Turtù, Giorgio
(2025)
Computational study of non-conventional molecular topologies, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Data science and computation, 36 Ciclo.
Documenti full-text disponibili:
![turtu_giorgio_tesi.pdf [thumbnail of turtu_giorgio_tesi.pdf]](https://amsdottorato.unibo.it/style/images/fileicons/application_pdf.png) |
Documento PDF (English)
- Accesso riservato fino a 1 Giugno 2026
- Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (41MB)
| Contatta l'autore
|
Abstract
Non-conventional topologies within the field of chemistry are molecules whose structure cannot be fully identified by chemical formula and connectivity. Knots are an example of this class of molecules. Particular emphasis has been given to the subclass of knots that can be represented on the surface of a torus, i.e. torus knots. Their study spans here three main branches: (1) Quantum Mechanical exploration using matrix formulation to study free particles tracing torus knots; (2) Molecular Dynamics (MD) investigations of synthetic and in silico knots with varying structures and chain lengths; (3) knot identification using a 3D Convolutional Neural Network (3D-CNN) classifier with a voxel-based molecular representation. Key contributions include the formulation of a matrix Hamiltonian for a particle on a torus knot, characterization of dynamic behavior via MD and principal component analysis, and examination of hydrogen-bond stability in knotted versus unknotted systems. A novel voxel-based molecular representation and a dataset for pretraining classifiers were developed to enhance machine learning applications in chemistry. Additionally, the KIMH Python package was created to facilitate the automated manipulation of knots in this field.
Abstract
Non-conventional topologies within the field of chemistry are molecules whose structure cannot be fully identified by chemical formula and connectivity. Knots are an example of this class of molecules. Particular emphasis has been given to the subclass of knots that can be represented on the surface of a torus, i.e. torus knots. Their study spans here three main branches: (1) Quantum Mechanical exploration using matrix formulation to study free particles tracing torus knots; (2) Molecular Dynamics (MD) investigations of synthetic and in silico knots with varying structures and chain lengths; (3) knot identification using a 3D Convolutional Neural Network (3D-CNN) classifier with a voxel-based molecular representation. Key contributions include the formulation of a matrix Hamiltonian for a particle on a torus knot, characterization of dynamic behavior via MD and principal component analysis, and examination of hydrogen-bond stability in knotted versus unknotted systems. A novel voxel-based molecular representation and a dataset for pretraining classifiers were developed to enhance machine learning applications in chemistry. Additionally, the KIMH Python package was created to facilitate the automated manipulation of knots in this field.
Tipologia del documento
Tesi di dottorato
Autore
Turtù, Giorgio
Supervisore
Dottorato di ricerca
Ciclo
36
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
molecular knots, torus knots, quantum mechanics, molecular dynamics, knot classification
Data di discussione
8 Luglio 2025
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Turtù, Giorgio
Supervisore
Dottorato di ricerca
Ciclo
36
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
molecular knots, torus knots, quantum mechanics, molecular dynamics, knot classification
Data di discussione
8 Luglio 2025
URI
Gestione del documento: