Gardini, Aldo
  
(2020)
Bayesian inference for quantiles and conditional means in log-normal models, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. 
 Dottorato di ricerca in 
Scienze statistiche, 32 Ciclo. DOI 10.6092/unibo/amsdottorato/9349.
  
 
  
  
        
        
        
  
  
  
  
  
  
  
    
  
    
      Documenti full-text disponibili:
      
        
          
            | ![Tesi_upload.pdf [thumbnail of Tesi_upload.pdf]](https://amsdottorato.unibo.it/style/images/fileicons/application_pdf.png) | Documento PDF (English)
 - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
 Download (4MB)
 | 
        
      
    
  
  
    
      Abstract
      The main topic of the thesis is the proper execution of a Bayesian inference if log-normality is assumed for data. In fact, it is known that a particular care is required in this context, since the most common prior distributions for the variance in log scale produce posteriors for the log-normal mean which do not have finite moments. Hence, classical summary measures of the posterior such as expectation and variance cannot be computed for these distributions.
The thesis is aimed at proposing solutions to carry out Bayesian inference inside a mathematically coherent framework, focusing on the estimation of two quantities: log-normal quantiles (first part of the thesis) and conditioned expectations under a general log-normal linear mixed model (second part of the thesis). Moreover, in the latter section, a further investigation on a unit-level small area models is presented, considering the problem of estimating the well-known log-transformed Battese, Harter and Fuller model in the hierarchical Bayes context.
Once the existence conditions for the moments of the target functionals posterior are proved, new strategies to specify prior distributions are suggested. Then, the frequentist properties of the deduced Bayes estimators and credible intervals are evaluated through accurate simulations studies: it resulted that the proposed methodologies improve the Bayesian estimates under naive prior settings and are satisfactorily competitive with the frequentist solutions available in the literature. 
To conclude, applications of the developed inferential strategies are illustrated on real datasets. 
The work is completed by the implementation of an R package named BayesLN which allows the users to easily carry out Bayesian inference for log-normal data.
     
    
      Abstract
      The main topic of the thesis is the proper execution of a Bayesian inference if log-normality is assumed for data. In fact, it is known that a particular care is required in this context, since the most common prior distributions for the variance in log scale produce posteriors for the log-normal mean which do not have finite moments. Hence, classical summary measures of the posterior such as expectation and variance cannot be computed for these distributions.
The thesis is aimed at proposing solutions to carry out Bayesian inference inside a mathematically coherent framework, focusing on the estimation of two quantities: log-normal quantiles (first part of the thesis) and conditioned expectations under a general log-normal linear mixed model (second part of the thesis). Moreover, in the latter section, a further investigation on a unit-level small area models is presented, considering the problem of estimating the well-known log-transformed Battese, Harter and Fuller model in the hierarchical Bayes context.
Once the existence conditions for the moments of the target functionals posterior are proved, new strategies to specify prior distributions are suggested. Then, the frequentist properties of the deduced Bayes estimators and credible intervals are evaluated through accurate simulations studies: it resulted that the proposed methodologies improve the Bayesian estimates under naive prior settings and are satisfactorily competitive with the frequentist solutions available in the literature. 
To conclude, applications of the developed inferential strategies are illustrated on real datasets. 
The work is completed by the implementation of an R package named BayesLN which allows the users to easily carry out Bayesian inference for log-normal data.
     
  
  
    
    
      Tipologia del documento
      Tesi di dottorato
      
      
      
      
        
      
        
          Autore
          Gardini, Aldo
          
        
      
        
          Supervisore
          
          
        
      
        
      
        
          Dottorato di ricerca
          
          
        
      
        
      
        
          Ciclo
          32
          
        
      
        
          Coordinatore
          
          
        
      
        
          Settore disciplinare
          
          
        
      
        
          Settore concorsuale
          
          
        
      
        
          Parole chiave
          Markov Chain Monte Carlo, Generalized Inverse Gaussian, Log-Normal Mixed Models, Quantile Estimation
          
        
      
        
          URN:NBN
          
          
        
      
        
          DOI
          10.6092/unibo/amsdottorato/9349
          
        
      
        
          Data di discussione
          2 Aprile 2020
          
        
      
      URI
      
      
     
   
  
    Altri metadati
    
      Tipologia del documento
      Tesi di dottorato
      
      
      
      
        
      
        
          Autore
          Gardini, Aldo
          
        
      
        
          Supervisore
          
          
        
      
        
      
        
          Dottorato di ricerca
          
          
        
      
        
      
        
          Ciclo
          32
          
        
      
        
          Coordinatore
          
          
        
      
        
          Settore disciplinare
          
          
        
      
        
          Settore concorsuale
          
          
        
      
        
          Parole chiave
          Markov Chain Monte Carlo, Generalized Inverse Gaussian, Log-Normal Mixed Models, Quantile Estimation
          
        
      
        
          URN:NBN
          
          
        
      
        
          DOI
          10.6092/unibo/amsdottorato/9349
          
        
      
        
          Data di discussione
          2 Aprile 2020
          
        
      
      URI
      
      
     
   
  
  
  
  
  
    
    Statistica sui download
    
    
  
  
    
      Gestione del documento: 
      
        