Data-driven and machine-learning approaches for just and healthy urban planning

Saber, Aniseh (2025) Data-driven and machine-learning approaches for just and healthy urban planning, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Architettura e culture del progetto, 37 Ciclo.
Documenti full-text disponibili:
[thumbnail of Saber_Aniseh_thesis.pdf] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (10MB)

Abstract

Climate change is intensifying the frequency, severity, and duration of extreme weather events such as heatwaves and wildfires, disproportionately affecting vulnerable urban populations, particularly the elderly. This thesis presents a dual risk assessment focused on populations aged 65 and older in Bologna, Italy, and California, the United States. By integrating environmental, infrastructural, and demographic data, it identifies susceptibilities and proposes data-driven mitigation strategies using Machine Learning (ML). Using wildfire (2014–2021) and heatwave (2014–2023) data at the census tract level, the study develops risk maps under Representative Concentration Pathways (RCP) scenarios 4.5, 6.0, and 8.5. It applies Random Forest (RF) and Long Short-Term Memory (LSTM) models to identify high-risk urban areas, advocating for transdisciplinary and equitable urban resilience strategies. The methodology builds upon the risk triangle, hazard, exposure, and vulnerability. Hazards include temperature extremes and wildfire intensity. Exposure is assessed through population density in hazard-prone areas. Vulnerability accounts for age, gender, socioeconomic status, health, and built infrastructure. Advanced Geographic Information Systems (GIS) and ML methods enhance the assessment’s scalability and accuracy over traditional approaches. This dissertation documents and evaluates the methodology through a structured three-phase approach: creation, analysis, and application of risk maps. The creation phase uses ML to model spatial and temporal risk dynamics. Case studies in Bologna and California demonstrate the integration of diverse datasets, including meteorological, topographical, and demographic variables. The analysis phase optimizes model performance using GridSearchCV and the Hippopotamus Optimization Algorithm (HOA), validated through confusion matrices, statistical metrics, and ROC curves. In the application phase, risk maps inform urban planning and highlight strategies to protect the elderly. This study develops a data-driven framework for climate risk assessment and mitigation. By merging Nature-Based Solutions (NBS), ML, and urban planning, it promotes healthier, more equitable, and climate-resilient cities.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Saber, Aniseh
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
37
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Heatwave; Wildfire; Risk Assessment; Machine Learning; LSTM; Random Forest; Data-Driven; Hazard; Exposure; Vulnerability; Adaptive Capacity; Sensitivity; Vulnerable Populations; Elderly; Justice; Mortality; Urban Planning; Health; Nature Based Solutions; Bologna; California
Data di discussione
24 Giugno 2025
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^