Vadacca, Luigi
  
(2014)
Numerical modeling of the Alto Tiberina low angle normal fault, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. 
 Dottorato di ricerca in 
Geofisica, 26 Ciclo. DOI 10.6092/unibo/amsdottorato/6532.
  
 
  
  
        
        
        
  
  
  
  
  
  
  
    
  
    
      Documenti full-text disponibili:
      
    
  
  
    
      Abstract
      The aim of this Thesis is to obtain a better understanding of the mechanical behavior of the active Alto Tiberina normal fault (ATF). Integrating geological, geodetic and seismological data, we perform 2D and 3D quasi-static and dynamic mechanical models to simulate the interseismic phase and rupture dynamic of the ATF. Effects of ATF locking depth, synthetic and antithetic fault activity, lithology and realistic fault geometries are taken in account. The 2D and 3D quasi-static model results suggest that the deformation pattern inferred by GPS data is consistent with a very compliant ATF zone (from 5 to 15 km) and Gubbio fault activity. The presence of the ATF compliant zone is a first order condition to redistribute the stress in the Umbria-Marche region; the stress bipartition between hanging wall (high values) and footwall (low values) inferred by the ATF zone activity could explain the microseismicity rates that are higher in the hanging wall respect to the footwall. The interseismic stress build-up is mainly located along the Gubbio fault zone and near ATF patches with higher dip (30°<dip<37°) that we hypothesize can fail seismically even if a typical Byerlee friction (0.6-0-75) is assumed. Finally, the results of 3D rupture dynamic models demonstrate that the magnitude expected, after that an event is simulated on the ATF, can decrease if we consider the fault plane roughness.
     
    
      Abstract
      The aim of this Thesis is to obtain a better understanding of the mechanical behavior of the active Alto Tiberina normal fault (ATF). Integrating geological, geodetic and seismological data, we perform 2D and 3D quasi-static and dynamic mechanical models to simulate the interseismic phase and rupture dynamic of the ATF. Effects of ATF locking depth, synthetic and antithetic fault activity, lithology and realistic fault geometries are taken in account. The 2D and 3D quasi-static model results suggest that the deformation pattern inferred by GPS data is consistent with a very compliant ATF zone (from 5 to 15 km) and Gubbio fault activity. The presence of the ATF compliant zone is a first order condition to redistribute the stress in the Umbria-Marche region; the stress bipartition between hanging wall (high values) and footwall (low values) inferred by the ATF zone activity could explain the microseismicity rates that are higher in the hanging wall respect to the footwall. The interseismic stress build-up is mainly located along the Gubbio fault zone and near ATF patches with higher dip (30°<dip<37°) that we hypothesize can fail seismically even if a typical Byerlee friction (0.6-0-75) is assumed. Finally, the results of 3D rupture dynamic models demonstrate that the magnitude expected, after that an event is simulated on the ATF, can decrease if we consider the fault plane roughness.
     
  
  
    
    
      Tipologia del documento
      Tesi di dottorato
      
      
      
      
        
      
        
          Autore
          Vadacca, Luigi
          
        
      
        
          Supervisore
          
          
        
      
        
      
        
          Dottorato di ricerca
          
          
        
      
        
          Scuola di dottorato
          Scienze matematiche, fisiche ed astronomiche
          
        
      
        
          Ciclo
          26
          
        
      
        
          Coordinatore
          
          
        
      
        
          Settore disciplinare
          
          
        
      
        
          Settore concorsuale
          
          
        
      
        
          Parole chiave
          interseimic deformation normal faults
          
        
      
        
          URN:NBN
          
          
        
      
        
          DOI
          10.6092/unibo/amsdottorato/6532
          
        
      
        
          Data di discussione
          7 Maggio 2014
          
        
      
      URI
      
      
     
   
  
    Altri metadati
    
      Tipologia del documento
      Tesi di dottorato
      
      
      
      
        
      
        
          Autore
          Vadacca, Luigi
          
        
      
        
          Supervisore
          
          
        
      
        
      
        
          Dottorato di ricerca
          
          
        
      
        
          Scuola di dottorato
          Scienze matematiche, fisiche ed astronomiche
          
        
      
        
          Ciclo
          26
          
        
      
        
          Coordinatore
          
          
        
      
        
          Settore disciplinare
          
          
        
      
        
          Settore concorsuale
          
          
        
      
        
          Parole chiave
          interseimic deformation normal faults
          
        
      
        
          URN:NBN
          
          
        
      
        
          DOI
          10.6092/unibo/amsdottorato/6532
          
        
      
        
          Data di discussione
          7 Maggio 2014
          
        
      
      URI
      
      
     
   
  
  
  
  
  
    
    Statistica sui download
    
    
  
  
    
      Gestione del documento: 
      
        