x)dx = [K u(x) L p(x)dx,

and by point (ii) we get

/ u(x)L*p(x)dz < 0;
thanks to arbitrariness of ¢, we have showed that Lu < 0 in D'(w).
Now we need to show the general case, when u € S(£2).

If we fix z¢ € Q, then there exists a SR open set wy such that 2 € wy € Wy < 2. Now, we

know that there exists a unique solution v € C'(wg) N C*°(wy) of the following problem:
Ly=-1 onuwy
v=0 on dwy (point-wise).

Fix now ¢ > 0 and put u.(z) = u(x) + ev(z) for any z € wy.

Observe that u,v € S(wp) N L

L (wo), then u. € S(wp) N L, .(wo). Moreover, since Lv =

loc

-1<0onwyand v e C*=(wp), we can say that the function v is strictly superharmonic on
wo. Therefore, it is clear that the function u. is strictly superharmonic on wy; thanks to
the first part of the proof, we know that for any x € wy, there exists a bounded open set

W ¢ W < wq such that z € W and Lu. <0 in D'(W). In particular, we have:
ﬁv (u(z) +ev(z))Lp(x)dx <0, VoeCy?(W;R), o>00on W and Ve > 0.
Hence, it is easy to see that as ¢ - 0 we get
L* dx <0,
[ @)L pw)ds

for any ¢ € C5°(W;R), with ¢ > 0 on W; so Lu < 0in D'(W).

Therefore, in correspondence with zg € wy < €2 there exists a bounded open set w € @ ¢

wo € 2 such that 2 € w and Lu < 0in D’(w), that is the claim.
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STEP II We want to prove that Lu < 0 in D'(Q).

Fix ¢ € C§5°(2;R) such that ¢ > 0 on €, and we put K := suppy < Q. In the STEP I we
have showed that for any ¢ € Q, there exists w ¢ W ¢ 2 bounded open set such that z € w
and Lu < 0in D'(w). Itis clear that as z( € €2, we get a collection of bounded open sets
whose union is ©; then we can consider a locally finite partition of unity {p;} in Q as in
the proof of Corollary 3.2.6. Hence, in correspondence to K, we have:

1. suppp; € wj, for any j e N;

2. Y21 pi(x) =1 forevery z € ();

3. in correspondence to K, there exist an integer m and an open set U > K such that
p1(z)+...+ pm(x) =1, Vael.
Now, for any;j € N we put
¢1(2) = p;(e)p(x), forany e,

It is obvious that for any j € N, ¢; € C§°(w;;R) and ¢; > 0 on w;. Then from STEP I we
know that

fw. u(xz) L pj(x)dz <O0.

Therefore we get:

Ame¢MM=meﬁwmm:ﬁymwwémuw@WM=

if(]u(x)ﬁ*wj(m)dm:]i f[]ﬁwvu(x)ﬁ*goj(m)dxs

j=1 J

<y f w(z)L*p;(x)dx <0,
j=17Jwi

hence we have Lu < 0in D'(Q).

Now we can prove an important consequence of these results.

Corollary 3.2.9. Let w be a SR open set and y € w. If u € P(w) n L. (w) such that uw e H(w ~ {y}),

loc

then there exists C := C'(y) > 0 such that

w(z) = Cky(z), foranyxew.

1
loc

Proof. Since u € P(w), in particular we have that u € S(w) n L{, .(w). Thanks to Proposition
3.2.8, we know that Lu < 0 in D’(w). Therefore, since u € H(w ~ {y}), there exists ¢ := ¢(y) > 0
such that

Lu=-cb, inD'(w).
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Since Lk, = —%51, in D'(w) (see (2.3.22)), as in the proof of Theorem 3.2.1, we can prove that

there exists h € H(w) such that
u(z) = Ck(z,y) + h(x), (3.2.5)

for almost every x € w, with C' = ¢V (y) > 0 (note that C'is a positive constant that depends only
on y).
Since u € H(w \ {y}), thanks to continuity we have that (3.2.5) holds for any z € w ~ {y}.
On the other hand, if W is a regular open set such that y € W ¢ W ¢ w, then we consider

the Perron-regularization function uy of u in w. Observe that:
(i) for any z € w\ W, we have x # y and then
uw () = u(zx) = Ck(z,y) + h(z);
(ii) for any x ¢ W, we get
uw (@)= [ u(®a )= [ (Chy(0)+ () ap @) -
ow ow
=C- [ k(a0 +h(@) = Ok )w (@) + h(2).
Therefore, we have showed that
uw (z) = C(ky)w(x) + h(z), forany zxew.
Moreover, we know that
dian}%rwn)_)o uw () =u(x) and diamlé%)_)o(ky)w(x) =ky(z), Vzew;

hence, we get that u(y) = Ck,(y) + h(y) and so (3.2.5) holds on any point of w.

Now, since u, k,, € P(w), we have (see Proposition 3.0.9):
e the function h > 0 on w, because Ck,(z) + h(x) > 0, for any z € w, and h € H(w);

¢ for any z € w, we have

h(z) = u(z) - Cky(z) < u(x),
then h <0 on w.

Therefore, thanks last points we obtain that 2 = 0 on w, and so u(x) = Ck(z,y), for any z € w.

O

Making use of the Proposition 3.2.8, we can prove as in the Theorem 3.2.1 the following

theorems of representation.

Theorem 3.2.10. Let Q be an open set in R, and let w be an open SR set with w ¢ Q. If u €
S(Q) N LY (), then there exist a unique 1 € M*(w) and a unique h € H(w) such that:

u(z) = fw k(z,y)V(y)dp(y) + h(x)  for almost every x € w, (3.2.6)

where k is the Green kernel related to L and w.
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Proof. Since u € S(Q) n L. .(Q), from Proposition 3.2.8 we know that Lu < 0 in D'(Q). In

loc

particular, we have Lu < 0 in D’(w); then, there exists a unique 1 € M*(w) such that Lu = —p
in D' (w).
On the other hand, it is known that £(G(V u)) = —p in D’(w); hence, there exists h € H(w)
such that
uw(z) =G(Vp)(x) +h(xz), foralmosteveryzew,

that is (3.2.6) holds.
In the end, we want to prove that % is unique. Suppose that 1 is a harmonic function on w
such that

u(z) =G(Vu)(z)+¢(x), foralmostevery x €w.
Then, it is clear that ¢(z) = h(z) for almost every z € w; since ¢, h € H(w), thanks to hypoellip-

ticity of £, we get ¢ = h on w. o

Theorem 3.2.11. Let w be an open SR set, K a compact subset of w. Ifu € S(w)nH(w\K)nLL (w),
then there exist a unique p € M*(w) and a unique h € H(w) such that: p(w) = pu(K) < +oo and

u(x) = /w E(z,y)V(y)du(y) + h(x)  for almost every x € w, (3.2.7)

where k is the Green kernel related to L and w.

Proof. Since u € S(w)nLj. (w), thanks to the proof of Theorem 3.2.10, we know that there exist
a unique p € M*(w) and a unique h € H(w) such that (3.2.7) holds.
Now we want to prove that p(w) = u(K), that is u and p have the same support® on w.
Since u € H(w \ K), by (3.2.7) we get L(G(V)) =0in D' (w~N K),andso p=0onw\ K,

that is p(w \ K) = 0. Therefore, we have u(w) = p(K) < +o0, because K c w is a compact set. O

Corollary 3.2.12. Let w be a SR open set and K c w be a compact set. If u € P(w)nH(w~K)nLL (w),

then there exist a unique p € M*(w) such that

u(x) = f k(z,y)V(y)du(y), foralmost every z € w, (3.2.8)
where k is the Green kernel related to L and w.

Proof. Since u € S(w) n L}, .(w), thanks to Theorem 3.2.11, we know that there exist a unique
e M*(w) and a unique h € H(w) such that u(z) = G(Vu)(z) + h(x), for almost every z € w.
On the other hand, we know that u, G(V ) € P(w) (see Proposition 3.1.10), so we put

o(z) =u(z) -G(Vu)(z), foranyuzew.

Observe that h(z) = ¢(z) for almost every x € w; moreover, it is clear that ¢ € H(w), hence
peC=(w).
We want to prove that ¢ = 0 on w. We know that (see Proposition 3.0.9):

3We are considering the harmonic support supp# v of u in w.
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(i) G(Vu)>0onw,then ¢ <uon w;since u € P(w) and ¢ € H(w), we can say that ¢ <0 on w.

(ii) v >0 on w, so we have

o(z) +G(Vu)(z) 20, Vzew.
Since G(V ) € P(w) and ¢ € H(w), we get ¢ > 0 on w.
Therefore, we have showed that ¢ = 0 on w; then h(x) = 0 for almost every = € w, and by

continuity we have h = 0 on w. Hence, we have showed (3.2.8). O

Note that if we prove the following inclusion
S() € Lige (),

then by Theorem 3.2.10 and 3.2.11 we get Theorem B and C.
This last result will be the object of the next part.

3.3 Characterization of Superharmonic Functions
In order to prove Theorem A, we have need to show the following results.

Lemma 3.3.1. Let Q be an open set in RY and w be an open SR set such that w ¢ Q. If u € C*°(w) N
C(w) such that Lu < 0and u > 0 on Q, and k. is the Green kernel relative to L. := L — € (where € > 0
in the hypothesis (HY).) and w, then

u(z) > e /o: ke(x,y)u(y)dr(y) forany x € w. (3.3.1)

Proof. We consider the function v(z) = [ u(y)k-(z,y)dv(y) for any z € w. Thanks to definition
of Green operator, it is clear that v = G.(u), where G, is the Green operator related to £. and

w. Since u € C*°(w) N C(w), we know that v € C*(w) n C(w) is the classical solution of

L.v=-u onw

v=0 on Jw,

(see Lemma 2.3.1).
Hence, we get L.(sv-u) = —eu—(L—¢)u = —Lu > 0 on w. On the other hand, v —u=-u<0
on dw. Now we can apply the Weak Maximum Principle for £. (see Remark 2.2.7), and we get

that u > ev on w, that is (3.3.1). |

We introduce the following notion.

Definition 3.3.2 (Balayage). Let (2 be an open set of RV and Ac Q. If u € S(Q) and u > 0in €,

then we can define the reduced function of u in A in the following way:
R =inf{peS(Q) : p>0inQand p>uin A}.
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We called balayage of u on A the function

R} =R,
that is the lower regularization of R in €.
The balayage has the following properties (see [15] and [57]):
Proposition 3.3.3. Let u € S(Q) be a non-negative function on Q, and let A < Q. Then:
D) 0<RA<uin®;
(i) R2 = winint4;
(i) R? € S(Q) and R e H(Q N A);

(iv) if A c Q then R2 is a potential in Q.

Lemma 3.3.4. Let w and wq be SR open sets such that wy € w and wy is a connected set. If xq € wo and

K < wy is a compact set, then there exists a constant ¢ = ¢(wo, K, xg,€) > 0 such that

u(xg) > C[Ku(y)du(y), (3.3.2)

1
loc

for any u e S(w) N L, (w) and u >0 in w.

Proof. Letu € S(w)n L, (w) with u > 0 in w. We can study the following cases.

loc

(I) Suppose that v = G(f), where G is the Green operator related to £ and w and f € C*=(w) n
C(w), with f >0 in w.

In this case we can apply Lemma 2.3.1, so we get u € C*°(w)nC(w), u>0and Lu=-f <0

in w. From Lemma 3.3.1 we know that

u@o) z¢ [ ke(wo.pu()dv(y) 2< [ k(0. )u(y)dv(y).

Observe that k. (x0, -) is a positive continuous function on w \ {x¢} and a l.s.c. on w, then

u(wo) > = inf ke (0,2) - [ u(y)dv(y),
so if we choose ¢ := e inf g k. (zo,-) > 0, we get (3.3.2).

(IT) Suppose that u € P(w) such that suppyu = A is a compact set contained in w \ {z(} (thatis
u € H(w \ A)). Therefore, applying Theorem 3.2.11, we know that there exist 1 € M*(w)
and h € H(w) such that pu(w) = u(A) < +o0 and

u(@) = [ K@)V (@)du() + h(a).
for almost every z € w and for any z € w \ A.
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Since v € P(w) we can say that h = 0 on w, thanks to Corollary 3.2.12, and so we have
that u(xz) = G(V ) (x) for almost every = € w and for any z € w \ 4; in particular, since

A cw~{zg}, we can say that u(zg) = G(Vu)(xo).

Let ¢ € Cg°(RY,R) be a positive function such that [ ¢(z)dz = 1. For any j € N we put
0;(2) = jNp(ja), forevery z eRY.

We choose ¢ such that supp(p*¢;) Cw~{zo}, for any j € N. The sequence {¢;} is called

approximation of identity on RY, and from a known result of Functional Analysis we have
lim g% ;= (in the sense of distribution).
j‘)OO

Since k(zo,-) is a smooth positive function in w \ {z¢}, we get

Tim [ k(o )V @)AGx 0)@) = [ ko )V (@)du(y). (333)

thatis G(V (1 * ¢;))(20) = G(V ) (zo) = u(zo), as j - oo.

On the other hand, the convolution p * ¢; € C*°(w) nC(@), for any j € N, so from case (I)

we have
GV (uxe))(@o) > e [ GOV(nx ) (@)du(a). (334)
forany j e N.

Now we put
@(y):f k(z,y)dv(z), Vew.
K

It is known that dv(z) = V(x)dz, so if we call A the Lebesgue’s measure restricted to K,
thanks to the symmetry of k we get that ® = G(VA\) on w. From Proposition 3.1.10 we

can say that ® € P(w), in particular ® is L.s.c. in w.

On the other hand, let { f,,} ¢ Cy(w) be a decreasing sequence of positive functions such
that f, - xx inw, as n — co. If we consider the sequence {G(f,)} ¢ C(w), we know that
{G(fn)} is decreasing and G(f,) > 0. From the Theorem of Beppo-Levi, for any = € w,
we get

dim [ k@) fa @) = [ k@),

thatis G(f,) > ® inw, as n — oo, hence ® = inf,, G(f,,) on w.

We want to prove that ¢ is u.s.c. in w, that is

(SupCD), Vaew.

®(x) = inf
(= Jal. (3o

Fixx ewand n € N; let U € U, and ¢ > 0, then there exists y; € U nw such that ®(y;) >

SUpPyrn,, © —t. Therefore we get

sup @ < ®(yy) +t < G(fn)(y) +t < sup G(fn) +t,
Unw

Unw
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then supyn,, ® < supyn, G(fn) +t, so when ¢t - 0 we have

sup ¢ < sup G(fn),

Unw Unw

for any U € U,.
Hence we get

inf [sup®| < inf
Uy \ Unw Ueld,

(sup G(fn)) -G ().

Unw

where the last equality is obtained by continuity of G(f,,) on w. Thanks to arbitrariness

of n € N, we can see that

i () 500

and by arbitrariness of z € w we get that ® is u.s.c. in w. Therefore, ® is a continuous

function on w.

Now, from the continuity of & on w we get:
[ 60 e @ave) = [ ( [ kapVdiee)) o) -
= [ ([ #)av@) Vi e ) -
- [omVWatur )W) — [ 2WIVW)dn). asj > .
On the other hand
[ evm@dne) = [ ( [ kapV)dnm) v -
= [ ([ #n)a@)) Vmdu) - [ 2@V ).

Therefore, we have showed that

lm [ GV @) = [ @@ = [ u@av),
since u(x) = G(V ) (z) for almost every z € w.

Then, by (3.3.3) and (3.3.4) we get (3.3.2).

(III) Suppose that u € P(w) and its support is a compact set in w.

Let W be a regular open set in w such that z¢ € W ¢ W ¢ w; in this case we can consider
the Perron regularization function uy,. Thanks to properties of uy, we know that uyy €
S(w)nH(V) and 0 < uy < uonw. Then, we get that uy € L{. (w) (since u € L], (w)) and

uw € P(w). In fact, if ¢ € H(w) such that ¢ < uy on w, we have ¢ < u onw and so ¢ <0,

since u € P(w).

Moreover, it is clear that the harmonic support of uy is a compact set in w such that
supppuw NW = &, because uy € H(W). Hence suppruw € w \ {x0}, and now we can

apply the case (II) at the function uy:
uw (x0) 2 c/;{ uw (z)dv(x),
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since uy < u onw, we get
(o) > ¢ fK ww (2)dv (). (3.3.5)
We know that when the diameter of W tends to 0, we have uy — u in w, so we can apply

the Theorem of Dominated Convergence and from (3.3.5) we get (3.3.2).

1
loc

(IV) Suppose the general case: u € S(w) N L, (w), with u > 0 on w.

In this case we consider the balayage R%° of u in wy. From Proposition 3.3.3 we know
that 0 < R% < u in w, then R% ¢ L (w); moreover, R“* € S(w), in particular R is a
potential in w, since Wy € w. At last, ﬁ;jo € H(w~wp), that is ﬁ‘;jo has a compact harmonic

support in w.

Then we can apply the case (ITI) at the function R“°, and we get

R0 (z0) > ¢ fK R0 (2)du(z). (3.3.6)
On the other hand, we know that R“° = u(z) for any = € wy, then by (3.3.6) we get (3.3.2).

O

Now we are ready to prove an important result.

Theorem 3.3.5. Let Q be an open set of R™. Then
S() € Lie(9).

Proof. Let u € S(Q) and K ¢ Q be a compact set. We can suppose without loss of generality
that there exists an open SR set w such that K cw cw ¢ Q.

Since u is a l.s.c. function on €2, v is L.s.c. on @; then w attains its minimum m € R on @. Note
that £ is homogeneous, hence u - m € S(w) and u - m > 0 on w. Therefore, we can suppose
u € S(w) such that u > 0 on w.

Now we consider a connected open SR set wy such that wy € Wy € w and K € wy. Let o be
a point in wy \ K such that u(xg) < +oo.

For every n € N, we put

Uy = inf{u,n} onw,

so we have a increasing sequence {u,,} in w such that u,, € S(w) n L]

loe(w) and uy, > 0, for any

n € N, because £ is homogeneous and u is a superharmonic function in w. Moreover, u,, - u in
w,as n — oo.

Then we can apply Lemma 3.3.4:

un(mo)ZCfKun(x)dy(a:), VneN,

and thanks to Theorem of Beppo-Levi and the construction of {u,, }, we get
u(xo) 2 ¢ /K u(z)dv(z),
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therefore we have

1 1
fKu(:c)da::fKu(x)Wdz/(x)gzle}()(V(y))fKu(x)dV(x)S

axl) oo
<sup| —— | ~u(x 00,
yelIg V(y)) ¢ 0

thatisue L{ (). O

loc

As a consequence, we have:

Corollary 3.3.6. Let Q) be an open set of RY. If u e S(Q), then w e L, (Q) and Lu < 0 in D'(Q).

loc

Proof. In fact, thanks to Theorem 3.3.5, we know that if u € S(2) then u € L{ (©2). Now we

loc

can apply Proposition 3.2.8, and so we have Lu < 0 in D’(). m

Therefore, in Theorem A we have showed that (i) = (ii). Now, we want to show that (ii) =

(i) in Theorem A. To this aim, we have need to prove some result.

Theorem 3.3.7. Let  be an open set of RY and y € Q). Suppose that there exists a potential P € P(),
such that P >0 on (.

Then, all potential with harmonic support in {y} are proportional.

Proof. We study the following cases:

(i) Let w be a SR open set such thaty e w cw ¢ Q. If p € P(w) nH(w ~ {y}), in particular we
have that p € S(w) ¢ L{ _(w); then, by Corollary 3.2.9, we get that there exists a constant

loc

¢ > 0 such that

p(z) = cky(z), forany xew.
Since k, € P(w), we can say that p is proportional to a potential on w.

(ii) Let P, and P, be potentials on © such that Py, P> € H(2 \ {y}). We want to prove that P;

and P; are proportional on (2.

Let w be a SR open set such that y € w € @ ¢ Q. Thanks to [57, Theorem 16.4], we know
that there exist a unique p; € P(w) N H(w \ {y}), in correspondence of P;, and a unique

p2 € P(w) nH(w ~ {y}), in correspondence of P, such that:
Pi(z)=pi(z)+hi(x) and Ps(z)=p2(z)+ ha(x),

for any z € w, where hq, hy € H(w).

Since p1, p2 € P(w)nH(w~ {y}), from case (i) we know that there exist positive constants

1, such that

p1(x) = cik(z,y) and pa(z) = cok(x,y) forany z € w.
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Therefore, we get
Py(z) = ¢Py(x) + ho(x) —chi(z), foranyzxew, (3.3.7)

where ¢ = ¢3/c1 > 0. We want to prove that P, = ¢P; on .

We put

hz) ::{ Py(z) - 2Py (x) ifzeQw,

ho(x) —chi(z) ifzew.

Hence, h : 2 - R and we can show that h € H(Q). In fact, h € H(w), since hq, hy € H(w).
On the other hand, P, P, € H(2\ {y}) and y € w, then h € H(Q \ w). Therefore, we have

obtained that A is harmonic on Q.

It is clear that
Py(z) =cPi(x) + h(z), foranyx e

Now, if we prove that i = 0, we get the proportionality between P; and P on (2.

Observe that:

* since P; € P(Q) and P >0 on 2, we have h > 0 on ;

® h=P,-cP <Pyon (), and P, € P(Q2), then h <0 on €.
Therefore, we get h = 0 on Q and so Pz (z) = ¢P;(z) for any z € Q.
m

Remark 3.3.8. Thanks to Theorem 3.3.7, if we suppose that there exists a positive potential on €2,
then we can apply [57, Theorem 18.1], and for any y € €2, we can choose a potential p, € P({)
such that p, € H(Q \ {y}) and the function y — p,(z) is continuous on Q \ {z}, for any z € Q.

Let w be a SR open set such that y € w € @ ¢ Q. From [57, Theorem 16.4], we can say that
there exists a unique p € P(w) n H(w \ {y}) such that

py(x) =p(z) + h(z), foranyxew,

where h € H(w).
We know that there exists ¢ := ¢(y) > 0 such that p = ck(z, y) on w, hence we get

py(z) = c(y)k(z,y) + h(z), forany zew.

As a function of y € w, we can say that ¢(y) is a continuous positive function on w.
Then we have Lp, = —c(y)/V (y)d, in D’(w); in the proof of Corollary 3.2.9 we have showed
that c(y) = é(y)V (y), so we get

Lp, = -c(y)dy, inD'(w).
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Now we can extend ¢ on € to obtain
Lpy =-&(y)dy, inD(Q).

Moreover, we can choose p, such that Lp, = -4, in D'(Q2).
Now, if P € P(2) we know that it has a unique integral representation on 2 (see [57,

Theorem 18.2]):
P(x) = fﬂpy(x)du(y), for any z € , (3.3.8)

where p e M*(Q).
It is easy to prove that

LP=-u inD'(Q).

In fact, for any ¢ € C5°(€2) we have:

(LP,p) = (P, L") = [Q P(2)L*p(x)d = /Q ( fQ py(x)du(y))ﬁ*so(:v)dw=
:fg(fgpy(m)ﬁ*w(w)dw)du(y)=—st0(y)du(y)=<—u,s0>,

hence we get LP = —pin D'(Q).

Proposition 3.3.9. Let Q be an open set of RYN. If uy,us € S(Q) and uy = ug ae. on Q, then
ui(z) = ug(x) for any x € Q.

Proof. Let U be a regular connected open set such that U ¢ U c Q. Since u1,us € S(2), they are

Ls.c. on U; then it is clear that the following set is not empty:
yZ:{@GH(U) : QDSUiODU}¢®,
for i =1,2. Fix i € {1,2}, we want to consider the greatest harmonic minorant of u; in U

h; == sup ¢ € H(U).
peF;

If h; = u;, for i = 1,2, then we have h; = hy a.e. on U. Hence, by continuity, we have h; = hy on
Uandsou; =usonU.

If there exists i € {1,2}, for example ¢ = 1, such that y # u; on U, we get us —h1 >0 on U;
moreover, u; —hy € P(U). In fact, if p €e H(U) s.t. ¢ <ug —hy on U, then we get ¢ + hy < hy and
sop<0onU.

Therefore, we can apply Theorem 3.3.7 and thanks to Remark 3.3.8, we can say that v, — hy

has a unique integral representation as in (3.3.8) on U:
ui(x) —hi(x) = /[;py(x)d,ul (y), foranyzeU,

where p; € M*(U).
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On the other hand, also the function uy - hs is a potential on U, hence it admits a unique

integral representation on U:

uz(z) — he(x) = fUpy(x)duz(y), foranyz e U,

where oy € M*(U).
Now, we have seen in Remark 3.3.8 that L(u; — h;) = —u; in D'(U), for i = 1, 2. Since uy = us

a.e.onU, we get
—p1 = L(ug —hy) = L(uy) = L(uz) = L(ug = ha) = —pa,

then 1 = o on U.

Therefore we have that u; — us = hy — ho on U, but uy = us a.e. on U, then hy () = ho(z) for
almost every x € U; thanks to continuity we get h; = ho on U, s0 u; =us on U.

In the end, since the regular connected open sets U in (2 are a covering of 2, we get u; () =

ug(x) for any x € Q. i

Now we are ready to prove the last result of this section.

Theorem 3.3.10. Let 2 be an open set of RY. If u € Li (Q) such that Lu < 0 in D'(Q), then there

exists a function v € S(Q) such that
u(z) =v(x), foralmost every x € (L.

Proof. Let w be a SR open set such that w ¢ @w ¢ Q. From Theorem 3.2.1 we know that there
exists € M*(2) such that:

u(z) = fw k(z,y)V(y)du(y) + h(z), for almost every z € w,

where h € H(w) and k is the Green kernel related to £ and w.

For any w ¢ W ¢ €2 SR open set, we put
V() = [w k(z,y)V(y)du(y) + h(z), forany x € w.
Now we construct the function v : @ -] — oo, +00] such that
v(z) :==v,(x), forany x ew and for any SR open set w. (3.3.9)

Since the SR open sets w € w ¢ §2 are a covering of €2, we want to show that (3.3.9) is well posed.
If wy, wo are SR open sets in €2 such that wy; Nw;y # @, we have v = v,,, on w;, for i = 1, 2; since

u =1v,, a.e. onw;, for i = 1,2, we get that
Uy, () = Uy, (z), for almost every x € wy Nws.

It is clear that v,, € S(w), for any SR open set w ¢ w ¢ Q. Then, thanks to Proposition 3.3.9, we
have that

Vooy () = Uy (x), VYV ews Nwa,
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so we can say that (3.3.9) is well posed on €.
In the end, since v € S(w), for any SR open set w in ), we get that v € S(£2). Then, we have
showed that there exists a function v € S(Q2), such that u(z) = v(x) for almost every x € 2. This

completes the proof. o

78



Chapter 4

Harnack Inequality in

Doubling-Poincaré spaces

In this chapter we prove a non-homogeneous invariant Harnack inequality in the setting of dou-
bling metric spaces. We consider a real second-order PDO in divergence form on R" associ-
ated with a family of vector fields.

In the first section we will give some review on control distances, length spaces and dou-
bling measures; then we will study the notions of Sobolev spaces (related to a family of vec-
tor fields) and weak solutions in W'-sense. Finally, in the last section we will prove the non-
homogeneous invariant Harnack inequality, using the Moser iterative technique (see e.g. [49]),

with consequent Holder-continuous estimates.

4.1 Recalls on control distances, length spaces and doubling

measures

In order to prove the main result of this chapter, we need to give some recalls about the notions

of control distances, length spaces and doubling measures.

4.1.1 The control distance

Let X = {X;,...,X,,} be a family of locally Lipschitz-continuous vector fields in Euclidean
space R™Y. We recall the definition of control distance (or Carnot-Carathéodory distance) dx

associated with X. In the sequel we shall also briefly use the term X-distance for dx.

First we fix a definition: we say that an R"-valued continuous curve ~ connects z and y if

«v is defined on some compact interval [a, b] (with a < b), and y(a) = z and y(b) = y.
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We say that a piece-wise C* curve v : [0,1] = RY is an X-trajectory if

Y(t) = > a;(t) X;(y(t)) foralmostevery ¢ € [0,1], (4.1.1)
j=1
for suitable real-valued functions a4, ..., a,, on [0, 1], and

1/2
fx(7) = sup (z|aj<t>|2) < o0,

te[0,1]
In this case, for any z,y ¢ R, we set
dx(z,y) :=inf {EX (7) | ~ is an X-trajectory connecting « and y} (4.1.2)

It is understood that, whenever the above set in curly braces is empty, one sets dx (z,y) := co.
To the contrary, if (for every z,y € R") this set is never empty, we say that R" is X-connected.

In the latter case, dx is a genuine distance on RV,

Remark 4.1.1. The above definition of dx is equivalent to the following one: we say that a

piece-wise C' curve «: [0,7] = R (with T > 0) is X-subunit if (4.1.1) holds true, jointly with

1/2
up (z|aj<t>| ) <

te[0,1]

Then it can be easily proved that!
dx(x,y) = inf {T ‘ 7:[0,7] - RY is an X-subunit curve connecting = and y} (4.1.3)
With this useful characterization of dx one obtains that, if 7 : [0, 7] - RY is X-subunit, then
dx (v(t1),v(t2)) <ta—t1, whenever0<t; <to <T. (4.1.4)

It is less obvious that a piece-wise C! curve v : [0,7] - RY is X-subunit if and only if (for

almost every ¢ € [0,7'])
(0.6 BGOONE° v Eer”

The following important fact holds true:

Remark 4.1.2. Let (M, d) be a metric space; we say that a curve v : [a,b] — M is d-rectifiable if

La() = sup{ S d(v(tj-1),7(t;)) | {a=tg <ty <+ < t, = b} is a partition of [a, b]}
j=1

I The cited equivalence is trivial: if v : [0, 7] - RY is X-subunit, then
pi[0,1] — RN, pu(t) = (T't)
is an X-trajectory with £x () < T'; viceversa, if v : [0, 1] - RY is an X-trajectory (with £x () # 0), then
pe[0,T]—RY, u(t) =~(t/x ()

is X-subunit, if one takes T" = £ x (7).
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is finite. Then (M, d) is said to be a length space if, for every x,y € M, one has
d(z,y) = inf {5(1(7) ’ v [a,b] = M is a continuous d-rectifiable curve connecting x and y}

It is part of the definition of a length space to require that the set in the above rhs is always
non-void.
Going back to X-distances, it is not difficult to show that® if RY is X-connected, then

(RN, dx) is a length space, i.e.,

dx(z,y) = inf {édx (fy)‘fy : [a,b] = RY is continuous, dx-rectifiable and connects z, y} (4.1.5)

4.1.2 Known facts on length spaces

For the recalls in this section, see e.g., [20, Chapter 1]. Throughout this section (M, d) is a
length space; in the sequel it is understood that M is equipped with the metric topology. From
the very definition of £4(7), it is not difficult to show the additivity property of ¢4: if 7 is
d-rectifiable, then

La(y) = ng(’ﬂ[ti,],ti])a (4.1.6)
i=1

for any partition {a =ty < t; < -+ < t, = b} of [a,b]. We also have the following lower semi-
continuity property: if 7,7, : [a,b] = M are curves such that ~,, point-wise converges to ~,
then

ligior.}ffd(’yn) >Laq(7). (4.1.7)

As for the Riemann integral, we have the following mesh property of {4 (a consequence of the
definition of a length space and of the Heine-Borel theorem): if v : [a,b] - M is continuous
and d-rectifiable, for every ¢ > 0 there exists d(¢) > 0 such that, for any partition {a =ty < t; <

-+ <ty = b} of [a,b] with SUD ¢ jcr, t; —tj—1] < 0(e), then
() - 3 d0)A)) <= @19)
In the sequel, we employ the usual notation for the open ball of centre = € M and radius r > 0:
By(z,r)={ye M : d(z,y) <r}.
Whereas in an arbitrary metric space this is not always the case, in a length space we have

By(z,r)={ye M : d(z,y)<r} and 0OBy(z,r)={yeM:d(x,y)=r}.

2The inequality dx (x,y) < g « (7) (if v is as in the rhs of (4.1.5)) is a trivial consequence of the triangle inequality;

vice versa, if v : [0,7] - R¥ is X-subunit and connects = and y, one uses the inequality
n @14 1
2dx (v(t-1),7(8)) < Yt —tj) =T
j=1 J=1

The latter (besides showing that an X-subunit curve is dx -rectifiable) easily implies that the infimum in the rhs of

(4.1.5) is less than or equal to the rhs of (4.1.3), which is dx (z, y).
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Indeed, it suffices to show that if d(x,y) = r then there exist y,, € By(z,r) such that y, — y.
To this end, one takes d-rectifiable curves 7, : [an,b,] - M connecting = and y, and such that
lim,, £4(vn) = d(z,y) = r. From the Intermediate Value Theorem, there exists 7, €]a,, b,[ such

that
1

n—
d(z,yn(70)) = T,

n
The choice y,, := 7, (7, ) does the required job, as

(4.1.6)
rabn]) = La(ym) — 1.

r< d(LE, yn) + d(yna y) < Zd(f}/n“an,rn]) + gd(r)/n

We now provide some recalls on arc-length parameterizations. We let v : [a, 3] — M be a

continuous d-rectifiable curve with ¢4(+y) > 0. Let us consider the map

[o, 8] 5t = f(1) 1= La(V[as)-

By the additivity property (4.1.6) we infer
f(t2) = F(t1) = La(Vis001)5 fora<t; <ty <p,
which has the following consequences:
¢ fis non-decreasing;
o if f(t1) = f(t2) theny(t1) = y(t2);

* fis continuous (for the proof of this fact, one may benefit of the mesh-property (4.1.8) of

0q).
All these properties entitle us to set the following definition:
00, la()]— M, s T(s):=7(t(s)),
where, for any s € [0,£4(7)], t(s) € [a, 5] has been chosen in some way so that f(¢(s)) = s, i.e.,
la(Vfatsn) = -

The way ¢(s) is chosen does not affect the definition of I'(s). We can also assume that s — ¢(s)

is non-decreasing. It is not difficult to prove that I is continuous; this follows from
d(T(s2),I(s1)) <82 —81, for0<sy<sg<ly(y). (4.1.9)
The additivity property (4.1.6) also ensures that

(Tl 1) = La( Moy acean ) = 52 = 51, (4.1.10)

whenever 0 < 51 < s < £4(7) (for the first equality see [20, eq.(5.13) p.22]). We say that I' is the
arc-length parameterization of . Clearly I' is d-rectifiable (due to (4.1.9)).

We have the following compactness result:
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Lemma 4.1.3. Let (RY,d) be a length space. Suppose v, : [, 3] - RY is a sequence of continuous

curves satisfying the following properties:
1. there exists M > 0 such that £4(~y,,) < M, for every n € N;
2. there exists a compact subset of RN containing v, ([cv, 8]), for every n € N.

Then there exists a subsequence (ny,), and re-parameterizations ¥, of vn,,, all defined on [0,1], such

that, as k — oo, the sequence 7, uniformly converges on [0, 1] to a continuous d-rectifiable curve 7.

Indeed, we first extract a subsequence, which we still denote by ~, such that v, («) converges
as k — oo; then we consider the arc-length parameterization I';, of v, and we re-scale it by

setting

;7/6(5) = Fk(sgd(ryk))a S € [Oa 1]

It is then easy to show that the family {7} is equi-bounded and equi-continuous (the latter

follows from (4.1.9)); an application of the Arzela-Ascoli Theorem proves the lemma.

4.1.3 Doubling spaces

We assume that (M, d) is a metric space equipped with a measure satisfying the following

global doubling assumption:

(D) there exists a measure p on M such that (M, d, p1) is a doubling metric space, that is, there
exists A > 1 such that

w(Ba(z,27)) < Ap(Ba(z,7)), for every x € M and every r > 0. (4.1.11)

Since d will always be understood, we shall also frequently use the notations B(z,r) and B, (x)

to denote the d-ball B4(x, 7). Moreover, as it is customary, we set A = 29 ie.,
Q :=log, A,

so that (4.1.11) becomes (B, (7)) < 29 ju(B,(x)). For the sake of future references, we now

state some generalizations of (D). First, an iteration argument gives®

Q
u(B(z, R)) £2Q(§) w(B(x,1)), foreveryze M and 0<r < R; (4.1.12)
r
we can also allow for different centres, as long as a ball is contained in the other:*

w(B(y,R)) < 4Q(§)Q w(B(z,1)), whenever B(z,r) ¢ B(y, R); (4.1.13)

3This follows by iterating (4.1.11) n times, with n € N such that n — 1 < logy(R/r) < n, so that 7/2 < R/2" < r,

whence u(B(x, R/2™)) < p(B(z,r)) and 2" < 29 (R/r)<.
4The triangle inequality gives B(y, R) ¢ B(x,2R) so that (4.1.13) follows from (4.1.12).
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and we can also improve the latter for a more general geometry of the balls involved:’

R\@
w(B(y,R)) < 8Q(—) w(B(z,r)), whenevery e M,z € B(y,R)and0<r < R. (4.1.14)
r
As a consequence of (D), we infer that (M, d) is a homogeneous space in the sense of [24,

Ch.III], which amounts to the following property:

Corollary 4.1.4. In the doubling metric space (M, d, j1), any d-ball By(x,r) can contain at most 189
pair-wise disjoint d-balls of radius r/2. Furthermore, there exists an integer n < 189 such that, for
every x € M and every r > 0, By(x,r) contains at most n points x,. .., x, such that d(z;,z;) > r/2
for every i + j.

More generally, if n is as above, for any h € N and any x € M and r > 0, Bq(x,r) contains at most

n" points xy,...,x,n such that d(z;,x;) > r/2" for every i + j.

Indeed, let us choose i € {1,...,n} minimizing the measures of B(x1,7/4),...,B(zy,7/4); let

us also observe that these balls are pair-wise disjoint and all contained in By (x,r+7/4), so that

p(B(wy,r[4)) + -+ p(B(wn,r/4)) < p(Ba(w, 7 +1/4)) < p(B(wi,9r/4)).

By the minimality property of i, the above lhs is greater than nu(B(z;,r/4)), whereas (due to
(4.1.12)) the far rhs is smaller than 189 u(B(x;,7/4)). This prescribes the bound n < 18%9. The

last statement of the corollary can be proved by induction on £ (see [24, p.68]).

Remark 4.1.5. As a consequence of the last statement of Corollary 4.1.4, it easily follows that
any bounded set in the doubling metric space (M, d) is also totally-bounded: indeed, if ¢ > 0, given a
ball By(z,r) we chose h > 1 such that 7/2" < ¢ so that (with the notation in the cited corollary

relative to the ball By(z,r))

By(z,r) € ULy Ba(x;,r/2") € UL Ba(aj,e).

414 The segment property

In the sequel we assume that Euclidean space R is equipped with the structure of a length
space, which we occasionally denote by (M, d) to preserve the taste of general metric-space
theory, which is also endowed with the structure of a doubling metric space (M, d, 1) by means

of a measure 4, and (M, d) further satisfies the following topological assumption:

(T) the topology of the metric space (RY,d) coincides with the usual Euclidean topology of

RY, and (R, d) is a complete metric space.

Remark 4.1.6. Under all the above assumptions we claim that a set A ¢ RY is compact (in the

Euclidean topology) if and only if it is closed and bounded in (RY,d). Indeed, since the Euclidean

5The triangle inequality gives B(x, R) < B(y,2R) so that (4.1.14) follows from (4.1.13).
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topology of RY coincides with the metric topology due to (T), A is Euclidean-compact iff it is
compact in the metric space (R", d); since the latter is complete again by assumption (T), A is
compact in (R, d) iff it is closed and totally-bounded in (R, d); the claim now follows from

Remark 4.1.5.

Arguing analogously, one can prove that a set A ¢ RY is bounded in (R", d) if and only if it

is bounded in the Euclidean metric.

From the last assertion we infer that RY is unbounded wrt d; this easily shows that
B(z,7)\ B(z,\r) + @, VaeRY, >0, Ae(0,1). (4.1.15)
We have the following remarkable property:

Theorem 4.1.7 (Segment property). Let RY be equipped with the structure of a doubling metric
space (M, d, p), which is also a length space, and it satisfies the topological assumption (T).

Then, for every x,y € RY, there exists a continuous d-rectifiable curve v : [0,1] - RY connecting

x and y, with £4(v) = d(x,y) and such that
d(z,y) = d(z,y(t)) +d(~(t),y), Vite[0,1]. (4.1.16)

Proof. Givenz # ywesetr :=d(z,y). By the definition of a length space, there exists a sequence
Yn 1 [0,1] = RY of continuous d-rectifiable curves connecting « and y such that lim,, £4(,) = .

For large n and for any ¢ € [0,1] we have

2r 2 Lq(vn) 2 d(z, 70 (1)) + d(7(t),y) 2 d(@, 0 (t))-

This shows that 7,,([0,1]) € By(z,2r), and the latter is a compact set in the Euclidean RY
(due to Remark 4.1.6). We can apply Lemma 4.1.3 and infer the existence of a sequence {1},
(obtained as re-parameterizations of some subsequence {7y, }x) uniformly converging to a

continuous d-rectifiable curve ¢ on [0, 1]. From (4.1.7) we get

d(z,y) <lq(?) < lilgninfﬁd(d)k) = lilgninfﬁd(’ynk) =r=d(z,y).

Finally, from the additivity property (4.1.6) we get

d(z,y) <d(z, ¥(t)) +d(¥(t),y) < La(Plo.) + La(Pl1y) = Ca(Vljo1)) = d(z,y).

This proves (4.1.16), ending the proof. O
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Remark 4.1.8. Using (4.1.10), it is not difficult® to show that the arc-length parameterization
I'(s) of the curve y(t) in Theorem 4.1.7 has the following properties:

[':[0,d(z,y)] = RY is a continuous d-rectifiable curve connecting x and y satisfying:
d(z,y) =d(z,I'(s)) +d(I'(s),y), foreveryse[0,d(z,y)]; (4.1.17)

d(T(s1),T(s2)) = éd(F|[5hS2]) =s9—s1, foreveryO<sy<sy<d(x,y). (4.1.18)

Remark 4.1.9. Any d-ball is a John domain (for the general definition see e.g., [53, Section 9.1]).
More precisely, given an arbitrary d-ball B(y, r), for any = € B(y,r) we consider the curve I'(s)

as in Remark (4.1.8). For any £ ¢ B(y,r) we have

R<d(y,€) <d(y,I'(s)) +d(I'(s),£),
so that
d(1(5),€) > R=d(y,1(5)) > d(x,y) - d(y,T(5)) “=7 d(@,1()) = d(0(0),1(5)) “= 5.
This gives
distd(F(s),RN N B(y,r)) = inf d(T(s),&)2s, Vsel0,d(z,y)],
§¢B(y,m)
which ensures that B(y,r) is a John domain.

Finally we have the following useful result (see Di Fazio, Gutiérrez, Lanconelli, [30]):

Theorem 4.1.10 (Global reverse doubling). Let the assumptions of Theorem 4.1.7 apply.
There exists § € (0,1) (only depending on the doubling constant Q) such that

w(Ba(z,r)) <6 w(Ba(z,27)), forevery x e RY and r > 0. (4.1.19)

Proof. Let1 <n <20 <2andletye B(z,20r)~ B(x,nr) (see (4.1.15)). If o > 0 is smaller than
min{2 - 26,7 -1} <1 wehave B(y,or) c B(x,2r) \ B(z,r). From (4.1.13) we get

u(B(x,21)) 2 p(B(z,7)) + w(B(y,0 7)) 2 p(B(x,r)) + 27%(o/4)% p(B(x,2r)),

proving (4.1.16) with the choice § := 1 - (¢/8)%. O

®The analogue of the segment property holds for I" due to the chain of inequalities:

d(z,y) <d(z,T(s)) +d(T(s),y) < €a(T[0,s]) + £a(Lls,az,)]) = £a(T(0,d(z,y)]) = £a(T) = La(y) = d(z,y).
Moreover one has
d(z,y) <d(z,I'(s1)) +d(T(s1),T(s2)) +d(T'(s2),v)
<la(T0,617) + La(TLsy,501) +La(Dlsg,d(a,y)]) = £a(T) = d(z,y),
so that
d(z,y) =d(z,T'(s1)) +d(I'(s1),T(s2)) +d(T'(s2),y) ==a+b+c
d(z,y) =La(T10,5,7) + €a(Tsy,507) T a6y d(z,y)]) = A+ B +C.

Since a < A, b < B and c < C, the latter are all equalities and in particular d(I'(s1),I'(s2)) = £a(I'[s; s5]) = 52 = 51.
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4.2 The assumptions on the operator

In this short section we fix the assumptions on the operators that we shall consider through-
out the sequel. We assume that £ is a divergence-form operator on RY (with nonnegative
characteristic form, possibly degenerate) under the following form

Z

’L]l

V(x) (V(x )a;;(z) 7) 4.2.1)

where a; ; = a; ; are measurable functions (for every i, j < N) with A(z) := (a; ;(x));,; positive
semidefinite for every x ¢ RV, and V > 0 is a C' function on RY. Due to the low regularity of
the coefficients of £, we shall obviously consider solutions and sub-/super-solutions of Lu = f
in an appropriate weak sense that will be specified in the sequel.

Attached with £, we have a natural (Borel) measure, namely
dp(z) =V (x)dz, (4.2.2)

where dz denotes the Lebesgue measure on RY. In many of the following results, the C*
assumption on V' may be relaxed, requiring V' to be a locally bounded and measurable func-
tion. Next we assume that the possible degeneracy of the matrix A(z) be controlled by well-
behaved vector fields, in the following sense: we assume that there exists a family of locally
Lipschitz-continuous vector fields X = {X;,..., X,,} on Euclidean space RY, and two con-

stants A, A > 0 such that
Z (Xj(x),€)? < (A(2)&,€) <A i Xj(x),£)? Vo, eRY. (4.2.3)

Finally, we make our assumptions on the X -control distance: we assume that R is X -connected
(so that (RY,dx) isa length space, see (4.1.5)), and the associated X-distance dx satisfies the

following assumptions.

(T) The topology of the metric space (R", dx ) coincides with the usual Euclidean topology of

RY, and (R¥,dx) is a complete metric space.

For brevity, we shall write d instead of dx.

(D) If p1 is the measure (4.2.2) associated with £, then (RY,d, ;1) is a doubling metric space,
that is, there exists @) > 0 such that

w(Ba(z,27)) < 29 u(Ba(z, 7)), for every x ¢ RY and every r > 0. (4.2.4)

The ball By(x,r) will be denoted indifferently by B(z,r) or B, (x). With no restrictions
on the validity of (4.2.4), we shall assume that ) > 2.

(P) The following global Poincaré inequality is satisfied: there exists a constant C'p > 0 such that,

forevery z € RN, r>0and every u which is Clina neighborhood of By, (x) one has

| AN I

du<Cpr ][ X | dp. (4.2.5)
Ban(a)

2r (2
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Here 41 is as in (4.2.2), and we throughout use the following notations:

1
Cldy=z —— id , UB (2 ::][ ud ,
Jgr(w){ A= B @) Jo U 5@ Jp

and [Xul|:= /272 [X;ul.

Remark 4.2.1. Condition (4.2.3) has been introduced by Kogoj and Lanconelli in [65], and the
operators L satisfying it have been called X-elliptic. Meaningful examples of operators satis-
fying the assumptions above are contained in [52, Section 6.1] by Gutiérrez and Lanconelli,
also comprising operators previously considered by Franchi and Lanconelli [40, 41]. For other
examples see also [92, Section 1].

The role of the density I comes from the need to allow for second order operators coming
from applications to Lie groups; indeed, one can find in [5, Example 1.1] relevant examples
of operators under the form (4.2.1), where V' # 1 is the density of the Haar measure of a Lie
group G, and X;,...,X,, is a family of generators of the Lie algebra of G. The same kind of
operators (coming from Lie group theory) have also been investigated in [1, 7].

A set of hypotheses similar to ours is considered by Kogoj and Lanconelli in [65, 66], where

scale-invariant Harnack inequalities for the homogeneous equation Lu = 0 are obtained.

Remark 4.2.2. Due to assumptions (T) and (D), we know that the segment property in Theorem
4.1.7 and the reverse doubling property in Theorem 4.1.10 hold true for our space (RY, dx,du),

and the latter is a homogeneous space in the sense of Corollary 4.1.4.

4.2.1 A Poincaré-Sobolev inequality

Arguing as in [53], starting from assumption (P) one can prove the following result, a global

Poincaré-Sobolev-type inequality:

Lemma 4.2.3. Let the assumptions in Section 4.2 be satisfied. Let us fix throughout the notation

_ 2@
o3

Then, there exists a constant C (only depending on the doubling constant Q in (4.2.4) and on the

q: (4.2.6)

Poincaré constant C'p in (4.2.5)) such that

. 1/q 1/2
w-up | du|] <Cr ][ Xufdu| | 427
(]g,.(x) ‘ B (v) /~L) ( Bm,,.(m)| | M) (4.2.7)

for every x € RN, r > 0 and every u which is C" in a neighborhood of Bio, (7).

Proof. This follows by arguing as in [53, Theorem 5.1, p.22]. We remark that, in order to use
the arguments in [53], some results on the maximal function in metric spaces are required (see

Theorems 1.8 and 2.2 in [55]). O

88



4. Harnack Inequality in D-P spaces 89

Remark 4.2.4. Inequality (4.2.7) can be improved to a genuine Poincaré-Sobolev inequality, that
is with B, (z) in place of By, () in the right-hand side, by arguing as in [53, Corollary 9.8]. To
this end, however, it is also crucially required to invoke (together with the segment property
(4.1.16)), the fact that any d-ball is a John domain (see Remark 4.1.9). Since we do not need
all of this machinery, and only Lemma 4.2.3 is needed, we shall not further improve the latter

lemma.

As it is expected, Lemma 4.2.3 allows us to obtain a (global) Sobolev inequality, given in
the next result. First we fix a notation: if y is as in (4.2.2), given any p > 0, any measurable set

AcRY and any measurable function u on A4, we set

1/p
Juull Loy :=( fA |u|pdu) and  Jul 3 (a) ;=( ]{4 |u|pdu)

When A4 is understood, we shall also use the notations (resp.) |ul, and [u];.

1/p

Theorem 4.2.5 (Global Sobolev inequality). Let the assumptions in Section 4.2 be satisfied. Let ¢
be as in (4.2.6). Then, there exists a constant C (only depending on the doubling constant Q in (4.2.4)
and on the Poincaré constant Cp in (4.2.5)) such that

Cr

w(Bz.r))e | Xul 2 (B2, (4.2.8)

[ulza(B(ry) <
(B(z,r)) (B

lulZa(Bmy) € CrIXulT250m) (4.2.9)

for every x € RN, r > 0 and every u € C3 (B(z,7)).
Finally, if Q ¢ RY is a bounded open set, there exists a constant C () > 0 such that

|ullLaay < C(Q) [ Xu| 120y, foreveryue C&(Q). (4.2.10)

Proof. Let z,r,u be as in the assertion. By trivially prolonging u outside B, := B(z,r), from
Holder inequality one has

. ( p(Br)
L(Bsy)  \ u(Bay)

From the reverse doubling inequality (4.1.19) one gets

N(B%) 1/
o,y < T u -

2Cr :U/(B2r)
_§1-1/q 11(Bao )1/2 ||XUHL2(BQOT)

1-1/q
) HUHL‘I(BT(I))-

|v]Lam,) < ”U —UB,,

s, Oy @27)

(we use u € Cg (B,), the doubling condition and p(Bsg,) > p1(B,))

2Q/a+1 M(Br)l/q
=577 u(B,)P

This is (4.2.8) since 1/2 - 1/¢q = 1/Q. The latter identity also shows that (4.2.9) follows from
(4.2.8). Finally, from Remark 4.1.6 we know that Q (which is bounded in R”) is also bounded
in (R, d), so there exists B(0,7) containing Q (with r = r(Q)); if u € C3(£2), then it can be

I Xu] 28,y

trivially prolonged to a function in C§(B(0,7)). Thus (4.2.10) follows from (4.2.8). i
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4.3 X-Sobolev spaces and /!-weak solutions for £

As is usually done when dealing with X-control distances, we need to consider the appro-
priate X-Sobolev spaces. We tacitly understand that the assumptions in Section 4.2 on X =
{X1,...,X,}, pand d = dx be satisfied. L? spaces are meant wrt the measure p in (4.2.2). We
also assume throughout this section that 2 is a fixed open subset of R .

Let j € {1,...,m} and let us define the formal L?-adjoint of X; (as a linear first order

operator) as the unique operator X (possibly containing first and zero order terms) such that

. _ * oo (N
ANjo¢du—AN¢X]wdu, v, € O (RY). 43.0)

Since any X is locally Lipschitz-continuous and since the density V' of du(z) = V(z)dx is
1 * . . 2 .

C", X} is (uniquely) well-posed. Then we recall that, given u € L*(2) and j € {1,...,m}, we

define X;u (in the weak sense) whenever there exists a function ¢; € L?(Q) (denoted by X;u)

such that
[wosdu= [ uXjods, v yeCE®Y). (432)

Throughout the sequel, we always understand that the components of Xu = (Xiu,..., X;mu)
are meant in the above weak sense. As usual, [Xu| = \/X7; |X;ul*>. To avoid cumbersome

notations, we write | Xu|» in place of the L?-norm of |Xu/.

Definition 4.3.1. We define W!(Q, X) as the vector space of the functions u € L?(2) such that

X;u exists and belongs to L*(Q2), forany j = 1,...,m. On W!(Q, X') we consider the norm

lullw = \/lul3 + [ Xul3.

We denote by Wl (€2, X) the set of the functions u belonging to W' (', X), for any open set
Y whose closure is a compact subset of .

Finally, we denote by W (2) the closure of Cj(2) wrt | - 1. We write W' (Q) shortly for
W1(Q, X), and W! whenever (2 is understood. The same for W or W, ..

Clearly, | - || is a norm induced by the scalar product
(u, v)p ::/qudu+/QZXqujvd,u, u,v e WHRQ).
j=1

On W! we shall also consider the equivalent norm |u|2 + | Xu||2. By an abuse of notation, the
latter will also be denoted by || - |y :.
It is a simple exercise to check that (W'(€2, X),| - |w) is a Hilbert space, hence the same

is true of W (Q) with the induced norm.
Remark 4.3.2. A profound result (of Meyer-Serrin type) is that
C=(Q)n W (Q, X) is dense in (W(Q, X), | - |wr).
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This is proved by Garofalo and Nhieu in [48] when p is Lebesgue measure. In our case du =
V dz, the same fact holds true, due to a result by Franchi, Hajtasz and Koskela [39, Section 3]

where measures p of our form are considered.

Proposition 4.3.3. Let ) be a bounded open set. Then the | - |y norm on W () is equivalent to
lulws = 1 Xul2,  uweWs(Q), (4.33)

and there exists C'(2) > 0 such that

Jull2 < C(Q) [Xula, VueWEHQ). (434)
Proof. 1f u,, € C§(Q) is a sequence converging to u in W', we have

a1 (4.2.10) g1 ,
lunlla < (u(E))727 Junlly < (u(€2)) =0 C(Q) | Xun|2 = C°(Q) | Xun2-

By letting n — oo we infer ||ull2 < C'(Q) [ X u|2, and the proof is complete. m

Theorem 4.3.4 (W -Sobolev and W!-Poincaré inequalities). With the same constants C,Cp as in

(4.2.9) and in (4.2.5), we have

HUHZQ(BT(;E)) <Cr HXUHEZ(BT(JC)); (4.3.5)

forany x e RN, r > 0 and any v € Wi (B,(z)). If @ ¢ RY is an open set, we have

AN R

whenever By, (x) c Q, and for every u € wWi(Q, X).

du<Cpr ]g 1 Xuldn, (4.3.6)

2r

Proof. 1If u e Wi (B,(x)) and u,, € C}(B,(x)) is a sequence converging to u in W, from (4.2.9)
applied to u, — u,,, and the fact that Xu, - Xu in L?, we infer that (uy,), is a Cauchy se-
quence in LY. Since u,, — u in L?, we get u, — win L? as well, so that (4.3.5) follows from
a density argument from (4.2.9). As for (4.3.6), one can argue analogously, by using a se-
quence u, € C* n W() converging to u in W' (see Remark 4.3.2), and using the fact that

[ Xun = X Ta(py, 2y < X Un = Ktim| 25y, () D

The following fact will be extremely relevant for the proof of the Harnack inequality:

Remark 4.3.5. The following cut-off argument has been proved (crucially, for our purposes) by
Kogoj and Lanconelli in [66, Theorem 10], under the same assumptions that we have done for
the metric d = dx (see Section 4.2):

Given any xo € RN and any 0 < Ry < Ry < oo, there exists n € W} (Br, (o), X ) such that

1. 0<n<1,n=1o0n Bg,(x0), nis compactly supported in Br,(xo);

2. |Xn|< RﬁRl almost everywhere on Br, (o).
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For the latter inequality, it is required the crucial estimate |Xd(zo,-)| < 1 (a.e.) first proved by
Franchi, Serapioni and Serra Cassano [44, Proposition 2.9]; for the existence of cut-off functions

in are particular cases see [23, 41, 75].

In the sequel 2 will always denote an open subset of RY. Moreover, the assumptions of
Section 4.2 hold true, and £ is the operator in (4.2.1).
We consider the bilinear operator L : C1(Q) x C}(92) — R defined by

L(u,v) := /;2 (A(I)V’LL(LE), Vv(:v)) dp(x), ueCH(Q), veCH(Q). (4.3.7)

Here A(z) = (a;,j(x));,; is the symmetric matrix associated with £, and 4 is as in (4.2.2). From

our assumption (4.2.3) and due to A(z) > 0 for any z, we get

(4.2.3)
(AVu, Vo)| </ (AVu, Vu) -/ (AVo, Vo) < A|Xul- X,

so that |L(u,v)| < A[Xul2 |Xv|2 < Alulw: |v|w,. Hence, by density, L can be (uniquely)
prolonged to an operator
L:WHQ) x W} (Q) — R.

We fix once and for all a function
geLP(Q2), withp>Q/2. (4.3.8)
We consider the linear operator F, : Cj(£2) — R defined by

Fy(v) = /Q vgdu(z), veCy(Q). (4.3.9)

If  is bounded, from the Sobolev inequality (4.2.10), we get’

Fy @) < 1ol Iyl < C@Q0) ol gl < C(2.Qp.9) Xl
so that, again by density, F; can be (uniquely) prolonged to an operator
F,: Wy (Q) —R.
Definition 4.3.6 (W !-solution for £). Let Q2 ¢ RY be an open set, and let g satisfy (4.3.8).

(a) If Q is bounded, we say that u is a W '-weak solution of -Lu = g in Q iff u € W!(Q2) and
L(u,v) = F,(v) for every v e W ().
Clearly we say that a function u is a W*'-weak subsolution to —Lu = g in Q iff u € W'(Q)

and L(u,v) < Fy(v) for every v e W (Q), with v > 0.

(b) For an arbitrary ©, we say that u is a W} -weak solution of -Lu = g in Q iff u € W}, ()
and u is a W-weak solution of -Lu = g in O, for any bounded open set O such that

OcQ.
7We use Holder inequality jointly with ¢’ = 2Q/(Q +2) < Q/2 < p.
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4. Harnack Inequality in D-P spaces 93

Remark 4.3.7. Let Q be bounded. Clearly, -Lu = g in the W*'-weak sense if and only if there
exists a sequence u, € C*(2) with u,, - u in W' such that, for any sequence v, ¢ C3(Q)
possessing a limit in W, then it holds that

lim R ((AVun, Vug) —gvn) dp = 0.

n— 00

4.4 The non-homogeneous, invariant Harnack inequality

The aim of this section is to prove the following result:

Theorem 4.4.1 (Non-homogeneous, invariant Harnack inequality). Let the assumptions in Sec-
tion 4.2 be satisfied for L and for the doubling metric space (R dx,p). Let Q ¢ RN be an open set,
and let g € LP (), withp > Q/2.

Then there exists a structural constant C > 0 (only depending on the doubling/Poincaré constants
Q, Cp, on the X-ellipticity constants X, A in (4.2.3) and on p) such that, for every d-ball Br(x) satis-
fying Bar(x) c Q, one has

sup uSC’( inf w+R?|g|%, N ) 441
i A 19120 (Bas () (44.1)

for any nonnegative Wy._-weak solution u of —Lu = g in Q.

Remark 4.4.2. In the particular case when ¢ = 0, one obtains the homogeneous, invariant Har-
nack inequalities obtained by Kogoj and Lanconelli in [65, 66] (in [66] the operators involved
are more general than ours, in that they may contain first order terms). Again in the homo-
geneous case g = 0, an invariant Harnack inequality under local doubling/Poincaré has been
proved by Gutiérrez and Lanconelli in [52], for balls of small radii. In the same paper [52], the
authors obtain a non-homogeneous invariant Harnack inequality, under the presence of some
dilation-invariance property on the vector fields X involved.
The summand R?|| gHzp( Ban(x)) 18 bounded by above by
R?
W lgll e (2
when R is small and « lies in a compact set K c €, there exists a constant C'(Q, K) > 0 such

that (due to the doubling inequality (4.1.14)) the latter does not exceed
C(Q, K) R g Lo(o-

Thus, our inequality (4.4.1) contains the analogous non-homogeneous, invariant Harnack in-
equality by Uguzzoni in [92], where it is considered the particular case when « is confined in
some compact set K c (2 and R is very small. Roughly put, these more restrictive assumptions

are the drawback of the local doubling /Poincaré assumptions made in [92].
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4.4 The invariant Harnack Inequality 4. Harnack Inequality in D-P spaces

As is expected, the proof of Theorem 4.4.1 is long and laborious, and it is based on the
Moser iterative technique. This machinery is by no means new in the PDE literature, so we

skip the largest part of the details. Much is based on the following lemma (and on its proof):

Lemma 4.4.3. Let the assumptions of Theorem 4.4.1 hold. Any (not necessarily nonnegative) Wi\ -

weak solution u of —Lu = g in  is locally bounded.

Proof. Let B := Byr(z) and suppose B c 2. We set i := u* + o (with u* = max{u,0}) with o > 0

to be chosen. If n e N and « > 1 are arbitrary, we consider the function H = H,,
H:[o,00) >R, H(s):=s" X[o—,n](S) +(« no‘fl(s -n)+n?) X(n}m)(s).

It is not difficult to see that (H,,), is non-decreasing and C L and it point-wise converges to s*.

Finally, given a nonnegative cut-off function € C} (B), we set
t
vi= 12 G(@), where G(t) = f (H'(s))? ds.

One has v € W (B). Since u solves —-Lu = g in the W}. _-weak sense, we have L(u,v) = F,(v).

For regular u,v (say u = u,, v = v, as in Remark 4.3.7), one has

Fy() = L(u,v) = [ gn*G(@)du- [ (AVa. V(2 G(@) d
(4.23) 2\ 1, 2t 2 _
< [ lolrc@du-a [ gy T @IXP du 20 [ nG@Ixul[Xn|d.

By a limit argument (recall that u = u,,, v = v,,), and by using G(¢) < ¢ G'(t), one gets

1
Loy P @IXuPdu < gln? TG (@) + 240 TG (@) Xl | X ) dpe
Bn{u>0} A

Bn{u>0} (
We set a := \/|g|/(\ o). By an interpolation argument,® and as |g|/) < a1, we get

1

A2
2 22 o 9
2 JBaguso} (577 au” G (u)+16Fu G'(u) [ Xn]| )dﬂ

G (@) Xu)? dp < f

Bn{u>0}

<CAN) [ @H @) (X0 +1a?) d.

As G'(@)| XulPx 1o = | X (H(@))|? and sH'(s) < a H(s), this gives
{u>0} g

* * *

<Co||H @) |xy)

+ HH(H)na

n1x (@) HLQ(B) ) LQ(B)). (4.42)

We apply the Sobolev inequality (4.3.5) to n H(u) € W (B); thanks to (4.4.2) we easily get

* *

Hnﬂ(a)HLq(B) <C1 R (a+1) (| H @) [x7) . | @) na Lm)). 4.4.3)

Via the interpolation |wl||? < € ||w]} + ™ |w]|; (holding true for h < s<rand v = 17:11;:), with
the choices s =2p/(p-1), h=2,r = g, w =n H(u) one gets

|H (@) nals < lali, (el H@); + @2 |y (@) ). (444

8We use AB < %A1/2 +8B1/2,
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4. Harnack Inequality in D-P spaces 95

We choose
e:=(2C1a" (1+a))™" where a*=R|alian(p,n@y) and o= B 9] 10(5,00)-

With the above choice of o one actually has

. lgP \ 25 R % 1
a :R(]gm(m) Agap)2 :ﬁﬁ(ﬁ4R(1)|g|p)2 :ﬁ,

so a” is a structural constant. By inserting (4.4.4) into (4.4.3) one gets

* * *

| H (@)

<C(1+ oz)“”(

n H ()

+ R ||Xn) H (@)

Li(B) L?(B) Lz(B))’

where C depends on @, Cp, A, A, p and where v = Q/(2p— Q). Recalling that H = H,,, by letting
n — oo (and by monotone convergence) we infer

* *

<C(1+ oz)“”(

+R ”|Xn|ﬂ“

Hna“ ) T . L2(B>)' (4.4.5)

It is legitimate to take as 1 a cut-off function as in Remark 4.3.5, relative to z, Ry, Ry with
R < Ry < Ry <2R. From (4.4.5), the doubling condition and the distinguished properties of 7,
we easily get

*

L2(BRr,)’

C(1+ a)“”(l +

VR<Ri<Ro<2R,  (44.6)

_ R —a
& L

| zazny) <

where the centre x of the d-balls is understood. Inequality (4.4.6) is the starting point for
Moser’s iterative technique.

We introduce the function (with R >0 and s e R\ {0})

o(s.R) = ]g o |a|sdu)1/s. 4.4.7)

Clearly one has

lim ¢(s,R) = sup u, lim ¢(s,R)= inf u.
500 Br(z) §——00 Br(zx)

Inequality (4.4.6) becomes

R
Ry - Ry

1/a
(ag,Ri)<(CA+a)*(1+ ) 20, Ra), (4.4.8)
holding true for any o> 1 and R < Ry < Ry < 2R. Givent € (2,q), for any n € N we set
Oén:t(q/Q)n7 pTL:R(1+2_n).

We apply (4.4.8) with the triple (o, Ry, R2) firstequal to (¢/2, p1,2R) and then, iteratively, equal
to (y-1/2, Py pu-1)- One gets (for some C > 1)

d(an, R) < (C q)2) Sia k0™ 4 9R), Vo2

Since ¢ > 2, this gives (letting n - o)

sup u < C”( ][ [ul" du)l/t
Br(z) Bar(x)
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Letting t — 2* (and being @ = u* + 0 > u"), we infer

+ 7= *
sup u" < C" Ul 2 g, (2)) < 0
Ba(z) (B2r(z))

whence u* € L= (Br(x)). Since —u is a W} .-weak solution of —Lu = —g, the same argument

gives u~ € L*°(Bg(z)), and the proof is complete. i

The next step for the proof of the Harnack inequality is the next lemma, where a gain in

summability is established for the W]} -solution u.

Lemma 4.4.4. Let the assumptions of Theorem 4.4.1 be satisfied and let u be any nonnegative W\ -
weak solution of —Lu = g on Q, with g € LP() (with p > Q/2). Suppose also that Byp(x) € Q. Let us
also set (as in the proof of Lemma 4.4.3) that U = u + o, with o = R? 19170 (Ban(2)):

The following facts hold true:

(a) Forevery s € (1,q/2), there exists a constant C(s) > 0 such that

sup @< C(8) [ 7 (5yn(a))- (4.4.9)

Br(z)

(b) For every pg € (0,1), there exists a constant C(py) > 0 such that

(f,  wran) " <o) (4.4.10)
u < 1 u. 4.
Ban(x) : Po) gl

(c) For every po, s such that 0 < pg < 1 < s < q/2, there exists a constant C'(pg, s) > 0 such that

[l L (Byr(a)) < C(po,s)(]{B " du) : (4.4.11)

sr(z)

Here the constants C'(s),C(po),C(po, s) depend also on the structural doubling/Poincaré constants
Q,Cp, on the ellipticity constants A\, A, on p (the summability exponent of g), but are otherwise inde-

pendent of x, R and u.

Proof. We only give a sketch of the proof, since basically the main technique is the same as in
the proof of Lemma 4.4.3. We set B := B,r () as in the assertion. Let us consider a nonnegative

cut-off function n € W (B) and any o € R\ {0}. Let us set

o+l

u 2 if o # -1,
logu if o = -1.

One can argue as in the proof of Lemma 4.4.3, this time by using in a crucial way the nonnega-
tivity of u in order to define suitable test-functions v of the form 1? u® to be implemented in the

equality L(u,v) = F,(v). As a consequence, it is possible to prove that (where a = \/|g|/(\ o))

A2
if o= —1: f 72 | X wf? dp < 64 f (55 1Xnf + a®n?) dus (4.4.12)
B B\ \2

ifaz-1: Hnw“ZQ(B)SC(1+|1+04|)1+V(”“”7|

+RHw|X77|

(4.4.13)

L2(B) L2(B))‘
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4. Harnack Inequality in D-P spaces 97

Here v = Q/(2p - Q) and C depends on Q,Cp, A\, A,p and a.
By the aid of a cut-off function 7 as [66] (see Remark 4.3.5), starting from (4.4.13), we can
prove the following fact:

*

1+v
y<C+[1+al) (14 LBy

|w (4.4.14)

)
Ry - Ry
holding true for « € R\ {0,-1}, and for R < Ry < Ry < 2R (the centre x of the d-balls is

il

understood).
The proofs of our three inequalities (4.4.9), (4.4.10), (4.4.11) now follow three different lines,
all based on Moser-type iterative techniques. The notation ¢(s, R) as in (4.4.7) is understood.

Proof of (4.4.9): Let s € (1,q/2) be fixed. If a > -1, raising (4.4.14) to the power —2-, we get

a+l’

R
Ry - Ry

¢((a+1)g,R1)S(C(2+a)1+u(1+ ))M¢(a+1,R2).

A suitable iteration of this inequality yields
O(1n. R) < (3C q) I EE /0T (5, 9R),

where v,, = s(q/2)™ (the iteration is also based on the choice of the radii R, = R(1+27") and
a+1=",_1). Letting n - oo one gets (4.4.9).

Proof of (4.4.10): Let py € (0,1) be fixed. If o < -1, raising (4.4.14) to the negative power
2/(a+1), we get

Rz—Rl))M¢((a+1)g’Rl)'

A suitable iteration of this inequality yields (taking into account first the doubling property)

d(a+1,Rs) < (C(l +1+ a|)1+”(1 +

&(-po, 3R) < C(Q,po) 6(-po,2R) < (2C q) 7 I ZE @I oy Ry,
where v, = —pg (¢/2)" (the iteration is also based on the choice of the radii R,, = R(1+2™") and
a+1=r,_1). Letting n - oo one gets (4.4.10).

Proof of (4.4.11): Let 0 < pp < 1 < s < ¢/2 be fixed. A slight modification in the radii
appearing in (4.4.14) gives

¢((a+1)g,R1)S(C(2+a)1+u(1+ )){m¢(a+1,R2)7

Ry - Ry
this time with 2R < Ry < Ry < 3R (and « > —-1). A suitable iteration of this inequality yields

(5,2R) < (3C ) 70 VI TR/ g apy

which proves (4.4.10), it sufficing to choose the least n such that

q\" Po
The iteration is based on the choices v, = (¢/2)" po/s, R, = R(1+2™) and a + 1 = y,,_1.

The proof of the lemma is complete. o
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The last step in the proof of the Harnack inequality is given by the next result, resting on

some John-Nirenberg type estimates.

Lemma 4.4.5. Let the assumptions and notations in Lemma 4.4.4 hold. Then there exists po € (0,1)

and a constant C'(po) > 0 such that

(][ P du)l/PO < C/(po)(][ w Po du
Bsr(x) Bsr(z)

Here C' has the same parameter-dependence as in Lemma 4.4.4.

)_1/’)0. (4.4.15)

Proof. Let B(z,2p) ¢ B(z,4R). We now consider (4.4.12) in the proof of Lemma 4.4.4 (where
w = logu), and we choose a suitable cut-off function as in [66] (see Remark 4.3.5): indeed, we
can take a nonnegative n € W (Ba,(2)) such that = 1 on B,(z), n = 0 outside Bs,(z) and
| Xn| <2/pin By,(z). Simple estimates based on (4.4.12) and on the properties of 1 give

:

where as usual a := \/|g|/(A o) and C’ is a constant as in the assertion of Theorem 4.4.1. Since

2 1 2
o | Xw|*du < C”(pf2 + ]ll;zp(z) a du), (4.4.16)

P

p > 1, the choice o = R? |g[ 7,5, ,(x)) Yields

9170 (8o, (x
][ w2 s — | Hf (Bay ()
Bz, (2) AR 9150 (5,2

By inserting this in (4.4.16) and by doubling we get

1 C(Q,p) (R\Q/P 1 1 (R\Q/r
2 ! ’ "

From p > Q/2 and p < 4R we get R@/P=2/,Q/p < 42-Q/P | s2; we have therefore obtained

"

2
][ o Xul dus C . whenever B(z.2p) < B(x,4R). (4.4.17)
B,(z P

From the Poincaré inequality (4.3.6) for w € W (Bsr(z)), we infer from (4.4.17) that

‘7[BP(Z)

Summing up

. (44.17) ~
L2(Ba(2)

*

dp<Cpp|Xw L1(Ba,(2))

< C’pp”Xw

w-= wBP(Z)

dpu<C,  whenever B(z,4p) € B(z,4R). (4.4.18)

ép(z) ‘w B pr(z)

Now, due to our global doubling and Poincaré assumptions, we are entitled to apply Theorems
0.3 and 0.4 in the paper by Bukley [19]; the latter results allow us to infer from (4.4.18) the
following John-Nirenberg type estimate: there exists po € (0,1) such that

]gsR(m) exp (po |w - wBsn,(a:)D du < C, (4.4.19)
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4. Harnack Inequality in D-P spaces 99

with the usual dependence of C on the structural parameters. Let us drop the notation of the

centre x in the d-balls. Recalling that w = logw we have

7—pod . 7100d :][ _ d ][ — d
]gmu e gy T dp BSReXp(po(w+wB3R)) 7 BsReXp(po(w wp,p)) dp

2
< (]{%R exp (p0|w —w33R|)d,u) <C2

By raising to the power 1/py we get (4.4.15). O

Once Lemmas 4.4.4 and 4.4.5 are established, the proof of the Harnack inequality is straight-

forward.

Proof (of Theorem 4.4.1). Let the assumptions and notations in Theorem 4.4.1 hold. Let py €
(0,1) be as in Lemma 4.4.5. Since ¢ > 2, we can fix any s € (1,¢/2). We have the following

chain of inequalities:

7 <)
sup u < S)U| s (Bom(z
Bo(x) L#(Bar(x))

(4411

e cwn (£,

3r(2)

(4.4.15) , o “1/po
< C(s)Cpo,s)C (po)(][B N Po du)
3R(T

(4.4.10)

< C(s)C(po,s) C'(po) C(po) Birgg)ﬂ-

Sinceu=u+o=u+R*|g|}, (Ban(x))- the far right-hand side of the above chain of inequalities
is the right-hand side of (4.4.1); moreover, as u < @, the far left-hand side in the above inequal-
ities is no less than the left-hand side of (4.4.1): the proof of the Harnack inequality (4.4.1) is

compelete. o

4.4.1 Applications: Inner and boundary Holder estimates

Our aim is to prove inner and boundary Holder estimates, using the non-homogeneous invari-
ant Harnack inequality proved in Section 4.4 (Theorem 4.4.1). We will follow the arguments in

[49, Chapter 8].

In the sequel we require that £ satisfies the assumptions in Section 4.2.

A first result is the following estimate.

Theorem 4.4.6. Let Q ¢ RN be an open set, and let g € LP(Q), with p > Q/2.
Then there exist structural constants C > 0and 0 < « < 1 (only depending on the doubling/Poincaré
constants @), Cp, on the X-ellipticity constants X\, A in (4.2.3) and on p) such that, for every d-ball

Br(wo) satisfying Br(xzo) c Q, one has

0SCR, (z0)U < OT (R_a sup |u|+ R*™® |g|2p(BR(x0))) Vrel0,R], (4.4.20)

Br(zo

for any W)L _-weak solution u of —Lu = g in Q.
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In order to prove the previous theorem, we need to give the following result.

Lemma 4.4.7. Let w :]0, R] - R be a non-decreasing function, and let o :]0, R] — R be a function
such that there exists ¢ > 0 for which o(r1) < éo(re) for any r1,r9 €]0, R], with r1 < ro. Suppose that

there exist v, T €]0, 1[ satisfying the following condition:
w(rr) <yw(r) +o(r) Vr<R, (4.4.21)
then there exists C := Co(ry, ) > 0 such that, for every v €]0, 1], one has:
w(r) < Co ((%)a W(R) +0 (r”Rl_”)) Vr<R, (4.4.22)

where a = (1 - v) %5 €]0,1[.

The proof of this last result is an adaptation of the arguments in [49, Lemma 8.23].

Proof (of Theorem 4.4.6). Fix B(zo, R) ¢ B(zo, R) c Q2 and let ube a W;. _-weak solution of —Lu =
g in Q. We consider p < R/4 and we put

My := sup |u|, My:= sup w, mq:= inf w, My:= sup wand my:= inf wu.
Br(w0) B,(z0) By (o) Bu, (o) Bap(x0)

By Lemma 4.4.3 we know that u € L{2 (£2), then My, M;,m; € R, for i = 1,4.
We have:
L(My —u) = -Lu =g (in W;..-weak sense)
L(u—-my) = Lu=—g (in W;..-weak sense),
then we can apply the non-homogeneous invariant Harnack inequality in Theorem 4.4.1 to the

functions My — u, u — ma € WiL (€2, X ), which are non-negative functions in B(z,4p). Hence,

there exists a constant C > 0 such that

sup (My—u) < C( inf (My—u)+ p? Hg||z,)(B4 (:ro)))
By (o) ’

By (20)

su u—my) <C| inf (u-my)+p? M ,

o (omm) <t e+ ol
that together give

My-my<C (M4 —my = (My —my) +2p° HgHZP(B4P(CE()))) ;

M —my s( )(M4 1) + 202190 s, o) (4.4.23)

-5
If we put

w(p) = 0scp, (agyu and k(p) = 20" 9] 10 (p,, (w0)) -
we can rewrite (4.4.23) in the following way

() < (1- 2 )etn) +kGp), Vo<
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or equivalently
(1)<(1 l) ()+k‘(1) Vr<R
wig") < o) 1) r<R.
Therefore we can apply Lemma 4.4.7, with v = (1 - 1/C), 7 = 1/4 and o(r) = k(r/4),” and we
obtain that there exists Cjy > 0 such that, for every v €]0, 1, one has

w(r)<Cy ((%)a w(R)+0o (r”Rl_”)) Vr<R, (4.4.24)

with a = (1 - 1/)1023(% €]o,1[.

Weputd:=1- % > 0, and we choose v €]0, 1[ such that « < v0. Hence, for every r < R, by
(4.4.24) we get

(4.4.24) o 1, 1-.8\2 "
w(r) < Co(T R W(R)+§(7" R' )|\9||LP(BTVR1_U(QCO))):

o o 1 —a+2u —2v *
- Cyr (R W(R)+ 5r Yo g2 \Igl\mBruRM(zo)))S

O . of e L 20 p2-20 & p(Qv) fp, ~(Qv)/ *
< Cor (R W(R)+§r TYRTYYCOR Pr pHgHLP(BR(ro)))S

< Cr (Bw(R) + 7225 g ) <

<Or* (R w(R)+ B gl o (a0 ) -

which gives (4.4.20). This completes the proof.

An immediate consequence of Theorem 4.4.6 is the following result.

Corollary 4.4.8. Let Q ¢ RY be an open set, and let g € LP(Q), with p > Q/2.

Then there exist structural constants C > 0and 0 < « < 1 (only depending on the doubling/Poincaré
constants Q},Cp, on the X-ellipticity constants X\, A in (4.2.3) and on p) such that, for every d-ball
Br(x0) satisfying Bsg(xo) c Q, one has

wp hd@—u@ﬂgc(

R sup |ul+R*|gliocm o |» (4.4.25)
z,yeBr(z0), z+y d(xvy)a Lr(Bar(zo))

Bsr(zo)

for any Wik _-weak solution u of —Lu = g in Q.

In the sequel we want to prove local estimates at the boundary of a bounded open set of

R¥. To this aim we want to recall the following notions.

%It is easy to prove that there exists & := ¢(Q) > 0 such that k(r1) < ¢k(r2), for any 1 < 72 < R. Indeed, we use

condition (D) to obtain the following inequalities:

2 * 2 (T2 Q/p *
K1) =28 ol ooy S @207 () Mol ooy S
<c(Q)r3 ‘|9”2p(347‘2(%)) = ck(rz),

where in the last inequality we have used p > Q/2 and r1 < 2.
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Let 2 ¢ RN be a bounded open set, and let I € R. If u € W!(£, X), we say that u < [ on 99
iff (u—1)*" e W2 (Q, X); thus we define

supu:=inf{l e R : u <l on N} (4.4.26)
o0

ggu :=sup{l € R : [ < uon dN}. (4.4.27)

Finally, we say that u = 0 on 92 iff © <0 and « > 0 on 9€2.

Proposition 4.4.9. Let Q ¢ RY be an open set, and let g € LP(Q), with p > Q/2.

Then there exist structural constants C' > 0 and pg €]0, 1[ (only depending on the doubling/Poincaré
constants ), Cp, on the X-ellipticity constants X\, A in (4.2.3) and on p) such that, for every d-ball
B(xo, R) satisfying Q1 n B(x,4R) # @, one has

. . - 2 |~ *
[l oo By (o)) <€ ( gttt B |LP(B4R(xo)>) ) (4.4.28)

for any non-negative W '-weak solution uw of —Lu = g in Qn B(xo, 4R), where § is the trivial extension

of gon R, and

inf{u(z),m} ifzxe

um,

m ifx ¢Q,

with m := infyonB, , (z0) U-
An analogous result is the following.

Proposition 4.4.10. Let Q € RY be a bounded open set and let g € LP(S2), with p > Q/2.

Then there exists a structural constant C > 0 (only depending on the doubling/Poincaré constants
Q,Cp, on the X-ellipticity constants A\, A in (4.2.3) and on p) such that, for every d-ball Bg(xo) one
has

sup uj, < C(H“M\Zs(sm(zo)) +R? HQHL(BM(JCO))) Vsell, o[, (4.4.29)

Br(zo)

N

for any W -weak subsolution u of -Lu = g in ), where § is the trivial extension of g on RY and

. sup{u(x), M} ifzxeld
upr () =
M if v ¢4,

with M := SUP9QNBa g (20) u.

Similar arguments seen in Theorem 4.4.1 have been used to prove Proposition 4.4.9 and
Proposition 4.4.10 (see also [49, Chapter 8]), so we don’t provide the proofs of the previous

results.
An immediate consequence of Proposition 4.4.10 is the following.
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Corollary 4.4.11. Let Q ¢ RY be a bounded open set, and let g € LP(Q), with p > Q/2.
Fix a d-ball Bg(xo) with xo € O and let w € W (2 n Byr(z0), X) be a W'-weak solution of
—Lu=gin Qn Bar(xg), then u e L= (Qn Br(xg)).

Finally, as a consequence of Proposition 4.4.9, we can prove a local estimate at the boundary
for W-weak solution; in this case we need to suppose a suitable condition on the boundary.

The proof of the following result is an adaptation of the ideas in [49, Theorem 8.27].
Theorem 4.4.12. Let 2 ¢ RY be a bounded open set, and let g € LP(Q2), with p > Q/2.
Let xo € 02 and suppose that there exist Ry > 0 and 9 €]0, 1 such that:

w1 (B(zo,m) N Q) 29 (B(xg,7)) Vr€]0, Ro[. (4.4.30)

Then there exist structural constants C' > 0 and 0 < a < 1 (only depending on the doubling/Poincaré
constants Q),Cp, on the X-ellipticity constants A\, A in (4.2.3), on ¥ and on p) such that, for every
d-ball Br(x) one has

0SCONB, (o)t < Cp” (R_O‘ sup  |u| + R*™® |§|2P(QHBR(IO))) V p€l0, R, (4.4.31)
QﬂBé(Io)

for any W'-weak solution u of ~Lu = g in Q0 Bagr(xo), with u € W3 (Q 0 Bag(z0), X), where
R:=min{Ry, R}.
A direct application of the assumption (P) is the following result.

Lemma 4.4.13. Let Q c RY be a bounded open set and let z € 9Q and R > 0. We suppose that there
exist Ry > 0 and § €]0, 1[ such that, for every yo € O N Bag(xo) one has

1 (B(yo, )N Q) >9u(B(yo,7))  Vrel,Rol. (4.4.32)
Ifue Wy (Q2n Byr(x0),X)nC (Q n BR(xO)) then u(x) = 0 for every x € Q0 N Br(xo).

Proof. Assume by contradiction that there exists yo € 9Q2n Bgr(x¢) such that u(yy) # 0, suppose
u(yo) > 0 to fix ideas. Since u € C(Q2n Br(x¢)), there exist r, 6 > 0 such that u(y) > ¢ for every
y € QnB.(yo). We put

min{u(x),d} ifxeQn Bir(zo)
w(x) =
0 if.’t¢QﬂB4R({E0).
We observe that w € W' (RY, X), moreover we have

§ ifzeQnB.(yo)
w(z) =
0 ifzeB.(yo) 1,
then | Xw| = 0 a. e. in B,(yo). Hence, if we consider p < r/2, Ry, by Poincaré inequality in
Theorem 4.3.4 we get
03][ |w—wBTho|d,u§Cpp][ | Xw|dp =0,
Bp(y()) BQp(yo)
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which gives |w - pr| =0a.e. in B,(yo) c Br(yo). Observe that

L anesH @B
(B (yo)) JonB,(vo) 1(Bo(yo)) 7

then w = wp, >0 a. e. in B,(yo), but this is a contradiction thanks to (4.4.32). This completes

’pr

the proof. o
Finally, we prove the last result of this section.

Corollary 4.4.14. Let Q c RY be a bounded open set, and let g € LP(R™), with p > Q/2.
Fix R > 0 and xy € 0N, and we suppose that there exist Ry > 0 and ¥ €]0, 1[ such that, for every
Yo € 00 N Bagr(x0), one has

1 (B(yo,m) N Q) 29 (B(yo,7))  Vrel0,Rol. (4.4.33)

Ifu e W (QnBygr(z0), X ) is a W-weak solution of —Lu = g in QnBag(z0), then u € C(Q n Br(zo))
and u(z) = 0 for every x € 0 N Br(xo).

Proof. Fix T € () mm; we want to prove that v is continuous in Z. We put ' := Qn Bag(zo),
and we observe that u is a W}. .-weak solution of —-Lu = g in ©’; hence, we can apply Corollary
4.4.8 and we get that u is continuous in z € {)'. Therefore we have showed that u is continuous
in Qn Bg (o).

Finally, we want to prove that  is continuous in dQ n B (zo).

By Theorem 4.4.12 we get that there exists lim,_,,, u(z) and it is finite; thus we put
u(zg) = lim u(zx).
Tr—>Xo

Let us fix yo € 92 n Br(zo); by Theorem 4.4.12 we still get that there exists lim,_,,, u(z) and it

is finite, thus in the same way we put

u(yo) = lim u(z).

T=Yo

Then, it is easy to prove that the function u is continuous in every yo € Q2 n Br(zo).
Therefore, we obtain that u € C(Q n Br(z)), and thanks Lemma 4.4.13 we have u(z) = 0 for

every x € 92N Br(xo). This completes the proof. O
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Chapter 5

The Green function for some

subelliptic operators

In this chapter our aim is to give our most recent results related to subelliptic operators. In
particular, using the non-homogeneous invariant Harnack inequality proved in Chapter 4, we
can construct the Green function related to our operator on any bounded domain satisfying a
suitable condition on the boundary.

Finally, the main goal of our future investigation is to prove the existence of a continuous
non-negative global fundamental solution for £. To this aim, we need to construct a suitable
basis for the d-topology on R”; here, we want to give a sketch of the proof and an idea of the

arguments that we will use to show the existence of a global fundamental solution.

We consider the real second-order PDO L seen in Chapter 4,

1 $ 0 9 N
L_V(:L‘) > Bm'(v(x)ai’j(x)axj)’ rzeR™Y, (5.0.1)

i,5=1 OLi
and we suppose the same assumptions that we have used to prove the non-homogeneous

invariant Harnack inequality and consequent Holder-continuous estimates.

5.1 The Green function on bounded domains

In order to prove the existence of a global fundamental solution for £ in (5.0.1), we have to
deal with the study of the Green function related to L.

We shall consider a fixed bounded open set ¢ RY, satisfying the following condition
uniformly at any point of the boundary z € 99: there exist p, ¥ > 0 (not depending on z) such

that
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5.1 The Green function 5. The Green function for some subelliptic operators

w(B(zo, ) NQ) > (B(xg,r)) foreveryr €0, p]. (5.1.1)

Letusfixp>%and2£p<oo.

Now we can construct the Green operator related to L.

Theorem 5.1.1 (Green Operator). For every h € LP(Q) there exists a unique W, -weak solution
w:=G(h) to —Lu = h in . Moreover u € C(Q) and u = 0 on 95

Therefore G : LP(Q)) — C(Q) defines a bounded linear operator, so that its adjoint G* : M(2) —
LY (Q) is a bounded linear operator, where M(SY) is the set of the finite real Borel measures supported
in Q and p' is such that % + z% =1

Furthermore we have

G(h) >0 forany h e LP(Q) with h > 0; (5.1.2)
G*(v) 20 for any v e M(Q) with v > 0; (5.1.3)
G(h) =G*(h) forany h € LP(Q2). (5.1.4)

We call G the Green operator related to L and ().

Proof. We know that W (€2, X) is a Hilbert space; moreover, it is easy to see that L(,) is
a coercive symmetric continuous bilinear form on Wy (Q, X) and F}, is a linear continuous
functional on W (€2, X), then we can apply the Lax-Milgram Theorem. Hence, there exists a
unique W -weak solution G(h) to —Lu = h in Q.

We want to prove that the function u := G(h) is continuous up to the boundary of 2 and
vanishes on 0€2.

Let us fix zo € €, then there exists 7 > 0 such that B(xo,r) c Q; by Corollary 4.4.8 we
know that u is continuous on B(xz¢,r/3), in particular u is a continuous function in z. Hence,
u € C'(Q) thanks the arbitrariness of .

Fix 79 € 9Q and r > 0. Let 1 be a cut-off function such that 1 € C} (B(x,4r)) and
(1) n=1o0n B(x,2r);
(ii) 0<n <1 on B(xg,4r).

We put ¢ = nu; itis clear that ) € W (QnB(x¢,4r), X ), since u € W (€, X) and n € C3(B(x0,47)).
Moreover, thanks the construction of 1, we have that ¢ = w on Q n B(«xq,2r); then -£y = h in
Q (in the weak sense of W) and (2 satisfies condition (5.1.1) uniformly at any point of the
boundary 9, so we can apply Corollary 4.4.14 and we have ) € C(Qn B(xo,7)) and ¢ (z) = 0
for any x € 9Q n B(xo,r). Therefore, thanks the arbitrariness of x, we get that u € C (Q) and
u(x) =0 for any z € €.

We have constructed a linear operator G : LP(Q) — C(Q2) which is also bounded. Indeed,
for any h € LP(Q)), we know that u := G(h) is a W -weak solution to —Lu = h in {2, then we can
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5. The Green function for some subelliptic operators 107

apply the Maximum Principle in [52, Theorem 3.1], that is there exists a constant C' > 0 (not
depending on h) such that

supu” <supu” +C A 1, q) -
Q o9
Moreover, u* = 0 on 9%, since u*™ € Wi (Q, X); hence
SlglszJr <Cnl pogqy
and we get that there exists M > 0 such that
|G (R) ||L°°(Q) <M HhHLP(Q) , forany he LP(Q).

Therefore, the operator G : L (Q) - C(12) is a bounded linear operator between Banach spaces
and we can consider its adjoint G* : M(Q) - L” (), a bounded linear operator satisfying the

following relation:
(G*(v),h) =(v,G(h)), foranyheLP(Q)andve M(Q). (5.1.5)

Let’s start by proving (5.1.2).
We fix h € LP(2), such that & > 0, and we put w := -G(h) then we have:

Lw.v) = [ (A@)Vu(@), 7o) du(@) = - [ (A@)VER)(@), To(@)) du() =
- [ ~h@w@)du(a) <o,

for any v e W (2, X), with v > 0. Hence w € Wj (2, X) is a W'-weak subsolution of Lw = 0 in
2, and thanks the Maximum Principle [52, Theorem 3.1] we get

supw® < supw*.
Q 99

On the other hand w* = 0 on 042, then w* = 0 on Q or equivalently, G(k) > 0 on .
Now, we want to prove (5.1.3). Fix v € M*(Q2) and let i be a non-negative function such

that h € LP(Q2), by condition (5.1.5) and (5.1.2) we get:

[ h@)6 )dn) = (G W), h) = (. G) = [ G @)v(a) >0,

then we have showed that G*(v) > 0.
Finally, we prove (5.1.4). We fix h ¢ LP(Q), by condition (5.1.5), construction of G and
symmetry of L(-,-), for any ¢ € LP(2) we have:

fQ p(z)G" (h)(z)dp(x) = (G (h), ) = (h,G(¥)) = /;2 h(z)G () (z)dp(x) =
- L(G(0),G(¢)) = L(G(9).G(1) = [ ¢(@)G(h)du(),
hence for any h € LP(Q2), we have G(h) = G*(h). mi
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Definition 5.1.2 (Green function). For every y € Q2 we define
gy = G"(0y), (5.1.6)

where §, denotes the Dirac measure supported at y.

We call g(x,y) := gy(x) the Green function of .

Theorem 5.1.3. For every y € Q and every small v > 0, g, € W (Q~ B(y,r),X) and it is a non-
negative W'-weak solution to Lg, = 0 in Q@ B(y,r). Moreover, g, € C(Q~ {y}) and g, = 0 on
onN.

Let us define A := {(x,y) e Qx Q : x =y}, then g € C((2 x Q) \ A) and we have:

G(h)(y) = /Q g(z,y)h(z)du(x) forevery h e LP(2) and y € Q, (5.1.7)
G*(v)(x) = [Q g(x,y)dv(y) a.e. x €, for any fixed v e M(Q), (5.1.8)
g(z,y) =g(y,xz) >0 forany x,y € Q, with x + y. (5.1.9)

Proof. Let us fix y € Q.
By (5.1.3) of Theorem 5.1.1 and Definition 5.1.2, we have g, > 0 on Q. Moreover, thanks
Definition 5.1.2 and (5.1.5), for any h € L? (), we get (5.1.7):

G(h)(y) = (5, G(0) = (G*(8,).1) = [ g,(@)h(@)dp(x).

Now, we want to approximate the function g, by the sequence u,, := u¥, = G( f,,), where

falz) = fil(z) = ! )XB(yJ/n)(x), VzeQand VneN.

1 (B(y,1/n)
Recalling that d induces the Euclidean topology, for every ¢ € LP(Q2), by (5.1.4) and (5.1.5) we

obtain:

[ un@ye@)du@) = [ U @v@dn) = [ 6 (@) -
= [ A @C@@dE@) = £, | 6@,

the last term tends to G(¢)(y) when n — oo, hence by (5.1.7) we get that

tim [ un(2)0(@)du() = [ g,@pe()du@) Ve L (),

n—o0o

that is u,, - g, weakly in LP (). In particular, u,, is a bounded sequence in L* ().

On the other hand, u,, is a non-negative W'-weak solution to Lu,, = 0in O~ W,
thanks to construction of u,, and (5.1.2).

Fix now 0 < 7 < 1 such that B(y, 2r) ¢ ; we put , := Q~ B(y,r). Let us fix z € dB(y,r)
and n > %, then we have B(z,7/2) € Q~ B(y, 1/n). Thus we can apply the Harnack inequality
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in Theorem 4.4.1, and we obtain

1
sup up <C  inf unSC][ Up(2)dp(z) < C—— |un |, <
O 2O, ) 2l
D) C C
Sl sl <
,u(B(y,% )? w(B(y,r))r
C [
S ——— T HunHLp’(sz) S 1 Sup HunHLp’(sz) = M,,
n(B(y,r))» p(B(y,r))r neN

where M, is a positive constant not depending on n € N. Hence, we have obtained that

4
Un(2) < sup u, <My, VzedB(y,r)and Yn> —. (5.1.10)
B(z,3) r

Therefore we have u,, - M, <0 on dB(y,r) and u,, = 0 on 9%, then (u,, - My)+ =0on 0€, and
(un = M,)" € C(Q), since u,, € C(2). Hence, we get (u,, — M,)* e W (Q,, X), for any n > 4/r.

On the other hand, we observe that £(u,, - M,)) = Lu,, = 0in Q\ B(y, 1/n), then u,, - M, is
a W'-weak solution to £(u,, - M,) = 0 on £, since Q,. € @\ B(y, 1/n) for any n > 4/r, and we
can apply the Maximum principle of [52, Theorem 3.1] obtaining

0 < sup(uy, — ]\Jy)+ < sup(uy — My)+ =0,
Q.

r

thus

4
up, <M, onQ,, foreveryn>—. (5.1.11)
T

Now we want to prove that u,, is a bounded sequence in W Qg X).

Let us consider n € C*(Q) a cut-off function such that 0 <7 < 1 and
(i) n=1o0nQy,;
(ii) n=0on B(y,3r).

We put v = n?u,, for every n > 4/r, then v € W} (Q,, X) is a test function. Since Lu,, = 0 on
Q, (in the weak sense of W'), we have L(u,,v) = 0. Then, using the X-ellipticity of £ and

supposing uy,, v smooth functions, we get:

—L(un,v) == ./;2 (Avunv V(n2un)) dM =-2 L nun, (Avuvu Vﬁ) d,u - /S; 772 (AVU,VW> dM <

s

<20 [l Xun | Xuldi = [P Xundp
and by approximation we obtain that
2 2 A
n°| Xu, | dp < 2 N | Xy || X n|dp. (5.1.12)
Q, A Ja,.
By interpolation we have:
2A 4 (A
(101201 55 ) X < 2 (5) w2l X, Ve >0
€
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If we choose ¢ = 1, by (5.1.12) we get

AN 1
[Qr 772|Xun|2d,u <8 (X) /;2T ui|X77|2d,u + 9 [Qr 772|Xun|2d,u,
which gives

1[ 7 Xu |2du<8(A)2M2f | X72du
2 Ja, " BRA DY Y Ja, ’

where in the last inequality we have used (5.1.11). Moreover s, ¢ €2,., then we obtain

A 2
[ iuPauss(3) a2 [ xnkan,
Qo A v Ja,

which gives (recalling (i)):
4
| Xun]72,) <CANY), ¥n> -, (5.1.13)

where C > 0 does not depend on n € N.

Therefore, using (5.1.11) and (5.1.13), we obtain that u,, is a bounded sequence in W* (Q,., X).
Then there exists w € W'(€y,, X) such that u,, » w weakly in W!(Qy,, X), in particular u,,
converges weakly to w in L?({,). Since p > 2, LP(Q2,) € L?(Q2,) and we obtain u,, — w
weakly in LPI(QQT). On the other hand, we have already showed that u,, - g, weakly in
)i (), in particular in v (Q9); then necessarily w = g,. Thus u,, > g, weakly in W(Qqp, X).
Now we observe that, for any ¢ « WOI(QQT,X), L(-,¢) : WH(£2,,X) - R is a bounded lin-
ear functional; hence, it is sufficient to let n - oo in the equality L(u,,¢) = 0, for every
€ W&(Qgr, X), to prove that Lg, = 0 in 9, (in the weak sense of W1). Then, by Corollary
4.4.8 we get that g, is a continuous function in {2y,

We want to prove the continuity of g, up to 05.

Let us fix zg € 9Q and let ¢ € C§°(B(xg, 4¢)) be a cut-off function such that 0 <y < land ¢ = 1
in B(z¢, 2¢), where we have chosen ¢ > 0 such that B(z¢, 4¢) n B(y,2r) = @.

Since u,, e W' (Q\B(y,1/n)) we have tu,, € Wa (QnB(z,4¢), X ), for any n € N. Moreover,
thanks to boundedness of the sequence {u, } in W*({s,, X), it is easy to show that {tu,,} is a
bounded sequence in Wg (2 n B(zg,4¢), X ). Then there exists v € W (2 n B(zo,4¢), X) such
that u, — v weakly in Wy (Q n B(xo,4¢), X); in particular, ¢u,, converges weakly to v in
W (Qn B(xo,2¢), X) and so necessarily v = g, in 2 n B(zo, 2¢).

Therefore, v € Wi (Q n B(zo,4¢),X) is a W'-weak solution to Lv = 0 in Q n B(zg,2¢).
Hence, by Corollary 4.4.14 we have v € C(Qn B(xg,¢)) and v = 0 on dQ n B(xo,¢). Thus, g, is
a continuous function up to 92 and g, vanishes on 9.

Hence, we have showed that g, € C(Q\ {y}) and g, () = 0 for every z € .

The continuity of ¢ in the couple (z,y) € (2xQ)\ A can be obtained by adapting the arguments
in [31, Proposition 2.6] and in [92, Theorem 3.4].
In order to prove (5.1.8) we fix v ¢ M(Q) and h € LP(Q). Since g is a non-negative and

continuous function in (2 x Q) \ A, where A is a set of du(x) x dv(y)-measure zero, we can

110



5. The Green function for some subelliptic operators 111

apply Fubini’s theorem and we get:
(@ ). °F [ ) @av) 2 [ ( [ gnh@)dn)duy) -
- [ 2@ ( [ o@pdvm)due).
Therefore, we have
[ @6 @) @an) = [ 1@ ( [ g ndvm)dut),  vherr@).

which gives (5.1.8).

Finally, we want to prove the symmetry of g in the couple (z,y).
Fix zo,y0 € Q such that zo # yo. Let us consider a function h € LP(Q2) supported in a neigh-
borhood B(yo, p2) of yo, such that there exists p; > 0 for which B(xg, p1) N B(yo,p2) = @. We

consider the function

Fa)= [ g nh)duty), Ve Blrop).

Since g is continuous in (2 xQ)\ A, the function F is well defined and continuous in B(zq, p1).

On the other hand, we know that

F()= [ g(phm)ant) = ¢ 0)@) 0 cm)@) 2 [ g o)h(m)du(y),

for almost every = € B(xo,p1). By continuity of F' and G(h) in B(xo,p1), we get F(x) =
G(h)(z) for any z € B(zo, p1), which gives

/l;(ym) (9(z,y) - g(y,x)) h(y)du(y) =0  for any z € B(zo, p1).

By arbitrariness of h € L?, we have ¢(-,x) = g(z,-) a.e. in B(yo, p2) and thanks to continuity of
g out of the diagonal, we obtain g(z,y) = ¢g(y, z) for any (x,y) € B(xo, p1) x B(yo, p2). Finally,
by arbitrariness of (z¢,yo) we get (5.1.9). ]

5.2 Towards a global fundamental solution

In this section we want to give a sketch of the existence proof of a global fundamental solution
for the operator £ in (5.0.1). This argument will be the object of our future investigation.

The first step is the construction of a basis of bounded open sets for the d-topology, satis-
fying the condition (5.1.1). In particular, for every x, € RY, we want to prove the existence of

a basis % := {Q,, } nen of bounded open sets for the d-topology on RY, such that:
1) B(xg,n- %) cQ, € B(zg,n), forevery neN;
(2) Q, cQpy1, foreveryneN;
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(3) there exists ¥(Q) > 0 such that, for any y, € 99,,, we have

w(Byo, )N Q) 29u(B(yo,7)), foreveryr< % and n e N. (5.2.1)

Furthermore, for any n € N, the set €2,, can be obtained in the following way:
p ____
Q, := B(zo,n) ~ U B(z;,1/2), (5.2.2)
j=1
where z; € 0B(z¢,n) and {B(z;,1/2) : j = 1,...,p(Q,n)} is a finite covering of dB(zo,n).
Clearly it is easy to prove conditions (1) and (2); in the proof of condition (3) the idea will be
to use the segment property and the doubling condition (D).

In order to prove the existence of global fundamental solution for £, after the construction
of a suitable basis for d-topology on R™Y we need to consider the Green functions g,, (-, -) related
to any bounded open set §2,, of the basis. If we consider the trivial extension of any g¢,, out the
diagonal of RY x RY, the idea is to use the Maximum principle in [52] to prove that {g,} is a

non-decreasing sequence. Hence, we put
[(z,y) = lim g,(z,y), for every (z,y) e RY xRN, with z # y,
n—oo

and we will show that I' is a continuous function out the diagonal of RY x RN, using the
invariance of the Harnack inequality in Chapter 4.

Finally, to prove that I is a global fundamental solution for £, we will use the represen-
tation formulas for the Green operator and its adjoint (see Theorem 5.1.3), with the suitable

construction of the measure p related to £ (see (4.2.2)).
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