Blank space: demographic estimation data-sparse contexts

Omenti, Riccardo (2025) Blank space: demographic estimation data-sparse contexts, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Scienze statistiche, 37 Ciclo. DOI 10.48676/unibo/amsdottorato/11832.
Documenti full-text disponibili:
[thumbnail of RiccardoOmenti_Final_PhD_Thesis.pdf] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (89MB)

Abstract

This thesis explores novel approaches for the estimation of demographic outcomes in contexts where data are limited. In the first part, we investigate the potential of an emerging non-traditional data source for demographic research: online genealogies. Harnessing FamiLinx, a big genealogical database with over 86 million observations, we show that the availability of accurate and non-missing demographic information in online genealogical data is selective. Our findings reveal that individuals with a non-missing value in a demographic variable are more likely to present non-missing data in the other demographic variables, and to be embedded in family networks, whose members exhibit demographic information of superior quality and completeness. In the second part, we develop a Bayesian method for estimating the total fertility rate (TFR) indirectly from defective data. By combining online genealogical data from FamiLinx populations with information from more reliable sources, the proposed method allows to obtain TFR estimates for seven European countries and the United States during the historical period 1751-1910, a time when many of these countries lacked well-functioning civil registration systems. In the third part, we build a Bayesian model for the estimation of subnational male and female TFRs. Using real data from the United States and simulated data from Australia, we demonstrate that the proposed method can produce reasonably accurate TFR estimates in contexts, such as small areas, where data tend to be sparse and highly variable. Throughout the second and third parts of this thesis, we leverage indirect estimation techniques within a flexible Bayesian modeling framework. This approach allows to incorporate multiple data sources, to capture regularities in demographic trends over time and space, and to account for uncertainty.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Omenti, Riccardo
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
37
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Bayesian demography, fertility estimation, digital demography, online genealogies, small-area estimation
DOI
10.48676/unibo/amsdottorato/11832
Data di discussione
8 Aprile 2025
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^