Elastomers with tunable degradation as small diameter blood vessel substitutes for peripheral artery disease

Bondi, Edoardo (2025) Elastomers with tunable degradation as small diameter blood vessel substitutes for peripheral artery disease, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Scienze e tecnologie della salute, 37 Ciclo.
Documenti full-text disponibili:
[thumbnail of Bondi_Edoardo_tesi.pdf] Documento PDF (English) - Accesso riservato fino a 26 Settembre 2028 - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (13MB) | Contatta l'autore

Abstract

Cardiovascular diseases are responsible of a huge number of severe disability cases and deaths worldwide. Among these, Peripheral Arterial Diseases (PAD) represent a major clinical challenge, especially when they affect the lower limbs, often leading to critical limb ischemia (CLI), impaired mobility, and increased risk of amputation. Strong research in this field has been extensively carried out, in particular for the associated complications, such as the occlusion of small diameter (< 6 mm) vessels. This PhD research focused on the synthesis, characterization, and processing of innovative polymeric materials for the fabrication of small-diameter (d < 6 mm) vascular grafts aimed at treating PAD. Two distinct families of polyesters, aliphatic (based on poly(butylene trans-1,4-ciclohexanedicarboxylate) (PBCE)) and aromatic (based on poly(butylene 2,5-furandicarboxylate) (PBF) and poly(butylene isophthalate) (PBI)), were designed and synthesized through targeted copolymerization strategies to tailor their physical, chemical, and biological properties. The aliphatic copolymers incorporated Pripol 1009 to modulate flexibility, degradability, and surface properties. These materials showed thermoplastic elastomeric behavior, tunable degradation rates, and excellent hemocompatibility. Electrospun scaffolds supported endothelial cell adhesion and maintained stability over time, with mechanical performance, especially for PBCE-based blends, comparable to that of the saphenous vein. Parallel efforts have been directed to aromatic PBF/PBI systems, chosen for their inherent thermal and chemical stability. Copolymerization effectively enhanced toughness without compromising long-term integrity. These materials also showed low cytotoxicity, reduced protein adsorption, and promising hemocompatibility. Electrospun scaffolds preserved endothelial cell viability and expression of VE-cadherin, while mechanical tests on tubular scaffolds confirmed their suitability for vascular applications. Overall, both material systems show strong potential for vascular tissue engineering: PBCE-based copolymers for short-term regenerative purposes, and PBF/PBI-based systems for long-term vascular grafts.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Bondi, Edoardo
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
37
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
small diameter vascular graft, peripheral artery disease, copolyesters, poly(butylene trans-1,4-ciclohexanedicarboxylate), poly(butylene 2,5-furanoate), poly(butylene isophthalate), thermal and mechanical properties, hydrolytic degradation, biocompatibility, hemocompatibility, electrospinning
Data di discussione
4 Novembre 2025
URI

Altri metadati

Gestione del documento: Visualizza la tesi

^