
Alma Mater Studiorum - Università di Bologna

DOTTORATO DI RICERCA IN INFORMATICA
Ciclo: XXV

Settore Concorsuale di afferenza: 01/B1
Settore Scientifico disciplinare: INF/01

Probabilistic Recursion Theory and
Implicit Computational Complexity

Presentata da: Sara Zuppiroli

Coordinatore Dottorato: Relatore:

Maurizio Gabbrielli Ugo Dal Lago

Esame finale anno 2014





Abstract

In this thesis we provide a characterization of probabilistic computation in itself, from a

recursion-theoretical perspective, without reducing it to deterministic computation. More

specifically, we show that probabilistic computable functions, i.e., those functions which

are computed by Probabilistic Turing Machines (PTM), can be characterized by a natural

generalization of Kleene’s partial recursive functions which includes, among initial func-

tions, one that returns identity or successor with probability 1
2
. We then prove the equi-

expressivity of the obtained algebra and the class of functions computed by PTMs. In the

the second part of the thesis we investigate the relations existing between our recursion-

theoretical framework and sub-recursive classes, in the spirit of Implicit Computational

Complexity. More precisely, endowing predicative recurrence with a random base func-

tion is proved to lead to a characterization of polynomial-time computable probabilistic

functions.

iii



iv



Acknowledgements

I would never have been able to finish my dissertation without the guidance of my super-

visor, the support of the PhD’s director, the encouragement of my colleagues, the help of

my friends and the guide of my family. I would like to express my deepest gratitude to my

supervisor, Dr. Ugo Dal Lago, for his guidance and for teaching me an excellent research

method which I try to learn. I would like to thank Prof. Maurizio Gabbrielli, who guided

me towards this result. I would also like to thank Prof. Paolo Ciancarini and Prof. Simone

Martini for their support in these years.

Thanks to all my friends which were always willing to help and to give useful sugges-

tions. In particular many thanks to Giulio Pellitta, Tudor A. Lascu, Alessandro Rioli, and

all the other colleagues in the laboratory. Thanks to Marco Di Felice, Diego Ceccarelli,

Ioana Cristescu and Imane Sefrioui, persons that I met in these years and who became

friends more than colleagues. Thanks to Cristina Ceroni, Sarah Draush, Francesca Druidi,

Chiara Evangelisti, and Simona Minarini, friends who have seen my difficulties and were

able to help me. I would like to thank my parents and my brother for their guide. Finally

I would like to thank my friend Maurizio who was the only person who really listened to

my emotions and who received all my confidences.

v



vi



Contents

1 Introduction 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Classic Recursion Theory 7

2.1 Register Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Classical Turing Machines . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Partial Recursive Functions . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Equivalence Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Implicit Computational Complexity 23

3.1 Prelimiaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Safe Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Ramified Recurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Probabilistic Turing Machines 31

4.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 A Fixpoint Characterization of the Function Computed by a PTM . . . . 35

vii



5 Probabilistic Recursion Theory 39

5.1 Probabilistic Recursive Functions . . . . . . . . . . . . . . . . . . . . . 39

5.2 Probabilistic Recursive Functions equals Functions computed by Proba-

bilistic Turing Machines . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Probabilistic Implicit Complexity 61

6.1 Probabilistic Complexity Classes . . . . . . . . . . . . . . . . . . . . . . 61

6.2 Function Algebra on Strings . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 Tiering as a Typing System . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.4 Functions computed by Probabilistic Turing Machines in Polynomial Time

equals Predicative Probabilistic Functions . . . . . . . . . . . . . . . . . 67

6.4.1 Simultaneous Primitive Recursion and Predicative Recursion . . . 67

6.4.2 Register Machines vs. Turing Machines . . . . . . . . . . . . . . 68

6.4.3 Polytime Soundness . . . . . . . . . . . . . . . . . . . . . . . . 71

6.4.4 Polytime Completeness . . . . . . . . . . . . . . . . . . . . . . . 74

7 Conclusions 77

References 81

viii



Chapter 1

Introduction

This dissertation introduces a probabilistic recursion theory which tries to capture the

very essence of the functions which are computed by a Probabilistic Turing Machine.

Our basic idea is that these functions can be characterized directly, without reducing them

to deterministic functions, by considering as domain a discrete set and as codomain a set

of distributions over the domain.

Before going into some more details, it is useful to recall here some basic facts about

the history of computability which led to probabilistic models of computation. Models

of computation as introduced one after the other in the first half of the last century were

all designed around the assumption that determinacy is one of the key properties to be

modeled: given an algorithm and an input to it, the sequence of computation steps leading

to the final result is uniquely determined by the way an algorithm describes the state

evolution. The great majority of the introduced models are equivalent, in that the classes

of functions (on, say, natural numbers) they are able to compute are the same.

The second half of the 20th century has seen the assumption above relaxed in many

different ways. Nondeterminism, as an example, has been investigated as a way to abstract

the behavior of certain classes of algorithms, this way facilitating their study without

necessarily changing their expressive power: think about how Nondeterministic Finite

Automata [29] make the task of proving closure properties of regular languages easier.



2 Chapter 1. Introduction

A relatively recent step in this direction consists in allowing algorithms’ internal state

to evolve probabilistically: the next state is not functionally determined by the current

one, but is obtained from it by performing a process having possibly many outcomes,

each with a certain probability. Again, probabilistically evolving computation can be a

way to abstract over determinism, but also a way to model situations in which algorithms

have access to a source of true randomness.

Probabilistic models are nowadays very common: not only they are a formidable tool

when dealing with uncertainty and incomplete information, but they sometimes are a

necessity rather than an option, like in computational cryptography (where, e.g., secure

public key encryption schemes need to be probabilistic [17]). A nice way to deal compu-

tationally with probabilistic models is to allow probabilistic choice as a primitive when

designing algorithms, this way switching from usual, deterministic computation to a new

paradigm, called probabilistic computation. Examples of application areas in which prob-

abilistic computation has proved to be useful include natural language processing [24],

robotics [34], computer vision [6], and machine learning [27].

But what does the presence of probabilistic choice give us in terms of expressivity? Is

it that we increase the power of deterministic computation? And what about efficiency: is

it that probabilistic choice permits to solve any computational problem more efficiently?

These questions have been among the most central in the theory of computation, and

in particular in computational complexity, in the last forty years. Starting from the early

fifties, various forms of automata in which probabilistic choice is available have been con-

sidered (e.g. [28]). The inception of probabilistic choice into an universal model of com-

putation, namely Turing machines, is due to Santos [31, 32], but is (essentially) already

there in an earlier work by De Leeuw and others [12]. Some years later, Gill [13] consid-

ered probabilistic Turing machines with bounded complexity: his work has actually been

the starting point of a florid research about the interplay between computational complex-

ity and randomness. Among the many side effects of this research one can of course men-

tion modern cryptography [19], in which algorithms (e.g. encryption schemes, authenti-

cation schemes, and adversaries for them) are very often assumed to work in probabilistic

polynomial time. Recently, some investigations on the interplay between implicit com-



Chapter 1. Introduction 3

plexity and probabilistic computation have also started to appear [9]. There is however an

intrinsic difficulty in giving implicit characterizations of probabilistic classes like BPP

or ZPP which are semantic classes defined by imposing a polynomial bound on time, but

also appropriate bounds on the probability of error. These bounds makes the task of enu-

merating machines computing problems in the classes above much harder and, ultimately,

prevents from deriving implicit characterization of the classes themselves. Roughly, all

these results can be summarized saying that while probability has been proved not to offer

any advantage in the absence of resource constraints, it is not known whether probabilis-

tic classes such as BPP or ZPP are different from P. It is worth noticing that all these

works follow an approach that we call reductionist: probabilistic computation is studied

by reducing or comparing it to deterministic computation.

This thesis goes in a somehow different direction: as mentioned before, we want to

study probabilistic computation directly, without necessarily reducing it to deterministic

computation. In our prospective, the central assumption is the following: a probabilistic

algorithm computes what we call a probabilistic function, i.e. a function from a discrete

set (e.g. natural numbers or binary strings) to distributions over the same set. What we

want to do is to study the set of those probabilistic functions which can be computed by

algorithms, possibly with resource constraints.

1.1 Contributions

The main contributions of this dissertation are briefly summarized as follows.

• The first one is rooted in classic theory of computation, and in particular in the defi-

nition of partial computable functions as introduced by Church and later studied by

Kleene [20]: we provide a characterization of computable probabilistic functions by

the natural generalization of Kleene’s partial recursive functions, where among the

initial functions there is now a function corresponding to tossing a fair coin. In the

non-trivial proof of completeness for the obtained algebra, Kleene’s minimization

operator is used in an unusual way, making the usual proof strategy for Kleene’s



4 Chapter 1. Introduction

Normal Form Theorem useless. We later show how to recover the latter by replac-

ing minimization with a more powerful operator. We also discuss how probabilistic

recursion theory offers characterizations of concepts like the one of a computable

distribution and of a computable real number.

• The second main contribution of this dissertation consists in the application of the

aforementioned recursion-theoretical framework to polynomial-time computation.

We do that by following Bellantoni and Cook’s and Leivant’s works [2, 21], in

which polynomial-time deterministic computation is characterized by a restricted

form of recursion, called predicative or ramified recursion. Endowing Leivant’s

ramified recurrence with a random base function, in particular, we to provide a char-

acterization of polynomial-time computable distributions, a key notion in average-

case complexity [3].

Our results provide a first step in the direction of characterizing probabilistic compu-

tation in itself, from a recursion-theoretical perspective. The significance for this study

is genuinely foundational, since it allows us to better understand the nature of proba-

bilistic computation and also to investigate the implicit complexity of a generalization of

Leivant’s predicative recurrence, all in a unified framework. In a future perspective our

study could provide the basis to define a recursion theory for quantum computing. The

results contained in this thesis have been published in [10, 11].

1.2 Thesis outline

The remaining chapters of this thesis are organized as follows.

Next chapter contains the basic notions of classic recursion theory. In particular, we

recall the definition of partial recursive functions and the equivalence of this formalism

with functions computable by Turing Machines. This equivalence proof will provide an

intuitive idea for the main proof in the first contribution. Chapter 3 contains a short intro-

duction to implicit computational complexity (ICC). Chapter 4 contains the preliminaries

about probability theory and probabilistic Turing machines (PTM), in particular we give



Chapter 1. Introduction 5

an operational definition of functions computed by a PTM and we discuss some reduc-

tionist approaches. In Chapter 5 we provide the first main contribution of this thesis by

defining probabilistic recursive functions and proving their equivalence with the functions

computed by a PTM. Chapter 6 provides our second contribution: we provide a character-

ization of the probabilistic functions which can be computed in polynomial time by using

an algebra of functions acting on word algebras. Finally Chapter 7 concludes.



6 Chapter 1. Introduction



Chapter 2

Classic Recursion Theory

In this chapter we introduce some basic notions concerning recursion theory with the aim

of recalling some well known, classic results and also to define some notation that we

will use in the following. We mainly extract these notions from [7, 30, 20]. We start with

the basic definitions and methods developed in the context of Recursive Function Theory

(1936-38), by Turing and Kleene [20], and we terminate with the Church Turing Thesis.

Recursion Theory, (also called Computability Theory) is the study of the functions which

are “computable” with the aim also of characterizing their computational complexity.

Informally, a computable function is a function which can be represented by an algorithm.

The algorithm is a finite set of instructions which, given an input x, after a finite number of

steps yields an output y. The algorithm specifies how to obtain each step in the calculation

from the previous steps, starting from the input x. So the algorithm computes a function

f which, given the input x, produces as output f(x) = y. For some inputs an algorithm

could not terminate; in this case we say that the algorithm computes a partial function.

On the other hand, if for all inputs the algorithm terminates we say that it computes a total

function.

Now we give two precise mathematical formulations of computable functions : the

Turing computable functions, and the partial recursive functions. In Section 2.4 we

present a sketch of the proof of the equivalence of these two formulations. It is worth

noting that here are several other (equivalent) formalizations of these classes, but for they

are not needed for the present treatment and therefore they are not considered here.



8 Chapter 2. Classic Recursion Theory

We start with some basic notions. Here and in the following we indicate the concate-

nation of the strings v and w by v · w.

Definition 2.1 (Σ∗) We define the set Σ0 = {ε} where ε is the empty string. An alphabet

is a finite set of symbols. Such a set is denoted by Σ. Let Σ be an alphabet and Σ0 be

defined as above. We define inductively

Σn = {w|w = a · w′ where w′ ∈ Σn−1 and a ∈ Σ}.

Then we define Σ∗ as: Σ∗ =
⋃
i∈N Σi. Moreover we define Σ+ as: Σ+ =

⋃
i∈N+ Σi.

2.1 Register Machines

Now we define the classical Register machines which will be needed later when we will

describe probabilistic Register machines and predicative functions.

Definition 2.2 (Register Machine) A register machine (RM) consists of a finite set of

registers Π = {π1, · · · , πr} and a sequence of instructions, called program. Each register

πi can store a string and each instruction in the program is indexed by a natural number

and takes one of the following five forms

ε(πd); ca(πs)(πd); pa(πs)(πd); j(πs)(m);

where πs, πd are registers and m is an instruction index.

The semantic of previous instructions can be described as follows. We assume that the

index of the current instruction is n.

– The instruction ε(πd) stores in the register πd the empty string and then transfer the

control to the next instruction.

– The instruction ca(πs)(πd) stores in the register πd the term a ·w, where w is the string

contained in the register πs. It then transfers the control to the next instruction.

– The instruction pa(πs)(πd) is the predecessor instruction, which stores in the register

πd the string resulting from erasing the leftmost character a from the string contained

in πs, if any. The control is then transferred to the next instruction.



Chapter 2. Classic Recursion Theory 9

– The instruction j(πs)(m) transfers the instruction to them-th instruction if πs contains

a non-empty string, while it goes to the next instruction otherwise.

We can now give a formal definition of configurations.

Definition 2.3 (Configuration of a RM) Let R be a RM as in Definition 2.2, and let

Σ be the underlying alphabet. We define a RM configuration as a tuple 〈v1, . . . , vr, n〉
where:

– each vi ∈ Σ∗ is the value of the register πi;

– n ∈ N is the index of the next instruction to be executed.

We denote the set of all configurations with CCRR. If n = 1 we have an initial config-

uration and we denote it by ICRs
R. If n = m + 1, where m is the largest index of an

instruction in the program, we have a final configuration, denoted by FCCRs
R, where s is

the string stored in π1.

Next we show how previous instructions allow to change a configuration.

ε(πs)(πl) If we apply the instruction ε(πs)(πl) to the configuration 〈v1, . . . , vr, n〉, we

obtain the configuration 〈v1, . . . , vl−1, vs, vl+1, . . . , vr, n+ 1〉.

ca(πs)(πl) If we apply the instruction ca(πs)(πl) to the configuration 〈v1, . . . , vr, n〉, we

obtain the configuration 〈v1, . . . , vl−1, a · vs, vl+1, . . . , vr, n+ 1〉.

pa(πs)(πl) If we apply the instruction pa(πs)(πl) to the configuration 〈v1, . . . , a·vs, . . . , vr, n〉,
we obtain the configuration 〈v1, . . . , a · vs, . . . , vl−1, vs, vl+1, . . . , vr, n+ 1〉.

j(πs)(m) If we apply j(πs)(m) to the configuration 〈v1, . . . , a · vs, . . . , vr, n〉, we obtain

the configuration 〈v1, . . . , vs, . . . , vr,m〉.

If we apply j(πs)(m) to the configuration 〈v1, . . . , vs−1, ε, vs+1, . . . , vr, n〉, we ob-

tain the configuration 〈v1, . . . , vs−1, ε, vs+1, . . . , vr, n+ 1〉.



10 Chapter 2. Classic Recursion Theory

2.2 Classical Turing Machines

Now we define the classical Turing machines and the class of functions computed by

them. We will need the notion of classical Turing machine when we introduce later prob-

abilistic Turing machines.

Definition 2.4 (Classical Turing Machine) A classical Turing machine (CTM) is a de-

vice which performs operations on a tape infinite in both directions. A CTM is defined

as a tuple 〈Q,Σb, O, δ〉 where

• Q = {qs, q1, · · · , qn} is a finite set that identify the states of the CTM. We as-

sume that Q contains an initial state qs and there exists a finite subset Qf =

{qf1, · · · , qfk} ⊂ Q of final states.

• Σb = Σ ∪ {�}, where Σ is the alphabet, and � is the blank symbol;

• O = {→,←} ∪ Σb is a finite set that identify the possible operations;

• δ : Σb ×Q \Qf → O ×Q is a transition function which has the following mean-

ing. If

δ(a, q) = (→, q′)

then the head moves to the right on the tape and the machine switches to the state

q′. If

δ(a, q) = (←, q′)

then the head moves to the left on the tape and the machine switches to the state q′.

If

δ(a, q) = (a, q′)

with a ∈ Σb then the head does not move, the machine writes a on the tape and the

machine switches to the state q′.



Chapter 2. Classic Recursion Theory 11

Figure 2.1: Turing Machine

The function δ may be undefined for some arguments and it can be seen as a program

(considered as a finite set of 4-tuples). The Turing machine can be represented as in

Figure 2.2.

The “picture” of each Turing machine after n steps of computation can be represented

by using the notion of configuration. We have tree types of configurations:

– A General Configuration is any configuration of a machine CM ;

– An Initial Configuration is the configuration which contain the initial state of CM ;

– A Final Configuration is a configurations which contains a final state of CM .

Definition 2.5 (General Configuration of a CTM) Let CM be a CTM as in Definition

2.4. We define a CTM configuration as a 4-tuple 〈s, a, t, q〉 ∈ (Σ∗b ×Σb ×Σ∗b ×Q) such

that:

– The first component, s ∈ Σ∗b , is the portion of the tape lying on the left of the head.

– The second component, a ∈ Σb, is the symbol the head is reading.

– The third component, t ∈ Σ∗b , is the portion of the tape lying on the right of the head.

– The fourth component, q ∈ Q is the current state.

Moreover we define the set of all configuration as CSCM .



12 Chapter 2. Classic Recursion Theory

Definition 2.6 (Initial and Final Configurations of CTM) Let CM be a CTM as in

Definition 2.4. We define an initial configuration of CM for the string s as a configu-

ration in the form 〈ε, a,v, qs〉 ∈ Σ∗b ×Σb×Σ∗b ×Q such that: s = a · v and qs ∈ Q is the

initial state. We denote by IN s
CM the set of all such initial configurations. Similarly, we

define a final configuration of CM as a configuration 〈s,�, ε, qf〉 ∈ Σ∗b ×Σb×Σ∗b ×Qf .

The set of all final configurations for a CTM CM is denoted by FCsCM

Intuitively, the function computed by a CTM CM associates to each input s, a string

which indicates the output present in the tape when reaching a final configuration of CM

from IN s
CM . In fact, a Turing computation for a CTM specified by the program δ, with

input s, is a sequence of configurations cs1, · · · , csk such that cs1 ∈ IN s
CM and each

configuration csi with i ≥ 2 is obtained from the previous one by means of the application

of a transition specified by δ.

More precisely, the operational semantics of a CTM , and therefore the notion of

computed function, can be defined as follows.

Definition 2.7 (Transition) Let M be a CTM as defined in Definition 2.4, and let CS

be a set as defined in Definition 2.5. We define a function `: CS → CS as follows:

` (〈u, c, t, qn〉) =



〈u · c, b, r, qm〉 if δ(qn, c) = (qm,→) , t = b · r , b · r ∈ Σ∗b

〈w, a, c · t, qm〉 if δ(qn, c) = (qm,←) , u = w · a , w · a ∈ Σ∗b

〈u · c,�, t, qm〉 if δ(qn, c) = (qm,→) , t = ε

〈u,�, c · t, qm〉 if δ(qn, c) = (qm,←) , u = ε

〈u, d, t, qm〉 if δ(qn, c) = (qm, d) , d ∈ Σ∗b

In the following `∗ denotes the transitive closure of function `.

Definition 2.8 (Turing computable function) Let CM be a CTM defined as in Defini-

tion 2.4. The function f : CS ⇀ CS computed by CM is defined as follows

f(csi) =

 csfi if `∗ (csi) = csfi and csfi ∈ FCsCM
undefined otherwise



Chapter 2. Classic Recursion Theory 13

We can also define the function computed by a CTM CM through a fixpoint con-

struction. Following [25] we remind here briefly the basic mathematical notions needed

for the fix-point construction.

Definition 2.9 (Reflexive) Let D be a set with a relation ∼, we say that ∼ is reflexive if

for all a ∈ D we have that a ∼ a.

Definition 2.10 (Transitive) Let D be a set with a relation ∼, we say that ∼ is transitive

if for all a, b,∈ D we have that a ∼ b and b ∼ c implies a ∼ c.

Definition 2.11 (Antisymmetric) Let D a set with an operation ∼, we say that ∼ is

Antisymmetric if for all a, b ∈ D we have that a ∼ b and b ∼ a implies a = b.

A partial order is a relation over a set D which is reflexive, antisymmetric and transi-

tive. We call POSET (partially ordered set) a set with a partial order relation.

The least upper bound or supremum (sup) of a subset S of a partially ordered set D

is the least element of D that is greater than or equal to all the elements of S. A POSET

D is complete (abbreviated CPO) if every directed set C has a least upper bound
⊔
C in

D1 An ω Complete Partial Order (ωCPO) is a POSET in which every chain C (i.e. evry

linearly ordered subset x1 ≤ x2 ≤ x3 ≤ x4 ≤ · · · ) has a least upper bound. These two

definitions can be shown to be equivalent for denumerable POSETs.

A mapping f : D → E from one POSET D to a POSET E is continuous, if for

every chain C ⊂ D f(
⊔
C) =

⊔
f [C] holds (where f [C] denotes the set {y s.t. y =

f(x) and x ∈ C}. Next we have the following well known result where we define

τn+1(x) = τ(τn(x)) and ⊥ denotes the bottom element.

Theorem 2.1 (Least-Fixed-Point) Every continuous function τ : D → D on a ωCPO

has a least fixed point
⊔
τn(⊥).

This result is the basic tool used by [33] in his denotational semantics of programming

languages and since then has been used in many different contexts. In our case, we can

use this result to define a fix point semantic for a CTM as follows. First we associate to

each CTM a functional FCM as follows:
1.



14 Chapter 2. Classic Recursion Theory

Definition 2.12 Given a CTM CM , we define a functional FCM : (CS ⇀ CS) →
(CS ⇀ CS) as:

FCM(f)(C) =

 id(C) if C ∈ FCsCM ;

f(` (C)) otherwise.

One can show that CS ⇀ CS is a POSET (by extending in the natural way to functions

the flat ordering on CS). Then we have the following proposition.

Proposition 2.1 The functional FCM is continuos CS ⇀ CS.

Hence we have the following.

Corollary 2.1 The functional defined in 2.12 has a least fix point which is equal to⊔
n≥0

F n
CM(⊥).

Proof: Immediate from Theorem 2.1. �

Such a least fixpoint is, once composed with a function returning IN s
M from s, the

function computed by the machine CM . This is denoted by IOCM : CS ⇀ CS while the

set of all functions which can be computed by any CTMs is denoted by C C .

2.3 Partial Recursive Functions

It is well known that the (partial) functions that can be computed by a Turing machine, or

Turing computable functions, can be characterized in terms of a function algebra due to

Kleene [20]. Such an algebra defines the partial recursive functions, which consists of the

smallest class of functions containing the three basic functions defining zero (or constant),

successor and projection, and then closed under composition (also called substitution),

recursion and minimization (also called unbounded search). Below we give the formal

definitions following [7].

Definition 2.13 (Basic Functions) The Basic Functions are the following:



Chapter 2. Classic Recursion Theory 15

– The Zero function z : N→ N is defined as: z(n) = 0 for every n ∈ N.

– The Sucessor function s : N→ N is defined as: s(n) = n+ 1 for every n ∈ N.

– The Projection function Πn
m : Nn → N is defined as: Πn

m(k) = km for every positive

n ∈ N and for all m ∈ N, such that 1 ≤ m ≤ n, where k = (k1, · · · kn).

Definition 2.14 (Composition) The function h : Nk → N is defined by composition if it

is defined as:

h(i) = f(g1(i), · · · , gn(i))

where f : Nn → N and gm : Nk → N for every 1 ≤ m ≤ n are partial recursive

functions.

Definition 2.15 (Recursion) The function h : Nk+1 → N is defined by recursion if it is

defined as:

h(i, 0) = f(i)

h(i,m+ 1) = g(i,m, h(i,m))

where i ∈ Nk, g : Nk+2 → N and f : Nk → N are partial recursive functions.

Definition 2.16 (Minimization) The function g : Nk → N is defined by minimization if

it is defined as

g(i) = µ y(f(i, y) = 0)

where µ y : Nk+1 → N is defined as

µ y(f(i, y) = 0) =


y if exist y such that f(i, y) = 0 , and f(i, h) is defined

and f(i, h) 6= 0 for all 0 ≤ h < y

undefined otherwise

Definition 2.17 (Partial Recursive Functions) The class R of partial recursive func-

tions is the smallest class of partial functions that contains the basic functions as defined

in Definition 2.13 and is closed under the operation of Composition 2.14, Recursion 2.15

and Minimization 2.16.



16 Chapter 2. Classic Recursion Theory

Many common functions are partial recursive: below we give some examples which

will be useful when constructing the proof of the inclusion C C ⊆ R.

Example 2.1 The following are examples of recursive functions:

– The identity function id : N → N, defined as id(x) = x. In fact, since for all x ∈ N

we have that

id(x) = x

we have that id = Π1
1, and, since the latter in a basic function (Definition 2.13) id is in

R.

– The function add : N× N→ N such that for every x, y ∈ N, add(x, y) = x+y can be

easily shown to be recursive. In fact the function add is defined by add(x, 0) = id(x)

and add(x1, x2 + 1) = g(x1, x2, add(x1, x2)) . Now we have add(x, 0) = id(x)

and we know that id is in R. Moreover we know that g in R, because g = s(Π3
3).

Hence add is a recursive function, since it can be obtained from basic functions using

composition and primitive recursion.

Wee can see that also the function addn : Nn → N, where n ≥ 3, defined as

addn(x1, · · · , xn) = x1 + · · ·+ xn, is partial recursive. We observe that

addn(x1, · · · , xn) = add(Πn
1 (x1, · · · , xn), add(· · ·

(add(Πn
n−1(x1, · · · , xn),Πn

n(x1, · · · , xn))) · · · )).

Hence addn ∈ R because we apply composition operation to add and to the basic

function Πn
k .

– The function rapCS : N× N× N× N → N defined as rapCS(a1, a2, a3, a4) = 2a1 +

2a1+a2+1 +2a1+a2+a3+2 +2a1+a2+a3+a4+3−1 can be easily shown to be recursive, since:

rapCS(x1, x2, x3, x4) = pred(add4(pow(2, x1), pow(2, add4(x1, x2, 1)),

pow(2, add4(x1, x2, x3, 2)), pow(2, add4(x1, x2, x3, x4, 3))))

So rapCS is the composition of the functions add4, power, multiplication, and prede-

cessor. These functions are partial recursive functions hence also rapCS is a partial

recursive function.
�



Chapter 2. Classic Recursion Theory 17

Next we use the function rapCS to encode an entire element of Nk. This encoding is based

on the unique representation of each natural number in terms of a binary number.

This encoding is not the only possible one. For instance, a very famous encode is

the Gödel one which can be defined as follows. Given a sequence (x1, x2, x3, ..., xn) of

positive integers, the encoding of the sequence is number (called Gödel number) obtained

as the product of the first n primes power the value of the n-th number in the sequence,

that is, enc(x1, x2, x3, . . . , xn) = 2x1 · 3x2 · 5x3 · · · pxnn . Since a fundamental theorem of

arithmetic ensure us that any number can be uniquely factored into prime factors, it is

possible to recover the original sequence from its Gödel number (for any given number n

of symbols to be encoded).

2.4 Equivalence Result

We sketch now the proof of the equivalence between Turing computable functions and

partial recursive functions. This proof will be the basis on which we will build our main

equivalence result in the next chapters.

The proof consists of two parts. The first one is easier, and consists in implementing

each basic recursive functions, the composition, the recursion and the minimization by

means of a suitable Turing machine.

For the other part of the proof, given a Turing machine CM we need to define some

partial recursive functions which allow to simulate CM . This can be done in several

steps. First one shows how each configuration can be encoded as a natural number and

then represented by means of composition of recursive functions. Next, one has to show

that the transition function of a Turing machine can be simulated by a recursive function

that, given a natural number representing the configuration, decomposes it into its four

components, and depending on the state and the character on the head, compute the (nat-

ural corresponding to the) new configuration. This can be done because all the needed

arithmetic functions division are partial recursive. Finally, one has to specify that the

transition function has to be repeated until it reaches a final configuration. For this we can

use the minimization function: assuming that SRCM is the function which corresponds



18 Chapter 2. Classic Recursion Theory

to the transition function on configurations, by using the minimization we can compute

the minimum number of times p that SRCM has to be performed in order to reach a final

configuration.

Below we give some more details on this equivalence proof. As previously mentioned,

we first need to see each tape of the Turing machine as a natural number. In order to simply

the notation, in the follow we assume without loss of generality Σb = {0, · · · , k}, where

0 represents the blank symbol.

The notation | · | is used to represent the length of the element ·. More precisely, if · is
a string a ∈ Σ∗ then |a| represents the length of the string, while if · is an element u ∈ Nk

then |u| is k.

Definition 2.18 (Turing tape as a natural number) Let u be the right (part of) the tape

and t be the left tape in a CTM as defined in Definition 2.4. We can see u, t as the

representations of two natural numbers, in base k, by using the functions repr : Σ∗b → N,

and repl : Σ∗b → N defined as follows:

n = repr(u) =

|u|∑
i=0

bi ∗ ki

m = repl(t) =

|t|∑
i=0

ci ∗ ki

where u = b0b1b2 . . . and t = . . . c2c1c0 (so the less representative digit is that one closer

to the head in both cases).

Note that in the previous definition n and m are finite numbers because u and t have

only a finite number of digits different from 0. Using previous definition we can see the

function computed by a Turing machine as a function on natural numbers:

Definition 2.19 (Turing computable function from N to N) Let CM be a CTM as de-

fined in Definition 2.4. The function fn : N→ N computed by CM is defined as:

fn(n) =

 m if f(v) = u and repr(v) = n and repl(u) = m

undefined if f(v) is undefined



Chapter 2. Classic Recursion Theory 19

where f is the function defined in 2.8, repr and repl are the functions defined in Definition

2.18.

Along these lines we can also see any configuration as a natural number. Indeed, con-

sidering Definition 2.5, we can assume that Σb = {0, 1, 2, · · · , k}, Q = {1, 2, · · · , qn},
and v ∈ Σ∗b represents a natural number as shown above. Finally we can assume that

O = {k + 1, k + 2}
⋃

Σb. Then in order to see a configuration as a natural number we

need to establish a bijection between N×N×N×N and N. This can be done by defining

rapCS : N× N× N× N→ N as follows:

rapCS(a) = 2a1 + 2a1+a2+1 + 2a1+a2+a3+2 + 2a1+a2+a3+a4+3 − 1.

The function defined above is a bijection because each natural number has a unique ex-

pression as binary decimal, so given x ∈ N we find k = 4 unique numbers such that

x+ 1 = 2b1 + 2b2 + 2b3 + 2b4 .

We have seen in the previous section that above defined representation function is par-

tially recursive. Also the inverse of rapCS is partially recursive, in fact it can be obtained

as:

rap−1
CS(x) = 〈rap−1

CS1(x), rap−1
CS2(x), rap−1

CS3(x), rap−1
CS4(x)〉

where the functions rap−1
CS1 : N → N, rap−1

CS2 : N → N, rap−1
CS3 : N → N, rap−1

CS4 :

N→ N are defined as follows:

rap−1
CS1(x) = log2(x+ 1)

rap−1
CS2(x) = log2(x+ 1− 2rap

−1
CS1

(x) − 21)− 1

rap−1
CS3(x) = log2(x+ 1− 2rap

−1
CS1

(x) − 2rap
−1
CS2

(x) − 21)− 1

rap−1
CS4(x) = log2(x+ 1− 2rap

−1
CS1

(x) − 2rap
−1
CS2

(x) − 2rap
−1
CS3

(x) − 1)− 1

and all these functions can be shown to be partial recursive.

Next, we can see the transition function of a Turing machines as a function operating

on 4-tuples of natural numbers, given the characterization of configurations shown above.



20 Chapter 2. Classic Recursion Theory

Definition 2.20 (Transition from N4 to N4) Let CM be a CTM as defined in Definition

2.4, and let CS be as defined in Definition 2.5. We define a function `N : N4 → N4 as:

`N (n, ca,m, qqr) =



(n ∗ k + ca, cb, y, qqt) if δ(qqr , ca) = (qqt , k + 1), m = cb + y ∗ k
(x, cb, ca +m ∗ k, qqt) if δ(qqr , ca) = (qqt , k + 2) , n = x ∗ k + cb

(n ∗ k + ca, 0,m, qqt) if δ(qqr , ca) = (qqt , k + 1) , m = 0

(n, 0, ca +m ∗ k, qqt) if δ(qqr , ca) = (qqt , k + 2) , n = 0

(n, cb,m, qqt) if δ(qqr , ca) = (qqt , cb) , cb ∈ N

Using this definition and the previous bijection among N4 and N we can see a transi-

tion of a CTM as a function from N to N. We omit its definition and, by a slight abuse of

notation, we denote such a function still by `N . Furthermore, in a way analogous to the

previous cases, it is possible to show that such a function is partial recursive.

Using the transition function on natural numbers we can now define a recursive func-

tion SRCM which uses `N k times. So this function returns the natural number corre-

sponding to the configuration at the kth step of computation. Below we use the notation

`kN to denote k applications of the function `N .

Definition 2.21 Let CM be a CTM as in Definition 2.4 we define a function SRCM :

N× N→ N as:

SRCM(x, 0) = id(x);

SRCM(x,m+ 1) =`N (SRCM(x,m))

The previous function SRCM is partial recursive function since it is defined by recur-

sion using the partial recursive function `N .

Definition 2.22 Let CM be a CTM as in Definition 2.4. We define a function final :

N× N→ N as:

final(x, y) =

 0 if q(SRCM(x, y)) ∈ Qf

1 otherwise

where the function q extracts from a configuration the state and Qf is the set of final

states.



Chapter 2. Classic Recursion Theory 21

Proposition 2.2 The function final defined in Definition 2.22 is partial recursive.

Proof: We observe that Qf is finite, so we can use the function case in the definition of

final, which is then the composition of recursive functions. �

Using the function final we can apply the minimization thus obtaining a function FCM
(defined below) which finds the minimal number of steps needed to obtain a final config-

uration, if it exists. So, if our CTM terminates, this function returns the number of steps

needed to terminate the computation, otherwise minimization diverges.

Definition 2.23 (Minimization of Function Computed by a Classical Turing Machine)

Let CM be a CTM as in Definition 2.4. We define FCM : N→ N as follows

FCM(x) = µ y (final(x, y)) = 0)

Proposition 2.3 The function FCM defined in Definition 2.23 is partial recursive func-

tions.

Proof: We observe that: FCM is the composition of recursive function, because we apply

the minimization at the function final. �

Theorem 2.2 The class of Partial Recursive Functions R includes the class of the func-

tions computable by a CTM .

Proof: The function computed by a CTM is defined in Definition 2.19. This function is a

partial recursive function because it can be obtained as the composition SRCM(x,FCM(x)

of functions which, by previous results, are partial recursive functions. �

Hence we have the following.

Theorem 2.3 R = C C



22 Chapter 2. Classic Recursion Theory

Proof: The proof that a partial recursive function is computable by a CTM is easy,

by constructing the machine which actually computes a function corresponding to the

Definition 2.13. The other implication is proved by Theorem 2.2. �

These equivalence results of classic recursion theory will be suitably extended in the next

chapters where we will introduce probabilistic recursion theory.

We conclude this chapter with a few lines on the Church-Turing thesis , one of the

most important concepts in theoretical computer science which established the universal

relevance of the notion of CTM (and of other, equivalent, computing devices). Church,

Turing and also Markov realized that the class of function they had defined was general

and each one of them put forward the claim that such a class coincided with the class of

all the functions that, intuitively, are algorithmically computable. In terms of CTM such

a claim, known indeed as the Church-Turing thesis, can be stated as follows (see [7]):

The intuitively and informally defined class of effectively computable partial functions

coincides exactly with the class of functions which can be computed by CTMs.

Even though obviously this claim cannot be proved, there has been an impressive

number of evidences of its truth, including the fact that many completely different for-

malisms computer the same class of functions as CTMs and the fact that, so far, no one

has found a function which is intuitively computable and which is not computable by a

CTM .



Chapter 3

Implicit Computational Complexity

Computability theory studies what can and what cannot be computed by an algorithm:

a function f is computable whenever the process of computing its value f(x) from x is

effective, meaning that it can be turned into an algorithm. There is no guarantee, however,

about the amount of resources such an algorithm requires. Some algorithms can be very

inefficient, e.g. they can require an enormous amount of time to produce their output from

their input. Sometimes, this inefficiency is due to poor design. But it can well happen that

the function f intrinsically requires a great amount of resources to be computed.

Complexity theory refines this analysis by exploring the class of computable func-

tions and classifying them on the basis of the amount of resources required by algorithms

computing those functions when they are executed by paradigmatic machines (like Turing

machines or Register Machines). Resources of interest here are computation time or space

and bounds are expressed as functions of the size of the input to the algorithm. In other

words, computational complexity aims at understanding how many resources is neces-

sary and sufficient to perform certain computational tasks and to solve specific problems,

trying to establish tight upper and lower bounds [5].

For many computational problems no tight bounds are known. An illustrative example

is the well known P versus NP problem: for all NP-Complete problems the current upper

and lower bounds lie exponentially far apart. That is, the best known algorithms for these

computational problems need exponential time (in the size of the input) but the best lower

bounds are of a linear nature.



24 Chapter 3. Implicit Computational Complexity

An important basic idea here is that one of a complexity class. A complexity class can

be thought of as a collection of computational problems, all of which share some com-

mon features with respect to the computational resources needed to solve those problems.

A complexity class can be defined as the collection of all those functions which can be

computed by an algorithm working within resource bounds of a certain kind. As an exam-

ple, we can define the class FP of those functions which can be computed in polynomial

time, i.e. within an amount of computation time bounded by a polynomial on the size of

the input. As another example, we can form the class of those functions which can be

computed in logarithmic space.

Starting from the early nineties, several implicit characterizations of the various com-

plexity classes have been introduced, starting from FP and later generalizing the approach

to many other classes. Implicit here means that classes are not given by constraining the

amount of resources a machine is allowed to use, but rather by imposing linguistic con-

straints on the way algorithms are formulated in a suitable programming language. This

idea has developed into an area called implicit computational complexity (ICC) which

studies machine-free characterizations of complexity classes. ICC has been mainly de-

veloped in the functional programming paradigm using ideas from primitive recursion

(Bellantoni and Cook [2]; Leivant [21]) , proof-theory and linear logic (Girard [14]),

rewriting systems and type systems (Leivant and Marion [22]; Hofmann [18]). ICC re-

sults usually include both a soundness and a completeness theorem: the first one states

that all programs which satisfy a given criterion ensure a certain quantitative property.

The second one states that all the functions (or problems) of a functional complexity class

can be programmed in a given language (consisting of programs which satisfy some spe-

cific criteria). For instance, in the case of polynomial time complexity, soundness refers

to the possibility of evaluating programs in polynomial time, whereas completeness refers

to the class P of problems solvable in polynomial time. Theorems of this kind have been

given for many systems, including safe and ramified recursion (Bellantoni and Cook [2];

Leivant [21]), variants of linear logic (Girard [14]).

One of the main motivations for ICC comes from programming language theory, be-

cause ICC suggests ways to control the complexity properties of programs, which is a



Chapter 3. Implicit Computational Complexity 25

difficult issue because of its infinite nature. However, extensional correspondence with

complexity classes is usually not enough: a programming language (or a static analysis

methodology for it) offering guarantees in terms of program safety is plausible only if it

captures enough interesting and natural algorithms. In turn, this cannot be guaranteed by

merely requiring that the system corresponds extensionally to a complexity class. This

issue has been pointed out by several authors as i.e. Hofmann [18], and advances have

been made in the direction of more liberal ICC systems: some examples are type systems

for non-size-increasing computation (Hofmann [18]) and quasi-interpretations (Bonfante

et al. [4]).

In the remaining of this chapter we introduce some basic notions concerning ICC and

in particular we describe the approaches of Bellantoni and Cook [2] and of Leivant [21]

because this will be the basis for our work.

3.1 Prelimiaries

In order to explain more precisely ICC we first need to be more precise on how we model

the time and the space needed by a program executing an algorithm. Here we will be

concerned with time only, however analogous considerations apply to space.

First of all we have to refer to an execution machine. In our case this can be the Turing

Machine or the Register Machine. Given a, say, Turing program δ computed by a Turing

Machine P . We say that it works in time f : N → N iff for every initial configuration

IN s
P , a final configuration FCsP is reached in, at most, f(|s|) computation steps (that is,

each computation uses at most n ≤ f(|s|) transitions). In case f is polynomial we say that

P works in polynomial time (the terminology is analogous for other classes of functions).

The class FP is the class of functions which are computable in polynomial time:

{f : Σ∗ → Σ∗|f is computed by some Turing machine P working in polynomial time}

FP is one of the most interesting classes since it is universally accepted as somehow

capturing the intuitive notion of a feasible function, namely one which can be computed



26 Chapter 3. Implicit Computational Complexity

in an amount of time which grows in an acceptable way with respect to the size of the

input. Such a class is closed by composition, see for example [8].

Now the question that implicit complexity addresses is whether it is possible to de-

fine such classes as FP by way of function algebras, thus avoiding reference to explicit

machine models, but also without any reference to polynomials. Usually these implicit

characterizations of complexity classes are obtained by defining suitable restrictions on

the form that generic partial recursive functions (or their counterpart in a suitable formal-

ism such a a functional language) assume. More precisely, often one poses restrictions of

the form of recursion which is allowed.

For example, one of the earliest results in ICC, due to Bellantoni and Cook [2], shows

that an implicit characterization of the polynomial time computable functions can be ob-

tained by means of a function algebra in the style of the one of general recursive functions

where, however, a restricted form of recursion (called safe recursion) is used. This will

be made more precise in the next section.

3.2 Safe Recursion

In this section we describe safe recursion following the original paper [2]. Safe functions

are functions which are identified by pairs (f, n), where f : Bm → B and 0 ≤ n ≤ m and

B = {0, 1}∗ (we could use a different alphabet here to construct words, however we use

B = {0, 1} for simplicity). The number n identifies the number of the, so called, normal

arguments of f (which by convention are the first n). The remaining (m− n) arguments

are called safe. Following [2] we use semicolons to separate normal and safe arguments:

so, if (f, n) is a safe function, we write f(x;y) to emphasize that x are the n normal

arguments while y are the safe arguments.

The idea of separating “normal” arguments from “safe” ones is that safe functions can

perform any (polytime) operation on their normal arguments, while they can apply only

a restricted set of operations to safe inputs: these restricted operations do not increase

the length by more than an addictive constant. The specific notion of Safe recursion and

safe composition used by safe functions ensure that the recursive value is substituted in a



Chapter 3. Implicit Computational Complexity 27

safe position and will remain in a safe position without being copied to a normal position.

This ensures that the depth of sub-recursion cannot depend on the value being recursively

computed, thus avoiding the blowup in complexity. In other words, one can input a large

value in safe positions without greatly increasing the size of the function.

We provide now the definition of safe functions starting from basic functions.

• The Constant function (e, 0) where e : B→ B always returns the empty string ε.

• The Successor function (ca, 0) where ca : B → B is defined as follows: ca(;w) =

a · w, where a ∈ {0, 1}.

• The Predecessor function (p, 0) where p : B → B is defined as follows: p(; ε) = ε,

p(; a · w) = w where a ∈ {0, 1}.

• The Case function (case, 0) where case : B3 → B is defined as follows: case(; ε, w, v) =

w, case(; a · x,w, v) = w and case(; b · x,w, v) = v, where a, b ∈ {0, 1} and a 6= b

• A projector operator that is defined in the usual way (as in the previous chapter).

Then, functions can be formed by safe recursion on notation or by safe composition:

• Suppose that (f : Bm → B, n), that (ḡ : Bk → B, k) and ḡ is a vector of n

functions, and that (h̄ : Bk+i → B, k) where h̄ is a vector of m functions. Then

the safe composition of safe functions above is the safe function (p : Bk+i → B, k)

defined as follows:

p(w;v) = f(ḡ(w; ); h̄(w;v)).

• Suppose that, for every 1 ≤ i ≤ n and for every a ∈ {0, 1}, functions (h : Bm →
B, n) and (ga : Bm+2 → B, n + 1) are safe functions. Then for every 1 ≤ i ≤ n,

the function (f : Bm+1 → B, n+ 1) defined as follows:

f(ε,w;v) = h(w;v);

f(a · x,w;v) = ga(x,w;v, f(x,w;v));

are said to be defined by safe recursion on notation from (h, n) and (ga, n+ 1).



28 Chapter 3. Implicit Computational Complexity

We denote by B the smallest set of functions which includes the basic functions above

and which is closed under safe composition and safe recursion. It is worth noting that in

B we do not have a minimization operator and we have a set of basic functions which is

larger than in the standard case of partial recursive functions. In the work [2] it is proved

that a soundness result, showing that B ⊆ FP, and a completeness ones, which shows

that FP ⊆ B.

3.3 Ramified Recurrence

We introduce now another form a restricted recursion, called Ramified Recurrence which

has been defined by Leivant [21] in order to restrict the set of functions definable via

recursion and which also allows to characterize the polytime functions. The main idea

of ramified recurrence is to restrict the domain and codomain of recursion by using the

concept of tier.

Intuitively, any function and argument position comes with a tier. Equivalently, given

a set of base data W we have an infinite number of copies of it W0,W1, · · · where Wj

represents the elements at the jthabstraction level (tier). The constructor cja is the general

constructor c at the level j. When a variable x ranges over Wi we write that the tier(x) =

i.

Base functions are available at any tier and composition is tier-preserving. Recur-

sion is possible only over a variable with tier greater than that of the function and this

restriction avoid complexity blow up.

More precisely, following [21], we have the following basic functions:

– the ε function ε : W→W is defined as ε(v) = ε

– the Concatenation fucntion ca : W→W is defined as ca(v) = a · v
– the Projection function Πk

n : Wn →W is defined as: Πk
n(v) = vk

The Composition of functions f : Wn → W, g1 : Wk → W, . . . , gn : Wk → W as

the function f(g1, . . . , gn) : Wk →W defined as follows: h(v) = f(g1(v), · · · , gn(v))

In [21] is proved that composition is a particular case of Recurrence over W which

takes the form:



Chapter 3. Implicit Computational Complexity 29

f(ε,y) = gε(y)

f(a · w,y) = ga(a
′
, w,y) where a′ = f(w,y)

where a ∈ Σ and f : W×Wm → W, ga : W×W×Wm → W, for all a ∈ Σ. We

use f = rec(gε, ga∈Σ) as a shorthand for previous definition of recurrence.

We call functions ga the recurrence functions, a′ is the critical argument and a · w is

the recurrence argument.

The following construction is redundant in presence of primitive recursion, but we

prefer to introduce explicitly it following Leivant’s paper which defines the function case

as an example of flat recursion. The flat recursion is a recursion which has not critical

argument in his definition.

Definition 3.1 (Case Distinction) If gε : Wk → W and for every a ∈ Σ, ga : Wk+1 →
W, we define a function h : Wk+1 → PW by case distinction by stipulating that h(ε,y) =

gε(y) while h(a · w,y) = ga(w,y). The function h is denoted as case(gε, {ga}a∈Σ).

Finally Ramified recurrence is defined as follows:

fram(a · v,w) = ga(fram(v,w), v,w)

where the tier j of the recurrence argument of fram be higher than the tier of the critical

argument.

In [21] it is proved that the class of functions constructed by using ramified recurrence

is the same as that one of polytime functions. This result is proved by performing the

following steps:

– First one can prove, by using a careful encoding, that a form of simultaneous primitive

recursion is available in predicative recursion.

– One knows that CTMs are equivalent, in terms of expressivity, to register machines;

– Then any function definable by predicative recurrence can be proved computable by a

polytime register machine.

– Last, one can give an embedding of any polytime register machine into a predicatively

recursive function by using of simultaneous recurrence.



30 Chapter 3. Implicit Computational Complexity



Chapter 4

Probabilistic Turing Machines

In this chapter we first recall some basic notions on Probabilistic Turing Machines (PTM)

and then we provide a notion of function computed by a PTM which is somehow different

from those which are common in the literature. In fact, as mentioned in the introduction,

rather than reducing a probabilistic computation to a deterministic one, we want to study

probabilistic computation directly. From this perspective for us a PTM is a device which

computes what we call a probabilistic function, i.e. a function from a discrete set (e.g.

natural numbers or binary strings) to distributions over the same set.

As we have seen in the previous chapter, Turing defined a class of computing ma-

chines now known as Turing machines, which may be used to characterize a class of

functions known as the partially recursive functions. Turing machines are deterministic

machines. On the other hand, probabilistic computation devices have received a wide

interest in computer science already in the Fifties [12] and early Sixties [28]. A natural

question which arose was then to see what happened if random elements were allowed

in a Turing machine. This question led to several formalizations of probabilistic Turing

machines (PTM) [12, 31] which, essentially, are Turing machines with the ability to flip

coins in order to make random decisions, and to several results concerning the computa-

tional complexity of PTMs (see [26]). In particular, one of the main questions, which has

been asked from many different technical perspectives, is the following: does the addition

of random elements increase the expressive power of the machine? Already the authors of

[12] investigated whether a machine which has access to random inputs has an expressive



32 Chapter 4. Probabilistic Turing Machines

power greater than a traditional deterministic machine. The random inputs were required

to be drawn from a source of independent, equiprobable binary digits, and the tasks to be

performed by the machines were the enumerations of sets of natural numbers. This ques-

tion was answered in the negative. Later on, Santos [31, 32] showed that probabilistic

Turing machines could be used to characterize the class of partially computable random

functions. The class of ordinary functions which are partially computable random func-

tions was shown to be equivalent to the class of partially recursive functions even though

there exist classes of ordinary functions characterizable by PTM’s which contain the class

of partially recursive functions as proper sub-class [32].

It is worth noticing that in most works on probabilistic Turing machines the results of

a PTM’s computation are considered only the elements which have an associated prob-

ability greater than 1
2
. For example, Gill [13] defines the output of a PTM M on input

x as the element y such that P{M(x = y)} > 1
2
. This means that, according to this

approaches, the final result of a PTM is at most one element of the distribution on the

results and for this reason we call all these approaches reductionist, since a probabilistic

computation is somehow reduced to a deterministic one, where for one input one has at

most one output.

As mentioned above, in this thesis we take a completely different view, since from

our prospective a probabilistic Turing machine is a device computing a “probabilistic

function”, i.e. a function from a discrete set to distributions over the same set. Hence,

in the following, after some standard notions on PTM, we will provide a different defi-

nition of the function computed by a PTM. Finally we observe that distributions which

correspond to outputs of PTM’s computation are essentially lower semi-computable semi-

distributions (or measures) which have been extensively studied in other contexts (see the

book [23]) .

4.1 Basic definitions

A randomized algorithm is an algorithm that may involve choices such as initializing a

variabile with a random value chosen from some range. In practice randomized algo-



Chapter 4. Probabilistic Turing Machines 33

rithms are implemented using a random number generator. In order to model randomized

algorithms we use probabilistic Turing machines, as we use classical Turing machine to

model deterministic algorithms.

Following [13], PTMs M can be seen as a Turing Machine with two transition func-

tions δ0, δ1. At each computation step, either δ0 or δ1 can be applied, each with probability
1
2
. Then, in a way analogous to the deterministic case, we can define a notion of a (ini-

tial, final) configuration for a PTM M . In the following, Σb denotes the set of possible

symbols on the tape, including a blank symbol �; Q denotes the set of states; Qf ⊆ Q

denotes the set of final states and qs ∈ Q denotes the initial state. Below we give the

formal definitions.

Definition 4.1 (Probabilistic Turing Machine) A probabilistic Turing machine is a Tur-

ing machine endowed with two transition functions δ0, δ1. At each computation step the

transition function δ0 can be applied with probability 1
2

and the transition δ1 can be ap-

plied with probability 1
2
.

According to our definition of PTM, the functions δ0, δ1 are defined also in case they

produce the same output (starting from the same input).

Analogously to the classic case, our PTM has three types of configurations:

– A General Configuration is any configuration of a PTM M ;

– An Initial Configuration is the configuration which contain the initial state of a PTM

M ;

– A Final Configuration is a configurations which contains a final state of the PTM M .

Definition 4.2 (General Configuration of a PTM) Let M be a PTM. We define a PTM

configuration as a 4-tuple 〈s, a, t, q〉 ∈ Σ∗b × Σb × Σ∗b ×Q such that:

– The first component, s ∈ Σ∗b , is the portion of the tape lying on the left of the head.

– The second component, a ∈ Σb, is the symbol the head is reading.

– The third component, t ∈ Σ∗b , is the portion of the tape lying on the right of the head.

– The fourth component, q ∈ Q is the current state.

Moreover, we define the set of all configurations as CM = Σ∗b × Σb × Σ∗b ×Q.



34 Chapter 4. Probabilistic Turing Machines

Definition 4.3 (Initial and Final Configurations of a PTM) Let M be a PTM. We de-

fine an initial configuration ofM for the string s as a configuration in the form 〈ε, a, v, qs〉 ∈
Σ∗b × Σb × Σ∗b × Q such that: s = a · v and the fourth component, qs ∈ Q, is the initial

state. We denote with IN s
M the set of all such initial configurations. Similarly, we define

a final configuration of M for s as a configuration 〈s, , ε, qf〉 ∈ Σ∗b ×Σb×Σ∗b ×Qf . The

set of all such final configurations for a PTM M is denoted by FCsM .

For a function T : N → N, we say that a PTM M runs in time bounded by T if for any

input x, M halts on input x within T (|x|) steps independently of the random choices it

makes. Thus, M works in polynomial time if it runs in time bounded by P , where P is

any polynomial.

As previously mentioned, for us the function computed by a PTM M associates to

each input s, a distribution which indicates the probability of reaching a final configuration

ofM from IN s
M . It is worth noticing that, differently from the deterministic case, since in

a PTM the same configuration can be obtained by different computations, the probability

of reaching a given final configuration is the sum of the probabilities of reaching the

configuration along all computation paths, of which there can be (even infinitely) many.

Definition 4.4 (String Distribution and Probabilistic String Function) A string distri-

bution on Σ∗ is a function D : Σ∗ → R[0,1] such that
∑

s∈Σ∗ D(s) ≤ 1. PΣ∗ denotes the

set of all string distributions on Σ∗. A probabilistic string function (PSF) is a function

from (Σ∗)k to PΣ∗ , where (Σ∗)k stands for the set of k-tuples in Σ∗. We use the expres-

sion {sp11 , . . . , s
pk
k } to denote the distribution D defined as D(s) =

∑
si=s

pi. Observe

that
∑
D =

∑k
i=1 pi. When this does not cause ambiguity, a string distribution is simply

called a distribution.

In order to define more precisely the function computed by a PTM we first observe

that, given a PTM M with a initial state csi and input x, we can represent a computation

as a binary number n, where the i-th digit represent the δ function which has been applied

at the i-th derivation step: if the digit is 0 then δ0 has been applied, if it is 1 then δ1 was

used.



Chapter 4. Probabilistic Turing Machines 35

We give a formal definition of the function `n, which intuitively represents the se-

quence of transactions applied starting from the initial configuration csi in order to obtain

the final configuration csn.

Definition 4.5 Let M be a PTM . For let a ∈ {0, 1} we denote by `a the function

defined in Definition 2.7 where it is assumed that the function δa of M is used. Given

a binary number n we defined inductively (on the number of digits in n) the function

`n : CM → CM as follows: if, for all w ∈ Σ∗ where w is an Initial Configuration

`n (csi) =

 `a (csi) if n = a and a ∈ {0, 1}
`a (`m (csi)) if n = a ·m and a ∈ {0, 1}

Using the previously defined function we can define CCM(x, csk) as the set of binary

numbers representing all the computations for the machine M starting with the configu-

ration csi, input x and ending with the configuration csk. More precisely we can define

CCM(x, csk) = {y | `y (csi) = csk}

Then we can define the computed function of a PTM as follows.

Definition 4.6 (Probabilistic Turing computable function) LetM be a PTM the func-

tion f : CM → PΣ∗ computed by M is defined as follows

f(csi)(csfi) =

 Σy∈CCM (x,csfi)
1

2|y|
if csfi ∈ FCsM

0 otherwise

4.2 A Fixpoint Characterization of the Function Com-

puted by a PTM

In this section is presented the function computed by a PTM through a fixpoint construc-

tion. We can define a partial order on string distributions by a point wise extension of the

usual order on R:

Definition 4.7 The relation vPΣ∗⊆ PΣ∗ × PΣ∗ is defined by stipulating that A vPΣ∗ B if

and only if, for all s ∈ Σ∗, A(s) ≤ B(s).



36 Chapter 4. Probabilistic Turing Machines

The proof of the following is immediate.

Proposition 4.1 The structure (PΣ∗ ,vPΣ∗ ) is a POSET.

Now we can define the domain CEV of those functions computed by a PTM M from a

given configuration1. This set is defined as follows and will be used as the domain of the

functional whose least fixpoint gives the function computed by a PTM.

Definition 4.8 The set CEV is defined as {f |f : CM → PΣ∗}

Inheriting the structure on PΣ∗ we can define a partial order on CEV as follows.

Definition 4.9 The relation vCEV⊆ CEV × CEV is defined for A,B ∈ CEV A vCEV B if

and only if, for all c ∈ CM , A(c) vPΣ∗ B(c)

Also the proof of the following is immediate.

Proposition 4.2 The structure (CEV ,vCEV) is a POSET.

Given a POSET, the notions of least upper bound, denoted by
⊔

, and of an ascending

chain are defined as usual (see also Chapter 2). Next, the bottom elements are defined as

follows.

Lemma 4.1 Let d⊥ : Σ∗ → R[0,1] be defined by stipulating that d⊥(s) = 0 for all s ∈ Σ∗.

Then, d⊥ is the bottom element of the poset (PΣ∗ ,vPΣ∗ ).

Lemma 4.2 Let b⊥ : CM → PΣ∗ be defined by stipulating that b⊥(c) = d⊥ for all c ∈ CM .

Then, b⊥ is the bottom element of the poset (CEV ,vCEV).

Now, it is time prove that the posets at hand are also ω-complete:

Proposition 4.3 The POSET (PΣ∗ ,vPΣ∗ ) is a ωCPO.

1Of course CEV is a proper superset of the functions computed by PTMs.



Chapter 4. Probabilistic Turing Machines 37

Proof: We need to prove that for each chain

c1 vPΣ∗ c2 vPΣ∗ c3 . . .

the least upper bound
⊔
i ci exists. First note that since

∑
s∈Σ∗ ci(s) ≤ 1, from definition

ofvPΣ∗ it follows that, for each s ∈ Σ∗, c1(s) ≤ c2(s) ≤ . . . ≤ 1 holds. This implies that,

for each s ∈ Σ∗, the limit limi→∞ ci(s) exists. Hence, defining cLIM as the distribution

such that cLIM (s) = limi→∞ ci(s), we have that cLIM =
⊔
i ci. Indeed, cLIM wPΣ∗ ci, and

any upper bounds of the family {ci}i∈N is clearly greater or equal to cLIM . �

Proposition 4.4 The POSET (CEV ,vCEV) is a ωCPO.

Proof: Analogous to the previous one. �

We can now define a functional FM on CEV which will be used to define the function

computed by M via a fixpoint construction. Intuitively, the application of the functional

FM describes one computation step. Formally:

Definition 4.10 Given a PTM M , we define a functional FM : CEV → CEV as:

FM(f)(C) =

 {s1} if C ∈ FCsM ;

1
2
f(δ0(C)) + 1

2
f(δ1(C)) otherwise.

The following proposition is needed in order to apply the usual fix point result.

Proposition 4.5 The functional FM is continuos.

Proof: We prove that

FM(
⊔
i∈N

fi) =
⊔
i∈N

(FM(fi)),

or, saying another way, that for every configuration C,

FM(
⊔
i∈N

fi)(C) =
⊔
i∈N

(FM(fi))(C).

Now, notice that for every C,

FM(
⊔
i∈N

fi)(C) =

 {s1} if C ∈ FCsM
1
2
((
⊔
i∈N fi)(C1)) + 1

2
((
⊔
i∈N fi)(C2)) if C → C1, C2



38 Chapter 4. Probabilistic Turing Machines

and, similarly, that:

⊔
i∈N

(FM(fi))(C) =
⊔
i∈N

 {s1} if C ∈ FCsM
1
2
fi(C1) + 1

2
fi(C2) if C → C1, C2

Now, given any C, we distinguish two cases:

– If C ∈ FCsM , then

FM(
⊔
i∈N

fi)(C) = {s1} =
⊔
i∈N

{s1} =
⊔
i∈N

(FM(fi))(C).

– If C → C1, C2, then

FM(
⊔
i∈N

fi)(C) =
1

2
((
⊔
i∈N

fi)(C1)) +
1

2
((
⊔
i∈N

fi)(C2))

=
1

2
(
⊔
i∈N

fi(C1)) +
1

2
(
⊔
i∈N

fi(C2))

=
⊔
i∈N

1

2
fi(C1) +

⊔
i∈N

1

2
fi(C2) =

⊔
i∈N

(
1

2
fi(C1) +

1

2
fi(C2))

=
⊔
i∈N

(FM(fi))(C).

This concludes the proof. �

Theorem 4.1 The functional defined in 4.10 has a least fix point which is equal to
⊔
n≥0 F

n
M(b⊥).

Proof: Immediate from the well-known fix point theorem for continuous maps on a

ωCPO. �

Such a least fixpoint is, once composed with a function returning IN s
M from s, the

function computed by the machine M , which is denoted as IOM : Σ∗ → PΣ∗ . The set of

those functions which can be computed by any PTMs is denoted as PC .

The notion of a computable probabilistic function subsumes other key notions in prob-

abilistic and real-number computation. As an example, computable distributions can be

characterized as those distributions on Σ∗ which can be obtained as the result of a func-

tion in PC on a fixed input. Analogously, computable real numbers from the unit interval

[0, 1] can be seen as those elements of R in the form f(0)(0) for a computable function

f ∈PC .



Chapter 5

Probabilistic Recursion Theory

In this chapter we provide a characterization of the functions computed by a Probabilistic

Turing Machine (PTM) in terms of a function algebra à la Kleene. We first define proba-

bilistic recursive functions which are the elements of our algebra. Next we show that this

class coincide with the class PC of probabilistic functions computed by a Probabilistic

Turing Machine.

5.1 Probabilistic Recursive Functions

Since PTMs compute probability distributions, the functions that we consider in our al-

gebra have domain Nk and codomain N → R[0,1] (rather than N as in the classic case).

The idea is that if f(x) is a function which returns p ∈ R[0,1] on input y ∈ N, then p is the

probability of getting y as the output when feeding f with the input x. We note that we

could extend our codomain from N → R[0,1] to Nk → R[0,1], however we use N → R[0,1]

in order to simplify the presentation.

Definition 5.1 (Distributions and Probabilistic Functions) A distribution on N is a func-

tion D : N→ R[0,1] such that
∑

n∈ND(n) ≤ 1.
∑

n∈ND(n) is often denoted as
∑
D. Let

PN be the set of all distributions on N. A probabilistic function (PF) is a function from Nk

to PN, where Nk stands for the set of k-tuples in N. We use the expression {np11 , . . . , n
pk
k }

to denote the distribution D defined as D(n) =
∑

ni=n
pi. Observe that

∑
D =

∑k
i=1 pi.

When this does not cause ambiguity, a distribution is simply called a distribution.



40 Chapter 5. Probabilistic Recursion Theory

Please notice that probabilistic functions are always total functions, but their codomain

is a set of distributions which do not necessarily sum to 1, but rather to a real number

smaller or equal to 1, this way modeling the probability of divergence. For example,

the nowhere-defined partial function Ω : N ⇀ N of classic recursion theory becomes a

probabilistic function which returns the empty distribution ∅ on any input. The first step

towards defining our function algebra consists in giving a set of functions to start from:

Definition 5.2 (Basic Probabilistic Functions) The basic probabilistic functions (BPFs)

are defined as follows:

– The zero function z : N→ PN defined as: z(n)(0) = 1 for every n ∈ N;

– The successor function s : N→ PN defined as: s(n)(n+ 1) = 1 for every n ∈ N;

– The projection function Πn
m : Nn → PN defined as: Πn

m(k1, · · · , kn)(km) = 1 for

every positive n,m ∈ N such that 1 ≤ m ≤ n;

– The fair coin function r : N→ PN that is defined as:

r(x)(y) =

 1
2

if y = x

1
2

if y = x+ 1

The first three BPFs are the same as the basic functions from classic recursion theory,

while r is the only truly probabilistic BPF.

The next step consists in defining how PFs compose. Function composition of course

cannot be used here, because when composing two PFs g and f the codomain of g does

not match with the domain of f . Indeed g returns a distribution N → R[0,1] while f

expects a natural number as input. What we have to do here is the following. Given an

input z ∈ N and an output y ∈ N for the composition f • g, we apply the distribution

g(z) to any value x ∈ N. This gives a probability g(z)(x) which is then multiplied

by the probability that the distribution f(x) associates to the value y ∈ N. If we then

consider the sum of the obtained product g(z)(x) · f(x)(y) on all possible x ∈ N we

obtain the probability of f • g returning y when fed with z. The sum is due to the fact

that two different values, say x1, x2 ∈ N, which provide two different distributions f(x1)

and f(x2) must both contribute to the same probability value f(x1)(y) + f(x2)(y) for a

specific y. In other words, we are doing nothing more than lifting f to a function from



Chapter 5. Probabilistic Recursion Theory 41

distributions to distributions, then composing it with g. Formally we have the following

definition.

Definition 5.3 (Composition) We define the composition f • g : N → PN of two func-

tions f : N→ PN and g : N→ PN as:

((f • g)(z))(y) =
∑
x∈N

f(x)(y) · g(z)(x).

The previous definition can be generalized to functions taking more than one parameter

in the expected way:

Definition 5.4 (Generalized Composition) We define the generalized composition of func-

tions f : Nn → PN, g1 : Nk → PN, . . . , gn : Nk → PN as the function f � (g1, . . . , gn) :

Nk → PN defined as follows:

((f � (g1, . . . , gn))(z))(y) =
∑

x1,...,xn∈N

(
f(x1, . . . , xn)(y) ·

∏
1≤i≤n

gi(z)(xi)

)
.

With a slight abuse of notation, we can treat random functions as ordinary functions when

forming expressions. Suppose, as an example, that x ∈ N and that f : N3 → PN,

g : N → PN and h : N → PN. Then the expression f(g(x), x, h(x)) stands for the

distribution in PN defined as follows: (f � (g, id , h))(x), where id = Π1
1 is the identity in

PF.

The way we have defined probabilistic functions and their composition is reminiscent

of, and indeed inspired by, the way one defines the Kleisly category for the Giry monad

[15], starting from the category of partial functions on sets. This categorical way of seeing

the problem can help a lot in finding the right definition, but by itself is not adequate to

proving the existence of a correspondence with machines like the one we want to give

here.

Primitive recursion is defined as in Kleene’s algebra, provided that one uses composi-

tion as previously defined:



42 Chapter 5. Probabilistic Recursion Theory

Definition 5.5 (Primitive Recursion) Given functions g : Nk+2 → PN, and f : Nk →
PN, the function h : Nk+1 → PN defined as:

h(x, 0) = f(x); h(x,m+ 1) = g(x,m, h(x,m));

is said to be defined by primitive recursion from f and g, and is denoted as rec(f, g).

We now turn our attention to the minimization operator which, as in the deterministic

case, is needed in order to obtain the full expressive power of (P)TMs. The definition

of this operator is in our case delicate and requires some explanation. Recall that, in the

classic case, the minimization operator allows from a partial function f : Nk+1 ⇀ N, to

define another partial function, call it µ f , which computes from x ∈ Nk the least value of

y such that f(x, y) is equal to 0, if such a value exists (and it is undefined otherwise). In

our case, again, we are concerned with distributions, hence we cannot simply consider the

least value on which f returns 0, since functions return 0 with a certain probability. The

idea is then to define the minimization µ f as a function which, given an input z ∈ Nk,

returns a distribution associating to each natural y the probability that the result of f(z, y)

is 0 and the result of f(z, x) is positive for every x < y. Formally:

Definition 5.6 (Minimization) Given a PF f : Nk+1 → PN, we define another PF µ f :

Nk → PN as follows:

µ f(z)(y) = f(z, y)(0) · (
∏
x<y

(
∑
k>0

f(z, x)(k))).

We are finally able to define the class of functions we are interested in as follows.

Definition 5.7 (Probabilistic Recursive Functions) The class PR of probabilistic re-

cursive functions is the smallest class of probabilistic functions that contains the basic

functions (Definition 5.2) and is closed under the operation of General Composition (Def-

inition 5.4), Primitive Recursion (Definition 5.5) and Minimization (Definition 5.6).

It is easy to show that PR includes all partial recursive functions. This can be done by

first defining an extended Recursive Function as follows.



Chapter 5. Probabilistic Recursion Theory 43

Definition 5.8 (Extended Recursive Functions) For every partial recursive function f :

Nk → N we define the extended function pf : Nk → PN as follows:

pf (x)(y) =

 1 if y = f(x)

0 otherwise

Proposition 5.1 If f is a partial recursive function then pf as defined above is in PR.

Proof: The proof goes by induction on the structure of f as a partial recursive function.

• f is the zero function, so f : N → N defined as: f(x) = 0 for every x ∈ N. Thus

pf is in PR because pf = z.

• f is the successor function, so f : N → N defined as: f(x) = x + 1 for every

x ∈ N. Thus pf is in PR because pf = s.

• f is the projection function, sofnm : Nn → N defined as: fnm(x1, · · · , xn) = xm for

every positive n ∈ N and for all m ∈ N, such that 1 ≤ m ≤ n. Thus pf is in PR

because pf = Πn
m.

• f is defined by composition from h, g1, · · · , gn as:

f(x) = h(g1(x), · · · , gn(x))

where h : Nn → N and gi : Nk → N for every 1 ≤ i ≤ n are partial recursive

functions. By definition of f(x) we have

pf (x)(y) =

 1 if y = h(g1(x), · · · , gn(x))

0 otherwise

We see that h, g1, · · · , gn are all partial recursive functions. So we have by defini-

tion of pf that

pg1(x)(y) =

 1 if y = g1(x)

0 otherwise

...



44 Chapter 5. Probabilistic Recursion Theory

pgn(x)(y) =

 1 if y = gn(x)

0 otherwise

ph(z)(y) =

 1 if y = h(z)

0 otherwise

By hypothesis we observe that pg1 , · · · , pgn , ph ∈PR and

((ph � (pg1 , . . . , pgn))(x))(y) =
∑

z1,...,zn∈N

ph(z1, . . . , zn)(y) · (
∏

1≤i≤n

pgi(x)(zi))

=
∑

z1,...,zn∈N

ph(z1, . . . , zn)(y) · (
∏

zi=gi(x)

1)

=
∑

y=h(z1,··· ,zn)

1 · (
∏

zi=gi(x)

1)

=
∑

y=h(g1(x),··· ,gn(x))

1

= pf (x)(y)

Thus pf is in PR because pf = ((ph � (pg1 , . . . , pgn))(x))(y) .

• f is defined by primitive recursion so f : Nk × N→ N defined as:

f(x, 0) = h(x)

f(x, n+ 1) = g(x, n, f(x, n))

where g : Nk × N× N→ N and h : Nk → N are partial recursive functions.

pf is defined as:

pf (x, n)(zn) =

 1 if zn = rec(h, g)

0 otherwise

We see that h, g are all partial recursive functions. So we have by definition of pf

that



Chapter 5. Probabilistic Recursion Theory 45

ph(x)(z0) =

 1 if y = h(x)

0 otherwise

pg(x, n, zn)(zn+1) =

 1 if zn+1 = g(x, n, f(x, n))

0 otherwise

By hypothesis we observe that pg, ph ∈ PR. Now if n = 0 then pf (x, 0) =

ph(x) and if n > 0 then pf (x, n + 1) = pg(x, n, zn). We observe that ((pg �
(id , pf ))(x, n))(zn+1) =

=
∑

x1,...,zk,n,zn∈N

pg(x1, . . . , xk, n, zn)(zn+1) · (
∏

1≤i≤k+1

id(x, n)(x, n) · f(x, n)(zn))

=
∑

x1,...,zk,n,zn∈N

pg(x1, . . . , xk, n, zn)(zn+1) · (
∏

x=x,n=n,zn=f(x,n)

1)

=
∑

zn+1=g(x1,...,xk,n,zn)

1 · (
∏

x=x,n=n,zn=f(x,n)

1)

=
∑

zn+1=g(x,n,f(x,n))

1

= pf (x, n+ 1)(zn+1)

Thus pf is in PR because pf = rec(ph, pg).

• f is defined by minimization so:

f(x) = µ y (g(x, y) = 0)

pf is defined as:

pf (x)(z) =

 1 if z = f(x)

0 otherwise

by definition of f(x) we have:

pf (x)(z) =

 1 if z = µ y (g(x, y) = 0)

0 otherwise



46 Chapter 5. Probabilistic Recursion Theory

We know that g is a recursive function, so we have that:

pg(x, z)(k) =

 1 if k = g(x, z)

0 otherwise

By hypothesis pg ∈PR. We observe that:

µ pg(x)(z) = pg(x, z)(0) · (
∏
n<z

(
∑
k>0

pg(x, n)(k)))

= pg(x, z)(0) · (
∏
n<z

(
∑

k>0,k=g(x,n)

1))

= pg(x, z)(0) · (
∏

n<z,k>0,k=g(x,n)

1)

=


1 if z is the minimal values such that

g(x, z) = 0 and for all n < z g(x, z) > 0

0 otherwise

=

 1 if z = µ y (g(x, y) = 0)

0 otherwise

= pf (x)(z)

Thus pf is in PR because pf = µ pg

�

Example 5.1 The following are examples of probabilistic recursive functions:

– The identity function id : N→ PN, defined as id(x)(x) = 1. For all x, y ∈ N we have

that

id(x)(y) =

 1 if y = x

0 otherwise

on the other hand for every x, y ∈ N we have as a consequence, id = Π1
1, and, since

the latter is a basic function (Definition 5.2) id is in PR.



Chapter 5. Probabilistic Recursion Theory 47

– The probabilistic function rand : N→ PN such that for every x ∈ N, rand(x)(0) = 1
2

and rand(x)(1) = 1
2

can be easily shown to be recursive, since rand = r � z (and

we know that both r and z are BPF). Actually, rand could itself be taken as the only

genuinely probabilistic BPF, i.e., r can be constructed from rand and the other BPF by

composition and primitive recursion. We proceed by defining g : N3 → PN as follow:

g(x1, x2, z)(y) =

 1 if y = z + 1

0 otherwise

g is in PR because g = s � (Π3
3). Now we observe that the function add defined

by add(x, 0) = id(x) and add(x1, x2 + 1) = g(x1, x2, add(x1, x2)) is a probabilistic

recursive function, since it can be obtained from basic functions using composition and

primitive recursion. We can conclude by just observing that r = add � (Π1
1, rand).

– All functions we have proved recursive so far have the property that the returned dis-

tribution is finite for any input. Indeed, this is true for every probabilistic primitive

recursive function, since minimization is the only way to break this form of finiteness.

Consider the function f : N→ PN defined by

f(x)(y) =

 1
2y−x if y > x

0 otherwise

We define h : N→ PN as follows:

h(x) =

 1
2y

if y ≥ 1

0 otherwise

that is a probabilistic recursive function because

µ rand(y) = rand(y)(0) · (
∏
y<z

(
∑
k>0

rand(z)(k)))

thus rand(y)(0) = 1
2

and
∑

k>0 rand(z)(k) =
∑

k=1,2,··· rand(z)(k) = rand(z)(1) +

rand(z)(2) + · · · = 1
2

+ 0 + · · · = 1
2

for definition of rand.
∏

y<z
1
2

= 1
2y−1 . So

µ rand(y) =

 1
2y

if y ≥ 1

0 otherwise



48 Chapter 5. Probabilistic Recursion Theory

Then we observe that:

g(x)(y) = add� (µ rand , id)(x)(y)

So

add� (µ rand , id)(x)(y) =
∑
x1,x2

add(x1, x2)(y) · (µ rand(x1) ∗ id(x)(x2)) =
1

2y−x

because the function id(x)(x) = 1 and so x2 = x and µ rand(x1) = 1
2x1

if x1 > 0. So

x1 > 0. Now this is true if and only if x2 = x and x+ x1 = y and finally x1 = y − x.
�

5.2 Probabilistic Recursive Functions equals Functions

computed by Probabilistic Turing Machines

In this section we prove that probabilistic recursive functions are the same as probabilis-

tic computable functions, modulo an appropriate bijection between strings and natural

numbers which we denote (as its inverse) with (·).

In order to prove the equivalence result we first need to show that a probabilistic re-

cursive function can be computed by a PTM. This result is not difficult and, analogously

to the deterministic case, is proved by exhibiting PTMs which simulate the basic proba-

bilistic recursive functions and by showing that PC is closed by composition, primitive

recursion and minimization.

Analogously to the classic case this is done by the following Lemmata. These Lem-

mata allow us to define PTMs for all BPF and all operations.

Lemma 5.1 (Basic Functions are Computable) All Basic Probabilistic Functions are

Computable.

Proof: For every basic function from Definition 5.2, we can construct a probabilistic

Turing machine that computes it quite easily. More specifically, the proof is immediate for

functions, z, s,Π, by observing that they are deterministic, thus the usual Turing machine



Chapter 5. Probabilistic Recursion Theory 49

for them (seen as a PTM) suffice. As for the function r it can be simulated by a PTM M

which operates as follows:

1. M deletes all the input written on the tape;

2. M writes 1 or 0 on the tape, both with probability 1
2
, and then halts.

This concludes the proof. �

The composition of two computable probabilistic functions is itself computable:

Lemma 5.2 (Generalized Composition and Computability) Given Turing-Computable

f : Nn → PN, and g1 : Nk → PN, . . . , gn : Nk → PN the function f � (g1, . . . , gn) :

Nk → PN is itself Turing-Computable

Proof: We give an informal proof. We define a PTM, sayM , working on n+2 tapes. (We

know that PTMs with m > 1 tapes compute the same class of functions of PTMs with a

single tape.) The first tape is the input tape, on the next n tapes M computes g1, · · · , gn,

while on the last tape, M computes the function f on the results of g1, · · · , gn. The

machine M operates as follows:

1. it copies the input from the first to the next n tapes;

2. in the i + 1-th tape, the machine M computes the respective function gi, where 1 ≤
i ≤ n; this can of course be done, because, by induction, the gi are computable;

3. it copies the n outputs in the n tapes numbered 2, . . . , n+ 1 to the last tape;

4. computes the function f on the last tape and return the result z.

The machine M define above, by construction, computes g(i) on each of the n tapes

and then compose the result of these computation with the computation of f on the last

tape. One can then see that the distribution computed by M is

((f � (g1, . . . , gn))(x))(y) =
∑

z1,...,zn∈N

(
f(z1, . . . , zn)(y) ·

∏
1≤i≤n

gi(x)(zi)

)
.

Indeed, by our construction each gi and f are computable by PTM (operating on a single

tape); we call these PTM Mgi and Mf , respectively. Then we denote by fMgi
, fMf

the

output of these machines which, according to Definition 4.6, are the following:



50 Chapter 5. Probabilistic Recursion Theory

fMgi
(x)(zi) =

 Σk∈CCM (x,z)
1

2|k|
if z ∈ FCxM

0 otherwise

fMf
(z)(y) =

 Σp∈CCM (z,y)
1

2|p|
if y ∈ FCzM

0 otherwise

Then in our construction of the machine M above we compose the PTMs Mgi and Mf .

Since the output ofMgi is an input forMf , in the computation of the composition we have

to consider the path of each machine Mgi to arrive to a solution that will be the input for

Mf and the path of Mf that, starting from such a input, allow to reach a possible solution

y. Hence M computes the function fM :

fM(x)(y)) =


∏

1≤i≤n(Σk∈CCM (k,z)
1

2|k|
) ∗ Σp∈CCM (z,y)

1
2|p|

if y ∈ FCxM
0 otherwise

This concludes the proof. �

Lemma 5.3 (Primitive Recursion and Turing-Computability) Given Turing-Computable

g : Nk+2 → PN and f : Nk → PN the function rec(f, g) : Nk+1 → PN is itself Turing-

Computable.

Proof: We give an informal proof. We define a PTM, say M , working on 5 tapes. The

first tape is the input tape, on the next tape M computes the count down of our k + 1th

variable, on the third tape M computes g, on the fourth tape M computes the function f ,

and in the last it saves the result. The machine M operates as follows:

1. it copies in the second tape the k + 1th element of the input, and then it copies on the

fourth tape the first k elements of the input;

2. it computes f and saves the result on the last tape;

3. it verifies if the second tape is 0. In this case M stops and the last tape contains the

result, otherwise it copies the first k elements of the input from the first tape in the

third tape and then it copies the result present in the last tape on the third tape;

4. M decrements of the value on the second tape;

5. it computes g on the third tape and save the result on the last tape;



Chapter 5. Probabilistic Recursion Theory 51

6. it returns to the step 3.

In this case we can see M as the composition of content of k + 1th element in input of g

and of f . This concludes the proof.

�

Lemma 5.4 (Minimization and Turing-Computability) Given Turing-Computable f :

Nk+1 → PN, the function µ f : Nk → PN is itself Turing-Computable.

Proof: We give an intuitive proof. We take a PTM, said M with 4 tapes. The first tape is

the input tape, on the next tape M saves one element that we name y, on the third tape it

computes the function f and in the last tape it saves the result. The machine M operates

as follows:

1. it writes in the second tape 0 and it copies on the third tape the input and the value y

(present in the second tape);

2. it computes on the third tape the function f and saves the result on the last tape;

3. it verifies if the last tape contains the value 0. In this case it saves on the last tape the

element in the second tape and it stops, otherwise it increases y;

4. it copies in the third tape the input and y;

5. it returns to the step 3.

Assuming that on the last tape it is saved the result y of the function µ, we can see that

M computes the distribution:

f(i, y)(0) · (
∏
x<y

(
∑
k>0

f(i, x)(k)))

In fact, by hypothesis we have a PTM Mf which computes f and whose output distri-

bution is fMf
defined as follows:

fMf
(z, s)(0) =

 Σp∈CCM ((zs),0)
1

2|p|
if 0 ∈ FCz,sM

0 otherwise

The machine M that we have constructed starts the machine Mf , with input 0. If

the machine Mf returns 0 then the machine M ends its work and returns the probability

associated to the computation which lead to the result 0. On the other hand, if Mf returns



52 Chapter 5. Probabilistic Recursion Theory

a value x different from 0 then M restarts the computation of the machine Mf with input

1 , 2 and so until the computation of Mf returns the value 0. Thus the computation of

M produces a distribution which associates to y the probability that the result of Mf with

input y is 0 and is different from 0 on all inputs x < y. Hence the distribution fM which

is the output of M is the following:

fM(z)(y) =

 Σp∈CCM ((zs),0)
1

2|p|
· Σt∈CCM ((zk),x)

1
2|t|

if 0 ∈ FCz,sM z, s, k < s and x 6= 0

otherwise

This concludes the proof.

�

Hence we can prove the following theorem, showing that Probabilistic Recursive

Functions are computable by a probabilistic Turing machine.

Theorem 5.1 PR ⊆PC

Proof: Immediate from Lemmata 5.1, 5.2, 5.3 and 5.4. �

The most difficult part of the equivalence proof consists in proving that each proba-

bilistic computable function is actually recursive. Analogously to the classic case, a good

strategy consists in representing configurations as natural numbers, then the encoding the

transition functions of the machine at hand, call it M , as a (recursive) function on N. In

the classic case the proof proceeds by making essential use of the minimization operator

by which one determines the number of transition steps of M necessary to reach a final

configuration, if such number exists. This number can then be fed into another function

which simulates M (on an input) a given number of steps, and which is primitive recur-

sive. In our case, this strategy does not work: the number of computation steps can be

infinite, even when the convergence probability is 1. Given our definition of minimization

which involves distributions, this is delicate, since we have to define a suitable function

on the PTM computation tree to be minimized.

In order to adapt the classic proof, we need to formalize the notion of a computation

tree which represents all computation paths corresponding to a given input string x. We

define such a tree as follows. Each node is labelled by a configuration of the machine and



Chapter 5. Probabilistic Recursion Theory 53

each edge represents a computation step. The root is labelled with IN x
M and each node

labelled with C has either no child (if C is final) or 2 children (otherwise), labelled with

δ0(C) and δ1(C). Please notice that the same configuration may be duplicated across a

single level of the tree as well as appear at different levels of the tree; nevertheless we

represent each such appearance by a separate node.

We can naturally associate a probability with each node, corresponding to the prob-

ability that the node is reached in the computation: it is 1
2n

, where n is the height of the

node. The probability of a particular final configuration is the sum of the probabilities of

all leaves labelled with that configuration. We also enumerate nodes in the tree, top-down

and from left to right, by using binary strings in the following way: the root has associated

the number ε. Then if b is the binary string representing the node N , the left child of N

has associated the string b · 0 while the right child has the number b · 1. Note that from

this definition it follows that each binary number associated to a node N indicates a path

in the tree from the root to N . The computation tree for x will be denoted as CTM(x)

We give now a more explicit description of the constructions described above. First we

need to encode the rational numbers Q into N. Let pair : N× N → N be any recursive

bijection between pairs of natural numbers and natural numbers such that pair and its

inverse are both computable. Let then enc be just ppair , i.e. the function enc : N× N →
PN defined as follows

enc(a, b)(q) =

 1 if q = pair(a, b)

0 otherwise

The function enc allows to represent positive rational numbers as pairs of natural numbers

in the obvious way and is recursive.

It is now time to define a few notions on computation trees

Definition 5.9 (Computation Trees and String Probabilities) The function PTM : N× N→
Q is defined by stipulating that PTM(x, y) is the probability of observing the string y in

the tree CTM(x), namely 1
2|y|

.

Of course, PTM is partial recursive, thus pPTM
is probabilistic recursive. Since the same

configuration C can label more than one node in a computation tree CTM(x), PTM



54 Chapter 5. Probabilistic Recursion Theory

does not indicate the probability of reaching C, even when C is the label of the node

corresponding to the second argument. Such a probability can be obtained by summing

the probability of all nodes labelled with the configuration at hand:

Definition 5.10 (Configuration Probability) Suppose given a PTM M . If x ∈ N and

z ∈ CM , the subset CCM(x, z) of N contains precisely the indices of nodes of CTM(x)

which are labelled by z. The function PCM : N× N→ Q is defined as follows:

PCM(x, z) = Σy∈CCM (x,z)PTM(x, y)

Contrary to PTM , there is nothing guaranteeing that PCM is indeed computable. In the

following, however, what we do is precisely to show that this is the case.

In Figure 5.1 we show an example of computation tree CTM(x) for an hypothetical

PTM M and an input x. The leaves, depicted as red nodes, represent the final configura-

tions of the computation. So, for example, PCM(x,C) = 1, while PCM(x,E) = 3
4
. In-

deed, notice that there are three nodes in the tree which are labelled with E, namely those

corresponding to the binary strings 00, 01, and 10. As we already mentioned, our proof

C

D

E E

F

E G

Figure 5.1: An Example of a Computation Tree

separates the classic part of the computation performed by the underlying PTM, which

essentially computes the configurations reached by the machine in different paths, from

the probabilistic part, which instead computes the probability values associated to each



Chapter 5. Probabilistic Recursion Theory 55

computation by using minimization. These two tasks are realized by two suitable proba-

bilistic recursive functions, which are then composed to obtain the function computed by

the underlying PTM. We start with the probabilistic part, which is more complicated.

We need to define a function, which returns the conditional probability of terminating

at the node corresponding to the string y in the tree CTM(x), given that all the nodes z

where z < y are labelled with non-final configurations. This is captured by the following

definition:

Definition 5.11 Given a PTM M , we define PT 0
M : N× N → Q and PT 1

M : N× N →
Q as follows:

PT 1
M(x, y) =

 1 if y is not a leaf of CTM(x);

1− PT 0
M(x, y) otherwise;

PT 0
M(x, y) =

 0 if y is not a leaf of CTM(x);
PTM (x,y)∏

k<y PT1
M (x,k)

otherwise;

Note that, according to previous definition, PT 1
M(x, y) is the probability of not termi-

nating the computation in the node y, while PT 0
M(x, y) represents the probability of

terminating the computation in the node y, both knowing that the computation has not

terminated in any node k preceding y.

Proposition 5.2 The functions PT 0
M : N× N→ Q and PT 1

M : N× N→ Q are partial

recursive.

Proof: Please observe that PTM is partial recursive and that the definitions above are

mutually recursive, but the underlying order is well-founded. Both functions are thus

intuitively computable, thus partial recursive by the Church-Turing thesis.

�

The reason why the two functions above are useful is because they associate the distri-

bution {0PT1
M (x,y), 1PT0

M (x,y)} to each pair of natural numbers (x, y). In Figure 5.2, we

give the quantities we have just defined for the tree from Figure 5.1. Each internal node



56 Chapter 5. Probabilistic Recursion Theory

is associated with the same distribution {00, 11}. Only the leaves are associated with non-

trivial distributions. As an example, the distribution associated to the node 10 is {0 1
2 , 1

1
2},

because we have that

PT 0
M(x, 10) =

PTM(x, 10)∏
k<10 PT

1
M(x, k)

=
1

4 · PT 1
M(x, 01) · PT 1

M(x, 00) · PT 1
M(x, 1) · PT 1

M(x, 0) · PT 1
M(x, ε)

=
1

4 · PT 1
M(x, 01) · PT 1

M(x, 00)
.

As it can be easily verified, PT 1
M(x, 00) = 3

4
, while PT 1

M(x, 01) = 2
3
. Thus, PT 0

M(x, 10) =

1
2
.

{00, 11}
C

ε

{00, 11}
D

0

{0 1
4 , 1

3
4}

E

00

{0 1
3 , 1

2
3}

E

01

{00, 11}
F

1

{0 1
2 , 1

1
2}

E

10

{01, 10}
G

11

Figure 5.2: The Conditional Probabilities for the Computation Tree from Figure 5.1

We now need to go further, and prove that the probabilistic function returning, on

input (x, y), the distribution {0PT1
M (x,y), 1PT0

M (x,y)} is recursive. This is captured by the

following definition:

Definition 5.12 Given a PTM M , the function PTCM : N× N → PN is defined as



Chapter 5. Probabilistic Recursion Theory 57

follows

PTCM(x, y)(z) =


PT 0

M(x, y) if z = 0;

PT 1
M(x, y) if z = 1;

0 otherwise

The function PTCM is really the core of our encoding. On the one hand, we will show

that it is indeed recursive. On the other, minimizing it is going to provide us exactly

with the function we need to reach our final goal, namely proving that the probabilistic

function computed by M is itself recursive. But how should we proceed if we want to

prove PTCM to be recursive? The idea is to compose pPT1
M

with a function that turns

its input into the probability of returning 1. This is precisely what the following function

does:

Definition 5.13 The function I2P : Q→ PN is defined as follows

I2P(x)(y) =


x if (0 ≤ x ≤ 1) ∧ (y = 1)

1− x if (0 ≤ x ≤ 1) ∧ (y = 0)

0 otherwise

Please observe how the input to I2P is the set of rational numbers, as usual encoded

by pairs of natural numbers. Previous definitions allow us to treat (rational numbers

representing) probabilities in our algebra of functions. Indeed:

Proposition 5.3 The probabilistic function I2P is recursive.

Proof: We first observe that h : N→ PN defined as

h(x)(y) =
1

2y+1

is a probabilistic recursive function, because h = µ (r �Π2
1). Next we observe that every

q ∈ Q ∩ [0, 1] can be represented in binary notation as:

q =
∑
i∈N

cqi
2i+1



58 Chapter 5. Probabilistic Recursion Theory

where cqi ∈ {0, 1} (i.e., cqi is the i-th element of the binary representation of q). Moreover,

a function computing such a cqi from q and i is partial recursive. Hence we can define

b : N× N→ PN as follows

b(q, i)(y) =

 1 if y = cqi

0 otherwise

and conclude that b is indeed a probabilistic recursive function (because PR includes all

the partial recursive functions, seen as probabilistic functions). Observe that:

b(q, i)(y) =

 cqi if y = 1

1− cqi if y = 0

From the definition of composition, it follows that

(b� (id, h))(q)(y) =
∑
x1,x2

b(x1, x2)(y) · id(q)(x1) · h(q)(x2)

=
∑
x2

b(q, x2)(y) · h(q)(x2) =
∑
x2

b(q, x2)(y) · 1

2x2+1

=


∑

x2

cqx2

2x2+1 if y = 1∑
x2

1−cqx2

2x2+1 if y = 0
=

 q if y = 1

1− q if y = 0
.

This shows that

I2P = b� (id, h),

and hence that I2P is probabilistic recursive.

�

The following is an easy corollary of what we have obtained so far:

Proposition 5.4 The probabilistic function PTCM is recursive.

Proof: Just observe that PTCM = I2P � pPT1
M

.

�

The probabilistic recursive function obtained as the minimization of PTCM allows to

compute a probabilistic function that, given x, returns y with probability PTM(x, y) if y

is a leaf (and otherwise the probability is just 0).



Chapter 5. Probabilistic Recursion Theory 59

Definition 5.14 The function CFM : N→ PN is defined as follows

CFM(x)(y) =

 PTM(x, y) if y corresponds to a leaf

0 otherwise.

Proposition 5.5 The probabilistic function CFM is recursive.

Proof: The probabilistic function CFM is just the function obtained by minimizing PTCM ,

which we already know to be recursive. Indeed, if z corresponds to a leaf, then:

(µ PTCM)(x)(z) = PTCM(x, z)(0) ·
∏
y<z

∑
k>0

PTCM(x, y)(k)

= PTCM(x, z)(0) ·
∏
y<z

PTCM(x, y)(1)

= PT 0
M(x, z) ·

∏
y<z

PT 1
M(x, y)

=
PTM(x, z)∏
y<z PT

1
M(x, y)

·
∏
y<z

PT 1
M(x, y) = PTM(x, z).

If, however, z does not correspond to a leaf, then:

(µ PTCM)(x)(z) = PTCM(x, z)(0) ·
∏
y<z

∑
k>0

PTCM(x, y)(k)

= PT 0
M(x, z)(0) ·

∏
y<z

∑
k>0

PTCM(x, y)(k) = 0.

This concludes the proof.

�

We are almost ready to wrap up our result, but before proceeding further, we need

to define the function SPM : N× N → N that, given in input a pair (x, y) returns the

(encoding) of the string found in the configuration labeling the node y in CTM(x). We

can now prove the desired result:

Theorem 5.2 PC ⊆PR.

Proof: It suffices to note that, given any PTM M , the function computed by M is nothing

more than

pSPM
� (id , CFM).



60 Chapter 5. Probabilistic Recursion Theory

Indeed, one can easily realize that a way to simulate M consists in generating, from x,

all strings corresponding to the leaves of CTM(x), each with an appropriate probability.

This is indeed what CFM does. What remains to be done is simulating pSPM
along paths

leading to final configurations.

�

We are finally ready to prove the main result of this Section:

Corollary 5.1 PR = PC

Proof: Immediate from Theorem 5.2, observing that PR ⊆ PC (this implication is

easy to prove).

�

The way we prove Corollary 5.1 implies that we cannot deduce Kleene’s Normal Form

Theorem from it: minimization has been used many times, some of them “deep inside”

the construction. A way to recover Kleene’s Theorem consists in replacing minimization

with a more powerful operator, essentially corresponding to computing the fixpoint of a

given function.



Chapter 6

Probabilistic Implicit Complexity

In this chapter we present some complexity probabilistic classes and then we provide a

characterization of the probabilistic functions which can be computed in polynomial time

by using an algebra of functions acting on word algebras.

More precisely, we define a type system inspired by Leivant’s notion of tiering [21]

(seen in Chapter 3) witch permits to rule out functions having a too-high complexity, thus

allowing to isolate the class of predicative probabilistic functions.

Our main result in this chapter shows that the class PPC of probabilistic functions

which can be computed by a PTM in polynomial time is equivalent to the class of pred-

icative probabilistic functions.

6.1 Probabilistic Complexity Classes

We introduce now some complexity classes that will be needed in the following discus-

sion. The most general class is called PP, which stands for Probabilistic Polynomial

Time. It consists of problems for which there is a random algorithm solving the problem

in polynomial time with probability greater than 1
2

. There is no restriction about how

much the probability have to be greater than 1
2
. The class RP is the class of problems

for which exists a polytime randomized algorithm that answers without errors if the right

answer is “no” and answers with an error e < 1
2

if the right answer is “yes” [26]. For-

mally, let M be a PTM for the language L ∈ RP: for any possible input s we have that



62 Chapter 6. Probabilistic Implicit Complexity

if s ∈ L then P (M(s) = yes) > 1
2

and if s /∈ L then P (M(s) = no)) = 1. Class

co-RP is the complementary class of RP. Hence it is easy see as this class is defined as

follows : let M be a PTM for the language L ∈ co-RP on all possible input s, if s ∈ L
then P (M(s) = yes) = 1 and if s /∈ L then P (M(s) = no) ≤ 1

2
. The class ZPP

(Zero-error Probabilistic Polynomial Time) is the class of problems for which a Las Ve-

gas algorithm exists, solving them in polynomial time [26, 1]. Finally we see BPP, witch

is the set of decision problems solvable by a probabilistic Turing machine in polynomial

time with an error e ≤ 1
3

for all possible answers. Hence letM be a PTM for the language

L ∈ BPP on all possible input s, if s ∈ L then P (M(s) = yes) > 2
3

and if s /∈ L then

P (M(s) = no) ≤ 1
3
.

There is however an intrinsic difficulty in giving implicit characterizations of prob-

abilistic classes like BPP or ZPP: the latter are semantic classes defined by imposing a

polynomial bound on time, but also appropriate bounds on the probability of error. This

makes the task of enumerating machines computing problems in the class much harder

and, ultimately, prevents from deriving implicit characterization of the classes above. Our

point of view is different: we do not see probabilistic algorithms as devices computing

functions of the same kind as those computed by deterministic algorithms, but we see

probabilistic algorithms as devices outputting distributions.

6.2 Function Algebra on Strings

The constructions from Chapter 5 can be easily generalized to a function algebra on

strings in a given alphabet Σ, which themselves can be seen as a word algebra W. Base

functions include a function computing the empty string, called ε, and concatenation with

any character a ∈ Σ, called ca. Projections remain of course available, while the only

truly random function is one that concatenate a random symbol from Σ to a given string,

called again r . Composition and primitive recursion are available, although the latter

takes the form of recursion on notation. We do not need minimization: the distribution

a polytime computable probabilistic function returns (on any input) is always finite, and

primitive recursion is anyway powerful enough for our purposes.



Chapter 6. Probabilistic Implicit Complexity 63

Now we give a formal definition of our functions starting from the sets of domain and

codomain of our functions.

Definition 6.1 (String Distribution) A distribution on W is a function D : W → R[0,1]

such that
∑

w∈WD(W ) = 1. The set PW is defined as the set of all distribution on W.

The functions that we consider in our algebra have domain Wk and codomain PW.

The idea, as usual, is that if f(x)(y) = p then y is the output obtained for the input x with

probability p. Base functions include a function computing the empty string, denoted by

ε, and concatenation with any character a ∈ Σ, denoted by ca. Formally we define these

functions as follows:

ε(v)(w) =

 1 w = ε

0 otherwise

ca(v)(w) =

 1 if w = a · v;

0 otherwise.

Note that, for all v ∈ W, if the length of v is k then the length of the word w obtained

after the application of one of the constructors ca is k + 1 with probability 1. Projections

remain available in the usual form. Indeed the function Πn
m : Wn → PW is defined as

follows:

Πk
n(v)(w) =

 1 if w = vm;

0 otherwise.

The only truly random functions in our algebra are probabilistic functions in the form

ra : W → PW, which concatenates Σ to the input string (with probability 1
2
), or leave it

unchanged (with probability 1
2
). Formally,

ra(v)(w) =


1
2

if w = a · v;
1
2

if w = v;

0 otherwise.

Also in this case, for all v ∈ W, if the length of v is k then the length of the word w

obtained after the application of one of the constructors ci is k+ 1 with probability 1. The



64 Chapter 6. Probabilistic Implicit Complexity

different probabilities (smaller than 1) associated to the different cases in the definition

reflect the different constructors used to obtain w.

Next we recall the concept of composition and recurrence introduced in Definition 5.4

and Definition 5.5 and we instantiate it to the case of our algebra. We first introduce the

Generalized Composition of functions f : Wn → PW, g1 : Wk → PW, . . . , gn : Wk →
PW as the function f � (g1, . . . , gn) : Wk → PW defined as follows:

((f � (g1, . . . , gn))(i))(y) =
∑

x1,...,xn∈W

(
f(x1, . . . , xn)(y) ·

∏
1≤i≤n

gi(i)(xi)

)
.

Recurrence over W takes the form:

f(ε,y) = gε(y)

f(aa · w,y) = ga(f(w,y), w,y)

where f : W×Wm → PW, ga : W×W×Wm → PW, for all a ∈ Σ. We use f =

rec(gε, {ga}{a ∈ Σ}) as a shorthand for previous definitions of recurrence. The following

construction is redundant in presence of primitive recursion, but becomes essential when

predicatively restricting it.

Definition 6.2 (Case Distinction) If gε : Wk → PW and for every a ∈ Σ, ga : Wk+1 →
PW, we define a function h : Wk+1 → PW by case distinction by stipulating that h(ε,y) =

gε(y) while h(a · w,y) = ga(w,y). The function h is denoted as case(gε, {ga}a∈Σ).

In the following we will need of the definition of simultaneous recursion:

Definition 6.3 We say that the functions f = (f 1, . . . , fn) are defined by simultaneous

primitive recursion over a word algebra W from the function gja (where j ∈ {1, . . . , n}
and a ∈ Σ if the following holds for every j and for every a:

f j(a · v,w) = gja(f
1(v,w), . . . , fn(v,w), v,w)

A function f j as defined above will be indicated with simrecj({gjε}j,a, {gja}j,a).



Chapter 6. Probabilistic Implicit Complexity 65

ε .Wk →Wk r .Wk →Wk ci .Wk →Wk Πk
n .Wn1 × · · · ×Wnn →Wnk

{gi .Ws1 × · · · ×Wsr →Wmi
}1≤i≤l f .Wm1

× · · · ×Wmp
→Wl

f � (g1, . . . , gl) .Ws1 × · · · ×Wsr →Wl

gε .W→Wl

{ga .Wk ×W→Wl}a∈Σ

case(gε, {ga}a∈Σ) .Wk ×W→Wl

gε .W→Wk m > k

{ga .Wk ×Wm ×W→Wk}a∈Σ

rec(gε, {ga}a∈Σ) .Wm ×W→Wk

Figure 6.1: Tiering as a Typing System

Example 6.1 Previous definition allows to define, for instance, two functions f 1 and f 2

over a word algebra with Σ = {a, b}, as follows:

f j(ε,v) = gjε (v) ∀j ∈ {1, 2}

f j(a · w,v) = gja(f
1(w,v), f 2(w,v), w,v) ∀j ∈ {1, 2}

f j(b · w,v) = gjb(f
2(w,v), f 2(w,v), w,v) ∀j ∈ {1, 2}

�

6.3 Tiering as a Typing System

Now we define our type system which will be used to introduce the definition of the class

of predicative probabilistic functions and therefore to obtain our complexity result. The

type system is inspired by the tiering approach of Leivant [21] and the formulation of

predicative (or ramified) recursion over a probabilistic word algebra W derives from the

definition of recurrence, suitably restricted using types.

As previously mentioned, the idea behind tiering consists in working with denumer-

able many copies of the underlying algebra W, each indexed by a natural number n ∈ N

and denoted by Wn. So, given a function f : Wk → W type judgments take the form

f .Wn1 × . . .×Wnk
→ Wm. In the following, with slight abuse of notation, W stands

for any expression of the form Wi1 × · · · ×Wij .

Typing rules are given in Figure 6.1.



66 Chapter 6. Probabilistic Implicit Complexity

The rules for the basic functions and for composition are immediate. The interesting

rules here is the one for recursion: The idea here is that, when generating functions by

primitive recursion, one passes from a level (tier)m for the domain to a strictly lower level

k for the result. This predicative constraint ensures that recursion does not causes any

exponential blowup, simply because the way one can nest primitive recursive definitions

one inside the other is severely restricted. Please notice that case distinction, although

being typed in a similar way, does not require the same constraints.

More precisely, the class PT of all predicatively recursive functions is defined as

follows. Those probabilistic functions f : Wk → PW such that f can be given a type

through the rules in Figure 6.1 are said to be predicatively recursive.

Definition 6.4 The class PT of predicatively probabilistic recursive functions is the

smallest class of functions that contains the basic functions and is closed under the oper-

ation of General Composition (Definition 5.4), Primitive Recursion (Definition 5.5), Case

Distinction (Definition 6.2) and such that each function can be given a type through the

rules in Figure 6.1.

Next we give the definition of the class of simultaneous recursive functions S R since

this will be needed for the proof of the main theorem of this chapter.

Definition 6.5 The class S R of simultaneous recursive functions is the smallest class of

functions that contains the basic functions and is closed under the operation of General

Composition (Definition 5.4 ), Simultaneous Recursion (Definition 6.3), Case Distinction

(Definition 6.2 and such that each function can be given a type through the rules in Fig-

ure 6.1, plus the rule below:

{gjε .W→Wk}j m > k

{gja .Wn
k ×Wm ×W→Wk}j,a

simreci({gjε}j, {gja}j,a) .Wm ×W→Wk

The following theorem shows that the class of predicatively recursive functions coin-

cides with the class of probabilistic functions which can be computed by PTMs in poly-

nomial time. The proof is in the next sections.



Chapter 6. Probabilistic Implicit Complexity 67

Theorem 6.1 PT = PPC .

Characterizing complexity classes of probabilistic functions allows to deal implicitly

with concepts like that of a polynomial time samplable distribution [3, 16], which is a

family {Dn}n∈N of distributions on strings such that a polytime randomized algorithm

produces Dn when fed with the string 1n. By Theorem 6.1, each of them is computed

by a function in PT and, conversely, any predicatively recursive probabilistic function

computes one such family.

6.4 Functions computed by Probabilistic Turing Machines

in Polynomial Time equals Predicative Probabilistic

Functions

The proof of Theorem 6.1 proceed essentially by proving (in the next sub-sections) the

following points, from which the thesis can be inferred:

– First one can prove, by a careful encoding, that a form of simultaneous primitive re-

cursion is available in predicative recursion.

– Then PTMs can be shown equivalent, in terms of expressivity, to probabilistic register

machines; going through register machines has the advantage of facilitating the last

two steps.

– Thirdly, any function definable by predicative recurrence can be proved computable

by a polytime probabilistic register machine.

– Lastly, one can express any polytime probabilistic computable function in terms of a

predicatively recursive function, by making use of simultaneous recurrence.

6.4.1 Simultaneous Primitive Recursion and Predicative Recursion

We can encode Simultaneous Primitive Recursion in Predicative Recursion.



68 Chapter 6. Probabilistic Implicit Complexity

According to Definition 6.3, if, e.g., two functions f 0, f 1 over a word algebra with

Σ = {a, b}, are defined by simultaneous recursion, then we have that

f 1(ε,x) = g1
ε(x);

f 1(a · w,x) = g1
a(f

1(w,x), f 2(w,x), w,x);

f 1(b · w,x) = g1
b (f

1(w,x), f 2(w,x), w,x);

f 2(ε,x) = g2
ε(x);

f 2(a · w,x) = g2
a(f

1(w,x), f 2(w,x), w,x);

f 2(b · w,x) = g2
b (f

1(w,x), f 2(w,x), w,x)

the two functions f 0 and f 1 can indeed be computed by one function f̃ once a pairing

operator 〈·, ·〉 is available:

f̃(ε,x) = 〈g1
ε (x), g2

ε (x)〉;

f̃(a · w,x) = 〈g1
a(f̃(w,x), w,x), g2

a(f̃(w,x), w,x)〉;

f̃(b · w,x) = 〈g1
b (f̃(w,x), w,x), g2

b (f̃(w,x), w,x)〉.

The pairing function 〈·, ·〉 is of course primitive recursive, and the same holds for the cor-

responding projection function. But can we give all these functions a “balanced” type, i.

e. a type in which the tier of the argument(s) is the same as tier of the output? (This is

of course necessary if one wants to encode simultaneous primitive recursion the way sug-

gested by the equations above.) A positive answer can indeed be given provided pairing

and projections take an additional parameter (of an higher tier) big enough to “drive” the

recursion necessary for computing pairing and projections. More details can be found in

[21].

6.4.2 Register Machines vs. Turing Machines

Register machines are abstract computational models which, when properly defined, are

Turing powerful. Here we extend the classical definition of register machines to the prob-

abilistic case. Again, the way register machines are defined closely follows Leivant’s

proof [21].



Chapter 6. Probabilistic Implicit Complexity 69

Definition 6.6 (Probabilistic Register Machine) A probabilistic register machine (PRM)

consists of a finite set of registers Π = {π1, · · · , πr} and a sequence of instructions, called

program. Each register πi can store a string in W, and each instruction in the program is

indexed by a natural number and takes one of the following five forms

ε(πd); ca(πs)(πd); ra(πs)(πd); pa(πs)(πd); j(πs)(m);

where πs, πd are registers and m is an instruction index.

The semantic of previous instructions can be described as follows. We assume that the

index of the current instruction is n.

– The instruction ε(πd) stores in the register πd the empty string and then transfer the

control to the next instruction.

– The instruction ca(πs)(πd) stores in the register πd the term a ·w, where w is the string

contained in the register πs. It then transfers the control to the next instruction.

– The instruction pa(πs)(πd) is the predecessor instruction, which stores in the register

πd the string resulting from erasing the leftmost character a from the string contained

in πs, if any. The control is then transferred to the next instruction.

– If w is the string contained in πd, the instruction ra(πs)(πd) stores w in the register πd

(with probability 1
2
) or the string a · w (with probability 1

2
).

– The instruction j(πs)(m) transfers the instruction to them-th instruction if πs contains

a non-empty string, while it goes to the next instruction otherwise.

We can now describe more precisely the semantics of a PRM in terms of configurations.

Definition 6.7 (Configuration of a PRM) Let R be a PRM as in Definition 6.6, and let

Σ the underlying alphabet. We define a PRM configuration as a tuple 〈v1, . . . , vr, n〉
where:

– each vi ∈ Σ∗ is the value of the register πi;

– n ∈ N is the index of the next instruction to be executed.

We define the set of all configurations with CRR. If n = 1 we have an initial configuration

for an k-tuple of strings s, which is indicated with INRs
R. If n = m + 1 (where m is

the largest index of an instruction in the program), we have a final configuration, called

FCRs
R, where s is the string stored in π1.



70 Chapter 6. Probabilistic Implicit Complexity

Next we show how previous instructions allow to change a configuration.

ε(πs)(πl) If we apply the instruction ε(πs)(πl) to the configuration 〈v1, . . . , vr, n〉, we

obtain the configuration 〈v1, . . . , vl−1, vs, vl+1, . . . , vr, n+ 1〉.

ca(πs)(πl) If we apply the instruction ca(πs)(πl) to the configuration 〈v1, . . . , vr, n〉, we

obtain the configuration 〈v1, . . . , vl−1, a · vs, vl+1, . . . , vr, n+ 1〉.

pa(πs)(πl) If we apply the instruction pa(πs)(πl) to the configuration 〈v1, . . . , a·vs, . . . , vr, n〉,
we obtain the configuration 〈v1, . . . , a · vs, . . . , vl−1, vs, vl+1, . . . , vr, n+ 1〉.

ra(πs)(πl) If we apply ra(πs)(πl) to the configuration 〈v1, . . . , vr, n〉, we obtain the con-

figuration 〈v1, . . . , vr, n+1〉with probability 1
2

and the configuration 〈v1, . . . , vl−1, a·
vs, vl+1, . . . , vr, n+ 1〉 with probability 1

2
.

j(πs)(m) If we apply j(πs)(m) to the configuration 〈v1, . . . , a · vs, . . . , vr, n〉, we obtain

the configuration 〈v1, . . . , vs, . . . , vr,m〉; if we apply j(πs)(m) to the configuration

〈v1, . . . , vs−1, ε, vs+1, . . . , vr, n〉, we obtain the configuration 〈v1, . . . , vs−1, ε, vs+1, . . . , vr, n+

1〉.

First we observe that the meaning of a PRM R program can be defined by way of two

functions δ0 and δ1: if the next instruction to be executed is ra, then δ0(C) is potentially

different than δ1(C), otherwise the two are equal. In other words, we can consider two

functions δ0 : CRR → CRR and δ1 : CRR → CRR which, given a configuration in

input:

– both produce in output the (unique) configuration resulting from the application of the

next instruction, if different than ra;

– produce the two configurations resulting from the two branches of the next instruction,

if it is ra.

Similarly to what we did for PTMs, we can define a (complete) partial order with carrier

CEVR. And hence, we can define a functional FRR on CEVR which will be used to define

the function computed by R via a fixpoint construction. Intuitively, the application of the

functional FRR describes one computation step. More formally:



Chapter 6. Probabilistic Implicit Complexity 71

Definition 6.8 Given a PRM R, we define a functional FRR : CEVR → CEVR as:

FRR(f)(C) =

 {s1} if C ∈ FCRs
M ;

1
2
f(δ0(C)) + 1

2
f(δ1(C)) otherwise.

Using similar arguments to those in the proofs of Proposition 4.5 and Theorem 4.1, we can

show that there exists the least fixpoint of the functional defined above. Such a least fix-

point, once composed with a function returning INRs
R from s, is the function computed

by the register machine R and it is denoted by IOR : Σ∗ → PΣ∗ .

Next Lemma shows the relations between PTMs and PRMs.

Lemma 6.1 PTMs are linear time reducible to a PRMs, and PRMs over W are poly-time

reducible to PTMs.

Proof: A single tape PTM M can be simulated by a PRM R that has tree registers. A

configuration 〈w, a, v, s〉 of M can be coded by the configuration R 〈[wr, a, v], s〉 where

wr denotes the reverse of the string w. Each move of M is simulated by at most 2 moves

of RM . In order to simulate the probabilistic part given by the functions δ0 and δ1 we use

and instructions ε, ra and j, plus a dedicated register πcoin in the natural way. Conversely,

a PRMR over W withm registers is simulated by a PTMMR withm-tapes. Some moves

of R may require copying the contents of one register to another for which M may need

as many steps to complete as the maximum of the current lengths of the corresponding

tapes. Thus R runs in time O(nk), then MR runs in time O(n2k). We can then conclude

by remembering that Turing machine with multiple tapes can be simulated by single-tape

Turing machine with a polynomial slowdown. �

6.4.3 Polytime Soundness

In this section we prove that any function definable by predicative recurrence is com-

putable by probabilistic register machines working in polynomial time (dubbed PPRMs

in the following). Let PPR be the class of functions computed by machines of this

kind.



72 Chapter 6. Probabilistic Implicit Complexity

In view of Lemma 6.1, showing that predicative recurrence can be simulated by a

PPRM suffices. This result is not difficult and is proved by exhibiting a PPRM which

computes any function f such that f .W→Wm.

Proposition 6.1 If f .W→Wm, then there is PPRM that computes f .

Proof: The proof is by induction on the structure of a derivation of f .W→Wm:

– We need to show that for every basic function defined in Definition 5.2 we can con-

struct a PPRM that computes such a function. The proof is immediate for functions,

ca, by observing that it is included in the set of PPRM operations. The function ε is

simulated by using the instruction ε (on an empty register). The function Π is simu-

lated by the instructions ca, followed by p. Finally the function ra can be simulated by

the instructions ra.

– If f is defined by composition, then we give an intuitive proof. We take a PPRM,

said Rs with s registers. The first k registers have saved the input, the next k · n
registers Rs computes the g1, · · · , gn functions. For each gi the machine saves the

result on the registers (k · n) + i, with 1 ≤ i ≤ n. These registers became the input

registers for computing f . Finally in the last register is saved the result. Rs operates

as follows:

1. Rs copies all k registers on the k · n registers. The computational cost of this

operation is n · k, because it is implemented by the instruction ε(πl)(πs);

2. Rs computes the respective functions gi with 1 ≤ i ≤ n and saves the results in the

registers (k ·n)+i. These functions are by hypothesis polynomial time computable;

3. Rs computes the function f that by hypothesis polynomial time computable.

Finally Rs computes the function f � (g1, . . . , gn) in time

z = k · n+
n∑
i=1

(max(|pii|)si + vi) +max(|pi(k·n)+i|)t + w

≤ (k · n) + (n+ 1) · (max(|pii|, |pi(k·n)+i|)max(si,t) +max(vi, w))

< (n+ 1) · (ym + q + k)

where pi denotes the element saved on the register,max(|pii|, |pi(k·n)+i|) = y,max(si, t) =

m and max(vi, w) = q.



Chapter 6. Probabilistic Implicit Complexity 73

– The function Case Distinction is implemented by a PPRM, said Rcase, that computes

it as follows. The first k+ 1 registers contain the input and on the last register we have

the result. Rcase operates as follows:

1. Rcase applies the operation j(πk+1)(m); if pik+1 = ε the machine goes to the in-

struction i+ 1 where there is saved the first instruction in order to compute gε, oth-

erwise the machine jump at the instruction ma corresponding at the first (in pik+1)

constructor function ca and it saves the result on pik+1 register. The instruction ma

is the first one which allows to compute ga.

2. Rcase computes the function gε or ga and it saves the result on the last register.

Finally Rcase computes the function Case Distinction in time z, and z is a polynomial

time because:

z = c+

 |sε|kε + rε if pik+1 = ε

|sa|ka + ra if pik+1 = pa

where c is the time constant used from the machine for computing the function j.

– We give an intuitive proof. We take a PPRM, saidRrec. The first k+1 registers contain

the input, in the next k registers we save the input, in the 2k + 2th register we have

the result of intermediate computations, and in the last register we have the result. We

assume that the k+ 1th input is saved inverted on the k+ 1th register. Rrec operates as

follows:

1. Rrec computes gε and saves the results in the 2k + 2th;

2. Rrec applies an operation of j(πk+1), (m);

3. if pik+1 = ε the machine goes to the instruction i + 1 where it saves the result

on the last registers and then stop, otherwise the machine jump to the instruction

ma corresponding at the function predecessor pa and it saves the result on pik+1

register. ma is the first instruction needed in order to compute ga.

4. Rrec jump at the instruction 2 if it is not stopped before.

Finally Rrec computes the function rec(f, g) in time z, and z is a polynomial time



74 Chapter 6. Probabilistic Implicit Complexity

because:

z = c · |pk+1|+ |pk+1| ·

 |sε|kε + rε if pik+1 = ε

|sa|ka + ra if pik+1 = pa

≤ max(|pk+1|, |sε|, |sa|) · (c+max(rε, ra))+

+max(|pk+1|, |sε|, |sa|) ·max(|pk+1|, |sε|, |sa|)max(kε,ka)

= xt + x · d

where c is the time constant used from the machine for computes the function j, x =

max(|pk+1|, |sε|, |sa|), t = max(kε, ka) + 1 and d = c+max(rε, ra).

�

6.4.4 Polytime Completeness

There is a relatively easy (although not elegant) way to prove polytime completeness of

probabilistic ramified recurrence, namely going through the same result for deterministic

ramified recurrence [21]. The argument would go as follows:

– First of all, it is easy to prove that for every k and for every n the function fk,n out-

putting a sequence of random bits of length |s|k +n (where s is the input) is a ramified

probabilistic function.

– Then, one can observe that for every polynomial time computable function g : Σ∗ →
Σ∗, pg .Wn →Wm for some n and m, this as a consequence of Leivant’s result [21].

– Finally, one can observe that any polytime probabilistic function can be seen as a de-

terministic polytime function taking, as an additional input, a “long enough” sequence

of random bits.

Polytime completeness is a corollary of the three observations above. More precisely, we

now present some lemmas that allow us to prove completeness.

Lemma 6.2 (Polytime Random Sequences) For every k and for every n the function

fk,n outputting a sequence of random bits of length |s|k + n (where s is the input) is such

that fk,n .Wm →Wl holds for some natural numbers m and l.



Chapter 6. Probabilistic Implicit Complexity 75

Proof: Let q be the deterministic function on W which outputs 0|s|
k+n, where s is the

input. Clearly, q is computable in polynomial time. As a consequence, pq can be typed

in Leivant’s system. Let randext be the probabilistic function which, on input s, outputs

either 0 · s or 1 · s, each with probability 1
2
. randext can be typed with Wm → Wm for

every m (it can be defined from r0 and r1 and other base functions by case distinction).

What we need to obtain fk,n, then is just to compose randext and pq. �

The proof of the next Lemma is the Leivant’s result reported in [21].

Lemma 6.3 (Polytime Computable Function and Ramified Recurrence Function) For

every polynomial time computable function g : Σ∗ → Σ∗ (non probabilistic) there exists

a pg .Wn →Wm for some n and m.

Then we have the following.

Theorem 6.2 PPR ⊆PT .

Proof: Consider any probabilistic polytime Turing machine M . From the discussion at

the beginning of this section, it is clear that the probabilistic function compted by M is

pf � ppair � (id , fk,n).

where f is a polytime computable deterministic function, pair is a deterministic function

encoding two strings into one, and fk,n is the function from Lemma 6.2. Since the three

function can be given type, their composition itself can. �

We are finally ready to prove the main result of this Section:

Corollary 6.1 PPR ⊆PT .

Proof: Immediate from Theorem 6.2, and Proposition 6.1.

�

A more direct way to prove polytime completeness consists in showing how single-

tape PTMs can be encoded into ramified recurrence. This can be done relatively easily by

exploiting simultaneous recursion.



76 Chapter 6. Probabilistic Implicit Complexity



Chapter 7

Conclusions

In this thesis we made a first step in the direction of characterizing probabilistic computa-

tion in itself, from a recursion-theoretical perspective, without reducing it to deterministic

computation. The significance for this study is genuinely foundational: working with

probabilistic functions allows us to better understand the nature of probabilistic compu-

tation on the one hand, but also to study the implicit complexity of a generalization of

Leivant’s predicative recurrence, all in a unified framework.

More specifically, we give a characterization of computable probabilistic functions

by introducing a natural generalization of Kleene’s partial recursive functions which in-

cludes, among initial functions, one that behaviors as to identity or successor with prob-

ability 1
2
. We then prove the equi-expressivity of the obtained algebra and the class of

functions computed by PTMs. In the second part of the thesis, we investigate the rela-

tions existing between our recursion-theoretical framework and sub-recursive classes, in

the spirit of ICC. More precisely, endowing predicative recurrence with a random base

function is proved to lead to a characterization of polynomial-time computable proba-

bilistic functions.

As previously mentioned, the main aim of his work is foundational as it tries to cap-

ture the very essence of probabilistic computation. Nevertheless our results can have

relevant practical applications, as probabilistic computability is more and more important

in computer science and probabilistic models have many applications areas, including

natural language processing, robotics, computer vision, and machine learning. A better



78 Chapter 7. Conclusions

direct understanding of the functions computed by probabilistic machine, without reduc-

ing them to deterministic devices, could provide better insight on the expressive power of

probabilistic models and therefore could have practical applications.

Our study could be extended in several ways. Remaining in the realm of probabilistic

computation, a first extension could be the definition of a probabilistic Kleene’s normal

form. In Chapter 5 we have seen that the class of probabilistic recursive functions is the

same as that one of probabilistic computable functions. In our proof we needed the mini-

mization twice. This is not compatible with a Kleene’s normal form, where one has to use

the minimization only onece. Thus a possible extension of our work would be to modify

the minimization in order to obtain a probabilistic normal form. Also the investigation of

the distributions computed by a probabilistic lambda calculus could be a significant ex-

tension. Another possible further study could consist in imposing appropriate constraints

on our algebra in order to define specific classes of Probabilistic Problems such as ZPP

or BPP classes. This could be a step in the direction of defining and studying new prob-

abilistic complexity classes in the area of ICC. On a more general level, an interesting

direction for future work could be the extension of our recursion-theoretic framework to

quantum computation. In this case one should consider transformations on Hilbert spaces

as the basic elements of the computation domain. The main difficulty towards obtaining

a completeness result for the resulting algebra and proving the equivalence with quan-

tum Turing machines seems to be the definition of suitable recursion and minimization

operators generalizing the ones described in this paper, given that qubits (the quantum

analogues of classical bits) cannot be copied nor erased.



Index

Σ∗, 8

ωCPO, 13

Algorithm

Deterministic, 7

Randomized, 32

Alphabet, 8

Church-Turing thesis, 22

Classical Turing Machine

Computable Functions, 12

Configuration, 11

Definition (CTM), 10

Computable Functions, 7

Encoding, 17

Implicit Computational Complexity

Ramified Recurrence, 28

Safe Recursion, 26

Partial Recursive Functions, 15

POSET, 13

Probabilistic Complexity Classes

BPP, 62

co-RP, 62

FP, 24, 25

NP, 23

NP-Complete, 23

PP, 61

RP, 61

ZPP, 62

Probabilistic Function Classes

PPR, 71

PC , 39

PPC , 61, 66

Probabilistic Recursive Function Classes

PR, 42

Predicatively PT , 66

Simultaneous S R, 66

Probabilistic Recursive Functions

Definition (PFs), 40

Exemples, 46

Probabilistic Register Machine

Configuration, 69

Definition (PRM), 68

Semantic of Instructions, 69

Polynomial Time, 71

Probabilistic Turing Machine

Definition (PTM), 33

Computable Functions, 35

Computational Tree, 52

Configuration, 33

79



80 INDEX

Register Machine

Configuration, 9

Definition, 8

Instruction semantic, 8

String Distribution, 34, 63

Type System, 65



References

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cam-

bridge University Press, 2009.

[2] S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the poly-

time functions. Computational complexity, 2(2):97–110, 1992.

[3] A. Bogdanov and L. Trevisan. Average-case complexity. Foundations and Trends

in Theoretical Computer Science, 2(1), 2006.

[4] G. Bonfante, J.-Y. Marion, and J.-Y. Moyen. Quasi-interpretations a way to control

resources. Theoretical Computer Science, 412(25):2776–2796, 2011.

[5] H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity:

a survey. Theoretical Computer Science, 288(1):21 – 43, 2002. Complexity and

Logic.

[6] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object tracking. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 25(5):564–577, 2003.

[7] N. Cutland. Computability An introduction to recursive function theory. Cambridge

University Press, 1980.

[8] U. Dal Lago. A short introduction to implicit computational complexity. In

N. Bezhanishvili and V. Goranko, editors, Lectures on Logic and Computation, vol-

ume 7388 of Lecture Notes in Computer Science, pages 89–109. Springer Berlin

Heidelberg, 2012.



82 References

[9] U. Dal Lago and P. P. Toldin. A higher-order characterization of probabilistic poly-

nomial time. In Foundational and Practical Aspects of Resource Analysis, pages

1–18. Springer, 2012.

[10] U. Dal Lago and S. Zuppiroli. Probabilistic recursion theory and implicit compu-

tational complexity. In Informal proceedings of the 2014 Conference on CiE2014,

2014. Computability in Europe.

[11] U. Dal Lago and S. Zuppiroli. Probabilistic recursion theory and implicit compu-

tational complexity. In Theoretical Aspects of Computing – ICTAC 2014, Lecture

Notes in Computer Science. Springer, 2014.

[12] K. De Leeuw, E. F. Moore, C. E. Shannon, and N. Shapiro. Computability by prob-

abilistic machines. Automata studies, 34:183–198, 1956.

[13] J. Gill. Computational complexity of probabilistic Turing machines. SIAM Journal

on Computing, 6(4):675–695, 1977.

[14] J.-Y. Girard. Light linear logic. Information and Computation, 143(2):175–204,

1998.

[15] M. Giry. A categorical approach to probability theory. In Categorical aspects of

topology and analysis, pages 68–85. Springer, 1982.

[16] O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University

Press, 2000.

[17] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of computer and

system sciences, 28(2):270–299, 1984.

[18] M. Hofmann. A type system for bounded space and functional in-place update. In

Programming Languages and Systems, pages 165–179. Springer, 2000.

[19] J. Katz and Y. Lindell. Introduction to Modern Cryptography (Chapman & Hall/Crc

Cryptography and Network Security Series). Chapman & Hall/CRC, 2007.



References 83

[20] S. C. Kleene. General recursive functions of natural numbers. Mathematische An-

nalen, 112(1):727–742, 1936.

[21] D. Leivant. Ramified recurrence and computational complexity i: Word recurrence

and poly-time. In Feasible Mathematics II, pages 320–343. Springer, 1995.

[22] D. Leivant and J.-Y. Marion. Lambda calculus characterizations of poly-time. In

Typed Lambda Calculi and Applications, pages 274–288. Springer, 1993.

[23] M. Li and P. M. Vitnyi. An Introduction to Kolmogorov Complexity and Its Applica-

tions. Springer Publishing Company, Incorporated, 3 edition, 2008.

[24] C. D. Manning and H. Schütze. Foundations of statistical natural language process-

ing, volume 999. MIT Press, 1999.

[25] Y. N. Moschovakis. What is an algorithm. Mathematics unlimited–2001 and beyond,

pages 919–936, 2001.

[26] C. H. Papadimitriou. Computational complexity. John Wiley and Sons Ltd., 2003.

[27] J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible infer-

ence. Morgan Kaufmann, 1988.

[28] M. O. Rabin. Probabilistic automata. Information and Control, 6(3):230–245, 1963.

[29] M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM J. Res.

Dev., 3(2):114–125, 1959.

[30] H. Rogers, Jr. Theory of Recursive Functions and Effective Computability. MIT

Press, Cambridge, MA, USA, 1987.

[31] E. S. Santos. Probabilistic Turing machines and computability. Proceedings of the

American Mathematical Society, 22(3):704–710, 1969.

[32] E. S. Santos. Computability by probabilistic turing machines. Transactions of the

American Mathematical Society, 159:165–184, 1971.



84 References

[33] D. S. Scott. Domains for denotational semantics. In Automata, languages and

programming, pages 577–610. Springer, 1982.

[34] S. Thrun. Robotic mapping: A survey. Exploring artificial intelligence in the new

millennium, pages 1–35, 2002.


	Introduction
	Contributions
	Thesis outline

	Classic Recursion Theory
	Register Machines
	Classical Turing Machines
	Partial Recursive Functions
	Equivalence Result

	Implicit Computational Complexity
	Prelimiaries
	Safe Recursion
	Ramified Recurrence

	Probabilistic Turing Machines
	Basic definitions
	A Fixpoint Characterization of the Function Computed by a PTM

	Probabilistic Recursion Theory
	Probabilistic Recursive Functions
	Probabilistic Recursive Functions equals Functions computed by Probabilistic Turing Machines

	Probabilistic Implicit Complexity
	Probabilistic Complexity Classes
	Function Algebra on Strings
	Tiering as a Typing System
	Functions computed by Probabilistic Turing Machines in Polynomial Time equals Predicative Probabilistic Functions
	Simultaneous Primitive Recursion and Predicative Recursion
	Register Machines vs. Turing Machines
	Polytime Soundness
	Polytime Completeness


	Conclusions
	References

