Mazzetti, Caterina
(2023)
Neurogeometry of reaching, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Matematica, 35 Ciclo. DOI 10.48676/unibo/amsdottorato/10726.
Documenti full-text disponibili:
|
Documento PDF (English)
- Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (8MB)
|
Abstract
The purpose of the thesis is to develop a model for the functional behaviour of neurons in the primary motor cortex (M1) responsible for arm reaching movements.
From Georgopoulos neurophysiological data, we provide a first bundle structure compatible with the hypercolumnar organization and with the position-direction selectivity of motor cortical cells. We then extend this model to encode the direction of arm movement which varies in time, as experimentally measured by Hatsopoulos by introducing the notion of movement fragments. We provide a sub-Riemannian model which describes the time-dependent directional selectivity of cells though integral curves of the geometric structure we set up. The sub-Riemannian distance we define allows to implement a grouping algorithm able to detect a set of hand motor trajectories. These paths, identified by using a kernel defined in terms of kinematic variables, are compatible with the motor primitives obtained from neurophysiological results by spectral analysis applied directly on cortical variables.
In a second part of the work, we propose geodesics in this space as an alternative model of models for arm movement trajectories. We define a special class of curves, called admissible, on which to study the geodesics problem: we provide a connectivity property in terms of admissible paths and the existence of normal length minimizers. Admissible geodesics are used as a model of reaching paths, finding a first validation through Flash and Hogan minimizing trajectories.
Abstract
The purpose of the thesis is to develop a model for the functional behaviour of neurons in the primary motor cortex (M1) responsible for arm reaching movements.
From Georgopoulos neurophysiological data, we provide a first bundle structure compatible with the hypercolumnar organization and with the position-direction selectivity of motor cortical cells. We then extend this model to encode the direction of arm movement which varies in time, as experimentally measured by Hatsopoulos by introducing the notion of movement fragments. We provide a sub-Riemannian model which describes the time-dependent directional selectivity of cells though integral curves of the geometric structure we set up. The sub-Riemannian distance we define allows to implement a grouping algorithm able to detect a set of hand motor trajectories. These paths, identified by using a kernel defined in terms of kinematic variables, are compatible with the motor primitives obtained from neurophysiological results by spectral analysis applied directly on cortical variables.
In a second part of the work, we propose geodesics in this space as an alternative model of models for arm movement trajectories. We define a special class of curves, called admissible, on which to study the geodesics problem: we provide a connectivity property in terms of admissible paths and the existence of normal length minimizers. Admissible geodesics are used as a model of reaching paths, finding a first validation through Flash and Hogan minimizing trajectories.
Tipologia del documento
Tesi di dottorato
Autore
Mazzetti, Caterina
Supervisore
Dottorato di ricerca
Ciclo
35
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
sub-riemannian geometry, neurogeometry, sub-riemannian geodesics, motor cortex
URN:NBN
DOI
10.48676/unibo/amsdottorato/10726
Data di discussione
27 Marzo 2023
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Mazzetti, Caterina
Supervisore
Dottorato di ricerca
Ciclo
35
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
sub-riemannian geometry, neurogeometry, sub-riemannian geodesics, motor cortex
URN:NBN
DOI
10.48676/unibo/amsdottorato/10726
Data di discussione
27 Marzo 2023
URI
Statistica sui download
Gestione del documento: