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Introduction

The aim of this thesis is to give a contribution to the theory of subelliptic operators. We study

a class of real second-order PDOs L in divergence form on RN of the following type

L =
1

V (x)

N

∑
i,j=1

∂

∂xi
(V (x)A(x)

∂

∂xj
), (1)

where V (x) > 0 and the matrix A(x) is symmetric and positive semi-definite for every x ∈ RN .

Further assumptions of the regularity of the coefficients A(x) and V (x) will be clarified later.

The above class of PDOs comprises sub-Laplacians on Carnot groups, subelliptic Laplacians

on arbitrary Lie groups, elliptic operators in divergence form, as well as the Laplace-Beltrami

operator on Riemannian manifolds.

We are interested in establishing Harnack Inequalities related to L in various contexts.

As a first result of the thesis, we describe how we obtained a non-invariant Harnack in-

equality for (1), passing through a Strong Maximum Principle, following the ideas by Bony in

his celebrated paper [16]. In doing so, we require L to have C∞ coefficients and to satisfy the

following hypotheses:

(NTD) L is non-totally degenerate at every point of RN , or equivalently (recalling that A(x) is

symmetric and positive semi-definite),

trace(A(x)) > 0, for every x ∈ RN .

(HY) L is C∞-hypoelliptic in every open subset of RN .

(HY)ε There exists ε > 0 such that L − ε is C∞-hypoelliptic in every open subset of RN .

Under these assumptions we prove the following:

Harnack Inequality: For every connected open set O ⊆ RN and every compact subset K of O,

there exists a constant M =M(L,O,K) ≥ 1 such that

sup
K
u ≤M inf

K
u,

for every non-negative L-harmonic function u in O.
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Introduction

Before presenting some further details on our approach (and the roles of our assumptions

(NTD), (HY) and (HY)ε), we recall some references from the literature on Maximum Principles

and the Harnack inequality for operators as in (1).

Starting from the 50’s/60’s seminal works by De Giorgi [28], Moser [80], Nash [81], Serrin

[89], the literature on Harnack inequalities and on regularity issues for divergence-form op-

erators like ours has widely grown in the uniformly-elliptic case. The same is true of the vast

literature on Hörmander operators, starting from the 60’s/70’s pioneering papers by Bony [16],

Fefferman and Phong [35, 36], Folland [37], Folland and Stein [38], Hörmander [58], Rothschild

and Stein [86].

It is during the 80’s that many important results on degenerate-elliptic operators under

the divergence-form (1) were established, with a special emphasis to the mentioned Harnack

Inequality and Maximum Principles; see e.g. the results by: Jerison and Sánchez-Calle [60];

Chanillo and Wheeden [21]; Fabes, Jerison and Kenig [31, 32]; Fabes, Kenig and Serapioni [33];

Franchi and Lanconelli [42, 43]; Gutiérrez [51].

As for the assumptions made in the previous papers on the involved PDOs, in [60] a suit-

able subellipticity hypothesis is assumed, whereas in the other cited papers, operators like ours

are considered with very low regularity assumptions on the coefficients, but under the hy-

pothesis that the degeneracy of the principal matrix be controlled on both sides by some ap-

propriate weights: for example, by Muckenhoupt-type weights, [31, 32, 33, 51]; or by doubling

weights, [21]; or by a family of diagonal vector fields, [42]. The Muckenhoupt-type condition

on the degeneracy is still one of the most frequently assumed hypotheses in obtaining Harnack

theorems: see e.g. recent investigations in [27, 74, 93]; see also [64] for a Harnack inequality in

the case of the so-called X-elliptic weight condition.

Another type of assumption can be made in facing with potential-theoretic problems for

operators L: indeed, very recently a systematic study of the Potential Theory for the har-

monic/subharmonic functions related to L has been carried out in the series of papers [1,

7, 13, 14], under the assumption that L possesses a smooth, global and positive fundamen-

tal solution. For the use of the fundamental solution in obtaining the Harnack Inequality for

Hörmander sums of squares, see: Citti, Garofalo and Lanconelli [23]; Garofalo and Lanconelli

[46, 47]; Pascucci and Polidoro [83, 84]; see also the recent survey by Bramanti, Brandolini,

Lanconelli and Uguzzoni, [17], for the same relevant use of the fundamental solution for heat

PDOs structured on Hörmander vector fields.

After this long excursus of related references, we now describe our first result. Thanks to

the assumptions (NTD) and (HY), we are able to recover Bony’s approach in establishing the

Strong Maximum Principle for L. Once this has been done, we obtain the Harnack inequality

for L by means of the well-behaved properties of the Green function gε related to L − ε: it is at

this point that hypothesis (HY)ε is required. Some Potential Theoretic results are also used in

vi



Introduction vii

a crucial way. All this is presented in Chapter 2.

As our assumptions are only (NTD), (HY), (HY)ε above, we want to stress that in this thesis

we do not require L to be a Hörmander operator; in particular in Chapter 2 we will show that

the Strong Maximum Principle and the Harnack inequality hold true in the infinitely-degenerate

case as well, nor we make any assumption of subellipticity or Muckenhoupt-weighted degen-

eracy (see Example 2.1.2); furthermore, we do not assume the existence of any global funda-

mental solution for L: summing up, our results are not contained in any of the aforementioned

papers.

As a counterpart of allowing for less assumptions (our hypotheses are, broadly speaking,

more qualitative than quantitative), we will have to renounce to lower the regularity of the

coefficients (as in Moser-type techniques) or to obtain an invariant Harnack inequality (which

is roughly put, an inequality with a constant independent of the radius of the balls involved).

The main novelty of our work is to obtain the Strong Maximum Principle and the Harnack In-

equality for hypoelliptic operators with infinitely degenerate coefficients, allowing some eigen-

values of the principal matrix of L to vanish at infinite order, as in Fedĭı operator, [34],

F ∶=
∂2

∂x2
1

+ ( exp(−1/x2
1)

∂

∂x2
)

2

in R2

(see also Example 2.1.2 for other models of infinitely-degenerate PDOs to which our theory

applies). Note that this operator violates the Hörmander maximal rank condition on {x1 = 0},

it does not satisfy subelliptic estimates, and its quadratic form does not satisfy Muckenhoupt-

type weight conditions. Yet, F fulfills a maximum propagation principle as one can verify

straightforwardly: this is not by chance, indeed, by means of a deep Control Theoretic result

by Amano [3] using (HY) and (NTD), we show that a Maximum Propagation holds along

the vector fields X1, . . . ,XN associated with the rows of the matrix A(x). The mentioned (long-

forgotten) result by Amano ensures that the sole hypoellipticity of L (plus (NTD)) guarantees

that the reachable set of X1, . . . ,XN is the whole space. It is for this reason that the ideas of

Bony can be used.

Now we pass to the second main result of the thesis: a Harnack inequality for L under low

regularity assumption.

Currently, it is known that the natural framework for Harnack-type theorems is the set-

ting of doubling metric spaces: see e.g., Aimar, Forzani and Toledano [2]; Barlow and Bass [4];

Di Fazio, Gutiérrez and Lanconelli [30]; Grigor’yan and Saloff-Coste [50]; Gutiérrez and Lan-

conelli [52]; Hebisch and Saloff-Coste [54]; Indratno, Maldonado and Silwal [59]; Kinnunen,

Marola, Miranda and Paronetto [62]; Mohammed [77]; Saloff-Coste [88]. In this framework

it appears that the Harnack Inequality holds true whenever some axiomatic assumptions are

satisfied: a doubling condition and a Poincaré inequality.

We follow this trend of research and we make the following assumptions:
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(E) There exists a family of locally Lipschitz-continuous vector fields X = {X1, . . . ,Xm} on

Euclidean space RN , and two constants λ,Λ > 0 such that

λ
m

∑
j=1

⟨Xj(x), ξ⟩
2
≤ ⟨A(x)ξ, ξ⟩ ≤ Λ

m

∑
j=1

⟨Xj(x), ξ⟩
2, ∀ x, ξ ∈ RN ,

and we consider the metric of Carnot-Carathéodory d related to the family X .

If µ is the measure associated with L: dµ = V (x)dx with V as in (1),

(D) (RN , d, µ) is a doubling metric space, that is, there exists Q > 0 such that

µ(Bd(x,2 r)) ≤ 2Q µ(Bd(x, r)), for every x ∈ RN and every r > 0.

(P) The following global Poincaré inequality is satisfied: there exists a constant CP > 0 such that,

for every x ∈ RN , r > 0 and every u which is C1 in a neighborhood of B2r(x) one has

⨏
Br(x)

∣u − uBr(x)∣dµ ≤ CP r ⨏
B2r(x)

∣Xu∣dµ.

(There is also a further technical topological assumption on (RN , d), see Section 4.2).

Under these assumptions, we are able to prove in Chapter 4 the following result:

Non-Homogeneous Invariant Harnack Inequality: Let Ω ⊆ RN be an open set, and let

g ∈ Lp(Ω), with p > Q/2. Then there exists a structural constant C > 0 (only depending on the

doubling/Poincaré constants Q,CP , on the X-ellipticity constants λ,Λ in (E) and on p) such that, for

every d-ball BR(x) satisfying B4R(x) ⊂ Ω, one has

sup
BR(x)

u ≤ C ( inf
BR(x)

u +R2
(⨏

B4R(x)
∣g∣
p

dµ)

1
p

) ,

for any nonnegative W 1
loc-weak solution u of −Lu = g in Ω.

We provide a very brief list of related references. In the setting of doubling metric spaces,

several authors have dealt with operators related to a family of uniformly subelliptic vector

fields: see e.g. Kogoj and Lanconelli [65, 66] where a Harnack inequality was proved for the

equation Lu = 0; moreover, in [52] Gutiérrez and Lanconelli have showed maximum principle

for these operators with lower order terms and, in the case of dilation invariant vector fields,

a non-homogeneous Harnack inequality; a yet improved result was obtained by Uguzzoni in

[92] where, removing the assumption on the dilation invariance, the author has showed a local

Harnack inequality under hypothesis of local doubling condition and Poincaré inequality. The

result by Uguzzoni gives a non-homogeneous and invariant Harnack inequality with the only

drawback that inequality is local, in that it holds for small radii and for centres confined to a

compact set. In this framework our result above Harnack inequality is a further improvement:
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it is a non-homogeneous invariant Harnack inequality, with no restriction on the radii and on the

centres.

The most important consequences of this Harnack inequality are (inner and boundary)

Hölder estimates and the construction of the Green function on bounded domains. This is

accomplished in Section 4.4.1 and Section 5.1.

As a part of our future investigations, the invariant Harnack inequality will be the main

tool to show the existence of a global fundamental solution for L, as outlined in Chapter 5.

Before giving an outline of the thesis, we would like to underline the crucial role of Green

functions in this thesis. In Chapter 2 we have been able to construct a Green function thanks

to the assumption of hypoellipticity of L, and then we have used the Green function (by means

of techniques of Potential Theory) in order to obtain a non-invariant homogeneous Harnack

inequality; with a completely different approach, in Chapter 5 we have proved the existence

of a Green function for L as a by-product of the Harnack inequality. Hence, in the framework

of Harmonic spaces, the Green function is a tool to prove the Harnack inequality; conversely,

in the context of doubling metric spaces, the Green function related to L is an important con-

sequence of the Harnack inequality.

Outline of the Thesis.

We conclude the introduction by giving a general outline of the thesis and a short descrip-

tion of our main results.

In Chapter 1 we give some results of Potential Theory: we consider a linear second order

PDO L as in (1) and we assume that L is endowed with a positive fundamental solution,

defined out of the diagonal of RN ×RN , with some well-behaved properties. We characterize

the solutions toLu = 0 as fixed points of suitable mean-value operators with non-trivial kernels

(Koebe-type Theorem) and our aim is to study the topology of family of L-harmonic functions.

For this purpose, we obtain a generalization of a classical theorem of Montel, for holomorphic

functions, in the subelliptic setting of families of solutions u to Lu = 0. Finally, we will show a

Heine-Borel theorem for the space of the L-harmonic functions.

In Chapter 2 we prove one of the most important results of the thesis. We consider a PDOL

as in (1) and we prove the Harnack inequality for Lmentioned above. To this aim, a first step

is to show the solvability of the Dirichlet problem in order to obtain the existence of the Green

function for L; then we prove a Weak Harnack inequality and we use these results, together with

means of Potential Theory, to obtain the Harnack inequality.

In Chapter 3 we will show some further Potential Theoretic results, closely related to the

arguments in Chapter 2. In particular, we use the Harnack inequality and the solvability of
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the Dirichlet problem for L to prove integral representation theorems and a characterizations

of superharmonic functions related to L.

In Chapter 4 we will show another main results of the thesis: we let L in (1) be associated

with a family of vector fields, and we use the Carnot-Carathéodory metric d related to this

family. We suppose that (RN , d, µ) is a doubling metric space, where dµ is V (x)dx, and we

further require a global Poincaré inequality. Our study is focused on length spaces, properties

of CC metric and Sobolev spaces related to a family of vector fields; several contributions

have already been given in the literature for the study of these geometric conditions in the

context of PDEs modeled on vector fields, see e.g. Hajłasz and Koskela [53]. In this framework,

we prove the mentioned non-homogeneous invariant Harnack inequality, with consequent

Hölder-continuous estimates, using the Moser-type technique.

In Chapter 5 we give some results of our future investigations. We use the non-homogeneous

Harnack inequality (proved in Chapter 4) to construct a Green function on the bounded do-

mains, following the ideas of Fabes, Jerison and Kenig in [31] (see also Uguzzoni in [92]). Our

future aim will be to prove the existence of a global fundamental solution for L. Thus we con-

struct a suitable basis for the d-topology on RN : the idea is to consider the Green functions

related to this basis and then, by an exhaustion argument, to show the existence of a global

non-negative fundamental solution, continuous out the diagonal of RN ×RN , using the invari-

ance of the Harnack inequality.
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Chapter 1

Some Potential Theoretic results for

subelliptic operators

In this chapter we provide for operators L in divergence form on RN a subelliptic version

of a remarkable result, due to P. Koebe, characterizing harmonic functions as fixed points of

suitable mean-value integral operators. The presence of non-trivial and possibly unbounded

kernels (see (1.1.6)) in this mean-value operators is one of the main novelty with respect to

the classical elliptic case. Then we study the topology of the harmonic space related to L, and

to this aim we will show a generalization of a classical theorem of Montel in the subelliptic

setting of families of solutions u to Lu = 0.

1.1 Main assumptions and notation

We need to fix some notations. We shall be concerned with linear second order PDOs in RN of

the form

L ∶=
1

V (x)

N

∑
i,j=1

∂

∂xi
(V (x)ai,j(x)

∂

∂xj
), x ∈ RN , (1.1.1)

where V is a C1 positive function on RN , the matrix A(x) ∶= (ai,j(x))i,j≤N is symmetric and

positive semi-definite at every point x ∈ RN , and it has C1 entries.

Given α > 0, if Hα is the α-dimensional Hausdorff measure on RN , we set

dV α ∶= V dHα (1.1.2)

to denote the absolutely continuous measure with respect to Hα with density V .

We shall be interested only in the cases α = N and α = N − 1.

Our main assumption on L is the following:

(S) We assume that L is equipped with a positive global fundamental solution

Γ ∶D = {(x, y) ∈ RN ×RN ∶ x ≠ y} Ð→ (0,∞)

1



1.1 Main assumptions and notation 1. Some Potential Theoretic results

with the following properties:

(a) Γ is (at least) of class C3 on D and ∇Γ(x, ⋅) ≠ 0 on RN ∖ {x};

(b) for every fixed x ∈ RN , we have lim
y→x

Γ(x, y) = ∞ and lim
y→∞

Γ(x, y) = 0;

(c) Γ ∈ L1
loc(R

2N) and, for every x ∈ RN ,

∫
RN

Γ(x, y)Lϕ(y)dV N(y) = −ϕ(x), for every ϕ ∈ C∞
0 (RN ,R). (1.1.3)

If Ω ⊆ RN is open, we say that u is L-harmonic in Ω if u ∈ C2(Ω,R) and Lu = 0 in Ω. The set

of the L-harmonic functions in Ω will be denoted byH(Ω).

Given any r > 0 and any x ∈ RN , we introduce the super-level set of Γ

Ωr(x) ∶= {y ∈ RN ∶ Γ(x, y) > 1/r} ∪ {x}, (1.1.4)

that will be referred to as the Γ-ball of center x and radius r.

Observe that, from property (b) of the assumption (S), we derive that every Γ-ball Ωr(x)

is a bounded open neighborhood of x and that

⋂r>0 Ωr(x) = {x}, ⋃r>0 Ωr(x) = RN . (1.1.5)

Moreover, from property (a) we infer that ∂Ωr = {y ∶ Γ(x, y) = 1/r} is aC3-manifold. (Through-

out the chapter, a C1-assumption on ∂Ωr(x) would actually suffice; we use the C3 hypothesis

on Γ only in the proof of Theorem 1.2.3.)

Let x ∈ RN and let us consider the functions, defined for y ≠ x,

Γx(y) ∶= Γ(x, y), K(x, y) ∶=
⟨A(y)∇Γx(y),∇Γx(y)⟩

∣∇Γx(y)∣
. (1.1.6)

If u is a continuous function on ∂Ωr(x), we introduce the following mean-value operator

mr(u)(x) ∶= ∫
∂Ωr(x)

u(y)K(x, y)dV N−1
(y). (1.1.7)

Note that the measure K(x, y)dV N−1(y) is non-negative since A is positive semi-definite (we

shall also prove that ∂Ωr(x) has measure 1 w.r.t.K(x, y)dV N−1(y)).

We end this notational section by recalling some terminology from the theory of topolog-

ical vector spaces. We only recall, for convenience of reading, a few definitions, referring to

[87, Chapter 1] for the missing ones. (This last part of the section only contains basic material,

but it is meant to fix notation and definitions.)

Let V be a real vector space and let P = {pn}n∈N be a countable family of seminorms on V

which is separating, that is for every x ∈ V ∖{0} there exists n ∈ N such that pn(x) ≠ 0. We denote

by T (P) the smallest topology on V making any pn ∶ V → R continuous and turning V into a

topological vector space (t.v.s., for short). Since P is at most countable, the topological space

2



1. Some Potential Theoretic results 3

(V,T (P)) is first-countable, hence the convergent sequences characterize T (P). For example,

a sequence {xk}k in V converges to x ∈ V w.r.t. T (P) if and only if, for every fixed n ∈ N, one

has limk→∞ pn(xk − x) = 0. Moreover, (V,T (P)) is a locally convex t.v.s., and a base of convex

neighborhoods of 0 is given by

{y ∈ V ∶ pn(y) < 1/m}, n,m ∈ N.

It is well-known that T (P) coincides with the metric topology induced by the distance d on V

defined by

d(x, y) ∶= max
n∈N

1

2n
pn(x − y)

1 + pn(x − y)
, x, y ∈ V. (1.1.8)

Clearly, d(x, y) ≤ 1 for every x, y, ∈ V , thus boundedness in the metric space (V, d) is of no

relevance. The relevant notion is, instead, the following one.

Definition 1.1.1. A set E ⊆ V is said to be bounded in the t.v.s. (V,T (P)) (or T (P)-bounded, for

short) if, for every open neighborhood Ω of 0, there exists s > 0 such that

E ⊆ sΩ ∶= {sω ∶ ω ∈ Ω}.

It is easy to verify that E ⊆ V is T (P)-bounded if and only if every function pn∣E ∶ E → R

is bounded (by a constant possibly depending on n ∈ N).

Here we are only interested in the topologies induced on V ∶= C(Ω) by the following

families of seminorms. We say that a sequence of bounded open sets Ωn (in the usual Euclidean

metric of RN ) is an exhaustion of the open set Ω if

⋃n∈N Ωn = Ω, Kn ∶= Ωn ⊂ Ωn+1, ∀ n ∈ N. (1.1.9)

With this notation, for every n ∈ N, we set, for f ∈ C(Ω),

pn(f) ∶= ∫
Kn

∣f(x)∣dHN
(x), P ∶= {pn}n∈N,

qn(f) ∶= sup
x∈Kn

∣f(x)∣, Q ∶= {qn}n∈N. (1.1.10)

We say that T (P) and T (Q) are, respectively, the L1
loc-topology, and the L∞loc-topology of C(Ω).

Indeed, from what we recalled above, given functions fn, f ∈ C(Ω) we have limn→∞ fn = f

w.r.t. T (P) (w.r.t. T (Q), respectively) if and only if, for every fixed compact set K ⊂ Ω, one has

limn→∞(fn)∣K = f ∣K in L1(K) (in L∞(K), respectively). This also shows that T (P) and T (Q)

are independent of the exhausting sequence {Ωn}n of Ω.

Clearly, T (P) ⊂ T (Q), i.e., T (Q) is a topology (strictly) finer than T (P). Instead, we shall

show that

T (P) ∩H(Ω) = T (Q) ∩H(Ω).

Thanks to the above mentioned characterization of boundedness in terms of the seminorms,

we recognize that, given F ⊆ C(Ω),

3



1.2 Integral representations and Koebe-type Theorem 1. Some Potential Theoretic results

(i) F is T (Q)-bounded if and only if, for every compact set K ⊂ Ω, there exists a constant

M(K) > 0 such that supK ∣f ∣ ≤M(K), for every f ∈ F ;

(ii) F is T (P)-bounded if and only if, for every compact set K ⊂ Ω, there exists a constant

M(K) > 0 such that ∫K ∣f ∣dHN ≤M(K), for every f ∈ F .

One of the main results of this chapter will be to relate the notion of a normal family to that

of precompactness, using a Montel-type result.

1.2 Integral representations and Koebe-type Theorem

In this section we want to show representation formulas for L, with respect to which we are

assuming hypothesis (S).

Thanks to the surface mean-value formula for L, then we can characterize the harmonic

functions as fixed points of the mean-value operator in (1.1.7).

Lemma 1.2.1. Let notation be as in Section 1.1. For every function u of class C2 on an open set

containing the Γ-ball Ωr(x), we have

u(x) =mr(u)(x) − ∫
Ωr(x)

(Γ(x, y) −
1

r
)Lu(y)dV N(y). (1.2.1)

We shall refer to (1.2.1) as the surface mean-value formula for L. As a consequence, a function u of

class C2 in the open set Ω ⊆ RN is L-harmonic if and only if

u(x) =mr(u)(x), for every Γ-ball such that Ωr(x) ⊂ Ω. (1.2.2)

Formula (1.2.1) extends the result in [13, Theorem 3.3] to our operators (1.1.1), a class which

strictly contains the PDOs considered in [13]. We shall prove Lemma 1.2.1 by exploiting the

quasi-divergence form (1.1.1) of L and integration by parts.

Proof. To begin with, let Ω ⊂ RN be a bounded open set, with ∂Ω of class C1. If u, d ∈ C2(Ω,R),

we can apply the Divergence Theorem in order to derive, by exploiting the quasi-divergence

form (1.1.1) of L and the symmetry of the matrixA, the following Green-type identity (see also

the notation in (1.1.2)):

∫
Ω
(uLd − dLu)dV N = ∫

∂Ω
(u ⟨A∇d,NΩ⟩ − d ⟨A∇u,NΩ⟩)dV N−1. (1.2.3)

Here NΩ denotes the exterior normal vector on ∂Ω. The choice d ≡ −1 yields

∫
Ω
LudV N = ∫

∂Ω
⟨A∇u,NΩ⟩dV N−1, ∀ u ∈ C2

(Ω,R). (1.2.4)

This proves, in particular, that

∫
Ω
LudV N = 0, for every u ∈ C2

0(Ω,R). (1.2.5)
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Let x ∈ RN and r > 0 be fixed and consider the (regular) open set

Ωr,ρ ∶= Ωr(x) ∖Ωρ(x), for 0 < ρ < r.

Let u ∈ C2(Ωr(x),R) and choose d(y) ∶= Γx(y). We are entitled to apply (1.2.3) when Ω = Ωr,ρ.

Recalling that LΓx = 0 in RN ∖{x} (see hypotheses (S.a) and (S.c) on the fundamental solution

Γ), and since NΩ = ∓∇Γx/∣∇Γx∣ on ∂Ωr(x) and on ∂Ωρ(x), respectively, we obtain

− ∫
Ωr,ρ

ΓxLudV N

= −∫
∂Ωr(x)

u
⟨A∇Γx,∇Γx⟩

∣∇Γx∣
dV N−1

−
1

r
∫
∂Ωr(x)

⟨A∇u,NΩr(x)⟩dV N−1
+

+ ∫
∂Ωρ(x)

u
⟨A∇Γx,∇Γx⟩

∣∇Γx∣
dV N−1

+
1

ρ
∫
∂Ωρ(x)

⟨A∇u,NΩρ(x)⟩dV N−1.

(1.2.6)

Here we used the fact that the exterior normal vector to the domain Ωr,ρ coincides, on ∂Ωr(x),

with the exterior normal vector to Ωr(x), whereas it coincides, on ∂Ωρ(x), with the opposite

of the exterior normal vector to Ωρ(x).

If we introduce the notation

Jr(u)(x) ∶=
1

r
∫
∂Ωr(x)

⟨A∇u,NΩr(x)⟩dV N−1,

(1.2.6) can be rewritten as follows (see also (1.1.6) and (1.1.7))

−∫
Ωr,ρ

ΓxLudV N = −mr(u)(x) − Jr(u)(x) +mρ(u)(x) + Jρ(u)(x). (1.2.7)

We now aim to let ρ tend to 0 in (1.2.7).

As for the left-hand side of (1.2.7), we have Γ ∈ L1
loc(dV

N) (indeed L1
loc(dH

N) = L1
loc(dV

N)

since V is positive and continuous), whence

−∫
Ωr(x)∖Ωρ(x)

ΓxLudV N
ρ→0
ÐÐ→ −∫

Ωr(x)
ΓxLudV N .

Moreover, we claim that the last summand in the right-hand side of (1.2.7) vanishes as ρ → 0.

First we observe that this is true of HN(Ωρ(x))/ρ; indeed, since Γ ∈ L1
loc,

0 ≤
HN(Ωρ(x))

ρ
=

1

ρ
∫

Ωρ(x)
dHN

(y) ≤ ∫
Ωρ(x)

Γ(x, y)dHN
(y)

ρ→0
ÐÐ→ 0,

in view of ⋂ρ>0 Ωρ(x) = {x}. Next, thanks to (1.2.4) we have

lim
ρ→0

∣Jρ(u)(x)∣ = lim
ρ→0

∣ ∫Ωρ(x)LudV N ∣

ρ
≤ lim
ρ→0

( sup
Ωρ(x)

∣V Lu∣
HN(Ωρ(x))

ρ
) = 0.

Summing up, from (1.2.7) we derive that limρ→0mρ(u)(x) exists and (1.2.7) gives

−∫
Ωr(x)

ΓxLudV N = −mr(u)(x) −
1

r
∫

Ωr(x)
LudV N + lim

ρ→0
mρ(u)(x). (1.2.8)

Before we can calculate the limit of mρ(u)(x), we need some preliminary work.
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Suppose that u ∈ C∞
0 (RN ,R) and choose r > 0 large enough so that the support of u is

contained in Ωr(x). With these assumptions, note that the left-hand side of (1.2.8) is equal to

−∫RN Γ(x, y)Lu(y)dV N(y) = u(x), since Γ is a fundamental solution for L, see (1.1.3). More-

over, the first summand of the right-hand side of (1.2.8) is null, since u = 0 on ∂Ωr(x). The

same is true of the second summand, thanks to (1.2.5). As a consequence, with the assumption

that u is smooth and supported in Ωr(x), (1.2.8) is equivalent to

u(x) = lim
ρ→0

mρ(u)(x). (1.2.9)

A simple argument of cut-off functions implies that (1.2.9) also holds true for any u ∈ C∞(RN ,R)

and any x ∈ RN , when u is not necessarily compactly supported. In particular, choosing u ≡ 1

we get (recalling (1.1.7))

lim
ρ→0

∫
∂Ωρ(x)

K(x, y)dV N−1
(y) = 1, for every x ∈ RN . (1.2.10)

This allows us to remove the hypothesis of smoothness of u in (1.2.9) and replace it with the

sole continuity of u. Indeed, if u ∈ C(Ωr(x),R), we have

mρ(u)(x) = ∫
∂Ωρ(x)

(u(y) − u(x))K(x, y)dV N−1
(y) + u(x) ∫

∂Ωρ(x)
K(x, y)dV N−1

(y),

and, as ρ → 0, the second summand tends to u(x), due to (1.2.10). We claim that the first

summand vanishes too. This is a consequence of the following argument: if u is continuous,

given ε > 0 (since Ωρ(x) shrinks to {x} as ρ ↓ 0), there exists ρ > 0 such that supy∈∂Ωρ(x) ∣u(y) −

u(x)∣ < ε, for ρ ∈ (0, ρ); hence, if ρ ∈ (0, ρ), we have (as K ≥ 0)

∫
∂Ωρ(x)

∣(u(y) − u(x))K(x, y)∣dV N−1
(y) ≤ ε ∫

∂Ωρ(x)
K(x, y)dV N−1 ρ→0

ÐÐ→ ε.

In passing to the limit we invoked again (1.2.10). This proves the claim. We thus have

lim
ρ→0

mρ(u)(x) = u(x), for every u ∈ C(Ωr(x),R). (1.2.11)

Let us now go back to the case u ∈ C2(Ωr(x),R). Inserting (1.2.11) in (1.2.8) gives

u(x) =mr(u)(x) − ∫
Ωr(x)

(Γ(x, y) −
1

r
)Lu(y)dV N(y). (1.2.12)

This is precisely (1.2.1) in Lemma 1.2.1.

Note that (1.2.12) improves (1.2.10): indeed, taking u ≡ 1 in (1.2.12) yields

mr(1)(x) = ∫
∂Ωr(x)

K(x, y)dV N−1
(y) = 1, for every x ∈ RN and r > 0. (1.2.13)

We pass to the last statement of Lemma 1.2.1. On the one hand, if u is L-harmonic on Ω,

formula (1.2.1) directly implies (1.2.2) since Lu = 0. On the other hand, if u ∈ C2(Ω,R) is such

that Lu ≠ 0 at some point x ∈ Ω (say, to make a choice, Lu(x) > 0), there exists r > 0 such that

Lu > 0 in Ωr(x) (see (1.1.5)); by (1.2.1) and the positivity of Γ(x, y) − 1/r on Ωr(x), this gives

u(x) ≨mr(u)(x), which contradicts (1.2.2).

This ends the proof. ◻
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1. Some Potential Theoretic results 7

We should observe that identity (1.2.2) in Lemma 1.2.1 plays the rôle, for our Γ-balls,

played by the Cauchy integral formula for holomorphic functions. Moreover, if A is the N ×N

identity matrix and V ≡ 1, then L = ∆ is the classical Laplace operator in RN ; thus mr(u)(x) is

the usual mean-value of u over the sphere ∂Ωr(x), and (1.2.2) gives back the Gauss represen-

tation theorem for harmonic functions.

We next introduce solid mean-value operators, by a superposition argument. First we need

some notation. If Ω ⊆ RN is an open set and if x ∈ Ω is fixed, we set

R(x) ∶= sup{r > 0 ∶ Ωr(x) ⊂ Ω}. (1.2.14)

Let x ∈ Ω be fixed. Let ϕ ∶ [0,R(x)) → R be a non-negative L1 function, with compact support,

and such that

∫

R(x)

0
ϕ(ρ)dρ = 1. (1.2.15)

For every continuous function u ∶ Ω→ R, we set

Φ(u)(x) ∶= ∫
R(x)

0
ϕ(ρ)mρ(u)(x)dρ. (1.2.16)

The definition is well posed, since, denoted by [0, r] a compact subinterval of [0,R(x)) con-

taining the support of ϕ, one has (see also (1.1.7) and (1.2.13))

∫

R(x)

0
∣ϕ(ρ)mρ(u)(x)∣dρ ≤ ∫

r

0
ϕ(ρ) sup

Ωr(x)
∣u∣mρ(1)(x)dρ = sup

Ωr(x)
∣u∣ < ∞.

Since ∂Ωρ(x) = {y ∶ 1/Γ(x, y) = ρ}, if we insert the very definition (1.1.6) of K(x, y) in

mρ(u)(x), and if we apply Federer’s Coarea Formula, we obtain

Φ(u)(x) =

= ∫

R(x)

0
ϕ(ρ)(∫

1/Γ(x,y)=ρ
u(y) ⟨A(y)∇Γx(y),∇Γx(y)⟩

V (y)dHN−1(y)

∣∇Γx(y)∣
)dρ

(set f(y) ∶= 1/Γ(x, y) and note that ∇Γx(y) = −Γ2
(x, y) (∇f)(y))

= ∫

R(x)

0
(∫

f(y)=ρ
u(y)V (y)ϕ(

1

Γx(y)
)
⟨A(y)∇Γx(y),∇Γx(y)⟩

Γ2
x(y)

dHN−1(y)

∣∇f(y)∣
)dρ

= ∫
0<f(y)<R(x)

u(y)ϕ(
1

Γx(y)
)
⟨A(y)∇Γx(y),∇Γx(y)⟩

Γ2
x(y)

V (y)dHN
(y),

that is, by recalling (1.1.4) and (1.1.2),

Φ(u)(x) = ∫
ΩR(x)(x)

u(y)ϕ(
1

Γx(y)
)
⟨A(y)∇Γx(y),∇Γx(y)⟩

Γ2
x(y)

dV N(y). (1.2.17)

Remark 1.2.2. Given α > −1, if we take any r ∈ (0,R(x)) and if we set

ϕr(ρ) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(α + 1)ρα/rα+1, if ρ ∈ [0, r]

0, if ρ ∈ (0,R(x)),

7



1.2 Integral representations and Koebe-type Theorem 1. Some Potential Theoretic results

we obtain the family {Φr(u)(x)}r of solid mean-value operators

Φr(u)(x) =
α + 1

rα+1 ∫Ωr(x)
u(y)

⟨A(y)∇Γx(y),∇Γx(y)⟩

Γ2+α
x (y)

dV N(y), 0 < r < R(x).

When V ≡ 1, these are precisely the operators Mr(u)(x) employed in the papers [1, 13]. (and,

for the special case of Carnot groups, in [10, 11, 12]) We shall use our more general operators

Φ(u)(x) in the proof of Koebe-type theorem.

Theorem 1.2.3 (Koebe-type Theorem for H(Ω)). Let Ω ⊆ RN be an open set. Suppose u ∈ C(Ω)

satisfies the following condition:

u(x) =mr(u)(x), for every Γ-ball such that Ωr(x) ⊂ Ω. (1.2.18)

Then u is of class C2 and it is L-harmonic in Ω.

For the case of sub-Laplacians on Carnot groups (a sub-class of our operators (1.1.1)),

an analogous result was proved in [15, Theorem 5.6.3], referred to as the Gauss-Koebe-Levi-

Tonelli Theorem: identity (1.2.18) for classical harmonic functions in R2 is traditionally named

after Gauss; it was Koebe in [63] who proved that, vice versa, (1.2.18) actually implies har-

monicity (see also Kellogg [61] for some extensions of this result); Levi and Tonelli relaxed

the continuity hypothesis with an L1
loc assumption, by also replacing (classical) surface mean-

values with solid ones. This L1
loc assumption will reappear also in our Theorem 1.3.5 (see

Section 1.3).

Proof (of Theorem 1.2.3). With the notation in (1.2.14) for R(x), suppose that u ∈ C(Ω) satisfies

the following condition:

u(x) =mr(u)(x), for every r ∈ (0,R(x)). (1.2.19)

It suffices to show that (1.2.19) implies that u is of class C2 on Ω; indeed, the same argument

ending the proof of Lemma 1.2.1 shows that (1.2.19), when u ∈ C2, implies that u isL-harmonic.

Let Ωn be a sequence of bounded open sets such as Ωn ⊂ Ωn+1 and Ω = ⋃nΩn. Fixed any

n ∈ N, it suffices to show that u ∈ C2(Ωn). To this end, arguing as in the proof of [1, eq. (3.4)],

a compactness argument shows that there exists ε > 0 (also depending on n) so small that

Ωε(x) ⊂ Ω, for every x ∈ Ωn. Fixed a, b such that 0 < a < b < ε, we take any smooth function

ϕ ≥ 0 supported in [a, b] such that ∫
b
a ϕ = 1. Since R(x) ≥ ε for every x ∈ Ωn, we can define on

the whole of Ωn the function Φ(u)(x) as in (1.2.16):

Φ(u)(x) = ∫
b

a
ϕ(r)mr(u)(x)dr, x ∈ Ωn. (1.2.20)

Due to our assumption (1.2.19), if we take x ∈ Ωn, if we multiply both sides of (1.2.19) times

ϕ(r) and we integrate w.r.t. r ∈ [a, b], we get

u(x) = Φ(u)(x), for every x ∈ Ωn. (1.2.21)

8
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On the other hand, an application of (1.2.17) gives

Φ(u)(x) = ∫
ΩR(x)(x)

u(y)ϕ(
1

Γx(y)
)
⟨A(y)∇Γx(y),∇Γx(y)⟩

Γ2
x(y)

dV N(y). (1.2.22)

By our assumption on the support of ϕ, the integral in the above right-hand side actually

performs over the compact Γ-annulus Aa,b(x) ∶= Ωb(x) ∖ Ωa(x); with the convention that the

integrand function in (1.2.22) is prolonged to be 0 outside Aa,b(x), from (1.2.21) and (1.2.22)

we derive that

u(x) = ∫
RN

u(y)ϕ(
1

Γx(y)
)
⟨A(y)∇Γx(y),∇Γx(y)⟩

Γ2
x(y)

dV N(y), ∀ x ∈ Ωn. (1.2.23)

By assumption (S.a) in Section 1.1, Γx is of class C3 on Aa,b(x), and it is bounded on this same

set away from zero (indeed, Γx(y) ∈ [1/b,1/a] for every y ∈ Aa,b(x)). As a consequence, the

function

(x, y) ↦ u(y)ϕ(
1

Γx(y)
)
⟨A(y)∇Γx(y),∇Γx(y)⟩

Γ2
x(y)

V (y)

is of class C2 w.r.t.x ∈ Ωn and it is continuous and compactly supported w.r.t. y ∈ RN . By

a simple Dominated Convergence argument applied to (1.2.23), we are therefore entitled to

perform two partial derivatives w.r.t. the x variable and to pass them under the integral sign,

so that u ∈ C2(Ωn). This ends the proof. ◻

1.3 Topology of H(Ω)

In this section we want to study the topology of H(Ω). In particular, we will prove that H(Ω)

with the L∞loc-topology inherited from C(Ω) is a Heine-Borel space, that is the compact subsets

of H(Ω) are precisely the closed and bounded subsets of H(Ω) (boundedness is meant in the

sense of topological vector spaces). For this purposes, we will extend a celebrated theorem by

P. Montel on normal families of holomorphic functions to our subelliptic setting.

Among the normality theorems usually named after Montel, [78], we are interested in the

following one, concerning locally bounded families (see e.g., [69, Theorem 4, p. 80]): let F be

a family of holomorphic functions on a domain Ω ⊆ C, uniformly bounded on the compact

subsets of Ω; then F is a normal family, that is, given any compact set K ⊂ Ω, every sequence

in F admits a subsequence which is uniformly convergent on K. Therefore, we fix some

terminology.

Definition 1.3.1. Let Ω ⊆ RN be an open set, and let fn, f ∶ Ω → R (with n ∈ N). We say that

{fn}n is normally convergent to f if, for every ε > 0 and for every compact setK ⊂ Ω, there exists

n̄ = n̄(ε,K) ∈ N such that

sup
x∈K

∣fn(x) − f(x)∣ < ε, ∀n ≥ n̄.

9
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Then, it is clear that normal convergence means uniform convergence on the compact sub-

sets of Ω.

Let F be a family of real valued functions on Ω; we say that F is a normal family if, for

every sequence {fn}n in F , there exists a subsequence of {fn}n which is normally convergent

to a function f ∶ Ω → R. We are interested in characterizing normal families of L-harmonic

functions: if F is such normal family, and if f is the limit function as above, it is not at all

obvious whether f is L-harmonic or not. As a consequence of the Koebe-type Theorem 1.2.3,

in the following lemma we shall prove that, in fact, f ∈ H(Ω).

Lemma 1.3.2. Let Ω ⊆ RN be an open set and suppose that the sequence {fn}n ⊂ H(Ω) converges to

f ∶ Ω→ R in the L∞loc-topology. Then f ∈ H(Ω).

Proof. Since H(Ω) ⊂ C(Ω), one clearly has f ∈ C(Ω). We aim to prove that f ∈ H(Ω). By the

Koebe-type Theorem 1.2.3 it suffices to show that

f(x) =mr(f)(x), whenever Ωr(x) ⊂ Ω. (1.3.1)

If Ωr(x) ⊂ Ω, since fn ∈ H(Ω) for every n ∈ N, by Lemma 1.2.1 we derive that

fn(x) =mr(fn)(x), for every n ∈ N.

We aim to let n → ∞ in the above identity, claiming that this passage to the limit produces

(1.3.1). On the one hand, we have limn→∞ fn(x) = f(x), since fn converges locally-uniformly,

hence everywhere point-wise, to f . We finally show that

lim
n→∞

mr(fn)(x) =mr(f)(x). (1.3.2)

This will prove (1.3.1). Now, (1.3.2) is a consequence of the following computation:

∣mr(fn)(x) −mr(f)(x)∣ ≤ ∫
∂Ωr(x)

∣fn(y) − f(y)∣K(x, y)dV N−1
(y)

≤ sup
∂Ωr(x)

∣fn − f ∣ ⋅ ∫
∂Ωr(x)

K(x, y)dV N−1
(y) = sup

∂Ωr(x)
∣fn − f ∣.

For the last identity we have exploited (1.2.13). The last term in the above estimate vanishes

with n → ∞, as ∂Ωr(x) is a compact subset of Ω, and since (by construction) fn converges to

f , as n→∞, uniformly on the compact sets. ◻

1.3.1 Montel-type Theorem for H(Ω)

We recall the notion of locally bounded family.

Definition 1.3.3. Let F be a family of real valued functions on Ω ⊆ RN open set; F is said to be

locally bounded (for some authors, locally uniformly bounded) if, for every compact set K ⊂ Ω,

there exists M =M(K) > 0 such that

sup
x∈K

∣f(x)∣ ≤M, for every f ∈ F . (1.3.3)

10



1. Some Potential Theoretic results 11

We can introduce the Montel-type Theorem.

Theorem 1.3.4 (Montel-type Theorem forH(Ω)). Let Ω ⊆ RN be an open set. Any locally bounded

family of L-harmonic functions in Ω is normal.

This result will straightforwardly derive from the following one (resemblant to the classical

Levi-Tonelli result, in that L∞ norms are replaced by L1 ones), which is of an independent

interest in its own right.

Theorem 1.3.5. Let Ω ⊆ RN be an open set. Let F be a family of L-harmonic functions in Ω. Suppose

that, for every compact set K ⊂ Ω, there exists a constant M =M(K) > 0 such that

∫
K

∣f ∣dHN
≤M, for every f ∈ F . (1.3.4)

Then F is a normal family.

Clearly, Theorem 1.3.5 implies Theorem 1.3.4, as condition (1.3.3) ensures condition (1.3.4)

since

∫
K

∣f(x)∣dHN
(x) ≤ sup

x∈K
∣f(x)∣ ⋅HN

(K).

We observe that in Lemma 1.3.6 we will show that the conditions in Theorems 1.3.4 and 1.3.5

are not only sufficient for normality, but they are also necessary. We shall prove Theorem 1.3.5

by making use of some solid counterparts of the mean-value operators (1.1.7), conveniently

modeled on the geometry of the Γ-balls and of the compact subsets of Ω. The proof is unex-

pectedly delicate, due to the presence of the kernel K(x, y) in (1.1.7), the novelty lying in the

(possible) unboundedness of K(x, y) along the diagonal. This fact is not visible in the clas-

sical case of harmonic functions (since in this case K ≡ 1), nor in the case of sub-Laplacians

on Carnot groups, since suitable superpositions can be made in order to obtain mean-value

operators with bounded kernels.

Now, we prove Theorem 1.3.5; as already observed, this also provides the proof of the

Montel-type Theorem 1.3.4.

Proof (of Theorem 1.3.5). Let notation be as in the statement of Theorem 1.3.5. We consider an

exhaustion of Ω by means of bounded open sets Ωn, and we let Kn be as in (1.1.9). Let n ∈ N

be fixed and let εn > 0 be so small that ⋃x∈Kn Ωεn(x) lies inside a compact subset of Kn+1. (For

the existence of εn, see the already mentioned arguments in [1, eq. (3.4)].) Fixed an, bn such

that 0 < an < bn < εn, we consider a non-negative cut-off function ϕn ∈ C∞
0 (R,R), supported

in [an, bn], such that ∫R ϕn = 1. Since F ⊆ H(Ω), arguing as in the proof of Theorem 1.2.3, we

derive, for every x ∈ Ωn and every f ∈ F ,

f(x) = ∫
RN

f(y)ϕn(
1

Γx(y)
)
⟨A(y)∇Γx(y),∇Γx(y)⟩

Γ2
x(y)

V (y)dHN
(y). (1.3.5)

11



1.3 Topology ofH(Ω) 1. Some Potential Theoretic results

The above integral extends over the compact set An(x) ∶= Ωbn(x) ∖ Ωan(x), which is a subset

of Kn+1, for every x ∈ Kn. By our hypothesis (1.3.4), there exists a constant M(Kn+1) > 0 such

that

∫
Kn+1

∣f ∣dHN
≤M(Kn+1), for every f ∈ F .

Consequently, by means of (1.3.5) we derive the estimate

sup
x∈Kn

∣f(x)∣ ≤ ∫
Kn+1

∣f(y)∣dHN
(y) ⋅ sup

x∈Kn
( sup
y∈An(x)

∣Λn(x, y)∣) ≤M(Kn+1) ⋅Mn,

where we have set Mn ∶= sup{∣Λn(x, y)∣ ∶ x ∈Kn, y ∈ An(x)} and

Λn(x, y) ∶= ϕn(
1

Γx(y)
)
⟨A(y)∇Γx(y),∇Γx(y)⟩

Γ2
x(y)

V (y).

Since An(x) = {y ∶ 1/bn ≤ Γx(y) ≤ 1/an}, we have

Mn ≤ b
2
n ∥ϕn∥∞ ⋅ sup

y∈Kn+1
(V (y) ∥∣A(y)∥∣) ⋅ sup

x∈Kn,y∈An(x)
∣∇Γx(y)∣

2
=∶M ′

n.

Here ∥∣A(y)∥∣ stands for the operator norm of the matrix A(y). We crucially remark that the

set {(x, y) ∈ R2N ∶ x ∈Kn, y ∈ An(x)} is a compact subset of R2N far from the diagonal {x = y},

since it does not intersect the set {(x, y) ∈ R2N ∶ y ∈ Ωan(x)} which is a “tubular” neighborhood

of the diagonal.

By our regularity assumption on Γ, this proves thatM ′
n is finite (and independent of f ∈ F).

The arbitrariness of n shows thatF is a locally bounded family of functions. (Indeed, for every

compact set K ⊂ Ω there exists n ∈ N such that K ⊆ Kn.) We next prove that F is also locally

equicontinuous. By a simple dominated convergence argument, from (1.3.5) we obtain that,

for every j ∈ {1, . . . ,N},

∂f(x)

∂xj
= ∫

RN
f(y)

∂Λn(x, y)

∂xj
dHN

(y), x ∈ Ωn. (1.3.6)

By the same arguments used to prove the local boundedness of F , we can show the existence

of a finite constant M ′′
n , depending on the compact set Kn, such that

sup
x∈Kn,y∈An(x)

∣
∂Λn(x, y)

∂xj
∣ ≤M ′′

n .

Thus (1.3.6) and the assumption (1.3.4) show that the family of vector-valued functions {(∇f)∣Kn ∶

f ∈ F} is uniformly bounded. The arbitrariness of Kn shows that the family {∇f ∶ f ∈ F} is

locally bounded on the compact subsets of Ω. A standard argument based of Lagrange’s Mean

Value Theorem yields the equicontinuity of F on the compact subsets of Ω.

We are now in a position to prove that F is a normal family. Indeed, given a sequence

{fn}n∈N in F , the family {fn∣K1}n is uniformly bounded and equicontinuous; thus, by the

Arzelà-Ascoli Theorem, we can select a subsequence {fn(1,k)}k∈N which is uniformly conver-

gent on K1 to a function, say g1 ∶ K1 → R. The family {fn(1,k)∣K2}k∈N is uniformly bounded

12



1. Some Potential Theoretic results 13

and equicontinuous, so that we can select a subsequence {fn(2,k)}k∈N of {fn(1,k)}k∈N which is

uniformly convergent on K2 to a function, say g2 ∶ K2 → R. Since K1 ⊂ K2 we have g1 ≡ g2 on

K1. Inductively, for every j ∈ N we can construct sequences

{fn}n∈N, {fn(1,k)}k∈N, {fn(2,k)}k∈N, . . . {fn(j,k)}k∈N, . . .

where each is a subsequence of the preceding one, and such that {fn(j,k)}k∈N is uniformly

convergent on Kj to a function, say gj ∶Kj → R. We define

f ∶ Ω→ R, f ∣Kj ∶= gj for every j ∈ N.

Due to our discussion above, this definition is well-posed and f is continuous on Ω; more-

over, the Cantor-diagonal sequence {fn(k,k)}k∈N is a subsequence of {fn}n which converges

uniformly to f on every Kj , for any j ∈ N. This proves that F is normal; by Lemma 1.3.2 we

know that f ∈ H(Ω) since it is the L∞loc-limit of a subsequence of L-harmonic functions. ◻

1.3.2 Heine-Borel Theorem for H(Ω)

In order to introduce our last main result in this section, we want to recall some notations of

Section 1.1 to restate the Theorems 1.3.4 and 1.3.5 with the usual terminology of the theory of

topological vector spaces.

With T (P) and T (Q) we denote, respectively, the L1
loc-topology and the L∞loc-topology on

X ∶= C(Ω). Then, a subset F of X is bounded in the topological vector space (X,T (Q)) if

and only if F is locally bounded, i.e., if and only if, for every compact set K ⊂ Ω, there exists

M =M(K) > 0 such that

sup
x∈K

∣f(x)∣ ≤M, for every f ∈ F ,

that is (1.3.3) is fulfilled.

Furthermore, F is bounded in the topological vector space (X,T (P)) if and only if, for

every compact set K ⊂ Ω, there exists M =M(K) > 0 such that

∫
K

∣f(x)∣dHN
(x) ≤M, for every f ∈ F ,

that is (1.3.4) is fulfilled.

Hence, Theorems 1.3.4 and 1.3.5 can be restated by saying that bounded subsets of the topo-

logical vector spaces (H(Ω),T (Q)) and (H(Ω),T (P)) are normal families.

Moreover, since normal convergence is evidently equivalent to the convergence with re-

spect to the L∞loc-topology, a family F ⊆ C(Ω) is normal if and only if F is a precompact set

(i.e., it has compact closure) in the topological space (C(Ω),T (Q)). Even if the L∞loc-topology

is, in general, strictly finer than the L1
loc-topology, they coincide on H(Ω), as the following

useful result states.

13



1.3 Topology ofH(Ω) 1. Some Potential Theoretic results

Lemma 1.3.6 (Topology ofH(Ω) and normality). Let Ω ⊆ RN be an open set. The topology ofH(Ω)

as a subspace of (C(Ω),T (Q)) coincides with the topology of H(Ω) as a subspace of (C(Ω),T (P)).

With these equivalent topologies,H(Ω) is a complete subspace of C(Ω), hence it is a Fréchet space.

Furthermore, given a set F ⊆ H(Ω), the following conditions are equivalent:

1. F is a normal family;

2. F is a precompact subset ofH(Ω) (in the topologies T (P) or T (Q));

3. F is T (Q)-bounded, i.e., for every compact set K ⊂ Ω, there exists a constant M(K) > 0 such

that supK ∣f ∣ ≤M(K), for every f ∈ F ;

4. F is T (P)-bounded, i.e., for every compact set K ⊂ Ω, there exists a constant M(K) > 0 such

that ∫K ∣f ∣dHN ≤M(K), for every f ∈ F .

The proof is split in three steps.

Proof. Let Ω ⊆ RN be an open set and let X ∶= C(Ω). We remind that T (Q) is the L∞loc-topology

of X , while T (P) is the L1
loc-topology of X .

STEP I. We begin with showing that the topology of H(Ω) as a subspace of (X,T (Q))

coincides with the topology of H(Ω) as a subspace of (X,T (P)). This amounts to proving

that the following map is a homeomorphism

ι ∶ (H(Ω),T (Q)) → (H(Ω),T (P)), ι(f) ∶= f.

The continuity of ι is trivial since T (P) ⊂ T (Q). Since P and Q are countable families of

seminorms, T (Q) and T (P) are first-countable topologies. Therefore the continuity of ι−1 can

be proved sequentially. Given fn, f ∈ H(Ω) such that

lim
n→∞

fn = f w.r.t. T (P), (1.3.7)

we need to show that limn→∞ fn = f w.r.t. T (Q) too. If K is any compact subset of Ω, by

definition of T (P) we have that fn∣K converges to f ∣K in L1(K). In particular, {fn∣K}n is a

bounded set in the norm of L1(K). Due to the arbitrariness of K, we are in a position to apply

Theorem 1.3.5 to F ∶= {fn ∶ n ∈ N}, deriving that F is a normal family. This is equivalent

to saying that every subsequence {fn(k)}k of {fn}n admits a subsequence {fn(k(j))}j which

converges w.r.t. T (Q) to some function g. Since T (P) ⊂ T (Q), we have limj→∞ fn(k(j)) = g in

T (P) too. Now, by assumption (1.3.7) we derive that g = f . Summing up, we demonstrated

that every subsequence of {fn}n admits a further subsequence which T (Q)-converges to f .

This is possible if and only if {fn}n itself is T (Q)-convergent to f .

STEP II. Next we show that H(Ω) is a closed subspace of C(Ω) w.r.t. the T (Q)-topology;

since, as it is well-known, (C(Ω),T (Q)) is a Fréchet space, this will prove that H(Ω) is a

14



1. Some Potential Theoretic results 15

complete subspace of (C(Ω),T (Q)), hence a Fréchet subspace if equipped with the T (Q)-

topology (or, equivalently, with the T (P)-topology; see Step I). Now, the fact that H(Ω) is a

T (Q)-closed subspace of C(Ω) is exactly the statement of Lemma 1.3.2.

STEP III. Finally, given a set F ⊆ H(Ω), we are left to proving that conditions (1)-to-(4) in

the last part of Lemma 1.3.6 are equivalent.

(1)⇒(2): Conditions (1) and (2) are equivalent; indeed, in every metrizable space, precom-

pactness of a set F is equivalent to the condition that every sequence in F admits a convergent

subsequence. Now, (H(Ω),T (Q)) is indeed a metrizable space since T (Q) is induced by a

metric (see Section 1.1).

(2)⇒(3): This is generally true in topological vector spaces;1 for completeness, we provide

a direct proof. Let F be a precompact subset of (H(Ω),T (Q)) and suppose, by contradiction,

that there exists a compact set K ⊂ Ω and a sequence {fn}n ⊂ F such that supK ∣fn∣ > n for

every n ∈ N; since F is T (Q)-compact, we can select a subsequence {fn(k)}k which is T (Q)-

convergent in H(Ω). In particular, {supK ∣fn(k)∣}k must be bounded, and this conflicts with

the condition supK ∣fn(k)∣ > n(k) for every k ∈ N, and the fact that n(k) → ∞ as k →∞.

(3)⇒(4): This is a direct consequence of ∫K ∣f ∣dHN ≤ supK ∣f ∣ ⋅HN(K).

(4)⇒(1): This is the precisely the statement of Theorem 1.3.5. ◻

From Lemma 1.3.6 we straightforwardly derive the following result.

Theorem 1.3.7 (Heine-Borel forH(Ω)). Let Ω ⊆ RN be an open set. The setH(Ω) of the L-harmonic

functions in Ω endowed with the L1
loc-topology inherited from C(Ω) (ore, equivalently, endowed with

the L∞loc-topology) is a Heine-Borel topological vector space.

Proof. Let Ω ⊆ RN be an open set. We equipH(Ω) with the L∞loc-topology T (Q) inherited from

C(Ω) (this is equivalent to equip it with the L1
loc-topology, see Lemma 1.3.6). Since (in every

topological vector space) any compact set is closed and bounded, in order to prove that H(Ω)

is a Heine-Borel space we are left to show that a closed and T (Q)-bounded set F ⊂ H(Ω) is

compact. From condition (3) in Lemma 1.3.6, the T (Q)-boundedness of F implies that F is

compact; since F = F (for F is closed), the proof is complete. ◻

1If F is compact, then F is T (Q)-bounded whence F is T (Q)-bounded.
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Chapter 2

Harnack Inequality for degenerate

hypoelliptic operators

In this chapter we consider a class of hypoelliptic second-order partial differential operators

L in divergence form on RN , for which we have showed the Strong and Weak Maximum

Principles in [5]; here our aim is to prove the Harnack Inequality for L.

In order to prove the Harnack theorem, we need to show the solvability of the Dirichlet

problem for L on a basis of the Euclidean topology; then we prove a Weak Harnack inequal-

ity and we use these results, together with means of Potential Theory, to obtain the Harnack

inequality.

2.1 Main assumptions and notation

We shall be concerned with linear second order partial differential operators (PDOs, in the

sequel), possibly degenerate-elliptic, in divergence form

L ∶=
1

V (x)

N

∑
i,j=1

∂

∂xi
(V (x)ai,j(x)

∂

∂xj
), x ∈ RN , (2.1.1)

where V is a C∞ strictly positive function on RN , the matrix A(x) ∶= (ai,j(x))i,j is symmetric

and positive semi-definite at every point x ∈ RN , and it has real-valued C∞ entries. In particular,

L is formally self-adjoint on L2(RN ,dν) with respect to the measure dν(x) = V (x)dx, which

clarifies the rôle of V .

In order to describe our results, we need to fix some notation and definition: we say that a

linear second order PDO on RN

L ∶=
N

∑
i,j=1

αi,j(x)
∂2

∂xi∂xj
+
N

∑
i=1

βi(x)
∂

∂xi
+ γ(x) (2.1.2)

17



2.1 Main assumptions and notation 2. Harnack Inequality for hypoelliptic operators

is non-totally degenerate at a point x ∈ RN if the matrix (αi,j(x))i,j (which will be referred to as

the principal matrix ofL) is non-vanishing. We observe that the principal matrix of an operator

L of the form (2.1.1) is precisely A(x) = (ai,j(x))i,j .

We also remind that L is said to be (C∞-)hypoelliptic in an open set Ω ⊆ RN if, for every

u ∈ D′(Ω), every open set U ⊆ Ω and every f ∈ C∞(U,R), the equation Lu = f in U implies that

u is (a function-type distribution associated with) a C∞ function on U .

In the sequel, if Ω ⊆ RN is open, we say that u is L-harmonic (resp., L-subharmonic) in Ω if

u ∈ C2(Ω,R) and Lu = 0 (resp., Lu ≥ 0) in Ω. The set of the L-harmonic functions in Ω will

be denoted by HL(Ω). We observe that, if L is hypoelliptic on every open subset of RN , then

HL(Ω) ⊂ C∞(Ω,R); under this hypoellipticity assumption, HL(Ω) has important topological

properties, which will be crucially used in the sequel (Remark 2.3.9).

In order to introduce our first main result we assume the following hypotheses on L:

(NTD) L is non-totally degenerate at every point of RN , or equivalently (recalling that A(x) is

symmetric and positive semi-definite),

trace(A(x)) > 0, for every x ∈ RN . (2.1.3)

(HY) L is C∞-hypoelliptic in every open subset of RN .

Under these two assumptions we have showed in [5] the Strong Maximum Principle for L (see

also Section 2.2).

Condition (NTD), if compared to the Muckenhoupt-type weights on the degeneracies of

A(x), does not allow a simultaneous vanishing of the eigenvalues of A(x), but it has the advan-

tage of permitting a very fast vanishing of small eigenvalues (see Example 2.1.2) together with

a very fast growing of large eigenvalues (see Example 2.1.1); both phenomena can happen at

an exponential rate (e.g., like e−1/x2

as x→ 0 in the first case, and like ex as x→∞ in the second

case), which is not allowed when Muckenhoupt weights are involved.

Meaningful examples of operators satisfying hypotheses (NTD) and (HY), providing pro-

totype PDOs to which our theory applies and a motivation for our investigation, are now

described in the following two examples.

Example 2.1.1. The following PDOs satisfy the assumptions (NTD) and (HY).

(a.) If RN is equipped with a Lie group structure G = (RN ,∗), and if we fix a set X ∶=

{X1, . . . ,Xm} of Lie-generators for the Lie algebra g of G (this means that the smallest Lie

algebra containing X is equal to g), then a direct computation shows that

LX ∶= −
m

∑
j=1

X∗
j Xj (2.1.4)

is of the form (2.1.1), where V (x) is the density of the Haar measure ν on G, and (ai,j)i,j is

equal to S ST , where S is the N ×m matrix whose columns are given by the coefficients of
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2. Harnack Inequality for hypoelliptic operators 19

the vector fields X1, . . . ,Xm; here X∗
j denotes the (formal) adjoint of Xj in the Hilbert space

L2(RN ,dν). Most importantly, LX in (2.1.4) satisfies the assumptions (NTD) and (HY) above.

Indeed:

• The non-total-degeneracy is a consequence of X being a set of Lie-generators of g.

• LX is a Hörmander operator, of the form ∑
m
j=1X

2
j + X0, where X0 is a linear combi-

nation (with smooth coefficients) of X1, . . . ,Xm. Therefore LX is hypoelliptic due to

Hörmander’s Hypoellipticity Theorem, [58], jointly with the cited fact that X is a set of

Lie-generators of g.

The density V need not be identically 1, as for example for the Lie group (R2,∗), where

(x1, x2) ∗ (y1, y2) = (x1 + y1e
x2 , x2 + y2),

since in this case V (x) = e−x2 . The left-invariant PDO associated with the set of generators

X = {ex2 ∂
∂x1

, ∂
∂x2

} has fast-growing coefficients:

LX = e2x2
∂2

∂x2
1

+
∂2

∂x2
2

−
∂

∂x2
.

Note that the eigenvalues of the principal matrix of LX are e2x2 and 1, so that the largest

eigenvalue cannot be controlled (for x2 > 0) by any integrable weight.

(b.) More generally (arguing as above), if X = {X1, . . . ,Xm} is a family of smooth vector

fields in RN satisfying Hörmander’s Rank Condition, if dν(x) = V (x)dx is the Radon measure

associated with any positive smooth density V on RN , then the operator −∑mj=1X
∗
j Xj is of the

form (2.1.1) and it satisfies (NTD) and (HY). Here X∗
j denotes the formal adjoint of Xj in

L2(RN ,dν). The PDOs of this form naturally arise in CR Geometry and in the function theory

of several complex variables (see [60]).

The above examples show that geometrically meaningful PDOs belonging to the class of

our concern actually fall in the hypoellipticity class of the Hörmander operators. Nonetheless,

hypotheses (NTD) and (HY) are general enough to comprise non-Hörmander and non-subelliptic

operators, as it is shown in the next example. Applications to this kind of infinitely-degenerate

PDOs also furnish one of the main motivation for our study.

Example 2.1.2. Let us consider the class of operators in R2 defined by

La =
∂2

∂x2
1

+ (a(x1)
∂

∂x2
)

2

, (2.1.5a)

with a ∈ C∞(R,R), a even, nonnegative, nondecreasing on [0,∞) and vanishing only at 0.

Then La satisfies (NTD) (obviously) and (HY), thanks to a result by Fedĭı, [34]. Note that La

does not satisfy Hörmander’s Rank Condition at x1 = 0 if all the derivatives of a vanish at

0, as for a(x1) = exp(−1/x2
1). Other examples of operators satisfying our assumptions (NTD)
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and (HY) but failing to be Hörmander operators can be found, e.g., in the following papers:

Bell and Mohammed [9]; Christ [22, Section 1]; Kohn [67]; Kusuoka and Stroock [70, Theorem

8.41]; Morimoto [79]. Explicit examples are, for instance,

∂2

∂x2
1

+ ( exp(−1/∣x1∣)
∂

∂x2
)

2

+ ( exp(−1/∣x1∣)
∂

∂x3
)

2

in R3, (2.1.5b)

∂2

∂x2
1

+ ( exp(−1/
√

∣x1∣)
∂

∂x2
)

2

+
∂2

∂x2
3

in R3, (2.1.5c)

∂2

∂x2
2

+ (x2
∂

∂x1
)

2

+
∂2

∂x2
4

+ ( exp(−1/ 3
√

∣x1∣)
∂

∂x3
)

2

in R4. (2.1.5d)

For the hypoellipticity of (2.1.5b) see [22]; for (2.1.5c) see [70]; for (2.1.5d) see [79]. Later on,

in proving the Harnack Inequality, we shall add another hypothesis to (NTD) and (HY) and,

as we shall show, the operators from (2.1.5a) to (2.1.5d) (and those in Example 2.1.1) will fulfil

this assumption as well. Hence our main results fully apply to these PDOs.

Moreover, since the PDOs (2.1.5a)-to-(2.1.5d) are not subelliptic (see Remark 2.1.3), they do

not fall in the class considered by Jerison and Sánchez-Calle in [60]. Finally, note that the

smallest eigenvalue in all the above examples vanishes very quickly (like exp(−1/∣x∣α) for

x→ 0, with positive α) and it cannot be bounded from below by any weight w(x) with locally

integrable reciprocal function.

In order to prove the main result of the chapter (namely, the Harnack Inequality for L),

we shall need a further assumption, very similar to (HY) (and, indeed, equivalent to it in

many important cases), together with some technical results on the solvability of the Dirichlet

problem related to L. Our next assumption is the following one:

(HY)ε There exists ε > 0 such that L − ε is C∞-hypoelliptic in every open subset of RN .

For operatorsL satisfying hypotheses (NTD), (HY) and (HY)ε we are able to prove the Harnack

Inequality (see Theorem 2.4.3).

We postpone the description of the relationship between assumptions (HY) and (HY)ε (and

their actual equivalence for large classes of operators: for subelliptic PDOs, for instance) in

Remark 2.1.3 below. Instead, we anticipate the rôle of the perturbation L− ε of the operator L:

this is motivated by a crucial comparison argument (which we generalize to our setting), due

to Bony [16, Proposition 7.1, p.298], giving the lower bound

u(x0) ≥ ε∫
Ω
u(y)kε(x0, y)V (y)dy ∀x0 ∈ Ω, (2.1.6)

for every nonnegativeL-harmonic function u on the open set Ω which possesses a Green kernel

kε(x, y) relative to the perturbed operator L − ε (see Theorem 2.3.7 for the notion of a Green

kernel, and see Lemma 2.4.1 for the proof of (2.1.6)). This lower bound, plus some topological

facts on hypoellipticity, is the key ingredient for a weak Harnack Inequality related to L, as we

shall explain.
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2. Harnack Inequality for hypoelliptic operators 21

Some remarks on assumption (HY)ε are now in order.

Remark 2.1.3. Hypothesis (HY)ε is implicit in hypothesis (HY) for notable classes of operators,

whence our assumptions for the validity of the Harnack Inequality for L reduce to (NTD) and

(HY) solely: namely, (HY) implies (HY)ε in the following cases:

• for Hörmander operators, and, more generally, for second order subelliptic operators (in

the usual sense of fulfilling a subelliptic estimate, see e.g., [60, 67]); indeed, any operator

L in these classes of PDOs is hypoelliptic (see Hörmander [58], Kohn and Nirenberg

[68]), and L still belongs to these classes after the addition of a smooth zero-order term;

• for operators with real-analytic coefficients. Indeed, in the Cω case, one can apply known

results by Oleı̆nik and Radkevič ensuring that, for a general Cω operator L as in (2.1.2),

hypoellipticity is equivalent to the verification of Hörmander’s Rank Condition for the

vector fieldsX0,X1, . . . ,XN obtained by rewritingL as∑Ni=1 ∂i(Xi)+X0+γ; this condition

is clearly invariant under any change of the zero-order term γ ofL so that (HY) and (HY)ε

are indeed equivalent.

The problem of establishing, in general, whether (HY) implies (HY)ε seems non-trivial and

it is postponed to future investigations.1 In this regard we remind that, for example, in the

complex coefficient case the presence of a zero-order term (even a small ε) may drastically

alter hypoellipticity (see for instance the example given by Stein in [90] and the very recent

paper [82] by Parmeggiani).

We explicitly remark that the operators (2.1.5a)-to-(2.1.5d) are not subelliptic (nor Cω), yet

they satisfy hypotheses (NTD), (HY) and (HY)ε. The lack of subellipticity is a consequence of

the characterization of the subelliptic PDOs due to Fefferman and Phong [35, 36] (see also [67,

Prop.1.3] or [60, Th.2.1 and Prop.2.1], jointly with the presence of a coefficient with a zero of

infinite order in (2.1.5a)-to-(2.1.5d)). The second assertion concerning the verification of (HY)ε

(the other hypotheses being already discussed) derives from the following result by Kohn,

[67]: any operator of the form

L1 + λ(x)L2 in Rnx ×Rmy

is hypoelliptic, where λ ∈ C∞(Rx), λ ≥ 0 has a zero of infinite order at 0 (and no other zeroes

of infinite order), and L1 (operating in x ∈ Rn) and L2 (operating in y ∈ Rm) are general second

order PDOs (as in (2.1.2)) with smooth coefficients and they are assumed to be subelliptic. It

is straightforward to recognize that by subtracting ε to any PDO in (2.1.5a)-to-(2.1.5d) we get

an operator of the form (L1 − ε) + λ(x)L2, where λ has the required features, L2 is uniformly

1It appears that having some quantitative information on the loss of derivatives may help in facing this question

(personal communication by A. Parmeggiani).
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elliptic (indeed, a classical Laplacian in all the examples), and L1 − ε is a uniformly elliptic

operator (cases (2.1.5a)-to-(2.1.5c)) or it is a Hörmander operator (case (2.1.5d)).

2.2 The Strong and Weak Maximum Principles

The aim of this section is to give some recall on the Strong and Weak Maximum Principle for

L (for proofs of the main results see [5]). Clearly, a fundamental tool is played by a suitable

Hopf-type lemma, furnished in Lemma 2.2.1. (For a recent interesting survey on maximum

principles and Hopf-type results for uniformly elliptic operators, see López-Gómez [73].)

First the relevant definition and notation: given an open set Ω ⊆ RN and a relatively closed

set F in Ω, we say that ν is externally orthogonal to F at y, and we write

ν�F at y, (2.2.1)

if: y ∈ Ω ∩ ∂F ; ν ∈ RN ∖ {0}; B(y + ν, ∣ν∣) is contained in Ω and it intersects F only at y. Here

and throughout this chapter B(x0, r) is the Euclidean ball in RN of centre x0 and radius r > 0;

moreover ∣ ⋅ ∣ will denote the Euclidean norm on RN . The notation (2.2.1) does not explicitly

refer to externality, but this will not create any confusion in the sequel. It is not difficult to

recognize that if Ω is connected and if F is a proper (relatively closed) subset of Ω, then there

always exist couples (y, ν) such that ν�F at y.

Lemma 2.2.1 (of Hopf-type for L). Suppose that L is an operator of the form (2.1.1) with C1 coeffi-

cients V > 0 and ai,j , and let us set A(x) ∶= (ai,j(x))i,j . (We remind that A(x) ≥ 0 for every x ∈ RN .)

Let Ω ⊆ RN be a connected open set. Then, the following facts hold.

(1) Let u ∈ C2(Ω,R) be such that Lu ≥ 0 on Ω; let us suppose that

F (u) ∶= {x ∈ Ω ∶ u(x) = max
Ω

u} (2.2.2)

is a proper subset of Ω. Then

⟨A(y)ν, ν⟩ = 0 whenever ν�F (u) at y. (2.2.3)

(2) Suppose c ∈ C(RN ,R) is nonnegative on RN , and let us set Lc ∶= L − c. Let u ∈ C2(Ω,R)

be such that Lcu ≥ 0 on Ω; let us suppose that F (u) in (2.2.2) is a proper subset of Ω and that

maxΩ u ≥ 0. Then (2.2.3) holds true.

Our main result under conditions (NTD) and (HY) is the following one.

Theorem 2.2.2 (Strong Maximum Principle for L). Suppose that L is an operator of the form

(2.1.1), with C∞ coefficients V > 0 and (ai,j)i,j ≥ 0, and that it satisfies (NTD) and (HY). Let Ω ⊆ RN

be a connected open set. Then, the following facts hold.
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2. Harnack Inequality for hypoelliptic operators 23

(1) Any function u ∈ C2(Ω,R) satisfying Lu ≥ 0 on Ω and attaining a maximum in Ω is constant

throughout Ω.

(2) If c ∈ C∞(RN ,R) is nonnegative on RN , and if we set

Lc ∶= L − c, (2.2.4)

then any function u ∈ C2(Ω,R) satisfying Lcu ≥ 0 on Ω and attaining a nonnegative maximum

in Ω is constant throughout Ω.

The rôle of the nonnegativity of the zero-order term c in the above statement (2) in obtaining

Strong Maximum Principles is well-known (see e.g., Pucci and Serrin [85]).

Remark 2.2.3. We have seen that, in order to obtain the SMP and WMP for L− c, it is also suffi-

cient to replace the hypothesis on the hypoellipticity of Lwith the (more natural hypothesis of

the) hypoellipticity of L − c, still under assumption (NTD) and the divergence-form structure

of L; see Remark 2.2.7 for the precise result.

The proof of the SMP in Theorem 2.2.2 follows a rather classical scheme, in that it rests on

a Hopf Lemma for L (see Lemma 2.2.1). However, the passage from the Hopf Lemma to the

SMP is, in general, non-trivial and the same is true in our framework. For example, in the

paper [16] by Bony, where Hörmander operators are considered, this passage is accomplished

by means of a maximum propagation principle, crucially based on Hörmander’s Rank Condi-

tion, the latter ensuring a connectivity property (the so-called Chow’s Connectivity Theorem for

Hörmander vector fields). The novelty in our setting is that, since hypotheses (NTD) and (HY)

do not necessarily imply that L is a Hörmander operator (see for instance Example 2.1.2), we

have to supply for a lack of geometric information.

We are able to supply the lack of Hörmander’s Rank Condition by using a notable control-

theoretic property encoded in the hypoellipticity assumption (HY), proved by Amano in [3]:

indeed, thanks to the hypothesis (NTD), we are entitled to use [3, Theorem 2] which states that

(HY) ensures the controllability of the ODE system

γ̇ = ξ0X0(γ) +
N

∑
i=1

ξiXi(γ), (ξ0, ξ1, . . . , ξN) ∈ R1+N ,

on every open and connected subset of RN . Here X1, . . . ,XN denote the vector fields associ-

ated with the rows of the principal matrix of L, whereas X0 is the drift vector field obtained

by writing L (this being always possible) in the form

Lu =
N

∑
i=1

∂

∂xi
(Xiu) +X0u.

By definition of a controllable system, Amano’s controllability result provides another geo-

metric connectivity property (a substitute for Chow’s Theorem): any couple of points can be
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joined by a continuous path which is piece-wise an integral curve of some vector field Y be-

longing to spanR{X0,X1, . . . ,XN}. The SMP will then follow if we show that there is a pro-

pagation of the maximum of any L-subharmonic function u along all integral curves γY of

every Y ∈ spanR{X0,X1, . . . ,XN}. In other words, we need to show that if the set F (u) of the

maximum points of u intersects any such γY , then γY is wholly contained in F (u): briefly, if

this happens we say that F (u) is Y -invariant. In its turn, this Y -invariance property can be

characterized (see Bony, [16, §2]) in terms of a tangentiality property of Y with respect to F (u).

Now, the self-adjoint structure of our PDO L in (2.1.1) ensures that X0 is a linear combina-

tion with smooth coefficients of X1, . . . ,XN . Hence, by the very definition of tangentiality, the

tangentiality ofX0 w.r.t.F (u) will be inherited from the tangentiality ofX1, . . . ,XN w.r.t.F (u).

By means of the above argument of controllability/propagation, this allows us to reduce the

proof of the SMP to showing that any of the vector fields X1, . . . ,XN is tangent to F (u). Luck-

ily, this tangentiality is a consequence of the choice of X1, . . . ,XN as deriving from the rows of

the principal matrix of L, together with the Hopf-type Lemma 2.2.1 for L.

Remark 2.2.4. We explicitly remark that, as it is proved by Amano in [3, Theorem 1], the above

controllability property ensures the validity of the Hörmander Rank Condition only on an

open dense subset of RN which may fail to coincide with the whole of RN . This actual pos-

sible lack of the Hörmander Rank Condition is clearly exhibited in Example 2.1.2 (of non-

Hörmander operators which nonetheless satisfy our assumptions (NTD) and (HY), and hence

the SMP).

To the best of our knowledge, Amano’s controllability result for hypoelliptic non-totally-

degenerate operators has been long forgotten in the literature; only recently, it has been used

by B. Abbondanza and A. Bonfiglioli [1] in studying the Dirichlet problem for L, and in obtain-

ing Potential Theoretic results for the harmonic sheaf related to L.

As a Corollary of Theorem 2.2.2 we immediately get the following result.

Corollary 2.2.5 (Weak Maximum Principle for L). Suppose that L is an operator of the form

(2.1.1), with C∞ coefficients V > 0 and (ai,j) ≥ 0, and that it satisfies (NTD) and (HY). Suppose also

that c ∈ C∞(RN ,R) is nonnegative on RN (the case c ≡ 0 is allowed), and let us set Lc ∶= L − c. Then,

Lc satisfies the Weak Maximum Principle on every bounded open set Ω ⊆ RN , that is:

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u ∈ C2(Ω,R)

Lcu ≥ 0 on Ω

lim sup
x→x0

u(x) ≤ 0 for every x0 ∈ ∂Ω

Ô⇒ u ≤ 0 on Ω. (2.2.5)

As a consequence, if Ω ⊆ RN is bounded, and if u ∈ C2(Ω)∩C(Ω) is nonnegative and such thatLcu ≥ 0

on Ω, then one has supΩ u = sup∂Ω u.
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Since Amano’s results on hypoellipticity/controllability are independent of the presence

of a zero-order term, we have the following remarks.

Remark 2.2.6. Suppose that L is an operator of the form (2.1.1), with C∞ coefficients V > 0 and

(ai,j) ≥ 0, and that it satisfies (NTD). Let c ∈ C∞(RN ,R) be nonnegative and suppose that the

operator Lc ∶= L − c is hypoelliptic on every open subset of RN .

If Ω ⊆ RN is a connected open set, then any function u ∈ C2(Ω,R) satisfying Lcu ≥ 0 on Ω and

attaining a nonnegative maximum in Ω is constant throughout Ω.

Remark 2.2.7. Suppose that L is an operator of the form (2.1.1), with C∞ coefficients V > 0 and

(ai,j) ≥ 0, and that it satisfies (NTD). Let c ∈ C∞(RN ,R) be nonnegative and suppose that the

operator Lc ∶= L − c is hypoelliptic on every open subset of RN .

Then Lc satisfies the Weak Maximum Principle on every bounded open set Ω ⊆ RN .

As a consequence, if Ω ⊆ RN is bounded, and if u ∈ C2(Ω) ∩ C(Ω) is nonnegative and such that

Lcu ≥ 0 on Ω, then one has supΩ u = sup∂Ω u.

2.3 The Dirichlet problem for L

Before describing the approach to the Harnack Inequality in Section 2.4, inspired by the tech-

niques in [16], we state the main needed technical tools on the solvability of the Dirichlet

problem for L and for the perturbed operator L − ε.

Lemma 2.3.1. Suppose that L is an operator of the form (2.1.1), with C∞ coefficients V > 0 and

(ai,j) ≥ 0, and that L satisfies (NTD). Let ε ≥ 0 be fixed (the case ε = 0 being admissible). We set

Lε ∶= L − ε and we assume that Lε is hypoelliptic on every open subset of RN .

Then, there exists a basis for the Euclidean topology of RN , independent of ε, made of open and

connected sets Ω (with Lipschitz boundary) with the following properties: for every continuous function

f on Ω and for every continuous function ϕ on ∂Ω, there exists one and only one solution u ∈ C(Ω,R)

of the Dirichlet problem

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Lεu = −f on Ω (in the weak sense of distributions),

u = ϕ on ∂Ω (point-wise).
(2.3.1)

Furthermore, if f,ϕ ≥ 0 then u ≥ 0 as well. Finally, if f belongs to C∞(Ω,R)∩C(Ω,R), then the same

is true of u, and u is a classical solution of (2.3.1).

We prove this theorem for a considerably larger class of operators than the Lε above; see

Theorem 2.3.2: our slightly more general framework (we indeed deal with general hypoelliptic

operators which are non-totally degenerate at every point) compared to the one considered

by Bony in [16] (where Hörmander operators are concerned) does not present much more
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difficulties than the one in [16, Section 5], and the proof is given for the sake of completeness

only.

Theorem 2.3.2. Suppose that L is an operator on RN of the form

L =
N

∑
i,j=1

αi,j
∂2

∂xi∂xj
+
N

∑
i=1

βi
∂

∂xi
+ γ, (2.3.2)

with αi,j , βi, γ ∈ C∞(RN ,R), with (αi,j) symmetric and positive semi-definite. We assume that L is

non-totally degenerate at every x ∈ RN and that L is C∞-hypoelliptic in every open set.

Then there exists a basis for the Euclidean topology of RN made of open sets Ω with the following

properties: for every continuous function f on Ω and for every continuous function ϕ on ∂Ω, there

exists one and only one solution u ∈ C(Ω,R) of the Dirichlet problem

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Lu = −f on Ω (in the weak sense of distributions),

u = ϕ on ∂Ω (point-wise).
(2.3.3)

Furthermore, if f,ϕ ≥ 0 then u ≥ 0 as well. Finally, if f belongs to C∞(Ω,R)∩C(Ω,R), then the same

is true of u, and u is a classical solution of (2.3.3).

Finally, if the zero-order term γ of L is non-positive on R, the above basis {Ω} does not depend on

γ. If γ < 0, the basis {Ω} only depends on the principal matrix (αi,j) of L.

The key step is to construct a basis for the Euclidean topology of RN as follows:

Lemma 2.3.3. Let A(x) = (ai,j(x)) be a matrix with real-valued continuous entries on RN , which is

symmetric, positive semi-definite and non-vanishing at a point x0 ∈ RN .

Then, there exists a basis of connected open neighborhoods Bx0 of x0 such that any Ω ∈ Bx0 satisfies

the following property: for every y ∈ ∂Ω there exists ν ∈ RN ∖ {0} such that B(y + ν, ∣ν∣) intersects Ω

at y only, and such that

⟨A(y) ν, ν⟩ > 0. (2.3.4)

Proof. By the assumptions on A(x0) there exists a unit vector h0 such that

⟨A(x0)h0, h0⟩ > 0. (2.3.5)

Following the idea of Bony [16], we choose the neighborhood basis Bx0 = {Ω(ε)} as follows:

Ω(ε) ∶= B(x0 + ε
−1 h0, ε

−1
+ ε2

) ∩B(x0 − ε
−1 h0, ε

−1
+ ε2

).

It suffices to show that there exists ε > 0 such that every Ω(ε) with 0 < ε ≤ ε satisfies the

requirement of the lemma. Now, the set Ω(ε) (which is trivially an open neighborhood of x0)

shrinks to {x0} as ε shrinks to 0. Moreover, every y ∈ ∂Ω(ε) belongs to one at least of the

spheres ∂B(x0 ± ε
−1 h0, ε

−1 + ε2); accordingly, we choose

ν = νε(y) ∶=
y − (x0 ± ε

−1 h0)

ε−1 + ε2
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to get the geometric condition B(y + ν, ∣ν∣) ∩ Ω(ε) = {y}. It obviously holds that νε(y) tends

to h(x0) as ε → 0 (uniformly for bounded x0, y, h0), so that (2.3.4) follows from (2.3.5) by

continuity arguments, for any 0 ≤ ε ≤ ε, with ε conveniently small. ◻

We proceed with the proof of Theorem 2.3.2 by constructing, for any given x0 ∈ RN , a

basis of neighborhoods of x0 as required. The crucial step is to reduce L to some equivalent

operator L̃ with zero-order term L̃(1) which is strictly negative around x0. We observe that

this procedure is not necessary if γ = L(1) is already known to be negative on RN . In general,

we let

L̃u ∶= wL(wu), where w(x) = 1 −M ∣x − x0∣
2,

with M ≫ 1 to be chosen. Let us denote by B(x0) the Euclidean ball of centre x0 and radius

1/
√
M . It is readily seen that the second order parts of L and L̃ are equal, modulo the factor

w2. This shows that L̃ is non-totally degenerate at any point of B(x0) and that the principal

matrix of L̃ is symmetric and positive semi-definite at any point of B(x0). Since

L̃(1)(x) = w2
(x)γ(x) − 2M trace(A(x)) − 2M

N

∑
i=1

βi(x) (x − x0)i,

if we choose M so large that M > γ(x0)/(2 trace(A(x0))) (we remind that trace(A(x)) > 0 at

any x since L is non-totally degenerate at any point), then L̃(1)(x0) < 0. By continuity, there

exists r > 0 small enough such that B′(x0) ∶= B(x0, r) ⊆ B(x0) and such that L̃(1) < 0 on the

closure ofB′(x0). We explicitly remark (and this will prove the final statement of the theorem)

that the condition γ ≤ 0 allows us to take M = 1 for all x0 and to use the bound

L̃(1)(x) ≤ −2trace(A(x)) − 2
N

∑
i=1

βi(x) (x − x0)i,

in order to chose r independently of γ.

Remark 2.3.4. Classical arguments, [71], show that, due to the strict negativity of L̃(1) on

B′(x0), the operator L̃ satisfies the Weak Maximum Principle on every open subset of B′(x0),

that is:
⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ω ⊂ B′(x0), u ∈ C
2(Ω,R)

L̃u ≥ 0 on Ω

lim sup
x→y

u(x) ≤ 0 for every y ∈ ∂Ω

Ô⇒ u ≤ 0 on Ω. (2.3.6)

The rest of the proof consists in demonstrating the following statement:

(S) there exists a basis Bx0 of neighborhoods Ω of x0 all contained in B′(x0) with the properties re-

quired in Theorem 2.3.2 relative to L̃ (in place of L).

Once this is proved, given any Ω ∈ Bx0 , any f ∈ C(Ω,R) and any ϕ ∈ C(∂Ω,R), we obtain the

solution ũ of the problem

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

L̃ũ = −wf on Ω (in the weak sense of distributions),

ũ = ϕ/w on ∂Ω (point-wise);
(2.3.7)
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then we set u ∶= w ũ, and a simple verification shows that u solves (2.3.3), so that existence is

proved. As for uniqueness, it suffices to observe that for any fixed Ω ∈ Bx0 , to any solution u

of (2.3.3) on Ω, there corresponds a solution ũ = u/w of (2.3.7) (which is unique, as it is claimed

in (S)). Finally all the other requirements on u in the statement of Theorem 2.3.2 are satisfied,

since w is positive and smooth on Ω ⊆ B(x0).

Remark 2.3.5. We remark that the operator L̃ is C∞-hypoelliptic on every open subset of B(x0).

Indeed, for any open sets V,V ′ such that V ⊆ V ′ ⊆ B(x0), a distribution u ∈ D′(V ′) such

that L̃u = f ∈ C∞(V,R) satisfies L(wu) = f/w ∈ C∞(V,R); thus, by the hypoellipticity of L, we

infer that wu ∈ C∞(V,R) so that u ∈ C∞(V,R) (recalling that w ≠ 0 on B(x0)).

We are then left to prove statement (S). From now on we choose a neighborhood basis Bx0

of x0 consisting of open sets (contained in B′(x0)) as in Lemma 2.3.3 relative to the principal

matrix Ã of the operator L̃ (the matrix Ã(x0) is symmetric, positive semi-definite and non

vanishing, as already discussed). We will show that any Ω ∈ Bx0 has the requirements in

statement (S). For the uniqueness part, it suffices to use in a standard way the WMP in Remark

2.3.4 jointly with the hypoellipticity condition in Remark 2.3.5. As for existence, we split the

proof in several steps and, to simplify the notation, we write P instead of L̃.

(I): f smooth and ϕ ≡ 0. We fix Ω as above, f ∈ C∞(Ω,R) ∩ C(Ω,R) and ϕ ≡ 0. We use a

standard elliptic approximation argument. For every n ∈ N we set

Pn ∶= P +
1

n

N

∑
j=1

(
∂

∂xj
)

2

.

We observe that:

- Pn is uniformly elliptic on RN ;

- the zero-order term Pn(1) = P (1) (= L̃(1)) is (strictly) negative on Ω;

- Ω satisfies an exterior ball condition, due to Lemma 2.3.3;

- f ∈ C∞(Ω,R).

These conditions imply the existence (see e.g., Gilbarg and Trudinger [49]) of a classical solu-

tion un ∈ C∞(Ω,R) ∩C(Ω,R) of the Dirichlet problem

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Pnun = −f on Ω

un = 0 on ∂Ω.

Let c0 > 0 be such that P (1) < −c0 on the closure of B′(x0). With this choice, we observe that

(setting ∥f∥∞ = supΩ ∣f ∣)

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Pn( ± un −
∥f∥∞
c0

) = ∓f −
∥f∥∞
c0

P (1) ≥ ∓f +
∥f∥∞
c0

c0 ≥ 0 on Ω

±un −
∥f∥∞
c0

= −
∥f∥∞
c0

≤ 0 on ∂Ω.
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Arguing as in Remark 2.3.4, the Weak Maximum Principle for Pn proves that

∥un∥∞ = sup
x∈Ω

∣un(x)∣ ≤
∥f∥∞
c0

uniformly for every n ∈ N. (2.3.8)

This provides us with a subsequence of un (still denoted by un) and a function u ∈ L∞(Ω) such

that un tends to u in the weak∗ topology, that is

lim
n→∞∫Ω

un h = ∫
Ω
uh, for all h ∈ L1

(Ω). (2.3.9)

Moreover one knows that

∥u∥L∞(U) ≤ lim sup
n→∞

∥un∥L∞(U), for all U ⊆ Ω. (2.3.10)

From (2.3.9) it easily follows that

∫
Ω
uP ∗ψ = −∫

Ω
f ψ, for all ψ ∈ C∞

0 (Ω,R).

This means that Pu = −f in the weak sense of distributions. As P is hypoelliptic on every

open set (Remark 2.3.5), we infer that u can be modified on a null set in such a way that

u ∈ C∞(Ω,R). Thus Pu = −f in the classical sense on Ω. We aim to prove that u can be

continuously prolonged to 0 on ∂Ω. To this end, given any y ∈ ∂Ω, in view of Lemma 2.3.3

(and the choice of Ω), there exists ν ∈ RN ∖{0} such that B(y + ν, ∣ν∣) intersects Ω at y only, and

such that (see (2.3.4))

⟨Ã(y) ν, ν⟩ > 0. (2.3.11)

As in the Hopf-type Lemma 2.2.1, we consider the function

w(x) ∶= e−λ∣x−(y+ν)∣
2

− e−λ∣ν∣
2

,

where λ is a positive real number chosen in a moment. For every n and for every x one has

Pnw(x) = Pw(x) +
1

n
e−λ∣x−(y+ν)∣

2

(4λ2
∣x − (y + ν)∣2 − 2λN)

≥ Pw(x) − 2λNe−λ∣x−(y+ν)∣
2

.

(2.3.12)

If we set P = ∑i,j ãi,j∂i,j +∑j b̃j∂j + c̃, a simple computation shows that

(Pw(x) − 2λNe−λ∣x−(y+ν)∣
2

)∣
x=y

= e−λ∣ν∣
2

(4λ2
⟨Ã(y)ν, ν⟩ − 2λ

N

∑
j=1

(ãj,j(y) − b̃j(y)νj) − 2λN).

Thanks to (2.3.11), there exists λ ≫ 1 such that the above right-hand side is strictly positive.

Therefore, due to (2.3.12) there exist ε > 0 and an open ball V = B(y, δ) (with ε and δ independent

of n) such that

Pnw(x) ≥ ε for every x ∈ V and every n ∈ N. (2.3.13)
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We are willing to apply the Weak Maximum Principle for the operator Pn on the open set Ω∩V ,

and for the functions M w ± un, where M ≫ 1 is chosen as follows. First we have

Pn(M w ± un) =M Pnw ± Pnun =M Pnw ∓ f ≥M ε ∓ f ≥M ε − ∥f∥∞, in Ω ∩ V .

Consequently we first chose M > ∥f∥∞/ε. Then we study the behavior of M w ± un on

∂(Ω ∩ V ) = [V ∩ ∂Ω] ∪ [Ω ∩ ∂V ] =∶ Γ1 ∪ Γ2.

Firstly, on Γ1 we have M w ± un =M w ≤ 0 since Γ1 ⊆ RN ∖B(y + ν, ∣ν∣). Secondly, on Γ2,

M w ± un ≤M max
Γ2

w + ∥un∥∞
(2.3.8)
≤ M max

Γ2

w +
∥f∥∞
c0

.

Since Γ2 is a compact set on which w is strictly negative, we have maxΓ2 w < 0 and the further

choice M ≥ −∥f∥∞/(c0 maxΓ2 w) yields M w ± un ≤ 0 on Γ2. Summing up,

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Pn(M w ± un) ≥ 0 on Ω ∩ V

M w ± un ≤ 0 on ∂(Ω ∩ V ).

The Weak Maximum Principle yields M w ± un ≤ 0 on Ω ∩ V , that is (since w < 0 on Ω)

∣un(x)∣ ≤M ∣w(x)∣ for every x ∈ Ω ∩ V and for every n ∈ N.

Since w(y) = 0, for every σ > 0 there exists an open neighborhood W ⊂ V of y such that

∥w∥L∞(W ) < σ; the above inequality then gives ∥un∥L∞(W∩Ω) ≤ M σ. Jointly with (2.3.10) we

deduce that ∥u∥L∞(W∩Ω) ≤ M σ, so that limΩ∋x→y u(x) = 0. From the arbitrariness of y, we

obtain that u prolongs to be 0 on ∂Ω with continuity.

In order to complete the proof of (S), we are left to show that if f ∈ C∞(Ω,R) ∩C(Ω,R) is

nonnegative, then the unique solution u ∈ C(Ω,R) of

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Pu = −f on Ω (in the weak sense of distributions)

u = 0 on ∂Ω (point-wise)

is nonnegative as well. From the hypoellipticity of P (see Remark 2.3.5), we already know that

u ∈ C∞(Ω,R), and we can apply the WMP to −u (see Remark 2.3.4) to get −u ≤ 0.

(II): f andϕ smooth. We fix Ω as above, and f is inC∞(Ω,R)∩C(Ω,R) andϕ is the restriction

to ∂Ω of some function Φ which is smooth and defined on an open neighborhood of Ω. As in

Step (I), we consider the unique solution v ∈ C∞(Ω,R) ∩C(Ω,R) of

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Pv = −f − PΦ on Ω

v = 0 on ∂Ω,

and we observe that u = v +Φ is the (unique) classical solution of

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Pu = −f on Ω

u = Φ∣∂Ω = ϕ on ∂Ω.
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2. Harnack Inequality for hypoelliptic operators 31

If furthermore f,ϕ ≥ 0, the nonnegativity of u is a consequence of the WMP as in Step (I).

(III): f and ϕ continuous. Finally we consider f ∈ C(Ω,R) and ϕ ∈ C(∂Ω,R). By the Stone-

Weierstrass Theorem, there exist polynomial functions fn, ϕn uniformly converging to f,ϕ

respectively on Ω, ∂Ω as n → ∞. As in Step (II), for every n ∈ N we consider the unique

classical solution un of

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Pun = −fn on Ω

un = ϕn on ∂Ω.

From the fact that −c0 ∶= maxΩ P (1) < 0, we can argue as in Step (I), obtaining the estimate

∥un − um∥C(Ω) ≤ max{
1

c0
∥fn − fm∥C(Ω), ∥ϕn − ϕm∥C(∂Ω)}.

This proves that there exists the uniform limit u ∶= limn→∞ un in C(Ω,R). Clearly one has:

u = ϕ point-wise on ∂Ω and Pu = −f in the weak sense of distributions on Ω. From the

hypoellipticity of P (Remark 2.3.5) we infer that f smooth implies u smooth. Finally, suppose

that f,ϕ ≥ 0. By the Tietze Extension Theorem, we prolong f out of Ω to a continuous function

F on RN ; we consider a mollifying sequence Fn ∈ C∞(RN ,R) uniformly converging to F on

the compact sets of RN . Since mollification preserves the sign, the fact that F ∣Ω ≡ f ≥ 0 on Ω

gives that Fn ≥ 0 on Ω. As above in this Step, we solve the problem

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

PUn = −Fn on Ω

Un = ϕ on ∂Ω,
with Un ∈ C

∞
(Ω,R) ∩C(Ω,R),

and we get that Un uniformly converges on Ω to the unique continuous solution u of

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Pu = −f in D′(Ω)

u = ϕ on ∂Ω.

From the WMP for −Un (recalling that Fn ≥ 0 and ϕ ≥ 0), we derive Un ≥ 0 on Ω ; this gives

u(x) = limn→∞Un(x) ≥ 0 for all x ∈ Ω. This completes the proof. ◻

2.3.1 The Green function and the Green kernel for L − ε

Thanks to the existence of the weak solution of the Dirichlet problem for Lε on a bounded

open set Ω, we can define the associated Green operator as usual:

Definition 2.3.6 (Green operator and Green measure). Let ε ≥ 0 be fixed, and let Lε and Ω

satisfy, respectively, the hypothesis and the thesis of Lemma 2.3.1. We consider the operator

(depending on Lε and Ω; we avoid keeping track of the dependency on Ω in the notation)

Gε ∶ C(Ω,R) Ð→ C(Ω,R) (2.3.14)
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2.3 The Dirichlet problem for L 2. Harnack Inequality for hypoelliptic operators

mapping f ∈ C(Ω,R) into the function Gε(f) which is the unique distributional solution u in

C(Ω,R) of the Dirichlet problem

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Lεu = −f on Ω (in the weak sense of distributions),

u = 0 on ∂Ω (point-wise).
(2.3.15)

We call Gε the Green operator related to Lε and to the open set Ω.

By the Riesz Representation Theorem (which is applicable thanks to the monotonicity pro-

perties in Lemma 2.3.1 with respect to the function f ), for every x ∈ Ω there exists a (nonnega-

tive) Radon measure λx,ε on Ω such that

Gε(f)(x) = ∫
Ω
f(y)dλx,ε(y), for every f ∈ C(Ω,R). (2.3.16)

We call λx,ε the Green measure related to Lε (to the open set Ω and to the point x).

Let L be as in (2.1.1); in this chapter, we set once and for all

dν(x) ∶= V (x)dx, (2.3.17)

that is, ν is the (Radon) measure on RN associated with the (positive) density V in (2.1.1),

absolutely continuous with respect to the Lebesgue measure on RN . It is clear that the measure

ν plays the following key rôle:

∫ ϕLψ dν = ∫ ψLϕdν, for every ϕ,ψ ∈ C∞
0 (RN ,R), (2.3.18)

thus making L (formally) self-adjoint in the space L2(RN ,dν). We observe that (in general)

our operators L in (2.1.1) are not classically self-adjoint; indeed the classical adjoint operator

L∗ of L is related to L by the following identity (a consequence of (2.3.18))

L
∗u = V L(u/V ), for every u of class C2. (2.3.19)

The possibility of dealing with non-identically 1 densities V (as in the case of Lie groups,

see Example 2.1.1-(a)) makes it more convenient to decompose the Green measure λx,ε with

respect to ν in (2.3.17), rather than w.r.t. Lebesgue measure. Hence we prove the following:

Theorem 2.3.7 (Green kernel). Suppose thatL is an operator of the form (2.1.1), withC∞ coefficients

V > 0 and (ai,j) ≥ 0, and that L satisfies (NTD). Let ε ≥ 0 be fixed. We set Lε ∶= L − ε and we assume

that Lε is hypoelliptic on every open subset of RN .

Let Ω be an open set as in Lemma 2.3.1. If Gε and λx,ε are the Green operator and the Green

measure related to Lε (Definition 2.3.6), there exists a function kε ∶ Ω × Ω → R, smooth and positive

out of the diagonal of Ω ×Ω, such that the following representation holds true:

Gε(f)(x) = ∫
Ω
f(y)kε(x, y)dν(y), for every x ∈ Ω, (2.3.20)

and for every f ∈ C(Ω,R). We call kε the Green kernel related to Lε (and to the open set Ω).

Furthermore, we have the following properties:
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2. Harnack Inequality for hypoelliptic operators 33

(i) Symmetry of the Green kernel:

kε(x, y) = kε(y, x) for every x, y ∈ Ω. (2.3.21)

(ii) For every fixed x ∈ Ω, the function kε(x, ⋅) is Lε-harmonic in Ω ∖ {x}; moreover Gε(Lεϕ) =

−ϕ = Lε(Gε(ϕ)) for any ϕ ∈ C∞
0 (Ω,R), that is

−ϕ(x) = ∫
Ω
Lεϕ(y)kε(x, y)dν(y)

= Lε(∫
Ω
ϕ(y)kε(x, y)dν(y)), for every ϕ ∈ C∞

0 (Ω,R).
(2.3.22)

(iii) For every fixed x ∈ Ω, one has

lim
y→y0

kε(x, y) = 0 for any y0 ∈ ∂Ω. (2.3.23)

(iv) For every fixed x ∈ Ω, the functions kε(x, ⋅) = kε(⋅, x) are in L1(Ω), and kε ∈ L1(Ω ×Ω).

The key ingredients in the proof of the above results are the following facts:

• the hypoellipticity of Lε (as assumed in the hypothesis) which will imply the hypoellip-

ticity of the classical adjoint of Lε (see Remark 2.3.8);

• the C∞-topology on the space of the Lε-harmonic functions is the same as the L1
loc-

topology, another consequence of the hypoellipticity of Lε (Remark 2.3.9);

• the fact that L is self-adjoint on L2(RN ,dν) (see (2.3.18)) so that the same is true of Lε

(this will be crucial in proving the symmetry of the Green kernel);

• the Strong Maximum Principle for the perturbed operator Lε = L − ε, which we obtain

as a consequence of our previous Strong Maximum Principle for L in Theorem 2.2.2 (see

precisely Remark 2.2.6, where nonnegative maxima are considered): this is a key step for

the proof of the positivity of kε;

• the Schwartz Kernel Theorem (used for the regularity of the Green kernel).

In the first part of the proof (Steps I–III) we follow the classical scheme by Bony (see [16,

Theorem 6.1]), hence we skip many details; it is instead in Step IV that a slight difference is

presented, in that we exploit the measure dν(x) = V (x)dx in order to obtain the symmetry

property of the Green kernel even when our operator L is not (classically) self-adjoint. The

problem of the behavior of the Green kernel along the diagonal is more subtle, as it is shown

by Fabes, Jerison and Kenig in [31] who proved that, for divergence-form operators as in (2.1.1)

(when V ≡ 1 and, roughly put, when the degeneracy ofA(x) is controlled by a suitable weight)

the limit of the Green kernel along the diagonal need not be infinite.

We are ready for the proof.
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2.3 The Dirichlet problem for L 2. Harnack Inequality for hypoelliptic operators

Proof (of Theorem 2.3.7). We fix an operator L of the form (2.1.1), with C∞ coefficients V > 0

and (ai,j) ≥ 0, and we assume that L satisfies (NTD). Moreover, we also fix ε ≥ 0 (note that the

case ε = 0 is allowed) and we set Lε ∶= L − ε; we assume that Lε is hypoelliptic on every open

subset of RN . Finally, Ω is a fixed open set as in Lemma 2.3.1, such that the Dirichlet problem

(2.3.1) is (uniquely) solvable.

From Lemma 2.3.1, we know that there exists a monotone operator Gε (which we called

the Green operator related to Lε and Ω); since ε ≥ 0 is fixed, in all this section we drop the

subscript ε in Gε, kε, λx,ε and we simply write G,k, λx. Hence we are given the monotone

operator

G ∶ C(Ω,R) Ð→ C(Ω,R)

mapping f ∈ C(Ω,R) into the unique function G(f) ∈ C(Ω,R) satisfying

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Lε(G(f)) = −f on Ω (in the weak sense of distributions),

G(f) = 0 on ∂Ω (point-wise).
(2.3.24)

We also know that the (Riesz) representation

G(f)(x) = ∫
Ω
f(y)dλx(y) for every f ∈ C(Ω,R) and every x ∈ Ω (2.3.25)

holds true, with a unique Radon measure λx defined on Ω (which we called the Green measure

related to Lε, Ω and x).

Finally, we set dν(x) ∶= V (x)dx and we observe that (as in (2.3.18))

∫ ϕLεψ dν = ∫ ψLεϕdν, for every ϕ,ψ ∈ C∞
0 (RN ,R). (2.3.26)

STEP I. We fix x ∈ Ω. We begin by proving that λx is absolutely continuous with respect to

the Lebesgue measure on Ω. To this end, let ϕ ∈ C∞
0 (Ω,R); by (2.3.24) it is clear that G(Lεϕ) =

−ϕ, so that (see (2.3.25))

−ϕ(x) = ∫
Ω
Lεϕ(y)dλx(y), for every ϕ ∈ C∞

0 (Ω,R).

If we consider λx as a distribution on Ω in the standard way, this identity boils down to

(Lε)
∗λx = −Dirx in D′(Ω), (2.3.27)

where Dirx denotes the Dirac mass at x, and (Lε)
∗ is the classical adjoint operator of Lε. It is

noteworthy to observe that, in general, (Lε)∗ is neither equal to Lε nor of the form L̃ − ε for

any L̃ a divergence operator as in (2.1.1).

However, the following crucial property of (Lε)∗ is fulfilled:

Remark 2.3.8. The operator (Lε)
∗ is hypoelliptic on every open subset of RN .
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2. Harnack Inequality for hypoelliptic operators 35

Indeed, let U ⊆W be open sets and let u ∈ D′(W ) be such that (Lε)∗u = h in D′(U), where

h ∈ C∞(U,R). This gives the following chain of identities (here ψ ∈ C∞
0 (U,R) is arbitrary)

∫ hψ = ⟨u,Lεψ⟩ = ⟨u,Lψ − εψ⟩
(2.3.19)
= ⟨u,

L∗(V ψ)

V
− εψ⟩

= ⟨
u

V
,L∗(V ψ) − εψ V ⟩ = ⟨

u

V
, (Lε)

∗
(V ψ)⟩.

If we write ∫ hψ = ∫
h
V

(ψV ), and if we observe that C∞
0 (U,R) = {ψV ∶ ψ ∈ C∞

0 (U,R)}, the

above computation shows that Lε(u/V ) = h/V in D′(U). The hypoellipticity of Lε now gives

u/V ∈ C∞(U,R) whence u ∈ C∞(U,R), as V is smooth and positive.

Identity (2.3.27) gives in particular (Lε)
∗λx = 0 in D′(Ω∖{x}); thanks to Remark 2.3.8, this

ensures the existence of gx ∈ C∞(Ω ∖ {x},R) such that the distribution λx restricted to Ω ∖ {x}

is the function-type distribution associated with the function gx; equivalently

∫ ϕ(y)dλx(y) = ∫ ϕ(y) gx(y)dy, for every ϕ ∈ C∞
0 (Ω ∖ {x},R). (2.3.28)

Clearly gx ≥ 0 on Ω∖{x} and (Lε)
∗gx = 0 in Ω∖{x}. This temporarily proves that λx coincides

with gx(y)dy on Ω ∖ {x}. We claim that this is also true throughout Ω. This will follow if we

show that C ∶= λx({x}) = 0. Clearly, by the definition of C, on Ω we have

λx = CDirx + (λx)∣Ω∖{x} = CDirx + gx(y)dy.

Treating this as an identity between distributions on Ω, we apply the operator (Lε)
∗ to get

C (Lε)
∗Dirx = −Dirx − (Lε)

∗
(gx(y)dy).

Here we used (2.3.27). We now proceed as follows:

- we multiply both sides by a C∞ function χ compactly supported in Ω and χ ≡ 1 near x;

- we compute the Fourier transform of the tempered distributions obtained as above;

- on the left-hand side we obtain a function-type distribution associated with function

y ↦ C e−i⟨x,y⟩( −∑
i,j

ai,j(x) yiyj + {polynomial in y of degree ≤ 1}),

where (ai,j) is the principal matrix of L;

- on the right-hand side we obtain a function-type distribution associated with a function

which is the sum of y ↦ −e−i⟨x,y⟩ with a function of the form

y ↦ −∑
i,j

αi,j(x, y) yiyj + {polynomial in y of degree ≤ 1},

where

αi,j(x, y) = −∫ gx(ξ)χ(ξ)ai,j(ξ) e
−i⟨ξ,y⟩ dξ.

By the Riemann-Lebesgue Theorem one has αi,j(x, y) Ð→ 0 as ∣y∣ → ∞. This implies that C =

0, since at least one of the entries of (ai,j(x)) is non-vanishing, due to the (NTD) hypothesis

on L.
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We have therefore proved that, for any x ∈ Ω,

dλx(y) = gx(y)dy on Ω. (2.3.29)

Since λx is a finite measure (recalling that Ω is compact), from (2.3.29) we get gx ∈ L1(Ω) for

every x ∈ Ω.

STEP II. We next show that λx(∂Ω) = 0 for any x ∈ Ω. For small δ > 0, we let Dδ denote the

closed δ-neighborhood of ∂Ω of the points in RN having distance from ∂Ω less than or equal

to δ; we then choose a function F ∈ C(RN , [0,1]) which is identically 1 on ∂Ω and is supported

in the interior of Dδ . We denote by f the restriction of F to Ω. From (2.3.25) we have

0 ≤ G(f)(x) = ∫
Ω
f(y)dλx(y) ≤ ∫

Ω
dλx(y) = G(1)(x), for every x ∈ Ω. (2.3.30)

For any x ∈ Ω we have

λx(∂Ω) = ∫
∂Ω

dλx(y) = ∫
∂Ω
f(y)dλx(y) ≤ ∫

Ω
f(y)dλx(y) = G(f)(x)

≤ sup
Ω

G(f) = max{ sup
Ω∩Dδ

G(f), sup
Ω∖Dδ

G(f)} =∶ max{I, II}.

We claim that I and II in the above right-hand side are bounded from above by supΩ∩Dδ G(1).

This is true of I, due to (2.3.30); as for II we invoke the last assertion in Remark 2.2.7 applied

to:

- the hypoelliptic operator Lε = L − ε,

- the bounded open set Ω1 ∶= Ω ∖Dδ ,

- the nonnegative function G(f), which satisfies LεG(f) = −f = 0 on Ω1 both weakly and

strongly due to the hypoellipticity of Lε.

The mentioned Remark 2.2.7 then ensures that the values of G(f) on Ω∖Dδ are bounded from

above by the values of G(f) on the boundary of this set, so that II ≤ I. Summing up,

λx(∂Ω) ≤ max{I, II} ≤ sup
Ω∩Dδ

G(1).

As δ goes to 0, the right-hand side tends to sup∂ΩG(1) = 0 by (2.3.24). This gives the desired

λx(∂Ω) = 0, for any x ∈ Ω. By collecting together (2.3.29) and λx(∂Ω) = 0, we infer that (for

every f ∈ C(Ω,R) and x ∈ Ω)

G(f)(x)
(2.3.25)
= ∫

Ω
f(y)dλx(y) = ∫

Ω
f(y)dλx(y)

(2.3.29)
= ∫

Ω
f(y) gx(y)dy.

This proves the identity

G(f)(x) = ∫
Ω
f(y) gx(y)dy, for every f ∈ C(Ω,R) and every x ∈ Ω. (2.3.31)
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If ϕ ∈ C∞
0 (Ω,R), since we know that G(Lεϕ) = −ϕ, we get

−ϕ(x) = ∫
Ω
Lεϕ(y) gx(y)dy, for every x ∈ Ω. (2.3.32)

This is equivalent to

(Lε)
∗gx = −Dirx for every x ∈ Ω. (2.3.33)

STEP III. If gx is as in Step I, we are ready to set

g ∶ Ω ×ΩÐ→ [0,∞], g(x, y) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

gx(y) if x ≠ y

∞ if x = y.

Hence the representation (2.3.31) becomes

G(f)(x) = ∫
Ω
f(y) g(x, y)dy, for every f ∈ C(Ω,R) and every x ∈ Ω. (2.3.34)

We aim to prove that g is smooth outside the diagonal of Ω ×Ω.

Remark 2.3.9. Let O be any open subset of RN . The hypoellipticity of a general PDO L as in (2.1.2)

ensures the equality of the topologies onHL(O) inherited by the Fréchet spaces C∞(O) and L1
loc(O).

Indeed, let X and Y denote respectively the topological space HL(O) with the topologies

inherited by C∞(O) and L1
loc(O). Then X and Y are Fréchet spaces, since, if a sequence un ∈

HL(O) converges to u uniformly on the compact sets of Ω or, more generally in L1
loc,

0 = ∫ unL
∗ϕ

n→∞
ÐÐÐ→ ∫ uL∗ϕ, ∀ ϕ ∈ C∞

0 (O,R).

Now, the identity map ι ∶ X → Y is trivially linear, bijective and continuous, whence, by the

Open Mapping Theorem, ι is a homeomorphism, whence the mentioned topologies coincide.

We next resume our main proof. The set {gx}x∈Ω is bounded in L1(Ω), since

0 ≤ ∫
Ω
gx(y)dy = G(1)(x) ≤ max

Ω
G(1).

A fortiori, the set {gx}x∈Ω is also bounded in the topological vector space L1
loc(Ω). We next fix

two disjoint open sets U,W with closures contained in Ω. The family of the restrictions

{(gx)∣U}
x∈W

is contained in the space of the (Lε)
∗-harmonic functions on U . By Remark 2.3.9, the set G is

also bounded in the topological vector space

H
(Lε)

∗(U), endowed with the C∞-topology.

This means that, for every compact set K ⊂ U and for every m ∈ N, there exists a constant

C(K,m) > 0 such that

sup
∣α∣≤m

sup
y∈K

∣(
∂

∂y
)
α

g(x, y)∣ ≤ C(K,m), uniformly for x ∈W . (2.3.35)
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Following Bony [16, Section 6], we introduce the operator F transforming any distribution T

compactly supported in U into the function on W defined by

F (T ) ∶W Ð→ R, F (T )(x) ∶= ⟨T, gx⟩ (x ∈W ).

The definition is well-posed since gx ∈ C∞(U,R) (and T is compactly supported in U ). We

claim that F (T ) ∈ C∞(W,R). Once this is proved, by the Schwartz Kernel Theorem (see e.g.,

[29, Section 11] or [91, Chapter 50]), we can conclude that g(x, y) is smooth on W × U . By

the arbitrariness of the disjoint open sets U,W this proves that g(x, y) is smooth out of the

diagonal of Ω ×Ω, as desired.

As for the proof of the claimed F (T ) ∈ C∞(W,R), we can take (say, by some appropriate

convolution) a sequence of continuous functions fn, supported in U , converging to T in the

weak sense of distributions; due to the compactness of the supports (of the fn and of T ),

lim
n→∞∫U

fn ϕ = ⟨T,ϕ⟩, for every ϕ ∈ C∞
(U,R).

We are hence entitled to take ϕ = gx (for any fixed x ∈W ). From (2.3.34) we get

lim
n→∞

G(fn)(x) = ⟨T, gx⟩ = F (T )(x), for any x ∈W . (2.3.36)

We now prove that F (T ) ∈ L∞(W ); this follows from the next calculation (here C > 0 and

m ∈ N are constants depending on T and on the compact set U )

∥F (T )∥L∞ = sup
x∈W

∣⟨T, gx⟩∣ ≤ sup
x∈W

C ∑
∣α∣≤m

sup
y∈U

∣(
∂

∂y
)
α

g(x, y)∣
(2.3.35)
≤ C̃(U,m) < ∞.

We finally prove that Lε(F (T )) = 0 in the weak sense of distributions on W ; by the hypoellip-

ticity of Lε this will yield the smoothness of F (T ) on W . We aim to show that,

∫
W
F (T )(x) (Lε)

∗ϕ(x)dx = 0 for any ϕ ∈ C∞
0 (W ).

Now, the left-hand side is (by (2.3.36))

∫ lim
n→∞

G(fn)(x) (Lε)
∗ϕ(x)dx.

If a dominated convergence can be applied, this is equal to

lim
n→∞∫W

G(fn)(x) (Lε)
∗ϕ(x)dx(2.3.24)= − lim

n→∞∫W
fn(x)ϕ(x)dx = 0,

the last equality descending from the fact that the fn are supported in U for every n. We are

then left with showing that the dominated convergence is fulfilled: this is a consequence of

(2.3.35), of the boundedness of F (T ) on W , and of the fact that the convergence in (2.3.36) is

indeed uniform w.r.t.x ∈ W (a general result of distribution theory: the uniform convergence

for sequences of distributions on bounded sets).
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STEP IV. We are finally ready to introduce our kernel

k ∶ Ω ×ΩÐ→ [0,∞), k(x, y) ∶=
g(x, y)

V (y)
. (2.3.37)

Clearly, from (2.3.34) and (2.3.18) we immediately have

G(f)(x) = ∫
Ω
f(y)k(x, y)dν(y), for every f ∈ C(Ω,R) and every x ∈ Ω. (2.3.38)

This gives the representation (2.3.20) whilst (2.3.22) follows from (2.3.32).

The integrability of k(x, ⋅) in Ω is a consequence of gx ∈ L1(Ω) (and the positivity of the

continuous function V on RN ). Moreover, k is smooth on Ω × Ω deprived of the diagonal by

Step III. Also, the nonnegative function k is integrable on Ω ×Ω as this computation shows:

0 ≤ ∫
Ω×Ω

k(x, y)dxdy = ∫
Ω
(∫

Ω

1

V (y)
k(x, y)dν(y))dx

(2.3.38)
= ∫

Ω
G(1/V )(x)dx < ∞,

the last inequality following from the continuity of G(1/V ) on the compact set Ω.

For fixed x ∈ Ω, the Lε-harmonicity of the function k(x, ⋅) in Ω∖{x} is a consequence of the

following computation

0
(2.3.33)
= (Lε)

∗gx
(2.3.19)
= V Lε(

gx
V

)
(2.3.37)
= V Lε(k(x, ⋅)).

The fact that V is positive then gives Lε(k(x, ⋅)) = 0 in Ω ∖ {x}. From the SMP for Lε = L − ε

in Remark 2.2.6, we deduce that the nonnegative function k(x, ⋅) (which is Lε-harmonic in

Ω ∖ {x}) cannot attain the (minimal) value 0; therefore k(x, ⋅) > 0 on the connected open set

Ω ∖ {x}.

A crucial step consists in proving the symmetry property (2.3.21). We take any nonnegative

ϕ ∈ C∞
0 (Ω,R) and we set (note the reverse order of x and y, if compared to G(ϕ))

Φ(x) = ∫
Ω
ϕ(y)k(y, x)dν(y), x ∈ Ω.

We claim that Φ ≥ G(ϕ) on Ω; once the claim is proved, from (2.3.38) we infer that

∫
Ω
ϕ(y)k(x, y)dν(y) ≤ ∫

Ω
ϕ(y)k(y, x)dν(y), x ∈ Ω.

The arbitrariness of ϕ will then give k(x, y) ≤ k(y, x) (recalling that dν = V (y)dy with positive

V ) for every y ∈ Ω; since x, y ∈ Ω are arbitrary, we get k(x, y) = k(y, x) on Ω × Ω. We prove

the claim. We observe that Φ is continuous on Ω and that LεΦ = −ϕ in D′(Ω), as the following

computation shows (ψ ∈ C∞
0 (Ω,R) is arbitrary):

∫
Ω

Φ(x) (Lε)
∗ψ(x)dx = ∫

Ω
ϕ(y) (∫

Ω
k(y, x) (Lε)

∗ψ(x)dx)dν(y)

= ∫
Ω
ϕ(y) (∫

Ω
k(y, x)

(Lε)
∗ψ(x)

V (x)
dν(x))dν(y)

(2.3.19)
= ∫

Ω
ϕ(y) (∫

Ω
k(y, x) Lε(

ψ(x)

V (x)
)dν(x))dν(y)

(2.3.22)
= −∫

Ω
ϕ(y)

ψ(y)

V (y)
dν(y) = −∫

Ω
ϕ(y)ψ(y)dy.
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From the hypoellipticity of Lε we get Φ ∈ C∞(Ω,R) and LεΦ = −ϕ point-wise. We now apply

the WMP in Remark 2.2.7 to the operator Lε = L−ε and to the function G(ϕ)−Φ: this function

is smooth and Lε-harmonic on Ω, and G(ϕ) −Φ ≤ G(ϕ) on Ω (since Φ is nonnegative), so that

lim sup
x→x0

(G(ϕ) −Φ)(x) ≤ lim sup
x→x0

G(ϕ)(x) = 0 for every x0 ∈ ∂Ω.

Therefore G(ϕ) −Φ ≤ 0 on Ω as claimed.

We finally prove (2.3.23). Due to the symmetry property of k, (2.3.23) will follow if we

show that, given x0 ∈ Ω and y0 ∈ ∂Ω, one has

lim
n→∞

k(yn, x0) = 0, (2.3.39)

for every sequence yn in Ω converging to y0. To this end, we fix an open set Ω′ containing x0

and with closure contained in Ω, and it is non-restrictive to suppose that yn ∉ Ω′ for every n.

The functions

kn ∶ Ω
′
Ð→ R, kn(x) ∶= k(yn, x), x ∈ Ω′

are smooth and Lε-harmonic in Ω′. We also have kn Ð→ 0 in L1(Ω′), as it follows from

0 ≤ ∫
Ω′

kn(x)dx ≤ ∫
Ω
k(yn, x)dx = ∫

Ω

g(yn, x)

V (x)
dx

≤ sup
Ω

1

V
∫

Ω
g(yn, x)dx = sup

Ω

1

V
G(1)(yn)

n→∞
ÐÐÐ→ 0.

From Remark 2.3.9 we get that kn Ð→ 0 in the Fréchet space HLε(Ω
′) with the C∞-topology,

so that kn Ð→ 0 uniformly on the compact sets of Ω′ and in particular point-wise on Ω′. ◻

2.4 The Harnack Inequality

In this section we will prove the main result of this chapter.

We begin by proving the next crucial lemma. This is the first time that, broadly speaking,

the PDOs L and the perturbed L − ε clearly interact.

Lemma 2.4.1. Let L be as in (2.1.1) and let it satisfy (NTD) and (HY)ε. Let Ω be an open set in RN

as in the thesis of Lemma 2.3.1, and let Ω′ be an open set containing Ω. Finally, we denote by kε the

Green kernel related to Lε and to the set Ω (as in Theorem 2.3.7).

Then we have the estimate

u(x) ≥ ε∫
Ω
u(y)kε(x, y)dν(y), ∀x ∈ Ω, (2.4.1)

holding true for every smooth nonnegative L-harmonic function u in Ω′.

Proof. We consider the function v(x) = ∫Ω u(y)kε(x, y)dν(y) on Ω. From (2.3.20) (and the

definition of Green operator) we know that v = Gε(u), where Gε is the Green operator related
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to Lε (and to the open set Ω); moreover, since u is smooth (by assumption) on Ω, we know

from Lemma 2.3.1 (and the hypoellipticity of Lε) that v ∈ C∞(Ω) ∩C(Ω) is the solution of

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Lεv = −u on Ω,

v = 0 on ∂Ω.
(2.4.2)

This gives Lε(ε v−u) = −εu−(L−ε)u = −εu+εu = 0 on Ω; moreover, on ∂Ω, ε v−u = −u ≤ 0, by

the nonnegativity of u. By the WMP in Remark 2.2.7, we get ε v−u ≤ 0 on Ω which is equivalent

to (2.4.1). ◻

We are ready for the proof of the Weak Harnack Inequality (for higher order derivatives)2.

Theorem 2.4.2 (Weak Harnack inequality for derivatives). Let L satisfy (NTD), (HY) and

(HY)ε. Then, for every connected open set O ⊆ RN , every compact subset K of O, every m ∈ N ∪ {0}

and every y0 ∈ O, there exists a positive C(y0) = C(L, ε,O,K,m, y0) such that

∑
∣α∣≤m

sup
x∈K

∣
∂αu(x)

∂xα
∣ ≤ C(y0)u(y0), (2.4.3)

for every nonnegative L-harmonic function u in O.

Proof. We distinguish two cases: y0 ∉ K and y0 ∈ K. The second case can be reduced to the

former. Indeed, let us assume we have already proved the theorem in the former case, and let

y0 ∈K. If we take any y′0 ∈ O ∖K, and we consider the inequality

u(y′0) ≤ C
′ u(y0),

resulting from (2.4.3) by considering m = 0 and the compact set {y′0}, we get

∑
∣α∣≤m

sup
x∈K

∣
∂αu(x)

∂xα
∣

(2.4.3)
≤ C u(y′0) ≤ C C

′ u(y0).

We are therefore entitled to assume that y0 ∉K. By the aid of a classical argument (with a chain

of suitable small open sets {Ωn}
p
n=1 covering a connected compact set containing K ∪ {y0}), it

is not restrictive to assume that K ∪ {y0} ⊂ Ω ⊂ Ω ⊂ O, where Ω is one of the basis open sets

constructed in Lemma 2.3.1.

Let x0 ∈ K be arbitrarily fixed. The function kε(x0, ⋅) (the Green kernel related to Lε and

Ω) is strictly positive in Ω ∖ {x0} (this is a consequence of the SMP applied to the Lε-harmonic

function kε(x0, ⋅); see Theorem 2.3.7). In particular, since y0 ∉ K, we infer that kε(x0, y0) > 0.

Hence, there exist a neighborhood W of x0 (contained in Ω) and a constant c = c(ε, y0, x0) > 0

such that

inf
z∈W

kε(z, y0) ≥ c > 0. (2.4.4)

2The naming ‘Weak’ or ‘Strong’ Harnack Inequality is non-standard: for example some authors refer to weak

Harnack inequalities when at least one side of (2.4.7) is replaced by some Lp-norm of u; we follow the naming from

Potential Theory used by Loeb and Walsh in [72], with the hope that this does not lead to any ambiguity.
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Our assumptions allow us to apply Lemma 2.4.1: hence, for every nonnegative u ∈ HL(O), we

have the following chain of inequalities

u(y0)
(2.4.1)
≥ ε∫

Ω
u(z)kε(y0, z)dν(z) ≥ ε∫

W
u(z)kε(y0, z)dν(z)

(2.3.21)
= ε∫

W
u(z)kε(z, y0)dν(z)

(2.4.4)
≥ εc∫

W
u(z)dν(z) ≥ εc inf

W
V ∫

W
u(z)dz.

Summing up, for every x0 ∈ K there exist a neighborhood W of x0 and a constant c1 > 0 (also

depending on x0 but independent of u) such that

u(y0) ≥ c1 ∫
W
u(z)dz, (2.4.5)

for every nonnegative u ∈ HL(O).

Next, from Remark 2.3.9, we know that the hypothesis (HY) for L ensures the equality of

the topologies on HL(W ) inherited by the Fréchet spaces C∞(W ) and L1
loc(W ). In particular,

to any chosen open neighborhood U of x0 (with U ⊂ W ) we are given a positive constant

c2 = c2(U,W,m) such that

∑
∣α∣≤m

sup
x∈U

∣
∂αu(x)

∂xα
∣ ≤ c2 ∫

W
u(z)dz, (2.4.6)

for every nonnegative u ∈ HL(O). Gathering together (2.4.5) and (2.4.6), we infer that, for

every x0 ∈K there exist a neighborhood U of x0 and a constant c3 > 0 (again depending on x0

but independent of u) such that

u(y0) ≥ c3 ∑
∣α∣≤m

sup
x∈U

∣
∂αu(x)

∂xα
∣,

for every nonnegative u ∈ HL(O). The compactness of K allows us to derive (2.4.3) from the

latter inequality, and a covering argument. ◻

Our aim is to prove the following result:

Theorem 2.4.3 (Strong Harnack Inequality). Suppose thatL is an operator of the form (2.1.1), with

C∞ coefficients V > 0 and (ai,j) ≥ 0, and suppose it satisfies hypotheses (NTD), (HY) and (HY)ε.

Then, for every connected open setO ⊆ RN and every compact subsetK ofO, there exists a constant

M =M(L,O,K) ≥ 1 such that

sup
K
u ≤M inf

K
u, (2.4.7)

for every nonnegative L-harmonic function u in O.

If L is subelliptic or if it has Cω coefficients, then assumption (HY)ε can be dropped.

The last assertion follows from Remark 2.1.3.

The main step towards the Strong Harnack Inequality is the following Theorem 2.4.4 from

Potential Theory. A proof of a more general abstract version of this useful result, in the frame-

work of axiomatic harmonic spaces, can be found in the survey notes [18, pp.20–24] by Brelot,
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where this theorem is attributed to G. Mokobodzki. (See also a further improvement to har-

monic spaces which are not necessarily second-countable, by Loeb and Walsh, [72]). Instead

of appealing to an abstract Potential-Theoretic statement, we prefer to formulate the result

under the following more specific form (where a harmonic sheaf related to a smooth PDO is

considered).

Theorem 2.4.4. Let L be a second order linear PDO in RN with smooth coefficients. Suppose the

following conditions are satisfied.

(Regularity) There exists a basis B for the Euclidean topology of RN (consisting of bounded open sets)

such that, for every Ω ∈ B ∖ {∅} and for every ϕ ∈ C(∂Ω,R), there exists a unique L-harmonic

function HΩ
ϕ ∈ C2(Ω) ∩C(Ω) solving the Dirichlet problem

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Lu = 0 in Ω

u = ϕ on ∂Ω,

and satisfying HΩ
ϕ ≥ 0 whenever ϕ ≥ 0.

(Weak Harnack Inequality) For every connected open set O ⊆ RN , every compact subset K of O

and every y0 ∈ O, there exists a constant C(y0) = C(L,O,K, y0) > 0 such that

sup
K
u ≤ C(y0)u(y0),

for every nonnegative L-harmonic function u in O.

Then, the following Strong Harnack Inequality for L holds: for every connected open set O and every

compact subset K of O there exists a constant M =M(L,O,K) ≥ 1 such that

sup
K
u ≤M inf

K
u, (2.4.8)

for every nonnegative L-harmonic function u in O.

Proof. As anticipated, the proof is based in an essential way on the ideas by Mokobodzki-Brelot

in [18, Chapter I], ensuring the equivalence of the Strong Harnack Inequality with a series of

properties comprising the Weak Harnack Inequality, provided some assumptions are fulfilled.

We furnish some details in order to be oriented through these equivalent properties.

We denote by HL the harmonic sheaf on RN defined by O ↦ HL(O) (here O ⊆ RN is

any open set). Under the assumptions of (Regularity) and (Weak Harnack Inequality), Brelot

proves that (see [18, pp.22–24]), for any connected open set O ⊆ RN , and any x0 ∈ O, the set

Φx0 ∶= {h ∈ HL(O) ∶ h ≥ 0, h(x0) = 1} (2.4.9)

is equicontinuous at x0. The proof of this fact rests on some results of Functional Analysis

related to the family of the so-called harmonic measures {µΩ
x }x∈∂Ω associated with L (and on
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basic properties of the harmonic sheaf HL). Next, we show how to prove (2.4.8) starting from

the equicontinuity of Φx0 at x0. Indeed, let K ⊂ O, where K is compact and O is an open and

connected subset of RN . By possibly enlargingK, we can suppose thatK is connected as well.

Let u ∈ HL(O) be nonnegative. If u ≡ 0 then (2.4.8) is trivial; if u is not identically zero then

(from the Weak Harnack Inequality) one has u > 0 on O. For every x ∈ K, the equicontinuity

of Φx ensures the existence of δ(x) > 0 such that (with the choice h = u/u(x) in (2.4.9))

1

2
u(x) ≤ u(ξ) ≤

3

2
u(x), for all ξ ∈ Bx ∶= B(x, δ(x)). (2.4.10)

From the open cover {Bx}x∈K we can extract a finite subcover Bx1 , . . . ,Bxp of K. It is also

non-restrictive (since K is connected) to assume that the elements of this subcover are chosen

in such a way that

Bx1 ∩Bx2 ≠ ∅, (Bx1 ∪Bx2) ∩Bx3 ≠ ∅, . . . (Bx1 ∪⋯ ∪Bxp−1) ∩Bxp ≠ ∅.

From (2.4.10) it follows (2.4.8) with K replaced by Bx1 (with M = 3); since Bx1 intersects Bx2 ,

one can use again (2.4.10) in order to prove (2.4.8) with K replaced by Bx1 ∪Bx2 (with M = 32);

by proceeding in an inductive way, one can prove (2.4.8) with K replaced by Bx1 ∪ ⋯ ∪ Bxp

(and M = 3p), and this finally proves (2.4.8), since Bx1 ∪⋯ ∪Bxp covers K. ◻

Remark 2.4.5. Following Brelot [18, pp.14–17], it being understood that axiom (Regularity) in

Theorem 2.4.4 holds true, the axiom (Weak Harnack Inequality) can be replaced by any of the

following equivalent assumptions (see also Constantinescu and Cornea [25]):

(Brelot Axiom) For every connected open set O ⊆ RN , if F is an up-directed3 family of L-

harmonic functions in O, then sup
u∈F

u is either +∞ or it is L-harmonic in O.

(Harnack Principle) For every connected open set O ⊆ RN , if {un}n is a non-decreasing se-

quence of L-harmonic functions in O, then lim
n→∞

un is either +∞ or it is an L-harmonic

function in O.

We are ready to derive our main result for this section: due to all our preliminary results, the

proof is now a few lines argument.

Proof (of Harnack Inequality, Theorem 2.4.3). Due to Theorem 2.4.4, it suffices to prove that our

operator L as in the statement of Theorem 2.4.3 satisfies the properties named (Regularity)

and (Weak Harnack Inequality) in Theorem 2.4.4: the former is a consequence of Lemma 2.3.1

(with f = 0), whilst the latter follows from Theorem 2.4.2. ◻

We remark that topological properties similar to those mentioned above for the space of

the L-harmonic functions are also valid when L in (2.1.1) is not necessarily hypoelliptic, provided

3F is said to be up-directed if for any u, v ∈ F there exists w ∈ F such that max{u, v} ≤ w.
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that it possesses a global positive fundamental solution (not necessarily smooth): see e.g. [7],

where Montel-type results are proved (in the sense of [78]), jointly with the equivalence of the

topologies induced onHL(Ω) by L1
loc and by L∞loc, under no hypoellipticity assumptions.
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Chapter 3

Integral Representation of

Superharmonic functions

In this chapter we want to study the integral representation and characterization of superhar-

monic functions related to a real second-order PDO in divergence form on RN . In particular,

we consider the hypoelliptic operator L in (2.1.1) and we use the Harnack inequality proved in

Chapter 2 in order to prove global and local representation theorems for superharmonic func-

tions, and to characterize a superharmonic function u as a L1
loc-function such that Lu ≤ 0 in the

weak sense of distributions.

More precisely, throughout the chapter we assume the following hypotheses on L:

(NTD) L is non-totally degenerate at every point of RN , or equivalenty (recalling that A(x) is

symmetric and positive semi-definite),

trace(A(x)) > 0, for every x ∈ RN .

(HY) L is C∞-hypoelliptic in every open subset of RN .

(HY)ε There exists ε > 0 such that L − ε is C∞-hypoelliptic in every open subset of RN .

We remind that under these hypotheses we have showed the solvability of the Dirichlet

problem on a basis of Euclidean topology and the Harnack inequality for L (see Sections 2.3

and 2.4).

We recall the following definitions.

Definition 3.0.1 (Regular set). We say that an open set ω ⊆ RN is regular if for any f ∈ C(ω)

and ϕ ∈ C(∂ω) there exists a unique solution of the Dirichlet problem

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Lu = −f on ω (in the weak sense of distributions),

u = ϕ on ∂ω (point-wise).
(3.0.1)
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Definition 3.0.2 (Strongly regular set). We say that an open set ω ⊆ RN is strongly regular

(below SR) if for any y ∈ ∂ω there exists an outer normal vector for ω in y non characteristic for

L, i.e. a vector ρ ≠ 0 such that the open ball B(y + ρ, ∣ρ∣) contains no points of ω and

N

∑
i,j=1

aij(y)ρiρj > 0.

In the same way as in [16], it can be proved that any SR set is a regular set. Furthermore it

is clear that if ω1, ω2 are SR sets, then ω1 ∩ ω2 is a SR set.

Remark 3.0.3. Let ω be a regular open set. In Lemma 2.3.1, for any f ∈ C(ω), we have showed

the existence and uniqueness of the distributional solution for the Dirichlet problem

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Lu = −f on ω (in the weak sense of distributions),

u = 0 on ∂ω (point-wise).
(3.0.2)

In particular, we have showed that there exists a basis of SR connected open sets of RN

such that, for any ω SR set, the solution of the Dirichlet problem (3.0.2) can be represented in

the following way

u(x) = Gf(x) = ∫
ω
k(x, y)f(y)dν(y), for every x ∈ ω, (3.0.3)

where G is the Green operator and k is the Green kernel related to L and to the open set ω.

We know that k is a positive smooth function out of the diagonal ω × ω; on this diagonal

we put:

k(y, y) = lim inf
y≠x→y

k(x, y). (3.0.4)

In this chapter we want to give a characterization of superharmonic functions w.r.t. L,

showing that u is superharmonic if and only if u ∈ L1
loc and Lu ≤ 0 in the sense of distributions.

Furthermore, we will prove the representation theorems for superharmonic functions. To this

aim, we need to introduce some notation of Potential Theory (for further details see [15]).

Let Ω be an open set of RN , and we consider the map

Ωz→HL(Ω).

It is easy to see that this map is a harmonic sheaf on RN . Moreover, thanks to the hypothesis on

the operator L and its construction in (2.1.1), it can be proved that this harmonic sheaf gives

to RN a structure of harmonic space, in which the axiom of Brelot holds. Below we will write

H(Ω) in place ofHL(Ω).

We introduce the following definitions.
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Let Ω ⊆ RN be an open set. We remind that a function u ∶ Ω → ] −∞,+∞ ] is called lower

semicontinuous (l.s.c.) at x ∈ Ω if

u(x) = lim inf
y→x

u(y) ∶= sup
V ∈Ux

( inf
V ∩Ω

u) ,

where Ux denotes the family of the neighborhoods of x.

A function u ∶ Ω→ [−∞,+∞[ is called upper semicontinuous (u.s.c.) at x ∈ Ω if

u(x) = lim sup
y→x

u(y) ∶= inf
V ∈Ux

(sup
V ∩Ω

u) .

Definition 3.0.4 (Hyperharmonic Function). Let Ω ⊆ RN be an open set. A l.s.c. function

u ∶ Ω→ ]−∞,+∞ ] is called hyperharmonic function in Ω if for every regular1 open set U ⊆ U ⊆ Ω

we have

HU
u (x) ∶= ∫

∂U
u(y)dµUx (y) ≤ u(x) for any x ∈ U , (3.0.5)

where µUx denotes the L-harmonic measure related to U and x.

We shall denote byH∗(Ω) the set of the hyperharmonic functions in Ω.

A function v ∶ Ω → [−∞,+∞[ will be called hypoharmonic if −v ∈ H∗(Ω). We denote by

H∗(Ω) ∶= −H∗(Ω) the family of hypoharmonic functions in Ω.

Remark 3.0.5. We want to remind that a function u ∶ Ω → ] −∞,+∞ ] is l.s.c. in Ω if and only if

the set

A(t) ∶= {x ∈ Ω ∶ u(x) > t}

is an open set in Ω, for any t ∈ R.

Definition 3.0.6 (Superharmonic Function). Let u be a hyperharmonic function in Ω. We say

that u is a superharmonic function in Ω if, for every regular open set U ⊆ U ⊆ Ω, the function

HU
u in (3.0.5) is harmonic in U . The set of the superhamonic functions in Ω will be denoted by

S(Ω).

A function v ∶ Ω → [−∞,+∞[ will be said subharmonic in Ω if −v ∈ S(Ω). We denote by

S(Ω) ∶= −S(Ω) the set of the subharmonic functions in Ω.

Remark 3.0.7. Since the harmonic sheaf H satisfies the axiom of Brelot, it can be proved the

following characterization of S(Ω):

u ∈ S(Ω) if and only if u ∈ H∗
(Ω) and the set {x ∈ Ω ∶ u(x) < ∞} is dense in Ω.

Moreover, as a consequence of the Weak Maximum Principle for L (see Corollary 2.2.5), we

know that if u ∈ C2(Ω;R) we have:

u ∈ S(Ω) ⇐⇒ Lu ≤ 0 in Ω.
1Since (RN ,H) is a harmonic space and L satisfies (HY), it is easy to show that the regular open sets seen in the

classical sense of Potential Theory are equivalent to our regular open sets that we have introduced.
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In the end we want to introduce the following definition.

Definition 3.0.8 (Potential Function). Let u ∈ S(Ω), u ≥ 0. We say that u is a potential on Ω if

the greatest harmonic minorant of u in Ω is the zero function. We shall denote by P(Ω) the set

of the potential functions in Ω.

The following result gives us necessary and sufficient conditions so that a function u is a

potential (see [26, Proposition 2.2.1]).

Proposition 3.0.9. Let u be a superharmonic function on an open SR set ω such that u ≥ 0. The

following assertions are equivalent:

(i) u ∈ P(ω);

(ii) if v is a hyperharmonic function on ω for which u + v ≥ 0, then v ≥ 0;

(iii) if v is a hypoharmonic minorant of u, then v ≤ 0.

The most important results of this chapter are the following theorems.

Theorem A (Characterization Superharmonic Functions). Let Ω be an open subset of RN and

u ∶ Ω→ ] −∞,+∞ ]. Then the following statements are equivalent:

(i) u ∈ S(Ω), more precisely: there exists v ∈ S(Ω) such that u = v a.e. in Ω.

(ii) u ∈ L1
loc(Ω) and Lu ≤ 0 in D′(Ω).

Observe that (ii) means

∫
Ω
u(x)L∗ϕ(x)dx ≤ 0, for any ϕ ∈ C∞

0 (Ω), ϕ ≥ 0.

Now we denote withM+(Ω) the set of non negative Radon measure on Ω.

Theorem B (Local Representation Theorem). Let Ω be an open set, ω be an open SR set such that

ω ⊆ ω ⊆ Ω ⊆ RN and u ∈ S(Ω). Then there exists a unique µ ∈ M+(ω) and a unique h ∈ H(ω) such

that µ(ω) < +∞ and

u(x) = ∫
ω
k(x, y)V (y)dµ(y) + h(x) for almost every x ∈ ω, (3.0.6)

where k is the Green kernel for ω, and V is the smooth positive function in (2.1.1).

Theorem C (Global Representation Theorem). Let ω be an open SR set such that ω ⊆ RN , and let

K be a compact set with K ⊆ ω. If u ∈ S(ω) ∩H(ω ∖K), then there exists a unique µ ∈ M+(ω) and a

unique h ∈ H(ω) such that µ(ω) = µ(K) < ∞ and

u(x) = ∫
ω
k(x, y)V (y)dµ(y) + h(x) for almost every x ∈ ω, (3.0.7)

where k denotes the Green kernel for ω, and V is the smooth positive function in (2.1.1).

If furthermore u ∈ P(ω) then (3.0.7) holds with h ≡ 0.
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3.1 Notions of Potential Theory for the Green operator and its

kernel

Here we want to prove some result for the Green operator and its kernel related to L and a SR

open set ω.

Lemma 3.1.1. Let ω be a SR open set of RN . For every y ∈ ω, there exists a sequence {pn} of potentials

on ω such that:

(i) there exists a compact set C ⊆ ω such that suppH(pn) ⊆ C, for any n ∈ N, that is

pn ∈ H(ω ∖C), for any n ∈ N;

(ii) limn→∞ pn(x) = k(x, y) uniformly on compact sets of ω ∖ {y}.

Proof. Fix y ∈ ω and let r be a positive number such that B(y,2r) ⊆ ω.

We consider now a sequence {fn} ⊆ C
∞
0 (RN ;R) such that:

1. fn ≥ 0 in RN , for any n ∈ N;

2. supp(fn) ⊆ B(y, r
n
) ⊆ ω, for any n ∈ N;

3. ∫ fn(t)dν(t) = 1, for any n ∈ N.

For any n ∈ N, we put

pn(x) ∶= G(fn)(x) = ∫
ω
fn(t)k(x, t)dν(t), ∀x ∈ ω. (3.1.1)

We want to prove that {pn} is a sequence of potentials on ω such that the properties (i) and (ii)

are satisfied.

Thanks to hypothesis on {fn}, we know that {pn} ⊆ C(ω;R) ∩ C∞(ω;R) and pn ≥ 0 on ω,

for any n ∈ N. Moreover, for any n ∈ N we have

Lpn(x) = L(G(fn))(x) = −fn(x) ≤ 0, ∀x ∈ ω,

hence pn ∈ S(ω), thanks to Remark 3.0.7.

Now fix n ∈ N; if h ∈ H(ω) such that h ≤ pn in ω, for every ξ ∈ ∂ω we have

lim sup
x→ξ

h(x) ≤ lim sup
x→ξ

pn(x) = pn(ξ) = 0,

since pn ∈ C(ω,R) and pn = G(fn) = 0 on ∂ω. Therefore, we can apply the Weak Maximum

Principle (for L) and we get h ≤ 0 in ω.

Then we have showed that

sup{h ∈ H(ω) ∶ h ≤ pn in ω} = 0,
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3.1 Notions of Potential Theory for the Green operator and its kernel 3. Integral Representation

so pn ∈ P(ω), for any n ∈ N.

We prove now point (i). Observe that, for any n ∈ N,

Lpn(x) = L(G(fn))(x) = −fn(x) = 0, for any x ∈ ω ∖B(y,2r),

then we have obtained point (i), with C ∶= B(y,2r).

In the end, we want to show point (ii).

Let K ⊆ ω ∖ {y} be a compact set. Since y ∉ K, there exists j ∈ N such that B(y, r
j
) ∩K = ∅;

hence K × B(y, r
j
) ⊆ (ω × ω) ∖ ∆, where ∆ ∶= {(x, y) ∈ ω × ω ∶ x = y}. We know that k is a

continuous function on (ω × ω) ∖∆, then for any ε > 0 there exists m = m(ε) ∈ N such that for

any t ∈ B(y, r
j
), with ∣t − y∣ < r

m
, we have

∣k(x, t) − k(x, y)∣ < ε, ∀x ∈K.

Therefore, for any n ≥ max{j,m} and x ∈K, we get

∣pn(x) − k(x, y)∣ = ∣∫
ω
(k(x, t) − k(x, y)) fn(t)dν(t)∣ ≤ ∫

ω
∣k(x, t) − k(x, y)∣ fn(t)dν(t) =

= ∫
B(y, rn )

∣k(x, t) − k(x, y)∣ fn(t)dν(t) < ε(∫
B(y, rn )

fn(t)dν(t)) = ε.

Then we have showed that pn(x) → k(x, y) uniformly on K, as n → ∞, and this proves point

(ii). ◻

Proposition 3.1.2. Let ω be a SR open set of RN and y ∈ ω; we put ky(x) ∶= k(x, y) for any x ∈ ω.

Then ky is a nonnegative superharmonic function on ω such that ky ∈ H(ω ∖ {y}).

Proof. Since k is a nonnegative smooth function on (ω × ω) ∖ ∆, where ∆ = {(x, y) ∈ ω × ω ∶

x = y}, ky is a nonnegative l.s.c. function on ω (see Remark 3.0.3 and (3.0.4)). In particular, we

know that 0 < ky(x) < +∞ for any x ∈ ω ∖ {y}.

Let U be a regular open set such that U ⊆ ω and ∂U ⊆ ω ∖ {y}; now we choose a sequence

{pn} of potentials on ω as in Lemma 3.1.1.

Since {pn} ⊆ S(ω), for any n ∈ N, we have

pn(x) ≥ ∫
∂U
pn(t)dµ

U
x (t), ∀x ∈ U.

Now, thanks to point (ii) of Lemma 3.1.1, as n→∞ we get

ky(x) ≥ ∫
∂U
ky(t)dµ

U
x (t), (3.1.2)

for any x ∈ U ∖ {y}.

Therefore, we have showed that ky ∈ L1(∂U,µUx ), for any x ∈ U ∖ {y}, and so the function

U ∋ xz→HU
ky(x) ∶= ∫

∂U
ky(t)dµ

U
x (t)

is harmonic in U . Moreover, if y ∉ U then (3.1.2) holds for any x ∈ U .
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On the other hand, if y ∈ U , thanks to continuity of HU
ky

on U , we have:

ky(y) = lim inf
ω∖{y}∋x→y

ky(x) = lim inf
U∖{y}∋x→y

ky(x) ≥

≥ lim inf
U∖{y}∋x→y

HU
ky(x) =H

U
ky(y) = ∫

∂U
ky(t)dµ

U
y (t).

Then, in any case, we get that (3.1.2) holds for any x ∈ U .

Now we know that, for any x0 ∈ ω, the family

B(x0) = {U regular open set : x0 ∈ U ⊆ U ⊆ ω, ∂U ⊆ ω ∖ {y}}

is a base of neighborhoods of x0, and moreover, thanks to (3.1.2), we get

ky(x0) ≥ ∫
∂U
ky(t)dµ

U
x0

(t), for any U ∈ B(x0).

Hence we can say that ky ∈ S(ω), thanks to Remark 3.0.7.

In the end, since we know that ky is harmonic on ω ∖ {y} but not all ω, we obtain that

ky ∈ H(ω ∖ {y}). ◻

Proposition 3.1.3. Let ω be a SR open set of RN . Then, for any y ∈ ω, the function defined on ω

ky(⋅) ∶= k(⋅, y) is a potential on ω.

Proof. From Proposition 3.1.2 we know that ky is a nonnegative superharmonic function on ω.

To prove that ky ∈ P(ω), it is sufficient to show that for any ϕ ∈ H(ω), such that ϕ ≤ ky on ω,

we have ϕ ≤ 0 on ω.

Let U be a regular open set such that y ∈ U ⊆ U ⊆ ω. We put

P (x) ∶= G(1)(x) = ∫
ω
k(x, t)dν(t),

for any x ∈ ω; then we know that P ∈ C(ω;R) ∩C∞(ω,R).

As in Lemma 3.1.1, we can prove that P ∈ P(ω). Moreover, thanks to Strong Maximum

Principle (see Theorem 2.2.2) related to L and connected components of ω, we get P > 0 on ω.

Now we want to prove that there exists M > 0 such that

ky(x) ≤MP (x), ∀x ∈ ω ∖U. (3.1.3)

Since y ∈ U , we can say that ky is continuous on ∂U ⊆ ω ∖ {y}. Hence, if we put λ ∶= max∂U ky

and m ∶= min∂U P , we have λ,m > 0 and

ky(x) ≤ λ =
λ

m
m ≤

λ

m
P (x), ∀x ∈ ∂U.

Now we consider the function u ∶= ky −MP in ω, with M ∶= λ
m
> 0.

Note that u ∈ C∞(ω ∖ {y}), and in particular u is a smooth function on ω ∖ U ⊆ ω ∖ {y}.

Moreover, u is subharmonic on ω ∖U , because ky ∈ H(ω ∖ {y}) and MP ∈ S(ω).

53



3.1 Notions of Potential Theory for the Green operator and its kernel 3. Integral Representation

A consequence is that

lim sup
ω∖U∋x→ξ

u(x) = u(ξ) = ky(ξ) −MP (ξ) ≤ 0, for any ξ ∈ ∂U ,

then for the Weak Maximum Principle we get that u ≤ 0 on ω ∖ U , and so we have showed

(3.1.3).

Now, fix ϕ ∈ H(ω) such that ϕ ≤ ky in ω.

From (3.1.3), we have ϕ ≤MP on ω∖U . Then, thanks to Weak Maximum Pronciple related

to U and applied to the subharmonic function v ∶= ϕ −MP ∈ C∞(ω), we get

ϕ(x) ≤MP (x), ∀x ∈ ω.

Since MP ∈ P(ω), we have ϕ ≤ 0 on ω and then ky ∈ P(ω). ◻

Now we are ready to prove a main result for the Green kernel k(x, y).

Proposition 3.1.4. Let ω be a SR open set and k be the Green kernel related to L and ω. Then k is l.s.c.

on ω × ω.

Proof. Observe that the function k is smooth out of the diagonal ω × ω, then to show that k is

l.s.c. on ω × ω it is sufficient to prove that for any x0 ∈ ω and for any λ < k(x0, x0), there exists

a neighborhood V of x0 such that k(x, y) > λ for any (x, y) ∈ V × V . In fact, if we prove this,

thanks to Remark 3.0.5 we show that the function k is l.s.c. on the diagonal ω × ω, and then k

is l.s.c. on ω × ω.

Fix x0 ∈ ω and λ ∈ R such that λ < k(x0, x0). From Proposition 3.1.2 we know that kx0 ∈

S(ω), then there exist a real number β > λ and a regular open set V0 ⊆ V0 ⊆ ω, such that x0 ∈ V0

and

kx0(t) ≥ β > λ, for any t ∈ V0.

We choose α > 0 such that β(1 − α) > λ; it can be proved that there exists a connected regular

open set ω0 ⊆ ω0 ⊆ V0, such that x0 ∈ ω0 and µω0
x0

(∂ω0) > 1 − α. Then we get

∫
∂ω0

kx0(t)dµ
ω0
x0

(t) ≥ β ∫
∂ω0

dµω0
x0

(t) = βµω0
x0

(∂ω0) > β(1 − α) > λ.

Hence we put

2ε = ∫
∂ω0

kx0(ξ)dµ
ω0
x0

(ξ) − λ;

it is clear that ε > 0.

Remind that k is continuous out of the diagonal ω × ω. Then, if we fix ξ ∈ ∂ω0, there exists

an open neighborhood U of x0 such that U ⊆ ω0 and

∣k(ξ, y) − k(ξ, x0)∣ < ε(∫
∂ω0

dµω0
x0

)
−1

, for any y ∈ U .
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So, for any y ∈ U , we have

∫
∂ω0

k(ξ, y)dµω0
x0

(ξ) ≥ ∫
∂ω0

k(ξ, x0)dµ
ω0
x0

(ξ) − ∫
∂ω0

∣k(ξ, x0) − k(ξ, y)∣dµ
ω0
x0

(ξ) =

= 2ε + λ − ∫
∂ω0

∣k(ξ, x0) − k(ξ, y)∣dµ
ω0
x0

(ξ) >

> 2ε + λ − ε = λ + ε.

(3.1.4)

If y ∈ U and z ∈ ω0, we put:

uy(z) =H
ω0

ky
(z) = ∫

∂ω0

k(ξ, y)dµω0
z (ξ). (3.1.5)

It is obvious that uy is harmonic in ω0, since ω0 is a regular set. Moreover by (3.1.4), for any

y ∈ U , we have

uy(x0) > λ + ε.

Now, we want to show that for any z ∈ ω0, the set {uy(z) ∶ y ∈ U} is bounded. In fact, fixed

z ∈ ω0, it’s clear that

∣uy(z)∣ ≤ ∫
∂ω0

∣k(ξ, y)∣dµω0
z (ξ) ≤

≤ ( sup
η∈U,ξ∈∂ω0

k(ξ, η))∫
∂ω0

dµω0
z (ξ) = c(z) < +∞,

where the constant c(z) depends only on z.

Making use of Theorem 2.4.2 we can prove that the set F ∶= {uy ∶ y ∈ U} is equibounded

and equicontinuous on any convex compact subset of ω0. Let K ⊆ ω0 be a convex compact set,

then we have:

(i) let x ∈ ω0 be a fixed point; from Weak Harnack Inequality we know that there exists a

positive constant C = C(L, ω0,K,x) such that

sup
K

∣uy ∣ ≤ Cuy(x) ≤ C ⋅ c(x), for any y ∈ U .

Therefore, if we put M ∶= C ⋅ c(x) > 0, we have showed that

∣uy(z)∣ ≤M, ∀ y ∈ U and ∀ z ∈K,

that is F is a equibounded family on K;

(ii) let x ∈ ω0 be a fixed point, and fix z0 ∈K; we want to prove that F is equicontinuous in z0.

From Weak Harnack Inequality we know that there exists a positive constant C such that

N

∑
j=1

sup
K

∣∂juy ∣ ≤ sup
K

∣uy ∣ +
N

∑
j=1

sup
K

∣∂juy ∣ ≤ Cuy(x) ≤ C ⋅ c(x),

for any y ∈ U . If we put M ∶= C ⋅ c(x) > 0, we get

∥∇uy(z)∥ ≤M, ∀ y ∈ U, ∀ z ∈K.
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On the other hand, if z ∈K, since K is a convex set we have [z, z0] ⊆K; then from Mean

Value Theorem we know that there exists ξ ∈ int[z, z0] such that

∣uy(z) − uy(z0)∣ ≤ ∥∇uy(ξ)∥ ⋅ ∥z − z0∥ ≤M ∥z − z0∥ ,

for any y ∈ U .

Hence F is a equicontinuous family on K.

In particular, there exists a neighborhood W of the point x0 such that

∣uy(x) − uy(x0)∣ < ε, for any x ∈W and y ∈ U ,

from which it follows uy(x) > uy(x0) − ε > λ + ε − ε = λ for any x ∈W and y ∈ U , that is

∫
∂ω0

k(ξ, y)dµω0
x (ξ) > λ, for any (x, y) ∈W ×U .

On the other hand, since ky is superharmonic in ω, we have

ky(x) ≥ ∫
∂ω0

ky(ξ)dµ
ω0
x (ξ),

for any x ∈W and y ∈ U , then we have obtained that k(x, y) > λ, for any (x, y) ∈W ×U , which

is what we wanted to show. ◻

Let ω be an open SR set, k the Green kernel for ω. For any µ ∈ M+(ω), we put:

Gµ(x) ∶= ∫
ω
k(x, y)dµ(y), for any x ∈ ω. (3.1.6)

We can to prove that Gµ is integrable in ω and moreover, it is a potential.

Lemma 3.1.5. Let ω ⊆ Ω be an open SR set; let k the Green kernel for ω. Let µ ∈ M+(ω) be such that

µ(ω) < +∞. Then Gµ ∈ L1(ω) and LGµ = − 1
V
µ in D′(ω), where V is the smooth positive function in

(2.1.1).

Proof. We prove that Gµ is integrable on ω.

By (3.1.6) and Tonelli’s theorem, we have:

∫
ω
Gµ(x)dx = ∫

ω
(∫

ω
k(x, y)dµ(y))dx = ∫

ω
(∫

ω
k(x, y)dx)dµ(y) =

= ∫
ω
(∫

ω
k(y, x)dx)dµ(y),

where the last equality is been obtained by the symmetry of k.

Now we want to remind that for our operators dν(x) ∶= V (x)dx, so we have

∫
ω
Gµ(x)dx = ∫

ω
(∫

ω
k(y, x)dx)dµ(y) = ∫

ω
(∫

ω
k(y, x)

1

V (x)
dν(x))dµ(y) =

= ∫
ω
G(1/V )(y)dµ(y),
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where in the last equality we have used the identity (3.0.3) for the Green operator G.

Observe that G(1/V ) ∈ C(ω) and ω is a compact set; then

∫
ω
Gµ(x)dx = ∫

ω
G(1/V )(y)dµ(y) ≤ Cµ(ω) < +∞,

hence Gµ ∈ L1(ω).

Now we can consider Gµ ∈ D′(ω), so for any ϕ ∈ C∞
0 (ω) we have:

⟨LGµ,ϕ⟩ = ⟨Gµ,L∗ϕ⟩ = ∫
ω
Gµ(x)L∗ϕ(x)dx = ∫

ω
(∫

ω
k(x, y)dµ(y))L∗ϕ(x)dx =

= ∫
ω
(∫

ω
k(x, y)L∗ϕ(x)dx)dµ(y) = ∫

ω
(∫

ω
k(x, y)V (x)L(ϕ/V )(x)dx)dµ(y) =

= ∫
ω
(∫

ω
k(x, y)L(ϕ/V )(x)dν(x))dµ(y) =

= ∫
ω
(∫

ω
L(ϕ/V )(x)k(y, x)dν(x))dµ(y) = −∫

ω

ϕ(y)

V (y)
dµ(y) = ⟨−(1/V )µ,ϕ⟩ ,

where we have used (2.3.19), for the expression of the adjoint operator L∗ of L, and (2.3.22).

Therefore we have showed that

⟨LGµ,ϕ⟩ = ⟨−(1/V )µ,ϕ⟩ , for any ϕ ∈ C∞
0 (ω),

so we get LGµ = − 1
V
µ in D′(ω). ◻

We want to introduce the following important definition.

Definition 3.1.6. Let Ω be an open set. Given u ∈ H∗(Ω) and a regular open set W ⊆ W ⊆ Ω,

define uW ∶ Ω→ ] −∞,+∞ ] in the following way:

uW (x) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

u(x), for x ∉W ,

∫∂W udµWx , for x ∈W .
(3.1.7)

The function uW is called the Perron-regularization of u related to W .

The Perron-regularization of a hyperharmonic function has many important properties.

Proposition 3.1.7. Suppose that u ∈ H∗(Ω) and let W be a regular open set such that W ⊆ W ⊆ Ω,

then:

(i) uW ≤ u in Ω,

(ii) uW ∈ H∗(Ω),

(iii) uW ≤ vW if u, v ∈ H∗(Ω) and u ≤ v.

Moreover, if u ∈ S(Ω), then

(iv) uW ∈ S(Ω) and uW ∈ H(W ).

The proof of this result can be seen in [15, Theorem 6.5.6].

Now, we want to give the following definition.
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Definition 3.1.8 (Perron Set Generated by a Function). Let u be a superharmonic function on

Ω such that u possesses a subharmonic minorant, and let B = {Bj}j∈N be a covering of Ω; the

following set of functions

F ∶= {uBi1 ,Bi2 ,...,Bin ∶ {Bik}k=1,...,n is a finite sequence in B }

is called the Perron set generated by u and B.

Remark 3.1.9. Let u ≥ 0 be a superharmonic function on Ω, and let B = {Bj}j∈N be a basis of

open SR sets for Ω such that, for any n ∈ N, the set An ∶= {j ∈ N ∶ Bj = Bn} is infinity.

We define by recurrence the following sequence:

u1 = uB1 , uj+1 = (uj)Bj+1 ;

thanks to Proposition 3.1.7, we can observe that 0 ≤ uj+1 ≤ uj and uj ≤ u, for any j ∈ N. Then,

if we put u∞ ∶= limj→∞ uj , it is clear that u∞ = infj∈N uj .

Now we want to consider the Perron set F generated by u and B as in the Definition 3.1.8.

It is obvious that {uj} ⊂ F , then inf F ≤ infj∈N uj . We want to show that inf F = infj∈N uj ; to

this end, we will prove that u∞ ∈ H(Ω).

Fix n ∈ N and let {jk} ⊆ An be such that jk ≤ jk+1; then {ujk}k is a decreasing subsequence

of {uj}, so limk→∞ ujk = u∞. Moreover {ujk} ⊂ H(Bn), since for any k ∈ N

ujk = (ujk−1)Bjk

and by point (iv) of Proposition 3.1.7 we have ujk ∈ H(Bjk); but Bjk = Bn, for any k ∈ N, so we

obtain that ujk ∈ H(Bn), for any k ∈ N. In the end, it is clear that the sequence {ujk} is a down

directed family2 and u∞ > −∞ in a dense subset of Ω; then, thanks to a note result of Potential

Theory (see [15]), we have that u∞ ∈ H(Bn), and it is true for any n ∈ N.

Therefore, we have showed that u∞ ∈ H(Ω). On the other hand, we know that u∞ ≤ u on

Ω, and by [26, Theorem 2.2.2] we have that inf F is the greatest harmonic minorant of u in Ω,

so we get that u∞ ≤ inf F and this gives us the thesis.

Hence, u∞ is the greatest harmonic minorant of u in Ω.

Proposition 3.1.10. Let ω be an open SR set and k the Green kernel for ω. Let µ ∈ M+(ω) be such

that µ(ω) < +∞. Then Gµ ∈ P(ω).

Proof. First observe that Gµ is l.s.c. on ω (see [45, Lemma 2.2.1]), then from Lemma 3.1.5 we

know that Gµ is finite on a dense subset D of ω.
2A family F is called down directed if for any v,w ∈ F there exists a function f ∈ F such that

v ≥ f and w ≥ f.
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Hence, thanks to Remark 3.0.7, we need to show that Gµ is a hyperharmonic function to

prove that Gµ ∈ S
+
(ω).

If U is a regular open set such that U ⊆ ω, for any x ∈ U we have:

HU
Gµ(x) = ∫

∂U
Gµ(ξ)dµUx (ξ) = ∫

∂U
(∫

ω
k(ξ, y)dµ(y))dµUx (ξ) =

= ∫
ω
(∫

∂U
k(ξ, y)dµUx (ξ))dµ(y) = ∫

ω
HU
ky(x)dµ(y) ≤

≤ ∫
ω
ky(x)dµ(y) = ∫

ω
k(x, y)dµ(y),

where we obtain the last inequality thanks to Proposition 3.1.4. Therefore we know that

HU
Gµ(x) ≤ ∫

ω
k(x, y)dµ(y) = Gµ(x), for any x ∈ U ,

then Gµ is hyperharmonic in ω, and so Gµ ∈ S
+
(ω).

Now, to prove that Gµ ∈ P(ω), we show that the greatest harmonic minorant of Gµ is

identically 0.

Let B = {Bj} be a basis of open SR sets for ω as in the Remark 3.1.9, and now we take

u ∶= Gµ. We want to consider the sequence {uj} as in the Remark 3.1.9; we have showed that

the function u∞ ∶= limj→∞ uj is the greatest harmonic minorant of u. Our aim is to prove that

u∞ ≡ 0.

For any fixed y ∈ ω and j ∈ N, we define kj(⋅, y) as in the Remark 3.1.9; hence we observe

that:

kj+1(x, y) = (kj(x, y))Bj+1 =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

kj(x, y) if x ∉ Bj+1,

∫∂Bj+1 kj(ξ, y)dµ
Bj+1
x (ξ) if x ∈ Bj+1.

Therefore, if we define

λx =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

δx if x ∉ Bj+1,

µ
Bj+1
x if x ∈ Bj+1

we have

kj+1(x, y) = ∫
∂Bj+1

kj(ξ, y)dλx(ξ), for any x ∈ ω.

Since limx→x0 λx = λx0 inM+(ω), thanks to [45, Lemma 2.2.1] we can say that kj is l.s.c. as a

function of (x, y).

By Proposition 3.1.3, we know that ky ∶= k(⋅, y) ∈ P(ω), so for any y ∈ ω we have:

lim
j→∞

kj(x, y) = 0, ∀x ∈ ω.

Now we want to prove by induction that the following equality

uj(x) = ∫
ω
kj(x, y)dµ(y) for any x ∈ ω (3.1.8)

holds for any j ∈ N.
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By definition we know that

u1(x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

u(x) = ∫ω k(x, y)dµ(y) if x ∉ B1,

∫∂B1
(∫ω k(ξ, y)dµ(y))dµB1

x (ξ) if x ∈ B1.

Then, if x ∈ B1, by Fubini’s Theorem we obtain:

u1(x) = ∫
ω
(∫

∂B1

k(ξ, y)dµB1
x (ξ))dµ(y) = ∫

ω
k1(x, y)dµ(y).

On the other hand, if x ∉ B1, we have k1(x, y) = k(x, y), hence (3.1.8) is true for j = 1. Now we

suppose that (3.1.8) is true for j ∈ N, and we show that it holds for j + 1.

If x ∉ Bj+1 we know that kj+1(x, y) = kj(x, y), then we have:

uj+1(x) = uj(x) = ∫
ω
kj(x, y)dµ(y) = ∫

ω
kj+1(x, y)dµ(y).

On the other hand, if x ∈ Bj+1, we observe that:

uj+1(x) = ∫
∂Bj+1

uj(ξ)dµ
Bj+1
x (ξ) = ∫

∂Bj+1
(∫

ω
kj(ξ, y)dµ(y))dµBj+1x (ξ) =

= ∫
ω
(∫

∂Bj+1
kj(ξ, y)dµ

Bj+1
x (ξ))dµ(y) = ∫

ω
kj+1(x, y)dµ(y),

so we have showed that (3.1.8) holds for any j ∈ N.

By Proposition 3.1.7 we can say that 0 ≤ kj(x, y) ≤ k(x, y), for any x, y ∈ ω and j ∈ N, and

k ∈ L1(ω × ω); moreover, we have seen that limj→∞ kj(x, y) = 0, then by Lebesgue’s theorem

on the dominated convergence and (3.1.8) it follows that

u∞(x) = lim
j→∞

uj(x) = lim
j→∞∫ω

kj(x, y)dµ(y) = 0 for almost every x ∈ ω,

hence u∞ = 0 for almost every x ∈ ω.

On the other hand, u∞ ∈ H(ω) andL satisfies (HY), then u∞ ≡ 0 on ω. Therefore,Gµ ∈ P(ω).

◻

3.2 Integral Representation Theorems

In order to prove Theorems B and C, we give some important result.

Theorem 3.2.1. Let Ω ⊆ RN be an open set, u ∈ L1
loc(Ω) be such that Lu ≤ 0 in D′(Ω). Then there

exists µ ∈ M+(Ω) such that for any open SR set ω, with ω ⊆ ω ⊆ Ω, we have:

u(x) = ∫
ω
k(x, y)V (y)dµ(y) + h(x) for almost every x ∈ ω, (3.2.1)

where k is the Green kernel related to L and ω, and h ∈ H(ω).

Proof. Since Lu ≤ 0 in D′(Ω), there exists a unique µ ∈ M+(Ω) such that −Lu = µ. Let ω be

an open SR set with ω ⊆ Ω; we put µω ∶= µ∣ω . It is clear that µω ∈ M+(ω) and µω(ω) < +∞.

Moreover, we get Lu = −µω in D′(ω).
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On the other hand, by Lemma 3.1.5 we know that L(G(V µω)) = −µω in D′(ω). Hence, we

have

L(u −G(V µω)) = 0 in D′(ω),

then there exists h ∈ H(ω) such that

u(x) −G(V µω)(x) = h(x), for almost every x ∈ ω.

Therefore, we get (3.2.1) if we remind that

G(V µω)(x) = ∫
ω
k(x, y)V (y)dµω(y) = ∫

ω
k(x, y)V (y)dµ(y).

◻

Let Ω ⊆ RN be an open set. We have need to show some result in order to prove that if

u ∈ S(Ω) ∩L1
loc(Ω) then Lu ≤ 0 in D′(Ω).

We define in L1
loc(Ω) the set

S2(Ω) ∶= {v ∈ S(Ω) ∶ v ∈ C2(Ω,R)}

equipped with the seminorm

v z→ ∫
K

∣v(x)∣dx, K ⊂ Ω a compact set.

Lemma 3.2.2. If u ∈ S2(Ω), then Lu ≤ 0 in D′(Ω), that is

∫
Ω
u(x)L∗ϕ(x)dx ≤ 0, ∀ϕ ∈ C∞

0 (Ω,R) with ϕ ≥ 0.

Proof. If u ∈ S2(Ω), then there exists a sequence {un} ⊆ S(Ω) ∩C2(Ω,R) such that un Ð→ u, as

n→∞, in L1
loc(Ω).

Therefore, we know that Lun ≤ 0 in Ω, for any n ∈ N (see Remark 3.0.7). In particular, it is

obvious that Lun ≤ 0 in D′(Ω), for any n ∈ N; hence we have

lim
n→∞∫Ω

un(x)L
∗ϕ(x)dx = ∫

Ω
u(x)L∗ϕ(x)dx,

for any ϕ ∈ C∞
0 (Ω,R), with ϕ ≥ 0, and we get Lu ≤ 0 in D′(Ω). ◻

Lemma 3.2.3. Let u, v be superharmonic functions on Ω such that u, v ∈ C2(Ω,R). If ϕ ∈ C2(R) is

a concave function such that ∣ϕ′(x)∣ ≤ 1, for any x ∈ R, then the function w ∶= u + v + ϕ ○ (u − v) is a

superharmonic function in Ω and w ∈ C2(Ω,R).

Proof. It is obvious that w ∈ C2(Ω,R), so we need to prove that w ∈ S(Ω). To this end, we can

prove that Lw ≤ 0 in Ω.
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By construction of L in (2.1.1), for any x ∈ Ω, we get

Lw(x) =
1

V (x)

N

∑
i,j=1

∂

∂xi
(V (x)ai,j(x)

∂w(x)

∂xj
) =

=
1

V (x)

N

∑
i,j=1

∂

∂xi
(V (x)ai,j(x)(

∂u(x)

∂xj
+
∂v(x)

∂xj
+
∂ϕ((u − v)(x))

∂xj
)) =

= Lu(x) + Lv(x) +
1

V (x)

N

∑
i,j=1

∂

∂xi
(V (x)ai,j(x)ϕ

′
((u − v)(x))

∂(u − v)(x)

∂xj
) =

= Lu(x) + Lv(x) + ϕ′((u − v)(x))L(u − v)(x)+

+ ϕ′′((u − v)(x))
N

∑
i,j=1

ai,j(x)
∂(u − v)(x)

∂xi

∂(u − v)(x)

∂xj
=

= Lu(x) [1 + ϕ′((u − v)(x))] + Lv(x) [1 − ϕ′((u − v)(x))]+

+ ϕ′′((u − v)(x))
N

∑
i,j=1

ai,j(x)
∂(u − v)(x)

∂xi

∂(u − v)(x)

∂xj
,

since ϕ is a concave function on R and the matrix A(x) = (ai,j(x)) is positive semi-definite at

every point x ∈ RN , the last term of the equation is non positive on Ω; moreover, Lu,Lv ≤ 0 in

Ω and ∣ϕ′∣ ≤ 1 in R, so also the first two terms of the equation are non positive. Therefore, we

obtain Lw ≤ 0 in Ω, which gives w ∈ S(Ω). ◻

Lemma 3.2.4. Let u, v ∈ S2(Ω) and let ϕ ∈ C2(R) be a concave function such that ∣ϕ′(x)∣ ≤ 1, for any

x ∈ R. If we put w ∶= u + v + ϕ ○ (u − v), then w ∈ S2(Ω).

Proof. We know that L1
loc(Ω) is a metrizable space, so we can think in the following way.

Since u, v ∈ S2(Ω), there exist the sequences {un},{vn} ⊆ S(Ω)∩C2(Ω,R) such that un Ð→ u

and vn Ð→ v in L1
loc(Ω), as n→∞.

On the other hand, if we fix x ∈ Ω and n ∈ N, we can apply the Mean Value Theorem to the

function ϕ in the interval of extremes (un − vn)(x) and (u − v)(x); then we get

∣ϕ((un − vn)(x)) − ϕ((u − v)(x))∣ = ∣(un − vn)(x) − (u − v)(x)∣⋅∣ϕ′(c)∣ ≤ ∣(un − vn)(x) − (u − v)(x)∣ ,

which gives

∣ϕ((un − vn)(x)) − ϕ((u − v)(x))∣ ≤ ∣un(x) − u(x)∣ + ∣vn(x) − v(x)∣, (3.2.2)

for any x ∈ Ω and n ∈ N.

Now, if we put wn ∶= un+vn+ϕ○(un−vn) for any n ∈ N, it is clear that wn Ð→ w in L1
loc(Ω),

as n → ∞. Moreover, by Lemma 3.2.3 we know that wn ∈ S(Ω) ∩ C2(Ω,R), for any n ∈ N;

therefore, we obtain w ∈ S2(Ω). ◻

Lemma 3.2.5. If u, v ∈ S2(Ω), then inf {u, v} ∈ S2(Ω).

Proof. It is known that 2 inf{u, v} = u + v − ∣u − v∣.
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Now we consider a sequence {ϕn} ⊆ C2(R) of concave functions such that ∣ϕ′n∣ ≤ 1 in R,

for any n ∈ N, and

lim
n→∞

ϕ′n(t) = −∣t∣, uniformly in R.

For example, we can choose the function ϕn(t) = 1
n
−
√
t2 + 1

n2 for any n ∈ N.

It is clear that ϕn○(u−v) Ð→ −∣u−v∣ inL1
loc(Ω), as n→∞. Now we putwn ∶= u+v+ϕn○(u−v)

for any n ∈ N; by Lemma 3.2.4 we know that wn ∈ S2(Ω), for any n ∈ N, and moreover wn Ð→

2 inf{u, v} in L1
loc(Ω), as n→∞, then we get that inf{u, v} ∈ S2(Ω). ◻

Corollary 3.2.6. If u is locally the lower envelope in Ω of a finite number of superharmonic functions

of class C2, then Lu ≤ 0 in D′(Ω).

Proof. Thanks to Lemma 3.2.5, we know that for any x ∈ Ω there exists an open set Wx ⊆ Ω

neighborhood of x such that u ∈ S2(Wx); hence, from Lemma 3.2.2 we get that Lu ≤ 0 in

D′(Wx).

It is clear that the family {Wx} is a covering of Ω; then there there exists a sequence {ρj} ⊂

C∞
0 (Ω), with ρj ≥ 0, such that

1. suppρj ⊆Wj , for any j ∈ N;

2. ∑∞
j=1 ρj(x) = 1 for every x ∈ Ω;

3. to every compact A ⊂ Ω correspond an integer m and an open set U ⊃ A such that

ρ1(x) + . . . + ρm(x) = 1, ∀x ∈ U.

Fix ϕ ∈ C∞
0 (Ω;R) with ϕ ≥ 0 on Ω; we want to prove that ⟨Lu,ϕ⟩ ≤ 0.

We put K ∶=suppϕ ⊆ Ω, and for any j ∈ N we consider the positive smooth functions

ϕj(x) = ρj(x)ϕ(x), ∀x ∈ Ω.

It is easy to see that for any j ∈ N, ϕj ∈ C∞
0 (Wj), then we know that

∫
Wj

u(x)L∗ϕj(x)dx ≤ 0, for any j ∈ N. (3.2.3)

On the other hand we have:

∫
Ω
u(x)L∗ϕ(x)dx = ∫

U
u(x)L∗ϕ(x)dx = ∫

U
u(x)L∗

⎛

⎝

m

∑
j=1

ρj(x)ϕ(x)
⎞

⎠
dx =

=
m

∑
j=1
∫
U
u(x)L∗ϕj(x)dx =

m

∑
j=1
∫
U∩Wj

u(x)L∗ϕj(x)dx ≤

≤
m

∑
j=1
∫
Wj

u(x)L∗ϕj(x)dx ≤ 0,

then we have showed that Lu ≤ 0 in D′(Ω). ◻
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Lemma 3.2.7. Let U1, U2, . . . , Up be p regular open sets such that Ui ⊆ Ω, for i = 1,2, . . . , p, and

define U = ⋃
p
i=1Ui. If u ∈ S(Ω) strictly, that is u is not harmonic in any regular open set of Ω, and

v = inf{uU1 , uU2 , . . . , uUp}, then v ∈ S(Ω) ∩ L1
loc(U) (it is also a continuous function on U ) and

Lv ≤ 0 in D′(U).

Proof. Since u ∈ S(Ω), by Proposition 3.1.7, we know that uUi ∈ S(Ω), for any i = 1, . . . , p; hence

v ∈ S(Ω).

We fix x0 ∈ U = ⋃
p
i=1Ui, so there exists q ∈ N, with 1 ≤ q ≤ p, such that x0 ∈ U1 ∩ . . . ∩ Uq ∩

(Ω ∖Uq+1)∩ . . .∩(Ω ∖Up). Since u is strictly superharmonic in Ω, by construction of the Perron

regularization of u and Proposition 3.1.7, we have

uU1(x0), . . . , uUq(x0) < u(x0) = uUq+1(x0) = . . . = uUp(x0). (3.2.4)

Moreover, uUi ∈ H(Ui), for any i = 1, . . . , p; in particular, uUi is a continuous function in x0, for

i = 1, . . . , q, and uUj is a l.s.c. function in x0, for j = q + 1, . . . , p. Therefore, thanks to (3.2.4),

there exists a neighborhood W ⊆ (⋂
q
i=1Ui)∩(⋂

p
j=q+1 Ω ∖Uj) of the point x0 such that uUi < uUj

on W for any i = 1, . . . , q and j = q + 1, . . . , p. Now we can observe that inf{uU1
, . . . , uUq} ≤ uUk

on W , for any k = 1, . . . , p, and so we get that inf{uU1 , . . . , uUq} ≤ v on W . On the other hand, it

is obvious that v ≤ inf{uU1 , . . . , uUq}, then

v = inf{uU1 , . . . , uUq} on W .

Therefore, we have obtained that v is locally in U the lower envelope of a finite number of

harmonic functions; then we can apply Corollary 3.2.6 and we obtain that Lv ≤ 0 in D′(U).

Moreover, it is clear that v ∈ L1
loc(U), since v is a continuous function on U (v is locally the

lower envelope of a finite number of smooth functions). ◻

Now we are ready to prove the following result.

Proposition 3.2.8. Let Ω ⊆ RN be an open set. If u ∈ S(Ω) ∩L1
loc(Ω), then Lu ≤ 0 in D′(Ω).

Proof. We will prove the proposition in two steps.

STEP I We want to show that for any x0 ∈ Ω, there exists ω ⊆ ω ⊆ Ω bounded open set such

that x0 ∈ ω and Lu ≤ 0 in D′(ω).

Fix x0 ∈ Ω, then there exists a regular open set ω ⊆ ω ⊆ Ω such that x0 ∈ ω. At first we

suppose that u is a strictly superharmonic function in Ω.

Let ϕ ∈ C∞
0 (ω;R) be a nonnegative function on ω. If we putK ∶= suppϕ ⊆ ω and fix n ∈ N,

then we can cover K with a finite number of regular open sets with diameter ≤ 1
n

. By

Lemma 3.2.7, we can match a superharmonic function vn on Ω, such that:

(i) vn ≤ u on Ω, then in particular vn ≤ u on K;
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(ii) vn ∈ L1(K) and

∫
K
vn(x)L

∗ϕ(x)dx ≤ 0.

Therefore, for n ∈ N we get the sequence {vn}; thanks to construction of vn, it is clear that

when n→∞ (that is the diameters tend to zero) we have vn Ð→ u point-wise in Ω.

On the other hand, let m ≤ 0 be a constant such that m ≤ infω u. Since L is homogeneous,

m is a harmonic function; then, for any W ⊆W ⊆ ω regular open set, we have

m =mW (x) ≤ uW (x) ≤ u(x), ∀x ∈ ω.

Hence, thanks to construction of vn, we get m ≤ vn on K, for any n ∈ N.

Now we observe that we can apply the Dominated Convergence Theorem (remind that

u ∈ L1
loc(Ω)):

lim
n→∞∫K

vn(x)L
∗ϕ(x)dx = ∫

K
u(x)L∗ϕ(x)dx,

and by point (ii) we get

∫
ω
u(x)L∗ϕ(x)dx ≤ 0;

thanks to arbitrariness of ϕ, we have showed that Lu ≤ 0 in D′(ω).

Now we need to show the general case, when u ∈ S(Ω).

If we fix x0 ∈ Ω, then there exists a SR open set ω0 such that x0 ∈ ω0 ⊆ ω0 ⊆ Ω. Now, we

know that there exists a unique solution v ∈ C(ω0) ∩C
∞(ω0) of the following problem:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Lv = −1 on ω0

v = 0 on ∂ω0 (point-wise).

Fix now ε > 0 and put uε(x) = u(x) + εv(x) for any x ∈ ω0.

Observe that u, v ∈ S(ω0) ∩ L
1
loc(ω0), then uε ∈ S(ω0) ∩ L

1
loc(ω0). Moreover, since Lv =

−1 < 0 on ω0 and v ∈ C∞(ω0), we can say that the function v is strictly superharmonic on

ω0. Therefore, it is clear that the function uε is strictly superharmonic on ω0; thanks to

the first part of the proof, we know that for any x ∈ ω0, there exists a bounded open set

W ⊆W ⊆ ω0 such that x ∈W and Luε ≤ 0 in D′(W ). In particular, we have:

∫
W

(u(x) + εv(x))L∗ϕ(x)dx ≤ 0, ∀ϕ ∈ C∞
0 (W ;R), ϕ ≥ 0 on W and ∀ ε > 0.

Hence, it is easy to see that as ε→ 0 we get

∫
W
u(x)L∗ϕ(x)dx ≤ 0,

for any ϕ ∈ C∞
0 (W ;R), with ϕ ≥ 0 on W ; so Lu ≤ 0 in D′(W ).

Therefore, in correspondence with x0 ∈ ω0 ⊆ Ω there exists a bounded open set ω ⊆ ω ⊆

ω0 ⊆ Ω such that x0 ∈ ω and Lu ≤ 0 in D′(ω), that is the claim.
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STEP II We want to prove that Lu ≤ 0 in D′(Ω).

Fix ϕ ∈ C∞
0 (Ω;R) such that ϕ ≥ 0 on Ω, and we put K ∶= suppϕ ⊆ Ω. In the STEP I we

have showed that for any x0 ∈ Ω, there exists ω ⊆ ω ⊆ Ω bounded open set such that x0 ∈ ω

and Lu ≤ 0 in D′(ω). It is clear that as x0 ∈ Ω, we get a collection of bounded open sets

whose union is Ω; then we can consider a locally finite partition of unity {ρj} in Ω as in

the proof of Corollary 3.2.6. Hence, in correspondence to K, we have:

1. suppρj ⊆ ωj , for any j ∈ N;

2. ∑∞
j=1 ρj(x) = 1 for every x ∈ Ω;

3. in correspondence to K, there exist an integer m and an open set U ⊃K such that

ρ1(x) + . . . + ρm(x) = 1, ∀x ∈ U.

Now, for anyj ∈ N we put

ϕj(x) ∶= ρj(x)ϕ(x), for any x ∈ Ω.

It is obvious that for any j ∈ N, ϕj ∈ C∞
0 (ωj ;R) and ϕj ≥ 0 on ωj . Then from STEP I we

know that

∫
ωj
u(x)L∗ϕj(x)dx ≤ 0.

Therefore we get:

∫
Ω
u(x)L∗ϕ(x)dx = ∫

U
u(x)L∗ϕ(x)dx = ∫

U
u(x)L∗(

m

∑
j=1

ρj(x)ϕ(x))dx =

=
m

∑
j=1
∫
U
u(x)L∗ϕj(x)dx =

m

∑
j=1
∫
U∩ωj

u(x)L∗ϕj(x)dx ≤

≤
m

∑
j=1
∫
ωj
u(x)L∗ϕj(x)dx ≤ 0,

hence we have Lu ≤ 0 in D′(Ω).

◻

Now we can prove an important consequence of these results.

Corollary 3.2.9. Let ω be a SR open set and y ∈ ω. If u ∈ P(ω) ∩ L1
loc(ω) such that u ∈ H(ω ∖ {y}),

then there exists C ∶= C(y) > 0 such that

u(x) = Cky(x), for any x ∈ ω.

Proof. Since u ∈ P(ω), in particular we have that u ∈ S(ω) ∩ L1
loc(ω). Thanks to Proposition

3.2.8, we know that Lu ≤ 0 in D′(ω). Therefore, since u ∈ H(ω ∖ {y}), there exists c ∶= c(y) > 0

such that

Lu = −cδy in D′(ω).
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Since Lky = − 1
V (y)δy in D′(ω) (see (2.3.22)), as in the proof of Theorem 3.2.1, we can prove that

there exists h ∈ H(ω) such that

u(x) = Ck(x, y) + h(x), (3.2.5)

for almost every x ∈ ω, with C = cV (y) > 0 (note that C is a positive constant that depends only

on y).

Since u ∈ H(ω ∖ {y}), thanks to continuity we have that (3.2.5) holds for any x ∈ ω ∖ {y}.

On the other hand, if W is a regular open set such that y ∈ W ⊆ W ⊆ ω, then we consider

the Perron-regularization function uW of u in ω. Observe that:

(i) for any x ∈ ω ∖W , we have x ≠ y and then

uW (x) = u(x) = Ck(x, y) + h(x);

(ii) for any x ∈W , we get

uW (x) = ∫
∂W

u(t)dµWx (t) = ∫
∂W

(Cky(t) + h(t))dµWx (t) =

= C ⋅ ∫
∂W

k(t, y)dµWx (t) + h(x) = C(ky)W (x) + h(x).

Therefore, we have showed that

uW (x) = C(ky)W (x) + h(x), for any x ∈ ω.

Moreover, we know that

lim
diam(W )→0

uW (x) = u(x) and lim
diam(W )→0

(ky)W (x) = ky(x), ∀x ∈ ω;

hence, we get that u(y) = Cky(y) + h(y) and so (3.2.5) holds on any point of ω.

Now, since u, ky ∈ P(ω), we have (see Proposition 3.0.9):

• the function h ≥ 0 on ω, because Cky(x) + h(x) ≥ 0, for any x ∈ ω, and h ∈ H(ω);

• for any x ∈ ω, we have

h(x) = u(x) −Cky(x) ≤ u(x),

then h ≤ 0 on ω.

Therefore, thanks last points we obtain that h ≡ 0 on ω, and so u(x) = Ck(x, y), for any x ∈ ω.

◻

Making use of the Proposition 3.2.8, we can prove as in the Theorem 3.2.1 the following

theorems of representation.

Theorem 3.2.10. Let Ω be an open set in RN , and let ω be an open SR set with ω ⊆ Ω. If u ∈

S(Ω) ∩L1
loc(Ω), then there exist a unique µ ∈ M+(ω) and a unique h ∈ H(ω) such that:

u(x) = ∫
ω
k(x, y)V (y)dµ(y) + h(x) for almost every x ∈ ω, (3.2.6)

where k is the Green kernel related to L and ω.
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Proof. Since u ∈ S(Ω) ∩ L1
loc(Ω), from Proposition 3.2.8 we know that Lu ≤ 0 in D′(Ω). In

particular, we have Lu ≤ 0 in D′(ω); then, there exists a unique µ ∈ M+(ω) such that Lu = −µ

in D′(ω).

On the other hand, it is known that L(G(V µ)) = −µ in D′(ω); hence, there exists h ∈ H(ω)

such that

u(x) = G(V µ)(x) + h(x), for almost every x ∈ ω,

that is (3.2.6) holds.

In the end, we want to prove that h is unique. Suppose that ψ is a harmonic function on ω

such that

u(x) = G(V µ)(x) + ψ(x), for almost every x ∈ ω.

Then, it is clear that ψ(x) = h(x) for almost every x ∈ ω; since ψ,h ∈ H(ω), thanks to hypoellip-

ticity of L, we get ψ ≡ h on ω. ◻

Theorem 3.2.11. Let ω be an open SR set,K a compact subset of ω. If u ∈ S(ω)∩H(ω∖K)∩L1
loc(ω),

then there exist a unique µ ∈ M+(ω) and a unique h ∈ H(ω) such that: µ(ω) = µ(K) < +∞ and

u(x) = ∫
ω
k(x, y)V (y)dµ(y) + h(x) for almost every x ∈ ω, (3.2.7)

where k is the Green kernel related to L and ω.

Proof. Since u ∈ S(ω)∩L1
loc(ω), thanks to the proof of Theorem 3.2.10, we know that there exist

a unique µ ∈ M+(ω) and a unique h ∈ H(ω) such that (3.2.7) holds.

Now we want to prove that µ(ω) = µ(K), that is u and µ have the same support3 on ω.

Since u ∈ H(ω ∖K), by (3.2.7) we get L(G(V µ)) = 0 in D′(ω ∖K), and so µ = 0 on ω ∖K,

that is µ(ω ∖K) = 0. Therefore, we have µ(ω) = µ(K) < +∞, because K ⊂ ω is a compact set. ◻

Corollary 3.2.12. Let ω be a SR open set andK ⊂ ω be a compact set. If u ∈ P(ω)∩H(ω∖K)∩L1
loc(ω),

then there exist a unique µ ∈ M+(ω) such that

u(x) = ∫
ω
k(x, y)V (y)dµ(y), for almost every x ∈ ω, (3.2.8)

where k is the Green kernel related to L and ω.

Proof. Since u ∈ S(ω) ∩ L1
loc(ω), thanks to Theorem 3.2.11, we know that there exist a unique

µ ∈ M+(ω) and a unique h ∈ H(ω) such that u(x) = G(V µ)(x) + h(x), for almost every x ∈ ω.

On the other hand, we know that u,G(V µ) ∈ P(ω) (see Proposition 3.1.10), so we put

ϕ(x) ∶= u(x) −G(V µ)(x), for any x ∈ ω.

Observe that h(x) = ϕ(x) for almost every x ∈ ω; moreover, it is clear that ϕ ∈ H(ω), hence

ϕ ∈ C∞(ω).

We want to prove that ϕ ≡ 0 on ω. We know that (see Proposition 3.0.9):
3We are considering the harmonic support suppHu of u in ω.

68



3. Integral Representation 69

(i) G(V µ) ≥ 0 on ω, then ϕ ≤ u on ω; since u ∈ P(ω) and ϕ ∈ H(ω), we can say that ϕ ≤ 0 on ω.

(ii) u ≥ 0 on ω, so we have

ϕ(x) +G(V µ)(x) ≥ 0, ∀x ∈ ω.

Since G(V µ) ∈ P(ω) and ϕ ∈ H(ω), we get ϕ ≥ 0 on ω.

Therefore, we have showed that ϕ ≡ 0 on ω; then h(x) = 0 for almost every x ∈ ω, and by

continuity we have h ≡ 0 on ω. Hence, we have showed (3.2.8). ◻

Note that if we prove the following inclusion

S(Ω) ⊆ L1
loc(Ω),

then by Theorem 3.2.10 and 3.2.11 we get Theorem B and C.

This last result will be the object of the next part.

3.3 Characterization of Superharmonic Functions

In order to prove Theorem A, we have need to show the following results.

Lemma 3.3.1. Let Ω be an open set in RN and ω be an open SR set such that ω ⊆ Ω. If u ∈ C∞(ω) ∩

C(ω) such that Lu ≤ 0 and u ≥ 0 on Ω, and kε is the Green kernel relative to Lε ∶= L − ε (where ε > 0

in the hypothesis (HY)ε) and ω, then

u(x) ≥ ε∫
ω
kε(x, y)u(y)dν(y) for any x ∈ ω. (3.3.1)

Proof. We consider the function v(x) = ∫ω u(y)kε(x, y)dν(y) for any x ∈ ω. Thanks to definition

of Green operator, it is clear that v = Gε(u), where Gε is the Green operator related to Lε and

ω. Since u ∈ C∞(ω) ∩C(ω), we know that v ∈ C∞(ω) ∩C(ω) is the classical solution of

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Lεv = −u on ω

v = 0 on ∂ω,

(see Lemma 2.3.1).

Hence, we get Lε(εv−u) = −εu−(L−ε)u = −Lu ≥ 0 on ω. On the other hand, εv−u = −u ≤ 0

on ∂ω. Now we can apply the Weak Maximum Principle for Lε (see Remark 2.2.7), and we get

that u ≥ εv on ω, that is (3.3.1). ◻

We introduce the following notion.

Definition 3.3.2 (Balayage). Let Ω be an open set of RN and A ⊆ Ω. If u ∈ S(Ω) and u ≥ 0 in Ω,

then we can define the reduced function of u in A in the following way:

RA
u ∶= inf {ϕ ∈ S(Ω) ∶ ϕ ≥ 0 in Ω and ϕ ≥ u in A} .
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We called balayage of u on A the function

R̂A
u ∶= (̂RA

u ),

that is the lower regularization of RA
u in Ω.

The balayage has the following properties (see [15] and [57]):

Proposition 3.3.3. Let u ∈ S(Ω) be a non-negative function on Ω, and let A ⊆ Ω. Then:

(i) 0 ≤ R̂A
u ≤ u in Ω;

(ii) R̂A
u = u in intA;

(iii) R̂A
u ∈ S(Ω) and R̂A

u ∈ H(Ω ∖A);

(iv) if A ⊆ Ω then R̂A
u is a potential in Ω.

Lemma 3.3.4. Let ω and ω0 be SR open sets such that ω0 ⊆ ω and ω0 is a connected set. If x0 ∈ ω0 and

K ⊆ ω0 is a compact set, then there exists a constant c = c(ω0,K,x0, ε) > 0 such that

u(x0) ≥ c∫
K
u(y)dν(y), (3.3.2)

for any u ∈ S(ω) ∩L1
loc(ω) and u ≥ 0 in ω.

Proof. Let u ∈ S(ω) ∩L1
loc(ω) with u ≥ 0 in ω. We can study the following cases.

(I) Suppose that u = G(f), where G is the Green operator related to L and ω and f ∈ C∞(ω) ∩

C(ω), with f ≥ 0 in ω.

In this case we can apply Lemma 2.3.1, so we get u ∈ C∞(ω)∩C(ω), u ≥ 0 and Lu = −f ≤ 0

in ω. From Lemma 3.3.1 we know that

u(x0) ≥ ε∫
ω0

kε(x0, y)u(y)dν(y) ≥ ε∫
K
kε(x0, y)u(y)dν(y).

Observe that kε(x0, ⋅) is a positive continuous function on ω ∖{x0} and a l.s.c. on ω, then

u(x0) ≥ ε inf
z∈K

kε(x0, z) ⋅ ∫
K
u(y)dν(y),

so if we choose c ∶= ε infK kε(x0, ⋅) > 0, we get (3.3.2).

(II) Suppose that u ∈ P(ω) such that suppHu = A is a compact set contained in ω∖{x0} (that is

u ∈ H(ω ∖A)). Therefore, applying Theorem 3.2.11, we know that there exist µ ∈ M+(ω)

and h ∈ H(ω) such that µ(ω) = µ(A) < +∞ and

u(x) = ∫
ω
k(x, y)V (y)dµ(y) + h(x),

for almost every x ∈ ω and for any x ∈ ω ∖A.
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Since u ∈ P(ω) we can say that h ≡ 0 on ω, thanks to Corollary 3.2.12, and so we have

that u(x) = G(V µ)(x) for almost every x ∈ ω and for any x ∈ ω ∖ A; in particular, since

A ⊂ ω ∖ {x0}, we can say that u(x0) = G(V µ)(x0).

Let ϕ ∈ C∞
0 (RN ,R) be a positive function such that ∫ ϕ(x)dx = 1. For any j ∈ N we put

ϕj(x) = j
Nϕ(jx), for every x ∈ RN .

We choose ϕ such that supp(µ∗ϕj) ⊆ ω∖{x0}, for any j ∈ N. The sequence {ϕj} is called

approximation of identity on RN , and from a known result of Functional Analysis we have

lim
j→∞

µ ∗ ϕj = µ (in the sense of distribution).

Since k(x0, ⋅) is a smooth positive function in ω ∖ {x0}, we get

lim
j→∞∫ω

k(x0, y)V (y)d(µ ∗ ϕj)(y) = ∫
ω
k(x0, y)V (y)dµ(y), (3.3.3)

that is G(V (µ ∗ ϕj))(x0) → G(V µ)(x0) = u(x0), as j →∞.

On the other hand, the convolution µ∗ϕj ∈ C∞(ω)∩C(ω), for any j ∈ N, so from case (I)

we have

G(V (µ ∗ ϕj))(x0) ≥ c∫
K
G(V (µ ∗ ϕj))(x)dν(x), (3.3.4)

for any j ∈ N.

Now we put

Φ(y) = ∫
K
k(x, y)dν(x), ∀x ∈ ω.

It is known that dν(x) = V (x)dx, so if we call λ the Lebesgue’s measure restricted to K,

thanks to the symmetry of k we get that Φ = G(V λ) on ω. From Proposition 3.1.10 we

can say that Φ ∈ P(ω), in particular Φ is l.s.c. in ω.

On the other hand, let {fn} ⊆ C0(ω) be a decreasing sequence of positive functions such

that fn → χK in ω, as n→∞. If we consider the sequence {G(fn)} ⊆ C(ω), we know that

{G(fn)} is decreasing and G(fn) ≥ 0. From the Theorem of Beppo-Levi, for any x ∈ ω,

we get

lim
n→∞∫ω

k(x, y)fn(y)dν(y) = ∫
ω
k(x, y)χK(y)dν(y),

that is G(fn) → Φ in ω, as n→∞, hence Φ = infnG(fn) on ω.

We want to prove that Φ is u.s.c. in ω, that is

Φ(x) = inf
U∈Ux

(sup
U∩ω

Φ) , ∀x ∈ ω.

Fix x ∈ ω and n ∈ N; let U ∈ Ux and t > 0, then there exists yt ∈ U ∩ ω such that Φ(yt) >

supU∩ω Φ − t. Therefore we get

sup
U∩ω

Φ < Φ(yt) + t ≤ G(fn)(yt) + t ≤ sup
U∩ω

G(fn) + t,
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then supU∩ω Φ ≤ supU∩ωG(fn) + t, so when t→ 0 we have

sup
U∩ω

Φ ≤ sup
U∩ω

G(fn),

for any U ∈ Ux.

Hence we get

inf
U∈Ux

(sup
U∩ω

Φ) ≤ inf
U∈Ux

(sup
U∩ω

G(fn)) = G(fn)(x),

where the last equality is obtained by continuity of G(fn) on ω. Thanks to arbitrariness

of n ∈ N, we can see that

inf
U∈Ux

(sup
U∩ω

Φ) ≤ Φ(x),

and by arbitrariness of x ∈ ω we get that Φ is u.s.c. in ω. Therefore, Φ is a continuous

function on ω.

Now, from the continuity of Φ on ω we get:

∫
K
G(V (µ ∗ ϕj))(x)dν(x) = ∫

K
(∫

ω
k(x, y)V (y)d(µ ∗ ϕj)(y))dν(x) =

= ∫
ω
(∫

K
k(x, y)dν(x))V (y)d(µ ∗ ϕj)(y) =

= ∫
ω

Φ(y)V (y)d(µ ∗ ϕj)(y) Ð→ ∫
ω

Φ(y)V (y)dµ(y), as j →∞.

On the other hand

∫
K
G(V µ)(x)dν(x) = ∫

K
(∫

ω
k(x, y)V (y)dµ(y))dν(x) =

= ∫
ω
(∫

K
k(x, y)dν(x))V (y)dµ(y) = ∫

ω
Φ(y)V (y)dµ(y).

Therefore, we have showed that

lim
j→∞∫K

G(V (µ ∗ ϕj))(x)dν(x) = ∫
K
G(V µ)(x)dν(x) = ∫

K
u(x)dν(x),

since u(x) = G(V µ)(x) for almost every x ∈ ω.

Then, by (3.3.3) and (3.3.4) we get (3.3.2).

(III) Suppose that u ∈ P(ω) and its support is a compact set in ω.

Let W be a regular open set in ω such that x0 ∈W ⊆W ⊆ ω; in this case we can consider

the Perron regularization function uW . Thanks to properties of uW , we know that uW ∈

S(ω)∩H(V ) and 0 ≤ uW ≤ u on ω. Then, we get that uW ∈ L1
loc(ω) (since u ∈ L1

loc(ω)) and

uW ∈ P(ω). In fact, if ϕ ∈ H(ω) such that ϕ ≤ uW on ω, we have ϕ ≤ u on ω and so ϕ ≤ 0,

since u ∈ P(ω).

Moreover, it is clear that the harmonic support of uW is a compact set in ω such that

suppHuW ∩W = ∅, because uW ∈ H(W ). Hence suppHuW ⊆ ω ∖ {x0}, and now we can

apply the case (II) at the function uW :

uW (x0) ≥ c∫
K
uW (x)dν(x),
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since uW ≤ u on ω, we get

u(x0) ≥ c∫
K
uW (x)dν(x). (3.3.5)

We know that when the diameter of W tends to 0, we have uW → u in ω, so we can apply

the Theorem of Dominated Convergence and from (3.3.5) we get (3.3.2).

(IV) Suppose the general case: u ∈ S(ω) ∩L1
loc(ω), with u ≥ 0 on ω.

In this case we consider the balayage R̂ω0
u of u in ω0. From Proposition 3.3.3 we know

that 0 ≤ R̂ω0
u ≤ u in ω, then R̂ω0

u ∈ L1
loc(ω); moreover, R̂ω0

u ∈ S(ω), in particular R̂ω0
u is a

potential in ω, since ω0 ⊆ ω. At last, R̂ω0
u ∈ H(ω∖ω0), that is R̂ω0

u has a compact harmonic

support in ω.

Then we can apply the case (III) at the function R̂ω0
u , and we get

R̂ω0
u (x0) ≥ c∫

K
R̂ω0
u (x)dν(x). (3.3.6)

On the other hand, we know that R̂ω0
u = u(x) for any x ∈ ω0, then by (3.3.6) we get (3.3.2).

◻

Now we are ready to prove an important result.

Theorem 3.3.5. Let Ω be an open set of RN . Then

S(Ω) ⊆ L1
loc(Ω).

Proof. Let u ∈ S(Ω) and K ⊆ Ω be a compact set. We can suppose without loss of generality

that there exists an open SR set ω such that K ⊆ ω ⊆ ω ⊆ Ω.

Since u is a l.s.c. function on Ω, u is l.s.c. on ω; then u attains its minimumm ∈ R on ω. Note

that L is homogeneous, hence u −m ∈ S(ω) and u −m ≥ 0 on ω. Therefore, we can suppose

u ∈ S(ω) such that u ≥ 0 on ω.

Now we consider a connected open SR set ω0 such that ω0 ⊆ ω0 ⊆ ω and K ⊆ ω0. Let x0 be

a point in ω0 ∖K such that u(x0) < +∞.

For every n ∈ N, we put

un ∶= inf{u,n} on ω,

so we have a increasing sequence {un} in ω such that un ∈ S(ω) ∩ L1
loc(ω) and un ≥ 0, for any

n ∈ N, because L is homogeneous and u is a superharmonic function in ω. Moreover, un → u in

ω, as n→∞.

Then we can apply Lemma 3.3.4:

un(x0) ≥ c∫
K
un(x)dν(x), ∀n ∈ N,

and thanks to Theorem of Beppo-Levi and the construction of {un}, we get

u(x0) ≥ c∫
K
u(x)dν(x),
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therefore we have

∫
K
u(x)dx = ∫

K
u(x)

1

V (x)
dν(x) ≤ sup

y∈K
(

1

V (y)
) ⋅ ∫

K
u(x)dν(x) ≤

≤ sup
y∈K

(
1

V (y)
) ⋅

1

c
u(x0) < +∞,

that is u ∈ L1
loc(Ω). ◻

As a consequence, we have:

Corollary 3.3.6. Let Ω be an open set of RN . If u ∈ S(Ω), then u ∈ L1
loc(Ω) and Lu ≤ 0 in D′(Ω).

Proof. In fact, thanks to Theorem 3.3.5, we know that if u ∈ S(Ω) then u ∈ L1
loc(Ω). Now we

can apply Proposition 3.2.8, and so we have Lu ≤ 0 in D′(Ω). ◻

Therefore, in Theorem A we have showed that (i)⇒ (ii). Now, we want to show that (ii)⇒

(i) in Theorem A. To this aim, we have need to prove some result.

Theorem 3.3.7. Let Ω be an open set of RN and y ∈ Ω. Suppose that there exists a potential P ∈ P(Ω),

such that P > 0 on Ω.

Then, all potential with harmonic support in {y} are proportional.

Proof. We study the following cases:

(i) Let ω be a SR open set such that y ∈ ω ⊆ ω ⊆ Ω. If p ∈ P(ω) ∩ H(ω ∖ {y}), in particular we

have that p ∈ S(ω) ⊆ L1
loc(ω); then, by Corollary 3.2.9, we get that there exists a constant

c > 0 such that

p(x) = cky(x), for any x ∈ ω.

Since ky ∈ P(ω), we can say that p is proportional to a potential on ω.

(ii) Let P1 and P2 be potentials on Ω such that P1, P2 ∈ H(Ω ∖ {y}). We want to prove that P1

and P2 are proportional on Ω.

Let ω be a SR open set such that y ∈ ω ⊆ ω ⊆ Ω. Thanks to [57, Theorem 16.4], we know

that there exist a unique p1 ∈ P(ω) ∩ H(ω ∖ {y}), in correspondence of P1, and a unique

p2 ∈ P(ω) ∩H(ω ∖ {y}), in correspondence of P2, such that:

P1(x) = p1(x) + h1(x) and P2(x) = p2(x) + h2(x),

for any x ∈ ω, where h1, h2 ∈ H(ω).

Since p1, p2 ∈ P(ω)∩H(ω∖{y}), from case (i) we know that there exist positive constants

c1, c2 such that

p1(x) = c1k(x, y) and p2(x) = c2k(x, y) for any x ∈ ω.
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Therefore, we get

P2(x) = c̄P1(x) + h2(x) − c̄h1(x), for any x ∈ ω, (3.3.7)

where c̄ = c2/c1 > 0. We want to prove that P2 = c̄P1 on Ω.

We put

h(x) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

P2(x) − c̄P1(x) if x ∈ Ω ∖ ω,

h2(x) − c̄h1(x) if x ∈ ω.

Hence, h ∶ Ω → R and we can show that h ∈ H(Ω). In fact, h ∈ H(ω), since h1, h2 ∈ H(ω).

On the other hand, P1, P2 ∈ H(Ω ∖ {y}) and y ∈ ω, then h ∈ H(Ω ∖ ω). Therefore, we have

obtained that h is harmonic on Ω.

It is clear that

P2(x) = c̄P1(x) + h(x), for any x ∈ Ω.

Now, if we prove that h ≡ 0, we get the proportionality between P1 and P2 on Ω.

Observe that:

• since P1 ∈ P(Ω) and P2 ≥ 0 on Ω, we have h ≥ 0 on Ω;

• h = P2 − c̄P1 ≤ P2 on Ω, and P2 ∈ P(Ω), then h ≤ 0 on Ω.

Therefore, we get h ≡ 0 on Ω and so P2(x) = c̄P1(x) for any x ∈ Ω.

◻

Remark 3.3.8. Thanks to Theorem 3.3.7, if we suppose that there exists a positive potential on Ω,

then we can apply [57, Theorem 18.1], and for any y ∈ Ω, we can choose a potential py ∈ P(Ω)

such that py ∈ H(Ω ∖ {y}) and the function y ↦ py(x) is continuous on Ω ∖ {x}, for any x ∈ Ω.

Let ω be a SR open set such that y ∈ ω ⊆ ω ⊆ Ω. From [57, Theorem 16.4], we can say that

there exists a unique p ∈ P(ω) ∩H(ω ∖ {y}) such that

py(x) = p(x) + h(x), for any x ∈ ω,

where h ∈ H(ω).

We know that there exists c ∶= c(y) > 0 such that p = ck(x, y) on ω, hence we get

py(x) = c(y)k(x, y) + h(x), for any x ∈ ω.

As a function of y ∈ ω, we can say that c(y) is a continuous positive function on ω.

Then we haveLpy = −c(y)/V (y)δy inD′(ω); in the proof of Corollary 3.2.9 we have showed

that c(y) = c̃(y)V (y), so we get

Lpy = −c̃(y)δy, in D′(ω).
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Now we can extend c̃ on Ω to obtain

Lpy = −c̃(y)δy, in D′(Ω).

Moreover, we can choose py such that Lpy = −δy in D′(Ω).

Now, if P ∈ P(Ω) we know that it has a unique integral representation on Ω (see [57,

Theorem 18.2]):

P (x) = ∫
Ω
py(x)dµ(y), for any x ∈ Ω, (3.3.8)

where µ ∈ M+(Ω).

It is easy to prove that

LP = −µ in D′(Ω).

In fact, for any ϕ ∈ C∞
0 (Ω) we have:

⟨LP,ϕ⟩ = ⟨P,L∗ϕ⟩ = ∫
Ω
P (x)L∗ϕ(x)dx = ∫

Ω
(∫

Ω
py(x)dµ(y))L

∗ϕ(x)dx =

= ∫
Ω
(∫

Ω
py(x)L

∗ϕ(x)dx)dµ(y) = −∫
Ω
ϕ(y)dµ(y) = ⟨−µ,ϕ⟩ ,

hence we get LP = −µ in D′(Ω).

Proposition 3.3.9. Let Ω be an open set of RN . If u1, u2 ∈ S(Ω) and u1 = u2 a.e. on Ω, then

u1(x) = u2(x) for any x ∈ Ω.

Proof. Let U be a regular connected open set such that U ⊆ U ⊆ Ω. Since u1, u2 ∈ S(Ω), they are

l.s.c. on U ; then it is clear that the following set is not empty:

Fi ∶= {ϕ ∈ H(U) ∶ ϕ ≤ ui on U} ≠ ∅,

for i = 1,2. Fix i ∈ {1,2}, we want to consider the greatest harmonic minorant of ui in U

hi ∶= sup
ϕ∈Fi

ϕ ∈ H(U).

If hi ≡ ui, for i = 1,2, then we have h1 = h2 a.e. on U . Hence, by continuity, we have h1 ≡ h2 on

U and so u1 ≡ u2 on U .

If there exists i ∈ {1,2}, for example i = 1, such that h1 ≠ u1 on U , we get u1 − h1 > 0 on U ;

moreover, u1 − h1 ∈ P(U). In fact, if ϕ ∈ H(U) s.t. ϕ ≤ u1 − h1 on U , then we get ϕ+ h1 ≤ h1 and

so ϕ ≤ 0 on U .

Therefore, we can apply Theorem 3.3.7 and thanks to Remark 3.3.8, we can say that u1 −h1

has a unique integral representation as in (3.3.8) on U :

u1(x) − h1(x) = ∫
U
py(x)dµ1(y), for any x ∈ U ,

where µ1 ∈ M
+(U).
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On the other hand, also the function u2 − h2 is a potential on U , hence it admits a unique

integral representation on U :

u2(x) − h2(x) = ∫
U
py(x)dµ2(y), for any x ∈ U ,

where µ2 ∈ M
+(U).

Now, we have seen in Remark 3.3.8 that L(ui −hi) = −µi in D′(U), for i = 1,2. Since u1 = u2

a.e. on U , we get

−µ1 = L(u1 − h1) = L(u1) = L(u2) = L(u2 − h2) = −µ2,

then µ1 = µ2 on U .

Therefore we have that u1 − u2 = h1 − h2 on U , but u1 = u2 a.e. on U , then h1(x) = h2(x) for

almost every x ∈ U ; thanks to continuity we get h1 ≡ h2 on U , so u1 ≡ u2 on U .

In the end, since the regular connected open sets U in Ω are a covering of Ω, we get u1(x) =

u2(x) for any x ∈ Ω. ◻

Now we are ready to prove the last result of this section.

Theorem 3.3.10. Let Ω be an open set of RN . If u ∈ L1
loc(Ω) such that Lu ≤ 0 in D′(Ω), then there

exists a function v ∈ S(Ω) such that

u(x) = v(x), for almost every x ∈ Ω.

Proof. Let ω be a SR open set such that ω ⊆ ω ⊆ Ω. From Theorem 3.2.1 we know that there

exists µ ∈ M+(Ω) such that:

u(x) = ∫
ω
k(x, y)V (y)dµ(y) + h(x), for almost every x ∈ ω,

where h ∈ H(ω) and k is the Green kernel related to L and ω.

For any ω ⊆ ω ⊆ Ω SR open set, we put

vω(x) ∶= ∫
ω
k(x, y)V (y)dµ(y) + h(x), for any x ∈ ω.

Now we construct the function v ∶ Ω→] −∞,+∞] such that

v(x) ∶= vω(x), for any x ∈ ω and for any SR open set ω. (3.3.9)

Since the SR open sets ω ⊆ ω ⊆ Ω are a covering of Ω, we want to show that (3.3.9) is well posed.

If ω1, ω2 are SR open sets in Ω such that ω1 ∩ω2 ≠ ∅, we have v = vωi on ωi, for i = 1,2; since

u = vωi a.e. on ωi, for i = 1,2, we get that

vω1(x) = vω2(x), for almost every x ∈ ω1 ∩ ω2.

It is clear that vω ∈ S(ω), for any SR open set ω ⊆ ω ⊆ Ω. Then, thanks to Proposition 3.3.9, we

have that

vω1(x) = vω2(x), ∀x ∈ ω1 ∩ ω2,
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so we can say that (3.3.9) is well posed on Ω.

In the end, since v ∈ S(ω), for any SR open set ω in Ω, we get that v ∈ S(Ω). Then, we have

showed that there exists a function v ∈ S(Ω), such that u(x) = v(x) for almost every x ∈ Ω. This

completes the proof. ◻
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Chapter 4

Harnack Inequality in

Doubling-Poincaré spaces

In this chapter we prove a non-homogeneous invariant Harnack inequality in the setting of dou-

bling metric spaces. We consider a real second-order PDO in divergence form on RN associ-

ated with a family of vector fields.

In the first section we will give some review on control distances, length spaces and dou-

bling measures; then we will study the notions of Sobolev spaces (related to a family of vec-

tor fields) and weak solutions in W 1-sense. Finally, in the last section we will prove the non-

homogeneous invariant Harnack inequality, using the Moser iterative technique (see e.g. [49]),

with consequent Hölder-continuous estimates.

4.1 Recalls on control distances, length spaces and doubling

measures

In order to prove the main result of this chapter, we need to give some recalls about the notions

of control distances, length spaces and doubling measures.

4.1.1 The control distance

Let X = {X1, . . . ,Xm} be a family of locally Lipschitz-continuous vector fields in Euclidean

space RN . We recall the definition of control distance (or Carnot-Carathéodory distance) dX

associated with X . In the sequel we shall also briefly use the term X-distance for dX .

First we fix a definition: we say that an RN -valued continuous curve γ connects x and y if

γ is defined on some compact interval [a, b] (with a ≤ b), and γ(a) = x and γ(b) = y.
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We say that a piece-wise C1 curve γ ∶ [0,1] → RN is an X-trajectory if

γ̇(t) =
m

∑
j=1

aj(t)Xj(γ(t)) for almost every t ∈ [0,1], (4.1.1)

for suitable real-valued functions a1, . . . , am on [0,1], and

`X(γ) ∶= sup
t∈[0,1]

(
m

∑
j=1

∣aj(t)∣
2
)

1/2

< ∞.

In this case, for any x, y ∈ RN , we set

dX(x, y) ∶= inf {`X(γ) ∣ γ is an X-trajectory connecting x and y}. (4.1.2)

It is understood that, whenever the above set in curly braces is empty, one sets dX(x, y) ∶= ∞.

To the contrary, if (for every x, y ∈ RN ) this set is never empty, we say that RN is X-connected.

In the latter case, dX is a genuine distance on RN .

Remark 4.1.1. The above definition of dX is equivalent to the following one: we say that a

piece-wise C1 curve γ ∶ [0, T ] → RN (with T ≥ 0) is X-subunit if (4.1.1) holds true, jointly with

sup
t∈[0,1]

(
m

∑
j=1

∣aj(t)∣
2
)

1/2

≤ 1.

Then it can be easily proved that1

dX(x, y) = inf {T ∣ γ ∶ [0, T ] → RN is an X-subunit curve connecting x and y}. (4.1.3)

With this useful characterization of dX one obtains that, if γ ∶ [0, T ] → RN is X-subunit, then

dX(γ(t1), γ(t2)) ≤ t2 − t1, whenever 0 ≤ t1 ≤ t2 ≤ T . (4.1.4)

It is less obvious that a piece-wise C1 curve γ ∶ [0, T ] → RN is X-subunit if and only if (for

almost every t ∈ [0, T ])

⟨γ̇(t), ξ⟩2 ≤
m

∑
j=1

⟨Xj(γ(t)), ξ⟩
2

∀ ξ ∈ RN .

The following important fact holds true:

Remark 4.1.2. Let (M,d) be a metric space; we say that a curve γ ∶ [a, b] →M is d-rectifiable if

`d(γ) ∶= sup{
n

∑
j=1

d(γ(tj−1), γ(tj)) ∣ {a = t0 < t1 < ⋯ < tn = b} is a partition of [a, b]}

1The cited equivalence is trivial: if γ ∶ [0, T ] → RN is X-subunit, then

µ ∶ [0,1] Ð→ RN , µ(t) ∶= γ(T t)

is an X-trajectory with `X(µ) ≤ T ; viceversa, if γ ∶ [0,1] → RN is an X-trajectory (with `X(γ) ≠ 0), then

µ ∶ [0, T ] Ð→ RN , µ(t) ∶= γ(t/`X(γ))

is X-subunit, if one takes T = `X(γ).
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is finite. Then (M,d) is said to be a length space if, for every x, y ∈M , one has

d(x, y) = inf {`d(γ) ∣ γ ∶ [a, b] →M is a continuous d-rectifiable curve connecting x and y}.

It is part of the definition of a length space to require that the set in the above rhs is always

non-void.

Going back to X-distances, it is not difficult to show that2 if RN is X-connected, then

(RN , dX) is a length space, i.e.,

dX(x, y) = inf {`dX (γ)∣γ ∶ [a, b] → RN is continuous, dX -rectifiable and connects x, y}. (4.1.5)

4.1.2 Known facts on length spaces

For the recalls in this section, see e.g., [20, Chapter 1]. Throughout this section (M,d) is a

length space; in the sequel it is understood that M is equipped with the metric topology. From

the very definition of `d(γ), it is not difficult to show the additivity property of `d: if γ is

d-rectifiable, then

`d(γ) =
n

∑
i=1

`d(γ∣[ti−1,ti]), (4.1.6)

for any partition {a = t0 < t1 < ⋯ < tn = b} of [a, b]. We also have the following lower semi-

continuity property: if γ, γn ∶ [a, b] → M are curves such that γn point-wise converges to γ,

then

lim inf
n→∞

`d(γn) ≥ `d(γ). (4.1.7)

As for the Riemann integral, we have the following mesh property of `d (a consequence of the

definition of a length space and of the Heine-Borel theorem): if γ ∶ [a, b] → M is continuous

and d-rectifiable, for every ε > 0 there exists δ(ε) > 0 such that, for any partition {a = t0 < t1 <

⋯ < tn = b} of [a, b] with sup1≤j≤n ∣tj − tj−1∣ ≤ δ(ε), then

`d(γ) −
n

∑
j=1

d(γ(tj−1), γ(tj)) < ε. (4.1.8)

In the sequel, we employ the usual notation for the open ball of centre x ∈M and radius r > 0:

Bd(x, r) ∶= {y ∈M ∶ d(x, y) < r}.

Whereas in an arbitrary metric space this is not always the case, in a length space we have

Bd(x, r) = {y ∈M ∶ d(x, y) ≤ r} and ∂Bd(x, r) = {y ∈M ∶ d(x, y) = r}.

2The inequality dX(x, y) ≤ `dX (γ) (if γ is as in the rhs of (4.1.5)) is a trivial consequence of the triangle inequality;

vice versa, if γ ∶ [0, T ] → RN is X-subunit and connects x and y, one uses the inequality
n

∑
j=1

dX(γ(tj−1), γ(tj))
(4.1.4)
≤

n

∑
j=1

(tj − tj−1) = T.

The latter (besides showing that an X-subunit curve is dX -rectifiable) easily implies that the infimum in the rhs of

(4.1.5) is less than or equal to the rhs of (4.1.3), which is dX(x, y).
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Indeed, it suffices to show that if d(x, y) = r then there exist yn ∈ Bd(x, r) such that yn → y.

To this end, one takes d-rectifiable curves γn ∶ [an, bn] →M connecting x and y, and such that

limn `d(γn) = d(x, y) = r. From the Intermediate Value Theorem, there exists τn ∈]an, bn[ such

that

d(x, γn(τn)) =
n − 1

n
r.

The choice yn ∶= γn(τn) does the required job, as

r ≤ d(x, yn) + d(yn, y) ≤ `d(γn∣[an,τn]) + `d(γn∣[τn,bn])
(4.1.6)
= `d(γn) Ð→ r.

We now provide some recalls on arc-length parameterizations. We let γ ∶ [α,β] → M be a

continuous d-rectifiable curve with `d(γ) > 0. Let us consider the map

[α,β] ∋ t↦ f(t) ∶= `d(γ∣[α,t]).

By the additivity property (4.1.6) we infer

f(t2) − f(t1) = `d(γ∣[t1,t2]), for α ≤ t1 ≤ t2 ≤ β,

which has the following consequences:

• f is non-decreasing;

• if f(t1) = f(t2) then γ(t1) = γ(t2);

• f is continuous (for the proof of this fact, one may benefit of the mesh-property (4.1.8) of

`d).

All these properties entitle us to set the following definition:

Γ ∶ [0, `d(γ)] Ð→M, s↦ Γ(s) ∶= γ(t(s)),

where, for any s ∈ [0, `d(γ)], t(s) ∈ [α,β] has been chosen in some way so that f(t(s)) = s, i.e.,

`d(γ∣[α,t(s)]) = s.

The way t(s) is chosen does not affect the definition of Γ(s). We can also assume that s↦ t(s)

is non-decreasing. It is not difficult to prove that Γ is continuous; this follows from

d(Γ(s2),Γ(s1)) ≤ s2 − s1, for 0 ≤ s1 ≤ s2 ≤ `d(γ). (4.1.9)

The additivity property (4.1.6) also ensures that

`d(Γ∣[t1,t2]) = `d(γ∣[t(s1),t(s2)]) = s2 − s1, (4.1.10)

whenever 0 ≤ s1 ≤ s2 ≤ `d(γ) (for the first equality see [20, eq.(5.13) p.22]). We say that Γ is the

arc-length parameterization of γ. Clearly Γ is d-rectifiable (due to (4.1.9)).

We have the following compactness result:
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Lemma 4.1.3. Let (RN , d) be a length space. Suppose γn ∶ [α,β] → RN is a sequence of continuous

curves satisfying the following properties:

1. there exists M > 0 such that `d(γn) ≤M , for every n ∈ N;

2. there exists a compact subset of RN containing γn([α,β]), for every n ∈ N.

Then there exists a subsequence (nk)k and re-parameterizations γ̃nk of γnk , all defined on [0,1], such

that, as k →∞, the sequence γ̃nk uniformly converges on [0,1] to a continuous d-rectifiable curve γ̃.

Indeed, we first extract a subsequence, which we still denote by γk, such that γk(α) converges

as k → ∞; then we consider the arc-length parameterization Γk of γk, and we re-scale it by

setting

γ̃k(s) ∶= Γk(s `d(γk)), s ∈ [0,1].

It is then easy to show that the family {γ̃k}k is equi-bounded and equi-continuous (the latter

follows from (4.1.9)); an application of the Arzelà-Ascoli Theorem proves the lemma.

4.1.3 Doubling spaces

We assume that (M,d) is a metric space equipped with a measure satisfying the following

global doubling assumption:

(D) there exists a measure µ on M such that (M,d,µ) is a doubling metric space, that is, there

exists A > 1 such that

µ(Bd(x,2 r)) ≤ Aµ(Bd(x, r)), for every x ∈M and every r > 0. (4.1.11)

Since dwill always be understood, we shall also frequently use the notationsB(x, r) andBr(x)

to denote the d-ball Bd(x, r). Moreover, as it is customary, we set A = 2Q, i.e.,

Q ∶= log2A,

so that (4.1.11) becomes µ(B2r(x)) ≤ 2Q µ(Br(x)). For the sake of future references, we now

state some generalizations of (D). First, an iteration argument gives3

µ(B(x,R)) ≤ 2Q(
R

r
)
Q

µ(B(x, r)), for every x ∈M and 0 < r ≤ R; (4.1.12)

we can also allow for different centres, as long as a ball is contained in the other:4

µ(B(y,R)) ≤ 4Q(
R

r
)
Q

µ(B(x, r)), whenever B(x, r) ⊆ B(y,R); (4.1.13)

3This follows by iterating (4.1.11) n times, with n ∈ N such that n − 1 ≤ log2(R/r) < n, so that r/2 ≤ R/2n < r,

whence µ(B(x,R/2n)) ≤ µ(B(x, r)) and 2nQ ≤ 2Q(R/r)Q.
4The triangle inequality gives B(y,R) ⊆ B(x,2R) so that (4.1.13) follows from (4.1.12).
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and we can also improve the latter for a more general geometry of the balls involved:5

µ(B(y,R)) ≤ 8Q(
R

r
)
Q

µ(B(x, r)), whenever y ∈M , x ∈ B(y,R) and 0 < r ≤ R. (4.1.14)

As a consequence of (D), we infer that (M,d) is a homogeneous space in the sense of [24,

Ch.III], which amounts to the following property:

Corollary 4.1.4. In the doubling metric space (M,d,µ), any d-ball Bd(x, r) can contain at most 18Q

pair-wise disjoint d-balls of radius r/2. Furthermore, there exists an integer n ≤ 18Q such that, for

every x ∈M and every r > 0, Bd(x, r) contains at most n points x1, . . . , xn such that d(xi, xj) ≥ r/2

for every i ≠ j.

More generally, if n is as above, for any h ∈ N and any x ∈M and r > 0, Bd(x, r) contains at most

nh points x1, . . . , xnh such that d(xi, xj) ≥ r/2h for every i ≠ j.

Indeed, let us choose i ∈ {1, . . . , n} minimizing the measures of B(x1, r/4), . . . ,B(xn, r/4); let

us also observe that these balls are pair-wise disjoint and all contained inBd(x, r+r/4), so that

µ(B(x1, r/4)) + ⋯ + µ(B(xn, r/4)) ≤ µ(Bd(x, r + r/4)) ≤ µ(B(xi,9r/4)).

By the minimality property of i, the above lhs is greater than nµ(B(xi, r/4)), whereas (due to

(4.1.12)) the far rhs is smaller than 18Qµ(B(xi, r/4)). This prescribes the bound n ≤ 18Q. The

last statement of the corollary can be proved by induction on h (see [24, p.68]).

Remark 4.1.5. As a consequence of the last statement of Corollary 4.1.4, it easily follows that

any bounded set in the doubling metric space (M,d) is also totally-bounded: indeed, if ε > 0, given a

ball Bd(x, r) we chose h≫ 1 such that r/2h < ε so that (with the notation in the cited corollary

relative to the ball Bd(x, r))

Bd(x, r) ⊆ ⋃
nh

j=1Bd(xj , r/2
h) ⊆ ⋃

nh

j=1Bd(xj , ε).

4.1.4 The segment property

In the sequel we assume that Euclidean space RN is equipped with the structure of a length

space, which we occasionally denote by (M,d) to preserve the taste of general metric-space

theory, which is also endowed with the structure of a doubling metric space (M,d,µ) by means

of a measure µ, and (M,d) further satisfies the following topological assumption:

(T) the topology of the metric space (RN , d) coincides with the usual Euclidean topology of

RN , and (RN , d) is a complete metric space.

Remark 4.1.6. Under all the above assumptions we claim that a set A ⊂ RN is compact (in the

Euclidean topology) if and only if it is closed and bounded in (RN , d). Indeed, since the Euclidean

5The triangle inequality gives B(x,R) ⊆ B(y,2R) so that (4.1.14) follows from (4.1.13).
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topology of RN coincides with the metric topology due to (T), A is Euclidean-compact iff it is

compact in the metric space (RN , d); since the latter is complete again by assumption (T), A is

compact in (RN , d) iff it is closed and totally-bounded in (RN , d); the claim now follows from

Remark 4.1.5.

Arguing analogously, one can prove that a set A ⊂ RN is bounded in (RN , d) if and only if it

is bounded in the Euclidean metric.

From the last assertion we infer that RN is unbounded wrt d; this easily shows that

B(x, r) ∖B(x,λ r) ≠ ∅, ∀ x ∈ RN , r > 0, λ ∈ (0,1). (4.1.15)

We have the following remarkable property:

Theorem 4.1.7 (Segment property). Let RN be equipped with the structure of a doubling metric

space (M,d,µ), which is also a length space, and it satisfies the topological assumption (T).

Then, for every x, y ∈ RN , there exists a continuous d-rectifiable curve γ ∶ [0,1] → RN connecting

x and y, with `d(γ) = d(x, y) and such that

d(x, y) = d(x, γ(t)) + d(γ(t), y), ∀ t ∈ [0,1]. (4.1.16)

Proof. Given x ≠ y we set r ∶= d(x, y). By the definition of a length space, there exists a sequence

γn ∶ [0,1] → RN of continuous d-rectifiable curves connecting x and y such that limn `d(γn) = r.

For large n and for any t ∈ [0,1] we have

2r ≥ `d(γn) ≥ d(x, γn(t)) + d(γn(t), y) ≥ d(x, γn(t)).

This shows that γn([0,1]) ⊆ Bd(x,2r), and the latter is a compact set in the Euclidean RN

(due to Remark 4.1.6). We can apply Lemma 4.1.3 and infer the existence of a sequence {ψk}k

(obtained as re-parameterizations of some subsequence {γnk}k) uniformly converging to a

continuous d-rectifiable curve ψ on [0,1]. From (4.1.7) we get

d(x, y) ≤ `d(ψ) ≤ lim inf
k→∞

`d(ψk) = lim inf
k→∞

`d(γnk) = r = d(x, y).

Finally, from the additivity property (4.1.6) we get

d(x, y) ≤ d(x,ψ(t)) + d(ψ(t), y) ≤ `d(ψ∣[0,t]) + `d(ψ∣[t,1]) = `d(ψ∣[0,1]) = d(x, y).

This proves (4.1.16), ending the proof. ◻
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Remark 4.1.8. Using (4.1.10), it is not difficult6 to show that the arc-length parameterization

Γ(s) of the curve γ(t) in Theorem 4.1.7 has the following properties:

Γ ∶ [0, d(x, y)] → RN is a continuous d-rectifiable curve connecting x and y satisfying:

d(x, y) = d(x,Γ(s)) + d(Γ(s), y), for every s ∈ [0, d(x, y)]; (4.1.17)

d(Γ(s1),Γ(s2)) = `d(Γ∣[s1,s2]) = s2 − s1, for every 0 ≤ s1 ≤ s2 ≤ d(x, y). (4.1.18)

Remark 4.1.9. Any d-ball is a John domain (for the general definition see e.g., [53, Section 9.1]).

More precisely, given an arbitrary d-ballB(y, r), for any x ∈ B(y, r) we consider the curve Γ(s)

as in Remark (4.1.8). For any ξ ∉ B(y, r) we have

R ≤ d(y, ξ) ≤ d(y,Γ(s)) + d(Γ(s), ξ),

so that

d(Γ(s), ξ) ≥ R − d(y,Γ(s)) > d(x, y) − d(y,Γ(s))
(4.1.17)
= d(x,Γ(s)) = d(Γ(0),Γ(s))

(4.1.18)
= s.

This gives

distd(Γ(s),RN ∖B(y, r)) ∶= inf
ξ∉B(y,r)

d(Γ(s), ξ) ≥ s, ∀ s ∈ [0, d(x, y)],

which ensures that B(y, r) is a John domain.

Finally we have the following useful result (see Di Fazio, Gutiérrez, Lanconelli, [30]):

Theorem 4.1.10 (Global reverse doubling). Let the assumptions of Theorem 4.1.7 apply.

There exists δ ∈ (0,1) (only depending on the doubling constant Q) such that

µ(Bd(x, r)) ≤ δ µ(Bd(x,2 r)), for every x ∈ RN and r > 0. (4.1.19)

Proof. Let 1 < η < 2θ < 2 and let y ∈ B(x,2θ r) ∖B(x, η r) (see (4.1.15)). If σ > 0 is smaller than

min{2 − 2θ, η − 1} < 1 we have B(y, σ r) ⊂ B(x,2r) ∖B(x, r). From (4.1.13) we get

µ(B(x,2 r)) ≥ µ(B(x, r)) + µ(B(y, σ r)) ≥ µ(B(x, r)) + 2−Q(σ/4)Q µ(B(x,2r)),

proving (4.1.16) with the choice δ ∶= 1 − (σ/8)Q. ◻

6The analogue of the segment property holds for Γ due to the chain of inequalities:

d(x, y) ≤ d(x,Γ(s)) + d(Γ(s), y) ≤ `d(Γ[0,s]) + `d(Γ[s,d(x,y)]) = `d(Γ[0,d(x,y)]) = `d(Γ) = `d(γ) = d(x, y).

Moreover one has

d(x, y) ≤ d(x,Γ(s1)) + d(Γ(s1),Γ(s2)) + d(Γ(s2), y)

≤ `d(Γ[0,s1]) + `d(Γ[s1,s2]) + `d(Γ[s2,d(x,y)]) = `d(Γ) = d(x, y),

so that

d(x, y) = d(x,Γ(s1)) + d(Γ(s1),Γ(s2)) + d(Γ(s2), y) =∶ a + b + c

d(x, y) = `d(Γ[0,s1]) + `d(Γ[s1,s2]) + `d(Γ[s2,d(x,y)]) =∶ A +B +C.

Since a ≤ A, b ≤ B and c ≤ C, the latter are all equalities and in particular d(Γ(s1),Γ(s2)) = `d(Γ[s1,s2]) = s2 − s1.
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4.2 The assumptions on the operator

In this short section we fix the assumptions on the operators that we shall consider through-

out the sequel. We assume that L is a divergence-form operator on RN (with nonnegative

characteristic form, possibly degenerate) under the following form

L =
1

V (x)

N

∑
i,j=1

∂

∂xi
(V (x)ai,j(x)

∂

∂xj
), (4.2.1)

where ai,j = aj,i are measurable functions (for every i, j ≤ N ) with A(x) ∶= (ai,j(x))i,j positive

semidefinite for every x ∈ RN , and V > 0 is a C1 function on RN . Due to the low regularity of

the coefficients of L, we shall obviously consider solutions and sub-/super-solutions of Lu = f

in an appropriate weak sense that will be specified in the sequel.

Attached with L, we have a natural (Borel) measure, namely

dµ(x) ∶= V (x)dx, (4.2.2)

where dx denotes the Lebesgue measure on RN . In many of the following results, the C1

assumption on V may be relaxed, requiring V to be a locally bounded and measurable func-

tion. Next we assume that the possible degeneracy of the matrix A(x) be controlled by well-

behaved vector fields, in the following sense: we assume that there exists a family of locally

Lipschitz-continuous vector fields X = {X1, . . . ,Xm} on Euclidean space RN , and two con-

stants λ,Λ > 0 such that

λ
m

∑
j=1

⟨Xj(x), ξ⟩
2
≤ ⟨A(x)ξ, ξ⟩ ≤ Λ

m

∑
j=1

⟨Xj(x), ξ⟩
2, ∀ x, ξ ∈ RN . (4.2.3)

Finally, we make our assumptions on theX-control distance: we assume that RN isX-connected

(so that (RN , dX) is a length space, see (4.1.5)), and the associated X-distance dX satisfies the

following assumptions.

(T) The topology of the metric space (RN , dX) coincides with the usual Euclidean topology of

RN , and (RN , dX) is a complete metric space.

For brevity, we shall write d instead of dX .

(D) If µ is the measure (4.2.2) associated with L, then (RN , d, µ) is a doubling metric space,

that is, there exists Q > 0 such that

µ(Bd(x,2 r)) ≤ 2Q µ(Bd(x, r)), for every x ∈ RN and every r > 0. (4.2.4)

The ball Bd(x, r) will be denoted indifferently by B(x, r) or Br(x). With no restrictions

on the validity of (4.2.4), we shall assume that Q > 2.

(P) The following global Poincaré inequality is satisfied: there exists a constant CP > 0 such that,

for every x ∈ RN , r > 0 and every u which is C1 in a neighborhood of B2r(x) one has

⨏
Br(x)

∣u − uBr(x)∣dµ ≤ CP r ⨏
B2r(x)

∣Xu∣dµ. (4.2.5)
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Here µ is as in (4.2.2), and we throughout use the following notations:

⨏
Br(x)

{⋯}dµ =
1

µ(Br(x))
∫
Br(x)

{⋯}dµ, uBr(x) ∶= ⨏
Br(x)

udµ,

and ∣Xu∣ ∶=
√
∑
m
j=1 ∣Xju∣2.

Remark 4.2.1. Condition (4.2.3) has been introduced by Kogoj and Lanconelli in [65], and the

operators L satisfying it have been called X-elliptic. Meaningful examples of operators satis-

fying the assumptions above are contained in [52, Section 6.1] by Gutiérrez and Lanconelli,

also comprising operators previously considered by Franchi and Lanconelli [40, 41]. For other

examples see also [92, Section 1].

The role of the density V comes from the need to allow for second order operators coming

from applications to Lie groups; indeed, one can find in [5, Example 1.1] relevant examples

of operators under the form (4.2.1), where V ≠ 1 is the density of the Haar measure of a Lie

group G, and X1, . . . ,Xm is a family of generators of the Lie algebra of G. The same kind of

operators (coming from Lie group theory) have also been investigated in [1, 7].

A set of hypotheses similar to ours is considered by Kogoj and Lanconelli in [65, 66], where

scale-invariant Harnack inequalities for the homogeneous equation Lu = 0 are obtained.

Remark 4.2.2. Due to assumptions (T) and (D), we know that the segment property in Theorem

4.1.7 and the reverse doubling property in Theorem 4.1.10 hold true for our space (RN , dX ,dµ),

and the latter is a homogeneous space in the sense of Corollary 4.1.4.

4.2.1 A Poincaré-Sobolev inequality

Arguing as in [53], starting from assumption (P) one can prove the following result, a global

Poincaré-Sobolev-type inequality:

Lemma 4.2.3. Let the assumptions in Section 4.2 be satisfied. Let us fix throughout the notation

q ∶=
2Q

Q − 2
. (4.2.6)

Then, there exists a constant C (only depending on the doubling constant Q in (4.2.4) and on the

Poincaré constant CP in (4.2.5)) such that

(⨏
Br(x)

∣u − uBr(x)∣
q

dµ)

1/q

≤ C r (⨏
B10r(x)

∣Xu∣2 dµ)

1/2

, (4.2.7)

for every x ∈ RN , r > 0 and every u which is C1 in a neighborhood of B10r(x).

Proof. This follows by arguing as in [53, Theorem 5.1, p.22]. We remark that, in order to use

the arguments in [53], some results on the maximal function in metric spaces are required (see

Theorems 1.8 and 2.2 in [55]). ◻
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Remark 4.2.4. Inequality (4.2.7) can be improved to a genuine Poincaré-Sobolev inequality, that

is with Br(x) in place of B10r(x) in the right-hand side, by arguing as in [53, Corollary 9.8]. To

this end, however, it is also crucially required to invoke (together with the segment property

(4.1.16)), the fact that any d-ball is a John domain (see Remark 4.1.9). Since we do not need

all of this machinery, and only Lemma 4.2.3 is needed, we shall not further improve the latter

lemma.

As it is expected, Lemma 4.2.3 allows us to obtain a (global) Sobolev inequality, given in

the next result. First we fix a notation: if µ is as in (4.2.2), given any p > 0, any measurable set

A ⊆ RN and any measurable function u on A, we set

∥u∥Lp(A) ∶= (∫
A
∣u∣p dµ)

1/p

and ∥u∥∗Lp(A) ∶= (⨏
A
∣u∣p dµ)

1/p

.

When A is understood, we shall also use the notations (resp.) ∥u∥p and ∥u∥∗p.

Theorem 4.2.5 (Global Sobolev inequality). Let the assumptions in Section 4.2 be satisfied. Let q

be as in (4.2.6). Then, there exists a constant C (only depending on the doubling constant Q in (4.2.4)

and on the Poincaré constant CP in (4.2.5)) such that

∥u∥Lq(B(x,r)) ≤
C r

µ(B(x, r))1/Q ∥Xu∥L2(B(x,r)), (4.2.8)

∥u∥∗Lq(B(x,r)) ≤ C r ∥Xu∥
∗
L2(B(x,r)), (4.2.9)

for every x ∈ RN , r > 0 and every u ∈ C1
0(B(x, r)).

Finally, if Ω ⊂ RN is a bounded open set, there exists a constant C(Ω) > 0 such that

∥u∥Lq(Ω) ≤ C(Ω) ∥Xu∥L2(Ω), for every u ∈ C1
0(Ω). (4.2.10)

Proof. Let x, r, u be as in the assertion. By trivially prolonging u outside Br ∶= B(x, r), from

Hölder inequality one has

∥u∥Lq(Br) ≤ ∥u − uB2r∥
Lq(B2r)

+ (
µ(Br)

µ(B2r)
)

1−1/q

∥u∥Lq(Br(x)).

From the reverse doubling inequality (4.1.19) one gets

∥u∥Lq(Br) ≤
µ(B2r)

1/q

1 − δ1−1/q ∥u − uB2r∥
∗

Lq(B2r)
(by (4.2.7))

≤
2C r

1 − δ1−1/q
µ(B2r)

1/q

µ(B20r)
1/2 ∥Xu∥L2(B20r)

(we use u ∈ C1
0(Br), the doubling condition and µ(B20r) ≥ µ(Br))

≤
2Q/q+1C r

1 − δ1−1/q
µ(Br)

1/q

µ(Br)1/2 ∥Xu∥L2(Br).

This is (4.2.8) since 1/2 − 1/q = 1/Q. The latter identity also shows that (4.2.9) follows from

(4.2.8). Finally, from Remark 4.1.6 we know that Ω (which is bounded in RN ) is also bounded

in (RN , d), so there exists B(0, r) containing Ω (with r = r(Ω)); if u ∈ C1
0(Ω), then it can be

trivially prolonged to a function in C1
0(B(0, r)). Thus (4.2.10) follows from (4.2.8). ◻
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4.3 X-Sobolev spaces and W 1-weak solutions for L

As is usually done when dealing with X-control distances, we need to consider the appro-

priate X-Sobolev spaces. We tacitly understand that the assumptions in Section 4.2 on X =

{X1, . . . ,Xm}, µ and d = dX be satisfied. Lp spaces are meant wrt the measure µ in (4.2.2). We

also assume throughout this section that Ω is a fixed open subset of RN .

Let j ∈ {1, . . . ,m} and let us define the formal L2-adjoint of Xj (as a linear first order

operator) as the unique operator X∗
j (possibly containing first and zero order terms) such that

∫
RN

ψXjϕdµ = ∫
RN

ϕX∗
j ψ dµ, ∀ ψ,ϕ ∈ C∞

0 (RN). (4.3.1)

Since any Xj is locally Lipschitz-continuous and since the density V of dµ(x) = V (x)dx is

C1, X∗
j is (uniquely) well-posed. Then we recall that, given u ∈ L2(Ω) and j ∈ {1, . . . ,m}, we

define Xju (in the weak sense) whenever there exists a function φj ∈ L2(Ω) (denoted by Xju)

such that

∫
Ω
ψφj dµ = ∫

Ω
uX∗

j ψ dµ, ∀ ψ ∈ C∞
0 (RN). (4.3.2)

Throughout the sequel, we always understand that the components of Xu = (X1u, . . . ,Xmu)

are meant in the above weak sense. As usual, ∣Xu∣ =
√
∑
m
j=1 ∣Xju∣2. To avoid cumbersome

notations, we write ∥Xu∥2 in place of the L2-norm of ∣Xu∣.

Definition 4.3.1. We define W 1(Ω,X) as the vector space of the functions u ∈ L2(Ω) such that

Xju exists and belongs to L2(Ω), for any j = 1, . . . ,m. On W 1(Ω,X) we consider the norm

∥u∥W 1 ∶=

√

∥u∥2
2 + ∥Xu∥2

2.

We denote by W 1
loc(Ω,X) the set of the functions u belonging to W 1(Ω′,X), for any open set

Ω′ whose closure is a compact subset of Ω.

Finally, we denote by W 1
0 (Ω) the closure of C1

0(Ω) wrt ∥ ⋅ ∥W 1 . We write W 1(Ω) shortly for

W 1(Ω,X), and W 1 whenever Ω is understood. The same for W 1
0 or W 1

loc.

Clearly, ∥ ⋅ ∥W 1 is a norm induced by the scalar product

⟨u, v⟩W 1 ∶= ∫
Ω
uv dµ + ∫

Ω

m

∑
j=1

XjuXjv dµ, u, v ∈W 1
(Ω).

On W 1 we shall also consider the equivalent norm ∥u∥2 + ∥Xu∥2. By an abuse of notation, the

latter will also be denoted by ∥ ⋅ ∥W 1 .

It is a simple exercise to check that (W 1(Ω,X), ∥ ⋅ ∥W 1) is a Hilbert space, hence the same

is true of W 1
0 (Ω) with the induced norm.

Remark 4.3.2. A profound result (of Meyer-Serrin type) is that

C∞(Ω) ∩W 1(Ω,X) is dense in (W 1(Ω,X), ∥ ⋅ ∥W 1).
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This is proved by Garofalo and Nhieu in [48] when µ is Lebesgue measure. In our case dµ =

V dx, the same fact holds true, due to a result by Franchi, Hajłasz and Koskela [39, Section 3]

where measures µ of our form are considered.

Proposition 4.3.3. Let Ω be a bounded open set. Then the ∥ ⋅ ∥W 1 norm on W 1
0 (Ω) is equivalent to

∥u∥W 1
0
∶= ∥Xu∥2, u ∈W 1

0 (Ω), (4.3.3)

and there exists C(Ω) > 0 such that

∥u∥2 ≤ C(Ω) ∥Xu∥2, ∀u ∈W 1
0 (Ω). (4.3.4)

Proof. If un ∈ C1
0(Ω) is a sequence converging to u in W 1, we have

∥un∥2 ≤ (µ(Ω))
q−1
2q ∥un∥q

(4.2.10)
≤ (µ(Ω))

q−1
2q C(Ω) ∥Xun∥2 =∶ C

′
(Ω) ∥Xun∥2.

By letting n→∞ we infer ∥u∥2 ≤ C
′(Ω) ∥Xu∥2, and the proof is complete. ◻

Theorem 4.3.4 (W 1
0 -Sobolev and W 1-Poincaré inequalities). With the same constants C,CP as in

(4.2.9) and in (4.2.5), we have

∥u∥∗Lq(Br(x)) ≤ C r ∥Xu∥
∗
L2(Br(x)), (4.3.5)

for any x ∈ RN , r > 0 and any u ∈W 1
0 (Br(x)). If Ω ⊆ RN is an open set, we have

⨏
Br(x)

∣u − uBr(x)∣dµ ≤ CP r ⨏
B2r(x)

∣Xu∣dµ, (4.3.6)

whenever B2r(x) ⊂ Ω, and for every u ∈W 1(Ω,X).

Proof. If u ∈W 1
0 (Br(x)) and un ∈ C1

0(Br(x)) is a sequence converging to u in W 1, from (4.2.9)

applied to un − um, and the fact that Xun → Xu in L2, we infer that (un)n is a Cauchy se-

quence in Lq . Since un → u in L2, we get un → u in Lq as well, so that (4.3.5) follows from

a density argument from (4.2.9). As for (4.3.6), one can argue analogously, by using a se-

quence un ∈ C1 ∩W 1(Ω) converging to u in W 1 (see Remark 4.3.2), and using the fact that

∥Xun −Xum∥∗L1(B2r(x)) ≤ ∥Xun −Xum∥∗L2(B2r(x)). ◻

The following fact will be extremely relevant for the proof of the Harnack inequality:

Remark 4.3.5. The following cut-off argument has been proved (crucially, for our purposes) by

Kogoj and Lanconelli in [66, Theorem 10], under the same assumptions that we have done for

the metric d = dX (see Section 4.2):

Given any x0 ∈ RN and any 0 < R1 < R2 < ∞, there exists η ∈W 1
0 (BR2(x0),X) such that

1. 0 ≤ η ≤ 1, η ≡ 1 on BR1(x0), η is compactly supported in BR2(x0);

2. ∣Xη∣ ≤ 2
R2−R1

almost everywhere on BR2(x0).
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For the latter inequality, it is required the crucial estimate ∣Xd(x0, ⋅)∣ ≤ 1 (a.e.) first proved by

Franchi, Serapioni and Serra Cassano [44, Proposition 2.9]; for the existence of cut-off functions

in are particular cases see [23, 41, 75].

In the sequel Ω will always denote an open subset of RN . Moreover, the assumptions of

Section 4.2 hold true, and L is the operator in (4.2.1).

We consider the bilinear operator L ∶ C1(Ω) ×C1
0(Ω) Ð→ R defined by

L(u, v) ∶= ∫
Ω
⟨A(x)∇u(x),∇v(x)⟩dµ(x), u ∈ C1

(Ω), v ∈ C1
0(Ω). (4.3.7)

Here A(x) = (ai,j(x))i,j is the symmetric matrix associated with L, and µ is as in (4.2.2). From

our assumption (4.2.3) and due to A(x) ≥ 0 for any x, we get

∣⟨A∇u,∇v⟩∣ ≤
√

⟨A∇u,∇u⟩ ⋅
√

⟨A∇v,∇v⟩
(4.2.3)
≤ Λ ∣Xu∣ ⋅ ∣Xv∣,

so that ∣L(u, v)∣ ≤ Λ∥Xu∥2 ∥Xv∥2 ≤ Λ∥u∥W 1∥v∥W 1
0

. Hence, by density, L can be (uniquely)

prolonged to an operator

L ∶W 1
(Ω) ×W 1

0 (Ω) Ð→ R.

We fix once and for all a function

g ∈ Lp(Ω), with p > Q/2. (4.3.8)

We consider the linear operator Fg ∶ C1
0(Ω) Ð→ R defined by

Fg(v) ∶= ∫
Ω
v g dµ(x), v ∈ C1

0(Ω). (4.3.9)

If Ω is bounded, from the Sobolev inequality (4.2.10), we get7

∣Fg(v)∣ ≤ ∥v∥q ∥g∥q′ ≤ C(Ω,Q, p) ∥v∥q ∥g∥p
(4.2.10)
≤ C(Ω,Q, p, g) ∥Xv∥W 1

0
,

so that, again by density, Fg can be (uniquely) prolonged to an operator

Fg ∶W
1
0 (Ω) Ð→ R.

Definition 4.3.6 (W 1-solution for L). Let Ω ⊆ RN be an open set, and let g satisfy (4.3.8).

(a) If Ω is bounded, we say that u is a W 1-weak solution of −Lu = g in Ω iff u ∈ W 1(Ω) and

L(u, v) = Fg(v) for every v ∈W 1
0 (Ω).

Clearly we say that a function u is a W 1-weak subsolution to −Lu = g in Ω iff u ∈ W 1(Ω)

and L(u, v) ≤ Fg(v) for every v ∈W 1
0 (Ω), with v ≥ 0.

(b) For an arbitrary Ω, we say that u is a W 1
loc-weak solution of −Lu = g in Ω iff u ∈ W 1

loc(Ω)

and u is a W 1-weak solution of −Lu = g in O, for any bounded open set O such that

O ⊂ Ω.
7We use Hölder inequality jointly with q′ = 2Q/(Q + 2) < Q/2 < p.
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Remark 4.3.7. Let Ω be bounded. Clearly, −Lu = g in the W 1-weak sense if and only if there

exists a sequence un ∈ C1(Ω) with un → u in W 1 such that, for any sequence vn ∈ C1
0(Ω)

possessing a limit in W 1
0 , then it holds that

lim
n→∞∫Ω

(⟨A∇un,∇vn⟩ − g vn)dµ = 0.

4.4 The non-homogeneous, invariant Harnack inequality

The aim of this section is to prove the following result:

Theorem 4.4.1 (Non-homogeneous, invariant Harnack inequality). Let the assumptions in Sec-

tion 4.2 be satisfied for L and for the doubling metric space (RN , dX , µ). Let Ω ⊆ RN be an open set,

and let g ∈ Lp(Ω), with p > Q/2.

Then there exists a structural constant C > 0 (only depending on the doubling/Poincaré constants

Q,CP , on the X-ellipticity constants λ,Λ in (4.2.3) and on p) such that, for every d-ball BR(x) satis-

fying B4R(x) ⊂ Ω, one has

sup
BR(x)

u ≤ C ( inf
BR(x)

u +R2
∥g∥∗Lp(B4R(x))) , (4.4.1)

for any nonnegative W 1
loc-weak solution u of −Lu = g in Ω.

Remark 4.4.2. In the particular case when g ≡ 0, one obtains the homogeneous, invariant Har-

nack inequalities obtained by Kogoj and Lanconelli in [65, 66] (in [66] the operators involved

are more general than ours, in that they may contain first order terms). Again in the homo-

geneous case g ≡ 0, an invariant Harnack inequality under local doubling/Poincaré has been

proved by Gutiérrez and Lanconelli in [52], for balls of small radii. In the same paper [52], the

authors obtain a non-homogeneous invariant Harnack inequality, under the presence of some

dilation-invariance property on the vector fields X involved.

The summand R2∥g∥∗Lp(B4R(x)) is bounded by above by

R2

µ(BR(x))1/p ∥g∥Lp(Ω);

when R is small and x lies in a compact set K ⊂ Ω, there exists a constant C(Q,K) > 0 such

that (due to the doubling inequality (4.1.14)) the latter does not exceed

C(Q,K)R2−Q/p
∥g∥Lp(Ω).

Thus, our inequality (4.4.1) contains the analogous non-homogeneous, invariant Harnack in-

equality by Uguzzoni in [92], where it is considered the particular case when x is confined in

some compact set K ⊂ Ω and R is very small. Roughly put, these more restrictive assumptions

are the drawback of the local doubling/Poincaré assumptions made in [92].
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As is expected, the proof of Theorem 4.4.1 is long and laborious, and it is based on the

Moser iterative technique. This machinery is by no means new in the PDE literature, so we

skip the largest part of the details. Much is based on the following lemma (and on its proof):

Lemma 4.4.3. Let the assumptions of Theorem 4.4.1 hold. Any (not necessarily nonnegative) W 1
loc-

weak solution u of −Lu = g in Ω is locally bounded.

Proof. Let B ∶= B4R(x) and suppose B ⊂ Ω. We set u ∶= u+ + σ (with u+ = max{u,0}) with σ > 0

to be chosen. If n ∈ N and α ≥ 1 are arbitrary, we consider the function H =Hn

H ∶ [σ,∞) → R, H(s) ∶= sα χ[σ,n](s) + (αnα−1
(s − n) + nα)χ(n,∞)(s).

It is not difficult to see that (Hn)n is non-decreasing and C1, and it point-wise converges to sα.

Finally, given a nonnegative cut-off function η ∈ C1
0(B), we set

v ∶= η2G(u), where G(t) ∶= ∫
t

σ
(H ′

(s))2 ds.

One has v ∈ W 1
0 (B). Since u solves −Lu = g in the W 1

loc-weak sense, we have L(u, v) = Fg(v).

For regular u, v (say u = un, v = vn as in Remark 4.3.7), one has

Fg(v) −L(u, v) = ∫
B
g η2G(u)dµ − ∫

B
⟨A∇u,∇(η2G(u))⟩dµ

(4.2.3)
≤ ∫

B
∣g∣η2G(u)dµ − λ∫

B∩{u>0}
η2G′

(u)∣Xu∣2 dµ + 2Λ∫
B
ηG(u)∣Xu∣ ∣Xη∣dµ.

By a limit argument (recall that u = un, v = vn), and by using G(t) ≤ tG′(t), one gets

∫
B∩{u>0}

η2G′
(u)∣Xu∣2 dµ ≤

1

λ
∫
B∩{u>0}

(∣g∣η2 uG′
(u) + 2Λη uG′

(u) ∣Xu∣ ∣Xη∣)dµ.

We set a ∶=
√

∣g∣/(λσ). By an interpolation argument,8 and as ∣g∣/λ ≤ a2 u, we get

1

2
∫
B∩{u>0}

η2G′
(u)∣Xu∣2 dµ ≤ ∫

B∩{u>0}
(5η2 a2u2G′

(u) + 16
Λ2

λ2
u2G′

(u) ∣Xη∣2)dµ

≤ C(Λ, λ)∫
B
(uH ′

(u))2
(∣Xη∣2 + η2a2

)dµ.

As G′(u)∣Xu∣2χ{u>0} = ∣X(H(u))∣2 and sH ′(s) ≤ αH(s), this gives

∥η ∣X(H(u))∣∥
∗

L2(B)
≤ C α (∥H(u) ∣Xη∣∥

∗

L2(B)
+ ∥H(u)η a∥

∗

L2(B)
). (4.4.2)

We apply the Sobolev inequality (4.3.5) to ηH(u) ∈W 1
0 (B); thanks to (4.4.2) we easily get

∥ηH(u)∥
∗

Lq(B)
≤ C1R (α + 1) (∥H(u) ∣Xη∣∥

∗

L2(B)
+ ∥H(u)η a∥

∗

L2(B)
). (4.4.3)

Via the interpolation ∥w∥∗s ≤ ε ∥w∥∗r + ε
−ν ∥w∥∗h (holding true for h ≤ s ≤ r and ν = 1/h−1/s

1/s−1/r ), with

the choices s = 2p/(p − 1), h = 2, r = q, w = ηH(u) one gets

∥H(u)η a∥∗2 ≤ ∥a∥∗2p(ε∥ηH(u)∥∗q + ε
Q/(Q−2p)

∥ηH(u)∥∗2). (4.4.4)

8We use AB ≤ 1
8
A1/2 + 8B1/2.
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4. Harnack Inequality in D-P spaces 95

We choose

ε ∶= (2C1 a
∗
(1 + α))−1 where a∗ ∶= R ∥a∥∗L2p(B4R(x)) and σ ∶= R2

∥g∥∗Lp(B4R(x)).

With the above choice of σ one actually has

a∗ = R(⨏
B4R(x)

∣g∣p

λpσp
)

1
2p

=
R

√
λ
√
σ
(⨏

B4R(x)
∣g∣p)

1
2p

=
1

√
λ
,

so a∗ is a structural constant. By inserting (4.4.4) into (4.4.3) one gets

∥ηH(u)∥
∗

Lq(B)
≤ C(1 + α)1+ν

(∥ηH(u)∥
∗

L2(B)
+R ∥∣Xη∣H(u)∥

∗

L2(B)
),

where C depends onQ,CP ,Λ, λ, p and where ν = Q/(2p−Q). Recalling thatH =Hn, by letting

n→∞ (and by monotone convergence) we infer

∥η uα∥
∗

Lq(B)
≤ C(1 + α)1+ν

(∥η uα∥
∗

L2(B)
+R ∥∣Xη∣uα∥

∗

L2(B)
). (4.4.5)

It is legitimate to take as η a cut-off function as in Remark 4.3.5, relative to x,R1,R2 with

R ≤ R1 < R2 ≤ 2R. From (4.4.5), the doubling condition and the distinguished properties of η,

we easily get

∥uα∥
∗
Lq(BR1

) ≤ C(1 + α)1+ν
(1 +

R

R2 −R1
) ∥uα∥

∗
L2(BR2

), ∀ R ≤ R1 < R2 ≤ 2R, (4.4.6)

where the centre x of the d-balls is understood. Inequality (4.4.6) is the starting point for

Moser’s iterative technique.

We introduce the function (with R > 0 and s ∈ R ∖ {0})

φ(s,R) ∶= (⨏
BR(x)

∣u∣s dµ)
1/s
. (4.4.7)

Clearly one has

lim
s→∞

φ(s,R) = sup
BR(x)

u, lim
s→−∞

φ(s,R) = inf
BR(x)

u.

Inequality (4.4.6) becomes

φ(αq,R1) ≤ (C(1 + α)1+ν
(1 +

R

R2 −R1
))

1/α
φ(2α,R2), (4.4.8)

holding true for any α > 1 and R ≤ R1 < R2 ≤ 2R. Given t ∈ (2, q), for any n ∈ N we set

αn = t (q/2)
n, ρn = R(1 + 2−n).

We apply (4.4.8) with the triple (α,R1,R2) first equal to (t/2, ρ1,2R) and then, iteratively, equal

to (αn−1/2, ρn, ρn−1). One gets (for some C > 1)

φ(αn,R) ≤ (C q)2(1+ν)∑nk=1 k(2/q)
k−1

φ(t,2R), ∀ n ≥ 2.

Since q > 2, this gives (letting n→∞)

sup
BR(x)

u ≤ C ′
(⨏

B2R(x)
∣u∣t dµ)

1/t
.
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Letting t→ 2+ (and being u = u+ + σ > u+), we infer

sup
BR(x)

u+ ≤ C ′
∥u∥∗L2(B2R(x)) < ∞,

whence u+ ∈ L∞(BR(x)). Since −u is a W 1
loc-weak solution of −Lu = −g, the same argument

gives u− ∈ L∞(BR(x)), and the proof is complete. ◻

The next step for the proof of the Harnack inequality is the next lemma, where a gain in

summability is established for the W 1
loc-solution u.

Lemma 4.4.4. Let the assumptions of Theorem 4.4.1 be satisfied and let u be any nonnegative W 1
loc-

weak solution of −Lu = g on Ω, with g ∈ Lp(Ω) (with p > Q/2). Suppose also that B4R(x) ⊆ Ω. Let us

also set (as in the proof of Lemma 4.4.3) that u = u + σ, with σ = R2 ∥g∥∗Lp(B4R(x)).

The following facts hold true:

(a) For every s ∈ (1, q/2), there exists a constant C(s) > 0 such that

sup
BR(x)

u ≤ C(s) ∥u∥∗Ls(B2R(x)). (4.4.9)

(b) For every p0 ∈ (0,1), there exists a constant C(p0) > 0 such that

(⨏
B3R(x)

u−p0 dµ)
−1/p0

≤ C(p0) inf
Br(x)

u. (4.4.10)

(c) For every p0, s such that 0 < p0 < 1 < s < q/2, there exists a constant C(p0, s) > 0 such that

∥u∥∗Ls(B2R(x)) ≤ C(p0, s) (⨏
B3R(x)

up0 dµ)
1/p0

. (4.4.11)

Here the constants C(s),C(p0),C(p0, s) depend also on the structural doubling/Poincaré constants

Q,CP , on the ellipticity constants λ,Λ, on p (the summability exponent of g), but are otherwise inde-

pendent of x,R and u.

Proof. We only give a sketch of the proof, since basically the main technique is the same as in

the proof of Lemma 4.4.3. We setB ∶= B4R(x) as in the assertion. Let us consider a nonnegative

cut-off function η ∈W 1
0 (B) and any α ∈ R ∖ {0}. Let us set

w ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

u
α+1
2 if α ≠ −1,

logu if α = −1.

One can argue as in the proof of Lemma 4.4.3, this time by using in a crucial way the nonnega-

tivity of u in order to define suitable test-functions v of the form η2 uα to be implemented in the

equality L(u, v) = Fg(v). As a consequence, it is possible to prove that (where a =
√

∣g∣/(λσ))

if α = −1: ∫
B
η2

∣Xw∣
2 dµ ≤ 64∫

B
(

Λ2

λ2
∣Xη∣2 + a2 η2

)dµ; (4.4.12)

if α ≠ −1: ∥η w∥
∗
Lq(B) ≤ C (1 + ∣1 + α∣)1+ν

(∥wη∥
∗
L2(B) +R ∥w ∣Xη∣∥

∗
L2(B)). (4.4.13)
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4. Harnack Inequality in D-P spaces 97

Here ν = Q/(2p −Q) and C depends on Q,CP , λ,Λ, p and α.

By the aid of a cut-off function η as [66] (see Remark 4.3.5), starting from (4.4.13), we can

prove the following fact:

∥w∥
∗
Lq(BR1

) ≤ C (1 + ∣1 + α∣)1+ν
(1 +

R

R2 −R1
)∥w∥

∗
L2(BR2

), (4.4.14)

holding true for α ∈ R ∖ {0,−1}, and for R ≤ R1 < R2 ≤ 2R (the centre x of the d-balls is

understood).

The proofs of our three inequalities (4.4.9), (4.4.10), (4.4.11) now follow three different lines,

all based on Moser-type iterative techniques. The notation φ(s,R) as in (4.4.7) is understood.

Proof of (4.4.9): Let s ∈ (1, q/2) be fixed. If α > −1, raising (4.4.14) to the power 2
α+1

, we get

φ((α + 1)
q

2
,R1) ≤ (C (2 + α)1+ν

(1 +
R

R2 −R1
))

2
α+1

φ(α + 1,R2).

A suitable iteration of this inequality yields

φ(γn,R) ≤ (3C q)4(1+ν)∑nk=1 k(2/q)
k−1

φ(s,2R),

where γn = s (q/2)n (the iteration is also based on the choice of the radii Rn = R(1 + 2−n) and

α + 1 = γn−1). Letting n→∞ one gets (4.4.9).

Proof of (4.4.10): Let p0 ∈ (0,1) be fixed. If α < −1, raising (4.4.14) to the negative power

2/(α + 1), we get

φ(α + 1,R2) ≤ (C (1 + ∣1 + α∣)1+ν
(1 +

R

R2 −R1
))

2
∣α+1∣

φ((α + 1)
q

2
,R1).

A suitable iteration of this inequality yields (taking into account first the doubling property)

φ(−p0,3R) ≤ C(Q,p0)φ(−p0,2R) ≤ (2C q)
4
p0

(1+ν)∑nk=1 k(2/q)
k−1

φ(γn,R),

where γn = −p0 (q/2)n (the iteration is also based on the choice of the radii Rn = R(1+2−n) and

α + 1 = γn−1). Letting n→∞ one gets (4.4.10).

Proof of (4.4.11): Let 0 < p0 < 1 < s < q/2 be fixed. A slight modification in the radii

appearing in (4.4.14) gives

φ((α + 1)
q

2
,R1) ≤ (C (2 + α)1+ν

(1 +
R

R2 −R1
))

2
α+1

φ(α + 1,R2),

this time with 2R ≤ R1 < R2 ≤ 3R (and α > −1). A suitable iteration of this inequality yields

φ(s,2R) ≤ (3C q)
4s
p0

(1+ν)∑nk=1 k(2/q)
k−1

φ(p0,3R),

which proves (4.4.10), it sufficing to choose the least n such that

s ≤ (
q

2
)
n p0

s
.

The iteration is based on the choices γn = (q/2)n p0/s, Rn = R(1 + 2−n) and α + 1 = γn−1.

The proof of the lemma is complete. ◻
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The last step in the proof of the Harnack inequality is given by the next result, resting on

some John-Nirenberg type estimates.

Lemma 4.4.5. Let the assumptions and notations in Lemma 4.4.4 hold. Then there exists p0 ∈ (0,1)

and a constant C ′(p0) > 0 such that

(⨏
B3R(x)

up0 dµ)
1/p0

≤ C ′
(p0) (⨏

B3R(x)
u−p0 dµ)

−1/p0
. (4.4.15)

Here C has the same parameter-dependence as in Lemma 4.4.4.

Proof. Let B(z,2ρ) ⊆ B(x,4R). We now consider (4.4.12) in the proof of Lemma 4.4.4 (where

w = logu), and we choose a suitable cut-off function as in [66] (see Remark 4.3.5): indeed, we

can take a nonnegative η ∈ W 1
0 (B2ρ(z)) such that η ≡ 1 on Bρ(z), η ≡ 0 outside B2ρ(z) and

∣Xη∣ ≤ 2/ρ in B2ρ(z). Simple estimates based on (4.4.12) and on the properties of η give

⨏
Bρ(z)

∣Xw∣
2 dµ ≤ C ′

(
1

ρ2
+ ⨏

B2ρ(z)
a2 dµ), (4.4.16)

where as usual a ∶=
√

∣g∣/(λσ) and C ′ is a constant as in the assertion of Theorem 4.4.1. Since

p > 1, the choice σ = R2 ∥g∥∗Lp(B4R(x)) yields

⨏
B2ρ(z)

a2 dµ ≤
1

λR2

∥g∥∗Lp(B2ρ(x))

∥g∥∗
Lp(B4R(x))

.

By inserting this in (4.4.16) and by doubling we get

⨏
Bρ(z)

∣Xw∣
2 dµ ≤ C ′

(
1

ρ2
+
C(Q,p)

λR2
(
R

ρ
)
Q/p

) ≤ C ′′
(

1

ρ2
+

1

λR2
(
R

ρ
)
Q/p

).

From p > Q/2 and ρ ≤ 4R we get RQ/p−2/ρQ/p ≤ 42−Q/p/ρ2; we have therefore obtained

⨏
Bρ(z)

∣Xw∣
2 dµ ≤

2C ′′

ρ2
, whenever B(z,2ρ) ⊆ B(x,4R). (4.4.17)

From the Poincaré inequality (4.3.6) for w ∈W 1
0 (B4R(x)), we infer from (4.4.17) that

⨏
Bρ(z)

∣w −wBρ(z)∣dµ ≤ CP ρ ∥Xw∥
∗
L1(B2ρ(z))

≤ CP ρ ∥Xw∥
∗
L2(B2ρ(z))

(4.4.17)
≤ C̃.

Summing up

⨏
Bρ(z)

∣w −wBρ(z)∣dµ ≤ C̃, whenever B(z,4ρ) ⊆ B(x,4R). (4.4.18)

Now, due to our global doubling and Poincaré assumptions, we are entitled to apply Theorems

0.3 and 0.4 in the paper by Bukley [19]; the latter results allow us to infer from (4.4.18) the

following John-Nirenberg type estimate: there exists p0 ∈ (0,1) such that

⨏
B3R(x)

exp (p0 ∣w −wB3R(x)∣)dµ ≤ C, (4.4.19)
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with the usual dependence of C on the structural parameters. Let us drop the notation of the

centre x in the d-balls. Recalling that w = logu we have

⨏
B3R

u−p0 dµ ⋅ ⨏
B3R

up0 dµ = ⨏
B3R

exp (p0(−w +wB3R
))dµ ⋅ ⨏

B3R

exp (p0(w −wB3R
))dµ

≤ (⨏
B3R

exp (p0∣w −wB3R
∣)dµ)

2

≤ C2.

By raising to the power 1/p0 we get (4.4.15). ◻

Once Lemmas 4.4.4 and 4.4.5 are established, the proof of the Harnack inequality is straight-

forward.

Proof (of Theorem 4.4.1). Let the assumptions and notations in Theorem 4.4.1 hold. Let p0 ∈

(0,1) be as in Lemma 4.4.5. Since q > 2, we can fix any s ∈ (1, q/2). We have the following

chain of inequalities:

sup
Br(x)

u
(4.4.9)
≤ C(s) ∥u∥∗Ls(B2R(x))

(4.4.11)
≤ C(s)C(p0, s) (⨏

B3R(x)
up0 dµ)

1/p0

(4.4.15)
≤ C(s)C(p0, s)C

′
(p0) (⨏

B3R(x)
u−p0 dµ)

−1/p0

(4.4.10)
≤ C(s)C(p0, s)C

′
(p0)C(p0) inf

Br(x)
u.

Since u = u + σ = u +R2 ∥g∥∗Lp(B4R(x)), the far right-hand side of the above chain of inequalities

is the right-hand side of (4.4.1); moreover, as u ≤ u, the far left-hand side in the above inequal-

ities is no less than the left-hand side of (4.4.1): the proof of the Harnack inequality (4.4.1) is

compelete. ◻

4.4.1 Applications: Inner and boundary Hölder estimates

Our aim is to prove inner and boundary Hölder estimates, using the non-homogeneous invari-

ant Harnack inequality proved in Section 4.4 (Theorem 4.4.1). We will follow the arguments in

[49, Chapter 8].

In the sequel we require that L satisfies the assumptions in Section 4.2.

A first result is the following estimate.

Theorem 4.4.6. Let Ω ⊆ RN be an open set, and let g ∈ Lp(Ω), with p ≥ Q/2.

Then there exist structural constantsC > 0 and 0 < α < 1 (only depending on the doubling/Poincaré

constants Q,CP , on the X-ellipticity constants λ,Λ in (4.2.3) and on p) such that, for every d-ball

BR(x0) satisfying BR(x0) ⊂ Ω, one has

oscBr(x0)u ≤ Cr
α ⎛

⎝
R−α sup

BR(x0)
∣u∣ +R2−α

∥g∥
∗
Lp(BR(x0))

⎞

⎠
∀ r ∈ [0,R], (4.4.20)

for any W 1
loc-weak solution u of −Lu = g in Ω.
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In order to prove the previous theorem, we need to give the following result.

Lemma 4.4.7. Let ω ∶]0,R] → R be a non-decreasing function, and let σ ∶]0,R] → R be a function

such that there exists c̄ > 0 for which σ(r1) ≤ c̄σ(r2) for any r1, r2 ∈]0,R], with r1 ≤ r2. Suppose that

there exist γ, τ ∈]0,1[ satisfying the following condition:

ω(τr) ≤ γω(r) + σ(r) ∀ r ≤ R, (4.4.21)

then there exists C0 ∶= C0(γ, τ) > 0 such that, for every ν ∈]0,1[, one has:

ω(r) ≤ C0 ((
r

R
)
α

ω(R) + σ (rνR1−ν)) ∀ r ≤ R, (4.4.22)

where α ∶= (1 − ν) logγ
log(1/4) ∈]0,1[.

The proof of this last result is an adaptation of the arguments in [49, Lemma 8.23].

Proof (of Theorem 4.4.6). FixB(x0,R) ⊂ B(x0,R) ⊂ Ω and let u be aW 1
loc-weak solution of −Lu =

g in Ω. We consider ρ ≤ R/4 and we put

M0 ∶= sup
BR(x0)

∣u∣ , M1 ∶= sup
Bρ(x0)

u, m1 ∶= inf
Bρ(x0)

u, M4 ∶= sup
B4ρ(x0)

u and m4 ∶= inf
B4ρ(x0)

u.

By Lemma 4.4.3 we know that u ∈ L∞loc(Ω), then M0,Mi,mi ∈ R, for i = 1,4.

We have:

L(M4 − u) = −Lu = g (in W 1
loc-weak sense)

L(u −m4) = Lu = −g (in W 1
loc-weak sense),

then we can apply the non-homogeneous invariant Harnack inequality in Theorem 4.4.1 to the

functions M4 − u, u −m4 ∈W
1
loc(Ω,X), which are non-negative functions in B(x0,4ρ). Hence,

there exists a constant C > 0 such that

sup
Bρ(x0)

(M4 − u) ≤ C ( inf
Bρ(x0)

(M4 − u) + ρ
2
∥g∥

∗
Lp(B4ρ(x0)))

sup
Bρ(x0)

(u −m4) ≤ C ( inf
Bρ(x0)

(u −m4) + ρ
2
∥g∥

∗
Lp(B4ρ(x0))) ,

that together give

M4 −m4 ≤ C (M4 −m4 − (M1 −m1) + 2ρ2
∥g∥

∗
Lp(B4ρ(x0))) ;

M1 −m1 ≤ (1 −
1

C
) (M4 −m4) + 2ρ2

∥g∥
∗
Lp(B4ρ(x0)) . (4.4.23)

If we put

ω(ρ) ∶= oscBρ(x0)u and k(ρ) ∶= 2ρ2
∥g∥

∗
Lp(B4ρ(x0)) ,

we can rewrite (4.4.23) in the following way

ω(ρ) ≤ (1 −
1

C
)ω(4ρ) + k(ρ), ∀ρ ≤

R

4
,
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or equivalently

ω (
1

4
r) ≤ (1 −

1

C
)ω(r) + k (

1

4
r) , ∀ r ≤ R.

Therefore we can apply Lemma 4.4.7, with γ = (1 − 1/C), τ = 1/4 and σ(r) = k(r/4),9 and we

obtain that there exists C0 > 0 such that, for every ν ∈]0,1[, one has

ω(r) ≤ C0 ((
r

R
)
α

ω(R) + σ (rνR1−ν)) ∀ r ≤ R, (4.4.24)

with α = (1 − ν) logγ
log(1/4) ∈]0,1[.

We put δ ∶= 1 − Q
2p

> 0, and we choose ν ∈]0,1[ such that α < νδ. Hence, for every r ≤ R, by

(4.4.24) we get

ω(r)
(4.4.24)
≤ C0 (rαR−αω(R) +

1

8
(rνR1−ν)

2
∥g∥

∗
Lp(BrνR1−ν (x0))) =

= C0r
α
(R−αω(R) +

1

8
r−α+2νR2−2ν

∥g∥
∗
Lp(BrνR1−ν (x0))) ≤

(D)
≤ C0r

α
(R−αω(R) +

1

8
r−α+2νR2−2νC̄R(Qν)/pr−(Qν)/p ∥g∥

∗
Lp(BR(x0))) ≤

≤ Crα (R−αω(R) + r2δν−αR2−2δν
∥g∥

∗
Lp(BR(x0))) ≤

≤ Crα (R−αω(R) +R2−α
∥g∥

∗
Lp(BR(x0))) ,

which gives (4.4.20). This completes the proof.

◻

An immediate consequence of Theorem 4.4.6 is the following result.

Corollary 4.4.8. Let Ω ⊆ RN be an open set, and let g ∈ Lp(Ω), with p ≥ Q/2.

Then there exist structural constantsC > 0 and 0 < α < 1 (only depending on the doubling/Poincaré

constants Q,CP , on the X-ellipticity constants λ,Λ in (4.2.3) and on p) such that, for every d-ball

BR(x0) satisfying B3R(x0) ⊂ Ω, one has

sup
x,y∈BR(x0), x≠y

∣u(x) − u(y)∣

d(x, y)α
≤ C

⎛

⎝
R−α sup

B3R(x0)
∣u∣ +R2−α

∥g∥
∗
Lp(B3R(x0))

⎞

⎠
, (4.4.25)

for any W 1
loc-weak solution u of −Lu = g in Ω.

In the sequel we want to prove local estimates at the boundary of a bounded open set of

RN . To this aim we want to recall the following notions.

9It is easy to prove that there exists c̄ ∶= c̄(Q) > 0 such that k(r1) ≤ c̄k(r2), for any r1 ≤ r2 ≤ R. Indeed, we use

condition (D) to obtain the following inequalities:

k(r1) = 2r21 ∥g∥∗Lp(B4r1
(x0)) ≤ c(Q,p)r

2
1 ( r2

r1
)
Q/p

∥g∥∗Lp(B4r2
(x0)) ≤

≤ c(Q)r22 ∥g∥∗Lp(B4r2
(x0)) = c̄k(r2),

where in the last inequality we have used p ≥ Q/2 and r1 ≤ r2.
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Let Ω ⊆ RN be a bounded open set, and let l ∈ R. If u ∈W 1(Ω,X), we say that u ≤ l on ∂Ω

iff (u − l)+ ∈W 1
0 (Ω,X); thus we define

sup
∂Ω

u ∶= inf{l ∈ R ∶ u ≤ l on ∂Ω} (4.4.26)

inf
∂Ω
u ∶= sup{l ∈ R ∶ l ≤ u on ∂Ω}. (4.4.27)

Finally, we say that u = 0 on ∂Ω iff u ≤ 0 and u ≥ 0 on ∂Ω.

Proposition 4.4.9. Let Ω ⊆ RN be an open set, and let g ∈ Lp(Ω), with p ≥ Q/2.

Then there exist structural constantsC > 0 and p0 ∈]0,1[ (only depending on the doubling/Poincaré

constants Q,CP , on the X-ellipticity constants λ,Λ in (4.2.3) and on p) such that, for every d-ball

B(x0,R) satisfying Ω ∩B(x0,4R) ≠ ∅, one has

∥u−m∥
∗
Lp0(B3R(x0)) ≤ C ( inf

BR(x0)
u−m +R2

∥g̃∥
∗
Lp(B4R(x0))) , (4.4.28)

for any non-negativeW 1-weak solution u of −Lu = g in Ω∩B(x0,4R), where g̃ is the trivial extension

of g on RN , and

u−m(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

inf{u(x),m} if x ∈ Ω

m if x ∉ Ω,

with m ∶= inf∂Ω∩B4R(x0) u.

An analogous result is the following.

Proposition 4.4.10. Let Ω ⊆ RN be a bounded open set and let g ∈ Lp(Ω), with p ≥ Q/2.

Then there exists a structural constant C > 0 (only depending on the doubling/Poincaré constants

Q,CP , on the X-ellipticity constants λ,Λ in (4.2.3) and on p) such that, for every d-ball BR(x0) one

has

sup
BR(x0)

u+M ≤ C (∥u+M∥
∗
Ls(B2R(x0)) +R

2
∥g̃∥

∗
Lp(B4R(x0))) ∀ s ∈ ]1,

q

2
[ , (4.4.29)

for any W 1-weak subsolution u of −Lu = g in Ω, where g̃ is the trivial extension of g on RN and

u+M(x) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

sup{u(x),M} if x ∈ Ω

M if x ∉ Ω,

with M ∶= sup∂Ω∩B2R(x0) u
+.

Similar arguments seen in Theorem 4.4.1 have been used to prove Proposition 4.4.9 and

Proposition 4.4.10 (see also [49, Chapter 8]), so we don’t provide the proofs of the previous

results.

An immediate consequence of Proposition 4.4.10 is the following.
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Corollary 4.4.11. Let Ω ⊆ RN be a bounded open set, and let g ∈ Lp(Ω), with p ≥ Q/2.

Fix a d-ball BR(x0) with x0 ∈ ∂Ω and let u ∈ W 1
0 (Ω ∩ B4R(x0),X) be a W 1-weak solution of

−Lu = g in Ω ∩B2R(x0), then u ∈ L∞ (Ω ∩BR(x0)).

Finally, as a consequence of Proposition 4.4.9, we can prove a local estimate at the boundary

for W 1-weak solution; in this case we need to suppose a suitable condition on the boundary.

The proof of the following result is an adaptation of the ideas in [49, Theorem 8.27].

Theorem 4.4.12. Let Ω ⊂ RN be a bounded open set, and let g ∈ Lp(Ω), with p ≥ Q/2.

Let x0 ∈ ∂Ω and suppose that there exist R0 > 0 and ϑ ∈]0,1[ such that:

µ (B(x0, r) ∖Ω) ≥ ϑµ (B(x0, r)) ∀ r ∈]0,R0[. (4.4.30)

Then there exist structural constants C > 0 and 0 < α < 1 (only depending on the doubling/Poincaré

constants Q,CP , on the X-ellipticity constants λ,Λ in (4.2.3), on ϑ and on p) such that, for every

d-ball BR(x0) one has

oscΩ∩Bρ(x0)u ≤ Cρ
α ⎛

⎝
R̃−α sup

Ω∩BR̃(x0)
∣u∣ + R̃2−α

∥g̃∥
∗
Lp(Ω∩BR̃(x0))

⎞

⎠
∀ρ ∈]0, R̃[, (4.4.31)

for any W 1-weak solution u of −Lu = g in Ω ∩ B2R(x0), with u ∈ W 1
0 (Ω ∩ B4R(x0),X), where

R̃ ∶= min{R0,R}.

A direct application of the assumption (P) is the following result.

Lemma 4.4.13. Let Ω ⊂ RN be a bounded open set and let x0 ∈ ∂Ω and R > 0. We suppose that there

exist R0 > 0 and ϑ ∈]0,1[ such that, for every y0 ∈ ∂Ω ∩B2R(x0) one has

µ (B(y0, r) ∖Ω) ≥ ϑµ (B(y0, r)) ∀ r ∈]0,R0]. (4.4.32)

If u ∈W 1
0 (Ω ∩B4R(x0),X) ∩C (Ω ∩BR(x0)) then u(x) = 0 for every x ∈ ∂Ω ∩BR(x0).

Proof. Assume by contradiction that there exists y0 ∈ ∂Ω∩BR(x0) such that u(y0) ≠ 0, suppose

u(y0) > 0 to fix ideas. Since u ∈ C(Ω ∩BR(x0)), there exist r, δ > 0 such that u(y) ≥ δ for every

y ∈ Ω ∩Br(y0). We put

w(x) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

min{u(x), δ} if x ∈ Ω ∩B4R(x0)

0 if x ∉ Ω ∩B4R(x0).

We observe that w ∈W 1(RN ,X), moreover we have

w(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

δ if x ∈ Ω ∩Br(y0)

0 if x ∈ Br(y0) ∖Ω,

then ∣Xw∣ = 0 a. e. in Br(y0). Hence, if we consider ρ < r/2,R0, by Poincaré inequality in

Theorem 4.3.4 we get

0 ≤ ⨏
Bρ(y0)

∣w −wBrho∣dµ ≤ CP ρ⨏
B2ρ(y0)

∣Xw∣dµ = 0,
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which gives ∣w −wBρ ∣ = 0 a. e. in Bρ(y0) ⊂ Br(y0). Observe that

wBρ =
1

µ(Bρ(y0))
∫

Ω∩Bρ(y0)
w dµ = δ

µ(Ω ∩Bρ(y0))

µ(Bρ(y0))
> 0,

then w = wBρ > 0 a. e. in Bρ(y0), but this is a contradiction thanks to (4.4.32). This completes

the proof. ◻

Finally, we prove the last result of this section.

Corollary 4.4.14. Let Ω ⊂ RN be a bounded open set, and let g ∈ Lp(RN), with p ≥ Q/2.

Fix R > 0 and x0 ∈ ∂Ω, and we suppose that there exist R0 > 0 and ϑ ∈]0,1[ such that, for every

y0 ∈ ∂Ω ∩B2R(x0), one has

µ (B(y0, r) ∖Ω) ≥ ϑµ (B(y0, r)) ∀ r ∈]0,R0]. (4.4.33)

If u ∈W 1
0 (Ω∩B4R(x0),X) is aW 1-weak solution of −Lu = g in Ω∩B2R(x0), then u ∈ C(Ω ∩BR(x0))

and u(x) = 0 for every x ∈ ∂Ω ∩BR(x0).

Proof. Fix x̄ ∈ Ω∩BR(x0); we want to prove that u is continuous in x̄. We put Ω′ ∶= Ω∩B2R(x0),

and we observe that u is a W 1
loc-weak solution of −Lu = g in Ω′; hence, we can apply Corollary

4.4.8 and we get that u is continuous in x̄ ∈ Ω′. Therefore we have showed that u is continuous

in Ω ∩BR(x0).

Finally, we want to prove that u is continuous in ∂Ω ∩BR(x0).

By Theorem 4.4.12 we get that there exists limx→x0 u(x) and it is finite; thus we put

u(x0) ∶= lim
x→x0

u(x).

Let us fix y0 ∈ ∂Ω ∩BR(x0); by Theorem 4.4.12 we still get that there exists limx→y0 u(x) and it

is finite, thus in the same way we put

u(y0) ∶= lim
x→y0

u(x).

Then, it is easy to prove that the function u is continuous in every y0 ∈ ∂Ω ∩BR(x0).

Therefore, we obtain that u ∈ C(Ω ∩BR(x0)), and thanks Lemma 4.4.13 we have u(x) = 0 for

every x ∈ ∂Ω ∩BR(x0). This completes the proof. ◻
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Chapter 5

The Green function for some

subelliptic operators

In this chapter our aim is to give our most recent results related to subelliptic operators. In

particular, using the non-homogeneous invariant Harnack inequality proved in Chapter 4, we

can construct the Green function related to our operator on any bounded domain satisfying a

suitable condition on the boundary.

Finally, the main goal of our future investigation is to prove the existence of a continuous

non-negative global fundamental solution for L. To this aim, we need to construct a suitable

basis for the d-topology on RN ; here, we want to give a sketch of the proof and an idea of the

arguments that we will use to show the existence of a global fundamental solution.

We consider the real second-order PDO L seen in Chapter 4,

L =
1

V (x)

N

∑
i,j=1

∂

∂xi
(V (x)ai,j(x)

∂

∂xj
), x ∈ RN , (5.0.1)

and we suppose the same assumptions that we have used to prove the non-homogeneous

invariant Harnack inequality and consequent Hölder-continuous estimates.

5.1 The Green function on bounded domains

In order to prove the existence of a global fundamental solution for L in (5.0.1), we have to

deal with the study of the Green function related to L.

We shall consider a fixed bounded open set Ω ⊂ RN , satisfying the following condition

uniformly at any point of the boundary x0 ∈ ∂Ω: there exist ρ,ϑ > 0 (not depending on x0) such

that
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5.1 The Green function 5. The Green function for some subelliptic operators

µ (B(x0, r) ∖Ω) ≥ ϑµ (B(x0, r)) for every r ∈]0, ρ]. (5.1.1)

Let us fix p > Q
2

and 2 ≤ p < ∞.

Now we can construct the Green operator related to L.

Theorem 5.1.1 (Green Operator). For every h ∈ Lp(Ω) there exists a unique W 1
0 -weak solution

u ∶= G(h) to −Lu = h in Ω. Moreover u ∈ C(Ω) and u ≡ 0 on ∂Ω.

Therefore G ∶ Lp(Ω) → C(Ω) defines a bounded linear operator, so that its adjoint G∗ ∶ M(Ω) →

Lp
′

(Ω) is a bounded linear operator, whereM(Ω) is the set of the finite real Borel measures supported

in Ω and p′ is such that 1
p
+ 1
p′
= 1.

Furthermore we have

G(h) ≥ 0 for any h ∈ Lp(Ω) with h ≥ 0; (5.1.2)

G∗
(ν) ≥ 0 for any ν ∈ M(Ω) with ν ≥ 0; (5.1.3)

G(h) = G∗
(h) for any h ∈ Lp(Ω). (5.1.4)

We call G the Green operator related to L and Ω.

Proof. We know that W 1
0 (Ω,X) is a Hilbert space; moreover, it is easy to see that L(⋅, ⋅) is

a coercive symmetric continuous bilinear form on W 1
0 (Ω,X) and Fh is a linear continuous

functional on W 1
0 (Ω,X), then we can apply the Lax-Milgram Theorem. Hence, there exists a

unique W 1
0 -weak solution G(h) to −Lu = h in Ω.

We want to prove that the function u ∶= G(h) is continuous up to the boundary of Ω and

vanishes on ∂Ω.

Let us fix x0 ∈ Ω, then there exists r > 0 such that B(x0, r) ⊂ Ω; by Corollary 4.4.8 we

know that u is continuous on B(x0, r/3), in particular u is a continuous function in x0. Hence,

u ∈ C(Ω) thanks the arbitrariness of x0.

Fix x0 ∈ ∂Ω and r > 0. Let η be a cut-off function such that η ∈ C1
0(B(x0,4r)) and

(i) η ≡ 1 on B(x0,2r);

(ii) 0 ≤ η ≤ 1 on B(x0,4r).

We putψ = ηu; it is clear thatψ ∈W 1
0 (Ω∩B(x0,4r),X), since u ∈W 1

0 (Ω,X) and η ∈ C1
0(B(x0,4r)).

Moreover, thanks the construction of η, we have that ψ ≡ u on Ω ∩B(x0,2r); then −Lψ = h in

Ω (in the weak sense of W 1) and Ω satisfies condition (5.1.1) uniformly at any point of the

boundary ∂Ω, so we can apply Corollary 4.4.14 and we have ψ ∈ C(Ω ∩B(x0, r)) and ψ(x) = 0

for any x ∈ ∂Ω ∩B(x0, r). Therefore, thanks the arbitrariness of x0, we get that u ∈ C(Ω) and

u(x) = 0 for any x ∈ ∂Ω.

We have constructed a linear operator G ∶ Lp(Ω) → C(Ω) which is also bounded. Indeed,

for any h ∈ Lp(Ω), we know that u ∶= G(h) is a W 1
0 -weak solution to −Lu = h in Ω, then we can
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5. The Green function for some subelliptic operators 107

apply the Maximum Principle in [52, Theorem 3.1], that is there exists a constant C > 0 (not

depending on h) such that

sup
Ω
u+ ≤ sup

∂Ω
u+ +C ∥h∥Lp(Ω) .

Moreover, u+ = 0 on ∂Ω, since u+ ∈W 1
0 (Ω,X); hence

sup
Ω
u+ ≤ C ∥h∥Lp(Ω) ,

and we get that there exists M > 0 such that

∥G(h)∥L∞(Ω) ≤M ∥h∥Lp(Ω) , for any h ∈ Lp(Ω).

Therefore, the operatorG ∶ Lp(Ω) → C(Ω) is a bounded linear operator between Banach spaces

and we can consider its adjoint G∗ ∶ M(Ω) → Lp
′

(Ω), a bounded linear operator satisfying the

following relation:

⟨G∗
(ν), h⟩ = ⟨ν,G(h)⟩ , for any h ∈ Lp(Ω) and ν ∈ M(Ω). (5.1.5)

Let’s start by proving (5.1.2).

We fix h ∈ Lp(Ω), such that h ≥ 0, and we put w ∶= −G(h) then we have:

L(w, v) = ∫
Ω
⟨A(x)∇w(x),∇v(x)⟩dµ(x) = −∫

Ω
⟨A(x)∇G(h)(x),∇v(x)⟩dµ(x) =

= ∫
Ω
−h(x)v(x)dµ(x) ≤ 0,

for any v ∈W 1
0 (Ω,X), with v ≥ 0. Hence w ∈W 1

0 (Ω,X) is a W 1-weak subsolution of Lw = 0 in

Ω, and thanks the Maximum Principle [52, Theorem 3.1] we get

sup
Ω
w+

≤ sup
∂Ω

w+.

On the other hand w+ = 0 on ∂Ω, then w+ = 0 on Ω or equivalently, G(h) ≥ 0 on Ω.

Now, we want to prove (5.1.3). Fix ν ∈ M+(Ω) and let h be a non-negative function such

that h ∈ Lp(Ω), by condition (5.1.5) and (5.1.2) we get:

∫
Ω
h(x)G∗

(ν)dµ(x) = ⟨G∗
(ν), h⟩ = ⟨ν,G(h)⟩ = ∫

Ω
G(h)(x)dν(x) ≥ 0,

then we have showed that G∗(ν) ≥ 0.

Finally, we prove (5.1.4). We fix h ∈ Lp(Ω), by condition (5.1.5), construction of G and

symmetry of L(⋅, ⋅), for any ϕ ∈ Lp(Ω) we have:

∫
Ω
ϕ(x)G∗

(h)(x)dµ(x) = ⟨G∗
(h), ϕ⟩ = ⟨h,G(ϕ)⟩ = ∫

Ω
h(x)G(ϕ)(x)dµ(x) =

= L (G(h),G(ϕ)) = L (G(ϕ),G(h)) = ∫
Ω
ϕ(x)G(h)dµ(x),

hence for any h ∈ Lp(Ω), we have G(h) = G∗(h). ◻

107



5.1 The Green function 5. The Green function for some subelliptic operators

Definition 5.1.2 (Green function). For every y ∈ Ω we define

gy ∶= G
∗
(δy), (5.1.6)

where δy denotes the Dirac measure supported at y.

We call g(x, y) ∶= gy(x) the Green function of Ω.

Theorem 5.1.3. For every y ∈ Ω and every small r > 0, gy ∈ W 1(Ω ∖ B(y, r),X) and it is a non-

negative W 1-weak solution to Lgy = 0 in Ω ∖ B(y, r). Moreover, gy ∈ C(Ω ∖ {y}) and gy ≡ 0 on

∂Ω.

Let us define ∆ ∶= {(x, y) ∈ Ω ×Ω ∶ x = y}, then g ∈ C((Ω ×Ω) ∖∆) and we have:

G(h)(y) = ∫
Ω
g(x, y)h(x)dµ(x) for every h ∈ Lp(Ω) and y ∈ Ω, (5.1.7)

G∗
(ν)(x) = ∫

Ω
g(x, y)dν(y) a.e. x ∈ Ω, for any fixed ν ∈ M(Ω), (5.1.8)

g(x, y) = g(y, x) ≥ 0 for any x, y ∈ Ω, with x ≠ y. (5.1.9)

Proof. Let us fix y ∈ Ω.

By (5.1.3) of Theorem 5.1.1 and Definition 5.1.2, we have gy ≥ 0 on Ω. Moreover, thanks

Definition 5.1.2 and (5.1.5), for any h ∈ Lp(Ω), we get (5.1.7):

G(h)(y) = ⟨δy,G(h)⟩ = ⟨G∗
(δy), h⟩ = ∫

Ω
gy(x)h(x)dµ(x).

Now, we want to approximate the function gy by the sequence un ∶= uyn = G(fn), where

fn(x) ∶= f
y
n(x) =

1

µ (B(y,1/n))
χB(y,1/n)(x), ∀x ∈ Ω and ∀n ∈ N.

Recalling that d induces the Euclidean topology, for every ψ ∈ Lp(Ω), by (5.1.4) and (5.1.5) we

obtain:

∫
Ω
un(x)ψ(x)dµ(x) = ∫

Ω
G(fn)(x)ψ(x)dµ(x) = ∫

Ω
G∗

(fn)ψ(x)dµ(x) =

= ∫
Ω
fn(x)G(ψ)(x)dµ(x) = ⨏

B(y, 1n )
G(ψ)(x)dµ(x),

the last term tends to G(ψ)(y) when n→∞, hence by (5.1.7) we get that

lim
n→∞∫Ω

un(x)ψ(x)dµ(x) = ∫
Ω
gy(x)ψ(x)dµ(x) ∀ψ ∈ Lp(Ω),

that is un → gy weakly in Lp
′

(Ω). In particular, un is a bounded sequence in Lp
′

(Ω).

On the other hand, un is a non-negative W 1-weak solution to Lun = 0 in Ω ∖ B(y,1/n),

thanks to construction of un and (5.1.2).

Fix now 0 < r < 1 such that B(y,2r) ⊆ Ω; we put Ωr ∶= Ω ∖B(y, r). Let us fix x ∈ ∂B(y, r)

and n > 4
r

, then we have B(x, r/2) ⊆ Ω ∖B(y,1/n). Thus we can apply the Harnack inequality
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in Theorem 4.4.1, and we obtain

sup
B(x, r8 )

un ≤ C inf
B(x, r8 )

un ≤ C ⨏
B(x, r8 )

un(z)dµ(z) ≤ C
1

µ (B(x, r
8
))

1
p′

∥un∥p′ ≤

(D)
≤

C

µ (B(y, 9r
8
))

1
p′

∥un∥p′ ≤
C

µ (B(y, r))
1
p′

∥un∥p′ ≤

≤
C

µ (B(y, r))
1
p′

∥un∥Lp′(Ω) ≤
C

µ (B(y, r))
1
p′

sup
n∈N

∥un∥Lp′(Ω) =∶My,

where My is a positive constant not depending on n ∈ N. Hence, we have obtained that

un(x) ≤ sup
B(x, r8 )

un ≤My, ∀x ∈ ∂B(y, r) and ∀n >
4

r
. (5.1.10)

Therefore we have un −My ≤ 0 on ∂B(y, r) and un = 0 on ∂Ω, then (un −My)
+
= 0 on ∂Ωr and

(un −My)
+
∈ C(Ω), since un ∈ C(Ω). Hence, we get (un −My)

+ ∈W 1
0 (Ωr,X), for any n > 4/r.

On the other hand, we observe that L(un −My) = Lun = 0 in Ω∖B(y,1/n), then un −My is

a W 1-weak solution to L(un −My) = 0 on Ωr, since Ωr ⊆ Ω ∖B(y,1/n) for any n > 4/r, and we

can apply the Maximum principle of [52, Theorem 3.1] obtaining

0 ≤ sup
Ωr

(un −My)
+
≤ sup
∂Ωr

(un −My)
+
= 0,

thus

un ≤My on Ωr, for every n >
4

r
. (5.1.11)

Now we want to prove that un is a bounded sequence in W 1(Ω2r,X).

Let us consider η ∈ C1(Ω) a cut-off function such that 0 ≤ η ≤ 1 and

(i) η ≡ 1 on Ω2r;

(ii) η ≡ 0 on B(y, 3
2
r).

We put v ∶= η2un for every n > 4/r, then v ∈ W 1
0 (Ωr,X) is a test function. Since Lun = 0 on

Ωr (in the weak sense of W 1), we have L(un, v) = 0. Then, using the X-ellipticity of L and

supposing un, v smooth functions, we get:

−L(un, v) = −∫
Ωr

⟨A∇un,∇(η2un)⟩dµ = −2∫
Ωr
ηun ⟨A∇un,∇η⟩dµ − ∫

Ωr
η2

⟨A∇u,∇η⟩dµ ≤

≤ 2Λ∫
Ωr
ηun∣Xun∣∣Xη∣dµ − λ∫

Ωr
η2

∣Xun∣
2dµ,

and by approximation we obtain that

∫
Ωr
η2

∣Xun∣
2dµ ≤ 2

Λ

λ
∫

Ωr
ηun∣Xun∣∣Xη∣dµ. (5.1.12)

By interpolation we have:

(un ∣Xη∣
2Λ

λ
) (η∣Xun∣) ≤

4

ε
(

Λ

λ
)

2

u2
n∣Xun∣

2
+ εη2

∣Xun∣
2, ∀ ε > 0.
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If we choose ε = 1
2

, by (5.1.12) we get

∫
Ωr
η2

∣Xun∣
2dµ ≤ 8(

Λ

λ
)

2

∫
Ωr
u2
n∣Xη∣

2dµ +
1

2
∫

Ωr
η2

∣Xun∣
2dµ,

which gives
1

2
∫

Ωr
η2

∣Xun∣
2dµ ≤ 8(

Λ

λ
)

2

M2
y ∫

Ωr
∣Xη∣2dµ,

where in the last inequality we have used (5.1.11). Moreover Ω2r ⊆ Ωr, then we obtain

∫
Ω2r

η2
∣Xun∣

2dµ ≤ 16(
Λ

λ
)

2

M2
y ∫

Ωr
∣Xη∣2dµ,

which gives (recalling (i)):

∥Xun∥
2
L2(Ω2r) ≤ C(Λ, λ, y), ∀n >

4

r
, (5.1.13)

where C > 0 does not depend on n ∈ N.

Therefore, using (5.1.11) and (5.1.13), we obtain that un is a bounded sequence inW 1(Ω2r,X).

Then there exists w ∈ W 1(Ω2r,X) such that un → w weakly in W 1(Ω2r,X), in particular un

converges weakly to w in L2(Ω2r). Since p ≥ 2, Lp(Ω2r) ⊆ L2(Ω2r) and we obtain un → w

weakly in Lp
′

(Ω2r). On the other hand, we have already showed that un → gy weakly in

Lp
′

(Ω), in particular in Lp
′

(Ω2r); then necessarily w = gy . Thus un → gy weakly inW 1(Ω2r,X).

Now we observe that, for any ϕ ∈ W 1
0 (Ω2r,X), L(⋅, ϕ) ∶ W 1(Ω2r,X) → R is a bounded lin-

ear functional; hence, it is sufficient to let n → ∞ in the equality L(un, ϕ) = 0, for every

ϕ ∈ W 1
0 (Ω2r,X), to prove that Lgy = 0 in Ω2r (in the weak sense of W 1). Then, by Corollary

4.4.8 we get that gy is a continuous function in Ω2r.

We want to prove the continuity of gy up to ∂Ω.

Let us fix x0 ∈ ∂Ω and let ψ ∈ C∞
0 (B(x0,4ε)) be a cut-off function such that 0 ≤ ψ ≤ 1 and ψ ≡ 1

in B(x0,2ε), where we have chosen ε > 0 such that B(x0,4ε) ∩B(y,2r) = ∅.

Since un ∈W 1(Ω∖B(y,1/n)) we have ψun ∈W 1
0 (Ω∩B(x0,4ε),X), for any n ∈ N. Moreover,

thanks to boundedness of the sequence {un} in W 1(Ω2r,X), it is easy to show that {ψun} is a

bounded sequence in W 1
0 (Ω ∩B(x0,4ε),X). Then there exists v ∈ W 1

0 (Ω ∩B(x0,4ε),X) such

that ψun → v weakly in W 1
0 (Ω ∩ B(x0,4ε),X); in particular, ψun converges weakly to v in

W 1(Ω ∩B(x0,2ε),X) and so necessarily v = gy in Ω ∩B(x0,2ε).

Therefore, v ∈ W 1
0 (Ω ∩ B(x0,4ε),X) is a W 1-weak solution to Lv = 0 in Ω ∩ B(x0,2ε).

Hence, by Corollary 4.4.14 we have v ∈ C(Ω ∩B(x0, ε)) and v ≡ 0 on ∂Ω ∩B(x0, ε). Thus, gy is

a continuous function up to ∂Ω and gy vanishes on ∂Ω.

Hence, we have showed that gy ∈ C(Ω ∖ {y}) and gy(x) = 0 for every x ∈ ∂Ω.

The continuity of g in the couple (x, y) ∈ (Ω×Ω)∖∆ can be obtained by adapting the arguments

in [31, Proposition 2.6] and in [92, Theorem 3.4].

In order to prove (5.1.8) we fix ν ∈ M(Ω) and h ∈ Lp(Ω). Since g is a non-negative and

continuous function in (Ω × Ω) ∖ ∆, where ∆ is a set of dµ(x) × dν(y)-measure zero, we can
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apply Fubini’s theorem and we get:

⟨G∗
(ν), h⟩

(5.1.5)
= ∫

Ω
G(h)(y)dν(y)

(5.1.7)
= ∫

Ω
(∫

Ω
g(x, y)h(x)dµ(x))dν(y) =

= ∫
Ω
h(x) (∫

Ω
g(x, y)dν(y))dµ(x).

Therefore, we have

∫
Ω
h(x)G∗

(ν)(x)dµ(x) = ∫
Ω
h(x) (∫

Ω
g(x, y)dν(y))dµ(x), ∀h ∈ Lp(Ω),

which gives (5.1.8).

Finally, we want to prove the symmetry of g in the couple (x, y).

Fix x0, y0 ∈ Ω such that x0 ≠ y0. Let us consider a function h ∈ Lp(Ω) supported in a neigh-

borhood B(y0, ρ2) of y0, such that there exists ρ1 > 0 for which B(x0, ρ1) ∩B(y0, ρ2) = ∅. We

consider the function

F (x) ∶= ∫
B(y0,ρ2)

g(x, y)h(y)dµ(y), ∀x ∈ B(x0, ρ1).

Since g is continuous in (Ω×Ω)∖∆, the function F is well defined and continuous inB(x0, ρ1).

On the other hand, we know that

F (x) = ∫
Ω
g(x, y)h(y)dµ(y)

(5.1.8)
= G∗

(h)(x)
(5.1.4)
= G(h)(x)

(5.1.7)
= ∫

Ω
g(y, x)h(y)dµ(y),

for almost every x ∈ B(x0, ρ1). By continuity of F and G(h) in B(x0, ρ1), we get F (x) =

G(h)(x) for any x ∈ B(x0, ρ1), which gives

∫
B(y0,ρ2)

(g(x, y) − g(y, x))h(y)dµ(y) = 0 for any x ∈ B(x0, ρ1).

By arbitrariness of h ∈ Lp, we have g(⋅, x) = g(x, ⋅) a.e. in B(y0, ρ2) and thanks to continuity of

g out of the diagonal, we obtain g(x, y) = g(y, x) for any (x, y) ∈ B(x0, ρ1) ×B(y0, ρ2). Finally,

by arbitrariness of (x0, y0) we get (5.1.9). ◻

5.2 Towards a global fundamental solution

In this section we want to give a sketch of the existence proof of a global fundamental solution

for the operator L in (5.0.1). This argument will be the object of our future investigation.

The first step is the construction of a basis of bounded open sets for the d-topology, satis-

fying the condition (5.1.1). In particular, for every x0 ∈ RN , we want to prove the existence of

a basis B ∶= {Ωn}n∈N of bounded open sets for the d-topology on RN , such that:

(1) B(x0, n −
1
2
) ⊆ Ωn ⊆ B(x0, n), for every n ∈ N;

(2) Ωn ⊆ Ωn+1, for every n ∈ N;
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(3) there exists ϑ(Q) > 0 such that, for any y0 ∈ ∂Ωn, we have

µ (B(y0, r) ∖Ωn) ≥ ϑµ (B(y0, r)) , for every r ≤
1

2
and n ∈ N. (5.2.1)

Furthermore, for any n ∈ N, the set Ωn can be obtained in the following way:

Ωn ∶= B(x0, n) ∖
p

⋃
j=1

B(xj ,1/2), (5.2.2)

where xj ∈ ∂B(x0, n) and {B(xj ,1/2) ∶ j = 1, . . . , p(Q,n)} is a finite covering of ∂B(x0, n).

Clearly it is easy to prove conditions (1) and (2); in the proof of condition (3) the idea will be

to use the segment property and the doubling condition (D).

In order to prove the existence of global fundamental solution for L, after the construction

of a suitable basis for d-topology on RN we need to consider the Green functions gn(⋅, ⋅) related

to any bounded open set Ωn of the basis. If we consider the trivial extension of any gn out the

diagonal of RN ×RN , the idea is to use the Maximum principle in [52] to prove that {gn} is a

non-decreasing sequence. Hence, we put

Γ(x, y) ∶= lim
n→∞

gn(x, y), for every (x, y) ∈ RN ×RN , with x ≠ y,

and we will show that Γ is a continuous function out the diagonal of RN × RN , using the

invariance of the Harnack inequality in Chapter 4.

Finally, to prove that Γ is a global fundamental solution for L, we will use the represen-

tation formulas for the Green operator and its adjoint (see Theorem 5.1.3), with the suitable

construction of the measure µ related to L (see (4.2.2)).
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Pures Appl. 64 (1985), 237–256.

[44] Franchi, B., Serapioni, R., Serra Cassano, F.: Approximation and imbedding theorems for

weighted Sobolev spaces associated with Lipschitz continuous vector fields, Bollettino U.M.I B

(7) 11 (1997), 83–117.

[45] Fuglede, B.: On the theory of potentials in locally compact space, Acta math., 103 (1959),

139-215

[46] Garofalo, N., Lanconelli, E.: Asymptotic behavior of fundamental solutions and potential theory

of parabolic operators with variable coefficients, Math. Ann. 283 (1989), 211–239.

[47] Garofalo, N., Lanconelli, E.: Level sets of the fundamental solution and Harnack inequality for

degenerate equations of Kolmogorov type, Trans. Amer. Math. Soc. 321 (1990), 775–792.

[48] Garofalo, N., Nhieu, D. M.: Isoperimetric and Sobolev inequalities for Carnot-Carathéodory
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