Zuppiroli, Sara
(2014)
Probabilistic Recursion Theory and Implicit Computational Complexity, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Informatica, 25 Ciclo. DOI 10.6092/unibo/amsdottorato/6723.
Documenti full-text disponibili:
Abstract
In this thesis we provide a characterization of
probabilistic computation in itself, from a recursion-theoretical
perspective, without reducing it to deterministic computation.
More specifically, we show that probabilistic computable functions, i.e., those functions which
are computed by Probabilistic Turing Machines (PTM), can be characterized by a natural generalization of Kleene's partial recursive functions which includes, among initial functions,
one that returns identity or successor with probability 1/2. We then prove
the equi-expressivity of the obtained algebra and the class of
functions computed by PTMs.
In the the second part of the thesis we
investigate the relations existing between our recursion-theoretical framework
and sub-recursive classes, in the spirit of Implicit Computational Complexity. More precisely,
endowing predicative recurrence with a random base function is proved
to lead to a characterization of polynomial-time computable
probabilistic functions.
Abstract
In this thesis we provide a characterization of
probabilistic computation in itself, from a recursion-theoretical
perspective, without reducing it to deterministic computation.
More specifically, we show that probabilistic computable functions, i.e., those functions which
are computed by Probabilistic Turing Machines (PTM), can be characterized by a natural generalization of Kleene's partial recursive functions which includes, among initial functions,
one that returns identity or successor with probability 1/2. We then prove
the equi-expressivity of the obtained algebra and the class of
functions computed by PTMs.
In the the second part of the thesis we
investigate the relations existing between our recursion-theoretical framework
and sub-recursive classes, in the spirit of Implicit Computational Complexity. More precisely,
endowing predicative recurrence with a random base function is proved
to lead to a characterization of polynomial-time computable
probabilistic functions.
Tipologia del documento
Tesi di dottorato
Autore
Zuppiroli, Sara
Supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze e ingegneria dell'informazione
Ciclo
25
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Probabilistic Recursion Theory, Implicit Computational Complexity, Probabilistic Turing Machine
URN:NBN
DOI
10.6092/unibo/amsdottorato/6723
Data di discussione
15 Settembre 2014
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Zuppiroli, Sara
Supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze e ingegneria dell'informazione
Ciclo
25
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Probabilistic Recursion Theory, Implicit Computational Complexity, Probabilistic Turing Machine
URN:NBN
DOI
10.6092/unibo/amsdottorato/6723
Data di discussione
15 Settembre 2014
URI
Statistica sui download
Gestione del documento: