Pirisinu, Laura
(2011)
Agenti di encefalopatie spongiformi trasmissibili e zoonosi: tipizzazione molecolare, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Epidemiologia e controllo delle zoonosi, 23 Ciclo. DOI 10.6092/unibo/amsdottorato/4145.
Documenti full-text disponibili:
Abstract
Transmissible spongiform encephalopathies (TSE) are neurodegenerative diseases caused by the conversion of the host-encoded cellular protein (PrPC) to a disease-associated isoform (PrPSc). The agent responsible for prion diseases may exist as different strains with specific biological and biochemical properties. According to the protein-only hypothesis, prion strain diversity is enciphered in PrPSc conformation. Molecular strain typing methods are based on the electrophoretic mobility of protease resistant core of PrPSc, on the susceptibility to protease digestion, on the glycosylation profile of PrPres and on the conformational stability of PrPSc.
In this study a new conformational stability assay was developed based on the differential solubility of PrPC and PrPSc: CSSA (conformational stability and solubility assay). The conformational stability assay was performed by measuring PrPSc solubility in homogenates treated with increasing concentrations of GdnHCl, in the absence of proteinase K. Indeed, dose-response curves allowed estimation of the concentration of GdnHCl able to solubilise 50% of PrPSc. The results showed that this method is valuable for the biochemical typing of strains in bank voles and it is also a promising tool for molecular analysis of natural prion isolates.
CSSA also revealed strain-specific PrPSc conformational stabilities of ovine natural isolates so that this feature, combined with the N-terminal PrPSc cleavage, allowed differentiation of classical scrapie, including CH1641-like, from natural goat BSE and experimental sheep BSE.
In view of the implications concerning strain similarity between animal and human TSEs, the physico-chemical properties of the Nor98 with two human prion diseases (VPSPr and GSS) were compared in order to investigate the extent of the similarity between animal and human prion strains. The results showed an unexpected heterogeneity of the molecular features among human and sheep TSEs associated with internal PrPres fragments with the possible exception of Nor98 and a case of GSS P102L. These similarities and differences need further investigation by N- and C-terminal sequencing and biological characterization.
Abstract
Transmissible spongiform encephalopathies (TSE) are neurodegenerative diseases caused by the conversion of the host-encoded cellular protein (PrPC) to a disease-associated isoform (PrPSc). The agent responsible for prion diseases may exist as different strains with specific biological and biochemical properties. According to the protein-only hypothesis, prion strain diversity is enciphered in PrPSc conformation. Molecular strain typing methods are based on the electrophoretic mobility of protease resistant core of PrPSc, on the susceptibility to protease digestion, on the glycosylation profile of PrPres and on the conformational stability of PrPSc.
In this study a new conformational stability assay was developed based on the differential solubility of PrPC and PrPSc: CSSA (conformational stability and solubility assay). The conformational stability assay was performed by measuring PrPSc solubility in homogenates treated with increasing concentrations of GdnHCl, in the absence of proteinase K. Indeed, dose-response curves allowed estimation of the concentration of GdnHCl able to solubilise 50% of PrPSc. The results showed that this method is valuable for the biochemical typing of strains in bank voles and it is also a promising tool for molecular analysis of natural prion isolates.
CSSA also revealed strain-specific PrPSc conformational stabilities of ovine natural isolates so that this feature, combined with the N-terminal PrPSc cleavage, allowed differentiation of classical scrapie, including CH1641-like, from natural goat BSE and experimental sheep BSE.
In view of the implications concerning strain similarity between animal and human TSEs, the physico-chemical properties of the Nor98 with two human prion diseases (VPSPr and GSS) were compared in order to investigate the extent of the similarity between animal and human prion strains. The results showed an unexpected heterogeneity of the molecular features among human and sheep TSEs associated with internal PrPres fragments with the possible exception of Nor98 and a case of GSS P102L. These similarities and differences need further investigation by N- and C-terminal sequencing and biological characterization.
Tipologia del documento
Tesi di dottorato
Autore
Pirisinu, Laura
Supervisore
Co-supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze veterinarie
Ciclo
23
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
TSE prion strains conformational stability bank vole
URN:NBN
DOI
10.6092/unibo/amsdottorato/4145
Data di discussione
14 Luglio 2011
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Pirisinu, Laura
Supervisore
Co-supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze veterinarie
Ciclo
23
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
TSE prion strains conformational stability bank vole
URN:NBN
DOI
10.6092/unibo/amsdottorato/4145
Data di discussione
14 Luglio 2011
URI
Statistica sui download
Gestione del documento: